Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched/signal.h>
24#include <linux/syscalls.h>
25#include <linux/fs.h>
26#include <linux/iomap.h>
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
30#include <linux/capability.h>
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
35#include <linux/export.h>
36#include <linux/backing-dev.h>
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
41#include <linux/task_io_accounting_ops.h>
42#include <linux/bio.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <linux/sched/mm.h>
49#include <trace/events/block.h>
50#include <linux/fscrypt.h>
51
52#include "internal.h"
53
54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60inline void touch_buffer(struct buffer_head *bh)
61{
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64}
65EXPORT_SYMBOL(touch_buffer);
66
67void __lock_buffer(struct buffer_head *bh)
68{
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70}
71EXPORT_SYMBOL(__lock_buffer);
72
73void unlock_buffer(struct buffer_head *bh)
74{
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78}
79EXPORT_SYMBOL(unlock_buffer);
80
81/*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88{
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112}
113EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115/*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120void __wait_on_buffer(struct buffer_head * bh)
121{
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123}
124EXPORT_SYMBOL(__wait_on_buffer);
125
126static void buffer_io_error(struct buffer_head *bh, char *msg)
127{
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132}
133
134/*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143{
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151}
152
153/*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158{
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161}
162EXPORT_SYMBOL(end_buffer_read_sync);
163
164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165{
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175}
176EXPORT_SYMBOL(end_buffer_write_sync);
177
178/*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188static struct buffer_head *
189__find_get_block_slow(struct block_device *bdev, sector_t block)
190{
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240out:
241 return ret;
242}
243
244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245{
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296}
297
298struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301};
302
303static void decrypt_bh(struct work_struct *work)
304{
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314}
315
316/*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321{
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336}
337
338/*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343{
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381}
382EXPORT_SYMBOL(end_buffer_async_write);
383
384/*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405static void mark_buffer_async_read(struct buffer_head *bh)
406{
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409}
410
411static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413{
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416}
417
418void mark_buffer_async_write(struct buffer_head *bh)
419{
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421}
422EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425/*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474/*
475 * The buffer's backing address_space's private_lock must be held
476 */
477static void __remove_assoc_queue(struct buffer_head *bh)
478{
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482}
483
484int inode_has_buffers(struct inode *inode)
485{
486 return !list_empty(&inode->i_data.private_list);
487}
488
489/*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500{
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522}
523
524void emergency_thaw_bdev(struct super_block *sb)
525{
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528}
529
530/**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
541int sync_mapping_buffers(struct address_space *mapping)
542{
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550}
551EXPORT_SYMBOL(sync_mapping_buffers);
552
553/*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561{
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 put_bh(bh);
567 }
568}
569
570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571{
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588}
589EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591/*
592 * Add a page to the dirty page list.
593 *
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
596 *
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
600 * dirty.
601 *
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
608 *
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
612 *
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
615 */
616int __set_page_dirty_buffers(struct page *page)
617{
618 int newly_dirty;
619 struct address_space *mapping = page_mapping(page);
620
621 if (unlikely(!mapping))
622 return !TestSetPageDirty(page);
623
624 spin_lock(&mapping->private_lock);
625 if (page_has_buffers(page)) {
626 struct buffer_head *head = page_buffers(page);
627 struct buffer_head *bh = head;
628
629 do {
630 set_buffer_dirty(bh);
631 bh = bh->b_this_page;
632 } while (bh != head);
633 }
634 /*
635 * Lock out page's memcg migration to keep PageDirty
636 * synchronized with per-memcg dirty page counters.
637 */
638 lock_page_memcg(page);
639 newly_dirty = !TestSetPageDirty(page);
640 spin_unlock(&mapping->private_lock);
641
642 if (newly_dirty)
643 __set_page_dirty(page, mapping, 1);
644
645 unlock_page_memcg(page);
646
647 if (newly_dirty)
648 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649
650 return newly_dirty;
651}
652EXPORT_SYMBOL(__set_page_dirty_buffers);
653
654/*
655 * Write out and wait upon a list of buffers.
656 *
657 * We have conflicting pressures: we want to make sure that all
658 * initially dirty buffers get waited on, but that any subsequently
659 * dirtied buffers don't. After all, we don't want fsync to last
660 * forever if somebody is actively writing to the file.
661 *
662 * Do this in two main stages: first we copy dirty buffers to a
663 * temporary inode list, queueing the writes as we go. Then we clean
664 * up, waiting for those writes to complete.
665 *
666 * During this second stage, any subsequent updates to the file may end
667 * up refiling the buffer on the original inode's dirty list again, so
668 * there is a chance we will end up with a buffer queued for write but
669 * not yet completed on that list. So, as a final cleanup we go through
670 * the osync code to catch these locked, dirty buffers without requeuing
671 * any newly dirty buffers for write.
672 */
673static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674{
675 struct buffer_head *bh;
676 struct list_head tmp;
677 struct address_space *mapping;
678 int err = 0, err2;
679 struct blk_plug plug;
680
681 INIT_LIST_HEAD(&tmp);
682 blk_start_plug(&plug);
683
684 spin_lock(lock);
685 while (!list_empty(list)) {
686 bh = BH_ENTRY(list->next);
687 mapping = bh->b_assoc_map;
688 __remove_assoc_queue(bh);
689 /* Avoid race with mark_buffer_dirty_inode() which does
690 * a lockless check and we rely on seeing the dirty bit */
691 smp_mb();
692 if (buffer_dirty(bh) || buffer_locked(bh)) {
693 list_add(&bh->b_assoc_buffers, &tmp);
694 bh->b_assoc_map = mapping;
695 if (buffer_dirty(bh)) {
696 get_bh(bh);
697 spin_unlock(lock);
698 /*
699 * Ensure any pending I/O completes so that
700 * write_dirty_buffer() actually writes the
701 * current contents - it is a noop if I/O is
702 * still in flight on potentially older
703 * contents.
704 */
705 write_dirty_buffer(bh, REQ_SYNC);
706
707 /*
708 * Kick off IO for the previous mapping. Note
709 * that we will not run the very last mapping,
710 * wait_on_buffer() will do that for us
711 * through sync_buffer().
712 */
713 brelse(bh);
714 spin_lock(lock);
715 }
716 }
717 }
718
719 spin_unlock(lock);
720 blk_finish_plug(&plug);
721 spin_lock(lock);
722
723 while (!list_empty(&tmp)) {
724 bh = BH_ENTRY(tmp.prev);
725 get_bh(bh);
726 mapping = bh->b_assoc_map;
727 __remove_assoc_queue(bh);
728 /* Avoid race with mark_buffer_dirty_inode() which does
729 * a lockless check and we rely on seeing the dirty bit */
730 smp_mb();
731 if (buffer_dirty(bh)) {
732 list_add(&bh->b_assoc_buffers,
733 &mapping->private_list);
734 bh->b_assoc_map = mapping;
735 }
736 spin_unlock(lock);
737 wait_on_buffer(bh);
738 if (!buffer_uptodate(bh))
739 err = -EIO;
740 brelse(bh);
741 spin_lock(lock);
742 }
743
744 spin_unlock(lock);
745 err2 = osync_buffers_list(lock, list);
746 if (err)
747 return err;
748 else
749 return err2;
750}
751
752/*
753 * Invalidate any and all dirty buffers on a given inode. We are
754 * probably unmounting the fs, but that doesn't mean we have already
755 * done a sync(). Just drop the buffers from the inode list.
756 *
757 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
758 * assumes that all the buffers are against the blockdev. Not true
759 * for reiserfs.
760 */
761void invalidate_inode_buffers(struct inode *inode)
762{
763 if (inode_has_buffers(inode)) {
764 struct address_space *mapping = &inode->i_data;
765 struct list_head *list = &mapping->private_list;
766 struct address_space *buffer_mapping = mapping->private_data;
767
768 spin_lock(&buffer_mapping->private_lock);
769 while (!list_empty(list))
770 __remove_assoc_queue(BH_ENTRY(list->next));
771 spin_unlock(&buffer_mapping->private_lock);
772 }
773}
774EXPORT_SYMBOL(invalidate_inode_buffers);
775
776/*
777 * Remove any clean buffers from the inode's buffer list. This is called
778 * when we're trying to free the inode itself. Those buffers can pin it.
779 *
780 * Returns true if all buffers were removed.
781 */
782int remove_inode_buffers(struct inode *inode)
783{
784 int ret = 1;
785
786 if (inode_has_buffers(inode)) {
787 struct address_space *mapping = &inode->i_data;
788 struct list_head *list = &mapping->private_list;
789 struct address_space *buffer_mapping = mapping->private_data;
790
791 spin_lock(&buffer_mapping->private_lock);
792 while (!list_empty(list)) {
793 struct buffer_head *bh = BH_ENTRY(list->next);
794 if (buffer_dirty(bh)) {
795 ret = 0;
796 break;
797 }
798 __remove_assoc_queue(bh);
799 }
800 spin_unlock(&buffer_mapping->private_lock);
801 }
802 return ret;
803}
804
805/*
806 * Create the appropriate buffers when given a page for data area and
807 * the size of each buffer.. Use the bh->b_this_page linked list to
808 * follow the buffers created. Return NULL if unable to create more
809 * buffers.
