Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/sched/mm.h>
13#include <linux/prefetch.h>
14#include <linux/kthread.h>
15#include <linux/swap.h>
16#include <linux/timer.h>
17#include <linux/freezer.h>
18#include <linux/sched/signal.h>
19#include <linux/random.h>
20
21#include "f2fs.h"
22#include "segment.h"
23#include "node.h"
24#include "gc.h"
25#include "iostat.h"
26#include <trace/events/f2fs.h>
27
28#define __reverse_ffz(x) __reverse_ffs(~(x))
29
30static struct kmem_cache *discard_entry_slab;
31static struct kmem_cache *discard_cmd_slab;
32static struct kmem_cache *sit_entry_set_slab;
33static struct kmem_cache *inmem_entry_slab;
34
35static unsigned long __reverse_ulong(unsigned char *str)
36{
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40#if BITS_PER_LONG == 64
41 shift = 56;
42#endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48}
49
50/*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
54static inline unsigned long __reverse_ffs(unsigned long word)
55{
56 int num = 0;
57
58#if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63#endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87}
88
89/*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
98static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100{
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130found:
131 return result - size + __reverse_ffs(tmp);
132}
133
134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136{
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167found:
168 return result - size + __reverse_ffz(tmp);
169}
170
171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172{
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186}
187
188void f2fs_register_inmem_page(struct inode *inode, struct page *page)
189{
190 struct inmem_pages *new;
191
192 set_page_private_atomic(page);
193
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab,
195 GFP_NOFS, true, NULL);
196
197 /* add atomic page indices to the list */
198 new->page = page;
199 INIT_LIST_HEAD(&new->list);
200
201 /* increase reference count with clean state */
202 get_page(page);
203 mutex_lock(&F2FS_I(inode)->inmem_lock);
204 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
205 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
206 mutex_unlock(&F2FS_I(inode)->inmem_lock);
207
208 trace_f2fs_register_inmem_page(page, INMEM);
209}
210
211static int __revoke_inmem_pages(struct inode *inode,
212 struct list_head *head, bool drop, bool recover,
213 bool trylock)
214{
215 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216 struct inmem_pages *cur, *tmp;
217 int err = 0;
218
219 list_for_each_entry_safe(cur, tmp, head, list) {
220 struct page *page = cur->page;
221
222 if (drop)
223 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
224
225 if (trylock) {
226 /*
227 * to avoid deadlock in between page lock and
228 * inmem_lock.
229 */
230 if (!trylock_page(page))
231 continue;
232 } else {
233 lock_page(page);
234 }
235
236 f2fs_wait_on_page_writeback(page, DATA, true, true);
237
238 if (recover) {
239 struct dnode_of_data dn;
240 struct node_info ni;
241
242 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
243retry:
244 set_new_dnode(&dn, inode, NULL, NULL, 0);
245 err = f2fs_get_dnode_of_data(&dn, page->index,
246 LOOKUP_NODE);
247 if (err) {
248 if (err == -ENOMEM) {
249 memalloc_retry_wait(GFP_NOFS);
250 goto retry;
251 }
252 err = -EAGAIN;
253 goto next;
254 }
255
256 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
257 if (err) {
258 f2fs_put_dnode(&dn);
259 return err;
260 }
261
262 if (cur->old_addr == NEW_ADDR) {
263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 } else
266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 cur->old_addr, ni.version, true, true);
268 f2fs_put_dnode(&dn);
269 }
270next:
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop || recover) {
273 ClearPageUptodate(page);
274 clear_page_private_gcing(page);
275 }
276 detach_page_private(page);
277 set_page_private(page, 0);
278 f2fs_put_page(page, 1);
279
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 }
284 return err;
285}
286
287void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288{
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 struct inode *inode;
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
294next:
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 return;
299 }
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
302 if (inode)
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306 if (inode) {
307 if (gc_failure) {
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 goto skip;
310 }
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
313skip:
314 iput(inode);
315 }
316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 cond_resched();
318 if (gc_failure) {
319 if (++looped >= count)
320 return;
321 }
322 goto next;
323}
324
325void f2fs_drop_inmem_pages(struct inode *inode)
326{
327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 struct f2fs_inode_info *fi = F2FS_I(inode);
329
330 do {
331 mutex_lock(&fi->inmem_lock);
332 if (list_empty(&fi->inmem_pages)) {
333 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
334
335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 if (!list_empty(&fi->inmem_ilist))
337 list_del_init(&fi->inmem_ilist);
338 if (f2fs_is_atomic_file(inode)) {
339 clear_inode_flag(inode, FI_ATOMIC_FILE);
340 sbi->atomic_files--;
341 }
342 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
343
344 mutex_unlock(&fi->inmem_lock);
345 break;
346 }
347 __revoke_inmem_pages(inode, &fi->inmem_pages,
348 true, false, true);
349 mutex_unlock(&fi->inmem_lock);
350 } while (1);
351}
352
353void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
354{
355 struct f2fs_inode_info *fi = F2FS_I(inode);
356 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
357 struct list_head *head = &fi->inmem_pages;
358 struct inmem_pages *cur = NULL;
359
360 f2fs_bug_on(sbi, !page_private_atomic(page));
361
362 mutex_lock(&fi->inmem_lock);
363 list_for_each_entry(cur, head, list) {
364 if (cur->page == page)
365 break;
366 }
367
368 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
369 list_del(&cur->list);
370 mutex_unlock(&fi->inmem_lock);
371
372 dec_page_count(sbi, F2FS_INMEM_PAGES);
373 kmem_cache_free(inmem_entry_slab, cur);
374
375 ClearPageUptodate(page);
376 clear_page_private_atomic(page);
377 f2fs_put_page(page, 0);
378
379 detach_page_private(page);
380 set_page_private(page, 0);
381
382 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
383}
384
385static int __f2fs_commit_inmem_pages(struct inode *inode)
386{
387 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
388 struct f2fs_inode_info *fi = F2FS_I(inode);
389 struct inmem_pages *cur, *tmp;
390 struct f2fs_io_info fio = {
391 .sbi = sbi,
392 .ino = inode->i_ino,
393 .type = DATA,
394 .op = REQ_OP_WRITE,
395 .op_flags = REQ_SYNC | REQ_PRIO,
396 .io_type = FS_DATA_IO,
397 };
398 struct list_head revoke_list;
399 bool submit_bio = false;
400 int err = 0;
401
402 INIT_LIST_HEAD(&revoke_list);
403
404 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
405 struct page *page = cur->page;
406
407 lock_page(page);
408 if (page->mapping == inode->i_mapping) {
409 trace_f2fs_commit_inmem_page(page, INMEM);
410
411 f2fs_wait_on_page_writeback(page, DATA, true, true);
412
413 set_page_dirty(page);
414 if (clear_page_dirty_for_io(page)) {
415 inode_dec_dirty_pages(inode);
416 f2fs_remove_dirty_inode(inode);
417 }
418retry:
419 fio.page = page;
420 fio.old_blkaddr = NULL_ADDR;
421 fio.encrypted_page = NULL;
422 fio.need_lock = LOCK_DONE;
423 err = f2fs_do_write_data_page(&fio);
424 if (err) {
425 if (err == -ENOMEM) {
426 memalloc_retry_wait(GFP_NOFS);
427 goto retry;
428 }
429 unlock_page(page);
430 break;
431 }
432 /* record old blkaddr for revoking */
433 cur->old_addr = fio.old_blkaddr;
434 submit_bio = true;
435 }
436 unlock_page(page);
437 list_move_tail(&cur->list, &revoke_list);
438 }
439
440 if (submit_bio)
441 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442
443 if (err) {
444 /*
445 * try to revoke all committed pages, but still we could fail
446 * due to no memory or other reason, if that happened, EAGAIN
447 * will be returned, which means in such case, transaction is
448 * already not integrity, caller should use journal to do the
449 * recovery or rewrite & commit last transaction. For other
450 * error number, revoking was done by filesystem itself.
451 */
452 err = __revoke_inmem_pages(inode, &revoke_list,
453 false, true, false);
454
455 /* drop all uncommitted pages */
456 __revoke_inmem_pages(inode, &fi->inmem_pages,
457 true, false, false);
458 } else {
459 __revoke_inmem_pages(inode, &revoke_list,
460 false, false, false);
461 }
462
463 return err;
464}
465
466int f2fs_commit_inmem_pages(struct inode *inode)
467{
468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 struct f2fs_inode_info *fi = F2FS_I(inode);
470 int err;
471
472 f2fs_balance_fs(sbi, true);
473
474 down_write(&fi->i_gc_rwsem[WRITE]);
475
476 f2fs_lock_op(sbi);
477 set_inode_flag(inode, FI_ATOMIC_COMMIT);
478
479 mutex_lock(&fi->inmem_lock);
480 err = __f2fs_commit_inmem_pages(inode);
481 mutex_unlock(&fi->inmem_lock);
482
483 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484
485 f2fs_unlock_op(sbi);
486 up_write(&fi->i_gc_rwsem[WRITE]);
487
488 return err;
489}
490
491/*
492 * This function balances dirty node and dentry pages.
493 * In addition, it controls garbage collection.
494 */
495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496{
497 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 f2fs_stop_checkpoint(sbi, false);
500 }
501
502 /* balance_fs_bg is able to be pending */
503 if (need && excess_cached_nats(sbi))
504 f2fs_balance_fs_bg(sbi, false);
505
506 if (!f2fs_is_checkpoint_ready(sbi))
507 return;
508
509 /*
510 * We should do GC or end up with checkpoint, if there are so many dirty
511 * dir/node pages without enough free segments.
512 */
513 if (has_not_enough_free_secs(sbi, 0, 0)) {
514 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 sbi->gc_thread->f2fs_gc_task) {
516 DEFINE_WAIT(wait);
517
518 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 TASK_UNINTERRUPTIBLE);
520 wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 io_schedule();
522 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 } else {
524 down_write(&sbi->gc_lock);
525 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 }
527 }
528}
529
530static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
531{
532 int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
533 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
534 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
535 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
536 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
537 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
538 unsigned int threshold = sbi->blocks_per_seg * factor *
539 DEFAULT_DIRTY_THRESHOLD;
540 unsigned int global_threshold = threshold * 3 / 2;
541
542 if (dents >= threshold || qdata >= threshold ||
543 nodes >= threshold || meta >= threshold ||
544 imeta >= threshold)
545 return true;
546 return dents + qdata + nodes + meta + imeta > global_threshold;
547}
548
549void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
550{
551 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
552 return;
553
554 /* try to shrink extent cache when there is no enough memory */
555 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
556 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
557
558 /* check the # of cached NAT entries */
559 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
560 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
561
562 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
563 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
564 else
565 f2fs_build_free_nids(sbi, false, false);
566
567 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
568 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
569 goto do_sync;
570
571 /* there is background inflight IO or foreground operation recently */
572 if (is_inflight_io(sbi, REQ_TIME) ||
573 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
574 return;
575
576 /* exceed periodical checkpoint timeout threshold */
577 if (f2fs_time_over(sbi, CP_TIME))
578 goto do_sync;
579
580 /* checkpoint is the only way to shrink partial cached entries */
581 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
582 f2fs_available_free_memory(sbi, INO_ENTRIES))
583 return;
584
585do_sync:
586 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
587 struct blk_plug plug;
588
589 mutex_lock(&sbi->flush_lock);
590
591 blk_start_plug(&plug);
592 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
593 blk_finish_plug(&plug);
594
595 mutex_unlock(&sbi->flush_lock);
596 }
597 f2fs_sync_fs(sbi->sb, true);
598 stat_inc_bg_cp_count(sbi->stat_info);
599}
600
601static int __submit_flush_wait(struct f2fs_sb_info *sbi,
602 struct block_device *bdev)
603{
604 int ret = blkdev_issue_flush(bdev);
605
606 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
607 test_opt(sbi, FLUSH_MERGE), ret);
608 return ret;
609}
610
611static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
612{
613 int ret = 0;
614 int i;
615
616 if (!f2fs_is_multi_device(sbi))
617 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
618
619 for (i = 0; i < sbi->s_ndevs; i++) {
620 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
621 continue;
622 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
623 if (ret)
624 break;
625 }
626 return ret;
627}
628
629static int issue_flush_thread(void *data)
630{
631 struct f2fs_sb_info *sbi = data;
632 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
633 wait_queue_head_t *q = &fcc->flush_wait_queue;
634repeat:
635 if (kthread_should_stop())
636 return 0;
637
638 if (!llist_empty(&fcc->issue_list)) {
639 struct flush_cmd *cmd, *next;
640 int ret;
641
642 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
643 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
644
645 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
646
647 ret = submit_flush_wait(sbi, cmd->ino);
648 atomic_inc(&fcc->issued_flush);
649
650 llist_for_each_entry_safe(cmd, next,
651 fcc->dispatch_list, llnode) {
652 cmd->ret = ret;
653 complete(&cmd->wait);
654 }
655 fcc->dispatch_list = NULL;
656 }
657
658 wait_event_interruptible(*q,
659 kthread_should_stop() || !llist_empty(&fcc->issue_list));
660 goto repeat;
661}
662
663int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
664{
665 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
666 struct flush_cmd cmd;
667 int ret;
668
669 if (test_opt(sbi, NOBARRIER))
670 return 0;
671
672 if (!test_opt(sbi, FLUSH_MERGE)) {
673 atomic_inc(&fcc->queued_flush);
674 ret = submit_flush_wait(sbi, ino);
675 atomic_dec(&fcc->queued_flush);
676 atomic_inc(&fcc->issued_flush);
677 return ret;
678 }
679
680 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
681 f2fs_is_multi_device(sbi)) {
682 ret = submit_flush_wait(sbi, ino);
683 atomic_dec(&fcc->queued_flush);
684
685 atomic_inc(&fcc->issued_flush);
686 return ret;
687 }
688
689 cmd.ino = ino;
690 init_completion(&cmd.wait);
691
692 llist_add(&cmd.llnode, &fcc->issue_list);
693
694 /*
695 * update issue_list before we wake up issue_flush thread, this
696 * smp_mb() pairs with another barrier in ___wait_event(), see
697 * more details in comments of waitqueue_active().
698 */
699 smp_mb();
700
701 if (waitqueue_active(&fcc->flush_wait_queue))
702 wake_up(&fcc->flush_wait_queue);
703
704 if (fcc->f2fs_issue_flush) {
705 wait_for_completion(&cmd.wait);
706 atomic_dec(&fcc->queued_flush);
707 } else {
708 struct llist_node *list;
709
710 list = llist_del_all(&fcc->issue_list);
711 if (!list) {
712 wait_for_completion(&cmd.wait);
713 atomic_dec(&fcc->queued_flush);
714 } else {
715 struct flush_cmd *tmp, *next;
716
717 ret = submit_flush_wait(sbi, ino);
718
719 llist_for_each_entry_safe(tmp, next, list, llnode) {
720 if (tmp == &cmd) {
721 cmd.ret = ret;
722 atomic_dec(&fcc->queued_flush);
723 continue;
724 }
725 tmp->ret = ret;
726 complete(&tmp->wait);
727 }
728 }
729 }
730
731 return cmd.ret;
732}
733
734int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
735{
736 dev_t dev = sbi->sb->s_bdev->bd_dev;
737 struct flush_cmd_control *fcc;
738 int err = 0;
739
740 if (SM_I(sbi)->fcc_info) {
741 fcc = SM_I(sbi)->fcc_info;
742 if (fcc->f2fs_issue_flush)
743 return err;
744 goto init_thread;
745 }
746
747 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
748 if (!fcc)
749 return -ENOMEM;
750 atomic_set(&fcc->issued_flush, 0);
751 atomic_set(&fcc->queued_flush, 0);
752 init_waitqueue_head(&fcc->flush_wait_queue);
753 init_llist_head(&fcc->issue_list);
754 SM_I(sbi)->fcc_info = fcc;
755 if (!test_opt(sbi, FLUSH_MERGE))
756 return err;
757
758init_thread:
759 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
760 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
761 if (IS_ERR(fcc->f2fs_issue_flush)) {
762 err = PTR_ERR(fcc->f2fs_issue_flush);
763 kfree(fcc);
764 SM_I(sbi)->fcc_info = NULL;
765 return err;
766 }
767
768 return err;
769}
770
771void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
772{
773 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
774
775 if (fcc && fcc->f2fs_issue_flush) {
776 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
777
778 fcc->f2fs_issue_flush = NULL;
779 kthread_stop(flush_thread);
780 }
781 if (free) {
782 kfree(fcc);
783 SM_I(sbi)->fcc_info = NULL;
784 }
785}
786
787int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
788{
789 int ret = 0, i;
790
791 if (!f2fs_is_multi_device(sbi))
792 return 0;
793
794 if (test_opt(sbi, NOBARRIER))
795 return 0;
796
797 for (i = 1; i < sbi->s_ndevs; i++) {
798 int count = DEFAULT_RETRY_IO_COUNT;
799
800 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
801 continue;
802
803 do {
804 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
805 if (ret)
806 congestion_wait(BLK_RW_ASYNC,
807 DEFAULT_IO_TIMEOUT);
808 } while (ret && --count);
809
810 if (ret) {
811 f2fs_stop_checkpoint(sbi, false);
812 break;
813 }
814
815 spin_lock(&sbi->dev_lock);
816 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
817 spin_unlock(&sbi->dev_lock);
818 }
819
820 return ret;
821}
822
823static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
824 enum dirty_type dirty_type)
825{
826 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
827
828 /* need not be added */
829 if (IS_CURSEG(sbi, segno))
830 return;
831
832 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
833 dirty_i->nr_dirty[dirty_type]++;
834
835 if (dirty_type == DIRTY) {
836 struct seg_entry *sentry = get_seg_entry(sbi, segno);
837 enum dirty_type t = sentry->type;
838
839 if (unlikely(t >= DIRTY)) {
840 f2fs_bug_on(sbi, 1);
841 return;
842 }
843 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
844 dirty_i->nr_dirty[t]++;
845
846 if (__is_large_section(sbi)) {
847 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
848 block_t valid_blocks =
849 get_valid_blocks(sbi, segno, true);
850
851 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
852 valid_blocks == BLKS_PER_SEC(sbi)));
853
854 if (!IS_CURSEC(sbi, secno))
855 set_bit(secno, dirty_i->dirty_secmap);
856 }
857 }
858}
859
860static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
861 enum dirty_type dirty_type)
862{
863 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
864 block_t valid_blocks;
865
866 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
867 dirty_i->nr_dirty[dirty_type]--;
868
869 if (dirty_type == DIRTY) {
870 struct seg_entry *sentry = get_seg_entry(sbi, segno);
871 enum dirty_type t = sentry->type;
872
873 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
874 dirty_i->nr_dirty[t]--;
875
876 valid_blocks = get_valid_blocks(sbi, segno, true);
877 if (valid_blocks == 0) {
878 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
879 dirty_i->victim_secmap);
880#ifdef CONFIG_F2FS_CHECK_FS
881 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
882#endif
883 }
884 if (__is_large_section(sbi)) {
885 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
886
887 if (!valid_blocks ||
888 valid_blocks == BLKS_PER_SEC(sbi)) {
889 clear_bit(secno, dirty_i->dirty_secmap);
890 return;
891 }
892
893 if (!IS_CURSEC(sbi, secno))
894 set_bit(secno, dirty_i->dirty_secmap);
895 }
896 }
897}
898
899/*
900 * Should not occur error such as -ENOMEM.
