Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/sched/mm.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "iostat.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42}
43
44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45{
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
48 struct sysinfo val;
49 unsigned long avail_ram;
50 unsigned long mem_size = 0;
51 bool res = false;
52
53 if (!nm_i)
54 return true;
55
56 si_meminfo(&val);
57
58 /* only uses low memory */
59 avail_ram = val.totalram - val.totalhigh;
60
61 /*
62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 */
64 if (type == FREE_NIDS) {
65 mem_size = (nm_i->nid_cnt[FREE_NID] *
66 sizeof(struct free_nid)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 } else if (type == NAT_ENTRIES) {
69 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
70 sizeof(struct nat_entry)) >> PAGE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 if (excess_cached_nats(sbi))
73 res = false;
74 } else if (type == DIRTY_DENTS) {
75 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 return false;
77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 } else if (type == INO_ENTRIES) {
80 int i;
81
82 for (i = 0; i < MAX_INO_ENTRY; i++)
83 mem_size += sbi->im[i].ino_num *
84 sizeof(struct ino_entry);
85 mem_size >>= PAGE_SHIFT;
86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 } else if (type == EXTENT_CACHE) {
88 mem_size = (atomic_read(&sbi->total_ext_tree) *
89 sizeof(struct extent_tree) +
90 atomic_read(&sbi->total_ext_node) *
91 sizeof(struct extent_node)) >> PAGE_SHIFT;
92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 } else if (type == INMEM_PAGES) {
94 /* it allows 20% / total_ram for inmemory pages */
95 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96 res = mem_size < (val.totalram / 5);
97 } else if (type == DISCARD_CACHE) {
98 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
99 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
100 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
101 } else if (type == COMPRESS_PAGE) {
102#ifdef CONFIG_F2FS_FS_COMPRESSION
103 unsigned long free_ram = val.freeram;
104
105 /*
106 * free memory is lower than watermark or cached page count
107 * exceed threshold, deny caching compress page.
108 */
109 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
110 (COMPRESS_MAPPING(sbi)->nrpages <
111 free_ram * sbi->compress_percent / 100);
112#else
113 res = false;
114#endif
115 } else {
116 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
117 return true;
118 }
119 return res;
120}
121
122static void clear_node_page_dirty(struct page *page)
123{
124 if (PageDirty(page)) {
125 f2fs_clear_page_cache_dirty_tag(page);
126 clear_page_dirty_for_io(page);
127 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
128 }
129 ClearPageUptodate(page);
130}
131
132static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
133{
134 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
135}
136
137static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
138{
139 struct page *src_page;
140 struct page *dst_page;
141 pgoff_t dst_off;
142 void *src_addr;
143 void *dst_addr;
144 struct f2fs_nm_info *nm_i = NM_I(sbi);
145
146 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
147
148 /* get current nat block page with lock */
149 src_page = get_current_nat_page(sbi, nid);
150 if (IS_ERR(src_page))
151 return src_page;
152 dst_page = f2fs_grab_meta_page(sbi, dst_off);
153 f2fs_bug_on(sbi, PageDirty(src_page));
154
155 src_addr = page_address(src_page);
156 dst_addr = page_address(dst_page);
157 memcpy(dst_addr, src_addr, PAGE_SIZE);
158 set_page_dirty(dst_page);
159 f2fs_put_page(src_page, 1);
160
161 set_to_next_nat(nm_i, nid);
162
163 return dst_page;
164}
165
166static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
167 nid_t nid, bool no_fail)
168{
169 struct nat_entry *new;
170
171 new = f2fs_kmem_cache_alloc(nat_entry_slab,
172 GFP_F2FS_ZERO, no_fail, sbi);
173 if (new) {
174 nat_set_nid(new, nid);
175 nat_reset_flag(new);
176 }
177 return new;
178}
179
180static void __free_nat_entry(struct nat_entry *e)
181{
182 kmem_cache_free(nat_entry_slab, e);
183}
184
185/* must be locked by nat_tree_lock */
186static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188{
189 if (no_fail)
190 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192 return NULL;
193
194 if (raw_ne)
195 node_info_from_raw_nat(&ne->ni, raw_ne);
196
197 spin_lock(&nm_i->nat_list_lock);
198 list_add_tail(&ne->list, &nm_i->nat_entries);
199 spin_unlock(&nm_i->nat_list_lock);
200
201 nm_i->nat_cnt[TOTAL_NAT]++;
202 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203 return ne;
204}
205
206static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207{
208 struct nat_entry *ne;
209
210 ne = radix_tree_lookup(&nm_i->nat_root, n);
211
212 /* for recent accessed nat entry, move it to tail of lru list */
213 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214 spin_lock(&nm_i->nat_list_lock);
215 if (!list_empty(&ne->list))
216 list_move_tail(&ne->list, &nm_i->nat_entries);
217 spin_unlock(&nm_i->nat_list_lock);
218 }
219
220 return ne;
221}
222
223static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224 nid_t start, unsigned int nr, struct nat_entry **ep)
225{
226 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227}
228
229static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230{
231 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232 nm_i->nat_cnt[TOTAL_NAT]--;
233 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234 __free_nat_entry(e);
235}
236
237static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238 struct nat_entry *ne)
239{
240 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241 struct nat_entry_set *head;
242
243 head = radix_tree_lookup(&nm_i->nat_set_root, set);
244 if (!head) {
245 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
246 GFP_NOFS, true, NULL);
247
248 INIT_LIST_HEAD(&head->entry_list);
249 INIT_LIST_HEAD(&head->set_list);
250 head->set = set;
251 head->entry_cnt = 0;
252 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
253 }
254 return head;
255}
256
257static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
258 struct nat_entry *ne)
259{
260 struct nat_entry_set *head;
261 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
262
263 if (!new_ne)
264 head = __grab_nat_entry_set(nm_i, ne);
265
266 /*
267 * update entry_cnt in below condition:
268 * 1. update NEW_ADDR to valid block address;
269 * 2. update old block address to new one;
270 */
271 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
272 !get_nat_flag(ne, IS_DIRTY)))
273 head->entry_cnt++;
274
275 set_nat_flag(ne, IS_PREALLOC, new_ne);
276
277 if (get_nat_flag(ne, IS_DIRTY))
278 goto refresh_list;
279
280 nm_i->nat_cnt[DIRTY_NAT]++;
281 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
282 set_nat_flag(ne, IS_DIRTY, true);
283refresh_list:
284 spin_lock(&nm_i->nat_list_lock);
285 if (new_ne)
286 list_del_init(&ne->list);
287 else
288 list_move_tail(&ne->list, &head->entry_list);
289 spin_unlock(&nm_i->nat_list_lock);
290}
291
292static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
293 struct nat_entry_set *set, struct nat_entry *ne)
294{
295 spin_lock(&nm_i->nat_list_lock);
296 list_move_tail(&ne->list, &nm_i->nat_entries);
297 spin_unlock(&nm_i->nat_list_lock);
298
299 set_nat_flag(ne, IS_DIRTY, false);
300 set->entry_cnt--;
301 nm_i->nat_cnt[DIRTY_NAT]--;
302 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
303}
304
305static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
306 nid_t start, unsigned int nr, struct nat_entry_set **ep)
307{
308 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
309 start, nr);
310}
311
312bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
313{
314 return NODE_MAPPING(sbi) == page->mapping &&
315 IS_DNODE(page) && is_cold_node(page);
316}
317
318void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
319{
320 spin_lock_init(&sbi->fsync_node_lock);
321 INIT_LIST_HEAD(&sbi->fsync_node_list);
322 sbi->fsync_seg_id = 0;
323 sbi->fsync_node_num = 0;
324}
325
326static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
327 struct page *page)
328{
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331 unsigned int seq_id;
332
333 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
334 GFP_NOFS, true, NULL);
335
336 get_page(page);
337 fn->page = page;
338 INIT_LIST_HEAD(&fn->list);
339
340 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
341 list_add_tail(&fn->list, &sbi->fsync_node_list);
342 fn->seq_id = sbi->fsync_seg_id++;
343 seq_id = fn->seq_id;
344 sbi->fsync_node_num++;
345 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
346
347 return seq_id;
348}
349
350void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
351{
352 struct fsync_node_entry *fn;
353 unsigned long flags;
354
355 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
356 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
357 if (fn->page == page) {
358 list_del(&fn->list);
359 sbi->fsync_node_num--;
360 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361 kmem_cache_free(fsync_node_entry_slab, fn);
362 put_page(page);
363 return;
364 }
365 }
366 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
367 f2fs_bug_on(sbi, 1);
368}
369
370void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
371{
372 unsigned long flags;
373
374 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
375 sbi->fsync_seg_id = 0;
376 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
377}
378
379int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
380{
381 struct f2fs_nm_info *nm_i = NM_I(sbi);
382 struct nat_entry *e;
383 bool need = false;
384
385 down_read(&nm_i->nat_tree_lock);
386 e = __lookup_nat_cache(nm_i, nid);
387 if (e) {
388 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
389 !get_nat_flag(e, HAS_FSYNCED_INODE))
390 need = true;
391 }
392 up_read(&nm_i->nat_tree_lock);
393 return need;
394}
395
396bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
397{
398 struct f2fs_nm_info *nm_i = NM_I(sbi);
399 struct nat_entry *e;
400 bool is_cp = true;
401
402 down_read(&nm_i->nat_tree_lock);
403 e = __lookup_nat_cache(nm_i, nid);
404 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
405 is_cp = false;
406 up_read(&nm_i->nat_tree_lock);
407 return is_cp;
408}
409
410bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
411{
412 struct f2fs_nm_info *nm_i = NM_I(sbi);
413 struct nat_entry *e;
414 bool need_update = true;
415
416 down_read(&nm_i->nat_tree_lock);
417 e = __lookup_nat_cache(nm_i, ino);
418 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
419 (get_nat_flag(e, IS_CHECKPOINTED) ||
420 get_nat_flag(e, HAS_FSYNCED_INODE)))
421 need_update = false;
422 up_read(&nm_i->nat_tree_lock);
423 return need_update;
424}
425
426/* must be locked by nat_tree_lock */
427static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
428 struct f2fs_nat_entry *ne)
429{
430 struct f2fs_nm_info *nm_i = NM_I(sbi);
431 struct nat_entry *new, *e;
432
433 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
434 if (rwsem_is_locked(&sbi->cp_global_sem))
435 return;
436
437 new = __alloc_nat_entry(sbi, nid, false);
438 if (!new)
439 return;
440
441 down_write(&nm_i->nat_tree_lock);
442 e = __lookup_nat_cache(nm_i, nid);
443 if (!e)
444 e = __init_nat_entry(nm_i, new, ne, false);
445 else
446 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
447 nat_get_blkaddr(e) !=
448 le32_to_cpu(ne->block_addr) ||
449 nat_get_version(e) != ne->version);
450 up_write(&nm_i->nat_tree_lock);
451 if (e != new)
452 __free_nat_entry(new);
453}
454
455static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
456 block_t new_blkaddr, bool fsync_done)
457{
458 struct f2fs_nm_info *nm_i = NM_I(sbi);
459 struct nat_entry *e;
460 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
461
462 down_write(&nm_i->nat_tree_lock);
463 e = __lookup_nat_cache(nm_i, ni->nid);
464 if (!e) {
465 e = __init_nat_entry(nm_i, new, NULL, true);
466 copy_node_info(&e->ni, ni);
467 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
468 } else if (new_blkaddr == NEW_ADDR) {
469 /*
470 * when nid is reallocated,
471 * previous nat entry can be remained in nat cache.
472 * So, reinitialize it with new information.
