Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_TYPES_H
3#define _LINUX_MM_TYPES_H
4
5#include <linux/mm_types_task.h>
6
7#include <linux/auxvec.h>
8#include <linux/kref.h>
9#include <linux/list.h>
10#include <linux/spinlock.h>
11#include <linux/rbtree.h>
12#include <linux/rwsem.h>
13#include <linux/completion.h>
14#include <linux/cpumask.h>
15#include <linux/uprobes.h>
16#include <linux/rcupdate.h>
17#include <linux/page-flags-layout.h>
18#include <linux/workqueue.h>
19#include <linux/seqlock.h>
20
21#include <asm/mmu.h>
22
23#ifndef AT_VECTOR_SIZE_ARCH
24#define AT_VECTOR_SIZE_ARCH 0
25#endif
26#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
27
28#define INIT_PASID 0
29
30struct address_space;
31struct mem_cgroup;
32
33/*
34 * Each physical page in the system has a struct page associated with
35 * it to keep track of whatever it is we are using the page for at the
36 * moment. Note that we have no way to track which tasks are using
37 * a page, though if it is a pagecache page, rmap structures can tell us
38 * who is mapping it.
39 *
40 * If you allocate the page using alloc_pages(), you can use some of the
41 * space in struct page for your own purposes. The five words in the main
42 * union are available, except for bit 0 of the first word which must be
43 * kept clear. Many users use this word to store a pointer to an object
44 * which is guaranteed to be aligned. If you use the same storage as
45 * page->mapping, you must restore it to NULL before freeing the page.
46 *
47 * If your page will not be mapped to userspace, you can also use the four
48 * bytes in the mapcount union, but you must call page_mapcount_reset()
49 * before freeing it.
50 *
51 * If you want to use the refcount field, it must be used in such a way
52 * that other CPUs temporarily incrementing and then decrementing the
53 * refcount does not cause problems. On receiving the page from
54 * alloc_pages(), the refcount will be positive.
55 *
56 * If you allocate pages of order > 0, you can use some of the fields
57 * in each subpage, but you may need to restore some of their values
58 * afterwards.
59 *
60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
61 * That requires that freelist & counters in struct slab be adjacent and
62 * double-word aligned. Because struct slab currently just reinterprets the
63 * bits of struct page, we align all struct pages to double-word boundaries,
64 * and ensure that 'freelist' is aligned within struct slab.
65 */
66#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
68#else
69#define _struct_page_alignment
70#endif
71
72struct page {
73 unsigned long flags; /* Atomic flags, some possibly
74 * updated asynchronously */
75 /*
76 * Five words (20/40 bytes) are available in this union.
77 * WARNING: bit 0 of the first word is used for PageTail(). That
78 * means the other users of this union MUST NOT use the bit to
79 * avoid collision and false-positive PageTail().
80 */
81 union {
82 struct { /* Page cache and anonymous pages */
83 /**
84 * @lru: Pageout list, eg. active_list protected by
85 * lruvec->lru_lock. Sometimes used as a generic list
86 * by the page owner.
87 */
88 struct list_head lru;
89 /* See page-flags.h for PAGE_MAPPING_FLAGS */
90 struct address_space *mapping;
91 pgoff_t index; /* Our offset within mapping. */
92 /**
93 * @private: Mapping-private opaque data.
94 * Usually used for buffer_heads if PagePrivate.
95 * Used for swp_entry_t if PageSwapCache.
96 * Indicates order in the buddy system if PageBuddy.
97 */
98 unsigned long private;
99 };
100 struct { /* page_pool used by netstack */
101 /**
102 * @pp_magic: magic value to avoid recycling non
103 * page_pool allocated pages.
104 */
105 unsigned long pp_magic;
106 struct page_pool *pp;
107 unsigned long _pp_mapping_pad;
108 unsigned long dma_addr;
109 union {
110 /**
111 * dma_addr_upper: might require a 64-bit
112 * value on 32-bit architectures.
