at v5.17 28 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/rwsem.h> 13#include <linux/completion.h> 14#include <linux/cpumask.h> 15#include <linux/uprobes.h> 16#include <linux/rcupdate.h> 17#include <linux/page-flags-layout.h> 18#include <linux/workqueue.h> 19#include <linux/seqlock.h> 20 21#include <asm/mmu.h> 22 23#ifndef AT_VECTOR_SIZE_ARCH 24#define AT_VECTOR_SIZE_ARCH 0 25#endif 26#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 27 28#define INIT_PASID 0 29 30struct address_space; 31struct mem_cgroup; 32 33/* 34 * Each physical page in the system has a struct page associated with 35 * it to keep track of whatever it is we are using the page for at the 36 * moment. Note that we have no way to track which tasks are using 37 * a page, though if it is a pagecache page, rmap structures can tell us 38 * who is mapping it. 39 * 40 * If you allocate the page using alloc_pages(), you can use some of the 41 * space in struct page for your own purposes. The five words in the main 42 * union are available, except for bit 0 of the first word which must be 43 * kept clear. Many users use this word to store a pointer to an object 44 * which is guaranteed to be aligned. If you use the same storage as 45 * page->mapping, you must restore it to NULL before freeing the page. 46 * 47 * If your page will not be mapped to userspace, you can also use the four 48 * bytes in the mapcount union, but you must call page_mapcount_reset() 49 * before freeing it. 50 * 51 * If you want to use the refcount field, it must be used in such a way 52 * that other CPUs temporarily incrementing and then decrementing the 53 * refcount does not cause problems. On receiving the page from 54 * alloc_pages(), the refcount will be positive. 55 * 56 * If you allocate pages of order > 0, you can use some of the fields 57 * in each subpage, but you may need to restore some of their values 58 * afterwards. 59 * 60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 61 * That requires that freelist & counters in struct slab be adjacent and 62 * double-word aligned. Because struct slab currently just reinterprets the 63 * bits of struct page, we align all struct pages to double-word boundaries, 64 * and ensure that 'freelist' is aligned within struct slab. 65 */ 66#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 67#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 68#else 69#define _struct_page_alignment 70#endif 71 72struct page { 73 unsigned long flags; /* Atomic flags, some possibly 74 * updated asynchronously */ 75 /* 76 * Five words (20/40 bytes) are available in this union. 77 * WARNING: bit 0 of the first word is used for PageTail(). That 78 * means the other users of this union MUST NOT use the bit to 79 * avoid collision and false-positive PageTail(). 80 */ 81 union { 82 struct { /* Page cache and anonymous pages */ 83 /** 84 * @lru: Pageout list, eg. active_list protected by 85 * lruvec->lru_lock. Sometimes used as a generic list 86 * by the page owner. 87 */ 88 struct list_head lru; 89 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 90 struct address_space *mapping; 91 pgoff_t index; /* Our offset within mapping. */ 92 /** 93 * @private: Mapping-private opaque data. 94 * Usually used for buffer_heads if PagePrivate. 95 * Used for swp_entry_t if PageSwapCache. 96 * Indicates order in the buddy system if PageBuddy. 97 */ 98 unsigned long private; 99 }; 100 struct { /* page_pool used by netstack */ 101 /** 102 * @pp_magic: magic value to avoid recycling non 103 * page_pool allocated pages. 104 */ 105 unsigned long pp_magic; 106 struct page_pool *pp; 107 unsigned long _pp_mapping_pad; 108 unsigned long dma_addr; 109 union { 110 /** 111 * dma_addr_upper: might require a 64-bit 112 * value on 32-bit architectures. 113 */ 114 unsigned long dma_addr_upper; 115 /** 116 * For frag page support, not supported in 117 * 32-bit architectures with 64-bit DMA. 118 */ 119 atomic_long_t pp_frag_count; 120 }; 121 }; 122 struct { /* Tail pages of compound page */ 123 unsigned long compound_head; /* Bit zero is set */ 124 125 /* First tail page only */ 126 unsigned char compound_dtor; 127 unsigned char compound_order; 128 atomic_t compound_mapcount; 129 unsigned int compound_nr; /* 1 << compound_order */ 130 }; 131 struct { /* Second tail page of compound page */ 132 unsigned long _compound_pad_1; /* compound_head */ 133 atomic_t hpage_pinned_refcount; 134 /* For both global and memcg */ 135 struct list_head deferred_list; 136 }; 137 struct { /* Page table pages */ 138 unsigned long _pt_pad_1; /* compound_head */ 139 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 140 unsigned long _pt_pad_2; /* mapping */ 141 union { 142 struct mm_struct *pt_mm; /* x86 pgds only */ 143 atomic_t pt_frag_refcount; /* powerpc */ 144 }; 145#if ALLOC_SPLIT_PTLOCKS 146 spinlock_t *ptl; 147#else 148 spinlock_t ptl; 149#endif 150 }; 151 struct { /* ZONE_DEVICE pages */ 152 /** @pgmap: Points to the hosting device page map. */ 153 struct dev_pagemap *pgmap; 154 void *zone_device_data; 155 /* 156 * ZONE_DEVICE private pages are counted as being 157 * mapped so the next 3 words hold the mapping, index, 158 * and private fields from the source anonymous or 159 * page cache page while the page is migrated to device 160 * private memory. 