473 */
474 copy_node_info(&e->ni, ni);
475 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
476 }
477 /* let's free early to reduce memory consumption */
478 if (e != new)
479 __free_nat_entry(new);
480
481 /* sanity check */
482 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
484 new_blkaddr == NULL_ADDR);
485 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
486 new_blkaddr == NEW_ADDR);
487 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
488 new_blkaddr == NEW_ADDR);
489
490 /* increment version no as node is removed */
491 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
492 unsigned char version = nat_get_version(e);
493
494 nat_set_version(e, inc_node_version(version));
495 }
496
497 /* change address */
498 nat_set_blkaddr(e, new_blkaddr);
499 if (!__is_valid_data_blkaddr(new_blkaddr))
500 set_nat_flag(e, IS_CHECKPOINTED, false);
501 __set_nat_cache_dirty(nm_i, e);
502
503 /* update fsync_mark if its inode nat entry is still alive */
504 if (ni->nid != ni->ino)
505 e = __lookup_nat_cache(nm_i, ni->ino);
506 if (e) {
507 if (fsync_done && ni->nid == ni->ino)
508 set_nat_flag(e, HAS_FSYNCED_INODE, true);
509 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
510 }
511 up_write(&nm_i->nat_tree_lock);
512}
513
514int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
515{
516 struct f2fs_nm_info *nm_i = NM_I(sbi);
517 int nr = nr_shrink;
518
519 if (!down_write_trylock(&nm_i->nat_tree_lock))
520 return 0;
521
522 spin_lock(&nm_i->nat_list_lock);
523 while (nr_shrink) {
524 struct nat_entry *ne;
525
526 if (list_empty(&nm_i->nat_entries))
527 break;
528
529 ne = list_first_entry(&nm_i->nat_entries,
530 struct nat_entry, list);
531 list_del(&ne->list);
532 spin_unlock(&nm_i->nat_list_lock);
533
534 __del_from_nat_cache(nm_i, ne);
535 nr_shrink--;
536
537 spin_lock(&nm_i->nat_list_lock);
538 }
539 spin_unlock(&nm_i->nat_list_lock);
540
541 up_write(&nm_i->nat_tree_lock);
542 return nr - nr_shrink;
543}
544
545int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
546 struct node_info *ni, bool checkpoint_context)
547{
548 struct f2fs_nm_info *nm_i = NM_I(sbi);
549 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
550 struct f2fs_journal *journal = curseg->journal;
551 nid_t start_nid = START_NID(nid);
552 struct f2fs_nat_block *nat_blk;
553 struct page *page = NULL;
554 struct f2fs_nat_entry ne;
555 struct nat_entry *e;
556 pgoff_t index;
557 block_t blkaddr;
558 int i;
559
560 ni->nid = nid;
561retry:
562 /* Check nat cache */
563 down_read(&nm_i->nat_tree_lock);
564 e = __lookup_nat_cache(nm_i, nid);
565 if (e) {
566 ni->ino = nat_get_ino(e);
567 ni->blk_addr = nat_get_blkaddr(e);
568 ni->version = nat_get_version(e);
569 up_read(&nm_i->nat_tree_lock);
570 return 0;
571 }
572
573 /*
574 * Check current segment summary by trying to grab journal_rwsem first.
575 * This sem is on the critical path on the checkpoint requiring the above
576 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
577 * while not bothering checkpoint.
578 */
579 if (!rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
580 down_read(&curseg->journal_rwsem);
581 } else if (rwsem_is_contended(&nm_i->nat_tree_lock) ||
582 !down_read_trylock(&curseg->journal_rwsem)) {
583 up_read(&nm_i->nat_tree_lock);
584 goto retry;
585 }
586
587 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
588 if (i >= 0) {
589 ne = nat_in_journal(journal, i);
590 node_info_from_raw_nat(ni, &ne);
591 }
592 up_read(&curseg->journal_rwsem);
593 if (i >= 0) {
594 up_read(&nm_i->nat_tree_lock);
595 goto cache;
596 }
597
598 /* Fill node_info from nat page */
599 index = current_nat_addr(sbi, nid);
600 up_read(&nm_i->nat_tree_lock);
601
602 page = f2fs_get_meta_page(sbi, index);
603 if (IS_ERR(page))
604 return PTR_ERR(page);
605
606 nat_blk = (struct f2fs_nat_block *)page_address(page);
607 ne = nat_blk->entries[nid - start_nid];
608 node_info_from_raw_nat(ni, &ne);
609 f2fs_put_page(page, 1);
610cache:
611 blkaddr = le32_to_cpu(ne.block_addr);
612 if (__is_valid_data_blkaddr(blkaddr) &&
613 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
614 return -EFAULT;
615
616 /* cache nat entry */
617 cache_nat_entry(sbi, nid, &ne);
618 return 0;
619}
620
621/*
622 * readahead MAX_RA_NODE number of node pages.
623 */
624static void f2fs_ra_node_pages(struct page *parent, int start, int n)
625{
626 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
627 struct blk_plug plug;
628 int i, end;
629 nid_t nid;
630
631 blk_start_plug(&plug);
632
633 /* Then, try readahead for siblings of the desired node */
634 end = start + n;
635 end = min(end, NIDS_PER_BLOCK);
636 for (i = start; i < end; i++) {
637 nid = get_nid(parent, i, false);
638 f2fs_ra_node_page(sbi, nid);
639 }
640
641 blk_finish_plug(&plug);
642}
643
644pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
645{
646 const long direct_index = ADDRS_PER_INODE(dn->inode);
647 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
648 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
649 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
650 int cur_level = dn->cur_level;
651 int max_level = dn->max_level;
652 pgoff_t base = 0;
653
654 if (!dn->max_level)
655 return pgofs + 1;
656
657 while (max_level-- > cur_level)
658 skipped_unit *= NIDS_PER_BLOCK;
659
660 switch (dn->max_level) {
661 case 3:
662 base += 2 * indirect_blks;
663 fallthrough;
664 case 2:
665 base += 2 * direct_blks;
666 fallthrough;
667 case 1:
668 base += direct_index;
669 break;
670 default:
671 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
672 }
673
674 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
675}
676
677/*
678 * The maximum depth is four.
679 * Offset[0] will have raw inode offset.
680 */
681static int get_node_path(struct inode *inode, long block,
682 int offset[4], unsigned int noffset[4])
683{
684 const long direct_index = ADDRS_PER_INODE(inode);
685 const long direct_blks = ADDRS_PER_BLOCK(inode);
686 const long dptrs_per_blk = NIDS_PER_BLOCK;
687 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
688 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
689 int n = 0;
690 int level = 0;
691
692 noffset[0] = 0;
693
694 if (block < direct_index) {
695 offset[n] = block;
696 goto got;
697 }
698 block -= direct_index;
699 if (block < direct_blks) {
700 offset[n++] = NODE_DIR1_BLOCK;
701 noffset[n] = 1;
702 offset[n] = block;
703 level = 1;
704 goto got;
705 }
706 block -= direct_blks;
707 if (block < direct_blks) {
708 offset[n++] = NODE_DIR2_BLOCK;
709 noffset[n] = 2;
710 offset[n] = block;
711 level = 1;
712 goto got;
713 }
714 block -= direct_blks;
715 if (block < indirect_blks) {
716 offset[n++] = NODE_IND1_BLOCK;
717 noffset[n] = 3;
718 offset[n++] = block / direct_blks;
719 noffset[n] = 4 + offset[n - 1];
720 offset[n] = block % direct_blks;
721 level = 2;
722 goto got;
723 }
724 block -= indirect_blks;
725 if (block < indirect_blks) {
726 offset[n++] = NODE_IND2_BLOCK;
727 noffset[n] = 4 + dptrs_per_blk;
728 offset[n++] = block / direct_blks;
729 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
730 offset[n] = block % direct_blks;
731 level = 2;
732 goto got;
733 }
734 block -= indirect_blks;
735 if (block < dindirect_blks) {
736 offset[n++] = NODE_DIND_BLOCK;
737 noffset[n] = 5 + (dptrs_per_blk * 2);
738 offset[n++] = block / indirect_blks;
739 noffset[n] = 6 + (dptrs_per_blk * 2) +
740 offset[n - 1] * (dptrs_per_blk + 1);
741 offset[n++] = (block / direct_blks) % dptrs_per_blk;
742 noffset[n] = 7 + (dptrs_per_blk * 2) +
743 offset[n - 2] * (dptrs_per_blk + 1) +
744 offset[n - 1];
745 offset[n] = block % direct_blks;
746 level = 3;
747 goto got;
748 } else {
749 return -E2BIG;
750 }
751got:
752 return level;
753}
754
755/*
756 * Caller should call f2fs_put_dnode(dn).
757 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
758 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
759 */
760int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
761{
762 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
763 struct page *npage[4];
764 struct page *parent = NULL;
765 int offset[4];
766 unsigned int noffset[4];
767 nid_t nids[4];
768 int level, i = 0;
769 int err = 0;
770
771 level = get_node_path(dn->inode, index, offset, noffset);
772 if (level < 0)
773 return level;
774
775 nids[0] = dn->inode->i_ino;
776 npage[0] = dn->inode_page;
777
778 if (!npage[0]) {
779 npage[0] = f2fs_get_node_page(sbi, nids[0]);
780 if (IS_ERR(npage[0]))
781 return PTR_ERR(npage[0]);
782 }
783
784 /* if inline_data is set, should not report any block indices */
785 if (f2fs_has_inline_data(dn->inode) && index) {
786 err = -ENOENT;
787 f2fs_put_page(npage[0], 1);
788 goto release_out;
789 }
790
791 parent = npage[0];
792 if (level != 0)
793 nids[1] = get_nid(parent, offset[0], true);
794 dn->inode_page = npage[0];
795 dn->inode_page_locked = true;
796
797 /* get indirect or direct nodes */
798 for (i = 1; i <= level; i++) {
799 bool done = false;
800
801 if (!nids[i] && mode == ALLOC_NODE) {
802 /* alloc new node */
803 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
804 err = -ENOSPC;
805 goto release_pages;
806 }
807
808 dn->nid = nids[i];
809 npage[i] = f2fs_new_node_page(dn, noffset[i]);
810 if (IS_ERR(npage[i])) {
811 f2fs_alloc_nid_failed(sbi, nids[i]);
812 err = PTR_ERR(npage[i]);
813 goto release_pages;
814 }
815
816 set_nid(parent, offset[i - 1], nids[i], i == 1);
817 f2fs_alloc_nid_done(sbi, nids[i]);
818 done = true;
819 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
820 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
821 if (IS_ERR(npage[i])) {
822 err = PTR_ERR(npage[i]);
823 goto release_pages;
824 }
825 done = true;
826 }
827 if (i == 1) {
828 dn->inode_page_locked = false;
829 unlock_page(parent);
830 } else {
831 f2fs_put_page(parent, 1);
832 }
833
834 if (!done) {
835 npage[i] = f2fs_get_node_page(sbi, nids[i]);
836 if (IS_ERR(npage[i])) {
837 err = PTR_ERR(npage[i]);
838 f2fs_put_page(npage[0], 0);
839 goto release_out;
840 }
841 }
842 if (i < level) {
843 parent = npage[i];
844 nids[i + 1] = get_nid(parent, offset[i], false);
845 }
846 }
847 dn->nid = nids[level];
848 dn->ofs_in_node = offset[level];
849 dn->node_page = npage[level];
850 dn->data_blkaddr = f2fs_data_blkaddr(dn);
851
852 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
853 f2fs_sb_has_readonly(sbi)) {
854 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
855 block_t blkaddr;
856
857 if (!c_len)
858 goto out;
859
860 blkaddr = f2fs_data_blkaddr(dn);
861 if (blkaddr == COMPRESS_ADDR)
862 blkaddr = data_blkaddr(dn->inode, dn->node_page,
863 dn->ofs_in_node + 1);
864
865 f2fs_update_extent_tree_range_compressed(dn->inode,
866 index, blkaddr,
867 F2FS_I(dn->inode)->i_cluster_size,
868 c_len);
869 }
870out:
871 return 0;
872
873release_pages:
874 f2fs_put_page(parent, 1);
875 if (i > 1)
876 f2fs_put_page(npage[0], 0);
877release_out:
878 dn->inode_page = NULL;
879 dn->node_page = NULL;
880 if (err == -ENOENT) {
881 dn->cur_level = i;
882 dn->max_level = level;
883 dn->ofs_in_node = offset[level];
884 }
885 return err;
886}
887
888static int truncate_node(struct dnode_of_data *dn)
889{
890 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
891 struct node_info ni;
892 int err;
893 pgoff_t index;