113 */
114 unsigned long dma_addr_upper;
115 /**
116 * For frag page support, not supported in
117 * 32-bit architectures with 64-bit DMA.
118 */
119 atomic_long_t pp_frag_count;
120 };
121 };
122 struct { /* Tail pages of compound page */
123 unsigned long compound_head; /* Bit zero is set */
124
125 /* First tail page only */
126 unsigned char compound_dtor;
127 unsigned char compound_order;
128 atomic_t compound_mapcount;
129 unsigned int compound_nr; /* 1 << compound_order */
130 };
131 struct { /* Second tail page of compound page */
132 unsigned long _compound_pad_1; /* compound_head */
133 atomic_t hpage_pinned_refcount;
134 /* For both global and memcg */
135 struct list_head deferred_list;
136 };
137 struct { /* Page table pages */
138 unsigned long _pt_pad_1; /* compound_head */
139 pgtable_t pmd_huge_pte; /* protected by page->ptl */
140 unsigned long _pt_pad_2; /* mapping */
141 union {
142 struct mm_struct *pt_mm; /* x86 pgds only */
143 atomic_t pt_frag_refcount; /* powerpc */
144 };
145#if ALLOC_SPLIT_PTLOCKS
146 spinlock_t *ptl;
147#else
148 spinlock_t ptl;
149#endif
150 };
151 struct { /* ZONE_DEVICE pages */
152 /** @pgmap: Points to the hosting device page map. */
153 struct dev_pagemap *pgmap;
154 void *zone_device_data;
155 /*
156 * ZONE_DEVICE private pages are counted as being
157 * mapped so the next 3 words hold the mapping, index,
158 * and private fields from the source anonymous or
159 * page cache page while the page is migrated to device
160 * private memory.
161 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
162 * use the mapping, index, and private fields when
163 * pmem backed DAX files are mapped.
164 */
165 };
166
167 /** @rcu_head: You can use this to free a page by RCU. */
168 struct rcu_head rcu_head;
169 };
170
171 union { /* This union is 4 bytes in size. */
172 /*
173 * If the page can be mapped to userspace, encodes the number
174 * of times this page is referenced by a page table.
175 */
176 atomic_t _mapcount;
177
178 /*
179 * If the page is neither PageSlab nor mappable to userspace,
180 * the value stored here may help determine what this page
181 * is used for. See page-flags.h for a list of page types
182 * which are currently stored here.
183 */
184 unsigned int page_type;
185 };
186
187 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
188 atomic_t _refcount;
189
190#ifdef CONFIG_MEMCG
191 unsigned long memcg_data;
192#endif
193
194 /*
195 * On machines where all RAM is mapped into kernel address space,
196 * we can simply calculate the virtual address. On machines with
197 * highmem some memory is mapped into kernel virtual memory
198 * dynamically, so we need a place to store that address.
199 * Note that this field could be 16 bits on x86 ... ;)
200 *
201 * Architectures with slow multiplication can define
202 * WANT_PAGE_VIRTUAL in asm/page.h
203 */
204#if defined(WANT_PAGE_VIRTUAL)
205 void *virtual; /* Kernel virtual address (NULL if
206 not kmapped, ie. highmem) */
207#endif /* WANT_PAGE_VIRTUAL */
208
209#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
210 int _last_cpupid;
211#endif
212} _struct_page_alignment;
213
214/**
215 * struct folio - Represents a contiguous set of bytes.
216 * @flags: Identical to the page flags.
217 * @lru: Least Recently Used list; tracks how recently this folio was used.
218 * @mapping: The file this page belongs to, or refers to the anon_vma for
219 * anonymous memory.
220 * @index: Offset within the file, in units of pages. For anonymous memory,
221 * this is the index from the beginning of the mmap.
222 * @private: Filesystem per-folio data (see folio_attach_private()).
223 * Used for swp_entry_t if folio_test_swapcache().