810 *
811 * The retry flag is used to differentiate async IO (paging, swapping)
812 * which may not fail from ordinary buffer allocations.
813 */
814struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
815 bool retry)
816{
817 struct buffer_head *bh, *head;
818 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
819 long offset;
820 struct mem_cgroup *memcg, *old_memcg;
821
822 if (retry)
823 gfp |= __GFP_NOFAIL;
824
825 /* The page lock pins the memcg */
826 memcg = page_memcg(page);
827 old_memcg = set_active_memcg(memcg);
828
829 head = NULL;
830 offset = PAGE_SIZE;
831 while ((offset -= size) >= 0) {
832 bh = alloc_buffer_head(gfp);
833 if (!bh)
834 goto no_grow;
835
836 bh->b_this_page = head;
837 bh->b_blocknr = -1;
838 head = bh;
839
840 bh->b_size = size;
841
842 /* Link the buffer to its page */
843 set_bh_page(bh, page, offset);
844 }
845out:
846 set_active_memcg(old_memcg);
847 return head;
848/*
849 * In case anything failed, we just free everything we got.
850 */
851no_grow:
852 if (head) {
853 do {
854 bh = head;
855 head = head->b_this_page;
856 free_buffer_head(bh);
857 } while (head);
858 }
859
860 goto out;
861}
862EXPORT_SYMBOL_GPL(alloc_page_buffers);
863
864static inline void
865link_dev_buffers(struct page *page, struct buffer_head *head)
866{
867 struct buffer_head *bh, *tail;
868
869 bh = head;
870 do {
871 tail = bh;
872 bh = bh->b_this_page;
873 } while (bh);
874 tail->b_this_page = head;
875 attach_page_private(page, head);
876}
877
878static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879{
880 sector_t retval = ~((sector_t)0);
881 loff_t sz = bdev_nr_bytes(bdev);
882
883 if (sz) {
884 unsigned int sizebits = blksize_bits(size);
885 retval = (sz >> sizebits);
886 }
887 return retval;
888}
889
890/*
891 * Initialise the state of a blockdev page's buffers.
892 */
893static sector_t
894init_page_buffers(struct page *page, struct block_device *bdev,
895 sector_t block, int size)
896{
897 struct buffer_head *head = page_buffers(page);
898 struct buffer_head *bh = head;
899 int uptodate = PageUptodate(page);
900 sector_t end_block = blkdev_max_block(bdev, size);
901
902 do {
903 if (!buffer_mapped(bh)) {
904 bh->b_end_io = NULL;
905 bh->b_private = NULL;
906 bh->b_bdev = bdev;
907 bh->b_blocknr = block;
908 if (uptodate)
909 set_buffer_uptodate(bh);
910 if (block < end_block)
911 set_buffer_mapped(bh);
912 }
913 block++;
914 bh = bh->b_this_page;
915 } while (bh != head);
916
917 /*
918 * Caller needs to validate requested block against end of device.
919 */
920 return end_block;
921}
922
923/*
924 * Create the page-cache page that contains the requested block.
925 *
926 * This is used purely for blockdev mappings.
927 */
928static int
929grow_dev_page(struct block_device *bdev, sector_t block,
930 pgoff_t index, int size, int sizebits, gfp_t gfp)
931{
932 struct inode *inode = bdev->bd_inode;
933 struct page *page;
934 struct buffer_head *bh;
935 sector_t end_block;
936 int ret = 0;
937 gfp_t gfp_mask;
938
939 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
940
941 /*
942 * XXX: __getblk_slow() can not really deal with failure and
943 * will endlessly loop on improvised global reclaim. Prefer
944 * looping in the allocator rather than here, at least that
945 * code knows what it's doing.
946 */
947 gfp_mask |= __GFP_NOFAIL;
948
949 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
950
951 BUG_ON(!PageLocked(page));
952
953 if (page_has_buffers(page)) {
954 bh = page_buffers(page);
955 if (bh->b_size == size) {
956 end_block = init_page_buffers(page, bdev,
957 (sector_t)index << sizebits,
958 size);
959 goto done;
960 }
961 if (!try_to_free_buffers(page))
962 goto failed;
963 }
964
965 /*
966 * Allocate some buffers for this page
967 */
968 bh = alloc_page_buffers(page, size, true);
969
970 /*
971 * Link the page to the buffers and initialise them. Take the
972 * lock to be atomic wrt __find_get_block(), which does not
973 * run under the page lock.
974 */
975 spin_lock(&inode->i_mapping->private_lock);
976 link_dev_buffers(page, bh);
977 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978 size);
979 spin_unlock(&inode->i_mapping->private_lock);
980done:
981 ret = (block < end_block) ? 1 : -ENXIO;
982failed:
983 unlock_page(page);
984 put_page(page);
985 return ret;
986}
987
988/*
989 * Create buffers for the specified block device block's page. If
990 * that page was dirty, the buffers are set dirty also.
991 */
992static int
993grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
994{
995 pgoff_t index;
996 int sizebits;
997
998 sizebits = PAGE_SHIFT - __ffs(size);
999 index = block >> sizebits;
1000
1001 /*
1002 * Check for a block which wants to lie outside our maximum possible
1003 * pagecache index. (this comparison is done using sector_t types).
1004 */
1005 if (unlikely(index != block >> sizebits)) {
1006 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1007 "device %pg\n",
1008 __func__, (unsigned long long)block,
1009 bdev);
1010 return -EIO;
1011 }
1012
1013 /* Create a page with the proper size buffers.. */
1014 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1015}
1016
1017static struct buffer_head *
1018__getblk_slow(struct block_device *bdev, sector_t block,
1019 unsigned size, gfp_t gfp)
1020{
1021 /* Size must be multiple of hard sectorsize */
1022 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1023 (size < 512 || size > PAGE_SIZE))) {
1024 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1025 size);
1026 printk(KERN_ERR "logical block size: %d\n",
1027 bdev_logical_block_size(bdev));
1028
1029 dump_stack();
1030 return NULL;
1031 }
1032
1033 for (;;) {
1034 struct buffer_head *bh;
1035 int ret;
1036
1037 bh = __find_get_block(bdev, block, size);
1038 if (bh)
1039 return bh;
1040
1041 ret = grow_buffers(bdev, block, size, gfp);
1042 if (ret < 0)
1043 return NULL;
1044 }
1045}
1046
1047/*
1048 * The relationship between dirty buffers and dirty pages:
1049 *
1050 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1051 * the page is tagged dirty in the page cache.
1052 *
1053 * At all times, the dirtiness of the buffers represents the dirtiness of
1054 * subsections of the page. If the page has buffers, the page dirty bit is
1055 * merely a hint about the true dirty state.
1056 *
1057 * When a page is set dirty in its entirety, all its buffers are marked dirty
1058 * (if the page has buffers).
1059 *
1060 * When a buffer is marked dirty, its page is dirtied, but the page's other
1061 * buffers are not.
1062 *
1063 * Also. When blockdev buffers are explicitly read with bread(), they
1064 * individually become uptodate. But their backing page remains not
1065 * uptodate - even if all of its buffers are uptodate. A subsequent
1066 * block_read_full_page() against that page will discover all the uptodate
1067 * buffers, will set the page uptodate and will perform no I/O.
1068 */
1069
1070/**
1071 * mark_buffer_dirty - mark a buffer_head as needing writeout
1072 * @bh: the buffer_head to mark dirty
1073 *
1074 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1075 * its backing page dirty, then tag the page as dirty in the page cache
1076 * and then attach the address_space's inode to its superblock's dirty
1077 * inode list.
1078 *
1079 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1080 * i_pages lock and mapping->host->i_lock.
1081 */
1082void mark_buffer_dirty(struct buffer_head *bh)
1083{
1084 WARN_ON_ONCE(!buffer_uptodate(bh));
1085
1086 trace_block_dirty_buffer(bh);
1087
1088 /*
1089 * Very *carefully* optimize the it-is-already-dirty case.
1090 *
1091 * Don't let the final "is it dirty" escape to before we
1092 * perhaps modified the buffer.