901 * Adding dirty entry into seglist is not critical operation.
902 * If a given segment is one of current working segments, it won't be added.
903 */
904static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
905{
906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 unsigned short valid_blocks, ckpt_valid_blocks;
908 unsigned int usable_blocks;
909
910 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
911 return;
912
913 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
914 mutex_lock(&dirty_i->seglist_lock);
915
916 valid_blocks = get_valid_blocks(sbi, segno, false);
917 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
918
919 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
920 ckpt_valid_blocks == usable_blocks)) {
921 __locate_dirty_segment(sbi, segno, PRE);
922 __remove_dirty_segment(sbi, segno, DIRTY);
923 } else if (valid_blocks < usable_blocks) {
924 __locate_dirty_segment(sbi, segno, DIRTY);
925 } else {
926 /* Recovery routine with SSR needs this */
927 __remove_dirty_segment(sbi, segno, DIRTY);
928 }
929
930 mutex_unlock(&dirty_i->seglist_lock);
931}
932
933/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
934void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
935{
936 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
937 unsigned int segno;
938
939 mutex_lock(&dirty_i->seglist_lock);
940 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
941 if (get_valid_blocks(sbi, segno, false))
942 continue;
943 if (IS_CURSEG(sbi, segno))
944 continue;
945 __locate_dirty_segment(sbi, segno, PRE);
946 __remove_dirty_segment(sbi, segno, DIRTY);
947 }
948 mutex_unlock(&dirty_i->seglist_lock);
949}
950
951block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
952{
953 int ovp_hole_segs =
954 (overprovision_segments(sbi) - reserved_segments(sbi));
955 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
956 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
957 block_t holes[2] = {0, 0}; /* DATA and NODE */
958 block_t unusable;
959 struct seg_entry *se;
960 unsigned int segno;
961
962 mutex_lock(&dirty_i->seglist_lock);
963 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
964 se = get_seg_entry(sbi, segno);
965 if (IS_NODESEG(se->type))
966 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
967 se->valid_blocks;
968 else
969 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
970 se->valid_blocks;
971 }
972 mutex_unlock(&dirty_i->seglist_lock);
973
974 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
975 if (unusable > ovp_holes)
976 return unusable - ovp_holes;
977 return 0;
978}
979
980int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
981{
982 int ovp_hole_segs =
983 (overprovision_segments(sbi) - reserved_segments(sbi));
984 if (unusable > F2FS_OPTION(sbi).unusable_cap)
985 return -EAGAIN;
986 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
987 dirty_segments(sbi) > ovp_hole_segs)
988 return -EAGAIN;
989 return 0;
990}
991
992/* This is only used by SBI_CP_DISABLED */
993static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
994{
995 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
996 unsigned int segno = 0;
997
998 mutex_lock(&dirty_i->seglist_lock);
999 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1000 if (get_valid_blocks(sbi, segno, false))
1001 continue;
1002 if (get_ckpt_valid_blocks(sbi, segno, false))
1003 continue;
1004 mutex_unlock(&dirty_i->seglist_lock);
1005 return segno;
1006 }
1007 mutex_unlock(&dirty_i->seglist_lock);
1008 return NULL_SEGNO;
1009}
1010
1011static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1012 struct block_device *bdev, block_t lstart,
1013 block_t start, block_t len)
1014{
1015 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1016 struct list_head *pend_list;
1017 struct discard_cmd *dc;
1018
1019 f2fs_bug_on(sbi, !len);
1020
1021 pend_list = &dcc->pend_list[plist_idx(len)];
1022
1023 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1024 INIT_LIST_HEAD(&dc->list);
1025 dc->bdev = bdev;
1026 dc->lstart = lstart;
1027 dc->start = start;
1028 dc->len = len;
1029 dc->ref = 0;
1030 dc->state = D_PREP;
1031 dc->queued = 0;
1032 dc->error = 0;
1033 init_completion(&dc->wait);
1034 list_add_tail(&dc->list, pend_list);
1035 spin_lock_init(&dc->lock);
1036 dc->bio_ref = 0;
1037 atomic_inc(&dcc->discard_cmd_cnt);
1038 dcc->undiscard_blks += len;
1039
1040 return dc;
1041}
1042
1043static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1044 struct block_device *bdev, block_t lstart,
1045 block_t start, block_t len,
1046 struct rb_node *parent, struct rb_node **p,
1047 bool leftmost)
1048{
1049 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1050 struct discard_cmd *dc;
1051
1052 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1053
1054 rb_link_node(&dc->rb_node, parent, p);
1055 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1056
1057 return dc;
1058}
1059
1060static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1061 struct discard_cmd *dc)
1062{
1063 if (dc->state == D_DONE)
1064 atomic_sub(dc->queued, &dcc->queued_discard);
1065
1066 list_del(&dc->list);
1067 rb_erase_cached(&dc->rb_node, &dcc->root);
1068 dcc->undiscard_blks -= dc->len;
1069
1070 kmem_cache_free(discard_cmd_slab, dc);
1071
1072 atomic_dec(&dcc->discard_cmd_cnt);
1073}
1074
1075static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1076 struct discard_cmd *dc)
1077{
1078 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1079 unsigned long flags;
1080
1081 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1082
1083 spin_lock_irqsave(&dc->lock, flags);
1084 if (dc->bio_ref) {
1085 spin_unlock_irqrestore(&dc->lock, flags);
1086 return;
1087 }
1088 spin_unlock_irqrestore(&dc->lock, flags);
1089
1090 f2fs_bug_on(sbi, dc->ref);
1091
1092 if (dc->error == -EOPNOTSUPP)
1093 dc->error = 0;
1094
1095 if (dc->error)
1096 printk_ratelimited(
1097 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1098 KERN_INFO, sbi->sb->s_id,
1099 dc->lstart, dc->start, dc->len, dc->error);
1100 __detach_discard_cmd(dcc, dc);
1101}
1102
1103static void f2fs_submit_discard_endio(struct bio *bio)
1104{
1105 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1106 unsigned long flags;
1107
1108 spin_lock_irqsave(&dc->lock, flags);
1109 if (!dc->error)
1110 dc->error = blk_status_to_errno(bio->bi_status);
1111 dc->bio_ref--;
1112 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1113 dc->state = D_DONE;
1114 complete_all(&dc->wait);
1115 }
1116 spin_unlock_irqrestore(&dc->lock, flags);
1117 bio_put(bio);
1118}
1119
1120static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1121 block_t start, block_t end)
1122{
1123#ifdef CONFIG_F2FS_CHECK_FS
1124 struct seg_entry *sentry;
1125 unsigned int segno;
1126 block_t blk = start;
1127 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1128 unsigned long *map;
1129
1130 while (blk < end) {
1131 segno = GET_SEGNO(sbi, blk);
1132 sentry = get_seg_entry(sbi, segno);
1133 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1134
1135 if (end < START_BLOCK(sbi, segno + 1))
1136 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1137 else
1138 size = max_blocks;
1139 map = (unsigned long *)(sentry->cur_valid_map);
1140 offset = __find_rev_next_bit(map, size, offset);
1141 f2fs_bug_on(sbi, offset != size);
1142 blk = START_BLOCK(sbi, segno + 1);
1143 }
1144#endif
1145}
1146
1147static void __init_discard_policy(struct f2fs_sb_info *sbi,
1148 struct discard_policy *dpolicy,
1149 int discard_type, unsigned int granularity)
1150{
1151 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1152
1153 /* common policy */
1154 dpolicy->type = discard_type;
1155 dpolicy->sync = true;
1156 dpolicy->ordered = false;
1157 dpolicy->granularity = granularity;
1158
1159 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1160 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1161 dpolicy->timeout = false;
1162
1163 if (discard_type == DPOLICY_BG) {
1164 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1165 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1166 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1167 dpolicy->io_aware = true;
1168 dpolicy->sync = false;
1169 dpolicy->ordered = true;
1170 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1171 dpolicy->granularity = 1;
1172 if (atomic_read(&dcc->discard_cmd_cnt))
1173 dpolicy->max_interval =
1174 DEF_MIN_DISCARD_ISSUE_TIME;
1175 }
1176 } else if (discard_type == DPOLICY_FORCE) {
1177 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1178 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1179 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1180 dpolicy->io_aware = false;
1181 } else if (discard_type == DPOLICY_FSTRIM) {
1182 dpolicy->io_aware = false;
1183 } else if (discard_type == DPOLICY_UMOUNT) {
1184 dpolicy->io_aware = false;
1185 /* we need to issue all to keep CP_TRIMMED_FLAG */
1186 dpolicy->granularity = 1;
1187 dpolicy->timeout = true;
1188 }
1189}
1190
1191static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1192 struct block_device *bdev, block_t lstart,
1193 block_t start, block_t len);
1194/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1195static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1196 struct discard_policy *dpolicy,
1197 struct discard_cmd *dc,
1198 unsigned int *issued)
1199{
1200 struct block_device *bdev = dc->bdev;
1201 struct request_queue *q = bdev_get_queue(bdev);
1202 unsigned int max_discard_blocks =
1203 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1204 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1205 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1206 &(dcc->fstrim_list) : &(dcc->wait_list);
1207 int flag = dpolicy->sync ? REQ_SYNC : 0;
1208 block_t lstart, start, len, total_len;
1209 int err = 0;
1210
1211 if (dc->state != D_PREP)
1212 return 0;
1213
1214 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1215 return 0;
1216
1217 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1218
1219 lstart = dc->lstart;
1220 start = dc->start;
1221 len = dc->len;
1222 total_len = len;
1223
1224 dc->len = 0;
1225
1226 while (total_len && *issued < dpolicy->max_requests && !err) {
1227 struct bio *bio = NULL;
1228 unsigned long flags;
1229 bool last = true;
1230
1231 if (len > max_discard_blocks) {
1232 len = max_discard_blocks;
1233 last = false;
1234 }
1235
1236 (*issued)++;
1237 if (*issued == dpolicy->max_requests)
1238 last = true;
1239
1240 dc->len += len;
1241
1242 if (time_to_inject(sbi, FAULT_DISCARD)) {
1243 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1244 err = -EIO;
1245 goto submit;
1246 }
1247 err = __blkdev_issue_discard(bdev,
1248 SECTOR_FROM_BLOCK(start),
1249 SECTOR_FROM_BLOCK(len),
1250 GFP_NOFS, 0, &bio);
1251submit:
1252 if (err) {
1253 spin_lock_irqsave(&dc->lock, flags);
1254 if (dc->state == D_PARTIAL)
1255 dc->state = D_SUBMIT;
1256 spin_unlock_irqrestore(&dc->lock, flags);
1257
1258 break;
1259 }
1260
1261 f2fs_bug_on(sbi, !bio);
1262
1263 /*
1264 * should keep before submission to avoid D_DONE
1265 * right away
1266 */
1267 spin_lock_irqsave(&dc->lock, flags);
1268 if (last)
1269 dc->state = D_SUBMIT;
1270 else
1271 dc->state = D_PARTIAL;
1272 dc->bio_ref++;
1273 spin_unlock_irqrestore(&dc->lock, flags);
1274
1275 atomic_inc(&dcc->queued_discard);
1276 dc->queued++;
1277 list_move_tail(&dc->list, wait_list);
1278
1279 /* sanity check on discard range */
1280 __check_sit_bitmap(sbi, lstart, lstart + len);
1281
1282 bio->bi_private = dc;
1283 bio->bi_end_io = f2fs_submit_discard_endio;
1284 bio->bi_opf |= flag;
1285 submit_bio(bio);
1286
1287 atomic_inc(&dcc->issued_discard);
1288
1289 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1290
1291 lstart += len;
1292 start += len;
1293 total_len -= len;
1294 len = total_len;
1295 }
1296
1297 if (!err && len) {
1298 dcc->undiscard_blks -= len;
1299 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1300 }
1301 return err;
1302}
1303
1304static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1305 struct block_device *bdev, block_t lstart,
1306 block_t start, block_t len,
1307 struct rb_node **insert_p,
1308 struct rb_node *insert_parent)
1309{
1310 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1311 struct rb_node **p;
1312 struct rb_node *parent = NULL;
1313 bool leftmost = true;
1314
1315 if (insert_p && insert_parent) {
1316 parent = insert_parent;
1317 p = insert_p;
1318 goto do_insert;
1319 }
1320
1321 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1322 lstart, &leftmost);
1323do_insert:
1324 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1325 p, leftmost);
1326}
1327
1328static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1329 struct discard_cmd *dc)
1330{
1331 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1332}
1333
1334static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1335 struct discard_cmd *dc, block_t blkaddr)
1336{
1337 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1338 struct discard_info di = dc->di;
1339 bool modified = false;
1340
1341 if (dc->state == D_DONE || dc->len == 1) {
1342 __remove_discard_cmd(sbi, dc);
1343 return;
1344 }
1345
1346 dcc->undiscard_blks -= di.len;
1347
1348 if (blkaddr > di.lstart) {
1349 dc->len = blkaddr - dc->lstart;
1350 dcc->undiscard_blks += dc->len;
1351 __relocate_discard_cmd(dcc, dc);
1352 modified = true;
1353 }
1354
1355 if (blkaddr < di.lstart + di.len - 1) {
1356 if (modified) {
1357 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1358 di.start + blkaddr + 1 - di.lstart,
1359 di.lstart + di.len - 1 - blkaddr,
1360 NULL, NULL);
1361 } else {
1362 dc->lstart++;
1363 dc->len--;
1364 dc->start++;
1365 dcc->undiscard_blks += dc->len;
1366 __relocate_discard_cmd(dcc, dc);
1367 }
1368 }
1369}
1370
1371static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1372 struct block_device *bdev, block_t lstart,
1373 block_t start, block_t len)
1374{
1375 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1376 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1377 struct discard_cmd *dc;
1378 struct discard_info di = {0};
1379 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1380 struct request_queue *q = bdev_get_queue(bdev);
1381 unsigned int max_discard_blocks =
1382 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1383 block_t end = lstart + len;
1384
1385 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1386 NULL, lstart,
1387 (struct rb_entry **)&prev_dc,
1388 (struct rb_entry **)&next_dc,
1389 &insert_p, &insert_parent, true, NULL);
1390 if (dc)
1391 prev_dc = dc;
1392
1393 if (!prev_dc) {
1394 di.lstart = lstart;
1395 di.len = next_dc ? next_dc->lstart - lstart : len;
1396 di.len = min(di.len, len);
1397 di.start = start;
1398 }
1399
1400 while (1) {
1401 struct rb_node *node;
1402 bool merged = false;
1403 struct discard_cmd *tdc = NULL;
1404
1405 if (prev_dc) {
1406 di.lstart = prev_dc->lstart + prev_dc->len;
1407 if (di.lstart < lstart)
1408 di.lstart = lstart;
1409 if (di.lstart >= end)
1410 break;
1411
1412 if (!next_dc || next_dc->lstart > end)
1413 di.len = end - di.lstart;
1414 else
1415 di.len = next_dc->lstart - di.lstart;
1416 di.start = start + di.lstart - lstart;
1417 }
1418
1419 if (!di.len)
1420 goto next;
1421
1422 if (prev_dc && prev_dc->state == D_PREP &&
1423 prev_dc->bdev == bdev &&
1424 __is_discard_back_mergeable(&di, &prev_dc->di,
1425 max_discard_blocks)) {
1426 prev_dc->di.len += di.len;
1427 dcc->undiscard_blks += di.len;
1428 __relocate_discard_cmd(dcc, prev_dc);
1429 di = prev_dc->di;
1430 tdc = prev_dc;
1431 merged = true;
1432 }
1433
1434 if (next_dc && next_dc->state == D_PREP &&
1435 next_dc->bdev == bdev &&
1436 __is_discard_front_mergeable(&di, &next_dc->di,
1437 max_discard_blocks)) {
1438 next_dc->di.lstart = di.lstart;
1439 next_dc->di.len += di.len;
1440 next_dc->di.start = di.start;
1441 dcc->undiscard_blks += di.len;
1442 __relocate_discard_cmd(dcc, next_dc);
1443 if (tdc)
1444 __remove_discard_cmd(sbi, tdc);
1445 merged = true;
1446 }
1447
1448 if (!merged) {
1449 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1450 di.len, NULL, NULL);
1451 }
1452 next:
1453 prev_dc = next_dc;
1454 if (!prev_dc)
1455 break;
1456
1457 node = rb_next(&prev_dc->rb_node);
1458 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1459 }
1460}
1461
1462static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1463 struct block_device *bdev, block_t blkstart, block_t blklen)
1464{
1465 block_t lblkstart = blkstart;
1466
1467 if (!f2fs_bdev_support_discard(bdev))
1468 return 0;
1469
1470 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1471
1472 if (f2fs_is_multi_device(sbi)) {
1473 int devi = f2fs_target_device_index(sbi, blkstart);
1474
1475 blkstart -= FDEV(devi).start_blk;
1476 }
1477 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1478 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1479 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1480 return 0;
1481}
1482
1483static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1484 struct discard_policy *dpolicy)
1485{
1486 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1487 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1488 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1489 struct discard_cmd *dc;
1490 struct blk_plug plug;
1491 unsigned int pos = dcc->next_pos;
1492 unsigned int issued = 0;
1493 bool io_interrupted = false;
1494
1495 mutex_lock(&dcc->cmd_lock);
1496 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1497 NULL, pos,
1498 (struct rb_entry **)&prev_dc,
1499 (struct rb_entry **)&next_dc,
1500 &insert_p, &insert_parent, true, NULL);
1501 if (!dc)
1502 dc = next_dc;
1503
1504 blk_start_plug(&plug);
1505
1506 while (dc) {
1507 struct rb_node *node;
1508 int err = 0;
1509
1510 if (dc->state != D_PREP)
1511 goto next;
1512
1513 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1514 io_interrupted = true;
1515 break;
1516 }
1517
1518 dcc->next_pos = dc->lstart + dc->len;
1519 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1520
1521 if (issued >= dpolicy->max_requests)
1522 break;
1523next:
1524 node = rb_next(&dc->rb_node);
1525 if (err)
1526 __remove_discard_cmd(sbi, dc);
1527 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1528 }
1529
1530 blk_finish_plug(&plug);
1531
1532 if (!dc)
1533 dcc->next_pos = 0;
1534
1535 mutex_unlock(&dcc->cmd_lock);
1536
1537 if (!issued && io_interrupted)
1538 issued = -1;
1539
1540 return issued;
1541}
1542static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1543 struct discard_policy *dpolicy);
1544
1545static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1546 struct discard_policy *dpolicy)
1547{
1548 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1549 struct list_head *pend_list;
1550 struct discard_cmd *dc, *tmp;
1551 struct blk_plug plug;
1552 int i, issued;
1553 bool io_interrupted = false;
1554