224 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
225 * find out how many times this folio is mapped by userspace.
226 * @_refcount: Do not access this member directly. Use folio_ref_count()
227 * to find how many references there are to this folio.
228 * @memcg_data: Memory Control Group data.
229 *
230 * A folio is a physically, virtually and logically contiguous set
231 * of bytes. It is a power-of-two in size, and it is aligned to that
232 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
233 * in the page cache, it is at a file offset which is a multiple of that
234 * power-of-two. It may be mapped into userspace at an address which is
235 * at an arbitrary page offset, but its kernel virtual address is aligned
236 * to its size.
237 */
238struct folio {
239 /* private: don't document the anon union */
240 union {
241 struct {
242 /* public: */
243 unsigned long flags;
244 struct list_head lru;
245 struct address_space *mapping;
246 pgoff_t index;
247 void *private;
248 atomic_t _mapcount;
249 atomic_t _refcount;
250#ifdef CONFIG_MEMCG
251 unsigned long memcg_data;
252#endif
253 /* private: the union with struct page is transitional */
254 };
255 struct page page;
256 };
257};
258
259static_assert(sizeof(struct page) == sizeof(struct folio));
260#define FOLIO_MATCH(pg, fl) \
261 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
262FOLIO_MATCH(flags, flags);
263FOLIO_MATCH(lru, lru);
264FOLIO_MATCH(mapping, mapping);
265FOLIO_MATCH(compound_head, lru);
266FOLIO_MATCH(index, index);
267FOLIO_MATCH(private, private);
268FOLIO_MATCH(_mapcount, _mapcount);
269FOLIO_MATCH(_refcount, _refcount);
270#ifdef CONFIG_MEMCG
271FOLIO_MATCH(memcg_data, memcg_data);
272#endif
273#undef FOLIO_MATCH
274
275static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
276{
277 struct page *tail = &folio->page + 1;
278 return &tail->compound_mapcount;
279}
280
281static inline atomic_t *compound_mapcount_ptr(struct page *page)
282{
283 return &page[1].compound_mapcount;
284}
285
286static inline atomic_t *compound_pincount_ptr(struct page *page)
287{
288 return &page[2].hpage_pinned_refcount;
289}
290
291/*
292 * Used for sizing the vmemmap region on some architectures
293 */
294#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
295
296#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
297#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
298
299/*
300 * page_private can be used on tail pages. However, PagePrivate is only
301 * checked by the VM on the head page. So page_private on the tail pages
302 * should be used for data that's ancillary to the head page (eg attaching
303 * buffer heads to tail pages after attaching buffer heads to the head page)
304 */
305#define page_private(page) ((page)->private)
306
307static inline void set_page_private(struct page *page, unsigned long private)
308{
309 page->private = private;
310}
311
312static inline void *folio_get_private(struct folio *folio)
313{
314 return folio->private;
315}
316
317struct page_frag_cache {
318 void * va;
319#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
320 __u16 offset;
321 __u16 size;
322#else
323 __u32 offset;
324#endif
325 /* we maintain a pagecount bias, so that we dont dirty cache line
326 * containing page->_refcount every time we allocate a fragment.
327 */
328 unsigned int pagecnt_bias;
329 bool pfmemalloc;
330};
331
332typedef unsigned long vm_flags_t;
333
334/*
335 * A region containing a mapping of a non-memory backed file under NOMMU
336 * conditions. These are held in a global tree and are pinned by the VMAs that
337 * map parts of them.