1093 */
1094 if (buffer_dirty(bh)) {
1095 smp_mb();
1096 if (buffer_dirty(bh))
1097 return;
1098 }
1099
1100 if (!test_set_buffer_dirty(bh)) {
1101 struct page *page = bh->b_page;
1102 struct address_space *mapping = NULL;
1103
1104 lock_page_memcg(page);
1105 if (!TestSetPageDirty(page)) {
1106 mapping = page_mapping(page);
1107 if (mapping)
1108 __set_page_dirty(page, mapping, 0);
1109 }
1110 unlock_page_memcg(page);
1111 if (mapping)
1112 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1113 }
1114}
1115EXPORT_SYMBOL(mark_buffer_dirty);
1116
1117void mark_buffer_write_io_error(struct buffer_head *bh)
1118{
1119 struct super_block *sb;
1120
1121 set_buffer_write_io_error(bh);
1122 /* FIXME: do we need to set this in both places? */
1123 if (bh->b_page && bh->b_page->mapping)
1124 mapping_set_error(bh->b_page->mapping, -EIO);
1125 if (bh->b_assoc_map)
1126 mapping_set_error(bh->b_assoc_map, -EIO);
1127 rcu_read_lock();
1128 sb = READ_ONCE(bh->b_bdev->bd_super);
1129 if (sb)
1130 errseq_set(&sb->s_wb_err, -EIO);
1131 rcu_read_unlock();
1132}
1133EXPORT_SYMBOL(mark_buffer_write_io_error);
1134
1135/*
1136 * Decrement a buffer_head's reference count. If all buffers against a page
1137 * have zero reference count, are clean and unlocked, and if the page is clean
1138 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1139 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1140 * a page but it ends up not being freed, and buffers may later be reattached).
1141 */
1142void __brelse(struct buffer_head * buf)
1143{
1144 if (atomic_read(&buf->b_count)) {
1145 put_bh(buf);
1146 return;
1147 }
1148 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1149}
1150EXPORT_SYMBOL(__brelse);
1151
1152/*
1153 * bforget() is like brelse(), except it discards any
1154 * potentially dirty data.
1155 */
1156void __bforget(struct buffer_head *bh)
1157{
1158 clear_buffer_dirty(bh);
1159 if (bh->b_assoc_map) {
1160 struct address_space *buffer_mapping = bh->b_page->mapping;
1161
1162 spin_lock(&buffer_mapping->private_lock);
1163 list_del_init(&bh->b_assoc_buffers);
1164 bh->b_assoc_map = NULL;
1165 spin_unlock(&buffer_mapping->private_lock);
1166 }
1167 __brelse(bh);
1168}
1169EXPORT_SYMBOL(__bforget);
1170
1171static struct buffer_head *__bread_slow(struct buffer_head *bh)
1172{
1173 lock_buffer(bh);
1174 if (buffer_uptodate(bh)) {
1175 unlock_buffer(bh);
1176 return bh;
1177 } else {
1178 get_bh(bh);
1179 bh->b_end_io = end_buffer_read_sync;
1180 submit_bh(REQ_OP_READ, 0, bh);
1181 wait_on_buffer(bh);
1182 if (buffer_uptodate(bh))
1183 return bh;
1184 }
1185 brelse(bh);
1186 return NULL;
1187}
1188
1189/*
1190 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1191 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1192 * refcount elevated by one when they're in an LRU. A buffer can only appear
1193 * once in a particular CPU's LRU. A single buffer can be present in multiple
1194 * CPU's LRUs at the same time.
1195 *
1196 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1197 * sb_find_get_block().
1198 *
1199 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1200 * a local interrupt disable for that.
1201 */
1202
1203#define BH_LRU_SIZE 16
1204
1205struct bh_lru {
1206 struct buffer_head *bhs[BH_LRU_SIZE];
1207};
1208
1209static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1210
1211#ifdef CONFIG_SMP
1212#define bh_lru_lock() local_irq_disable()
1213#define bh_lru_unlock() local_irq_enable()
1214#else
1215#define bh_lru_lock() preempt_disable()
1216#define bh_lru_unlock() preempt_enable()
1217#endif
1218
1219static inline void check_irqs_on(void)
1220{
1221#ifdef irqs_disabled
1222 BUG_ON(irqs_disabled());
1223#endif
1224}
1225
1226/*
1227 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1228 * inserted at the front, and the buffer_head at the back if any is evicted.
1229 * Or, if already in the LRU it is moved to the front.
1230 */
1231static void bh_lru_install(struct buffer_head *bh)
1232{
1233 struct buffer_head *evictee = bh;
1234 struct bh_lru *b;
1235 int i;
1236
1237 check_irqs_on();
1238 /*
1239 * the refcount of buffer_head in bh_lru prevents dropping the
1240 * attached page(i.e., try_to_free_buffers) so it could cause
1241 * failing page migration.
1242 * Skip putting upcoming bh into bh_lru until migration is done.
1243 */
1244 if (lru_cache_disabled())
1245 return;
1246
1247 bh_lru_lock();
1248
1249 b = this_cpu_ptr(&bh_lrus);
1250 for (i = 0; i < BH_LRU_SIZE; i++) {
1251 swap(evictee, b->bhs[i]);
1252 if (evictee == bh) {
1253 bh_lru_unlock();
1254 return;
1255 }
1256 }
1257
1258 get_bh(bh);
1259 bh_lru_unlock();
1260 brelse(evictee);
1261}
1262
1263/*
1264 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1265 */
1266static struct buffer_head *
1267lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1268{
1269 struct buffer_head *ret = NULL;
1270 unsigned int i;
1271
1272 check_irqs_on();
1273 bh_lru_lock();
1274 for (i = 0; i < BH_LRU_SIZE; i++) {
1275 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1276
1277 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1278 bh->b_size == size) {
1279 if (i) {
1280 while (i) {
1281 __this_cpu_write(bh_lrus.bhs[i],
1282 __this_cpu_read(bh_lrus.bhs[i - 1]));
1283 i--;
1284 }
1285 __this_cpu_write(bh_lrus.bhs[0], bh);
1286 }
1287 get_bh(bh);
1288 ret = bh;
1289 break;
1290 }
1291 }
1292 bh_lru_unlock();
1293 return ret;
1294}
1295
1296/*
1297 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1298 * it in the LRU and mark it as accessed. If it is not present then return
1299 * NULL
1300 */
1301struct buffer_head *
1302__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1303{
1304 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1305
1306 if (bh == NULL) {
1307 /* __find_get_block_slow will mark the page accessed */
1308 bh = __find_get_block_slow(bdev, block);
1309 if (bh)
1310 bh_lru_install(bh);
1311 } else
1312 touch_buffer(bh);
1313
1314 return bh;
1315}
1316EXPORT_SYMBOL(__find_get_block);
1317
1318/*
1319 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1320 * which corresponds to the passed block_device, block and size. The
1321 * returned buffer has its reference count incremented.
1322 *
1323 * __getblk_gfp() will lock up the machine if grow_dev_page's
1324 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1325 */
1326struct buffer_head *
1327__getblk_gfp(struct block_device *bdev, sector_t block,
1328 unsigned size, gfp_t gfp)
1329{
1330 struct buffer_head *bh = __find_get_block(bdev, block, size);
1331
1332 might_sleep();
1333 if (bh == NULL)
1334 bh = __getblk_slow(bdev, block, size, gfp);
1335 return bh;
1336}
1337EXPORT_SYMBOL(__getblk_gfp);
1338
1339/*
1340 * Do async read-ahead on a buffer..
1341 */
1342void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1343{
1344 struct buffer_head *bh = __getblk(bdev, block, size);
1345 if (likely(bh)) {
1346 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1347 brelse(bh);
1348 }
1349}
1350EXPORT_SYMBOL(__breadahead);
1351
1352void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1353 gfp_t gfp)
1354{
1355 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1356 if (likely(bh)) {
1357 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1358 brelse(bh);
1359 }
1360}
1361EXPORT_SYMBOL(__breadahead_gfp);
1362
1363/**
1364 * __bread_gfp() - reads a specified block and returns the bh
1365 * @bdev: the block_device to read from
1366 * @block: number of block
1367 * @size: size (in bytes) to read
1368 * @gfp: page allocation flag
1369 *
1370 * Reads a specified block, and returns buffer head that contains it.
1371 * The page cache can be allocated from non-movable area
1372 * not to prevent page migration if you set gfp to zero.
1373 * It returns NULL if the block was unreadable.
1374 */
1375struct buffer_head *
1376__bread_gfp(struct block_device *bdev, sector_t block,
1377 unsigned size, gfp_t gfp)
1378{
1379 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1380
1381 if (likely(bh) && !buffer_uptodate(bh))
1382 bh = __bread_slow(bh);
1383 return bh;
1384}
1385EXPORT_SYMBOL(__bread_gfp);
1386
1387static void __invalidate_bh_lrus(struct bh_lru *b)
1388{
1389 int i;
1390
1391 for (i = 0; i < BH_LRU_SIZE; i++) {
1392 brelse(b->bhs[i]);
1393 b->bhs[i] = NULL;
1394 }
1395}
1396/*
1397 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1398 * This doesn't race because it runs in each cpu either in irq
1399 * or with preempt disabled.
