Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
9#include <linux/types.h>
10#include <linux/bug.h>
11#include <linux/mmdebug.h>
12#ifndef __GENERATING_BOUNDS_H
13#include <linux/mm_types.h>
14#include <generated/bounds.h>
15#endif /* !__GENERATING_BOUNDS_H */
16
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages not added to the page allocator when onlining a section because
34 * they were excluded via the online_page_callback() or because they are
35 * PG_hwpoison.
36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37 * control pages, vmcoreinfo)
38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39 * not marked PG_reserved (as they might be in use by somebody else who does
40 * not respect the caching strategy).
41 * - Pages part of an offline section (struct pages of offline sections should
42 * not be trusted as they will be initialized when first onlined).
43 * - MCA pages on ia64
44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
45 * - Device memory (e.g. PMEM, DAX, HMM)
46 * Some PG_reserved pages will be excluded from the hibernation image.
47 * PG_reserved does in general not hinder anybody from dumping or swapping
48 * and is no longer required for remap_pfn_range(). ioremap might require it.
49 * Consequently, PG_reserved for a page mapped into user space can indicate
50 * the zero page, the vDSO, MMIO pages or device memory.
51 *
52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
53 * specific data (which is normally at page->private). It can be used by
54 * private allocations for its own usage.
55 *
56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58 * is set before writeback starts and cleared when it finishes.
59 *
60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
61 * while it is held.
62 *
63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64 * to become unlocked.
65 *
66 * PG_swapbacked is set when a page uses swap as a backing storage. This are
67 * usually PageAnon or shmem pages but please note that even anonymous pages
68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69 * a result of MADV_FREE).
70 *
71 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72 * file-backed pagecache (see mm/vmscan.c).
73 *
74 * PG_error is set to indicate that an I/O error occurred on this page.
75 *
76 * PG_arch_1 is an architecture specific page state bit. The generic code
77 * guarantees that this bit is cleared for a page when it first is entered into
78 * the page cache.
79 *
80 * PG_hwpoison indicates that a page got corrupted in hardware and contains
81 * data with incorrect ECC bits that triggered a machine check. Accessing is
82 * not safe since it may cause another machine check. Don't touch!
83 */
84
85/*
86 * Don't use the pageflags directly. Use the PageFoo macros.
87 *
88 * The page flags field is split into two parts, the main flags area
89 * which extends from the low bits upwards, and the fields area which
90 * extends from the high bits downwards.
91 *
92 * | FIELD | ... | FLAGS |
93 * N-1 ^ 0
94 * (NR_PAGEFLAGS)
95 *
96 * The fields area is reserved for fields mapping zone, node (for NUMA) and
97 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99 */
100enum pageflags {
101 PG_locked, /* Page is locked. Don't touch. */
102 PG_referenced,
103 PG_uptodate,
104 PG_dirty,
105 PG_lru,
106 PG_active,
107 PG_workingset,
108 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 PG_error,
110 PG_slab,
111 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
112 PG_arch_1,
113 PG_reserved,
114 PG_private, /* If pagecache, has fs-private data */
115 PG_private_2, /* If pagecache, has fs aux data */
116 PG_writeback, /* Page is under writeback */
117 PG_head, /* A head page */
118 PG_mappedtodisk, /* Has blocks allocated on-disk */
119 PG_reclaim, /* To be reclaimed asap */
120 PG_swapbacked, /* Page is backed by RAM/swap */
121 PG_unevictable, /* Page is "unevictable" */
122#ifdef CONFIG_MMU
123 PG_mlocked, /* Page is vma mlocked */
124#endif
125#ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 PG_uncached, /* Page has been mapped as uncached */
127#endif
128#ifdef CONFIG_MEMORY_FAILURE
129 PG_hwpoison, /* hardware poisoned page. Don't touch */
130#endif
131#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 PG_young,
133 PG_idle,
134#endif
135#ifdef CONFIG_64BIT
136 PG_arch_2,
137#endif
138#ifdef CONFIG_KASAN_HW_TAGS
139 PG_skip_kasan_poison,
140#endif
141 __NR_PAGEFLAGS,
142
143 PG_readahead = PG_reclaim,
144
145 /* Filesystems */
146 PG_checked = PG_owner_priv_1,
147
148 /* SwapBacked */
149 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
150
151 /* Two page bits are conscripted by FS-Cache to maintain local caching
152 * state. These bits are set on pages belonging to the netfs's inodes
153 * when those inodes are being locally cached.