338 */
339struct vm_region {
340 struct rb_node vm_rb; /* link in global region tree */
341 vm_flags_t vm_flags; /* VMA vm_flags */
342 unsigned long vm_start; /* start address of region */
343 unsigned long vm_end; /* region initialised to here */
344 unsigned long vm_top; /* region allocated to here */
345 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
346 struct file *vm_file; /* the backing file or NULL */
347
348 int vm_usage; /* region usage count (access under nommu_region_sem) */
349 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
350 * this region */
351};
352
353#ifdef CONFIG_USERFAULTFD
354#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
355struct vm_userfaultfd_ctx {
356 struct userfaultfd_ctx *ctx;
357};
358#else /* CONFIG_USERFAULTFD */
359#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
360struct vm_userfaultfd_ctx {};
361#endif /* CONFIG_USERFAULTFD */
362
363struct anon_vma_name {
364 struct kref kref;
365 /* The name needs to be at the end because it is dynamically sized. */
366 char name[];
367};
368
369/*
370 * This struct describes a virtual memory area. There is one of these
371 * per VM-area/task. A VM area is any part of the process virtual memory
372 * space that has a special rule for the page-fault handlers (ie a shared
373 * library, the executable area etc).
374 */
375struct vm_area_struct {
376 /* The first cache line has the info for VMA tree walking. */
377
378 unsigned long vm_start; /* Our start address within vm_mm. */
379 unsigned long vm_end; /* The first byte after our end address
380 within vm_mm. */
381
382 /* linked list of VM areas per task, sorted by address */
383 struct vm_area_struct *vm_next, *vm_prev;
384
385 struct rb_node vm_rb;
386
387 /*
388 * Largest free memory gap in bytes to the left of this VMA.
389 * Either between this VMA and vma->vm_prev, or between one of the
390 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
391 * get_unmapped_area find a free area of the right size.
392 */
393 unsigned long rb_subtree_gap;
394
395 /* Second cache line starts here. */
396
397 struct mm_struct *vm_mm; /* The address space we belong to. */
398
399 /*
400 * Access permissions of this VMA.
401 * See vmf_insert_mixed_prot() for discussion.
402 */
403 pgprot_t vm_page_prot;
404 unsigned long vm_flags; /* Flags, see mm.h. */
405
406 /*
407 * For areas with an address space and backing store,
408 * linkage into the address_space->i_mmap interval tree.
409 *
410 * For private anonymous mappings, a pointer to a null terminated string
411 * containing the name given to the vma, or NULL if unnamed.
412 */
413
414 union {
415 struct {
416 struct rb_node rb;
417 unsigned long rb_subtree_last;
418 } shared;
419 /*
420 * Serialized by mmap_sem. Never use directly because it is
421 * valid only when vm_file is NULL. Use anon_vma_name instead.
422 */
423 struct anon_vma_name *anon_name;
424 };
425
426 /*
427 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
428 * list, after a COW of one of the file pages. A MAP_SHARED vma
429 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
430 * or brk vma (with NULL file) can only be in an anon_vma list.
431 */
432 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
433 * page_table_lock */
434 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
435
436 /* Function pointers to deal with this struct. */
437 const struct vm_operations_struct *vm_ops;
438
439 /* Information about our backing store: */
440 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
441 units */
442 struct file * vm_file; /* File we map to (can be NULL). */
443 void * vm_private_data; /* was vm_pte (shared mem) */
444
445#ifdef CONFIG_SWAP
446 atomic_long_t swap_readahead_info;
447#endif
448#ifndef CONFIG_MMU
449 struct vm_region *vm_region; /* NOMMU mapping region */
450#endif
451#ifdef CONFIG_NUMA
452 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
453#endif
454 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
455} __randomize_layout;
456
457struct kioctx_table;
458struct mm_struct {
459 struct {
460 struct vm_area_struct *mmap; /* list of VMAs */
461 struct rb_root mm_rb;
462 u64 vmacache_seqnum; /* per-thread vmacache */
463#ifdef CONFIG_MMU
464 unsigned long (*get_unmapped_area) (struct file *filp,
465 unsigned long addr, unsigned long len,
466 unsigned long pgoff, unsigned long flags);
467#endif
468 unsigned long mmap_base; /* base of mmap area */
469 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
470#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
471 /* Base addresses for compatible mmap() */
472 unsigned long mmap_compat_base;
473 unsigned long mmap_compat_legacy_base;
474#endif
475 unsigned long task_size; /* size of task vm space */
476 unsigned long highest_vm_end; /* highest vma end address */
477 pgd_t * pgd;
478
479#ifdef CONFIG_MEMBARRIER
480 /**
481 * @membarrier_state: Flags controlling membarrier behavior.