894
895 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
896 if (err)
897 return err;
898
899 /* Deallocate node address */
900 f2fs_invalidate_blocks(sbi, ni.blk_addr);
901 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
902 set_node_addr(sbi, &ni, NULL_ADDR, false);
903
904 if (dn->nid == dn->inode->i_ino) {
905 f2fs_remove_orphan_inode(sbi, dn->nid);
906 dec_valid_inode_count(sbi);
907 f2fs_inode_synced(dn->inode);
908 }
909
910 clear_node_page_dirty(dn->node_page);
911 set_sbi_flag(sbi, SBI_IS_DIRTY);
912
913 index = dn->node_page->index;
914 f2fs_put_page(dn->node_page, 1);
915
916 invalidate_mapping_pages(NODE_MAPPING(sbi),
917 index, index);
918
919 dn->node_page = NULL;
920 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
921
922 return 0;
923}
924
925static int truncate_dnode(struct dnode_of_data *dn)
926{
927 struct page *page;
928 int err;
929
930 if (dn->nid == 0)
931 return 1;
932
933 /* get direct node */
934 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
935 if (PTR_ERR(page) == -ENOENT)
936 return 1;
937 else if (IS_ERR(page))
938 return PTR_ERR(page);
939
940 /* Make dnode_of_data for parameter */
941 dn->node_page = page;
942 dn->ofs_in_node = 0;
943 f2fs_truncate_data_blocks(dn);
944 err = truncate_node(dn);
945 if (err)
946 return err;
947
948 return 1;
949}
950
951static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
952 int ofs, int depth)
953{
954 struct dnode_of_data rdn = *dn;
955 struct page *page;
956 struct f2fs_node *rn;
957 nid_t child_nid;
958 unsigned int child_nofs;
959 int freed = 0;
960 int i, ret;
961
962 if (dn->nid == 0)
963 return NIDS_PER_BLOCK + 1;
964
965 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
966
967 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
968 if (IS_ERR(page)) {
969 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
970 return PTR_ERR(page);
971 }
972
973 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
974
975 rn = F2FS_NODE(page);
976 if (depth < 3) {
977 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
978 child_nid = le32_to_cpu(rn->in.nid[i]);
979 if (child_nid == 0)
980 continue;
981 rdn.nid = child_nid;
982 ret = truncate_dnode(&rdn);
983 if (ret < 0)
984 goto out_err;
985 if (set_nid(page, i, 0, false))
986 dn->node_changed = true;
987 }
988 } else {
989 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
990 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
991 child_nid = le32_to_cpu(rn->in.nid[i]);
992 if (child_nid == 0) {
993 child_nofs += NIDS_PER_BLOCK + 1;
994 continue;
995 }
996 rdn.nid = child_nid;
997 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
998 if (ret == (NIDS_PER_BLOCK + 1)) {
999 if (set_nid(page, i, 0, false))
1000 dn->node_changed = true;
1001 child_nofs += ret;
1002 } else if (ret < 0 && ret != -ENOENT) {
1003 goto out_err;
1004 }
1005 }
1006 freed = child_nofs;
1007 }
1008
1009 if (!ofs) {
1010 /* remove current indirect node */
1011 dn->node_page = page;
1012 ret = truncate_node(dn);
1013 if (ret)
1014 goto out_err;
1015 freed++;
1016 } else {
1017 f2fs_put_page(page, 1);
1018 }
1019 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1020 return freed;
1021
1022out_err:
1023 f2fs_put_page(page, 1);
1024 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1025 return ret;
1026}
1027
1028static int truncate_partial_nodes(struct dnode_of_data *dn,
1029 struct f2fs_inode *ri, int *offset, int depth)
1030{
1031 struct page *pages[2];
1032 nid_t nid[3];
1033 nid_t child_nid;
1034 int err = 0;
1035 int i;
1036 int idx = depth - 2;
1037
1038 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1039 if (!nid[0])
1040 return 0;
1041
1042 /* get indirect nodes in the path */
1043 for (i = 0; i < idx + 1; i++) {
1044 /* reference count'll be increased */
1045 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1046 if (IS_ERR(pages[i])) {
1047 err = PTR_ERR(pages[i]);
1048 idx = i - 1;
1049 goto fail;
1050 }
1051 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1052 }
1053
1054 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1055
1056 /* free direct nodes linked to a partial indirect node */
1057 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1058 child_nid = get_nid(pages[idx], i, false);
1059 if (!child_nid)
1060 continue;
1061 dn->nid = child_nid;
1062 err = truncate_dnode(dn);
1063 if (err < 0)
1064 goto fail;
1065 if (set_nid(pages[idx], i, 0, false))
1066 dn->node_changed = true;
1067 }
1068
1069 if (offset[idx + 1] == 0) {
1070 dn->node_page = pages[idx];
1071 dn->nid = nid[idx];
1072 err = truncate_node(dn);
1073 if (err)
1074 goto fail;
1075 } else {
1076 f2fs_put_page(pages[idx], 1);
1077 }
1078 offset[idx]++;
1079 offset[idx + 1] = 0;
1080 idx--;
1081fail:
1082 for (i = idx; i >= 0; i--)
1083 f2fs_put_page(pages[i], 1);
1084
1085 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1086
1087 return err;
1088}
1089
1090/*
1091 * All the block addresses of data and nodes should be nullified.
1092 */
1093int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1094{
1095 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1096 int err = 0, cont = 1;
1097 int level, offset[4], noffset[4];
1098 unsigned int nofs = 0;
1099 struct f2fs_inode *ri;
1100 struct dnode_of_data dn;
1101 struct page *page;
1102
1103 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1104
1105 level = get_node_path(inode, from, offset, noffset);
1106 if (level < 0) {
1107 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1108 return level;
1109 }
1110
1111 page = f2fs_get_node_page(sbi, inode->i_ino);
1112 if (IS_ERR(page)) {
1113 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1114 return PTR_ERR(page);
1115 }
1116
1117 set_new_dnode(&dn, inode, page, NULL, 0);
1118 unlock_page(page);
1119
1120 ri = F2FS_INODE(page);
1121 switch (level) {
1122 case 0:
1123 case 1:
1124 nofs = noffset[1];
1125 break;
1126 case 2:
1127 nofs = noffset[1];
1128 if (!offset[level - 1])
1129 goto skip_partial;
1130 err = truncate_partial_nodes(&dn, ri, offset, level);
1131 if (err < 0 && err != -ENOENT)
1132 goto fail;
1133 nofs += 1 + NIDS_PER_BLOCK;
1134 break;
1135 case 3:
1136 nofs = 5 + 2 * NIDS_PER_BLOCK;
1137 if (!offset[level - 1])
1138 goto skip_partial;
1139 err = truncate_partial_nodes(&dn, ri, offset, level);
1140 if (err < 0 && err != -ENOENT)
1141 goto fail;
1142 break;
1143 default:
1144 BUG();
1145 }
1146
1147skip_partial:
1148 while (cont) {
1149 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1150 switch (offset[0]) {
1151 case NODE_DIR1_BLOCK:
1152 case NODE_DIR2_BLOCK:
1153 err = truncate_dnode(&dn);
1154 break;
1155
1156 case NODE_IND1_BLOCK:
1157 case NODE_IND2_BLOCK:
1158 err = truncate_nodes(&dn, nofs, offset[1], 2);
1159 break;
1160
1161 case NODE_DIND_BLOCK:
1162 err = truncate_nodes(&dn, nofs, offset[1], 3);
1163 cont = 0;
1164 break;
1165
1166 default:
1167 BUG();
1168 }
1169 if (err < 0 && err != -ENOENT)
1170 goto fail;
1171 if (offset[1] == 0 &&
1172 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1173 lock_page(page);
1174 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1175 f2fs_wait_on_page_writeback(page, NODE, true, true);
1176 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1177 set_page_dirty(page);
1178 unlock_page(page);
1179 }
1180 offset[1] = 0;
1181 offset[0]++;
1182 nofs += err;
1183 }
1184fail:
1185 f2fs_put_page(page, 0);
1186 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1187 return err > 0 ? 0 : err;
1188}
1189
1190/* caller must lock inode page */
1191int f2fs_truncate_xattr_node(struct inode *inode)
1192{
1193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1194 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1195 struct dnode_of_data dn;
1196 struct page *npage;
1197 int err;
1198
1199 if (!nid)
1200 return 0;
1201
1202 npage = f2fs_get_node_page(sbi, nid);
1203 if (IS_ERR(npage))
1204 return PTR_ERR(npage);
1205
1206 set_new_dnode(&dn, inode, NULL, npage, nid);
1207 err = truncate_node(&dn);
1208 if (err) {
1209 f2fs_put_page(npage, 1);
1210 return err;
1211 }
1212
1213 f2fs_i_xnid_write(inode, 0);
1214
1215 return 0;
1216}
1217
1218/*
1219 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1220 * f2fs_unlock_op().
1221 */
1222int f2fs_remove_inode_page(struct inode *inode)
1223{
1224 struct dnode_of_data dn;
1225 int err;
1226
1227 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1228 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1229 if (err)
1230 return err;
1231
1232 err = f2fs_truncate_xattr_node(inode);
1233 if (err) {
1234 f2fs_put_dnode(&dn);
1235 return err;
1236 }
1237
1238 /* remove potential inline_data blocks */
1239 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1240 S_ISLNK(inode->i_mode))
1241 f2fs_truncate_data_blocks_range(&dn, 1);
1242
1243 /* 0 is possible, after f2fs_new_inode() has failed */
1244 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1245 f2fs_put_dnode(&dn);
1246 return -EIO;
1247 }
1248
1249 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1250 f2fs_warn(F2FS_I_SB(inode),
1251 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1252 inode->i_ino, (unsigned long long)inode->i_blocks);
1253 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1254 }
1255
1256 /* will put inode & node pages */
1257 err = truncate_node(&dn);
1258 if (err) {
1259 f2fs_put_dnode(&dn);
1260 return err;
1261 }
1262 return 0;
1263}
1264
1265struct page *f2fs_new_inode_page(struct inode *inode)
1266{
1267 struct dnode_of_data dn;
1268
1269 /* allocate inode page for new inode */
1270 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1271
1272 /* caller should f2fs_put_page(page, 1); */
1273 return f2fs_new_node_page(&dn, 0);
1274}
1275
1276struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1277{
1278 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1279 struct node_info new_ni;
1280 struct page *page;
1281 int err;
1282
1283 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1284 return ERR_PTR(-EPERM);
1285
1286 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1287 if (!page)
1288 return ERR_PTR(-ENOMEM);
1289
1290 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1291 goto fail;
1292
1293#ifdef CONFIG_F2FS_CHECK_FS
1294 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1295 if (err) {
1296 dec_valid_node_count(sbi, dn->inode, !ofs);
1297 goto fail;
1298 }
1299 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1300#endif
1301 new_ni.nid = dn->nid;
1302 new_ni.ino = dn->inode->i_ino;
1303 new_ni.blk_addr = NULL_ADDR;
1304 new_ni.flag = 0;
1305 new_ni.version = 0;
1306 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1307
1308 f2fs_wait_on_page_writeback(page, NODE, true, true);
1309 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1310 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1311 if (!PageUptodate(page))
1312 SetPageUptodate(page);
1313 if (set_page_dirty(page))
1314 dn->node_changed = true;
1315
1316 if (f2fs_has_xattr_block(ofs))
1317 f2fs_i_xnid_write(dn->inode, dn->nid);
1318
1319 if (ofs == 0)
1320 inc_valid_inode_count(sbi);
1321 return page;
1322
1323fail:
1324 clear_node_page_dirty(page);
1325 f2fs_put_page(page, 1);
1326 return ERR_PTR(err);
1327}
1328
1329/*
1330 * Caller should do after getting the following values.