161 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 162 * use the mapping, index, and private fields when 163 * pmem backed DAX files are mapped. 164 */ 165 }; 166 167 /** @rcu_head: You can use this to free a page by RCU. */ 168 struct rcu_head rcu_head; 169 }; 170 171 union { /* This union is 4 bytes in size. */ 172 /* 173 * If the page can be mapped to userspace, encodes the number 174 * of times this page is referenced by a page table. 175 */ 176 atomic_t _mapcount; 177 178 /* 179 * If the page is neither PageSlab nor mappable to userspace, 180 * the value stored here may help determine what this page 181 * is used for. See page-flags.h for a list of page types 182 * which are currently stored here. 183 */ 184 unsigned int page_type; 185 }; 186 187 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 188 atomic_t _refcount; 189 190#ifdef CONFIG_MEMCG 191 unsigned long memcg_data; 192#endif 193 194 /* 195 * On machines where all RAM is mapped into kernel address space, 196 * we can simply calculate the virtual address. On machines with 197 * highmem some memory is mapped into kernel virtual memory 198 * dynamically, so we need a place to store that address. 199 * Note that this field could be 16 bits on x86 ... ;) 200 * 201 * Architectures with slow multiplication can define 202 * WANT_PAGE_VIRTUAL in asm/page.h 203 */ 204#if defined(WANT_PAGE_VIRTUAL) 205 void *virtual; /* Kernel virtual address (NULL if 206 not kmapped, ie. highmem) */ 207#endif /* WANT_PAGE_VIRTUAL */ 208 209#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 210 int _last_cpupid; 211#endif 212} _struct_page_alignment; 213 214/** 215 * struct folio - Represents a contiguous set of bytes. 216 * @flags: Identical to the page flags. 217 * @lru: Least Recently Used list; tracks how recently this folio was used. 218 * @mapping: The file this page belongs to, or refers to the anon_vma for 219 * anonymous memory. 220 * @index: Offset within the file, in units of pages. For anonymous memory, 221 * this is the index from the beginning of the mmap. 222 * @private: Filesystem per-folio data (see folio_attach_private()). 223 * Used for swp_entry_t if folio_test_swapcache(). 224 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 225 * find out how many times this folio is mapped by userspace. 226 * @_refcount: Do not access this member directly. Use folio_ref_count() 227 * to find how many references there are to this folio. 228 * @memcg_data: Memory Control Group data. 229 * 230 * A folio is a physically, virtually and logically contiguous set 231 * of bytes. It is a power-of-two in size, and it is aligned to that 232 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 233 * in the page cache, it is at a file offset which is a multiple of that 234 * power-of-two. It may be mapped into userspace at an address which is 235 * at an arbitrary page offset, but its kernel virtual address is aligned 236 * to its size. 237 */ 238struct folio { 239 /* private: don't document the anon union */ 240 union { 241 struct { 242 /* public: */ 243 unsigned long flags; 244 struct list_head lru; 245 struct address_space *mapping; 246 pgoff_t index; 247 void *private; 248 atomic_t _mapcount; 249 atomic_t _refcount; 250#ifdef CONFIG_MEMCG 251 unsigned long memcg_data; 252#endif 253 /* private: the union with struct page is transitional */ 254 }; 255 struct page page; 256 }; 257}; 258 259static_assert(sizeof(struct page) == sizeof(struct folio)); 260#define FOLIO_MATCH(pg, fl) \ 261 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 262FOLIO_MATCH(flags, flags); 263FOLIO_MATCH(lru, lru); 264FOLIO_MATCH(mapping, mapping); 265FOLIO_MATCH(compound_head, lru); 266FOLIO_MATCH(index, index); 267FOLIO_MATCH(private, private); 268FOLIO_MATCH(_mapcount, _mapcount); 269FOLIO_MATCH(_refcount, _refcount); 270#ifdef CONFIG_MEMCG 271FOLIO_MATCH(memcg_data, memcg_data); 272#endif 273#undef FOLIO_MATCH 274 275static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 276{ 277 struct page *tail = &folio->page + 1; 278 return &tail->compound_mapcount; 279} 280 281static inline atomic_t *compound_mapcount_ptr(struct page *page) 