482 *
483 * This field is close to @pgd to hopefully fit in the same
484 * cache-line, which needs to be touched by switch_mm().
485 */
486 atomic_t membarrier_state;
487#endif
488
489 /**
490 * @mm_users: The number of users including userspace.
491 *
492 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
493 * drops to 0 (i.e. when the task exits and there are no other
494 * temporary reference holders), we also release a reference on
495 * @mm_count (which may then free the &struct mm_struct if
496 * @mm_count also drops to 0).
497 */
498 atomic_t mm_users;
499
500 /**
501 * @mm_count: The number of references to &struct mm_struct
502 * (@mm_users count as 1).
503 *
504 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
505 * &struct mm_struct is freed.
506 */
507 atomic_t mm_count;
508
509#ifdef CONFIG_MMU
510 atomic_long_t pgtables_bytes; /* PTE page table pages */
511#endif
512 int map_count; /* number of VMAs */
513
514 spinlock_t page_table_lock; /* Protects page tables and some
515 * counters
516 */
517 /*
518 * With some kernel config, the current mmap_lock's offset
519 * inside 'mm_struct' is at 0x120, which is very optimal, as
520 * its two hot fields 'count' and 'owner' sit in 2 different
521 * cachelines, and when mmap_lock is highly contended, both
522 * of the 2 fields will be accessed frequently, current layout
523 * will help to reduce cache bouncing.
524 *
525 * So please be careful with adding new fields before
526 * mmap_lock, which can easily push the 2 fields into one
527 * cacheline.
528 */
529 struct rw_semaphore mmap_lock;
530
531 struct list_head mmlist; /* List of maybe swapped mm's. These
532 * are globally strung together off
533 * init_mm.mmlist, and are protected
534 * by mmlist_lock
535 */
536
537
538 unsigned long hiwater_rss; /* High-watermark of RSS usage */
539 unsigned long hiwater_vm; /* High-water virtual memory usage */
540
541 unsigned long total_vm; /* Total pages mapped */
542 unsigned long locked_vm; /* Pages that have PG_mlocked set */
543 atomic64_t pinned_vm; /* Refcount permanently increased */
544 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
545 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
546 unsigned long stack_vm; /* VM_STACK */
547 unsigned long def_flags;
548
549 /**
550 * @write_protect_seq: Locked when any thread is write
551 * protecting pages mapped by this mm to enforce a later COW,
552 * for instance during page table copying for fork().
553 */
554 seqcount_t write_protect_seq;
555
556 spinlock_t arg_lock; /* protect the below fields */
557
558 unsigned long start_code, end_code, start_data, end_data;
559 unsigned long start_brk, brk, start_stack;
560 unsigned long arg_start, arg_end, env_start, env_end;
561
562 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
563
564 /*
565 * Special counters, in some configurations protected by the
566 * page_table_lock, in other configurations by being atomic.