1400 */
1401static void invalidate_bh_lru(void *arg)
1402{
1403 struct bh_lru *b = &get_cpu_var(bh_lrus);
1404
1405 __invalidate_bh_lrus(b);
1406 put_cpu_var(bh_lrus);
1407}
1408
1409bool has_bh_in_lru(int cpu, void *dummy)
1410{
1411 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1412 int i;
1413
1414 for (i = 0; i < BH_LRU_SIZE; i++) {
1415 if (b->bhs[i])
1416 return true;
1417 }
1418
1419 return false;
1420}
1421
1422void invalidate_bh_lrus(void)
1423{
1424 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1425}
1426EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1427
1428/*
1429 * It's called from workqueue context so we need a bh_lru_lock to close
1430 * the race with preemption/irq.
1431 */
1432void invalidate_bh_lrus_cpu(void)
1433{
1434 struct bh_lru *b;
1435
1436 bh_lru_lock();
1437 b = this_cpu_ptr(&bh_lrus);
1438 __invalidate_bh_lrus(b);
1439 bh_lru_unlock();
1440}
1441
1442void set_bh_page(struct buffer_head *bh,
1443 struct page *page, unsigned long offset)
1444{
1445 bh->b_page = page;
1446 BUG_ON(offset >= PAGE_SIZE);
1447 if (PageHighMem(page))
1448 /*
1449 * This catches illegal uses and preserves the offset:
1450 */
1451 bh->b_data = (char *)(0 + offset);
1452 else
1453 bh->b_data = page_address(page) + offset;
1454}
1455EXPORT_SYMBOL(set_bh_page);
1456
1457/*
1458 * Called when truncating a buffer on a page completely.
1459 */
1460
1461/* Bits that are cleared during an invalidate */
1462#define BUFFER_FLAGS_DISCARD \
1463 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1464 1 << BH_Delay | 1 << BH_Unwritten)
1465
1466static void discard_buffer(struct buffer_head * bh)
1467{
1468 unsigned long b_state, b_state_old;
1469
1470 lock_buffer(bh);
1471 clear_buffer_dirty(bh);
1472 bh->b_bdev = NULL;
1473 b_state = bh->b_state;
1474 for (;;) {
1475 b_state_old = cmpxchg(&bh->b_state, b_state,
1476 (b_state & ~BUFFER_FLAGS_DISCARD));
1477 if (b_state_old == b_state)
1478 break;
1479 b_state = b_state_old;
1480 }
1481 unlock_buffer(bh);
1482}
1483
1484/**
1485 * block_invalidatepage - invalidate part or all of a buffer-backed page
1486 *
1487 * @page: the page which is affected
1488 * @offset: start of the range to invalidate
1489 * @length: length of the range to invalidate
1490 *
1491 * block_invalidatepage() is called when all or part of the page has become
1492 * invalidated by a truncate operation.
1493 *
1494 * block_invalidatepage() does not have to release all buffers, but it must
1495 * ensure that no dirty buffer is left outside @offset and that no I/O
1496 * is underway against any of the blocks which are outside the truncation
1497 * point. Because the caller is about to free (and possibly reuse) those
1498 * blocks on-disk.
1499 */
1500void block_invalidatepage(struct page *page, unsigned int offset,
1501 unsigned int length)
1502{
1503 struct buffer_head *head, *bh, *next;
1504 unsigned int curr_off = 0;
1505 unsigned int stop = length + offset;
1506
1507 BUG_ON(!PageLocked(page));
1508 if (!page_has_buffers(page))
1509 goto out;
1510
1511 /*
1512 * Check for overflow
1513 */
1514 BUG_ON(stop > PAGE_SIZE || stop < length);
1515
1516 head = page_buffers(page);
1517 bh = head;
1518 do {
1519 unsigned int next_off = curr_off + bh->b_size;
1520 next = bh->b_this_page;
1521
1522 /*
1523 * Are we still fully in range ?
1524 */
1525 if (next_off > stop)
1526 goto out;
1527
1528 /*
1529 * is this block fully invalidated?
1530 */
1531 if (offset <= curr_off)
1532 discard_buffer(bh);
1533 curr_off = next_off;
1534 bh = next;
1535 } while (bh != head);
1536
1537 /*
1538 * We release buffers only if the entire page is being invalidated.
1539 * The get_block cached value has been unconditionally invalidated,
1540 * so real IO is not possible anymore.
1541 */
1542 if (length == PAGE_SIZE)
1543 try_to_release_page(page, 0);
1544out:
1545 return;
1546}
1547EXPORT_SYMBOL(block_invalidatepage);
1548
1549
1550/*
1551 * We attach and possibly dirty the buffers atomically wrt
1552 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1553 * is already excluded via the page lock.
1554 */
1555void create_empty_buffers(struct page *page,
1556 unsigned long blocksize, unsigned long b_state)
1557{
1558 struct buffer_head *bh, *head, *tail;
1559
1560 head = alloc_page_buffers(page, blocksize, true);
1561 bh = head;
1562 do {
1563 bh->b_state |= b_state;
1564 tail = bh;
1565 bh = bh->b_this_page;
1566 } while (bh);
1567 tail->b_this_page = head;
1568
1569 spin_lock(&page->mapping->private_lock);
1570 if (PageUptodate(page) || PageDirty(page)) {
1571 bh = head;
1572 do {
1573 if (PageDirty(page))
1574 set_buffer_dirty(bh);
1575 if (PageUptodate(page))
1576 set_buffer_uptodate(bh);
1577 bh = bh->b_this_page;
1578 } while (bh != head);
1579 }
1580 attach_page_private(page, head);
1581 spin_unlock(&page->mapping->private_lock);
1582}
1583EXPORT_SYMBOL(create_empty_buffers);
1584
1585/**
1586 * clean_bdev_aliases: clean a range of buffers in block device
1587 * @bdev: Block device to clean buffers in
1588 * @block: Start of a range of blocks to clean
1589 * @len: Number of blocks to clean
1590 *
1591 * We are taking a range of blocks for data and we don't want writeback of any
1592 * buffer-cache aliases starting from return from this function and until the
1593 * moment when something will explicitly mark the buffer dirty (hopefully that
1594 * will not happen until we will free that block ;-) We don't even need to mark
1595 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1596 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1597 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1598 * would confuse anyone who might pick it with bread() afterwards...
1599 *
1600 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1601 * writeout I/O going on against recently-freed buffers. We don't wait on that
1602 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1603 * need to. That happens here.
1604 */
1605void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1606{
1607 struct inode *bd_inode = bdev->bd_inode;
1608 struct address_space *bd_mapping = bd_inode->i_mapping;
1609 struct pagevec pvec;
1610 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1611 pgoff_t end;
1612 int i, count;
1613 struct buffer_head *bh;
1614 struct buffer_head *head;
1615
1616 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1617 pagevec_init(&pvec);
1618 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1619 count = pagevec_count(&pvec);
1620 for (i = 0; i < count; i++) {
1621 struct page *page = pvec.pages[i];
1622
1623 if (!page_has_buffers(page))
1624 continue;
1625 /*
1626 * We use page lock instead of bd_mapping->private_lock
1627 * to pin buffers here since we can afford to sleep and
1628 * it scales better than a global spinlock lock.
1629 */
1630 lock_page(page);
1631 /* Recheck when the page is locked which pins bhs */
1632 if (!page_has_buffers(page))
1633 goto unlock_page;
1634 head = page_buffers(page);
1635 bh = head;
1636 do {
1637 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1638 goto next;
1639 if (bh->b_blocknr >= block + len)
1640 break;
1641 clear_buffer_dirty(bh);
1642 wait_on_buffer(bh);
1643 clear_buffer_req(bh);
1644next:
1645 bh = bh->b_this_page;
1646 } while (bh != head);
1647unlock_page:
1648 unlock_page(page);
1649 }
1650 pagevec_release(&pvec);
1651 cond_resched();
1652 /* End of range already reached? */
1653 if (index > end || !index)
1654 break;
1655 }
1656}
1657EXPORT_SYMBOL(clean_bdev_aliases);
1658
1659/*
1660 * Size is a power-of-two in the range 512..PAGE_SIZE,
1661 * and the case we care about most is PAGE_SIZE.
1662 *
1663 * So this *could* possibly be written with those
1664 * constraints in mind (relevant mostly if some
1665 * architecture has a slow bit-scan instruction)
1666 */
1667static inline int block_size_bits(unsigned int blocksize)
1668{
1669 return ilog2(blocksize);
1670}
1671
1672static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1673{
1674 BUG_ON(!PageLocked(page));
1675
1676 if (!page_has_buffers(page))
1677 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1678 b_state);
1679 return page_buffers(page);
1680}
1681
1682/*
1683 * NOTE! All mapped/uptodate combinations are valid:
1684 *
1685 * Mapped Uptodate Meaning
1686 *
1687 * No No "unknown" - must do get_block()
1688 * No Yes "hole" - zero-filled
1689 * Yes No "allocated" - allocated on disk, not read in
1690 * Yes Yes "valid" - allocated and up-to-date in memory.