1331 * 0: f2fs_put_page(page, 0)
1332 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1333 */
1334static int read_node_page(struct page *page, int op_flags)
1335{
1336 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1337 struct node_info ni;
1338 struct f2fs_io_info fio = {
1339 .sbi = sbi,
1340 .type = NODE,
1341 .op = REQ_OP_READ,
1342 .op_flags = op_flags,
1343 .page = page,
1344 .encrypted_page = NULL,
1345 };
1346 int err;
1347
1348 if (PageUptodate(page)) {
1349 if (!f2fs_inode_chksum_verify(sbi, page)) {
1350 ClearPageUptodate(page);
1351 return -EFSBADCRC;
1352 }
1353 return LOCKED_PAGE;
1354 }
1355
1356 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1357 if (err)
1358 return err;
1359
1360 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1361 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1362 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1363 ClearPageUptodate(page);
1364 return -ENOENT;
1365 }
1366
1367 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1368
1369 err = f2fs_submit_page_bio(&fio);
1370
1371 if (!err)
1372 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1373
1374 return err;
1375}
1376
1377/*
1378 * Readahead a node page
1379 */
1380void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1381{
1382 struct page *apage;
1383 int err;
1384
1385 if (!nid)
1386 return;
1387 if (f2fs_check_nid_range(sbi, nid))
1388 return;
1389
1390 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1391 if (apage)
1392 return;
1393
1394 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1395 if (!apage)
1396 return;
1397
1398 err = read_node_page(apage, REQ_RAHEAD);
1399 f2fs_put_page(apage, err ? 1 : 0);
1400}
1401
1402static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1403 struct page *parent, int start)
1404{
1405 struct page *page;
1406 int err;
1407
1408 if (!nid)
1409 return ERR_PTR(-ENOENT);
1410 if (f2fs_check_nid_range(sbi, nid))
1411 return ERR_PTR(-EINVAL);
1412repeat:
1413 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1414 if (!page)
1415 return ERR_PTR(-ENOMEM);
1416
1417 err = read_node_page(page, 0);
1418 if (err < 0) {
1419 f2fs_put_page(page, 1);
1420 return ERR_PTR(err);
1421 } else if (err == LOCKED_PAGE) {
1422 err = 0;
1423 goto page_hit;
1424 }
1425
1426 if (parent)
1427 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1428
1429 lock_page(page);
1430
1431 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1432 f2fs_put_page(page, 1);
1433 goto repeat;
1434 }
1435
1436 if (unlikely(!PageUptodate(page))) {
1437 err = -EIO;
1438 goto out_err;
1439 }
1440
1441 if (!f2fs_inode_chksum_verify(sbi, page)) {
1442 err = -EFSBADCRC;
1443 goto out_err;
1444 }
1445page_hit:
1446 if (unlikely(nid != nid_of_node(page))) {
1447 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1448 nid, nid_of_node(page), ino_of_node(page),
1449 ofs_of_node(page), cpver_of_node(page),
1450 next_blkaddr_of_node(page));
1451 set_sbi_flag(sbi, SBI_NEED_FSCK);
1452 err = -EINVAL;
1453out_err:
1454 ClearPageUptodate(page);
1455 f2fs_put_page(page, 1);
1456 return ERR_PTR(err);
1457 }
1458 return page;
1459}
1460
1461struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1462{
1463 return __get_node_page(sbi, nid, NULL, 0);
1464}
1465
1466struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1467{
1468 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1469 nid_t nid = get_nid(parent, start, false);
1470
1471 return __get_node_page(sbi, nid, parent, start);
1472}
1473
1474static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1475{
1476 struct inode *inode;
1477 struct page *page;
1478 int ret;
1479
1480 /* should flush inline_data before evict_inode */
1481 inode = ilookup(sbi->sb, ino);
1482 if (!inode)
1483 return;
1484
1485 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1486 FGP_LOCK|FGP_NOWAIT, 0);
1487 if (!page)
1488 goto iput_out;
1489
1490 if (!PageUptodate(page))
1491 goto page_out;
1492
1493 if (!PageDirty(page))
1494 goto page_out;
1495
1496 if (!clear_page_dirty_for_io(page))
1497 goto page_out;
1498
1499 ret = f2fs_write_inline_data(inode, page);
1500 inode_dec_dirty_pages(inode);
1501 f2fs_remove_dirty_inode(inode);
1502 if (ret)
1503 set_page_dirty(page);
1504page_out:
1505 f2fs_put_page(page, 1);
1506iput_out:
1507 iput(inode);
1508}
1509
1510static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1511{
1512 pgoff_t index;
1513 struct pagevec pvec;
1514 struct page *last_page = NULL;
1515 int nr_pages;
1516
1517 pagevec_init(&pvec);
1518 index = 0;
1519
1520 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1521 PAGECACHE_TAG_DIRTY))) {
1522 int i;
1523
1524 for (i = 0; i < nr_pages; i++) {
1525 struct page *page = pvec.pages[i];
1526
1527 if (unlikely(f2fs_cp_error(sbi))) {
1528 f2fs_put_page(last_page, 0);
1529 pagevec_release(&pvec);
1530 return ERR_PTR(-EIO);
1531 }
1532
1533 if (!IS_DNODE(page) || !is_cold_node(page))
1534 continue;
1535 if (ino_of_node(page) != ino)
1536 continue;
1537
1538 lock_page(page);
1539
1540 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1541continue_unlock:
1542 unlock_page(page);
1543 continue;
1544 }
1545 if (ino_of_node(page) != ino)
1546 goto continue_unlock;
1547
1548 if (!PageDirty(page)) {
1549 /* someone wrote it for us */
1550 goto continue_unlock;
1551 }
1552
1553 if (last_page)
1554 f2fs_put_page(last_page, 0);
1555
1556 get_page(page);
1557 last_page = page;
1558 unlock_page(page);
1559 }
1560 pagevec_release(&pvec);
1561 cond_resched();
1562 }
1563 return last_page;
1564}
1565
1566static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1567 struct writeback_control *wbc, bool do_balance,
1568 enum iostat_type io_type, unsigned int *seq_id)
1569{
1570 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1571 nid_t nid;
1572 struct node_info ni;
1573 struct f2fs_io_info fio = {
1574 .sbi = sbi,
1575 .ino = ino_of_node(page),
1576 .type = NODE,
1577 .op = REQ_OP_WRITE,
1578 .op_flags = wbc_to_write_flags(wbc),
1579 .page = page,
1580 .encrypted_page = NULL,
1581 .submitted = false,
1582 .io_type = io_type,
1583 .io_wbc = wbc,
1584 };
1585 unsigned int seq;
1586
1587 trace_f2fs_writepage(page, NODE);
1588
1589 if (unlikely(f2fs_cp_error(sbi))) {
1590 ClearPageUptodate(page);
1591 dec_page_count(sbi, F2FS_DIRTY_NODES);
1592 unlock_page(page);
1593 return 0;
1594 }
1595
1596 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1597 goto redirty_out;
1598
1599 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1600 wbc->sync_mode == WB_SYNC_NONE &&
1601 IS_DNODE(page) && is_cold_node(page))
1602 goto redirty_out;
1603
1604 /* get old block addr of this node page */
1605 nid = nid_of_node(page);
1606 f2fs_bug_on(sbi, page->index != nid);
1607
1608 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1609 goto redirty_out;
1610
1611 if (wbc->for_reclaim) {
1612 if (!down_read_trylock(&sbi->node_write))
1613 goto redirty_out;
1614 } else {
1615 down_read(&sbi->node_write);
1616 }
1617
1618 /* This page is already truncated */
1619 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1620 ClearPageUptodate(page);
1621 dec_page_count(sbi, F2FS_DIRTY_NODES);
1622 up_read(&sbi->node_write);
1623 unlock_page(page);
1624 return 0;
1625 }
1626
1627 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1628 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1629 DATA_GENERIC_ENHANCE)) {
1630 up_read(&sbi->node_write);
1631 goto redirty_out;
1632 }
1633
1634 if (atomic && !test_opt(sbi, NOBARRIER))
1635 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1636
1637 /* should add to global list before clearing PAGECACHE status */
1638 if (f2fs_in_warm_node_list(sbi, page)) {
1639 seq = f2fs_add_fsync_node_entry(sbi, page);
1640 if (seq_id)
1641 *seq_id = seq;
1642 }
1643
1644 set_page_writeback(page);
1645 ClearPageError(page);
1646
1647 fio.old_blkaddr = ni.blk_addr;
1648 f2fs_do_write_node_page(nid, &fio);
1649 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1650 dec_page_count(sbi, F2FS_DIRTY_NODES);
1651 up_read(&sbi->node_write);
1652
1653 if (wbc->for_reclaim) {
1654 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1655 submitted = NULL;
1656 }
1657
1658 unlock_page(page);
1659
1660 if (unlikely(f2fs_cp_error(sbi))) {
1661 f2fs_submit_merged_write(sbi, NODE);
1662 submitted = NULL;
1663 }
1664 if (submitted)
1665 *submitted = fio.submitted;
1666
1667 if (do_balance)
1668 f2fs_balance_fs(sbi, false);
1669 return 0;
1670
1671redirty_out:
1672 redirty_page_for_writepage(wbc, page);
1673 return AOP_WRITEPAGE_ACTIVATE;
1674}
1675
1676int f2fs_move_node_page(struct page *node_page, int gc_type)
1677{
1678 int err = 0;
1679
1680 if (gc_type == FG_GC) {
1681 struct writeback_control wbc = {
1682 .sync_mode = WB_SYNC_ALL,
1683 .nr_to_write = 1,
1684 .for_reclaim = 0,
1685 };
1686
1687 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1688
1689 set_page_dirty(node_page);
1690
1691 if (!clear_page_dirty_for_io(node_page)) {
1692 err = -EAGAIN;
1693 goto out_page;
1694 }
1695
1696 if (__write_node_page(node_page, false, NULL,
1697 &wbc, false, FS_GC_NODE_IO, NULL)) {
1698 err = -EAGAIN;
1699 unlock_page(node_page);
1700 }
1701 goto release_page;
1702 } else {
1703 /* set page dirty and write it */
1704 if (!PageWriteback(node_page))
1705 set_page_dirty(node_page);
1706 }
1707out_page:
1708 unlock_page(node_page);
1709release_page:
1710 f2fs_put_page(node_page, 0);
1711 return err;
1712}
1713
1714static int f2fs_write_node_page(struct page *page,
1715 struct writeback_control *wbc)
1716{
1717 return __write_node_page(page, false, NULL, wbc, false,
1718 FS_NODE_IO, NULL);
1719}
1720
1721int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1722 struct writeback_control *wbc, bool atomic,
1723 unsigned int *seq_id)
1724{
1725 pgoff_t index;
1726 struct pagevec pvec;
1727 int ret = 0;
1728 struct page *last_page = NULL;
1729 bool marked = false;
1730 nid_t ino = inode->i_ino;
1731 int nr_pages;
1732 int nwritten = 0;
1733
1734 if (atomic) {
1735 last_page = last_fsync_dnode(sbi, ino);
1736 if (IS_ERR_OR_NULL(last_page))
1737 return PTR_ERR_OR_ZERO(last_page);
1738 }
1739retry:
1740 pagevec_init(&pvec);
1741 index = 0;
1742
1743 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1744 PAGECACHE_TAG_DIRTY))) {
1745 int i;
1746
1747 for (i = 0; i < nr_pages; i++) {
1748 struct page *page = pvec.pages[i];
1749 bool submitted = false;
1750
1751 if (unlikely(f2fs_cp_error(sbi))) {
1752 f2fs_put_page(last_page, 0);
1753 pagevec_release(&pvec);
1754 ret = -EIO;
1755 goto out;
1756 }
1757
1758 if (!IS_DNODE(page) || !is_cold_node(page))
1759 continue;
1760 if (ino_of_node(page) != ino)
1761 continue;
1762
1763 lock_page(page);
1764
1765 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1766continue_unlock:
1767 unlock_page(page);
1768 continue;
1769 }
1770 if (ino_of_node(page) != ino)
1771 goto continue_unlock;
1772
1773 if (!PageDirty(page) && page != last_page) {
1774 /* someone wrote it for us */
1775 goto continue_unlock;
1776 }
1777
1778 f2fs_wait_on_page_writeback(page, NODE, true, true);
1779
1780 set_fsync_mark(page, 0);
1781 set_dentry_mark(page, 0);
1782
1783 if (!atomic || page == last_page) {
1784 set_fsync_mark(page, 1);
1785 if (IS_INODE(page)) {
1786 if (is_inode_flag_set(inode,
1787 FI_DIRTY_INODE))
1788 f2fs_update_inode(inode, page);
1789 set_dentry_mark(page,
1790 f2fs_need_dentry_mark(sbi, ino));
1791 }
1792 /* may be written by other thread */
1793 if (!PageDirty(page))
1794 set_page_dirty(page);
1795 }
1796
1797 if (!clear_page_dirty_for_io(page))
1798 goto continue_unlock;
1799
1800 ret = __write_node_page(page, atomic &&
1801 page == last_page,
1802 &submitted, wbc, true,
1803 FS_NODE_IO, seq_id);
1804 if (ret) {
1805 unlock_page(page);
1806 f2fs_put_page(last_page, 0);
1807 break;
1808 } else if (submitted) {
1809 nwritten++;
1810 }
1811
1812 if (page == last_page) {
1813 f2fs_put_page(page, 0);
1814 marked = true;
1815 break;
1816 }
1817 }
1818 pagevec_release(&pvec);
1819 cond_resched();
1820
1821 if (ret || marked)
1822 break;
1823 }
1824 if (!ret && atomic && !marked) {
1825 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1826 ino, last_page->index);
1827 lock_page(last_page);
1828 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1829 set_page_dirty(last_page);
1830 unlock_page(last_page);
1831 goto retry;
1832 }
1833out:
1834 if (nwritten)
1835 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1836 return ret ? -EIO : 0;
1837}
1838
1839static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1840{
1841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842 bool clean;
1843
1844 if (inode->i_ino != ino)
1845 return 0;
1846
1847 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1848 return 0;
1849
1850 spin_lock(&sbi->inode_lock[DIRTY_META]);
1851 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1852 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1853
1854 if (clean)
1855 return 0;
1856
1857 inode = igrab(inode);
1858 if (!inode)
1859 return 0;
1860 return 1;
1861}
1862
1863static bool flush_dirty_inode(struct page *page)
1864{
1865 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1866 struct inode *inode;
1867 nid_t ino = ino_of_node(page);
1868
1869 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1870 if (!inode)
1871 return false;
1872
1873 f2fs_update_inode(inode, page);
1874 unlock_page(page);
1875
1876 iput(inode);
1877 return true;
1878}
1879
1880void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1881{
1882 pgoff_t index = 0;
1883 struct pagevec pvec;
1884 int nr_pages;
1885
1886 pagevec_init(&pvec);
1887
1888 while ((nr_pages = pagevec_lookup_tag(&pvec,
1889 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1890 int i;
1891
1892 for (i = 0; i < nr_pages; i++) {
1893 struct page *page = pvec.pages[i];
1894
1895 if (!IS_DNODE(page))
1896 continue;
1897
1898 lock_page(page);
1899
1900 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1901continue_unlock:
1902 unlock_page(page);
1903 continue;
1904 }
1905
1906 if (!PageDirty(page)) {
1907 /* someone wrote it for us */
1908 goto continue_unlock;
1909 }
1910
1911 /* flush inline_data, if it's async context. */
1912 if (page_private_inline(page)) {
1913 clear_page_private_inline(page);
1914 unlock_page(page);
1915 flush_inline_data(sbi, ino_of_node(page));
1916 continue;
1917 }
1918 unlock_page(page);
1919 }
1920 pagevec_release(&pvec);
1921 cond_resched();
1922 }
1923}
1924
1925int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1926 struct writeback_control *wbc,
1927 bool do_balance, enum iostat_type io_type)
1928{
1929 pgoff_t index;
1930 struct pagevec pvec;
1931 int step = 0;
1932 int nwritten = 0;
1933 int ret = 0;
1934 int nr_pages, done = 0;
1935
1936 pagevec_init(&pvec);
1937
1938next_step:
1939 index = 0;
1940
1941 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1942 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1943 int i;
1944
1945 for (i = 0; i < nr_pages; i++) {
1946 struct page *page = pvec.pages[i];
1947 bool submitted = false;
1948 bool may_dirty = true;
1949
1950 /* give a priority to WB_SYNC threads */
1951 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1952 wbc->sync_mode == WB_SYNC_NONE) {
1953 done = 1;
1954 break;
1955 }
1956
1957 /*
1958 * flushing sequence with step:
1959 * 0. indirect nodes
1960 * 1. dentry dnodes
1961 * 2. file dnodes
1962 */
1963 if (step == 0 && IS_DNODE(page))
1964 continue;
1965 if (step == 1 && (!IS_DNODE(page) ||
1966 is_cold_node(page)))
1967 continue;
1968 if (step == 2 && (!IS_DNODE(page) ||
1969 !is_cold_node(page)))
1970 continue;
1971lock_node:
1972 if (wbc->sync_mode == WB_SYNC_ALL)
1973 lock_page(page);
1974 else if (!trylock_page(page))
1975 continue;
1976
1977 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1978continue_unlock:
1979 unlock_page(page);
1980 continue;
1981 }
1982
1983 if (!PageDirty(page)) {
1984 /* someone wrote it for us */
1985 goto continue_unlock;
1986 }
1987
1988 /* flush inline_data/inode, if it's async context. */
1989 if (!do_balance)
1990 goto write_node;
1991
1992 /* flush inline_data */
1993 if (page_private_inline(page)) {
1994 clear_page_private_inline(page);
1995 unlock_page(page);
1996 flush_inline_data(sbi, ino_of_node(page));
1997 goto lock_node;
1998 }
1999
2000 /* flush dirty inode */
2001 if (IS_INODE(page) && may_dirty) {
2002 may_dirty = false;
2003 if (flush_dirty_inode(page))
2004 goto lock_node;
2005 }
2006write_node:
2007 f2fs_wait_on_page_writeback(page, NODE, true, true);
2008
2009 if (!clear_page_dirty_for_io(page))
2010 goto continue_unlock;
2011
2012 set_fsync_mark(page, 0);
2013 set_dentry_mark(page, 0);
2014
2015 ret = __write_node_page(page, false, &submitted,
2016 wbc, do_balance, io_type, NULL);
2017 if (ret)
2018 unlock_page(page);
2019 else if (submitted)
2020 nwritten++;
2021
2022 if (--wbc->nr_to_write == 0)
2023 break;
2024 }
2025 pagevec_release(&pvec);
2026 cond_resched();
2027
2028 if (wbc->nr_to_write == 0) {
2029 step = 2;
2030 break;
2031 }
2032 }
2033
2034 if (step < 2) {
2035 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2036 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2037 goto out;
2038 step++;
2039 goto next_step;
2040 }
2041out:
2042 if (nwritten)
2043 f2fs_submit_merged_write(sbi, NODE);
2044
2045 if (unlikely(f2fs_cp_error(sbi)))
2046 return -EIO;
2047 return ret;
2048}
2049
2050int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2051 unsigned int seq_id)
2052{
2053 struct fsync_node_entry *fn;
2054 struct page *page;
2055 struct list_head *head = &sbi->fsync_node_list;
2056 unsigned long flags;
2057 unsigned int cur_seq_id = 0;
2058 int ret2, ret = 0;
2059
2060 while (seq_id && cur_seq_id < seq_id) {
2061 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2062 if (list_empty(head)) {
2063 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2064 break;
2065 }
2066 fn = list_first_entry(head, struct fsync_node_entry, list);
2067 if (fn->seq_id > seq_id) {
2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069 break;
2070 }
2071 cur_seq_id = fn->seq_id;
2072 page = fn->page;
2073 get_page(page);
2074 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2075
2076 f2fs_wait_on_page_writeback(page, NODE, true, false);
2077 if (TestClearPageError(page))
2078 ret = -EIO;
2079
2080 put_page(page);
2081
2082 if (ret)
2083 break;
2084 }
2085
2086 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2087 if (!ret)
2088 ret = ret2;
2089
2090 return ret;
2091}
2092
2093static int f2fs_write_node_pages(struct address_space *mapping,
2094 struct writeback_control *wbc)
2095{
2096 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2097 struct blk_plug plug;
2098 long diff;
2099
2100 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2101 goto skip_write;
2102
2103 /* balancing f2fs's metadata in background */
2104 f2fs_balance_fs_bg(sbi, true);
2105
2106 /* collect a number of dirty node pages and write together */
2107 if (wbc->sync_mode != WB_SYNC_ALL &&
2108 get_pages(sbi, F2FS_DIRTY_NODES) <
2109 nr_pages_to_skip(sbi, NODE))
2110 goto skip_write;
2111
2112 if (wbc->sync_mode == WB_SYNC_ALL)
2113 atomic_inc(&sbi->wb_sync_req[NODE]);
2114 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2115 goto skip_write;
2116
2117 trace_f2fs_writepages(mapping->host, wbc, NODE);
2118
2119 diff = nr_pages_to_write(sbi, NODE, wbc);
2120 blk_start_plug(&plug);
2121 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2122 blk_finish_plug(&plug);
2123 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2124
2125 if (wbc->sync_mode == WB_SYNC_ALL)
2126 atomic_dec(&sbi->wb_sync_req[NODE]);
2127 return 0;
2128
2129skip_write:
2130 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2131 trace_f2fs_writepages(mapping->host, wbc, NODE);
2132 return 0;
2133}
2134
2135static int f2fs_set_node_page_dirty(struct page *page)
2136{
2137 trace_f2fs_set_page_dirty(page, NODE);
2138
2139 if (!PageUptodate(page))
2140 SetPageUptodate(page);
2141#ifdef CONFIG_F2FS_CHECK_FS
2142 if (IS_INODE(page))
2143 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2144#endif
2145 if (!PageDirty(page)) {
2146 __set_page_dirty_nobuffers(page);
2147 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2148 set_page_private_reference(page);
2149 return 1;
2150 }
2151 return 0;
2152}
2153
2154/*
2155 * Structure of the f2fs node operations
2156 */
2157const struct address_space_operations f2fs_node_aops = {
2158 .writepage = f2fs_write_node_page,
2159 .writepages = f2fs_write_node_pages,
2160 .set_page_dirty = f2fs_set_node_page_dirty,
2161 .invalidatepage = f2fs_invalidate_page,
2162 .releasepage = f2fs_release_page,
2163#ifdef CONFIG_MIGRATION
2164 .migratepage = f2fs_migrate_page,
2165#endif
2166};
2167
2168static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2169 nid_t n)
2170{
2171 return radix_tree_lookup(&nm_i->free_nid_root, n);
2172}
2173
2174static int __insert_free_nid(struct f2fs_sb_info *sbi,
2175 struct free_nid *i)
2176{
2177 struct f2fs_nm_info *nm_i = NM_I(sbi);
2178 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2179
2180 if (err)
2181 return err;
2182
2183 nm_i->nid_cnt[FREE_NID]++;
2184 list_add_tail(&i->list, &nm_i->free_nid_list);
2185 return 0;
2186}
2187
2188static void __remove_free_nid(struct f2fs_sb_info *sbi,
2189 struct free_nid *i, enum nid_state state)
2190{
2191 struct f2fs_nm_info *nm_i = NM_I(sbi);
2192
2193 f2fs_bug_on(sbi, state != i->state);
2194 nm_i->nid_cnt[state]--;
2195 if (state == FREE_NID)