154 */
155 PG_fscache = PG_private_2, /* page backed by cache */
156
157 /* XEN */
158 /* Pinned in Xen as a read-only pagetable page. */
159 PG_pinned = PG_owner_priv_1,
160 /* Pinned as part of domain save (see xen_mm_pin_all()). */
161 PG_savepinned = PG_dirty,
162 /* Has a grant mapping of another (foreign) domain's page. */
163 PG_foreign = PG_owner_priv_1,
164 /* Remapped by swiotlb-xen. */
165 PG_xen_remapped = PG_owner_priv_1,
166
167 /* SLOB */
168 PG_slob_free = PG_private,
169
170 /* Compound pages. Stored in first tail page's flags */
171 PG_double_map = PG_workingset,
172
173#ifdef CONFIG_MEMORY_FAILURE
174 /*
175 * Compound pages. Stored in first tail page's flags.
176 * Indicates that at least one subpage is hwpoisoned in the
177 * THP.
178 */
179 PG_has_hwpoisoned = PG_mappedtodisk,
180#endif
181
182 /* non-lru isolated movable page */
183 PG_isolated = PG_reclaim,
184
185 /* Only valid for buddy pages. Used to track pages that are reported */
186 PG_reported = PG_uptodate,
187};
188
189#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1)
190
191#ifndef __GENERATING_BOUNDS_H
192
193static inline unsigned long _compound_head(const struct page *page)
194{
195 unsigned long head = READ_ONCE(page->compound_head);
196
197 if (unlikely(head & 1))
198 return head - 1;
199 return (unsigned long)page;
200}
201
202#define compound_head(page) ((typeof(page))_compound_head(page))
203
204/**
205 * page_folio - Converts from page to folio.
206 * @p: The page.
207 *
208 * Every page is part of a folio. This function cannot be called on a
209 * NULL pointer.
210 *
211 * Context: No reference, nor lock is required on @page. If the caller
212 * does not hold a reference, this call may race with a folio split, so
213 * it should re-check the folio still contains this page after gaining
214 * a reference on the folio.
215 * Return: The folio which contains this page.
216 */
217#define page_folio(p) (_Generic((p), \
218 const struct page *: (const struct folio *)_compound_head(p), \
219 struct page *: (struct folio *)_compound_head(p)))
220
221/**
222 * folio_page - Return a page from a folio.
223 * @folio: The folio.
224 * @n: The page number to return.
225 *
226 * @n is relative to the start of the folio. This function does not
227 * check that the page number lies within @folio; the caller is presumed
228 * to have a reference to the page.
229 */
230#define folio_page(folio, n) nth_page(&(folio)->page, n)
231
232static __always_inline int PageTail(struct page *page)
233{
234 return READ_ONCE(page->compound_head) & 1;
235}
236
237static __always_inline int PageCompound(struct page *page)
238{
239 return test_bit(PG_head, &page->flags) || PageTail(page);
240}
241
242#define PAGE_POISON_PATTERN -1l
243static inline int PagePoisoned(const struct page *page)
244{
245 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
246}
247
248#ifdef CONFIG_DEBUG_VM
249void page_init_poison(struct page *page, size_t size);
250#else
251static inline void page_init_poison(struct page *page, size_t size)
252{
253}
254#endif
255
256static unsigned long *folio_flags(struct folio *folio, unsigned n)
257{
258 struct page *page = &folio->page;
259
260 VM_BUG_ON_PGFLAGS(PageTail(page), page);
261 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
262 return &page[n].flags;
263}
264
265/*
266 * Page flags policies wrt compound pages
267 *
268 * PF_POISONED_CHECK
269 * check if this struct page poisoned/uninitialized
270 *
271 * PF_ANY:
272 * the page flag is relevant for small, head and tail pages.
273 *
274 * PF_HEAD:
275 * for compound page all operations related to the page flag applied to
276 * head page.
277 *
278 * PF_ONLY_HEAD:
279 * for compound page, callers only ever operate on the head page.
280 *
281 * PF_NO_TAIL:
282 * modifications of the page flag must be done on small or head pages,
283 * checks can be done on tail pages too.
284 *
285 * PF_NO_COMPOUND:
286 * the page flag is not relevant for compound pages.
287 *
288 * PF_SECOND:
289 * the page flag is stored in the first tail page.