567 */
568 struct mm_rss_stat rss_stat;
569
570 struct linux_binfmt *binfmt;
571
572 /* Architecture-specific MM context */
573 mm_context_t context;
574
575 unsigned long flags; /* Must use atomic bitops to access */
576
577#ifdef CONFIG_AIO
578 spinlock_t ioctx_lock;
579 struct kioctx_table __rcu *ioctx_table;
580#endif
581#ifdef CONFIG_MEMCG
582 /*
583 * "owner" points to a task that is regarded as the canonical
584 * user/owner of this mm. All of the following must be true in
585 * order for it to be changed:
586 *
587 * current == mm->owner
588 * current->mm != mm
589 * new_owner->mm == mm
590 * new_owner->alloc_lock is held
591 */
592 struct task_struct __rcu *owner;
593#endif
594 struct user_namespace *user_ns;
595
596 /* store ref to file /proc/<pid>/exe symlink points to */
597 struct file __rcu *exe_file;
598#ifdef CONFIG_MMU_NOTIFIER
599 struct mmu_notifier_subscriptions *notifier_subscriptions;
600#endif
601#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
602 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
603#endif
604#ifdef CONFIG_NUMA_BALANCING
605 /*
606 * numa_next_scan is the next time that the PTEs will be marked
607 * pte_numa. NUMA hinting faults will gather statistics and
608 * migrate pages to new nodes if necessary.
609 */
610 unsigned long numa_next_scan;
611
612 /* Restart point for scanning and setting pte_numa */
613 unsigned long numa_scan_offset;
614
615 /* numa_scan_seq prevents two threads setting pte_numa */
616 int numa_scan_seq;
617#endif
618 /*
619 * An operation with batched TLB flushing is going on. Anything
620 * that can move process memory needs to flush the TLB when
621 * moving a PROT_NONE or PROT_NUMA mapped page.
622 */
623 atomic_t tlb_flush_pending;
624#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
625 /* See flush_tlb_batched_pending() */
626 atomic_t tlb_flush_batched;
627#endif
628 struct uprobes_state uprobes_state;
629#ifdef CONFIG_PREEMPT_RT
630 struct rcu_head delayed_drop;
631#endif
632#ifdef CONFIG_HUGETLB_PAGE
633 atomic_long_t hugetlb_usage;
634#endif
635 struct work_struct async_put_work;
636
637#ifdef CONFIG_IOMMU_SUPPORT
638 u32 pasid;
639#endif
640 } __randomize_layout;
641
642 /*
643 * The mm_cpumask needs to be at the end of mm_struct, because it
644 * is dynamically sized based on nr_cpu_ids.
645 */
646 unsigned long cpu_bitmap[];
647};
648
649extern struct mm_struct init_mm;
650
651/* Pointer magic because the dynamic array size confuses some compilers. */
652static inline void mm_init_cpumask(struct mm_struct *mm)
653{
654 unsigned long cpu_bitmap = (unsigned long)mm;
655
656 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
657 cpumask_clear((struct cpumask *)cpu_bitmap);
658}
659
660/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
661static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
662{
663 return (struct cpumask *)&mm->cpu_bitmap;
664}
665
666struct mmu_gather;
667extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
668extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
669extern void tlb_finish_mmu(struct mmu_gather *tlb);
670
671struct vm_fault;
672
673/**
674 * typedef vm_fault_t - Return type for page fault handlers.
675 *
676 * Page fault handlers return a bitmask of %VM_FAULT values.
677 */
678typedef __bitwise unsigned int vm_fault_t;
679
680/**
681 * enum vm_fault_reason - Page fault handlers return a bitmask of
682 * these values to tell the core VM what happened when handling the
683 * fault. Used to decide whether a process gets delivered SIGBUS or
684 * just gets major/minor fault counters bumped up.