1691 *
1692 * "Dirty" is valid only with the last case (mapped+uptodate).
1693 */
1694
1695/*
1696 * While block_write_full_page is writing back the dirty buffers under
1697 * the page lock, whoever dirtied the buffers may decide to clean them
1698 * again at any time. We handle that by only looking at the buffer
1699 * state inside lock_buffer().
1700 *
1701 * If block_write_full_page() is called for regular writeback
1702 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1703 * locked buffer. This only can happen if someone has written the buffer
1704 * directly, with submit_bh(). At the address_space level PageWriteback
1705 * prevents this contention from occurring.
1706 *
1707 * If block_write_full_page() is called with wbc->sync_mode ==
1708 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1709 * causes the writes to be flagged as synchronous writes.
1710 */
1711int __block_write_full_page(struct inode *inode, struct page *page,
1712 get_block_t *get_block, struct writeback_control *wbc,
1713 bh_end_io_t *handler)
1714{
1715 int err;
1716 sector_t block;
1717 sector_t last_block;
1718 struct buffer_head *bh, *head;
1719 unsigned int blocksize, bbits;
1720 int nr_underway = 0;
1721 int write_flags = wbc_to_write_flags(wbc);
1722
1723 head = create_page_buffers(page, inode,
1724 (1 << BH_Dirty)|(1 << BH_Uptodate));
1725
1726 /*
1727 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1728 * here, and the (potentially unmapped) buffers may become dirty at
1729 * any time. If a buffer becomes dirty here after we've inspected it
1730 * then we just miss that fact, and the page stays dirty.
1731 *
1732 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1733 * handle that here by just cleaning them.
1734 */
1735
1736 bh = head;
1737 blocksize = bh->b_size;
1738 bbits = block_size_bits(blocksize);
1739
1740 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1741 last_block = (i_size_read(inode) - 1) >> bbits;
1742
1743 /*
1744 * Get all the dirty buffers mapped to disk addresses and
1745 * handle any aliases from the underlying blockdev's mapping.
1746 */
1747 do {
1748 if (block > last_block) {
1749 /*
1750 * mapped buffers outside i_size will occur, because
1751 * this page can be outside i_size when there is a
1752 * truncate in progress.
1753 */
1754 /*
1755 * The buffer was zeroed by block_write_full_page()
1756 */
1757 clear_buffer_dirty(bh);
1758 set_buffer_uptodate(bh);
1759 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1760 buffer_dirty(bh)) {
1761 WARN_ON(bh->b_size != blocksize);
1762 err = get_block(inode, block, bh, 1);
1763 if (err)
1764 goto recover;
1765 clear_buffer_delay(bh);
1766 if (buffer_new(bh)) {
1767 /* blockdev mappings never come here */
1768 clear_buffer_new(bh);
1769 clean_bdev_bh_alias(bh);
1770 }
1771 }
1772 bh = bh->b_this_page;
1773 block++;
1774 } while (bh != head);
1775
1776 do {
1777 if (!buffer_mapped(bh))
1778 continue;
1779 /*
1780 * If it's a fully non-blocking write attempt and we cannot
1781 * lock the buffer then redirty the page. Note that this can
1782 * potentially cause a busy-wait loop from writeback threads
1783 * and kswapd activity, but those code paths have their own
1784 * higher-level throttling.
1785 */
1786 if (wbc->sync_mode != WB_SYNC_NONE) {
1787 lock_buffer(bh);
1788 } else if (!trylock_buffer(bh)) {
1789 redirty_page_for_writepage(wbc, page);
1790 continue;
1791 }
1792 if (test_clear_buffer_dirty(bh)) {
1793 mark_buffer_async_write_endio(bh, handler);
1794 } else {
1795 unlock_buffer(bh);
1796 }
1797 } while ((bh = bh->b_this_page) != head);
1798
1799 /*
1800 * The page and its buffers are protected by PageWriteback(), so we can
1801 * drop the bh refcounts early.
1802 */
1803 BUG_ON(PageWriteback(page));
1804 set_page_writeback(page);
1805
1806 do {
1807 struct buffer_head *next = bh->b_this_page;
1808 if (buffer_async_write(bh)) {
1809 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1810 inode->i_write_hint, wbc);
1811 nr_underway++;
1812 }
1813 bh = next;
1814 } while (bh != head);
1815 unlock_page(page);
1816
1817 err = 0;
1818done:
1819 if (nr_underway == 0) {
1820 /*
1821 * The page was marked dirty, but the buffers were
1822 * clean. Someone wrote them back by hand with
1823 * ll_rw_block/submit_bh. A rare case.
1824 */
1825 end_page_writeback(page);
1826
1827 /*
1828 * The page and buffer_heads can be released at any time from
1829 * here on.
1830 */
1831 }
1832 return err;
1833
1834recover:
1835 /*
1836 * ENOSPC, or some other error. We may already have added some
1837 * blocks to the file, so we need to write these out to avoid
1838 * exposing stale data.
1839 * The page is currently locked and not marked for writeback
1840 */
1841 bh = head;
1842 /* Recovery: lock and submit the mapped buffers */
1843 do {
1844 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1845 !buffer_delay(bh)) {
1846 lock_buffer(bh);
1847 mark_buffer_async_write_endio(bh, handler);
1848 } else {
1849 /*
1850 * The buffer may have been set dirty during
1851 * attachment to a dirty page.
1852 */
1853 clear_buffer_dirty(bh);
1854 }
1855 } while ((bh = bh->b_this_page) != head);
1856 SetPageError(page);
1857 BUG_ON(PageWriteback(page));
1858 mapping_set_error(page->mapping, err);
1859 set_page_writeback(page);
1860 do {
1861 struct buffer_head *next = bh->b_this_page;
1862 if (buffer_async_write(bh)) {
1863 clear_buffer_dirty(bh);
1864 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1865 inode->i_write_hint, wbc);
1866 nr_underway++;
1867 }
1868 bh = next;
1869 } while (bh != head);
1870 unlock_page(page);
1871 goto done;
1872}
1873EXPORT_SYMBOL(__block_write_full_page);
1874
1875/*
1876 * If a page has any new buffers, zero them out here, and mark them uptodate
1877 * and dirty so they'll be written out (in order to prevent uninitialised
1878 * block data from leaking). And clear the new bit.
1879 */
1880void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1881{
1882 unsigned int block_start, block_end;
1883 struct buffer_head *head, *bh;
1884
1885 BUG_ON(!PageLocked(page));
1886 if (!page_has_buffers(page))
1887 return;
1888
1889 bh = head = page_buffers(page);
1890 block_start = 0;
1891 do {
1892 block_end = block_start + bh->b_size;
1893
1894 if (buffer_new(bh)) {
1895 if (block_end > from && block_start < to) {
1896 if (!PageUptodate(page)) {
1897 unsigned start, size;
1898
1899 start = max(from, block_start);
1900 size = min(to, block_end) - start;
1901
1902 zero_user(page, start, size);
1903 set_buffer_uptodate(bh);
1904 }
1905
1906 clear_buffer_new(bh);
1907 mark_buffer_dirty(bh);
1908 }
1909 }
1910
1911 block_start = block_end;
1912 bh = bh->b_this_page;
1913 } while (bh != head);
1914}
1915EXPORT_SYMBOL(page_zero_new_buffers);
1916
1917static void
1918iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1919 const struct iomap *iomap)
1920{
1921 loff_t offset = block << inode->i_blkbits;
1922
1923 bh->b_bdev = iomap->bdev;
1924
1925 /*
1926 * Block points to offset in file we need to map, iomap contains
1927 * the offset at which the map starts. If the map ends before the
1928 * current block, then do not map the buffer and let the caller
1929 * handle it.
1930 */
1931 BUG_ON(offset >= iomap->offset + iomap->length);
1932
1933 switch (iomap->type) {
1934 case IOMAP_HOLE:
1935 /*
1936 * If the buffer is not up to date or beyond the current EOF,
1937 * we need to mark it as new to ensure sub-block zeroing is
1938 * executed if necessary.
1939 */
1940 if (!buffer_uptodate(bh) ||
1941 (offset >= i_size_read(inode)))
1942 set_buffer_new(bh);
1943 break;
1944 case IOMAP_DELALLOC:
1945 if (!buffer_uptodate(bh) ||
1946 (offset >= i_size_read(inode)))
1947 set_buffer_new(bh);
1948 set_buffer_uptodate(bh);
1949 set_buffer_mapped(bh);
1950 set_buffer_delay(bh);
1951 break;
1952 case IOMAP_UNWRITTEN:
1953 /*
1954 * For unwritten regions, we always need to ensure that regions
1955 * in the block we are not writing to are zeroed. Mark the
1956 * buffer as new to ensure this.