2196 list_del(&i->list);
2197 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2198}
2199
2200static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2201 enum nid_state org_state, enum nid_state dst_state)
2202{
2203 struct f2fs_nm_info *nm_i = NM_I(sbi);
2204
2205 f2fs_bug_on(sbi, org_state != i->state);
2206 i->state = dst_state;
2207 nm_i->nid_cnt[org_state]--;
2208 nm_i->nid_cnt[dst_state]++;
2209
2210 switch (dst_state) {
2211 case PREALLOC_NID:
2212 list_del(&i->list);
2213 break;
2214 case FREE_NID:
2215 list_add_tail(&i->list, &nm_i->free_nid_list);
2216 break;
2217 default:
2218 BUG_ON(1);
2219 }
2220}
2221
2222bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2223{
2224 struct f2fs_nm_info *nm_i = NM_I(sbi);
2225 unsigned int i;
2226 bool ret = true;
2227
2228 down_read(&nm_i->nat_tree_lock);
2229 for (i = 0; i < nm_i->nat_blocks; i++) {
2230 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2231 ret = false;
2232 break;
2233 }
2234 }
2235 up_read(&nm_i->nat_tree_lock);
2236
2237 return ret;
2238}
2239
2240static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2241 bool set, bool build)
2242{
2243 struct f2fs_nm_info *nm_i = NM_I(sbi);
2244 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2245 unsigned int nid_ofs = nid - START_NID(nid);
2246
2247 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2248 return;
2249
2250 if (set) {
2251 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2252 return;
2253 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2254 nm_i->free_nid_count[nat_ofs]++;
2255 } else {
2256 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2257 return;
2258 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2259 if (!build)
2260 nm_i->free_nid_count[nat_ofs]--;
2261 }
2262}
2263
2264/* return if the nid is recognized as free */
2265static bool add_free_nid(struct f2fs_sb_info *sbi,
2266 nid_t nid, bool build, bool update)
2267{
2268 struct f2fs_nm_info *nm_i = NM_I(sbi);
2269 struct free_nid *i, *e;
2270 struct nat_entry *ne;
2271 int err = -EINVAL;
2272 bool ret = false;
2273
2274 /* 0 nid should not be used */
2275 if (unlikely(nid == 0))
2276 return false;
2277
2278 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2279 return false;
2280
2281 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2282 i->nid = nid;
2283 i->state = FREE_NID;
2284
2285 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2286
2287 spin_lock(&nm_i->nid_list_lock);
2288
2289 if (build) {
2290 /*
2291 * Thread A Thread B
2292 * - f2fs_create
2293 * - f2fs_new_inode
2294 * - f2fs_alloc_nid
2295 * - __insert_nid_to_list(PREALLOC_NID)
2296 * - f2fs_balance_fs_bg
2297 * - f2fs_build_free_nids
2298 * - __f2fs_build_free_nids
2299 * - scan_nat_page
2300 * - add_free_nid
2301 * - __lookup_nat_cache
2302 * - f2fs_add_link
2303 * - f2fs_init_inode_metadata
2304 * - f2fs_new_inode_page
2305 * - f2fs_new_node_page
2306 * - set_node_addr
2307 * - f2fs_alloc_nid_done
2308 * - __remove_nid_from_list(PREALLOC_NID)
2309 * - __insert_nid_to_list(FREE_NID)
2310 */
2311 ne = __lookup_nat_cache(nm_i, nid);
2312 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2313 nat_get_blkaddr(ne) != NULL_ADDR))
2314 goto err_out;
2315
2316 e = __lookup_free_nid_list(nm_i, nid);
2317 if (e) {
2318 if (e->state == FREE_NID)
2319 ret = true;
2320 goto err_out;
2321 }
2322 }
2323 ret = true;
2324 err = __insert_free_nid(sbi, i);
2325err_out:
2326 if (update) {
2327 update_free_nid_bitmap(sbi, nid, ret, build);
2328 if (!build)
2329 nm_i->available_nids++;
2330 }
2331 spin_unlock(&nm_i->nid_list_lock);
2332 radix_tree_preload_end();
2333
2334 if (err)
2335 kmem_cache_free(free_nid_slab, i);
2336 return ret;
2337}
2338
2339static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2340{
2341 struct f2fs_nm_info *nm_i = NM_I(sbi);
2342 struct free_nid *i;
2343 bool need_free = false;
2344
2345 spin_lock(&nm_i->nid_list_lock);
2346 i = __lookup_free_nid_list(nm_i, nid);
2347 if (i && i->state == FREE_NID) {
2348 __remove_free_nid(sbi, i, FREE_NID);
2349 need_free = true;
2350 }
2351 spin_unlock(&nm_i->nid_list_lock);
2352
2353 if (need_free)
2354 kmem_cache_free(free_nid_slab, i);
2355}
2356
2357static int scan_nat_page(struct f2fs_sb_info *sbi,
2358 struct page *nat_page, nid_t start_nid)
2359{
2360 struct f2fs_nm_info *nm_i = NM_I(sbi);
2361 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2362 block_t blk_addr;
2363 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2364 int i;
2365
2366 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2367
2368 i = start_nid % NAT_ENTRY_PER_BLOCK;
2369
2370 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2371 if (unlikely(start_nid >= nm_i->max_nid))
2372 break;
2373
2374 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2375
2376 if (blk_addr == NEW_ADDR)
2377 return -EINVAL;
2378
2379 if (blk_addr == NULL_ADDR) {
2380 add_free_nid(sbi, start_nid, true, true);
2381 } else {
2382 spin_lock(&NM_I(sbi)->nid_list_lock);
2383 update_free_nid_bitmap(sbi, start_nid, false, true);
2384 spin_unlock(&NM_I(sbi)->nid_list_lock);
2385 }
2386 }
2387
2388 return 0;
2389}
2390
2391static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2392{
2393 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2394 struct f2fs_journal *journal = curseg->journal;
2395 int i;
2396
2397 down_read(&curseg->journal_rwsem);
2398 for (i = 0; i < nats_in_cursum(journal); i++) {
2399 block_t addr;
2400 nid_t nid;
2401
2402 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2403 nid = le32_to_cpu(nid_in_journal(journal, i));
2404 if (addr == NULL_ADDR)
2405 add_free_nid(sbi, nid, true, false);
2406 else
2407 remove_free_nid(sbi, nid);
2408 }
2409 up_read(&curseg->journal_rwsem);
2410}
2411
2412static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2413{
2414 struct f2fs_nm_info *nm_i = NM_I(sbi);
2415 unsigned int i, idx;
2416 nid_t nid;
2417
2418 down_read(&nm_i->nat_tree_lock);
2419
2420 for (i = 0; i < nm_i->nat_blocks; i++) {
2421 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2422 continue;
2423 if (!nm_i->free_nid_count[i])
2424 continue;
2425 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2426 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2427 NAT_ENTRY_PER_BLOCK, idx);
2428 if (idx >= NAT_ENTRY_PER_BLOCK)
2429 break;
2430
2431 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2432 add_free_nid(sbi, nid, true, false);
2433
2434 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2435 goto out;
2436 }
2437 }
2438out:
2439 scan_curseg_cache(sbi);
2440
2441 up_read(&nm_i->nat_tree_lock);
2442}
2443
2444static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2445 bool sync, bool mount)
2446{
2447 struct f2fs_nm_info *nm_i = NM_I(sbi);
2448 int i = 0, ret;
2449 nid_t nid = nm_i->next_scan_nid;
2450
2451 if (unlikely(nid >= nm_i->max_nid))
2452 nid = 0;
2453
2454 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2455 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2456
2457 /* Enough entries */
2458 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2459 return 0;
2460
2461 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2462 return 0;
2463
2464 if (!mount) {
2465 /* try to find free nids in free_nid_bitmap */
2466 scan_free_nid_bits(sbi);
2467
2468 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2469 return 0;
2470 }
2471
2472 /* readahead nat pages to be scanned */
2473 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2474 META_NAT, true);
2475
2476 down_read(&nm_i->nat_tree_lock);
2477
2478 while (1) {
2479 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2480 nm_i->nat_block_bitmap)) {
2481 struct page *page = get_current_nat_page(sbi, nid);
2482
2483 if (IS_ERR(page)) {
2484 ret = PTR_ERR(page);
2485 } else {
2486 ret = scan_nat_page(sbi, page, nid);
2487 f2fs_put_page(page, 1);
2488 }
2489
2490 if (ret) {
2491 up_read(&nm_i->nat_tree_lock);
2492 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2493 return ret;
2494 }
2495 }
2496
2497 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2498 if (unlikely(nid >= nm_i->max_nid))
2499 nid = 0;
2500
2501 if (++i >= FREE_NID_PAGES)
2502 break;
2503 }
2504
2505 /* go to the next free nat pages to find free nids abundantly */
2506 nm_i->next_scan_nid = nid;
2507
2508 /* find free nids from current sum_pages */
2509 scan_curseg_cache(sbi);
2510
2511 up_read(&nm_i->nat_tree_lock);
2512
2513 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2514 nm_i->ra_nid_pages, META_NAT, false);
2515
2516 return 0;
2517}
2518
2519int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2520{
2521 int ret;
2522
2523 mutex_lock(&NM_I(sbi)->build_lock);
2524 ret = __f2fs_build_free_nids(sbi, sync, mount);
2525 mutex_unlock(&NM_I(sbi)->build_lock);
2526
2527 return ret;
2528}
2529
2530/*
2531 * If this function returns success, caller can obtain a new nid
2532 * from second parameter of this function.
2533 * The returned nid could be used ino as well as nid when inode is created.
2534 */
2535bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2536{
2537 struct f2fs_nm_info *nm_i = NM_I(sbi);
2538 struct free_nid *i = NULL;
2539retry:
2540 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2541 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2542 return false;
2543 }
2544
2545 spin_lock(&nm_i->nid_list_lock);
2546
2547 if (unlikely(nm_i->available_nids == 0)) {
2548 spin_unlock(&nm_i->nid_list_lock);
2549 return false;
2550 }
2551
2552 /* We should not use stale free nids created by f2fs_build_free_nids */
2553 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2554 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2555 i = list_first_entry(&nm_i->free_nid_list,
2556 struct free_nid, list);
2557 *nid = i->nid;
2558
2559 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2560 nm_i->available_nids--;
2561
2562 update_free_nid_bitmap(sbi, *nid, false, false);
2563
2564 spin_unlock(&nm_i->nid_list_lock);
2565 return true;
2566 }
2567 spin_unlock(&nm_i->nid_list_lock);
2568
2569 /* Let's scan nat pages and its caches to get free nids */
2570 if (!f2fs_build_free_nids(sbi, true, false))
2571 goto retry;
2572 return false;
2573}
2574
2575/*
2576 * f2fs_alloc_nid() should be called prior to this function.
2577 */
2578void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2579{
2580 struct f2fs_nm_info *nm_i = NM_I(sbi);
2581 struct free_nid *i;
2582
2583 spin_lock(&nm_i->nid_list_lock);
2584 i = __lookup_free_nid_list(nm_i, nid);
2585 f2fs_bug_on(sbi, !i);
2586 __remove_free_nid(sbi, i, PREALLOC_NID);
2587 spin_unlock(&nm_i->nid_list_lock);
2588
2589 kmem_cache_free(free_nid_slab, i);
2590}
2591
2592/*
2593 * f2fs_alloc_nid() should be called prior to this function.