290 */
291#define PF_POISONED_CHECK(page) ({ \
292 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
293 page; })
294#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
295#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
296#define PF_ONLY_HEAD(page, enforce) ({ \
297 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
298 PF_POISONED_CHECK(page); })
299#define PF_NO_TAIL(page, enforce) ({ \
300 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
301 PF_POISONED_CHECK(compound_head(page)); })
302#define PF_NO_COMPOUND(page, enforce) ({ \
303 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
304 PF_POISONED_CHECK(page); })
305#define PF_SECOND(page, enforce) ({ \
306 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
307 PF_POISONED_CHECK(&page[1]); })
308
309/* Which page is the flag stored in */
310#define FOLIO_PF_ANY 0
311#define FOLIO_PF_HEAD 0
312#define FOLIO_PF_ONLY_HEAD 0
313#define FOLIO_PF_NO_TAIL 0
314#define FOLIO_PF_NO_COMPOUND 0
315#define FOLIO_PF_SECOND 1
316
317/*
318 * Macros to create function definitions for page flags
319 */
320#define TESTPAGEFLAG(uname, lname, policy) \
321static __always_inline bool folio_test_##lname(struct folio *folio) \
322{ return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
323static __always_inline int Page##uname(struct page *page) \
324{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
325
326#define SETPAGEFLAG(uname, lname, policy) \
327static __always_inline \
328void folio_set_##lname(struct folio *folio) \
329{ set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
330static __always_inline void SetPage##uname(struct page *page) \
331{ set_bit(PG_##lname, &policy(page, 1)->flags); }
332
333#define CLEARPAGEFLAG(uname, lname, policy) \
334static __always_inline \
335void folio_clear_##lname(struct folio *folio) \
336{ clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
337static __always_inline void ClearPage##uname(struct page *page) \
338{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
339
340#define __SETPAGEFLAG(uname, lname, policy) \
341static __always_inline \
342void __folio_set_##lname(struct folio *folio) \
343{ __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
344static __always_inline void __SetPage##uname(struct page *page) \
345{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
346
347#define __CLEARPAGEFLAG(uname, lname, policy) \
348static __always_inline \
349void __folio_clear_##lname(struct folio *folio) \
350{ __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
351static __always_inline void __ClearPage##uname(struct page *page) \
352{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
353
354#define TESTSETFLAG(uname, lname, policy) \
355static __always_inline \
356bool folio_test_set_##lname(struct folio *folio) \
357{ return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
358static __always_inline int TestSetPage##uname(struct page *page) \
359{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
360
361#define TESTCLEARFLAG(uname, lname, policy) \
362static __always_inline \
363bool folio_test_clear_##lname(struct folio *folio) \
364{ return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
365static __always_inline int TestClearPage##uname(struct page *page) \
366{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
367
368#define PAGEFLAG(uname, lname, policy) \
369 TESTPAGEFLAG(uname, lname, policy) \
370 SETPAGEFLAG(uname, lname, policy) \
371 CLEARPAGEFLAG(uname, lname, policy)
372
373#define __PAGEFLAG(uname, lname, policy) \
374 TESTPAGEFLAG(uname, lname, policy) \
375 __SETPAGEFLAG(uname, lname, policy) \
376 __CLEARPAGEFLAG(uname, lname, policy)
377
378#define TESTSCFLAG(uname, lname, policy) \
379 TESTSETFLAG(uname, lname, policy) \
380 TESTCLEARFLAG(uname, lname, policy)
381
382#define TESTPAGEFLAG_FALSE(uname, lname) \
383static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
384static inline int Page##uname(const struct page *page) { return 0; }
385
386#define SETPAGEFLAG_NOOP(uname, lname) \
387static inline void folio_set_##lname(struct folio *folio) { } \
388static inline void SetPage##uname(struct page *page) { }
389
390#define CLEARPAGEFLAG_NOOP(uname, lname) \
391static inline void folio_clear_##lname(struct folio *folio) { } \
392static inline void ClearPage##uname(struct page *page) { }
393
394#define __CLEARPAGEFLAG_NOOP(uname, lname) \
395static inline void __folio_clear_##lname(struct folio *folio) { } \
396static inline void __ClearPage##uname(struct page *page) { }
397
398#define TESTSETFLAG_FALSE(uname, lname) \
399static inline bool folio_test_set_##lname(struct folio *folio) \
400{ return 0; } \
401static inline int TestSetPage##uname(struct page *page) { return 0; }
402
403#define TESTCLEARFLAG_FALSE(uname, lname) \
404static inline bool folio_test_clear_##lname(struct folio *folio) \
405{ return 0; } \
406static inline int TestClearPage##uname(struct page *page) { return 0; }
407
408#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \
409 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
410
411#define TESTSCFLAG_FALSE(uname, lname) \
412 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
413
414__PAGEFLAG(Locked, locked, PF_NO_TAIL)
415PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
416PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
417PAGEFLAG(Referenced, referenced, PF_HEAD)
418 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
419 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
420PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
421 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
422PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
423 TESTCLEARFLAG(LRU, lru, PF_HEAD)
424PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
425 TESTCLEARFLAG(Active, active, PF_HEAD)
426PAGEFLAG(Workingset, workingset, PF_HEAD)
427 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
428__PAGEFLAG(Slab, slab, PF_NO_TAIL)
429__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
430PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
431
432/* Xen */
433PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
434 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
435PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
436PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
437PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
438 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
439
440PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
441 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
442 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
443PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
444 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
445 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
446
447/*
448 * Private page markings that may be used by the filesystem that owns the page
449 * for its own purposes.