1555 if (dpolicy->timeout)
1556 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1557
1558retry:
1559 issued = 0;
1560 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1561 if (dpolicy->timeout &&
1562 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1563 break;
1564
1565 if (i + 1 < dpolicy->granularity)
1566 break;
1567
1568 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1569 return __issue_discard_cmd_orderly(sbi, dpolicy);
1570
1571 pend_list = &dcc->pend_list[i];
1572
1573 mutex_lock(&dcc->cmd_lock);
1574 if (list_empty(pend_list))
1575 goto next;
1576 if (unlikely(dcc->rbtree_check))
1577 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1578 &dcc->root, false));
1579 blk_start_plug(&plug);
1580 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1581 f2fs_bug_on(sbi, dc->state != D_PREP);
1582
1583 if (dpolicy->timeout &&
1584 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1585 break;
1586
1587 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1588 !is_idle(sbi, DISCARD_TIME)) {
1589 io_interrupted = true;
1590 break;
1591 }
1592
1593 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1594
1595 if (issued >= dpolicy->max_requests)
1596 break;
1597 }
1598 blk_finish_plug(&plug);
1599next:
1600 mutex_unlock(&dcc->cmd_lock);
1601
1602 if (issued >= dpolicy->max_requests || io_interrupted)
1603 break;
1604 }
1605
1606 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1607 __wait_all_discard_cmd(sbi, dpolicy);
1608 goto retry;
1609 }
1610
1611 if (!issued && io_interrupted)
1612 issued = -1;
1613
1614 return issued;
1615}
1616
1617static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1618{
1619 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1620 struct list_head *pend_list;
1621 struct discard_cmd *dc, *tmp;
1622 int i;
1623 bool dropped = false;
1624
1625 mutex_lock(&dcc->cmd_lock);
1626 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1627 pend_list = &dcc->pend_list[i];
1628 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1629 f2fs_bug_on(sbi, dc->state != D_PREP);
1630 __remove_discard_cmd(sbi, dc);
1631 dropped = true;
1632 }
1633 }
1634 mutex_unlock(&dcc->cmd_lock);
1635
1636 return dropped;
1637}
1638
1639void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1640{
1641 __drop_discard_cmd(sbi);
1642}
1643
1644static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1645 struct discard_cmd *dc)
1646{
1647 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1648 unsigned int len = 0;
1649
1650 wait_for_completion_io(&dc->wait);
1651 mutex_lock(&dcc->cmd_lock);
1652 f2fs_bug_on(sbi, dc->state != D_DONE);
1653 dc->ref--;
1654 if (!dc->ref) {
1655 if (!dc->error)
1656 len = dc->len;
1657 __remove_discard_cmd(sbi, dc);
1658 }
1659 mutex_unlock(&dcc->cmd_lock);
1660
1661 return len;
1662}
1663
1664static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1665 struct discard_policy *dpolicy,
1666 block_t start, block_t end)
1667{
1668 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1669 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1670 &(dcc->fstrim_list) : &(dcc->wait_list);
1671 struct discard_cmd *dc, *tmp;
1672 bool need_wait;
1673 unsigned int trimmed = 0;
1674
1675next:
1676 need_wait = false;
1677
1678 mutex_lock(&dcc->cmd_lock);
1679 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1680 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1681 continue;
1682 if (dc->len < dpolicy->granularity)
1683 continue;
1684 if (dc->state == D_DONE && !dc->ref) {
1685 wait_for_completion_io(&dc->wait);
1686 if (!dc->error)
1687 trimmed += dc->len;
1688 __remove_discard_cmd(sbi, dc);
1689 } else {
1690 dc->ref++;
1691 need_wait = true;
1692 break;
1693 }
1694 }
1695 mutex_unlock(&dcc->cmd_lock);
1696
1697 if (need_wait) {
1698 trimmed += __wait_one_discard_bio(sbi, dc);
1699 goto next;
1700 }
1701
1702 return trimmed;
1703}
1704
1705static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1706 struct discard_policy *dpolicy)
1707{
1708 struct discard_policy dp;
1709 unsigned int discard_blks;
1710
1711 if (dpolicy)
1712 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1713
1714 /* wait all */
1715 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1716 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1717 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1718 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1719
1720 return discard_blks;
1721}
1722
1723/* This should be covered by global mutex, &sit_i->sentry_lock */
1724static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1725{
1726 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1727 struct discard_cmd *dc;
1728 bool need_wait = false;
1729
1730 mutex_lock(&dcc->cmd_lock);
1731 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1732 NULL, blkaddr);
1733 if (dc) {
1734 if (dc->state == D_PREP) {
1735 __punch_discard_cmd(sbi, dc, blkaddr);
1736 } else {
1737 dc->ref++;
1738 need_wait = true;
1739 }
1740 }
1741 mutex_unlock(&dcc->cmd_lock);
1742
1743 if (need_wait)
1744 __wait_one_discard_bio(sbi, dc);
1745}
1746
1747void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1748{
1749 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1750
1751 if (dcc && dcc->f2fs_issue_discard) {
1752 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1753
1754 dcc->f2fs_issue_discard = NULL;
1755 kthread_stop(discard_thread);
1756 }
1757}
1758
1759/* This comes from f2fs_put_super */
1760bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1761{
1762 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1763 struct discard_policy dpolicy;
1764 bool dropped;
1765
1766 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1767 dcc->discard_granularity);
1768 __issue_discard_cmd(sbi, &dpolicy);
1769 dropped = __drop_discard_cmd(sbi);
1770
1771 /* just to make sure there is no pending discard commands */
1772 __wait_all_discard_cmd(sbi, NULL);
1773
1774 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1775 return dropped;
1776}
1777
1778static int issue_discard_thread(void *data)
1779{
1780 struct f2fs_sb_info *sbi = data;
1781 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1782 wait_queue_head_t *q = &dcc->discard_wait_queue;
1783 struct discard_policy dpolicy;
1784 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1785 int issued;
1786
1787 set_freezable();
1788
1789 do {
1790 if (sbi->gc_mode == GC_URGENT_HIGH ||
1791 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1792 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1793 else
1794 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1795 dcc->discard_granularity);
1796
1797 if (!atomic_read(&dcc->discard_cmd_cnt))
1798 wait_ms = dpolicy.max_interval;
1799
1800 wait_event_interruptible_timeout(*q,
1801 kthread_should_stop() || freezing(current) ||
1802 dcc->discard_wake,
1803 msecs_to_jiffies(wait_ms));
1804
1805 if (dcc->discard_wake)
1806 dcc->discard_wake = 0;
1807
1808 /* clean up pending candidates before going to sleep */
1809 if (atomic_read(&dcc->queued_discard))
1810 __wait_all_discard_cmd(sbi, NULL);
1811
1812 if (try_to_freeze())
1813 continue;
1814 if (f2fs_readonly(sbi->sb))
1815 continue;
1816 if (kthread_should_stop())
1817 return 0;
1818 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1819 wait_ms = dpolicy.max_interval;
1820 continue;
1821 }
1822 if (!atomic_read(&dcc->discard_cmd_cnt))
1823 continue;
1824
1825 sb_start_intwrite(sbi->sb);
1826
1827 issued = __issue_discard_cmd(sbi, &dpolicy);
1828 if (issued > 0) {
1829 __wait_all_discard_cmd(sbi, &dpolicy);
1830 wait_ms = dpolicy.min_interval;
1831 } else if (issued == -1) {
1832 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1833 if (!wait_ms)
1834 wait_ms = dpolicy.mid_interval;
1835 } else {
1836 wait_ms = dpolicy.max_interval;
1837 }
1838
1839 sb_end_intwrite(sbi->sb);
1840
1841 } while (!kthread_should_stop());
1842 return 0;
1843}
1844
1845#ifdef CONFIG_BLK_DEV_ZONED
1846static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1847 struct block_device *bdev, block_t blkstart, block_t blklen)
1848{
1849 sector_t sector, nr_sects;
1850 block_t lblkstart = blkstart;
1851 int devi = 0;
1852
1853 if (f2fs_is_multi_device(sbi)) {
1854 devi = f2fs_target_device_index(sbi, blkstart);
1855 if (blkstart < FDEV(devi).start_blk ||
1856 blkstart > FDEV(devi).end_blk) {
1857 f2fs_err(sbi, "Invalid block %x", blkstart);
1858 return -EIO;
1859 }
1860 blkstart -= FDEV(devi).start_blk;
1861 }
1862
1863 /* For sequential zones, reset the zone write pointer */
1864 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1865 sector = SECTOR_FROM_BLOCK(blkstart);
1866 nr_sects = SECTOR_FROM_BLOCK(blklen);
1867
1868 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1869 nr_sects != bdev_zone_sectors(bdev)) {
1870 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1871 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1872 blkstart, blklen);
1873 return -EIO;
1874 }
1875 trace_f2fs_issue_reset_zone(bdev, blkstart);
1876 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1877 sector, nr_sects, GFP_NOFS);
1878 }
1879
1880 /* For conventional zones, use regular discard if supported */
1881 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1882}
1883#endif
1884
1885static int __issue_discard_async(struct f2fs_sb_info *sbi,
1886 struct block_device *bdev, block_t blkstart, block_t blklen)
1887{
1888#ifdef CONFIG_BLK_DEV_ZONED
1889 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1890 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1891#endif
1892 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1893}
1894
1895static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1896 block_t blkstart, block_t blklen)
1897{
1898 sector_t start = blkstart, len = 0;
1899 struct block_device *bdev;
1900 struct seg_entry *se;
1901 unsigned int offset;
1902 block_t i;
1903 int err = 0;
1904
1905 bdev = f2fs_target_device(sbi, blkstart, NULL);
1906
1907 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1908 if (i != start) {
1909 struct block_device *bdev2 =
1910 f2fs_target_device(sbi, i, NULL);
1911
1912 if (bdev2 != bdev) {
1913 err = __issue_discard_async(sbi, bdev,
1914 start, len);
1915 if (err)
1916 return err;
1917 bdev = bdev2;
1918 start = i;
1919 len = 0;
1920 }
1921 }
1922
1923 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1924 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1925
1926 if (f2fs_block_unit_discard(sbi) &&
1927 !f2fs_test_and_set_bit(offset, se->discard_map))
1928 sbi->discard_blks--;
1929 }
1930
1931 if (len)
1932 err = __issue_discard_async(sbi, bdev, start, len);
1933 return err;
1934}
1935
1936static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1937 bool check_only)
1938{
1939 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1940 int max_blocks = sbi->blocks_per_seg;
1941 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1942 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1943 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1944 unsigned long *discard_map = (unsigned long *)se->discard_map;
1945 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1946 unsigned int start = 0, end = -1;
1947 bool force = (cpc->reason & CP_DISCARD);
1948 struct discard_entry *de = NULL;
1949 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1950 int i;
1951
1952 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1953 !f2fs_block_unit_discard(sbi))
1954 return false;
1955
1956 if (!force) {
1957 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1958 SM_I(sbi)->dcc_info->nr_discards >=
1959 SM_I(sbi)->dcc_info->max_discards)
1960 return false;
1961 }
1962
1963 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1964 for (i = 0; i < entries; i++)
1965 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1966 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1967
1968 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1969 SM_I(sbi)->dcc_info->max_discards) {
1970 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1971 if (start >= max_blocks)
1972 break;
1973
1974 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1975 if (force && start && end != max_blocks
1976 && (end - start) < cpc->trim_minlen)
1977 continue;
1978
1979 if (check_only)
1980 return true;
1981
1982 if (!de) {
1983 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1984 GFP_F2FS_ZERO, true, NULL);
1985 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1986 list_add_tail(&de->list, head);
1987 }
1988
1989 for (i = start; i < end; i++)
1990 __set_bit_le(i, (void *)de->discard_map);
1991
1992 SM_I(sbi)->dcc_info->nr_discards += end - start;
1993 }
1994 return false;
1995}
1996
1997static void release_discard_addr(struct discard_entry *entry)
1998{
1999 list_del(&entry->list);
2000 kmem_cache_free(discard_entry_slab, entry);
2001}
2002
2003void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2004{
2005 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2006 struct discard_entry *entry, *this;
2007
2008 /* drop caches */
2009 list_for_each_entry_safe(entry, this, head, list)
2010 release_discard_addr(entry);
2011}
2012
2013/*
2014 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2015 */
2016static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2017{
2018 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2019 unsigned int segno;
2020
2021 mutex_lock(&dirty_i->seglist_lock);
2022 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2023 __set_test_and_free(sbi, segno, false);
2024 mutex_unlock(&dirty_i->seglist_lock);
2025}
2026
2027void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2028 struct cp_control *cpc)
2029{
2030 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2031 struct list_head *head = &dcc->entry_list;
2032 struct discard_entry *entry, *this;
2033 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2034 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2035 unsigned int start = 0, end = -1;
2036 unsigned int secno, start_segno;
2037 bool force = (cpc->reason & CP_DISCARD);
2038 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2039 DISCARD_UNIT_SECTION;
2040
2041 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2042 section_alignment = true;
2043
2044 mutex_lock(&dirty_i->seglist_lock);
2045
2046 while (1) {
2047 int i;
2048
2049 if (section_alignment && end != -1)
2050 end--;
2051 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2052 if (start >= MAIN_SEGS(sbi))
2053 break;
2054 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2055 start + 1);
2056
2057 if (section_alignment) {
2058 start = rounddown(start, sbi->segs_per_sec);
2059 end = roundup(end, sbi->segs_per_sec);
2060 }
2061
2062 for (i = start; i < end; i++) {
2063 if (test_and_clear_bit(i, prefree_map))
2064 dirty_i->nr_dirty[PRE]--;
2065 }
2066
2067 if (!f2fs_realtime_discard_enable(sbi))
2068 continue;
2069
2070 if (force && start >= cpc->trim_start &&
2071 (end - 1) <= cpc->trim_end)
2072 continue;
2073
2074 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2075 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2076 (end - start) << sbi->log_blocks_per_seg);
2077 continue;
2078 }
2079next:
2080 secno = GET_SEC_FROM_SEG(sbi, start);
2081 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2082 if (!IS_CURSEC(sbi, secno) &&
2083 !get_valid_blocks(sbi, start, true))
2084 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2085 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2086
2087 start = start_segno + sbi->segs_per_sec;
2088 if (start < end)
2089 goto next;
2090 else
2091 end = start - 1;
2092 }
2093 mutex_unlock(&dirty_i->seglist_lock);
2094
2095 if (!f2fs_block_unit_discard(sbi))
2096 goto wakeup;
2097
2098 /* send small discards */
2099 list_for_each_entry_safe(entry, this, head, list) {
2100 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2101 bool is_valid = test_bit_le(0, entry->discard_map);
2102
2103find_next:
2104 if (is_valid) {
2105 next_pos = find_next_zero_bit_le(entry->discard_map,
2106 sbi->blocks_per_seg, cur_pos);
2107 len = next_pos - cur_pos;
2108
2109 if (f2fs_sb_has_blkzoned(sbi) ||
2110 (force && len < cpc->trim_minlen))
2111 goto skip;
2112
2113 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2114 len);
2115 total_len += len;
2116 } else {
2117 next_pos = find_next_bit_le(entry->discard_map,
2118 sbi->blocks_per_seg, cur_pos);
2119 }
2120skip:
2121 cur_pos = next_pos;
2122 is_valid = !is_valid;
2123
2124 if (cur_pos < sbi->blocks_per_seg)
2125 goto find_next;
2126
2127 release_discard_addr(entry);
2128 dcc->nr_discards -= total_len;
2129 }
2130
2131wakeup:
2132 wake_up_discard_thread(sbi, false);
2133}
2134
2135int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2136{
2137 dev_t dev = sbi->sb->s_bdev->bd_dev;
2138 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2139 int err = 0;
2140
2141 if (!f2fs_realtime_discard_enable(sbi))
2142 return 0;
2143
2144 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2145 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2146 if (IS_ERR(dcc->f2fs_issue_discard))
2147 err = PTR_ERR(dcc->f2fs_issue_discard);
2148
2149 return err;
2150}
2151
2152static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2153{
2154 struct discard_cmd_control *dcc;
2155 int err = 0, i;
2156
2157 if (SM_I(sbi)->dcc_info) {
2158 dcc = SM_I(sbi)->dcc_info;
2159 goto init_thread;
2160 }
2161
2162 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2163 if (!dcc)
2164 return -ENOMEM;
2165
2166 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2167 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2168 dcc->discard_granularity = sbi->blocks_per_seg;
2169 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2170 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2171
2172 INIT_LIST_HEAD(&dcc->entry_list);
2173 for (i = 0; i < MAX_PLIST_NUM; i++)
2174 INIT_LIST_HEAD(&dcc->pend_list[i]);
2175 INIT_LIST_HEAD(&dcc->wait_list);
2176 INIT_LIST_HEAD(&dcc->fstrim_list);
2177 mutex_init(&dcc->cmd_lock);
2178 atomic_set(&dcc->issued_discard, 0);
2179 atomic_set(&dcc->queued_discard, 0);
2180 atomic_set(&dcc->discard_cmd_cnt, 0);
2181 dcc->nr_discards = 0;
2182 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2183 dcc->undiscard_blks = 0;
2184 dcc->next_pos = 0;
2185 dcc->root = RB_ROOT_CACHED;
2186 dcc->rbtree_check = false;
2187
2188 init_waitqueue_head(&dcc->discard_wait_queue);
2189 SM_I(sbi)->dcc_info = dcc;
2190init_thread:
2191 err = f2fs_start_discard_thread(sbi);
2192 if (err) {
2193 kfree(dcc);
2194 SM_I(sbi)->dcc_info = NULL;
2195 }
2196
2197 return err;
2198}
2199
2200static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2201{
2202 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2203
2204 if (!dcc)
2205 return;
2206
2207 f2fs_stop_discard_thread(sbi);
2208
2209 /*
2210 * Recovery can cache discard commands, so in error path of
2211 * fill_super(), it needs to give a chance to handle them.