282{ 283 return &page[1].compound_mapcount; 284} 285 286static inline atomic_t *compound_pincount_ptr(struct page *page) 287{ 288 return &page[2].hpage_pinned_refcount; 289} 290 291/* 292 * Used for sizing the vmemmap region on some architectures 293 */ 294#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 295 296#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 297#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 298 299/* 300 * page_private can be used on tail pages. However, PagePrivate is only 301 * checked by the VM on the head page. So page_private on the tail pages 302 * should be used for data that's ancillary to the head page (eg attaching 303 * buffer heads to tail pages after attaching buffer heads to the head page) 304 */ 305#define page_private(page) ((page)->private) 306 307static inline void set_page_private(struct page *page, unsigned long private) 308{ 309 page->private = private; 310} 311 312static inline void *folio_get_private(struct folio *folio) 313{ 314 return folio->private; 315} 316 317struct page_frag_cache { 318 void * va; 319#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 320 __u16 offset; 321 __u16 size; 322#else 323 __u32 offset; 324#endif 325 /* we maintain a pagecount bias, so that we dont dirty cache line 326 * containing page->_refcount every time we allocate a fragment. 327 */ 328 unsigned int pagecnt_bias; 329 bool pfmemalloc; 330}; 331 332typedef unsigned long vm_flags_t; 333 334/* 335 * A region containing a mapping of a non-memory backed file under NOMMU 336 * conditions. These are held in a global tree and are pinned by the VMAs that 337 * map parts of them. 338 */ 339struct vm_region { 340 struct rb_node vm_rb; /* link in global region tree */ 341 vm_flags_t vm_flags; /* VMA vm_flags */ 342 unsigned long vm_start; /* start address of region */ 343 unsigned long vm_end; /* region initialised to here */ 344 unsigned long vm_top; /* region allocated to here */ 345 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 346 struct file *vm_file; /* the backing file or NULL */ 347 348 int vm_usage; /* region usage count (access under nommu_region_sem) */ 349 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 350 * this region */ 351}; 352 353#ifdef CONFIG_USERFAULTFD 354#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 355struct vm_userfaultfd_ctx { 356 struct userfaultfd_ctx *ctx; 357}; 358#else /* CONFIG_USERFAULTFD */ 359#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 360struct vm_userfaultfd_ctx {}; 361#endif /* CONFIG_USERFAULTFD */ 362 363struct anon_vma_name { 364 struct kref kref; 365 /* The name needs to be at the end because it is dynamically sized. */ 366 char name[]; 367}; 368 369/* 370 * This struct describes a virtual memory area. There is one of these 371 * per VM-area/task. A VM area is any part of the process virtual memory 372 * space that has a special rule for the page-fault handlers (ie a shared 373 * library, the executable area etc). 374 */ 375struct vm_area_struct { 376 /* The first cache line has the info for VMA tree walking. */ 377 378 unsigned long vm_start; /* Our start address within vm_mm. */ 379 unsigned long vm_end; /* The first byte after our end address 380 within vm_mm. */ 381 382 /* linked list of VM areas per task, sorted by address */ 383 struct vm_area_struct *vm_next, *vm_prev; 384 385 struct rb_node vm_rb; 386 387 /* 388 * Largest free memory gap in bytes to the left of this VMA. 389 * Either between this VMA and vma->vm_prev, or between one of the 390 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 391 * get_unmapped_area find a free area of the right size. 392 */ 393 unsigned long rb_subtree_gap; 394 395 /* Second cache line starts here. */ 396 397 struct mm_struct *vm_mm; /* The address space we belong to. */ 398 399 /* 400 * Access permissions of this VMA. 401 * See vmf_insert_mixed_prot() for discussion. 402 */ 403 pgprot_t vm_page_prot; 404 unsigned long vm_flags; /* Flags, see mm.h. */ 405 406 /* 407 * For areas with an address space and backing store, 408 * linkage into the address_space->i_mmap interval tree. 409 * 410 * For private anonymous mappings, a pointer to a null terminated string 411 * containing the name given to the vma, or NULL if unnamed. 412 */ 413 414 union { 415 struct { 416 struct rb_node rb; 417 unsigned long rb_subtree_last; 418 } shared; 419 /* 420 * Serialized by mmap_sem. Never use directly because it is 421 * valid only when vm_file is NULL. Use anon_vma_name instead. 