450 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
451 */
452PAGEFLAG(Private, private, PF_ANY)
453PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
454PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
455 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
456
457/*
458 * Only test-and-set exist for PG_writeback. The unconditional operators are
459 * risky: they bypass page accounting.
460 */
461TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
462 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
463PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
464
465/* PG_readahead is only used for reads; PG_reclaim is only for writes */
466PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
467 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
468PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
469 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
470
471#ifdef CONFIG_HIGHMEM
472/*
473 * Must use a macro here due to header dependency issues. page_zone() is not
474 * available at this point.
475 */
476#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
477#else
478PAGEFLAG_FALSE(HighMem, highmem)
479#endif
480
481#ifdef CONFIG_SWAP
482static __always_inline bool folio_test_swapcache(struct folio *folio)
483{
484 return folio_test_swapbacked(folio) &&
485 test_bit(PG_swapcache, folio_flags(folio, 0));
486}
487
488static __always_inline bool PageSwapCache(struct page *page)
489{
490 return folio_test_swapcache(page_folio(page));
491}
492
493SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
494CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
495#else
496PAGEFLAG_FALSE(SwapCache, swapcache)
497#endif
498
499PAGEFLAG(Unevictable, unevictable, PF_HEAD)
500 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
501 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
502
503#ifdef CONFIG_MMU
504PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
505 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
506 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
507#else
508PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
509 TESTSCFLAG_FALSE(Mlocked, mlocked)
510#endif
511
512#ifdef CONFIG_ARCH_USES_PG_UNCACHED
513PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
514#else
515PAGEFLAG_FALSE(Uncached, uncached)
516#endif
517
518#ifdef CONFIG_MEMORY_FAILURE
519PAGEFLAG(HWPoison, hwpoison, PF_ANY)
520TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
521#define __PG_HWPOISON (1UL << PG_hwpoison)
522#define MAGIC_HWPOISON 0x48575053U /* HWPS */
523extern void SetPageHWPoisonTakenOff(struct page *page);
524extern void ClearPageHWPoisonTakenOff(struct page *page);
525extern bool take_page_off_buddy(struct page *page);
526extern bool put_page_back_buddy(struct page *page);
527#else
528PAGEFLAG_FALSE(HWPoison, hwpoison)
529#define __PG_HWPOISON 0
530#endif
531
532#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
533TESTPAGEFLAG(Young, young, PF_ANY)
534SETPAGEFLAG(Young, young, PF_ANY)
535TESTCLEARFLAG(Young, young, PF_ANY)
536PAGEFLAG(Idle, idle, PF_ANY)
537#endif
538
539#ifdef CONFIG_KASAN_HW_TAGS
540PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
541#else
542PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
543#endif
544
545/*
546 * PageReported() is used to track reported free pages within the Buddy
547 * allocator. We can use the non-atomic version of the test and set
548 * operations as both should be shielded with the zone lock to prevent
549 * any possible races on the setting or clearing of the bit.
550 */
551__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
552
553/*
554 * On an anonymous page mapped into a user virtual memory area,
555 * page->mapping points to its anon_vma, not to a struct address_space;
556 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
557 *
558 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
559 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
560 * bit; and then page->mapping points, not to an anon_vma, but to a private
561 * structure which KSM associates with that merged page. See ksm.h.