2212 */
2213 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2214 f2fs_issue_discard_timeout(sbi);
2215
2216 kfree(dcc);
2217 SM_I(sbi)->dcc_info = NULL;
2218}
2219
2220static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2221{
2222 struct sit_info *sit_i = SIT_I(sbi);
2223
2224 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2225 sit_i->dirty_sentries++;
2226 return false;
2227 }
2228
2229 return true;
2230}
2231
2232static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2233 unsigned int segno, int modified)
2234{
2235 struct seg_entry *se = get_seg_entry(sbi, segno);
2236
2237 se->type = type;
2238 if (modified)
2239 __mark_sit_entry_dirty(sbi, segno);
2240}
2241
2242static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2243 block_t blkaddr)
2244{
2245 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2246
2247 if (segno == NULL_SEGNO)
2248 return 0;
2249 return get_seg_entry(sbi, segno)->mtime;
2250}
2251
2252static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2253 unsigned long long old_mtime)
2254{
2255 struct seg_entry *se;
2256 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2257 unsigned long long ctime = get_mtime(sbi, false);
2258 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2259
2260 if (segno == NULL_SEGNO)
2261 return;
2262
2263 se = get_seg_entry(sbi, segno);
2264
2265 if (!se->mtime)
2266 se->mtime = mtime;
2267 else
2268 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2269 se->valid_blocks + 1);
2270
2271 if (ctime > SIT_I(sbi)->max_mtime)
2272 SIT_I(sbi)->max_mtime = ctime;
2273}
2274
2275static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2276{
2277 struct seg_entry *se;
2278 unsigned int segno, offset;
2279 long int new_vblocks;
2280 bool exist;
2281#ifdef CONFIG_F2FS_CHECK_FS
2282 bool mir_exist;
2283#endif
2284
2285 segno = GET_SEGNO(sbi, blkaddr);
2286
2287 se = get_seg_entry(sbi, segno);
2288 new_vblocks = se->valid_blocks + del;
2289 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2290
2291 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2292 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2293
2294 se->valid_blocks = new_vblocks;
2295
2296 /* Update valid block bitmap */
2297 if (del > 0) {
2298 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2299#ifdef CONFIG_F2FS_CHECK_FS
2300 mir_exist = f2fs_test_and_set_bit(offset,
2301 se->cur_valid_map_mir);
2302 if (unlikely(exist != mir_exist)) {
2303 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2304 blkaddr, exist);
2305 f2fs_bug_on(sbi, 1);
2306 }
2307#endif
2308 if (unlikely(exist)) {
2309 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2310 blkaddr);
2311 f2fs_bug_on(sbi, 1);
2312 se->valid_blocks--;
2313 del = 0;
2314 }
2315
2316 if (f2fs_block_unit_discard(sbi) &&
2317 !f2fs_test_and_set_bit(offset, se->discard_map))
2318 sbi->discard_blks--;
2319
2320 /*
2321 * SSR should never reuse block which is checkpointed
2322 * or newly invalidated.
2323 */
2324 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2325 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2326 se->ckpt_valid_blocks++;
2327 }
2328 } else {
2329 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2330#ifdef CONFIG_F2FS_CHECK_FS
2331 mir_exist = f2fs_test_and_clear_bit(offset,
2332 se->cur_valid_map_mir);
2333 if (unlikely(exist != mir_exist)) {
2334 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2335 blkaddr, exist);
2336 f2fs_bug_on(sbi, 1);
2337 }
2338#endif
2339 if (unlikely(!exist)) {
2340 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2341 blkaddr);
2342 f2fs_bug_on(sbi, 1);
2343 se->valid_blocks++;
2344 del = 0;
2345 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2346 /*
2347 * If checkpoints are off, we must not reuse data that
2348 * was used in the previous checkpoint. If it was used
2349 * before, we must track that to know how much space we
2350 * really have.
2351 */
2352 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2353 spin_lock(&sbi->stat_lock);
2354 sbi->unusable_block_count++;
2355 spin_unlock(&sbi->stat_lock);
2356 }
2357 }
2358
2359 if (f2fs_block_unit_discard(sbi) &&
2360 f2fs_test_and_clear_bit(offset, se->discard_map))
2361 sbi->discard_blks++;
2362 }
2363 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2364 se->ckpt_valid_blocks += del;
2365
2366 __mark_sit_entry_dirty(sbi, segno);
2367
2368 /* update total number of valid blocks to be written in ckpt area */
2369 SIT_I(sbi)->written_valid_blocks += del;
2370
2371 if (__is_large_section(sbi))
2372 get_sec_entry(sbi, segno)->valid_blocks += del;
2373}
2374
2375void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2376{
2377 unsigned int segno = GET_SEGNO(sbi, addr);
2378 struct sit_info *sit_i = SIT_I(sbi);
2379
2380 f2fs_bug_on(sbi, addr == NULL_ADDR);
2381 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2382 return;
2383
2384 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2385 f2fs_invalidate_compress_page(sbi, addr);
2386
2387 /* add it into sit main buffer */
2388 down_write(&sit_i->sentry_lock);
2389
2390 update_segment_mtime(sbi, addr, 0);
2391 update_sit_entry(sbi, addr, -1);
2392
2393 /* add it into dirty seglist */
2394 locate_dirty_segment(sbi, segno);
2395
2396 up_write(&sit_i->sentry_lock);
2397}
2398
2399bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2400{
2401 struct sit_info *sit_i = SIT_I(sbi);
2402 unsigned int segno, offset;
2403 struct seg_entry *se;
2404 bool is_cp = false;
2405
2406 if (!__is_valid_data_blkaddr(blkaddr))
2407 return true;
2408
2409 down_read(&sit_i->sentry_lock);
2410
2411 segno = GET_SEGNO(sbi, blkaddr);
2412 se = get_seg_entry(sbi, segno);
2413 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2414
2415 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2416 is_cp = true;
2417
2418 up_read(&sit_i->sentry_lock);
2419
2420 return is_cp;
2421}
2422
2423/*
2424 * This function should be resided under the curseg_mutex lock
2425 */
2426static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2427 struct f2fs_summary *sum)
2428{
2429 struct curseg_info *curseg = CURSEG_I(sbi, type);
2430 void *addr = curseg->sum_blk;
2431
2432 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2433 memcpy(addr, sum, sizeof(struct f2fs_summary));
2434}
2435
2436/*
2437 * Calculate the number of current summary pages for writing
2438 */
2439int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2440{
2441 int valid_sum_count = 0;
2442 int i, sum_in_page;
2443
2444 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2445 if (sbi->ckpt->alloc_type[i] == SSR)
2446 valid_sum_count += sbi->blocks_per_seg;
2447 else {
2448 if (for_ra)
2449 valid_sum_count += le16_to_cpu(
2450 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2451 else
2452 valid_sum_count += curseg_blkoff(sbi, i);
2453 }
2454 }
2455
2456 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2457 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2458 if (valid_sum_count <= sum_in_page)
2459 return 1;
2460 else if ((valid_sum_count - sum_in_page) <=
2461 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2462 return 2;
2463 return 3;
2464}
2465
2466/*
2467 * Caller should put this summary page
2468 */
2469struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2470{
2471 if (unlikely(f2fs_cp_error(sbi)))
2472 return ERR_PTR(-EIO);
2473 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2474}
2475
2476void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2477 void *src, block_t blk_addr)
2478{
2479 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2480
2481 memcpy(page_address(page), src, PAGE_SIZE);
2482 set_page_dirty(page);
2483 f2fs_put_page(page, 1);
2484}
2485
2486static void write_sum_page(struct f2fs_sb_info *sbi,
2487 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2488{
2489 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2490}
2491
2492static void write_current_sum_page(struct f2fs_sb_info *sbi,
2493 int type, block_t blk_addr)
2494{
2495 struct curseg_info *curseg = CURSEG_I(sbi, type);
2496 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2497 struct f2fs_summary_block *src = curseg->sum_blk;
2498 struct f2fs_summary_block *dst;
2499
2500 dst = (struct f2fs_summary_block *)page_address(page);
2501 memset(dst, 0, PAGE_SIZE);
2502
2503 mutex_lock(&curseg->curseg_mutex);
2504
2505 down_read(&curseg->journal_rwsem);
2506 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2507 up_read(&curseg->journal_rwsem);
2508
2509 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2510 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2511
2512 mutex_unlock(&curseg->curseg_mutex);
2513
2514 set_page_dirty(page);
2515 f2fs_put_page(page, 1);
2516}
2517
2518static int is_next_segment_free(struct f2fs_sb_info *sbi,
2519 struct curseg_info *curseg, int type)
2520{
2521 unsigned int segno = curseg->segno + 1;
2522 struct free_segmap_info *free_i = FREE_I(sbi);
2523
2524 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2525 return !test_bit(segno, free_i->free_segmap);
2526 return 0;
2527}
2528
2529/*
2530 * Find a new segment from the free segments bitmap to right order
2531 * This function should be returned with success, otherwise BUG
2532 */
2533static void get_new_segment(struct f2fs_sb_info *sbi,
2534 unsigned int *newseg, bool new_sec, int dir)
2535{
2536 struct free_segmap_info *free_i = FREE_I(sbi);
2537 unsigned int segno, secno, zoneno;
2538 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2539 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2540 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2541 unsigned int left_start = hint;
2542 bool init = true;
2543 int go_left = 0;
2544 int i;
2545
2546 spin_lock(&free_i->segmap_lock);
2547
2548 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2549 segno = find_next_zero_bit(free_i->free_segmap,
2550 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2551 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2552 goto got_it;
2553 }
2554find_other_zone:
2555 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2556 if (secno >= MAIN_SECS(sbi)) {
2557 if (dir == ALLOC_RIGHT) {
2558 secno = find_first_zero_bit(free_i->free_secmap,
2559 MAIN_SECS(sbi));
2560 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2561 } else {
2562 go_left = 1;
2563 left_start = hint - 1;
2564 }
2565 }
2566 if (go_left == 0)
2567 goto skip_left;
2568
2569 while (test_bit(left_start, free_i->free_secmap)) {
2570 if (left_start > 0) {
2571 left_start--;
2572 continue;
2573 }
2574 left_start = find_first_zero_bit(free_i->free_secmap,
2575 MAIN_SECS(sbi));
2576 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2577 break;
2578 }
2579 secno = left_start;
2580skip_left:
2581 segno = GET_SEG_FROM_SEC(sbi, secno);
2582 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2583
2584 /* give up on finding another zone */
2585 if (!init)
2586 goto got_it;
2587 if (sbi->secs_per_zone == 1)
2588 goto got_it;
2589 if (zoneno == old_zoneno)
2590 goto got_it;
2591 if (dir == ALLOC_LEFT) {
2592 if (!go_left && zoneno + 1 >= total_zones)
2593 goto got_it;
2594 if (go_left && zoneno == 0)
2595 goto got_it;
2596 }
2597 for (i = 0; i < NR_CURSEG_TYPE; i++)
2598 if (CURSEG_I(sbi, i)->zone == zoneno)
2599 break;
2600
2601 if (i < NR_CURSEG_TYPE) {
2602 /* zone is in user, try another */
2603 if (go_left)
2604 hint = zoneno * sbi->secs_per_zone - 1;
2605 else if (zoneno + 1 >= total_zones)
2606 hint = 0;
2607 else
2608 hint = (zoneno + 1) * sbi->secs_per_zone;
2609 init = false;
2610 goto find_other_zone;
2611 }
2612got_it:
2613 /* set it as dirty segment in free segmap */
2614 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2615 __set_inuse(sbi, segno);
2616 *newseg = segno;
2617 spin_unlock(&free_i->segmap_lock);
2618}
2619
2620static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2621{
2622 struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 struct summary_footer *sum_footer;
2624 unsigned short seg_type = curseg->seg_type;
2625
2626 curseg->inited = true;
2627 curseg->segno = curseg->next_segno;
2628 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2629 curseg->next_blkoff = 0;
2630 curseg->next_segno = NULL_SEGNO;
2631
2632 sum_footer = &(curseg->sum_blk->footer);
2633 memset(sum_footer, 0, sizeof(struct summary_footer));
2634
2635 sanity_check_seg_type(sbi, seg_type);
2636
2637 if (IS_DATASEG(seg_type))
2638 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2639 if (IS_NODESEG(seg_type))
2640 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2641 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2642}
2643
2644static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2645{
2646 struct curseg_info *curseg = CURSEG_I(sbi, type);
2647 unsigned short seg_type = curseg->seg_type;
2648
2649 sanity_check_seg_type(sbi, seg_type);
2650 if (f2fs_need_rand_seg(sbi))
2651 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2652
2653 /* if segs_per_sec is large than 1, we need to keep original policy. */
2654 if (__is_large_section(sbi))
2655 return curseg->segno;
2656
2657 /* inmem log may not locate on any segment after mount */
2658 if (!curseg->inited)
2659 return 0;
2660
2661 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2662 return 0;
2663
2664 if (test_opt(sbi, NOHEAP) &&
2665 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2666 return 0;
2667
2668 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2669 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2670
2671 /* find segments from 0 to reuse freed segments */
2672 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2673 return 0;
2674
2675 return curseg->segno;
2676}
2677
2678/*
2679 * Allocate a current working segment.
2680 * This function always allocates a free segment in LFS manner.