422 */ 423 struct anon_vma_name *anon_name; 424 }; 425 426 /* 427 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 428 * list, after a COW of one of the file pages. A MAP_SHARED vma 429 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 430 * or brk vma (with NULL file) can only be in an anon_vma list. 431 */ 432 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 433 * page_table_lock */ 434 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 435 436 /* Function pointers to deal with this struct. */ 437 const struct vm_operations_struct *vm_ops; 438 439 /* Information about our backing store: */ 440 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 441 units */ 442 struct file * vm_file; /* File we map to (can be NULL). */ 443 void * vm_private_data; /* was vm_pte (shared mem) */ 444 445#ifdef CONFIG_SWAP 446 atomic_long_t swap_readahead_info; 447#endif 448#ifndef CONFIG_MMU 449 struct vm_region *vm_region; /* NOMMU mapping region */ 450#endif 451#ifdef CONFIG_NUMA 452 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 453#endif 454 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 455} __randomize_layout; 456 457struct kioctx_table; 458struct mm_struct { 459 struct { 460 struct vm_area_struct *mmap; /* list of VMAs */ 461 struct rb_root mm_rb; 462 u64 vmacache_seqnum; /* per-thread vmacache */ 463#ifdef CONFIG_MMU 464 unsigned long (*get_unmapped_area) (struct file *filp, 465 unsigned long addr, unsigned long len, 466 unsigned long pgoff, unsigned long flags); 467#endif 468 unsigned long mmap_base; /* base of mmap area */ 469 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 470#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 471 /* Base addresses for compatible mmap() */ 472 unsigned long mmap_compat_base; 473 unsigned long mmap_compat_legacy_base; 474#endif 475 unsigned long task_size; /* size of task vm space */ 476 unsigned long highest_vm_end; /* highest vma end address */ 477 pgd_t * pgd; 478 479#ifdef CONFIG_MEMBARRIER 480 /** 481 * @membarrier_state: Flags controlling membarrier behavior. 482 * 483 * This field is close to @pgd to hopefully fit in the same 484 * cache-line, which needs to be touched by switch_mm(). 485 */ 486 atomic_t membarrier_state; 487#endif 488 489 /** 490 * @mm_users: The number of users including userspace. 491 * 492 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 493 * drops to 0 (i.e. when the task exits and there are no other 494 * temporary reference holders), we also release a reference on 495 * @mm_count (which may then free the &struct mm_struct if 496 * @mm_count also drops to 0). 497 */ 498 atomic_t mm_users; 499 500 /** 501 * @mm_count: The number of references to &struct mm_struct 502 * (@mm_users count as 1). 503 * 504 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 505 * &struct mm_struct is freed. 506 */ 507 atomic_t mm_count; 508 509#ifdef CONFIG_MMU 510 atomic_long_t pgtables_bytes; /* PTE page table pages */ 511#endif 512 int map_count; /* number of VMAs */ 513 514 spinlock_t page_table_lock; /* Protects page tables and some 515 * counters 516 */ 517 /* 518 * With some kernel config, the current mmap_lock's offset 519 * inside 'mm_struct' is at 0x120, which is very optimal, as 520 * its two hot fields 'count' and 'owner' sit in 2 different 521 * cachelines, and when mmap_lock is highly contended, both 522 * of the 2 fields will be accessed frequently, current layout 523 * will help to reduce cache bouncing. 524 * 525 * So please be careful with adding new fields before 526 * mmap_lock, which can easily push the 2 fields into one 527 * cacheline. 528 */ 529 struct rw_semaphore mmap_lock; 530 531 struct list_head mmlist; /* List of maybe swapped mm's. These 532 * are globally strung together off 533 * init_mm.mmlist, and are protected 534 * by mmlist_lock 535 */ 536 537 538 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 539 unsigned long hiwater_vm; /* High-water virtual memory usage */ 540 541 unsigned long total_vm; /* Total pages mapped */ 542 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 543 atomic64_t pinned_vm; /* Refcount permanently increased */ 544 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 545 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 546 unsigned long stack_vm; /* VM_STACK */ 547 unsigned long def_flags; 548 549 /** 550 * @write_protect_seq: Locked when any thread is write 551 * protecting pages mapped by this mm to enforce a later COW, 552 * for instance during page table copying for fork(). 553 */ 554 seqcount_t write_protect_seq; 555 556 spinlock_t arg_lock; /* protect the below fields */ 557 558 unsigned long start_code, end_code, start_data, end_data; 559 unsigned long start_brk, brk, start_stack; 560 unsigned long arg_start, arg_end, env_start, env_end; 561 562 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 563 564 /* 565 * Special counters, in some configurations protected by the 566 * page_table_lock, in other configurations by being atomic. 