1957 */
1958 set_buffer_new(bh);
1959 set_buffer_unwritten(bh);
1960 fallthrough;
1961 case IOMAP_MAPPED:
1962 if ((iomap->flags & IOMAP_F_NEW) ||
1963 offset >= i_size_read(inode))
1964 set_buffer_new(bh);
1965 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1966 inode->i_blkbits;
1967 set_buffer_mapped(bh);
1968 break;
1969 }
1970}
1971
1972int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1973 get_block_t *get_block, const struct iomap *iomap)
1974{
1975 unsigned from = pos & (PAGE_SIZE - 1);
1976 unsigned to = from + len;
1977 struct inode *inode = folio->mapping->host;
1978 unsigned block_start, block_end;
1979 sector_t block;
1980 int err = 0;
1981 unsigned blocksize, bbits;
1982 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1983
1984 BUG_ON(!folio_test_locked(folio));
1985 BUG_ON(from > PAGE_SIZE);
1986 BUG_ON(to > PAGE_SIZE);
1987 BUG_ON(from > to);
1988
1989 head = create_page_buffers(&folio->page, inode, 0);
1990 blocksize = head->b_size;
1991 bbits = block_size_bits(blocksize);
1992
1993 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1994
1995 for(bh = head, block_start = 0; bh != head || !block_start;
1996 block++, block_start=block_end, bh = bh->b_this_page) {
1997 block_end = block_start + blocksize;
1998 if (block_end <= from || block_start >= to) {
1999 if (folio_test_uptodate(folio)) {
2000 if (!buffer_uptodate(bh))
2001 set_buffer_uptodate(bh);
2002 }
2003 continue;
2004 }
2005 if (buffer_new(bh))
2006 clear_buffer_new(bh);
2007 if (!buffer_mapped(bh)) {
2008 WARN_ON(bh->b_size != blocksize);
2009 if (get_block) {
2010 err = get_block(inode, block, bh, 1);
2011 if (err)
2012 break;
2013 } else {
2014 iomap_to_bh(inode, block, bh, iomap);
2015 }
2016
2017 if (buffer_new(bh)) {
2018 clean_bdev_bh_alias(bh);
2019 if (folio_test_uptodate(folio)) {
2020 clear_buffer_new(bh);
2021 set_buffer_uptodate(bh);
2022 mark_buffer_dirty(bh);
2023 continue;
2024 }
2025 if (block_end > to || block_start < from)
2026 folio_zero_segments(folio,
2027 to, block_end,
2028 block_start, from);
2029 continue;
2030 }
2031 }
2032 if (folio_test_uptodate(folio)) {
2033 if (!buffer_uptodate(bh))
2034 set_buffer_uptodate(bh);
2035 continue;
2036 }
2037 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2038 !buffer_unwritten(bh) &&
2039 (block_start < from || block_end > to)) {
2040 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2041 *wait_bh++=bh;
2042 }
2043 }
2044 /*
2045 * If we issued read requests - let them complete.
2046 */
2047 while(wait_bh > wait) {
2048 wait_on_buffer(*--wait_bh);
2049 if (!buffer_uptodate(*wait_bh))
2050 err = -EIO;
2051 }
2052 if (unlikely(err))
2053 page_zero_new_buffers(&folio->page, from, to);
2054 return err;
2055}
2056
2057int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2058 get_block_t *get_block)
2059{
2060 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2061 NULL);
2062}
2063EXPORT_SYMBOL(__block_write_begin);
2064
2065static int __block_commit_write(struct inode *inode, struct page *page,
2066 unsigned from, unsigned to)
2067{
2068 unsigned block_start, block_end;
2069 int partial = 0;
2070 unsigned blocksize;
2071 struct buffer_head *bh, *head;
2072
2073 bh = head = page_buffers(page);
2074 blocksize = bh->b_size;
2075
2076 block_start = 0;
2077 do {
2078 block_end = block_start + blocksize;
2079 if (block_end <= from || block_start >= to) {
2080 if (!buffer_uptodate(bh))
2081 partial = 1;
2082 } else {
2083 set_buffer_uptodate(bh);
2084 mark_buffer_dirty(bh);
2085 }
2086 if (buffer_new(bh))
2087 clear_buffer_new(bh);
2088
2089 block_start = block_end;
2090 bh = bh->b_this_page;
2091 } while (bh != head);
2092
2093 /*
2094 * If this is a partial write which happened to make all buffers
2095 * uptodate then we can optimize away a bogus readpage() for
2096 * the next read(). Here we 'discover' whether the page went
2097 * uptodate as a result of this (potentially partial) write.
2098 */
2099 if (!partial)
2100 SetPageUptodate(page);
2101 return 0;
2102}
2103
2104/*
2105 * block_write_begin takes care of the basic task of block allocation and
2106 * bringing partial write blocks uptodate first.
2107 *
2108 * The filesystem needs to handle block truncation upon failure.
2109 */
2110int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2111 unsigned flags, struct page **pagep, get_block_t *get_block)
2112{
2113 pgoff_t index = pos >> PAGE_SHIFT;
2114 struct page *page;
2115 int status;
2116
2117 page = grab_cache_page_write_begin(mapping, index, flags);
2118 if (!page)
2119 return -ENOMEM;
2120
2121 status = __block_write_begin(page, pos, len, get_block);
2122 if (unlikely(status)) {
2123 unlock_page(page);
2124 put_page(page);
2125 page = NULL;
2126 }
2127
2128 *pagep = page;
2129 return status;
2130}
2131EXPORT_SYMBOL(block_write_begin);
2132
2133int block_write_end(struct file *file, struct address_space *mapping,
2134 loff_t pos, unsigned len, unsigned copied,
2135 struct page *page, void *fsdata)
2136{
2137 struct inode *inode = mapping->host;
2138 unsigned start;
2139
2140 start = pos & (PAGE_SIZE - 1);
2141
2142 if (unlikely(copied < len)) {
2143 /*
2144 * The buffers that were written will now be uptodate, so we
2145 * don't have to worry about a readpage reading them and
2146 * overwriting a partial write. However if we have encountered
2147 * a short write and only partially written into a buffer, it
2148 * will not be marked uptodate, so a readpage might come in and
2149 * destroy our partial write.
2150 *
2151 * Do the simplest thing, and just treat any short write to a
2152 * non uptodate page as a zero-length write, and force the
2153 * caller to redo the whole thing.
2154 */
2155 if (!PageUptodate(page))
2156 copied = 0;
2157
2158 page_zero_new_buffers(page, start+copied, start+len);
2159 }
2160 flush_dcache_page(page);
2161
2162 /* This could be a short (even 0-length) commit */
2163 __block_commit_write(inode, page, start, start+copied);
2164
2165 return copied;
2166}
2167EXPORT_SYMBOL(block_write_end);
2168
2169int generic_write_end(struct file *file, struct address_space *mapping,
2170 loff_t pos, unsigned len, unsigned copied,
2171 struct page *page, void *fsdata)
2172{
2173 struct inode *inode = mapping->host;
2174 loff_t old_size = inode->i_size;
2175 bool i_size_changed = false;
2176
2177 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2178
2179 /*
2180 * No need to use i_size_read() here, the i_size cannot change under us
2181 * because we hold i_rwsem.
2182 *
2183 * But it's important to update i_size while still holding page lock:
2184 * page writeout could otherwise come in and zero beyond i_size.
2185 */
2186 if (pos + copied > inode->i_size) {
2187 i_size_write(inode, pos + copied);
2188 i_size_changed = true;
2189 }
2190
2191 unlock_page(page);
2192 put_page(page);
2193
2194 if (old_size < pos)
2195 pagecache_isize_extended(inode, old_size, pos);
2196 /*
2197 * Don't mark the inode dirty under page lock. First, it unnecessarily
2198 * makes the holding time of page lock longer. Second, it forces lock
2199 * ordering of page lock and transaction start for journaling
2200 * filesystems.
2201 */
2202 if (i_size_changed)
2203 mark_inode_dirty(inode);
2204 return copied;
2205}
2206EXPORT_SYMBOL(generic_write_end);
2207
2208/*
2209 * block_is_partially_uptodate checks whether buffers within a page are
2210 * uptodate or not.
2211 *
2212 * Returns true if all buffers which correspond to a file portion
2213 * we want to read are uptodate.
2214 */
2215int block_is_partially_uptodate(struct page *page, unsigned long from,
2216 unsigned long count)
2217{
2218 unsigned block_start, block_end, blocksize;
2219 unsigned to;
2220 struct buffer_head *bh, *head;
2221 int ret = 1;
2222
2223 if (!page_has_buffers(page))
2224 return 0;
2225
2226 head = page_buffers(page);
2227 blocksize = head->b_size;
2228 to = min_t(unsigned, PAGE_SIZE - from, count);
2229 to = from + to;
2230 if (from < blocksize && to > PAGE_SIZE - blocksize)
2231 return 0;
2232
2233 bh = head;
2234 block_start = 0;
2235 do {
2236 block_end = block_start + blocksize;
2237 if (block_end > from && block_start < to) {
2238 if (!buffer_uptodate(bh)) {
2239 ret = 0;
2240 break;
2241 }
2242 if (block_end >= to)
2243 break;
2244 }
2245 block_start = block_end;
2246 bh = bh->b_this_page;
2247 } while (bh != head);
2248
2249 return ret;
2250}
2251EXPORT_SYMBOL(block_is_partially_uptodate);
2252
2253/*
2254 * Generic "read page" function for block devices that have the normal
2255 * get_block functionality. This is most of the block device filesystems.