2681 */
2682static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2683{
2684 struct curseg_info *curseg = CURSEG_I(sbi, type);
2685 unsigned short seg_type = curseg->seg_type;
2686 unsigned int segno = curseg->segno;
2687 int dir = ALLOC_LEFT;
2688
2689 if (curseg->inited)
2690 write_sum_page(sbi, curseg->sum_blk,
2691 GET_SUM_BLOCK(sbi, segno));
2692 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2693 dir = ALLOC_RIGHT;
2694
2695 if (test_opt(sbi, NOHEAP))
2696 dir = ALLOC_RIGHT;
2697
2698 segno = __get_next_segno(sbi, type);
2699 get_new_segment(sbi, &segno, new_sec, dir);
2700 curseg->next_segno = segno;
2701 reset_curseg(sbi, type, 1);
2702 curseg->alloc_type = LFS;
2703 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2704 curseg->fragment_remained_chunk =
2705 prandom_u32() % sbi->max_fragment_chunk + 1;
2706}
2707
2708static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2709 int segno, block_t start)
2710{
2711 struct seg_entry *se = get_seg_entry(sbi, segno);
2712 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2713 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2714 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2715 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2716 int i;
2717
2718 for (i = 0; i < entries; i++)
2719 target_map[i] = ckpt_map[i] | cur_map[i];
2720
2721 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2722}
2723
2724/*
2725 * If a segment is written by LFS manner, next block offset is just obtained
2726 * by increasing the current block offset. However, if a segment is written by
2727 * SSR manner, next block offset obtained by calling __next_free_blkoff
2728 */
2729static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2730 struct curseg_info *seg)
2731{
2732 if (seg->alloc_type == SSR) {
2733 seg->next_blkoff =
2734 __next_free_blkoff(sbi, seg->segno,
2735 seg->next_blkoff + 1);
2736 } else {
2737 seg->next_blkoff++;
2738 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2739 /* To allocate block chunks in different sizes, use random number */
2740 if (--seg->fragment_remained_chunk <= 0) {
2741 seg->fragment_remained_chunk =
2742 prandom_u32() % sbi->max_fragment_chunk + 1;
2743 seg->next_blkoff +=
2744 prandom_u32() % sbi->max_fragment_hole + 1;
2745 }
2746 }
2747 }
2748}
2749
2750bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2751{
2752 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2753}
2754
2755/*
2756 * This function always allocates a used segment(from dirty seglist) by SSR
2757 * manner, so it should recover the existing segment information of valid blocks
2758 */
2759static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2760{
2761 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2762 struct curseg_info *curseg = CURSEG_I(sbi, type);
2763 unsigned int new_segno = curseg->next_segno;
2764 struct f2fs_summary_block *sum_node;
2765 struct page *sum_page;
2766
2767 if (flush)
2768 write_sum_page(sbi, curseg->sum_blk,
2769 GET_SUM_BLOCK(sbi, curseg->segno));
2770
2771 __set_test_and_inuse(sbi, new_segno);
2772
2773 mutex_lock(&dirty_i->seglist_lock);
2774 __remove_dirty_segment(sbi, new_segno, PRE);
2775 __remove_dirty_segment(sbi, new_segno, DIRTY);
2776 mutex_unlock(&dirty_i->seglist_lock);
2777
2778 reset_curseg(sbi, type, 1);
2779 curseg->alloc_type = SSR;
2780 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2781
2782 sum_page = f2fs_get_sum_page(sbi, new_segno);
2783 if (IS_ERR(sum_page)) {
2784 /* GC won't be able to use stale summary pages by cp_error */
2785 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2786 return;
2787 }
2788 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2789 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2790 f2fs_put_page(sum_page, 1);
2791}
2792
2793static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2794 int alloc_mode, unsigned long long age);
2795
2796static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2797 int target_type, int alloc_mode,
2798 unsigned long long age)
2799{
2800 struct curseg_info *curseg = CURSEG_I(sbi, type);
2801
2802 curseg->seg_type = target_type;
2803
2804 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2805 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2806
2807 curseg->seg_type = se->type;
2808 change_curseg(sbi, type, true);
2809 } else {
2810 /* allocate cold segment by default */
2811 curseg->seg_type = CURSEG_COLD_DATA;
2812 new_curseg(sbi, type, true);
2813 }
2814 stat_inc_seg_type(sbi, curseg);
2815}
2816
2817static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2818{
2819 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2820
2821 if (!sbi->am.atgc_enabled)
2822 return;
2823
2824 down_read(&SM_I(sbi)->curseg_lock);
2825
2826 mutex_lock(&curseg->curseg_mutex);
2827 down_write(&SIT_I(sbi)->sentry_lock);
2828
2829 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2830
2831 up_write(&SIT_I(sbi)->sentry_lock);
2832 mutex_unlock(&curseg->curseg_mutex);
2833
2834 up_read(&SM_I(sbi)->curseg_lock);
2835
2836}
2837void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2838{
2839 __f2fs_init_atgc_curseg(sbi);
2840}
2841
2842static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2843{
2844 struct curseg_info *curseg = CURSEG_I(sbi, type);
2845
2846 mutex_lock(&curseg->curseg_mutex);
2847 if (!curseg->inited)
2848 goto out;
2849
2850 if (get_valid_blocks(sbi, curseg->segno, false)) {
2851 write_sum_page(sbi, curseg->sum_blk,
2852 GET_SUM_BLOCK(sbi, curseg->segno));
2853 } else {
2854 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2855 __set_test_and_free(sbi, curseg->segno, true);
2856 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2857 }
2858out:
2859 mutex_unlock(&curseg->curseg_mutex);
2860}
2861
2862void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2863{
2864 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2865
2866 if (sbi->am.atgc_enabled)
2867 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2868}
2869
2870static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2871{
2872 struct curseg_info *curseg = CURSEG_I(sbi, type);
2873
2874 mutex_lock(&curseg->curseg_mutex);
2875 if (!curseg->inited)
2876 goto out;
2877 if (get_valid_blocks(sbi, curseg->segno, false))
2878 goto out;
2879
2880 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2881 __set_test_and_inuse(sbi, curseg->segno);
2882 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2883out:
2884 mutex_unlock(&curseg->curseg_mutex);
2885}
2886
2887void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2888{
2889 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2890
2891 if (sbi->am.atgc_enabled)
2892 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2893}
2894
2895static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2896 int alloc_mode, unsigned long long age)
2897{
2898 struct curseg_info *curseg = CURSEG_I(sbi, type);
2899 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2900 unsigned segno = NULL_SEGNO;
2901 unsigned short seg_type = curseg->seg_type;
2902 int i, cnt;
2903 bool reversed = false;
2904
2905 sanity_check_seg_type(sbi, seg_type);
2906
2907 /* f2fs_need_SSR() already forces to do this */
2908 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2909 curseg->next_segno = segno;
2910 return 1;
2911 }
2912
2913 /* For node segments, let's do SSR more intensively */
2914 if (IS_NODESEG(seg_type)) {
2915 if (seg_type >= CURSEG_WARM_NODE) {
2916 reversed = true;
2917 i = CURSEG_COLD_NODE;
2918 } else {
2919 i = CURSEG_HOT_NODE;
2920 }
2921 cnt = NR_CURSEG_NODE_TYPE;
2922 } else {
2923 if (seg_type >= CURSEG_WARM_DATA) {
2924 reversed = true;
2925 i = CURSEG_COLD_DATA;
2926 } else {
2927 i = CURSEG_HOT_DATA;
2928 }
2929 cnt = NR_CURSEG_DATA_TYPE;
2930 }
2931
2932 for (; cnt-- > 0; reversed ? i-- : i++) {
2933 if (i == seg_type)
2934 continue;
2935 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2936 curseg->next_segno = segno;
2937 return 1;
2938 }
2939 }
2940
2941 /* find valid_blocks=0 in dirty list */
2942 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2943 segno = get_free_segment(sbi);
2944 if (segno != NULL_SEGNO) {
2945 curseg->next_segno = segno;
2946 return 1;
2947 }
2948 }
2949 return 0;
2950}
2951
2952/*
2953 * flush out current segment and replace it with new segment
2954 * This function should be returned with success, otherwise BUG
2955 */
2956static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2957 int type, bool force)
2958{
2959 struct curseg_info *curseg = CURSEG_I(sbi, type);
2960
2961 if (force)
2962 new_curseg(sbi, type, true);
2963 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2964 curseg->seg_type == CURSEG_WARM_NODE)
2965 new_curseg(sbi, type, false);
2966 else if (curseg->alloc_type == LFS &&
2967 is_next_segment_free(sbi, curseg, type) &&
2968 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2969 new_curseg(sbi, type, false);
2970 else if (f2fs_need_SSR(sbi) &&
2971 get_ssr_segment(sbi, type, SSR, 0))
2972 change_curseg(sbi, type, true);
2973 else
2974 new_curseg(sbi, type, false);
2975
2976 stat_inc_seg_type(sbi, curseg);
2977}
2978
2979void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2980 unsigned int start, unsigned int end)
2981{
2982 struct curseg_info *curseg = CURSEG_I(sbi, type);
2983 unsigned int segno;
2984
2985 down_read(&SM_I(sbi)->curseg_lock);
2986 mutex_lock(&curseg->curseg_mutex);
2987 down_write(&SIT_I(sbi)->sentry_lock);
2988
2989 segno = CURSEG_I(sbi, type)->segno;
2990 if (segno < start || segno > end)
2991 goto unlock;
2992
2993 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2994 change_curseg(sbi, type, true);
2995 else
2996 new_curseg(sbi, type, true);
2997
2998 stat_inc_seg_type(sbi, curseg);
2999
3000 locate_dirty_segment(sbi, segno);
3001unlock:
3002 up_write(&SIT_I(sbi)->sentry_lock);
3003
3004 if (segno != curseg->segno)
3005 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3006 type, segno, curseg->segno);
3007
3008 mutex_unlock(&curseg->curseg_mutex);
3009 up_read(&SM_I(sbi)->curseg_lock);
3010}
3011
3012static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3013 bool new_sec, bool force)
3014{
3015 struct curseg_info *curseg = CURSEG_I(sbi, type);
3016 unsigned int old_segno;
3017
3018 if (!curseg->inited)
3019 goto alloc;
3020
3021 if (force || curseg->next_blkoff ||
3022 get_valid_blocks(sbi, curseg->segno, new_sec))
3023 goto alloc;
3024
3025 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3026 return;
3027alloc:
3028 old_segno = curseg->segno;
3029 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
3030 locate_dirty_segment(sbi, old_segno);
3031}
3032
3033static void __allocate_new_section(struct f2fs_sb_info *sbi,
3034 int type, bool force)
3035{
3036 __allocate_new_segment(sbi, type, true, force);
3037}
3038
3039void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3040{
3041 down_read(&SM_I(sbi)->curseg_lock);
3042 down_write(&SIT_I(sbi)->sentry_lock);
3043 __allocate_new_section(sbi, type, force);
3044 up_write(&SIT_I(sbi)->sentry_lock);
3045 up_read(&SM_I(sbi)->curseg_lock);
3046}
3047
3048void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3049{
3050 int i;
3051
3052 down_read(&SM_I(sbi)->curseg_lock);
3053 down_write(&SIT_I(sbi)->sentry_lock);
3054 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3055 __allocate_new_segment(sbi, i, false, false);
3056 up_write(&SIT_I(sbi)->sentry_lock);
3057 up_read(&SM_I(sbi)->curseg_lock);
3058}
3059
3060static const struct segment_allocation default_salloc_ops = {
3061 .allocate_segment = allocate_segment_by_default,
3062};
3063
3064bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3065 struct cp_control *cpc)
3066{
3067 __u64 trim_start = cpc->trim_start;
3068 bool has_candidate = false;
3069
3070 down_write(&SIT_I(sbi)->sentry_lock);
3071 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3072 if (add_discard_addrs(sbi, cpc, true)) {
3073 has_candidate = true;
3074 break;
3075 }
3076 }
3077 up_write(&SIT_I(sbi)->sentry_lock);
3078
3079 cpc->trim_start = trim_start;
3080 return has_candidate;
3081}
3082
3083static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3084 struct discard_policy *dpolicy,
3085 unsigned int start, unsigned int end)
3086{
3087 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3088 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3089 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3090 struct discard_cmd *dc;
3091 struct blk_plug plug;
3092 int issued;
3093 unsigned int trimmed = 0;
3094
3095next:
3096 issued = 0;
3097
3098 mutex_lock(&dcc->cmd_lock);
3099 if (unlikely(dcc->rbtree_check))
3100 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3101 &dcc->root, false));
3102
3103 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3104 NULL, start,
3105 (struct rb_entry **)&prev_dc,
3106 (struct rb_entry **)&next_dc,
3107 &insert_p, &insert_parent, true, NULL);
3108 if (!dc)
3109 dc = next_dc;
3110
3111 blk_start_plug(&plug);
3112
3113 while (dc && dc->lstart <= end) {
3114 struct rb_node *node;
3115 int err = 0;
3116
3117 if (dc->len < dpolicy->granularity)
3118 goto skip;
3119
3120 if (dc->state != D_PREP) {
3121 list_move_tail(&dc->list, &dcc->fstrim_list);
3122 goto skip;
3123 }
3124
3125 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3126
3127 if (issued >= dpolicy->max_requests) {
3128 start = dc->lstart + dc->len;
3129
3130 if (err)
3131 __remove_discard_cmd(sbi, dc);
3132
3133 blk_finish_plug(&plug);
3134 mutex_unlock(&dcc->cmd_lock);
3135 trimmed += __wait_all_discard_cmd(sbi, NULL);
3136 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3137 goto next;
3138 }
3139skip:
3140 node = rb_next(&dc->rb_node);
3141 if (err)
3142 __remove_discard_cmd(sbi, dc);
3143 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3144
3145 if (fatal_signal_pending(current))
3146 break;
3147 }
3148
3149 blk_finish_plug(&plug);
3150 mutex_unlock(&dcc->cmd_lock);
3151
3152 return trimmed;
3153}
3154
3155int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3156{
3157 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3158 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3159 unsigned int start_segno, end_segno;
3160 block_t start_block, end_block;
3161 struct cp_control cpc;
3162 struct discard_policy dpolicy;
3163 unsigned long long trimmed = 0;
3164 int err = 0;
3165 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3166
3167 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3168 return -EINVAL;
3169
3170 if (end < MAIN_BLKADDR(sbi))
3171 goto out;
3172
3173 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3174 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3175 return -EFSCORRUPTED;
3176 }
3177
3178 /* start/end segment number in main_area */
3179 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3180 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3181 GET_SEGNO(sbi, end);
3182 if (need_align) {
3183 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3184 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3185 }
3186
3187 cpc.reason = CP_DISCARD;
3188 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3189 cpc.trim_start = start_segno;
3190 cpc.trim_end = end_segno;
3191
3192 if (sbi->discard_blks == 0)
3193 goto out;
3194
3195 down_write(&sbi->gc_lock);
3196 err = f2fs_write_checkpoint(sbi, &cpc);
3197 up_write(&sbi->gc_lock);
3198 if (err)
3199 goto out;
3200
3201 /*
3202 * We filed discard candidates, but actually we don't need to wait for
3203 * all of them, since they'll be issued in idle time along with runtime
3204 * discard option. User configuration looks like using runtime discard
3205 * or periodic fstrim instead of it.
3206 */
3207 if (f2fs_realtime_discard_enable(sbi))
3208 goto out;
3209
3210 start_block = START_BLOCK(sbi, start_segno);
3211 end_block = START_BLOCK(sbi, end_segno + 1);
3212
3213 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3214 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3215 start_block, end_block);
3216
3217 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3218 start_block, end_block);
3219out:
3220 if (!err)
3221 range->len = F2FS_BLK_TO_BYTES(trimmed);
3222 return err;
3223}
3224
3225static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3226 struct curseg_info *curseg)
3227{
3228 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3229 curseg->segno);
3230}
3231
3232int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3233{
3234 switch (hint) {
3235 case WRITE_LIFE_SHORT:
3236 return CURSEG_HOT_DATA;
3237 case WRITE_LIFE_EXTREME:
3238 return CURSEG_COLD_DATA;
3239 default:
3240 return CURSEG_WARM_DATA;
3241 }
3242}
3243
3244/* This returns write hints for each segment type. This hints will be
3245 * passed down to block layer. There are mapping tables which depend on
3246 * the mount option 'whint_mode'.
3247 *
3248 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3249 *
3250 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3251 *
3252 * User F2FS Block
3253 * ---- ---- -----
3254 * META WRITE_LIFE_NOT_SET
3255 * HOT_NODE "
3256 * WARM_NODE "
3257 * COLD_NODE "
3258 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3259 * extension list " "
3260 *
3261 * -- buffered io
3262 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3263 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3264 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3265 * WRITE_LIFE_NONE " "
3266 * WRITE_LIFE_MEDIUM " "
3267 * WRITE_LIFE_LONG " "
3268 *
3269 * -- direct io
3270 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3271 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3272 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3273 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3274 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3275 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3276 *
3277 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3278 *
3279 * User F2FS Block
3280 * ---- ---- -----
3281 * META WRITE_LIFE_MEDIUM;
3282 * HOT_NODE WRITE_LIFE_NOT_SET
3283 * WARM_NODE "
3284 * COLD_NODE WRITE_LIFE_NONE
3285 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3286 * extension list " "
3287 *
3288 * -- buffered io
3289 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3290 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3291 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3292 * WRITE_LIFE_NONE " "
3293 * WRITE_LIFE_MEDIUM " "
3294 * WRITE_LIFE_LONG " "
3295 *
3296 * -- direct io
3297 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3298 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3299 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3300 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3301 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3302 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3303 */
3304
3305enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3306 enum page_type type, enum temp_type temp)
3307{
3308 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3309 if (type == DATA) {
3310 if (temp == WARM)
3311 return WRITE_LIFE_NOT_SET;
3312 else if (temp == HOT)
3313 return WRITE_LIFE_SHORT;
3314 else if (temp == COLD)
3315 return WRITE_LIFE_EXTREME;
3316 } else {
3317 return WRITE_LIFE_NOT_SET;
3318 }
3319 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3320 if (type == DATA) {
3321 if (temp == WARM)
3322 return WRITE_LIFE_LONG;
3323 else if (temp == HOT)
3324 return WRITE_LIFE_SHORT;
3325 else if (temp == COLD)
3326 return WRITE_LIFE_EXTREME;
3327 } else if (type == NODE) {
3328 if (temp == WARM || temp == HOT)
3329 return WRITE_LIFE_NOT_SET;
3330 else if (temp == COLD)
3331 return WRITE_LIFE_NONE;
3332 } else if (type == META) {
3333 return WRITE_LIFE_MEDIUM;
3334 }
3335 }
3336 return WRITE_LIFE_NOT_SET;
3337}
3338
3339static int __get_segment_type_2(struct f2fs_io_info *fio)
3340{
3341 if (fio->type == DATA)
3342 return CURSEG_HOT_DATA;
3343 else
3344 return CURSEG_HOT_NODE;
3345}
3346
3347static int __get_segment_type_4(struct f2fs_io_info *fio)
3348{
3349 if (fio->type == DATA) {
3350 struct inode *inode = fio->page->mapping->host;
3351
3352 if (S_ISDIR(inode->i_mode))
3353 return CURSEG_HOT_DATA;
3354 else
3355 return CURSEG_COLD_DATA;
3356 } else {
3357 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3358 return CURSEG_WARM_NODE;
3359 else
3360 return CURSEG_COLD_NODE;
3361 }
3362}
3363
3364static int __get_segment_type_6(struct f2fs_io_info *fio)
3365{
3366 if (fio->type == DATA) {
3367 struct inode *inode = fio->page->mapping->host;
3368
3369 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3370 return CURSEG_COLD_DATA_PINNED;
3371
3372 if (page_private_gcing(fio->page)) {
3373 if (fio->sbi->am.atgc_enabled &&
3374 (fio->io_type == FS_DATA_IO) &&
3375 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3376 return CURSEG_ALL_DATA_ATGC;
3377 else
3378 return CURSEG_COLD_DATA;
3379 }
3380 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3381 return CURSEG_COLD_DATA;
3382 if (file_is_hot(inode) ||
3383 is_inode_flag_set(inode, FI_HOT_DATA) ||
3384 f2fs_is_atomic_file(inode) ||
3385 f2fs_is_volatile_file(inode))
3386 return CURSEG_HOT_DATA;
3387 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3388 } else {
3389 if (IS_DNODE(fio->page))
3390 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3391 CURSEG_HOT_NODE;
3392 return CURSEG_COLD_NODE;
3393 }
3394}
3395
3396static int __get_segment_type(struct f2fs_io_info *fio)
3397{
3398 int type = 0;
3399
3400 switch (F2FS_OPTION(fio->sbi).active_logs) {
3401 case 2:
3402 type = __get_segment_type_2(fio);
3403 break;
3404 case 4:
3405 type = __get_segment_type_4(fio);
3406 break;
3407 case 6:
3408 type = __get_segment_type_6(fio);
3409 break;
3410 default:
3411 f2fs_bug_on(fio->sbi, true);
3412 }
3413
3414 if (IS_HOT(type))
3415 fio->temp = HOT;
3416 else if (IS_WARM(type))
3417 fio->temp = WARM;
3418 else
3419 fio->temp = COLD;
3420 return type;
3421}
3422
3423void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3424 block_t old_blkaddr, block_t *new_blkaddr,
3425 struct f2fs_summary *sum, int type,
3426 struct f2fs_io_info *fio)
3427{
3428 struct sit_info *sit_i = SIT_I(sbi);
3429 struct curseg_info *curseg = CURSEG_I(sbi, type);
3430 unsigned long long old_mtime;
3431 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3432 struct seg_entry *se = NULL;
3433
3434 down_read(&SM_I(sbi)->curseg_lock);
3435
3436 mutex_lock(&curseg->curseg_mutex);
3437 down_write(&sit_i->sentry_lock);
3438
3439 if (from_gc) {
3440 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3441 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3442 sanity_check_seg_type(sbi, se->type);
3443 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3444 }
3445 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3446
3447 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3448
3449 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3450
3451 /*
3452 * __add_sum_entry should be resided under the curseg_mutex
3453 * because, this function updates a summary entry in the
3454 * current summary block.
3455 */
3456 __add_sum_entry(sbi, type, sum);
3457
3458 __refresh_next_blkoff(sbi, curseg);
3459
3460 stat_inc_block_count(sbi, curseg);
3461
3462 if (from_gc) {
3463 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3464 } else {
3465 update_segment_mtime(sbi, old_blkaddr, 0);
3466 old_mtime = 0;
3467 }
3468 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3469
3470 /*
3471 * SIT information should be updated before segment allocation,
3472 * since SSR needs latest valid block information.
3473 */
3474 update_sit_entry(sbi, *new_blkaddr, 1);
3475 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3476 update_sit_entry(sbi, old_blkaddr, -1);
3477
3478 if (!__has_curseg_space(sbi, curseg)) {
3479 if (from_gc)
3480 get_atssr_segment(sbi, type, se->type,
3481 AT_SSR, se->mtime);
3482 else
3483 sit_i->s_ops->allocate_segment(sbi, type, false);
3484 }
3485 /*
3486 * segment dirty status should be updated after segment allocation,
3487 * so we just need to update status only one time after previous
3488 * segment being closed.