562 *
563 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
564 * page and then page->mapping points a struct address_space.
565 *
566 * Please note that, confusingly, "page_mapping" refers to the inode
567 * address_space which maps the page from disk; whereas "page_mapped"
568 * refers to user virtual address space into which the page is mapped.
569 */
570#define PAGE_MAPPING_ANON 0x1
571#define PAGE_MAPPING_MOVABLE 0x2
572#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
573#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
574
575static __always_inline int PageMappingFlags(struct page *page)
576{
577 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
578}
579
580static __always_inline bool folio_test_anon(struct folio *folio)
581{
582 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
583}
584
585static __always_inline bool PageAnon(struct page *page)
586{
587 return folio_test_anon(page_folio(page));
588}
589
590static __always_inline int __PageMovable(struct page *page)
591{
592 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
593 PAGE_MAPPING_MOVABLE;
594}
595
596#ifdef CONFIG_KSM
597/*
598 * A KSM page is one of those write-protected "shared pages" or "merged pages"
599 * which KSM maps into multiple mms, wherever identical anonymous page content
600 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
601 * anon_vma, but to that page's node of the stable tree.
602 */
603static __always_inline bool folio_test_ksm(struct folio *folio)
604{
605 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
606 PAGE_MAPPING_KSM;
607}
608
609static __always_inline bool PageKsm(struct page *page)
610{
611 return folio_test_ksm(page_folio(page));
612}
613#else
614TESTPAGEFLAG_FALSE(Ksm, ksm)
615#endif
616
617u64 stable_page_flags(struct page *page);
618
619/**
620 * folio_test_uptodate - Is this folio up to date?
621 * @folio: The folio.
622 *
623 * The uptodate flag is set on a folio when every byte in the folio is
624 * at least as new as the corresponding bytes on storage. Anonymous
625 * and CoW folios are always uptodate. If the folio is not uptodate,
626 * some of the bytes in it may be; see the is_partially_uptodate()
627 * address_space operation.
628 */
629static inline bool folio_test_uptodate(struct folio *folio)
630{
631 bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
632 /*
633 * Must ensure that the data we read out of the folio is loaded
634 * _after_ we've loaded folio->flags to check the uptodate bit.
635 * We can skip the barrier if the folio is not uptodate, because
636 * we wouldn't be reading anything from it.
637 *
638 * See folio_mark_uptodate() for the other side of the story.
639 */
640 if (ret)
641 smp_rmb();
642
643 return ret;
644}
645
646static inline int PageUptodate(struct page *page)
647{
648 return folio_test_uptodate(page_folio(page));
649}
650
651static __always_inline void __folio_mark_uptodate(struct folio *folio)
652{
653 smp_wmb();
654 __set_bit(PG_uptodate, folio_flags(folio, 0));
655}
656
657static __always_inline void folio_mark_uptodate(struct folio *folio)
658{
659 /*
660 * Memory barrier must be issued before setting the PG_uptodate bit,
661 * so that all previous stores issued in order to bring the folio
662 * uptodate are actually visible before folio_test_uptodate becomes true.
663 */
664 smp_wmb();
665 set_bit(PG_uptodate, folio_flags(folio, 0));
666}
667
668static __always_inline void __SetPageUptodate(struct page *page)
669{
670 __folio_mark_uptodate((struct folio *)page);
671}
672
673static __always_inline void SetPageUptodate(struct page *page)
674{
675 folio_mark_uptodate((struct folio *)page);
676}
677
678CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
679
680bool __folio_start_writeback(struct folio *folio, bool keep_write);
681bool set_page_writeback(struct page *page);
682
683#define folio_start_writeback(folio) \
684 __folio_start_writeback(folio, false)
685#define folio_start_writeback_keepwrite(folio) \
686 __folio_start_writeback(folio, true)
687
688static inline void set_page_writeback_keepwrite(struct page *page)
689{
690 folio_start_writeback_keepwrite(page_folio(page));
691}
692
693static inline bool test_set_page_writeback(struct page *page)
694{
695 return set_page_writeback(page);
696}
697
698__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
699
700/**
701 * folio_test_large() - Does this folio contain more than one page?
702 * @folio: The folio to test.
703 *
704 * Return: True if the folio is larger than one page.