2256 * Reads the page asynchronously --- the unlock_buffer() and
2257 * set/clear_buffer_uptodate() functions propagate buffer state into the
2258 * page struct once IO has completed.
2259 */
2260int block_read_full_page(struct page *page, get_block_t *get_block)
2261{
2262 struct inode *inode = page->mapping->host;
2263 sector_t iblock, lblock;
2264 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2265 unsigned int blocksize, bbits;
2266 int nr, i;
2267 int fully_mapped = 1;
2268
2269 head = create_page_buffers(page, inode, 0);
2270 blocksize = head->b_size;
2271 bbits = block_size_bits(blocksize);
2272
2273 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2274 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2275 bh = head;
2276 nr = 0;
2277 i = 0;
2278
2279 do {
2280 if (buffer_uptodate(bh))
2281 continue;
2282
2283 if (!buffer_mapped(bh)) {
2284 int err = 0;
2285
2286 fully_mapped = 0;
2287 if (iblock < lblock) {
2288 WARN_ON(bh->b_size != blocksize);
2289 err = get_block(inode, iblock, bh, 0);
2290 if (err)
2291 SetPageError(page);
2292 }
2293 if (!buffer_mapped(bh)) {
2294 zero_user(page, i * blocksize, blocksize);
2295 if (!err)
2296 set_buffer_uptodate(bh);
2297 continue;
2298 }
2299 /*
2300 * get_block() might have updated the buffer
2301 * synchronously
2302 */
2303 if (buffer_uptodate(bh))
2304 continue;
2305 }
2306 arr[nr++] = bh;
2307 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2308
2309 if (fully_mapped)
2310 SetPageMappedToDisk(page);
2311
2312 if (!nr) {
2313 /*
2314 * All buffers are uptodate - we can set the page uptodate
2315 * as well. But not if get_block() returned an error.
2316 */
2317 if (!PageError(page))
2318 SetPageUptodate(page);
2319 unlock_page(page);
2320 return 0;
2321 }
2322
2323 /* Stage two: lock the buffers */
2324 for (i = 0; i < nr; i++) {
2325 bh = arr[i];
2326 lock_buffer(bh);
2327 mark_buffer_async_read(bh);
2328 }
2329
2330 /*
2331 * Stage 3: start the IO. Check for uptodateness
2332 * inside the buffer lock in case another process reading
2333 * the underlying blockdev brought it uptodate (the sct fix).
2334 */
2335 for (i = 0; i < nr; i++) {
2336 bh = arr[i];
2337 if (buffer_uptodate(bh))
2338 end_buffer_async_read(bh, 1);
2339 else
2340 submit_bh(REQ_OP_READ, 0, bh);
2341 }
2342 return 0;
2343}
2344EXPORT_SYMBOL(block_read_full_page);
2345
2346/* utility function for filesystems that need to do work on expanding
2347 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2348 * deal with the hole.
2349 */
2350int generic_cont_expand_simple(struct inode *inode, loff_t size)
2351{
2352 struct address_space *mapping = inode->i_mapping;
2353 struct page *page;
2354 void *fsdata;
2355 int err;
2356
2357 err = inode_newsize_ok(inode, size);
2358 if (err)
2359 goto out;
2360
2361 err = pagecache_write_begin(NULL, mapping, size, 0,
2362 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2363 if (err)
2364 goto out;
2365
2366 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2367 BUG_ON(err > 0);
2368
2369out:
2370 return err;
2371}
2372EXPORT_SYMBOL(generic_cont_expand_simple);
2373
2374static int cont_expand_zero(struct file *file, struct address_space *mapping,
2375 loff_t pos, loff_t *bytes)
2376{
2377 struct inode *inode = mapping->host;
2378 unsigned int blocksize = i_blocksize(inode);
2379 struct page *page;
2380 void *fsdata;
2381 pgoff_t index, curidx;
2382 loff_t curpos;
2383 unsigned zerofrom, offset, len;
2384 int err = 0;
2385
2386 index = pos >> PAGE_SHIFT;
2387 offset = pos & ~PAGE_MASK;
2388
2389 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2390 zerofrom = curpos & ~PAGE_MASK;
2391 if (zerofrom & (blocksize-1)) {
2392 *bytes |= (blocksize-1);
2393 (*bytes)++;
2394 }
2395 len = PAGE_SIZE - zerofrom;
2396
2397 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2398 &page, &fsdata);
2399 if (err)
2400 goto out;
2401 zero_user(page, zerofrom, len);
2402 err = pagecache_write_end(file, mapping, curpos, len, len,
2403 page, fsdata);
2404 if (err < 0)
2405 goto out;
2406 BUG_ON(err != len);
2407 err = 0;
2408
2409 balance_dirty_pages_ratelimited(mapping);
2410
2411 if (fatal_signal_pending(current)) {
2412 err = -EINTR;
2413 goto out;
2414 }
2415 }
2416
2417 /* page covers the boundary, find the boundary offset */
2418 if (index == curidx) {
2419 zerofrom = curpos & ~PAGE_MASK;
2420 /* if we will expand the thing last block will be filled */
2421 if (offset <= zerofrom) {
2422 goto out;
2423 }
2424 if (zerofrom & (blocksize-1)) {
2425 *bytes |= (blocksize-1);
2426 (*bytes)++;
2427 }
2428 len = offset - zerofrom;
2429
2430 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2431 &page, &fsdata);
2432 if (err)
2433 goto out;
2434 zero_user(page, zerofrom, len);
2435 err = pagecache_write_end(file, mapping, curpos, len, len,
2436 page, fsdata);
2437 if (err < 0)
2438 goto out;
2439 BUG_ON(err != len);
2440 err = 0;
2441 }
2442out:
2443 return err;
2444}
2445
2446/*
2447 * For moronic filesystems that do not allow holes in file.
2448 * We may have to extend the file.
2449 */
2450int cont_write_begin(struct file *file, struct address_space *mapping,
2451 loff_t pos, unsigned len, unsigned flags,
2452 struct page **pagep, void **fsdata,
2453 get_block_t *get_block, loff_t *bytes)
2454{
2455 struct inode *inode = mapping->host;
2456 unsigned int blocksize = i_blocksize(inode);
2457 unsigned int zerofrom;
2458 int err;
2459
2460 err = cont_expand_zero(file, mapping, pos, bytes);
2461 if (err)
2462 return err;
2463
2464 zerofrom = *bytes & ~PAGE_MASK;
2465 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2466 *bytes |= (blocksize-1);
2467 (*bytes)++;
2468 }
2469
2470 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2471}
2472EXPORT_SYMBOL(cont_write_begin);
2473
2474int block_commit_write(struct page *page, unsigned from, unsigned to)
2475{
2476 struct inode *inode = page->mapping->host;
2477 __block_commit_write(inode,page,from,to);
2478 return 0;
2479}
2480EXPORT_SYMBOL(block_commit_write);
2481
2482/*
2483 * block_page_mkwrite() is not allowed to change the file size as it gets
2484 * called from a page fault handler when a page is first dirtied. Hence we must
2485 * be careful to check for EOF conditions here. We set the page up correctly
2486 * for a written page which means we get ENOSPC checking when writing into
2487 * holes and correct delalloc and unwritten extent mapping on filesystems that
2488 * support these features.
2489 *
2490 * We are not allowed to take the i_mutex here so we have to play games to
2491 * protect against truncate races as the page could now be beyond EOF. Because
2492 * truncate writes the inode size before removing pages, once we have the
2493 * page lock we can determine safely if the page is beyond EOF. If it is not
2494 * beyond EOF, then the page is guaranteed safe against truncation until we
2495 * unlock the page.
2496 *
2497 * Direct callers of this function should protect against filesystem freezing
2498 * using sb_start_pagefault() - sb_end_pagefault() functions.