3489 */
3490 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3491 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3492
3493 up_write(&sit_i->sentry_lock);
3494
3495 if (page && IS_NODESEG(type)) {
3496 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3497
3498 f2fs_inode_chksum_set(sbi, page);
3499 }
3500
3501 if (fio) {
3502 struct f2fs_bio_info *io;
3503
3504 if (F2FS_IO_ALIGNED(sbi))
3505 fio->retry = false;
3506
3507 INIT_LIST_HEAD(&fio->list);
3508 fio->in_list = true;
3509 io = sbi->write_io[fio->type] + fio->temp;
3510 spin_lock(&io->io_lock);
3511 list_add_tail(&fio->list, &io->io_list);
3512 spin_unlock(&io->io_lock);
3513 }
3514
3515 mutex_unlock(&curseg->curseg_mutex);
3516
3517 up_read(&SM_I(sbi)->curseg_lock);
3518}
3519
3520void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3521 block_t blkaddr, unsigned int blkcnt)
3522{
3523 if (!f2fs_is_multi_device(sbi))
3524 return;
3525
3526 while (1) {
3527 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3528 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3529
3530 /* update device state for fsync */
3531 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3532
3533 /* update device state for checkpoint */
3534 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3535 spin_lock(&sbi->dev_lock);
3536 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3537 spin_unlock(&sbi->dev_lock);
3538 }
3539
3540 if (blkcnt <= blks)
3541 break;
3542 blkcnt -= blks;
3543 blkaddr += blks;
3544 }
3545}
3546
3547static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3548{
3549 int type = __get_segment_type(fio);
3550 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3551
3552 if (keep_order)
3553 down_read(&fio->sbi->io_order_lock);
3554reallocate:
3555 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3556 &fio->new_blkaddr, sum, type, fio);
3557 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3558 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3559 fio->old_blkaddr, fio->old_blkaddr);
3560 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3561 }
3562
3563 /* writeout dirty page into bdev */
3564 f2fs_submit_page_write(fio);
3565 if (fio->retry) {
3566 fio->old_blkaddr = fio->new_blkaddr;
3567 goto reallocate;
3568 }
3569
3570 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3571
3572 if (keep_order)
3573 up_read(&fio->sbi->io_order_lock);
3574}
3575
3576void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3577 enum iostat_type io_type)
3578{
3579 struct f2fs_io_info fio = {
3580 .sbi = sbi,
3581 .type = META,
3582 .temp = HOT,
3583 .op = REQ_OP_WRITE,
3584 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3585 .old_blkaddr = page->index,
3586 .new_blkaddr = page->index,
3587 .page = page,
3588 .encrypted_page = NULL,
3589 .in_list = false,
3590 };
3591
3592 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3593 fio.op_flags &= ~REQ_META;
3594
3595 set_page_writeback(page);
3596 ClearPageError(page);
3597 f2fs_submit_page_write(&fio);
3598
3599 stat_inc_meta_count(sbi, page->index);
3600 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3601}
3602
3603void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3604{
3605 struct f2fs_summary sum;
3606
3607 set_summary(&sum, nid, 0, 0);
3608 do_write_page(&sum, fio);
3609
3610 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3611}
3612
3613void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614 struct f2fs_io_info *fio)
3615{
3616 struct f2fs_sb_info *sbi = fio->sbi;
3617 struct f2fs_summary sum;
3618
3619 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3620 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3621 do_write_page(&sum, fio);
3622 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3623
3624 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3625}
3626
3627int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3628{
3629 int err;
3630 struct f2fs_sb_info *sbi = fio->sbi;
3631 unsigned int segno;
3632
3633 fio->new_blkaddr = fio->old_blkaddr;
3634 /* i/o temperature is needed for passing down write hints */
3635 __get_segment_type(fio);
3636
3637 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3638
3639 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3640 set_sbi_flag(sbi, SBI_NEED_FSCK);
3641 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3642 __func__, segno);
3643 err = -EFSCORRUPTED;
3644 goto drop_bio;
3645 }
3646
3647 if (f2fs_cp_error(sbi)) {
3648 err = -EIO;
3649 goto drop_bio;
3650 }
3651
3652 invalidate_mapping_pages(META_MAPPING(sbi),
3653 fio->new_blkaddr, fio->new_blkaddr);
3654
3655 stat_inc_inplace_blocks(fio->sbi);
3656
3657 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3658 err = f2fs_merge_page_bio(fio);
3659 else
3660 err = f2fs_submit_page_bio(fio);
3661 if (!err) {
3662 f2fs_update_device_state(fio->sbi, fio->ino,
3663 fio->new_blkaddr, 1);
3664 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3665 }
3666
3667 return err;
3668drop_bio:
3669 if (fio->bio && *(fio->bio)) {
3670 struct bio *bio = *(fio->bio);
3671
3672 bio->bi_status = BLK_STS_IOERR;
3673 bio_endio(bio);
3674 *(fio->bio) = NULL;
3675 }
3676 return err;
3677}
3678
3679static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3680 unsigned int segno)
3681{
3682 int i;
3683
3684 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3685 if (CURSEG_I(sbi, i)->segno == segno)
3686 break;
3687 }
3688 return i;
3689}
3690
3691void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3692 block_t old_blkaddr, block_t new_blkaddr,
3693 bool recover_curseg, bool recover_newaddr,
3694 bool from_gc)
3695{
3696 struct sit_info *sit_i = SIT_I(sbi);
3697 struct curseg_info *curseg;
3698 unsigned int segno, old_cursegno;
3699 struct seg_entry *se;
3700 int type;
3701 unsigned short old_blkoff;
3702 unsigned char old_alloc_type;
3703
3704 segno = GET_SEGNO(sbi, new_blkaddr);
3705 se = get_seg_entry(sbi, segno);
3706 type = se->type;
3707
3708 down_write(&SM_I(sbi)->curseg_lock);
3709
3710 if (!recover_curseg) {
3711 /* for recovery flow */
3712 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3713 if (old_blkaddr == NULL_ADDR)
3714 type = CURSEG_COLD_DATA;
3715 else
3716 type = CURSEG_WARM_DATA;
3717 }
3718 } else {
3719 if (IS_CURSEG(sbi, segno)) {
3720 /* se->type is volatile as SSR allocation */
3721 type = __f2fs_get_curseg(sbi, segno);
3722 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3723 } else {
3724 type = CURSEG_WARM_DATA;
3725 }
3726 }
3727
3728 f2fs_bug_on(sbi, !IS_DATASEG(type));
3729 curseg = CURSEG_I(sbi, type);
3730
3731 mutex_lock(&curseg->curseg_mutex);
3732 down_write(&sit_i->sentry_lock);
3733
3734 old_cursegno = curseg->segno;
3735 old_blkoff = curseg->next_blkoff;
3736 old_alloc_type = curseg->alloc_type;
3737
3738 /* change the current segment */
3739 if (segno != curseg->segno) {
3740 curseg->next_segno = segno;
3741 change_curseg(sbi, type, true);
3742 }
3743
3744 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3745 __add_sum_entry(sbi, type, sum);
3746
3747 if (!recover_curseg || recover_newaddr) {
3748 if (!from_gc)
3749 update_segment_mtime(sbi, new_blkaddr, 0);
3750 update_sit_entry(sbi, new_blkaddr, 1);
3751 }
3752 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3753 invalidate_mapping_pages(META_MAPPING(sbi),
3754 old_blkaddr, old_blkaddr);
3755 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3756 if (!from_gc)
3757 update_segment_mtime(sbi, old_blkaddr, 0);
3758 update_sit_entry(sbi, old_blkaddr, -1);
3759 }
3760
3761 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3762 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3763
3764 locate_dirty_segment(sbi, old_cursegno);
3765
3766 if (recover_curseg) {
3767 if (old_cursegno != curseg->segno) {
3768 curseg->next_segno = old_cursegno;
3769 change_curseg(sbi, type, true);
3770 }
3771 curseg->next_blkoff = old_blkoff;
3772 curseg->alloc_type = old_alloc_type;
3773 }
3774
3775 up_write(&sit_i->sentry_lock);
3776 mutex_unlock(&curseg->curseg_mutex);
3777 up_write(&SM_I(sbi)->curseg_lock);
3778}
3779
3780void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3781 block_t old_addr, block_t new_addr,
3782 unsigned char version, bool recover_curseg,
3783 bool recover_newaddr)
3784{
3785 struct f2fs_summary sum;
3786
3787 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3788
3789 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3790 recover_curseg, recover_newaddr, false);
3791
3792 f2fs_update_data_blkaddr(dn, new_addr);
3793}
3794
3795void f2fs_wait_on_page_writeback(struct page *page,
3796 enum page_type type, bool ordered, bool locked)
3797{
3798 if (PageWriteback(page)) {
3799 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3800
3801 /* submit cached LFS IO */
3802 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3803 /* sbumit cached IPU IO */
3804 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3805 if (ordered) {
3806 wait_on_page_writeback(page);
3807 f2fs_bug_on(sbi, locked && PageWriteback(page));
3808 } else {
3809 wait_for_stable_page(page);
3810 }
3811 }
3812}
3813
3814void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3815{
3816 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3817 struct page *cpage;
3818
3819 if (!f2fs_post_read_required(inode))
3820 return;
3821
3822 if (!__is_valid_data_blkaddr(blkaddr))
3823 return;
3824
3825 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3826 if (cpage) {
3827 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3828 f2fs_put_page(cpage, 1);
3829 }
3830}
3831
3832void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3833 block_t len)
3834{
3835 block_t i;
3836
3837 for (i = 0; i < len; i++)
3838 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3839}
3840
3841static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3842{
3843 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3844 struct curseg_info *seg_i;
3845 unsigned char *kaddr;
3846 struct page *page;
3847 block_t start;
3848 int i, j, offset;
3849
3850 start = start_sum_block(sbi);
3851
3852 page = f2fs_get_meta_page(sbi, start++);
3853 if (IS_ERR(page))
3854 return PTR_ERR(page);
3855 kaddr = (unsigned char *)page_address(page);
3856
3857 /* Step 1: restore nat cache */
3858 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3859 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3860
3861 /* Step 2: restore sit cache */
3862 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3863 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3864 offset = 2 * SUM_JOURNAL_SIZE;
3865
3866 /* Step 3: restore summary entries */
3867 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3868 unsigned short blk_off;
3869 unsigned int segno;
3870
3871 seg_i = CURSEG_I(sbi, i);
3872 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3873 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3874 seg_i->next_segno = segno;
3875 reset_curseg(sbi, i, 0);
3876 seg_i->alloc_type = ckpt->alloc_type[i];
3877 seg_i->next_blkoff = blk_off;
3878
3879 if (seg_i->alloc_type == SSR)
3880 blk_off = sbi->blocks_per_seg;
3881
3882 for (j = 0; j < blk_off; j++) {
3883 struct f2fs_summary *s;
3884
3885 s = (struct f2fs_summary *)(kaddr + offset);
3886 seg_i->sum_blk->entries[j] = *s;
3887 offset += SUMMARY_SIZE;
3888 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3889 SUM_FOOTER_SIZE)
3890 continue;
3891
3892 f2fs_put_page(page, 1);
3893 page = NULL;
3894
3895 page = f2fs_get_meta_page(sbi, start++);
3896 if (IS_ERR(page))
3897 return PTR_ERR(page);
3898 kaddr = (unsigned char *)page_address(page);
3899 offset = 0;
3900 }
3901 }
3902 f2fs_put_page(page, 1);
3903 return 0;
3904}
3905
3906static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3907{
3908 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3909 struct f2fs_summary_block *sum;
3910 struct curseg_info *curseg;
3911 struct page *new;
3912 unsigned short blk_off;
3913 unsigned int segno = 0;
3914 block_t blk_addr = 0;
3915 int err = 0;
3916
3917 /* get segment number and block addr */
3918 if (IS_DATASEG(type)) {
3919 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3920 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3921 CURSEG_HOT_DATA]);
3922 if (__exist_node_summaries(sbi))
3923 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3924 else
3925 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3926 } else {
3927 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3928 CURSEG_HOT_NODE]);
3929 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3930 CURSEG_HOT_NODE]);
3931 if (__exist_node_summaries(sbi))
3932 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3933 type - CURSEG_HOT_NODE);
3934 else
3935 blk_addr = GET_SUM_BLOCK(sbi, segno);
3936 }
3937
3938 new = f2fs_get_meta_page(sbi, blk_addr);
3939 if (IS_ERR(new))
3940 return PTR_ERR(new);
3941 sum = (struct f2fs_summary_block *)page_address(new);
3942
3943 if (IS_NODESEG(type)) {
3944 if (__exist_node_summaries(sbi)) {
3945 struct f2fs_summary *ns = &sum->entries[0];
3946 int i;
3947
3948 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3949 ns->version = 0;
3950 ns->ofs_in_node = 0;
3951 }
3952 } else {
3953 err = f2fs_restore_node_summary(sbi, segno, sum);
3954 if (err)
3955 goto out;
3956 }
3957 }
3958
3959 /* set uncompleted segment to curseg */
3960 curseg = CURSEG_I(sbi, type);
3961 mutex_lock(&curseg->curseg_mutex);
3962
3963 /* update journal info */
3964 down_write(&curseg->journal_rwsem);
3965 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3966 up_write(&curseg->journal_rwsem);
3967
3968 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3969 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3970 curseg->next_segno = segno;
3971 reset_curseg(sbi, type, 0);
3972 curseg->alloc_type = ckpt->alloc_type[type];
3973 curseg->next_blkoff = blk_off;
3974 mutex_unlock(&curseg->curseg_mutex);
3975out:
3976 f2fs_put_page(new, 1);
3977 return err;
3978}
3979
3980static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3981{
3982 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3983 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3984 int type = CURSEG_HOT_DATA;
3985 int err;
3986
3987 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3988 int npages = f2fs_npages_for_summary_flush(sbi, true);
3989
3990 if (npages >= 2)
3991 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3992 META_CP, true);
3993
3994 /* restore for compacted data summary */
3995 err = read_compacted_summaries(sbi);
3996 if (err)
3997 return err;
3998 type = CURSEG_HOT_NODE;
3999 }
4000
4001 if (__exist_node_summaries(sbi))
4002 f2fs_ra_meta_pages(sbi,
4003 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4004 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4005
4006 for (; type <= CURSEG_COLD_NODE; type++) {
4007 err = read_normal_summaries(sbi, type);
4008 if (err)
4009 return err;
4010 }
4011
4012 /* sanity check for summary blocks */
4013 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4014 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4015 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4016 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4017 return -EINVAL;
4018 }
4019
4020 return 0;
4021}
4022
4023static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4024{
4025 struct page *page;
4026 unsigned char *kaddr;
4027 struct f2fs_summary *summary;
4028 struct curseg_info *seg_i;
4029 int written_size = 0;
4030 int i, j;
4031
4032 page = f2fs_grab_meta_page(sbi, blkaddr++);
4033 kaddr = (unsigned char *)page_address(page);
4034 memset(kaddr, 0, PAGE_SIZE);
4035
4036 /* Step 1: write nat cache */
4037 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4038 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4039 written_size += SUM_JOURNAL_SIZE;
4040
4041 /* Step 2: write sit cache */
4042 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4043 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4044 written_size += SUM_JOURNAL_SIZE;
4045
4046 /* Step 3: write summary entries */
4047 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4048 unsigned short blkoff;
4049
4050 seg_i = CURSEG_I(sbi, i);
4051 if (sbi->ckpt->alloc_type[i] == SSR)
4052 blkoff = sbi->blocks_per_seg;
4053 else
4054 blkoff = curseg_blkoff(sbi, i);
4055
4056 for (j = 0; j < blkoff; j++) {
4057 if (!page) {
4058 page = f2fs_grab_meta_page(sbi, blkaddr++);
4059 kaddr = (unsigned char *)page_address(page);
4060 memset(kaddr, 0, PAGE_SIZE);
4061 written_size = 0;
4062 }
4063 summary = (struct f2fs_summary *)(kaddr + written_size);
4064 *summary = seg_i->sum_blk->entries[j];
4065 written_size += SUMMARY_SIZE;
4066
4067 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4068 SUM_FOOTER_SIZE)
4069 continue;
4070
4071 set_page_dirty(page);
4072 f2fs_put_page(page, 1);
4073 page = NULL;
4074 }
4075 }
4076 if (page) {
4077 set_page_dirty(page);
4078 f2fs_put_page(page, 1);
4079 }
4080}
4081
4082static void write_normal_summaries(struct f2fs_sb_info *sbi,
4083 block_t blkaddr, int type)
4084{
4085 int i, end;
4086
4087 if (IS_DATASEG(type))
4088 end = type + NR_CURSEG_DATA_TYPE;
4089 else
4090 end = type + NR_CURSEG_NODE_TYPE;
4091
4092 for (i = type; i < end; i++)
4093 write_current_sum_page(sbi, i, blkaddr + (i - type));
4094}
4095
4096void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4097{
4098 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4099 write_compacted_summaries(sbi, start_blk);
4100 else
4101 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4102}
4103
4104void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4105{
4106 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4107}
4108
4109int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4110 unsigned int val, int alloc)
4111{
4112 int i;
4113
4114 if (type == NAT_JOURNAL) {
4115 for (i = 0; i < nats_in_cursum(journal); i++) {
4116 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4117 return i;
4118 }
4119 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4120 return update_nats_in_cursum(journal, 1);
4121 } else if (type == SIT_JOURNAL) {
4122 for (i = 0; i < sits_in_cursum(journal); i++)
4123 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4124 return i;
4125 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4126 return update_sits_in_cursum(journal, 1);
4127 }
4128 return -1;
4129}
4130
4131static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4132 unsigned int segno)
4133{
4134 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4135}
4136
4137static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4138 unsigned int start)
4139{
4140 struct sit_info *sit_i = SIT_I(sbi);
4141 struct page *page;
4142 pgoff_t src_off, dst_off;
4143
4144 src_off = current_sit_addr(sbi, start);
4145 dst_off = next_sit_addr(sbi, src_off);
4146
4147 page = f2fs_grab_meta_page(sbi, dst_off);
4148 seg_info_to_sit_page(sbi, page, start);
4149
4150 set_page_dirty(page);
4151 set_to_next_sit(sit_i, start);
4152
4153 return page;
4154}
4155
4156static struct sit_entry_set *grab_sit_entry_set(void)
4157{
4158 struct sit_entry_set *ses =
4159 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4160 GFP_NOFS, true, NULL);
4161
4162 ses->entry_cnt = 0;
4163 INIT_LIST_HEAD(&ses->set_list);
4164 return ses;
4165}
4166
4167static void release_sit_entry_set(struct sit_entry_set *ses)
4168{
4169 list_del(&ses->set_list);
4170 kmem_cache_free(sit_entry_set_slab, ses);
4171}
4172
4173static void adjust_sit_entry_set(struct sit_entry_set *ses,
4174 struct list_head *head)
4175{
4176 struct sit_entry_set *next = ses;
4177
4178 if (list_is_last(&ses->set_list, head))
4179 return;
4180
4181 list_for_each_entry_continue(next, head, set_list)
4182 if (ses->entry_cnt <= next->entry_cnt)
4183 break;
4184
4185 list_move_tail(&ses->set_list, &next->set_list);
4186}
4187
4188static void add_sit_entry(unsigned int segno, struct list_head *head)
4189{
4190 struct sit_entry_set *ses;
4191 unsigned int start_segno = START_SEGNO(segno);
4192
4193 list_for_each_entry(ses, head, set_list) {
4194 if (ses->start_segno == start_segno) {
4195 ses->entry_cnt++;
4196 adjust_sit_entry_set(ses, head);
4197 return;
4198 }
4199 }
4200
4201 ses = grab_sit_entry_set();
4202
4203 ses->start_segno = start_segno;
4204 ses->entry_cnt++;
4205 list_add(&ses->set_list, head);
4206}
4207
4208static void add_sits_in_set(struct f2fs_sb_info *sbi)
4209{
4210 struct f2fs_sm_info *sm_info = SM_I(sbi);
4211 struct list_head *set_list = &sm_info->sit_entry_set;
4212 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4213 unsigned int segno;
4214
4215 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4216 add_sit_entry(segno, set_list);
4217}
4218
4219static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4220{
4221 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4222 struct f2fs_journal *journal = curseg->journal;
4223 int i;
4224
4225 down_write(&curseg->journal_rwsem);
4226 for (i = 0; i < sits_in_cursum(journal); i++) {
4227 unsigned int segno;
4228 bool dirtied;
4229
4230 segno = le32_to_cpu(segno_in_journal(journal, i));
4231 dirtied = __mark_sit_entry_dirty(sbi, segno);
4232
4233 if (!dirtied)
4234 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4235 }
4236 update_sits_in_cursum(journal, -i);
4237 up_write(&curseg->journal_rwsem);
4238}
4239
4240/*
4241 * CP calls this function, which flushes SIT entries including sit_journal,
4242 * and moves prefree segs to free segs.