705 */
706static inline bool folio_test_large(struct folio *folio)
707{
708 return folio_test_head(folio);
709}
710
711static __always_inline void set_compound_head(struct page *page, struct page *head)
712{
713 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
714}
715
716static __always_inline void clear_compound_head(struct page *page)
717{
718 WRITE_ONCE(page->compound_head, 0);
719}
720
721#ifdef CONFIG_TRANSPARENT_HUGEPAGE
722static inline void ClearPageCompound(struct page *page)
723{
724 BUG_ON(!PageHead(page));
725 ClearPageHead(page);
726}
727#endif
728
729#define PG_head_mask ((1UL << PG_head))
730
731#ifdef CONFIG_HUGETLB_PAGE
732int PageHuge(struct page *page);
733int PageHeadHuge(struct page *page);
734static inline bool folio_test_hugetlb(struct folio *folio)
735{
736 return PageHeadHuge(&folio->page);
737}
738#else
739TESTPAGEFLAG_FALSE(Huge, hugetlb)
740TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
741#endif
742
743#ifdef CONFIG_TRANSPARENT_HUGEPAGE
744/*
745 * PageHuge() only returns true for hugetlbfs pages, but not for
746 * normal or transparent huge pages.
747 *
748 * PageTransHuge() returns true for both transparent huge and
749 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
750 * called only in the core VM paths where hugetlbfs pages can't exist.
751 */
752static inline int PageTransHuge(struct page *page)
753{
754 VM_BUG_ON_PAGE(PageTail(page), page);
755 return PageHead(page);
756}
757
758static inline bool folio_test_transhuge(struct folio *folio)
759{
760 return folio_test_head(folio);
761}
762
763/*
764 * PageTransCompound returns true for both transparent huge pages
765 * and hugetlbfs pages, so it should only be called when it's known
766 * that hugetlbfs pages aren't involved.
767 */
768static inline int PageTransCompound(struct page *page)
769{
770 return PageCompound(page);
771}
772
773/*
774 * PageTransTail returns true for both transparent huge pages
775 * and hugetlbfs pages, so it should only be called when it's known
776 * that hugetlbfs pages aren't involved.
777 */
778static inline int PageTransTail(struct page *page)
779{
780 return PageTail(page);
781}
782
783/*
784 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
785 * as PMDs.
786 *
787 * This is required for optimization of rmap operations for THP: we can postpone
788 * per small page mapcount accounting (and its overhead from atomic operations)
789 * until the first PMD split.
790 *
791 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
792 * by one. This reference will go away with last compound_mapcount.
793 *
794 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
795 */
796PAGEFLAG(DoubleMap, double_map, PF_SECOND)
797 TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
798#else
799TESTPAGEFLAG_FALSE(TransHuge, transhuge)
800TESTPAGEFLAG_FALSE(TransCompound, transcompound)
801TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
802TESTPAGEFLAG_FALSE(TransTail, transtail)
803PAGEFLAG_FALSE(DoubleMap, double_map)
804 TESTSCFLAG_FALSE(DoubleMap, double_map)
805#endif
806
807#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
808/*
809 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
810 * compound page.
811 *
812 * This flag is set by hwpoison handler. Cleared by THP split or free page.
813 */
814PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
815 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
816#else
817PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
818 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
819#endif
820
821/*
822 * Check if a page is currently marked HWPoisoned. Note that this check is
823 * best effort only and inherently racy: there is no way to synchronize with
824 * failing hardware.
825 */
826static inline bool is_page_hwpoison(struct page *page)
827{
828 if (PageHWPoison(page))
829 return true;
830 return PageHuge(page) && PageHWPoison(compound_head(page));
831}
832
833/*
834 * For pages that are never mapped to userspace (and aren't PageSlab),
835 * page_type may be used. Because it is initialised to -1, we invert the
836 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
837 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
838 * low bits so that an underflow or overflow of page_mapcount() won't be
839 * mistaken for a page type value.