685 *
686 * @VM_FAULT_OOM: Out Of Memory
687 * @VM_FAULT_SIGBUS: Bad access
688 * @VM_FAULT_MAJOR: Page read from storage
689 * @VM_FAULT_WRITE: Special case for get_user_pages
690 * @VM_FAULT_HWPOISON: Hit poisoned small page
691 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
692 * in upper bits
693 * @VM_FAULT_SIGSEGV: segmentation fault
694 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
695 * @VM_FAULT_LOCKED: ->fault locked the returned page
696 * @VM_FAULT_RETRY: ->fault blocked, must retry
697 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
698 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
699 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
700 * fsync() to complete (for synchronous page faults
701 * in DAX)
702 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
703 *
704 */
705enum vm_fault_reason {
706 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
707 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
708 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
709 VM_FAULT_WRITE = (__force vm_fault_t)0x000008,
710 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
711 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
712 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
713 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
714 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
715 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
716 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
717 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
718 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
719 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
720};
721
722/* Encode hstate index for a hwpoisoned large page */
723#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
724#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
725
726#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
727 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
728 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
729
730#define VM_FAULT_RESULT_TRACE \
731 { VM_FAULT_OOM, "OOM" }, \
732 { VM_FAULT_SIGBUS, "SIGBUS" }, \
733 { VM_FAULT_MAJOR, "MAJOR" }, \
734 { VM_FAULT_WRITE, "WRITE" }, \
735 { VM_FAULT_HWPOISON, "HWPOISON" }, \
736 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
737 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
738 { VM_FAULT_NOPAGE, "NOPAGE" }, \
739 { VM_FAULT_LOCKED, "LOCKED" }, \
740 { VM_FAULT_RETRY, "RETRY" }, \
741 { VM_FAULT_FALLBACK, "FALLBACK" }, \
742 { VM_FAULT_DONE_COW, "DONE_COW" }, \
743 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
744
745struct vm_special_mapping {
746 const char *name; /* The name, e.g. "[vdso]". */
747
748 /*
749 * If .fault is not provided, this points to a
750 * NULL-terminated array of pages that back the special mapping.
751 *
752 * This must not be NULL unless .fault is provided.
753 */
754 struct page **pages;
755
756 /*
757 * If non-NULL, then this is called to resolve page faults
758 * on the special mapping. If used, .pages is not checked.
759 */
760 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
761 struct vm_area_struct *vma,
762 struct vm_fault *vmf);
763
764 int (*mremap)(const struct vm_special_mapping *sm,
765 struct vm_area_struct *new_vma);
766};
767
768enum tlb_flush_reason {
769 TLB_FLUSH_ON_TASK_SWITCH,
770 TLB_REMOTE_SHOOTDOWN,
771 TLB_LOCAL_SHOOTDOWN,
772 TLB_LOCAL_MM_SHOOTDOWN,
773 TLB_REMOTE_SEND_IPI,
774 NR_TLB_FLUSH_REASONS,
775};
776
777 /*
778 * A swap entry has to fit into a "unsigned long", as the entry is hidden
779 * in the "index" field of the swapper address space.
780 */
781typedef struct {
782 unsigned long val;
783} swp_entry_t;
784
785/**
786 * enum fault_flag - Fault flag definitions.
787 * @FAULT_FLAG_WRITE: Fault was a write fault.
788 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
789 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
790 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
791 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
792 * @FAULT_FLAG_TRIED: The fault has been tried once.
793 * @FAULT_FLAG_USER: The fault originated in userspace.
794 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
795 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
796 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
797 *
798 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
799 * whether we would allow page faults to retry by specifying these two
800 * fault flags correctly. Currently there can be three legal combinations:
801 *
802 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
803 * this is the first try
804 *
805 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
806 * we've already tried at least once
807 *
808 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
809 *
810 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
811 * be used. Note that page faults can be allowed to retry for multiple times,
812 * in which case we'll have an initial fault with flags (a) then later on
813 * continuous faults with flags (b). We should always try to detect pending
814 * signals before a retry to make sure the continuous page faults can still be
815 * interrupted if necessary.
816 */
817enum fault_flag {
818 FAULT_FLAG_WRITE = 1 << 0,
819 FAULT_FLAG_MKWRITE = 1 << 1,
820 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
821 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
822 FAULT_FLAG_KILLABLE = 1 << 4,
823 FAULT_FLAG_TRIED = 1 << 5,
824 FAULT_FLAG_USER = 1 << 6,
825 FAULT_FLAG_REMOTE = 1 << 7,
826 FAULT_FLAG_INSTRUCTION = 1 << 8,
827 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
828};
829
830#endif /* _LINUX_MM_TYPES_H */