4243 */
4244void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4245{
4246 struct sit_info *sit_i = SIT_I(sbi);
4247 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4248 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4249 struct f2fs_journal *journal = curseg->journal;
4250 struct sit_entry_set *ses, *tmp;
4251 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4252 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4253 struct seg_entry *se;
4254
4255 down_write(&sit_i->sentry_lock);
4256
4257 if (!sit_i->dirty_sentries)
4258 goto out;
4259
4260 /*
4261 * add and account sit entries of dirty bitmap in sit entry
4262 * set temporarily
4263 */
4264 add_sits_in_set(sbi);
4265
4266 /*
4267 * if there are no enough space in journal to store dirty sit
4268 * entries, remove all entries from journal and add and account
4269 * them in sit entry set.
4270 */
4271 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4272 !to_journal)
4273 remove_sits_in_journal(sbi);
4274
4275 /*
4276 * there are two steps to flush sit entries:
4277 * #1, flush sit entries to journal in current cold data summary block.
4278 * #2, flush sit entries to sit page.
4279 */
4280 list_for_each_entry_safe(ses, tmp, head, set_list) {
4281 struct page *page = NULL;
4282 struct f2fs_sit_block *raw_sit = NULL;
4283 unsigned int start_segno = ses->start_segno;
4284 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4285 (unsigned long)MAIN_SEGS(sbi));
4286 unsigned int segno = start_segno;
4287
4288 if (to_journal &&
4289 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4290 to_journal = false;
4291
4292 if (to_journal) {
4293 down_write(&curseg->journal_rwsem);
4294 } else {
4295 page = get_next_sit_page(sbi, start_segno);
4296 raw_sit = page_address(page);
4297 }
4298
4299 /* flush dirty sit entries in region of current sit set */
4300 for_each_set_bit_from(segno, bitmap, end) {
4301 int offset, sit_offset;
4302
4303 se = get_seg_entry(sbi, segno);
4304#ifdef CONFIG_F2FS_CHECK_FS
4305 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4306 SIT_VBLOCK_MAP_SIZE))
4307 f2fs_bug_on(sbi, 1);
4308#endif
4309
4310 /* add discard candidates */
4311 if (!(cpc->reason & CP_DISCARD)) {
4312 cpc->trim_start = segno;
4313 add_discard_addrs(sbi, cpc, false);
4314 }
4315
4316 if (to_journal) {
4317 offset = f2fs_lookup_journal_in_cursum(journal,
4318 SIT_JOURNAL, segno, 1);
4319 f2fs_bug_on(sbi, offset < 0);
4320 segno_in_journal(journal, offset) =
4321 cpu_to_le32(segno);
4322 seg_info_to_raw_sit(se,
4323 &sit_in_journal(journal, offset));
4324 check_block_count(sbi, segno,
4325 &sit_in_journal(journal, offset));
4326 } else {
4327 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4328 seg_info_to_raw_sit(se,
4329 &raw_sit->entries[sit_offset]);
4330 check_block_count(sbi, segno,
4331 &raw_sit->entries[sit_offset]);
4332 }
4333
4334 __clear_bit(segno, bitmap);
4335 sit_i->dirty_sentries--;
4336 ses->entry_cnt--;
4337 }
4338
4339 if (to_journal)
4340 up_write(&curseg->journal_rwsem);
4341 else
4342 f2fs_put_page(page, 1);
4343
4344 f2fs_bug_on(sbi, ses->entry_cnt);
4345 release_sit_entry_set(ses);
4346 }
4347
4348 f2fs_bug_on(sbi, !list_empty(head));
4349 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4350out:
4351 if (cpc->reason & CP_DISCARD) {
4352 __u64 trim_start = cpc->trim_start;
4353
4354 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4355 add_discard_addrs(sbi, cpc, false);
4356
4357 cpc->trim_start = trim_start;
4358 }
4359 up_write(&sit_i->sentry_lock);
4360
4361 set_prefree_as_free_segments(sbi);
4362}
4363
4364static int build_sit_info(struct f2fs_sb_info *sbi)
4365{
4366 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4367 struct sit_info *sit_i;
4368 unsigned int sit_segs, start;
4369 char *src_bitmap, *bitmap;
4370 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4371 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4372
4373 /* allocate memory for SIT information */
4374 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4375 if (!sit_i)
4376 return -ENOMEM;
4377
4378 SM_I(sbi)->sit_info = sit_i;
4379
4380 sit_i->sentries =
4381 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4382 MAIN_SEGS(sbi)),
4383 GFP_KERNEL);
4384 if (!sit_i->sentries)
4385 return -ENOMEM;
4386
4387 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4388 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4389 GFP_KERNEL);
4390 if (!sit_i->dirty_sentries_bitmap)
4391 return -ENOMEM;
4392
4393#ifdef CONFIG_F2FS_CHECK_FS
4394 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4395#else
4396 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4397#endif
4398 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4399 if (!sit_i->bitmap)
4400 return -ENOMEM;
4401
4402 bitmap = sit_i->bitmap;
4403
4404 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4405 sit_i->sentries[start].cur_valid_map = bitmap;
4406 bitmap += SIT_VBLOCK_MAP_SIZE;
4407
4408 sit_i->sentries[start].ckpt_valid_map = bitmap;
4409 bitmap += SIT_VBLOCK_MAP_SIZE;
4410
4411#ifdef CONFIG_F2FS_CHECK_FS
4412 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4413 bitmap += SIT_VBLOCK_MAP_SIZE;
4414#endif
4415
4416 if (discard_map) {
4417 sit_i->sentries[start].discard_map = bitmap;
4418 bitmap += SIT_VBLOCK_MAP_SIZE;
4419 }
4420 }
4421
4422 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4423 if (!sit_i->tmp_map)
4424 return -ENOMEM;
4425
4426 if (__is_large_section(sbi)) {
4427 sit_i->sec_entries =
4428 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4429 MAIN_SECS(sbi)),
4430 GFP_KERNEL);
4431 if (!sit_i->sec_entries)
4432 return -ENOMEM;
4433 }
4434
4435 /* get information related with SIT */
4436 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4437
4438 /* setup SIT bitmap from ckeckpoint pack */
4439 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4440 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4441
4442 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4443 if (!sit_i->sit_bitmap)
4444 return -ENOMEM;
4445
4446#ifdef CONFIG_F2FS_CHECK_FS
4447 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4448 sit_bitmap_size, GFP_KERNEL);
4449 if (!sit_i->sit_bitmap_mir)
4450 return -ENOMEM;
4451
4452 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4453 main_bitmap_size, GFP_KERNEL);
4454 if (!sit_i->invalid_segmap)
4455 return -ENOMEM;
4456#endif
4457
4458 /* init SIT information */
4459 sit_i->s_ops = &default_salloc_ops;
4460
4461 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4462 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4463 sit_i->written_valid_blocks = 0;
4464 sit_i->bitmap_size = sit_bitmap_size;
4465 sit_i->dirty_sentries = 0;
4466 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4467 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4468 sit_i->mounted_time = ktime_get_boottime_seconds();
4469 init_rwsem(&sit_i->sentry_lock);
4470 return 0;
4471}
4472
4473static int build_free_segmap(struct f2fs_sb_info *sbi)
4474{
4475 struct free_segmap_info *free_i;
4476 unsigned int bitmap_size, sec_bitmap_size;
4477
4478 /* allocate memory for free segmap information */
4479 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4480 if (!free_i)
4481 return -ENOMEM;
4482
4483 SM_I(sbi)->free_info = free_i;
4484
4485 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4486 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4487 if (!free_i->free_segmap)
4488 return -ENOMEM;
4489
4490 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4491 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4492 if (!free_i->free_secmap)
4493 return -ENOMEM;
4494
4495 /* set all segments as dirty temporarily */
4496 memset(free_i->free_segmap, 0xff, bitmap_size);
4497 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4498
4499 /* init free segmap information */
4500 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4501 free_i->free_segments = 0;
4502 free_i->free_sections = 0;
4503 spin_lock_init(&free_i->segmap_lock);
4504 return 0;
4505}
4506
4507static int build_curseg(struct f2fs_sb_info *sbi)
4508{
4509 struct curseg_info *array;
4510 int i;
4511
4512 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4513 sizeof(*array)), GFP_KERNEL);
4514 if (!array)
4515 return -ENOMEM;
4516
4517 SM_I(sbi)->curseg_array = array;
4518
4519 for (i = 0; i < NO_CHECK_TYPE; i++) {
4520 mutex_init(&array[i].curseg_mutex);
4521 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4522 if (!array[i].sum_blk)
4523 return -ENOMEM;
4524 init_rwsem(&array[i].journal_rwsem);
4525 array[i].journal = f2fs_kzalloc(sbi,
4526 sizeof(struct f2fs_journal), GFP_KERNEL);
4527 if (!array[i].journal)
4528 return -ENOMEM;
4529 if (i < NR_PERSISTENT_LOG)
4530 array[i].seg_type = CURSEG_HOT_DATA + i;
4531 else if (i == CURSEG_COLD_DATA_PINNED)
4532 array[i].seg_type = CURSEG_COLD_DATA;
4533 else if (i == CURSEG_ALL_DATA_ATGC)
4534 array[i].seg_type = CURSEG_COLD_DATA;
4535 array[i].segno = NULL_SEGNO;
4536 array[i].next_blkoff = 0;
4537 array[i].inited = false;
4538 }
4539 return restore_curseg_summaries(sbi);
4540}
4541
4542static int build_sit_entries(struct f2fs_sb_info *sbi)
4543{
4544 struct sit_info *sit_i = SIT_I(sbi);
4545 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4546 struct f2fs_journal *journal = curseg->journal;
4547 struct seg_entry *se;
4548 struct f2fs_sit_entry sit;
4549 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4550 unsigned int i, start, end;
4551 unsigned int readed, start_blk = 0;
4552 int err = 0;
4553 block_t total_node_blocks = 0;
4554
4555 do {
4556 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4557 META_SIT, true);
4558
4559 start = start_blk * sit_i->sents_per_block;
4560 end = (start_blk + readed) * sit_i->sents_per_block;
4561
4562 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4563 struct f2fs_sit_block *sit_blk;
4564 struct page *page;
4565
4566 se = &sit_i->sentries[start];
4567 page = get_current_sit_page(sbi, start);
4568 if (IS_ERR(page))
4569 return PTR_ERR(page);
4570 sit_blk = (struct f2fs_sit_block *)page_address(page);
4571 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4572 f2fs_put_page(page, 1);
4573
4574 err = check_block_count(sbi, start, &sit);
4575 if (err)
4576 return err;
4577 seg_info_from_raw_sit(se, &sit);
4578 if (IS_NODESEG(se->type))
4579 total_node_blocks += se->valid_blocks;
4580
4581 if (f2fs_block_unit_discard(sbi)) {
4582 /* build discard map only one time */
4583 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4584 memset(se->discard_map, 0xff,
4585 SIT_VBLOCK_MAP_SIZE);
4586 } else {
4587 memcpy(se->discard_map,
4588 se->cur_valid_map,
4589 SIT_VBLOCK_MAP_SIZE);
4590 sbi->discard_blks +=
4591 sbi->blocks_per_seg -
4592 se->valid_blocks;
4593 }
4594 }
4595
4596 if (__is_large_section(sbi))
4597 get_sec_entry(sbi, start)->valid_blocks +=
4598 se->valid_blocks;
4599 }
4600 start_blk += readed;
4601 } while (start_blk < sit_blk_cnt);
4602
4603 down_read(&curseg->journal_rwsem);
4604 for (i = 0; i < sits_in_cursum(journal); i++) {
4605 unsigned int old_valid_blocks;
4606
4607 start = le32_to_cpu(segno_in_journal(journal, i));
4608 if (start >= MAIN_SEGS(sbi)) {
4609 f2fs_err(sbi, "Wrong journal entry on segno %u",
4610 start);
4611 err = -EFSCORRUPTED;
4612 break;
4613 }
4614
4615 se = &sit_i->sentries[start];
4616 sit = sit_in_journal(journal, i);
4617
4618 old_valid_blocks = se->valid_blocks;
4619 if (IS_NODESEG(se->type))
4620 total_node_blocks -= old_valid_blocks;
4621
4622 err = check_block_count(sbi, start, &sit);
4623 if (err)
4624 break;
4625 seg_info_from_raw_sit(se, &sit);
4626 if (IS_NODESEG(se->type))
4627 total_node_blocks += se->valid_blocks;
4628
4629 if (f2fs_block_unit_discard(sbi)) {
4630 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4631 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4632 } else {
4633 memcpy(se->discard_map, se->cur_valid_map,
4634 SIT_VBLOCK_MAP_SIZE);
4635 sbi->discard_blks += old_valid_blocks;
4636 sbi->discard_blks -= se->valid_blocks;
4637 }
4638 }
4639
4640 if (__is_large_section(sbi)) {
4641 get_sec_entry(sbi, start)->valid_blocks +=
4642 se->valid_blocks;
4643 get_sec_entry(sbi, start)->valid_blocks -=
4644 old_valid_blocks;
4645 }
4646 }
4647 up_read(&curseg->journal_rwsem);
4648
4649 if (!err && total_node_blocks != valid_node_count(sbi)) {
4650 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4651 total_node_blocks, valid_node_count(sbi));
4652 err = -EFSCORRUPTED;
4653 }
4654
4655 return err;
4656}
4657
4658static void init_free_segmap(struct f2fs_sb_info *sbi)
4659{
4660 unsigned int start;
4661 int type;
4662 struct seg_entry *sentry;
4663
4664 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4665 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4666 continue;
4667 sentry = get_seg_entry(sbi, start);
4668 if (!sentry->valid_blocks)
4669 __set_free(sbi, start);
4670 else
4671 SIT_I(sbi)->written_valid_blocks +=
4672 sentry->valid_blocks;
4673 }
4674
4675 /* set use the current segments */
4676 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4677 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4678
4679 __set_test_and_inuse(sbi, curseg_t->segno);
4680 }
4681}
4682
4683static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4684{
4685 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4686 struct free_segmap_info *free_i = FREE_I(sbi);
4687 unsigned int segno = 0, offset = 0, secno;
4688 block_t valid_blocks, usable_blks_in_seg;
4689 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4690
4691 while (1) {
4692 /* find dirty segment based on free segmap */
4693 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4694 if (segno >= MAIN_SEGS(sbi))
4695 break;
4696 offset = segno + 1;
4697 valid_blocks = get_valid_blocks(sbi, segno, false);
4698 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4699 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4700 continue;
4701 if (valid_blocks > usable_blks_in_seg) {
4702 f2fs_bug_on(sbi, 1);
4703 continue;
4704 }
4705 mutex_lock(&dirty_i->seglist_lock);
4706 __locate_dirty_segment(sbi, segno, DIRTY);
4707 mutex_unlock(&dirty_i->seglist_lock);
4708 }
4709
4710 if (!__is_large_section(sbi))
4711 return;
4712
4713 mutex_lock(&dirty_i->seglist_lock);
4714 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4715 valid_blocks = get_valid_blocks(sbi, segno, true);
4716 secno = GET_SEC_FROM_SEG(sbi, segno);
4717
4718 if (!valid_blocks || valid_blocks == blks_per_sec)
4719 continue;
4720 if (IS_CURSEC(sbi, secno))
4721 continue;
4722 set_bit(secno, dirty_i->dirty_secmap);
4723 }
4724 mutex_unlock(&dirty_i->seglist_lock);
4725}
4726
4727static int init_victim_secmap(struct f2fs_sb_info *sbi)
4728{
4729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4730 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4731
4732 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4733 if (!dirty_i->victim_secmap)
4734 return -ENOMEM;
4735 return 0;
4736}
4737
4738static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4739{
4740 struct dirty_seglist_info *dirty_i;
4741 unsigned int bitmap_size, i;
4742
4743 /* allocate memory for dirty segments list information */
4744 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4745 GFP_KERNEL);
4746 if (!dirty_i)
4747 return -ENOMEM;
4748
4749 SM_I(sbi)->dirty_info = dirty_i;
4750 mutex_init(&dirty_i->seglist_lock);
4751
4752 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4753
4754 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4755 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4756 GFP_KERNEL);
4757 if (!dirty_i->dirty_segmap[i])
4758 return -ENOMEM;
4759 }
4760
4761 if (__is_large_section(sbi)) {
4762 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4763 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4764 bitmap_size, GFP_KERNEL);
4765 if (!dirty_i->dirty_secmap)
4766 return -ENOMEM;
4767 }
4768
4769 init_dirty_segmap(sbi);
4770 return init_victim_secmap(sbi);
4771}
4772
4773static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4774{
4775 int i;
4776
4777 /*
4778 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4779 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4780 */
4781 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4782 struct curseg_info *curseg = CURSEG_I(sbi, i);
4783 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4784 unsigned int blkofs = curseg->next_blkoff;
4785
4786 if (f2fs_sb_has_readonly(sbi) &&
4787 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4788 continue;
4789
4790 sanity_check_seg_type(sbi, curseg->seg_type);
4791
4792 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4793 goto out;
4794
4795 if (curseg->alloc_type == SSR)
4796 continue;
4797
4798 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4799 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4800 continue;
4801out:
4802 f2fs_err(sbi,
4803 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4804 i, curseg->segno, curseg->alloc_type,
4805 curseg->next_blkoff, blkofs);
4806 return -EFSCORRUPTED;
4807 }
4808 }
4809 return 0;
4810}
4811
4812#ifdef CONFIG_BLK_DEV_ZONED
4813
4814static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4815 struct f2fs_dev_info *fdev,
4816 struct blk_zone *zone)
4817{
4818 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4819 block_t zone_block, wp_block, last_valid_block;
4820 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4821 int i, s, b, ret;
4822 struct seg_entry *se;
4823
4824 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4825 return 0;
4826
4827 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4828 wp_segno = GET_SEGNO(sbi, wp_block);
4829 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4830 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4831 zone_segno = GET_SEGNO(sbi, zone_block);
4832 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4833
4834 if (zone_segno >= MAIN_SEGS(sbi))
4835 return 0;
4836
4837 /*
4838 * Skip check of zones cursegs point to, since
4839 * fix_curseg_write_pointer() checks them.