567 */ 568 struct mm_rss_stat rss_stat; 569 570 struct linux_binfmt *binfmt; 571 572 /* Architecture-specific MM context */ 573 mm_context_t context; 574 575 unsigned long flags; /* Must use atomic bitops to access */ 576 577#ifdef CONFIG_AIO 578 spinlock_t ioctx_lock; 579 struct kioctx_table __rcu *ioctx_table; 580#endif 581#ifdef CONFIG_MEMCG 582 /* 583 * "owner" points to a task that is regarded as the canonical 584 * user/owner of this mm. All of the following must be true in 585 * order for it to be changed: 586 * 587 * current == mm->owner 588 * current->mm != mm 589 * new_owner->mm == mm 590 * new_owner->alloc_lock is held 591 */ 592 struct task_struct __rcu *owner; 593#endif 594 struct user_namespace *user_ns; 595 596 /* store ref to file /proc/<pid>/exe symlink points to */ 597 struct file __rcu *exe_file; 598#ifdef CONFIG_MMU_NOTIFIER 599 struct mmu_notifier_subscriptions *notifier_subscriptions; 600#endif 601#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 602 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 603#endif 604#ifdef CONFIG_NUMA_BALANCING 605 /* 606 * numa_next_scan is the next time that the PTEs will be marked 607 * pte_numa. NUMA hinting faults will gather statistics and 608 * migrate pages to new nodes if necessary. 609 */ 610 unsigned long numa_next_scan; 611 612 /* Restart point for scanning and setting pte_numa */ 613 unsigned long numa_scan_offset; 614 615 /* numa_scan_seq prevents two threads setting pte_numa */ 616 int numa_scan_seq; 617#endif 618 /* 619 * An operation with batched TLB flushing is going on. Anything 620 * that can move process memory needs to flush the TLB when 621 * moving a PROT_NONE or PROT_NUMA mapped page. 622 */ 623 atomic_t tlb_flush_pending; 624#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 625 /* See flush_tlb_batched_pending() */ 626 atomic_t tlb_flush_batched; 627#endif 628 struct uprobes_state uprobes_state; 629#ifdef CONFIG_PREEMPT_RT 630 struct rcu_head delayed_drop; 631#endif 632#ifdef CONFIG_HUGETLB_PAGE 633 atomic_long_t hugetlb_usage; 634#endif 635 struct work_struct async_put_work; 636 637#ifdef CONFIG_IOMMU_SUPPORT 638 u32 pasid; 639#endif 640 } __randomize_layout; 641 642 /* 643 * The mm_cpumask needs to be at the end of mm_struct, because it 644 * is dynamically sized based on nr_cpu_ids. 645 */ 646 unsigned long cpu_bitmap[]; 647}; 648 649extern struct mm_struct init_mm; 650 651/* Pointer magic because the dynamic array size confuses some compilers. */ 652static inline void mm_init_cpumask(struct mm_struct *mm) 653{ 654 unsigned long cpu_bitmap = (unsigned long)mm; 655 656 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 657 cpumask_clear((struct cpumask *)cpu_bitmap); 658} 659 660/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 661static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 662{ 663 return (struct cpumask *)&mm->cpu_bitmap; 664} 665 666struct mmu_gather; 667extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 668extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 669extern void tlb_finish_mmu(struct mmu_gather *tlb); 670 671struct vm_fault; 672 673/** 674 * typedef vm_fault_t - Return type for page fault handlers. 675 * 676 * Page fault handlers return a bitmask of %VM_FAULT values. 677 */ 678typedef __bitwise unsigned int vm_fault_t; 679 680/** 681 * enum vm_fault_reason - Page fault handlers return a bitmask of 682 * these values to tell the core VM what happened when handling the 683 * fault. Used to decide whether a process gets delivered SIGBUS or 684 * just gets major/minor fault counters bumped up. 685 * 686 * @VM_FAULT_OOM: Out Of Memory 687 * @VM_FAULT_SIGBUS: Bad access 688 * @VM_FAULT_MAJOR: Page read from storage 689 * @VM_FAULT_WRITE: Special case for get_user_pages 690 * @VM_FAULT_HWPOISON: Hit poisoned small page 691 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 692 * in upper bits 693 * @VM_FAULT_SIGSEGV: segmentation fault 694 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 695 * @VM_FAULT_LOCKED: ->fault locked the returned page 696 * @VM_FAULT_RETRY: ->fault blocked, must retry 697 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 698 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 699 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 700 * fsync() to complete (for synchronous page faults 701 * in DAX) 702 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 703 * 704 */ 705enum vm_fault_reason { 706 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 707 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 708 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 709 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 