840 */
841
842#define PAGE_TYPE_BASE 0xf0000000
843/* Reserve 0x0000007f to catch underflows of page_mapcount */
844#define PAGE_MAPCOUNT_RESERVE -128
845#define PG_buddy 0x00000080
846#define PG_offline 0x00000100
847#define PG_table 0x00000200
848#define PG_guard 0x00000400
849
850#define PageType(page, flag) \
851 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
852
853static inline int page_has_type(struct page *page)
854{
855 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
856}
857
858#define PAGE_TYPE_OPS(uname, lname) \
859static __always_inline int Page##uname(struct page *page) \
860{ \
861 return PageType(page, PG_##lname); \
862} \
863static __always_inline void __SetPage##uname(struct page *page) \
864{ \
865 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
866 page->page_type &= ~PG_##lname; \
867} \
868static __always_inline void __ClearPage##uname(struct page *page) \
869{ \
870 VM_BUG_ON_PAGE(!Page##uname(page), page); \
871 page->page_type |= PG_##lname; \
872}
873
874/*
875 * PageBuddy() indicates that the page is free and in the buddy system
876 * (see mm/page_alloc.c).
877 */
878PAGE_TYPE_OPS(Buddy, buddy)
879
880/*
881 * PageOffline() indicates that the page is logically offline although the
882 * containing section is online. (e.g. inflated in a balloon driver or
883 * not onlined when onlining the section).
884 * The content of these pages is effectively stale. Such pages should not
885 * be touched (read/write/dump/save) except by their owner.
886 *
887 * If a driver wants to allow to offline unmovable PageOffline() pages without
888 * putting them back to the buddy, it can do so via the memory notifier by
889 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
890 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
891 * pages (now with a reference count of zero) are treated like free pages,
892 * allowing the containing memory block to get offlined. A driver that
893 * relies on this feature is aware that re-onlining the memory block will
894 * require to re-set the pages PageOffline() and not giving them to the
895 * buddy via online_page_callback_t.
896 *
897 * There are drivers that mark a page PageOffline() and expect there won't be
898 * any further access to page content. PFN walkers that read content of random
899 * pages should check PageOffline() and synchronize with such drivers using
900 * page_offline_freeze()/page_offline_thaw().
901 */
902PAGE_TYPE_OPS(Offline, offline)
903
904extern void page_offline_freeze(void);
905extern void page_offline_thaw(void);
906extern void page_offline_begin(void);
907extern void page_offline_end(void);
908
909/*
910 * Marks pages in use as page tables.
911 */
912PAGE_TYPE_OPS(Table, table)
913
914/*
915 * Marks guardpages used with debug_pagealloc.
916 */
917PAGE_TYPE_OPS(Guard, guard)
918
919extern bool is_free_buddy_page(struct page *page);
920
921__PAGEFLAG(Isolated, isolated, PF_ANY);
922
923#ifdef CONFIG_MMU
924#define __PG_MLOCKED (1UL << PG_mlocked)
925#else
926#define __PG_MLOCKED 0
927#endif
928
929/*
930 * Flags checked when a page is freed. Pages being freed should not have
931 * these flags set. If they are, there is a problem.
932 */
933#define PAGE_FLAGS_CHECK_AT_FREE \
934 (1UL << PG_lru | 1UL << PG_locked | \
935 1UL << PG_private | 1UL << PG_private_2 | \
936 1UL << PG_writeback | 1UL << PG_reserved | \
937 1UL << PG_slab | 1UL << PG_active | \
938 1UL << PG_unevictable | __PG_MLOCKED)
939
940/*
941 * Flags checked when a page is prepped for return by the page allocator.
942 * Pages being prepped should not have these flags set. If they are set,
943 * there has been a kernel bug or struct page corruption.
944 *
945 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
946 * alloc-free cycle to prevent from reusing the page.
947 */
948#define PAGE_FLAGS_CHECK_AT_PREP \
949 (PAGEFLAGS_MASK & ~__PG_HWPOISON)
950
951#define PAGE_FLAGS_PRIVATE \
952 (1UL << PG_private | 1UL << PG_private_2)
953/**
954 * page_has_private - Determine if page has private stuff
955 * @page: The page to be checked
956 *
957 * Determine if a page has private stuff, indicating that release routines
958 * should be invoked upon it.
959 */
960static inline int page_has_private(struct page *page)
961{
962 return !!(page->flags & PAGE_FLAGS_PRIVATE);
963}
964
965static inline bool folio_has_private(struct folio *folio)
966{
967 return page_has_private(&folio->page);
968}
969
970#undef PF_ANY
971#undef PF_HEAD
972#undef PF_ONLY_HEAD
973#undef PF_NO_TAIL
974#undef PF_NO_COMPOUND
975#undef PF_SECOND
976#endif /* !__GENERATING_BOUNDS_H */
977
978#endif /* PAGE_FLAGS_H */