4840 */
4841 for (i = 0; i < NO_CHECK_TYPE; i++)
4842 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4843 CURSEG_I(sbi, i)->segno))
4844 return 0;
4845
4846 /*
4847 * Get last valid block of the zone.
4848 */
4849 last_valid_block = zone_block - 1;
4850 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4851 segno = zone_segno + s;
4852 se = get_seg_entry(sbi, segno);
4853 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4854 if (f2fs_test_bit(b, se->cur_valid_map)) {
4855 last_valid_block = START_BLOCK(sbi, segno) + b;
4856 break;
4857 }
4858 if (last_valid_block >= zone_block)
4859 break;
4860 }
4861
4862 /*
4863 * If last valid block is beyond the write pointer, report the
4864 * inconsistency. This inconsistency does not cause write error
4865 * because the zone will not be selected for write operation until
4866 * it get discarded. Just report it.
4867 */
4868 if (last_valid_block >= wp_block) {
4869 f2fs_notice(sbi, "Valid block beyond write pointer: "
4870 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4871 GET_SEGNO(sbi, last_valid_block),
4872 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4873 wp_segno, wp_blkoff);
4874 return 0;
4875 }
4876
4877 /*
4878 * If there is no valid block in the zone and if write pointer is
4879 * not at zone start, reset the write pointer.
4880 */
4881 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4882 f2fs_notice(sbi,
4883 "Zone without valid block has non-zero write "
4884 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4885 wp_segno, wp_blkoff);
4886 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4887 zone->len >> log_sectors_per_block);
4888 if (ret) {
4889 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4890 fdev->path, ret);
4891 return ret;
4892 }
4893 }
4894
4895 return 0;
4896}
4897
4898static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4899 block_t zone_blkaddr)
4900{
4901 int i;
4902
4903 for (i = 0; i < sbi->s_ndevs; i++) {
4904 if (!bdev_is_zoned(FDEV(i).bdev))
4905 continue;
4906 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4907 zone_blkaddr <= FDEV(i).end_blk))
4908 return &FDEV(i);
4909 }
4910
4911 return NULL;
4912}
4913
4914static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4915 void *data)
4916{
4917 memcpy(data, zone, sizeof(struct blk_zone));
4918 return 0;
4919}
4920
4921static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4922{
4923 struct curseg_info *cs = CURSEG_I(sbi, type);
4924 struct f2fs_dev_info *zbd;
4925 struct blk_zone zone;
4926 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4927 block_t cs_zone_block, wp_block;
4928 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4929 sector_t zone_sector;
4930 int err;
4931
4932 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4933 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4934
4935 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4936 if (!zbd)
4937 return 0;
4938
4939 /* report zone for the sector the curseg points to */
4940 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4941 << log_sectors_per_block;
4942 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4943 report_one_zone_cb, &zone);
4944 if (err != 1) {
4945 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4946 zbd->path, err);
4947 return err;
4948 }
4949
4950 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4951 return 0;
4952
4953 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4954 wp_segno = GET_SEGNO(sbi, wp_block);
4955 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4956 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4957
4958 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4959 wp_sector_off == 0)
4960 return 0;
4961
4962 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4963 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4964 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4965
4966 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4967 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4968
4969 f2fs_allocate_new_section(sbi, type, true);
4970
4971 /* check consistency of the zone curseg pointed to */
4972 if (check_zone_write_pointer(sbi, zbd, &zone))
4973 return -EIO;
4974
4975 /* check newly assigned zone */
4976 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4977 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4978
4979 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4980 if (!zbd)
4981 return 0;
4982
4983 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4984 << log_sectors_per_block;
4985 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4986 report_one_zone_cb, &zone);
4987 if (err != 1) {
4988 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4989 zbd->path, err);
4990 return err;
4991 }
4992
4993 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4994 return 0;
4995
4996 if (zone.wp != zone.start) {
4997 f2fs_notice(sbi,
4998 "New zone for curseg[%d] is not yet discarded. "
4999 "Reset the zone: curseg[0x%x,0x%x]",
5000 type, cs->segno, cs->next_blkoff);
5001 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5002 zone_sector >> log_sectors_per_block,
5003 zone.len >> log_sectors_per_block);
5004 if (err) {
5005 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5006 zbd->path, err);
5007 return err;
5008 }
5009 }
5010
5011 return 0;
5012}
5013
5014int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5015{
5016 int i, ret;
5017
5018 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5019 ret = fix_curseg_write_pointer(sbi, i);
5020 if (ret)
5021 return ret;
5022 }
5023
5024 return 0;
5025}
5026
5027struct check_zone_write_pointer_args {
5028 struct f2fs_sb_info *sbi;
5029 struct f2fs_dev_info *fdev;
5030};
5031
5032static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5033 void *data)
5034{
5035 struct check_zone_write_pointer_args *args;
5036
5037 args = (struct check_zone_write_pointer_args *)data;
5038
5039 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5040}
5041
5042int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5043{
5044 int i, ret;
5045 struct check_zone_write_pointer_args args;
5046
5047 for (i = 0; i < sbi->s_ndevs; i++) {
5048 if (!bdev_is_zoned(FDEV(i).bdev))
5049 continue;
5050
5051 args.sbi = sbi;
5052 args.fdev = &FDEV(i);
5053 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5054 check_zone_write_pointer_cb, &args);
5055 if (ret < 0)
5056 return ret;
5057 }
5058
5059 return 0;
5060}
5061
5062static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5063 unsigned int dev_idx)
5064{
5065 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5066 return true;
5067 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5068}
5069
5070/* Return the zone index in the given device */
5071static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5072 int dev_idx)
5073{
5074 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5075
5076 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5077 sbi->log_blocks_per_blkz;
5078}
5079
5080/*
5081 * Return the usable segments in a section based on the zone's
5082 * corresponding zone capacity. Zone is equal to a section.
5083 */
5084static inline unsigned int f2fs_usable_zone_segs_in_sec(
5085 struct f2fs_sb_info *sbi, unsigned int segno)
5086{
5087 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5088
5089 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5090 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5091
5092 /* Conventional zone's capacity is always equal to zone size */
5093 if (is_conv_zone(sbi, zone_idx, dev_idx))
5094 return sbi->segs_per_sec;
5095
5096 /*
5097 * If the zone_capacity_blocks array is NULL, then zone capacity
5098 * is equal to the zone size for all zones
5099 */
5100 if (!FDEV(dev_idx).zone_capacity_blocks)
5101 return sbi->segs_per_sec;
5102
5103 /* Get the segment count beyond zone capacity block */
5104 unusable_segs_in_sec = (sbi->blocks_per_blkz -
5105 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5106 sbi->log_blocks_per_seg;
5107 return sbi->segs_per_sec - unusable_segs_in_sec;
5108}
5109
5110/*
5111 * Return the number of usable blocks in a segment. The number of blocks
5112 * returned is always equal to the number of blocks in a segment for
5113 * segments fully contained within a sequential zone capacity or a
5114 * conventional zone. For segments partially contained in a sequential
5115 * zone capacity, the number of usable blocks up to the zone capacity
5116 * is returned. 0 is returned in all other cases.
5117 */
5118static inline unsigned int f2fs_usable_zone_blks_in_seg(
5119 struct f2fs_sb_info *sbi, unsigned int segno)
5120{
5121 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5122 unsigned int zone_idx, dev_idx, secno;
5123
5124 secno = GET_SEC_FROM_SEG(sbi, segno);
5125 seg_start = START_BLOCK(sbi, segno);
5126 dev_idx = f2fs_target_device_index(sbi, seg_start);
5127 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5128
5129 /*
5130 * Conventional zone's capacity is always equal to zone size,
5131 * so, blocks per segment is unchanged.
5132 */
5133 if (is_conv_zone(sbi, zone_idx, dev_idx))
5134 return sbi->blocks_per_seg;
5135
5136 if (!FDEV(dev_idx).zone_capacity_blocks)
5137 return sbi->blocks_per_seg;
5138
5139 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5140 sec_cap_blkaddr = sec_start_blkaddr +
5141 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5142
5143 /*
5144 * If segment starts before zone capacity and spans beyond
5145 * zone capacity, then usable blocks are from seg start to
5146 * zone capacity. If the segment starts after the zone capacity,
5147 * then there are no usable blocks.
5148 */
5149 if (seg_start >= sec_cap_blkaddr)
5150 return 0;
5151 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5152 return sec_cap_blkaddr - seg_start;
5153
5154 return sbi->blocks_per_seg;
5155}
5156#else
5157int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5158{
5159 return 0;
5160}
5161
5162int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5163{
5164 return 0;
5165}
5166
5167static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5168 unsigned int segno)
5169{
5170 return 0;
5171}
5172
5173static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5174 unsigned int segno)
5175{
5176 return 0;
5177}
5178#endif
5179unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5180 unsigned int segno)
5181{
5182 if (f2fs_sb_has_blkzoned(sbi))
5183 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5184
5185 return sbi->blocks_per_seg;
5186}
5187
5188unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5189 unsigned int segno)
5190{
5191 if (f2fs_sb_has_blkzoned(sbi))
5192 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5193
5194 return sbi->segs_per_sec;
5195}
5196
5197/*
5198 * Update min, max modified time for cost-benefit GC algorithm
5199 */
5200static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5201{
5202 struct sit_info *sit_i = SIT_I(sbi);
5203 unsigned int segno;
5204
5205 down_write(&sit_i->sentry_lock);
5206
5207 sit_i->min_mtime = ULLONG_MAX;
5208
5209 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5210 unsigned int i;
5211 unsigned long long mtime = 0;
5212
5213 for (i = 0; i < sbi->segs_per_sec; i++)
5214 mtime += get_seg_entry(sbi, segno + i)->mtime;
5215
5216 mtime = div_u64(mtime, sbi->segs_per_sec);
5217
5218 if (sit_i->min_mtime > mtime)
5219 sit_i->min_mtime = mtime;
5220 }
5221 sit_i->max_mtime = get_mtime(sbi, false);
5222 sit_i->dirty_max_mtime = 0;
5223 up_write(&sit_i->sentry_lock);
5224}
5225
5226int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5227{
5228 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5229 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5230 struct f2fs_sm_info *sm_info;
5231 int err;
5232
5233 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5234 if (!sm_info)
5235 return -ENOMEM;
5236
5237 /* init sm info */
5238 sbi->sm_info = sm_info;
5239 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5240 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5241 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5242 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5243 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5244 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5245 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5246 sm_info->rec_prefree_segments = sm_info->main_segments *
5247 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5248 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5249 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5250
5251 if (!f2fs_lfs_mode(sbi))
5252 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5253 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5254 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5255 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5256 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5257 sm_info->min_ssr_sections = reserved_sections(sbi);
5258
5259 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5260
5261 init_rwsem(&sm_info->curseg_lock);
5262
5263 if (!f2fs_readonly(sbi->sb)) {
5264 err = f2fs_create_flush_cmd_control(sbi);
5265 if (err)
5266 return err;
5267 }
5268
5269 err = create_discard_cmd_control(sbi);
5270 if (err)
5271 return err;
5272
5273 err = build_sit_info(sbi);
5274 if (err)
5275 return err;
5276 err = build_free_segmap(sbi);
5277 if (err)
5278 return err;
5279 err = build_curseg(sbi);
5280 if (err)
5281 return err;
5282
5283 /* reinit free segmap based on SIT */
5284 err = build_sit_entries(sbi);
5285 if (err)
5286 return err;
5287
5288 init_free_segmap(sbi);
5289 err = build_dirty_segmap(sbi);
5290 if (err)
5291 return err;
5292
5293 err = sanity_check_curseg(sbi);
5294 if (err)
5295 return err;
5296
5297 init_min_max_mtime(sbi);
5298 return 0;
5299}
5300
5301static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5302 enum dirty_type dirty_type)
5303{
5304 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5305
5306 mutex_lock(&dirty_i->seglist_lock);
5307 kvfree(dirty_i->dirty_segmap[dirty_type]);
5308 dirty_i->nr_dirty[dirty_type] = 0;
5309 mutex_unlock(&dirty_i->seglist_lock);
5310}
5311
5312static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5313{
5314 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5315
5316 kvfree(dirty_i->victim_secmap);
5317}
5318
5319static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5320{
5321 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5322 int i;
5323
5324 if (!dirty_i)
5325 return;
5326
5327 /* discard pre-free/dirty segments list */
5328 for (i = 0; i < NR_DIRTY_TYPE; i++)
5329 discard_dirty_segmap(sbi, i);
5330
5331 if (__is_large_section(sbi)) {
5332 mutex_lock(&dirty_i->seglist_lock);
5333 kvfree(dirty_i->dirty_secmap);
5334 mutex_unlock(&dirty_i->seglist_lock);
5335 }
5336
5337 destroy_victim_secmap(sbi);
5338 SM_I(sbi)->dirty_info = NULL;
5339 kfree(dirty_i);
5340}
5341
5342static void destroy_curseg(struct f2fs_sb_info *sbi)
5343{
5344 struct curseg_info *array = SM_I(sbi)->curseg_array;
5345 int i;
5346
5347 if (!array)
5348 return;
5349 SM_I(sbi)->curseg_array = NULL;
5350 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5351 kfree(array[i].sum_blk);
5352 kfree(array[i].journal);
5353 }
5354 kfree(array);
5355}
5356
5357static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5358{
5359 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5360
5361 if (!free_i)
5362 return;
5363 SM_I(sbi)->free_info = NULL;
5364 kvfree(free_i->free_segmap);
5365 kvfree(free_i->free_secmap);
5366 kfree(free_i);
5367}
5368
5369static void destroy_sit_info(struct f2fs_sb_info *sbi)
5370{
5371 struct sit_info *sit_i = SIT_I(sbi);
5372
5373 if (!sit_i)
5374 return;
5375
5376 if (sit_i->sentries)
5377 kvfree(sit_i->bitmap);
5378 kfree(sit_i->tmp_map);
5379
5380 kvfree(sit_i->sentries);
5381 kvfree(sit_i->sec_entries);
5382 kvfree(sit_i->dirty_sentries_bitmap);
5383
5384 SM_I(sbi)->sit_info = NULL;
5385 kvfree(sit_i->sit_bitmap);
5386#ifdef CONFIG_F2FS_CHECK_FS
5387 kvfree(sit_i->sit_bitmap_mir);
5388 kvfree(sit_i->invalid_segmap);
5389#endif
5390 kfree(sit_i);
5391}
5392
5393void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5394{
5395 struct f2fs_sm_info *sm_info = SM_I(sbi);
5396
5397 if (!sm_info)
5398 return;
5399 f2fs_destroy_flush_cmd_control(sbi, true);
5400 destroy_discard_cmd_control(sbi);
5401 destroy_dirty_segmap(sbi);
5402 destroy_curseg(sbi);
5403 destroy_free_segmap(sbi);
5404 destroy_sit_info(sbi);
5405 sbi->sm_info = NULL;
5406 kfree(sm_info);
5407}
5408
5409int __init f2fs_create_segment_manager_caches(void)
5410{
5411 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5412 sizeof(struct discard_entry));
5413 if (!discard_entry_slab)
5414 goto fail;
5415
5416 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5417 sizeof(struct discard_cmd));
5418 if (!discard_cmd_slab)
5419 goto destroy_discard_entry;
5420
5421 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5422 sizeof(struct sit_entry_set));
5423 if (!sit_entry_set_slab)
5424 goto destroy_discard_cmd;
5425
5426 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5427 sizeof(struct inmem_pages));
5428 if (!inmem_entry_slab)
5429 goto destroy_sit_entry_set;
5430 return 0;
5431
5432destroy_sit_entry_set:
5433 kmem_cache_destroy(sit_entry_set_slab);
5434destroy_discard_cmd:
5435 kmem_cache_destroy(discard_cmd_slab);
5436destroy_discard_entry:
5437 kmem_cache_destroy(discard_entry_slab);
5438fail:
5439 return -ENOMEM;
5440}
5441
5442void f2fs_destroy_segment_manager_caches(void)
5443{
5444 kmem_cache_destroy(sit_entry_set_slab);
5445 kmem_cache_destroy(discard_cmd_slab);
5446 kmem_cache_destroy(discard_entry_slab);
5447 kmem_cache_destroy(inmem_entry_slab);
5448}