2594 */
2595void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2596{
2597 struct f2fs_nm_info *nm_i = NM_I(sbi);
2598 struct free_nid *i;
2599 bool need_free = false;
2600
2601 if (!nid)
2602 return;
2603
2604 spin_lock(&nm_i->nid_list_lock);
2605 i = __lookup_free_nid_list(nm_i, nid);
2606 f2fs_bug_on(sbi, !i);
2607
2608 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2609 __remove_free_nid(sbi, i, PREALLOC_NID);
2610 need_free = true;
2611 } else {
2612 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2613 }
2614
2615 nm_i->available_nids++;
2616
2617 update_free_nid_bitmap(sbi, nid, true, false);
2618
2619 spin_unlock(&nm_i->nid_list_lock);
2620
2621 if (need_free)
2622 kmem_cache_free(free_nid_slab, i);
2623}
2624
2625int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2626{
2627 struct f2fs_nm_info *nm_i = NM_I(sbi);
2628 int nr = nr_shrink;
2629
2630 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2631 return 0;
2632
2633 if (!mutex_trylock(&nm_i->build_lock))
2634 return 0;
2635
2636 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2637 struct free_nid *i, *next;
2638 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2639
2640 spin_lock(&nm_i->nid_list_lock);
2641 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2642 if (!nr_shrink || !batch ||
2643 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2644 break;
2645 __remove_free_nid(sbi, i, FREE_NID);
2646 kmem_cache_free(free_nid_slab, i);
2647 nr_shrink--;
2648 batch--;
2649 }
2650 spin_unlock(&nm_i->nid_list_lock);
2651 }
2652
2653 mutex_unlock(&nm_i->build_lock);
2654
2655 return nr - nr_shrink;
2656}
2657
2658int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2659{
2660 void *src_addr, *dst_addr;
2661 size_t inline_size;
2662 struct page *ipage;
2663 struct f2fs_inode *ri;
2664
2665 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2666 if (IS_ERR(ipage))
2667 return PTR_ERR(ipage);
2668
2669 ri = F2FS_INODE(page);
2670 if (ri->i_inline & F2FS_INLINE_XATTR) {
2671 if (!f2fs_has_inline_xattr(inode)) {
2672 set_inode_flag(inode, FI_INLINE_XATTR);
2673 stat_inc_inline_xattr(inode);
2674 }
2675 } else {
2676 if (f2fs_has_inline_xattr(inode)) {
2677 stat_dec_inline_xattr(inode);
2678 clear_inode_flag(inode, FI_INLINE_XATTR);
2679 }
2680 goto update_inode;
2681 }
2682
2683 dst_addr = inline_xattr_addr(inode, ipage);
2684 src_addr = inline_xattr_addr(inode, page);
2685 inline_size = inline_xattr_size(inode);
2686
2687 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2688 memcpy(dst_addr, src_addr, inline_size);
2689update_inode:
2690 f2fs_update_inode(inode, ipage);
2691 f2fs_put_page(ipage, 1);
2692 return 0;
2693}
2694
2695int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2696{
2697 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2698 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2699 nid_t new_xnid;
2700 struct dnode_of_data dn;
2701 struct node_info ni;
2702 struct page *xpage;
2703 int err;
2704
2705 if (!prev_xnid)
2706 goto recover_xnid;
2707
2708 /* 1: invalidate the previous xattr nid */
2709 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2710 if (err)
2711 return err;
2712
2713 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2714 dec_valid_node_count(sbi, inode, false);
2715 set_node_addr(sbi, &ni, NULL_ADDR, false);
2716
2717recover_xnid:
2718 /* 2: update xattr nid in inode */
2719 if (!f2fs_alloc_nid(sbi, &new_xnid))
2720 return -ENOSPC;
2721
2722 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2723 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2724 if (IS_ERR(xpage)) {
2725 f2fs_alloc_nid_failed(sbi, new_xnid);
2726 return PTR_ERR(xpage);
2727 }
2728
2729 f2fs_alloc_nid_done(sbi, new_xnid);
2730 f2fs_update_inode_page(inode);
2731
2732 /* 3: update and set xattr node page dirty */
2733 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2734
2735 set_page_dirty(xpage);
2736 f2fs_put_page(xpage, 1);
2737
2738 return 0;
2739}
2740
2741int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2742{
2743 struct f2fs_inode *src, *dst;
2744 nid_t ino = ino_of_node(page);
2745 struct node_info old_ni, new_ni;
2746 struct page *ipage;
2747 int err;
2748
2749 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2750 if (err)
2751 return err;
2752
2753 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2754 return -EINVAL;
2755retry:
2756 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2757 if (!ipage) {
2758 memalloc_retry_wait(GFP_NOFS);
2759 goto retry;
2760 }
2761
2762 /* Should not use this inode from free nid list */
2763 remove_free_nid(sbi, ino);
2764
2765 if (!PageUptodate(ipage))
2766 SetPageUptodate(ipage);
2767 fill_node_footer(ipage, ino, ino, 0, true);
2768 set_cold_node(ipage, false);
2769
2770 src = F2FS_INODE(page);
2771 dst = F2FS_INODE(ipage);
2772
2773 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2774 dst->i_size = 0;
2775 dst->i_blocks = cpu_to_le64(1);
2776 dst->i_links = cpu_to_le32(1);
2777 dst->i_xattr_nid = 0;
2778 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2779 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2780 dst->i_extra_isize = src->i_extra_isize;
2781
2782 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2783 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2784 i_inline_xattr_size))
2785 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2786
2787 if (f2fs_sb_has_project_quota(sbi) &&
2788 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2789 i_projid))
2790 dst->i_projid = src->i_projid;
2791
2792 if (f2fs_sb_has_inode_crtime(sbi) &&
2793 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2794 i_crtime_nsec)) {
2795 dst->i_crtime = src->i_crtime;
2796 dst->i_crtime_nsec = src->i_crtime_nsec;
2797 }
2798 }
2799
2800 new_ni = old_ni;
2801 new_ni.ino = ino;
2802
2803 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2804 WARN_ON(1);
2805 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2806 inc_valid_inode_count(sbi);
2807 set_page_dirty(ipage);
2808 f2fs_put_page(ipage, 1);
2809 return 0;
2810}
2811
2812int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2813 unsigned int segno, struct f2fs_summary_block *sum)
2814{
2815 struct f2fs_node *rn;
2816 struct f2fs_summary *sum_entry;
2817 block_t addr;
2818 int i, idx, last_offset, nrpages;
2819
2820 /* scan the node segment */
2821 last_offset = sbi->blocks_per_seg;
2822 addr = START_BLOCK(sbi, segno);
2823 sum_entry = &sum->entries[0];
2824
2825 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2826 nrpages = bio_max_segs(last_offset - i);
2827
2828 /* readahead node pages */
2829 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2830
2831 for (idx = addr; idx < addr + nrpages; idx++) {
2832 struct page *page = f2fs_get_tmp_page(sbi, idx);
2833
2834 if (IS_ERR(page))
2835 return PTR_ERR(page);
2836
2837 rn = F2FS_NODE(page);
2838 sum_entry->nid = rn->footer.nid;
2839 sum_entry->version = 0;
2840 sum_entry->ofs_in_node = 0;
2841 sum_entry++;
2842 f2fs_put_page(page, 1);
2843 }
2844
2845 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2846 addr + nrpages);
2847 }
2848 return 0;
2849}
2850
2851static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2852{
2853 struct f2fs_nm_info *nm_i = NM_I(sbi);
2854 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2855 struct f2fs_journal *journal = curseg->journal;
2856 int i;
2857
2858 down_write(&curseg->journal_rwsem);
2859 for (i = 0; i < nats_in_cursum(journal); i++) {
2860 struct nat_entry *ne;
2861 struct f2fs_nat_entry raw_ne;
2862 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2863
2864 if (f2fs_check_nid_range(sbi, nid))
2865 continue;
2866
2867 raw_ne = nat_in_journal(journal, i);
2868
2869 ne = __lookup_nat_cache(nm_i, nid);
2870 if (!ne) {
2871 ne = __alloc_nat_entry(sbi, nid, true);
2872 __init_nat_entry(nm_i, ne, &raw_ne, true);
2873 }
2874
2875 /*
2876 * if a free nat in journal has not been used after last
2877 * checkpoint, we should remove it from available nids,
2878 * since later we will add it again.
2879 */
2880 if (!get_nat_flag(ne, IS_DIRTY) &&
2881 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2882 spin_lock(&nm_i->nid_list_lock);
2883 nm_i->available_nids--;
2884 spin_unlock(&nm_i->nid_list_lock);
2885 }
2886
2887 __set_nat_cache_dirty(nm_i, ne);
2888 }
2889 update_nats_in_cursum(journal, -i);
2890 up_write(&curseg->journal_rwsem);
2891}
2892
2893static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2894 struct list_head *head, int max)
2895{
2896 struct nat_entry_set *cur;
2897
2898 if (nes->entry_cnt >= max)
2899 goto add_out;
2900
2901 list_for_each_entry(cur, head, set_list) {
2902 if (cur->entry_cnt >= nes->entry_cnt) {
2903 list_add(&nes->set_list, cur->set_list.prev);
2904 return;
2905 }
2906 }
2907add_out:
2908 list_add_tail(&nes->set_list, head);
2909}
2910
2911static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2912 unsigned int valid)
2913{
2914 if (valid == 0) {
2915 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2916 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2917 return;
2918 }
2919
2920 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2921 if (valid == NAT_ENTRY_PER_BLOCK)
2922 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2923 else
2924 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2925}
2926
2927static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2928 struct page *page)
2929{
2930 struct f2fs_nm_info *nm_i = NM_I(sbi);
2931 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2932 struct f2fs_nat_block *nat_blk = page_address(page);
2933 int valid = 0;
2934 int i = 0;
2935
2936 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2937 return;
2938
2939 if (nat_index == 0) {
2940 valid = 1;
2941 i = 1;
2942 }
2943 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2944 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2945 valid++;
2946 }
2947
2948 __update_nat_bits(nm_i, nat_index, valid);
2949}
2950
2951void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2952{
2953 struct f2fs_nm_info *nm_i = NM_I(sbi);
2954 unsigned int nat_ofs;
2955
2956 down_read(&nm_i->nat_tree_lock);
2957
2958 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2959 unsigned int valid = 0, nid_ofs = 0;
2960
2961 /* handle nid zero due to it should never be used */
2962 if (unlikely(nat_ofs == 0)) {
2963 valid = 1;
2964 nid_ofs = 1;
2965 }
2966
2967 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2968 if (!test_bit_le(nid_ofs,
2969 nm_i->free_nid_bitmap[nat_ofs]))
2970 valid++;
2971 }
2972
2973 __update_nat_bits(nm_i, nat_ofs, valid);
2974 }
2975
2976 up_read(&nm_i->nat_tree_lock);
2977}
2978
2979static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2980 struct nat_entry_set *set, struct cp_control *cpc)
2981{
2982 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2983 struct f2fs_journal *journal = curseg->journal;
2984 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2985 bool to_journal = true;
2986 struct f2fs_nat_block *nat_blk;
2987 struct nat_entry *ne, *cur;
2988 struct page *page = NULL;
2989
2990 /*
2991 * there are two steps to flush nat entries:
2992 * #1, flush nat entries to journal in current hot data summary block.
2993 * #2, flush nat entries to nat page.
2994 */
2995 if ((cpc->reason & CP_UMOUNT) ||
2996 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2997 to_journal = false;
2998
2999 if (to_journal) {
3000 down_write(&curseg->journal_rwsem);
3001 } else {
3002 page = get_next_nat_page(sbi, start_nid);
3003 if (IS_ERR(page))
3004 return PTR_ERR(page);
3005
3006 nat_blk = page_address(page);
3007 f2fs_bug_on(sbi, !nat_blk);
3008 }
3009
3010 /* flush dirty nats in nat entry set */
3011 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3012 struct f2fs_nat_entry *raw_ne;
3013 nid_t nid = nat_get_nid(ne);
3014 int offset;
3015
3016 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3017
3018 if (to_journal) {
3019 offset = f2fs_lookup_journal_in_cursum(journal,
3020 NAT_JOURNAL, nid, 1);
3021 f2fs_bug_on(sbi, offset < 0);
3022 raw_ne = &nat_in_journal(journal, offset);
3023 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3024 } else {
3025 raw_ne = &nat_blk->entries[nid - start_nid];
3026 }
3027 raw_nat_from_node_info(raw_ne, &ne->ni);
3028 nat_reset_flag(ne);
3029 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3030 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3031 add_free_nid(sbi, nid, false, true);
3032 } else {
3033 spin_lock(&NM_I(sbi)->nid_list_lock);
3034 update_free_nid_bitmap(sbi, nid, false, false);
3035 spin_unlock(&NM_I(sbi)->nid_list_lock);
3036 }
3037 }
3038
3039 if (to_journal) {
3040 up_write(&curseg->journal_rwsem);
3041 } else {
3042 update_nat_bits(sbi, start_nid, page);
3043 f2fs_put_page(page, 1);
3044 }
3045
3046 /* Allow dirty nats by node block allocation in write_begin */
3047 if (!set->entry_cnt) {
3048 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3049 kmem_cache_free(nat_entry_set_slab, set);
3050 }
3051 return 0;
3052}
3053
3054/*
3055 * This function is called during the checkpointing process.