710 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 711 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 712 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 713 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 714 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 715 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 716 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 717 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 718 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 719 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 720}; 721 722/* Encode hstate index for a hwpoisoned large page */ 723#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 724#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 725 726#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 727 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 728 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 729 730#define VM_FAULT_RESULT_TRACE \ 731 { VM_FAULT_OOM, "OOM" }, \ 732 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 733 { VM_FAULT_MAJOR, "MAJOR" }, \ 734 { VM_FAULT_WRITE, "WRITE" }, \ 735 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 736 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 737 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 738 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 739 { VM_FAULT_LOCKED, "LOCKED" }, \ 740 { VM_FAULT_RETRY, "RETRY" }, \ 741 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 742 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 743 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 744 745struct vm_special_mapping { 746 const char *name; /* The name, e.g. "[vdso]". */ 747 748 /* 749 * If .fault is not provided, this points to a 750 * NULL-terminated array of pages that back the special mapping. 751 * 752 * This must not be NULL unless .fault is provided. 753 */ 754 struct page **pages; 755 756 /* 757 * If non-NULL, then this is called to resolve page faults 758 * on the special mapping. If used, .pages is not checked. 759 */ 760 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 761 struct vm_area_struct *vma, 762 struct vm_fault *vmf); 763 764 int (*mremap)(const struct vm_special_mapping *sm, 765 struct vm_area_struct *new_vma); 766}; 767 768enum tlb_flush_reason { 769 TLB_FLUSH_ON_TASK_SWITCH, 770 TLB_REMOTE_SHOOTDOWN, 771 TLB_LOCAL_SHOOTDOWN, 772 TLB_LOCAL_MM_SHOOTDOWN, 773 TLB_REMOTE_SEND_IPI, 774 NR_TLB_FLUSH_REASONS, 775}; 776 777 /* 778 * A swap entry has to fit into a "unsigned long", as the entry is hidden 779 * in the "index" field of the swapper address space. 780 */ 781typedef struct { 782 unsigned long val; 783} swp_entry_t; 784 785/** 786 * enum fault_flag - Fault flag definitions. 787 * @FAULT_FLAG_WRITE: Fault was a write fault. 788 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 789 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 790 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 791 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 792 * @FAULT_FLAG_TRIED: The fault has been tried once. 793 * @FAULT_FLAG_USER: The fault originated in userspace. 794 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 795 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 796 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 797 * 798 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 799 * whether we would allow page faults to retry by specifying these two 800 * fault flags correctly. Currently there can be three legal combinations: 801 * 802 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 803 * this is the first try 804 * 805 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 806 * we've already tried at least once 807 * 808 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 809 * 810 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 811 * be used. Note that page faults can be allowed to retry for multiple times, 812 * in which case we'll have an initial fault with flags (a) then later on 813 * continuous faults with flags (b). We should always try to detect pending 814 * signals before a retry to make sure the continuous page faults can still be 815 * interrupted if necessary. 816 */ 817enum fault_flag { 818 FAULT_FLAG_WRITE = 1 << 0, 819 FAULT_FLAG_MKWRITE = 1 << 1, 820 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 821 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 822 FAULT_FLAG_KILLABLE = 1 << 4, 823 FAULT_FLAG_TRIED = 1 << 5, 824 FAULT_FLAG_USER = 1 << 6, 825 FAULT_FLAG_REMOTE = 1 << 7, 826 FAULT_FLAG_INSTRUCTION = 1 << 8, 827 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 828}; 829 830#endif /* _LINUX_MM_TYPES_H */