3056 */
3057int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3058{
3059 struct f2fs_nm_info *nm_i = NM_I(sbi);
3060 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3061 struct f2fs_journal *journal = curseg->journal;
3062 struct nat_entry_set *setvec[SETVEC_SIZE];
3063 struct nat_entry_set *set, *tmp;
3064 unsigned int found;
3065 nid_t set_idx = 0;
3066 LIST_HEAD(sets);
3067 int err = 0;
3068
3069 /*
3070 * during unmount, let's flush nat_bits before checking
3071 * nat_cnt[DIRTY_NAT].
3072 */
3073 if (cpc->reason & CP_UMOUNT) {
3074 down_write(&nm_i->nat_tree_lock);
3075 remove_nats_in_journal(sbi);
3076 up_write(&nm_i->nat_tree_lock);
3077 }
3078
3079 if (!nm_i->nat_cnt[DIRTY_NAT])
3080 return 0;
3081
3082 down_write(&nm_i->nat_tree_lock);
3083
3084 /*
3085 * if there are no enough space in journal to store dirty nat
3086 * entries, remove all entries from journal and merge them
3087 * into nat entry set.
3088 */
3089 if (cpc->reason & CP_UMOUNT ||
3090 !__has_cursum_space(journal,
3091 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3092 remove_nats_in_journal(sbi);
3093
3094 while ((found = __gang_lookup_nat_set(nm_i,
3095 set_idx, SETVEC_SIZE, setvec))) {
3096 unsigned idx;
3097
3098 set_idx = setvec[found - 1]->set + 1;
3099 for (idx = 0; idx < found; idx++)
3100 __adjust_nat_entry_set(setvec[idx], &sets,
3101 MAX_NAT_JENTRIES(journal));
3102 }
3103
3104 /* flush dirty nats in nat entry set */
3105 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3106 err = __flush_nat_entry_set(sbi, set, cpc);
3107 if (err)
3108 break;
3109 }
3110
3111 up_write(&nm_i->nat_tree_lock);
3112 /* Allow dirty nats by node block allocation in write_begin */
3113
3114 return err;
3115}
3116
3117static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3118{
3119 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3120 struct f2fs_nm_info *nm_i = NM_I(sbi);
3121 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3122 unsigned int i;
3123 __u64 cp_ver = cur_cp_version(ckpt);
3124 block_t nat_bits_addr;
3125
3126 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3127 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3128 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3129 if (!nm_i->nat_bits)
3130 return -ENOMEM;
3131
3132 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3133 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3134
3135 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3136 return 0;
3137
3138 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3139 nm_i->nat_bits_blocks;
3140 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3141 struct page *page;
3142
3143 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3144 if (IS_ERR(page))
3145 return PTR_ERR(page);
3146
3147 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3148 page_address(page), F2FS_BLKSIZE);
3149 f2fs_put_page(page, 1);
3150 }
3151
3152 cp_ver |= (cur_cp_crc(ckpt) << 32);
3153 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3154 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3155 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3156 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3157 return 0;
3158 }
3159
3160 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3161 return 0;
3162}
3163
3164static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3165{
3166 struct f2fs_nm_info *nm_i = NM_I(sbi);
3167 unsigned int i = 0;
3168 nid_t nid, last_nid;
3169
3170 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3171 return;
3172
3173 for (i = 0; i < nm_i->nat_blocks; i++) {
3174 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3175 if (i >= nm_i->nat_blocks)
3176 break;
3177
3178 __set_bit_le(i, nm_i->nat_block_bitmap);
3179
3180 nid = i * NAT_ENTRY_PER_BLOCK;
3181 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3182
3183 spin_lock(&NM_I(sbi)->nid_list_lock);
3184 for (; nid < last_nid; nid++)
3185 update_free_nid_bitmap(sbi, nid, true, true);
3186 spin_unlock(&NM_I(sbi)->nid_list_lock);
3187 }
3188
3189 for (i = 0; i < nm_i->nat_blocks; i++) {
3190 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3191 if (i >= nm_i->nat_blocks)
3192 break;
3193
3194 __set_bit_le(i, nm_i->nat_block_bitmap);
3195 }
3196}
3197
3198static int init_node_manager(struct f2fs_sb_info *sbi)
3199{
3200 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3201 struct f2fs_nm_info *nm_i = NM_I(sbi);
3202 unsigned char *version_bitmap;
3203 unsigned int nat_segs;
3204 int err;
3205
3206 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3207
3208 /* segment_count_nat includes pair segment so divide to 2. */
3209 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3210 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3211 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3212
3213 /* not used nids: 0, node, meta, (and root counted as valid node) */
3214 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3215 F2FS_RESERVED_NODE_NUM;
3216 nm_i->nid_cnt[FREE_NID] = 0;
3217 nm_i->nid_cnt[PREALLOC_NID] = 0;
3218 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3219 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3220 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3221
3222 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3223 INIT_LIST_HEAD(&nm_i->free_nid_list);
3224 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3225 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3226 INIT_LIST_HEAD(&nm_i->nat_entries);
3227 spin_lock_init(&nm_i->nat_list_lock);
3228
3229 mutex_init(&nm_i->build_lock);
3230 spin_lock_init(&nm_i->nid_list_lock);
3231 init_rwsem(&nm_i->nat_tree_lock);
3232
3233 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3234 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3235 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3236 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3237 GFP_KERNEL);
3238 if (!nm_i->nat_bitmap)
3239 return -ENOMEM;
3240
3241 err = __get_nat_bitmaps(sbi);
3242 if (err)
3243 return err;
3244
3245#ifdef CONFIG_F2FS_CHECK_FS
3246 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3247 GFP_KERNEL);
3248 if (!nm_i->nat_bitmap_mir)
3249 return -ENOMEM;
3250#endif
3251
3252 return 0;
3253}
3254
3255static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3256{
3257 struct f2fs_nm_info *nm_i = NM_I(sbi);
3258 int i;
3259
3260 nm_i->free_nid_bitmap =
3261 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3262 nm_i->nat_blocks),
3263 GFP_KERNEL);
3264 if (!nm_i->free_nid_bitmap)
3265 return -ENOMEM;
3266
3267 for (i = 0; i < nm_i->nat_blocks; i++) {
3268 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3269 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3270 if (!nm_i->free_nid_bitmap[i])
3271 return -ENOMEM;
3272 }
3273
3274 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3275 GFP_KERNEL);
3276 if (!nm_i->nat_block_bitmap)
3277 return -ENOMEM;
3278
3279 nm_i->free_nid_count =
3280 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3281 nm_i->nat_blocks),
3282 GFP_KERNEL);
3283 if (!nm_i->free_nid_count)
3284 return -ENOMEM;
3285 return 0;
3286}
3287
3288int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3289{
3290 int err;
3291
3292 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3293 GFP_KERNEL);
3294 if (!sbi->nm_info)
3295 return -ENOMEM;
3296
3297 err = init_node_manager(sbi);
3298 if (err)
3299 return err;
3300
3301 err = init_free_nid_cache(sbi);
3302 if (err)
3303 return err;
3304
3305 /* load free nid status from nat_bits table */
3306 load_free_nid_bitmap(sbi);
3307
3308 return f2fs_build_free_nids(sbi, true, true);
3309}
3310
3311void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3312{
3313 struct f2fs_nm_info *nm_i = NM_I(sbi);
3314 struct free_nid *i, *next_i;
3315 struct nat_entry *natvec[NATVEC_SIZE];
3316 struct nat_entry_set *setvec[SETVEC_SIZE];
3317 nid_t nid = 0;
3318 unsigned int found;
3319
3320 if (!nm_i)
3321 return;
3322
3323 /* destroy free nid list */
3324 spin_lock(&nm_i->nid_list_lock);
3325 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3326 __remove_free_nid(sbi, i, FREE_NID);
3327 spin_unlock(&nm_i->nid_list_lock);
3328 kmem_cache_free(free_nid_slab, i);
3329 spin_lock(&nm_i->nid_list_lock);
3330 }
3331 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3332 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3333 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3334 spin_unlock(&nm_i->nid_list_lock);
3335
3336 /* destroy nat cache */
3337 down_write(&nm_i->nat_tree_lock);
3338 while ((found = __gang_lookup_nat_cache(nm_i,
3339 nid, NATVEC_SIZE, natvec))) {
3340 unsigned idx;
3341
3342 nid = nat_get_nid(natvec[found - 1]) + 1;
3343 for (idx = 0; idx < found; idx++) {
3344 spin_lock(&nm_i->nat_list_lock);
3345 list_del(&natvec[idx]->list);
3346 spin_unlock(&nm_i->nat_list_lock);
3347
3348 __del_from_nat_cache(nm_i, natvec[idx]);
3349 }
3350 }
3351 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3352
3353 /* destroy nat set cache */
3354 nid = 0;
3355 while ((found = __gang_lookup_nat_set(nm_i,
3356 nid, SETVEC_SIZE, setvec))) {
3357 unsigned idx;
3358
3359 nid = setvec[found - 1]->set + 1;
3360 for (idx = 0; idx < found; idx++) {
3361 /* entry_cnt is not zero, when cp_error was occurred */
3362 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3363 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3364 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3365 }
3366 }
3367 up_write(&nm_i->nat_tree_lock);
3368
3369 kvfree(nm_i->nat_block_bitmap);
3370 if (nm_i->free_nid_bitmap) {
3371 int i;
3372
3373 for (i = 0; i < nm_i->nat_blocks; i++)
3374 kvfree(nm_i->free_nid_bitmap[i]);
3375 kvfree(nm_i->free_nid_bitmap);
3376 }
3377 kvfree(nm_i->free_nid_count);
3378
3379 kvfree(nm_i->nat_bitmap);
3380 kvfree(nm_i->nat_bits);
3381#ifdef CONFIG_F2FS_CHECK_FS
3382 kvfree(nm_i->nat_bitmap_mir);
3383#endif
3384 sbi->nm_info = NULL;
3385 kfree(nm_i);
3386}
3387
3388int __init f2fs_create_node_manager_caches(void)
3389{
3390 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3391 sizeof(struct nat_entry));
3392 if (!nat_entry_slab)
3393 goto fail;
3394
3395 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3396 sizeof(struct free_nid));
3397 if (!free_nid_slab)
3398 goto destroy_nat_entry;
3399
3400 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3401 sizeof(struct nat_entry_set));
3402 if (!nat_entry_set_slab)
3403 goto destroy_free_nid;
3404
3405 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3406 sizeof(struct fsync_node_entry));
3407 if (!fsync_node_entry_slab)
3408 goto destroy_nat_entry_set;
3409 return 0;
3410
3411destroy_nat_entry_set:
3412 kmem_cache_destroy(nat_entry_set_slab);
3413destroy_free_nid:
3414 kmem_cache_destroy(free_nid_slab);
3415destroy_nat_entry:
3416 kmem_cache_destroy(nat_entry_slab);
3417fail:
3418 return -ENOMEM;
3419}
3420
3421void f2fs_destroy_node_manager_caches(void)
3422{
3423 kmem_cache_destroy(fsync_node_entry_slab);
3424 kmem_cache_destroy(nat_entry_set_slab);
3425 kmem_cache_destroy(free_nid_slab);
3426 kmem_cache_destroy(nat_entry_slab);
3427}