2499 */
2500int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2501 get_block_t get_block)
2502{
2503 struct page *page = vmf->page;
2504 struct inode *inode = file_inode(vma->vm_file);
2505 unsigned long end;
2506 loff_t size;
2507 int ret;
2508
2509 lock_page(page);
2510 size = i_size_read(inode);
2511 if ((page->mapping != inode->i_mapping) ||
2512 (page_offset(page) > size)) {
2513 /* We overload EFAULT to mean page got truncated */
2514 ret = -EFAULT;
2515 goto out_unlock;
2516 }
2517
2518 /* page is wholly or partially inside EOF */
2519 if (((page->index + 1) << PAGE_SHIFT) > size)
2520 end = size & ~PAGE_MASK;
2521 else
2522 end = PAGE_SIZE;
2523
2524 ret = __block_write_begin(page, 0, end, get_block);
2525 if (!ret)
2526 ret = block_commit_write(page, 0, end);
2527
2528 if (unlikely(ret < 0))
2529 goto out_unlock;
2530 set_page_dirty(page);
2531 wait_for_stable_page(page);
2532 return 0;
2533out_unlock:
2534 unlock_page(page);
2535 return ret;
2536}
2537EXPORT_SYMBOL(block_page_mkwrite);
2538
2539/*
2540 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2541 * immediately, while under the page lock. So it needs a special end_io
2542 * handler which does not touch the bh after unlocking it.
2543 */
2544static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2545{
2546 __end_buffer_read_notouch(bh, uptodate);
2547}
2548
2549/*
2550 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2551 * the page (converting it to circular linked list and taking care of page
2552 * dirty races).
2553 */
2554static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2555{
2556 struct buffer_head *bh;
2557
2558 BUG_ON(!PageLocked(page));
2559
2560 spin_lock(&page->mapping->private_lock);
2561 bh = head;
2562 do {
2563 if (PageDirty(page))
2564 set_buffer_dirty(bh);
2565 if (!bh->b_this_page)
2566 bh->b_this_page = head;
2567 bh = bh->b_this_page;
2568 } while (bh != head);
2569 attach_page_private(page, head);
2570 spin_unlock(&page->mapping->private_lock);
2571}
2572
2573/*
2574 * On entry, the page is fully not uptodate.
2575 * On exit the page is fully uptodate in the areas outside (from,to)
2576 * The filesystem needs to handle block truncation upon failure.
2577 */
2578int nobh_write_begin(struct address_space *mapping,
2579 loff_t pos, unsigned len, unsigned flags,
2580 struct page **pagep, void **fsdata,
2581 get_block_t *get_block)
2582{
2583 struct inode *inode = mapping->host;
2584 const unsigned blkbits = inode->i_blkbits;
2585 const unsigned blocksize = 1 << blkbits;
2586 struct buffer_head *head, *bh;
2587 struct page *page;
2588 pgoff_t index;
2589 unsigned from, to;
2590 unsigned block_in_page;
2591 unsigned block_start, block_end;
2592 sector_t block_in_file;
2593 int nr_reads = 0;
2594 int ret = 0;
2595 int is_mapped_to_disk = 1;
2596
2597 index = pos >> PAGE_SHIFT;
2598 from = pos & (PAGE_SIZE - 1);
2599 to = from + len;
2600
2601 page = grab_cache_page_write_begin(mapping, index, flags);
2602 if (!page)
2603 return -ENOMEM;
2604 *pagep = page;
2605 *fsdata = NULL;
2606
2607 if (page_has_buffers(page)) {
2608 ret = __block_write_begin(page, pos, len, get_block);
2609 if (unlikely(ret))
2610 goto out_release;
2611 return ret;
2612 }
2613
2614 if (PageMappedToDisk(page))
2615 return 0;
2616
2617 /*
2618 * Allocate buffers so that we can keep track of state, and potentially
2619 * attach them to the page if an error occurs. In the common case of
2620 * no error, they will just be freed again without ever being attached
2621 * to the page (which is all OK, because we're under the page lock).
2622 *
2623 * Be careful: the buffer linked list is a NULL terminated one, rather
2624 * than the circular one we're used to.
2625 */
2626 head = alloc_page_buffers(page, blocksize, false);
2627 if (!head) {
2628 ret = -ENOMEM;
2629 goto out_release;
2630 }
2631
2632 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2633
2634 /*
2635 * We loop across all blocks in the page, whether or not they are
2636 * part of the affected region. This is so we can discover if the
2637 * page is fully mapped-to-disk.
2638 */
2639 for (block_start = 0, block_in_page = 0, bh = head;
2640 block_start < PAGE_SIZE;
2641 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2642 int create;
2643
2644 block_end = block_start + blocksize;
2645 bh->b_state = 0;
2646 create = 1;
2647 if (block_start >= to)
2648 create = 0;
2649 ret = get_block(inode, block_in_file + block_in_page,
2650 bh, create);
2651 if (ret)
2652 goto failed;
2653 if (!buffer_mapped(bh))
2654 is_mapped_to_disk = 0;
2655 if (buffer_new(bh))
2656 clean_bdev_bh_alias(bh);
2657 if (PageUptodate(page)) {
2658 set_buffer_uptodate(bh);
2659 continue;
2660 }
2661 if (buffer_new(bh) || !buffer_mapped(bh)) {
2662 zero_user_segments(page, block_start, from,
2663 to, block_end);
2664 continue;
2665 }
2666 if (buffer_uptodate(bh))
2667 continue; /* reiserfs does this */
2668 if (block_start < from || block_end > to) {
2669 lock_buffer(bh);
2670 bh->b_end_io = end_buffer_read_nobh;
2671 submit_bh(REQ_OP_READ, 0, bh);
2672 nr_reads++;
2673 }
2674 }
2675
2676 if (nr_reads) {
2677 /*
2678 * The page is locked, so these buffers are protected from
2679 * any VM or truncate activity. Hence we don't need to care
2680 * for the buffer_head refcounts.
2681 */
2682 for (bh = head; bh; bh = bh->b_this_page) {
2683 wait_on_buffer(bh);
2684 if (!buffer_uptodate(bh))
2685 ret = -EIO;
2686 }
2687 if (ret)
2688 goto failed;
2689 }
2690
2691 if (is_mapped_to_disk)
2692 SetPageMappedToDisk(page);
2693
2694 *fsdata = head; /* to be released by nobh_write_end */
2695
2696 return 0;
2697
2698failed:
2699 BUG_ON(!ret);
2700 /*
2701 * Error recovery is a bit difficult. We need to zero out blocks that
2702 * were newly allocated, and dirty them to ensure they get written out.
2703 * Buffers need to be attached to the page at this point, otherwise
2704 * the handling of potential IO errors during writeout would be hard
2705 * (could try doing synchronous writeout, but what if that fails too?)
2706 */
2707 attach_nobh_buffers(page, head);
2708 page_zero_new_buffers(page, from, to);
2709
2710out_release:
2711 unlock_page(page);
2712 put_page(page);
2713 *pagep = NULL;
2714
2715 return ret;
2716}
2717EXPORT_SYMBOL(nobh_write_begin);
2718
2719int nobh_write_end(struct file *file, struct address_space *mapping,
2720 loff_t pos, unsigned len, unsigned copied,
2721 struct page *page, void *fsdata)
2722{
2723 struct inode *inode = page->mapping->host;
2724 struct buffer_head *head = fsdata;
2725 struct buffer_head *bh;
2726 BUG_ON(fsdata != NULL && page_has_buffers(page));
2727
2728 if (unlikely(copied < len) && head)
2729 attach_nobh_buffers(page, head);
2730 if (page_has_buffers(page))
2731 return generic_write_end(file, mapping, pos, len,
2732 copied, page, fsdata);
2733
2734 SetPageUptodate(page);
2735 set_page_dirty(page);
2736 if (pos+copied > inode->i_size) {
2737 i_size_write(inode, pos+copied);
2738 mark_inode_dirty(inode);
2739 }
2740
2741 unlock_page(page);
2742 put_page(page);
2743
2744 while (head) {
2745 bh = head;
2746 head = head->b_this_page;
2747 free_buffer_head(bh);
2748 }
2749
2750 return copied;
2751}
2752EXPORT_SYMBOL(nobh_write_end);
2753
2754/*
2755 * nobh_writepage() - based on block_full_write_page() except
2756 * that it tries to operate without attaching bufferheads to
2757 * the page.
2758 */
2759int nobh_writepage(struct page *page, get_block_t *get_block,
2760 struct writeback_control *wbc)
2761{
2762 struct inode * const inode = page->mapping->host;
2763 loff_t i_size = i_size_read(inode);
2764 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2765 unsigned offset;
2766 int ret;
2767
2768 /* Is the page fully inside i_size? */
2769 if (page->index < end_index)
2770 goto out;
2771
2772 /* Is the page fully outside i_size? (truncate in progress) */
2773 offset = i_size & (PAGE_SIZE-1);
2774 if (page->index >= end_index+1 || !offset) {
2775 unlock_page(page);
2776 return 0; /* don't care */
2777 }
2778
2779 /*
2780 * The page straddles i_size. It must be zeroed out on each and every
2781 * writepage invocation because it may be mmapped. "A file is mapped
2782 * in multiples of the page size. For a file that is not a multiple of
2783 * the page size, the remaining memory is zeroed when mapped, and
2784 * writes to that region are not written out to the file."
2785 */
2786 zero_user_segment(page, offset, PAGE_SIZE);
2787out:
2788 ret = mpage_writepage(page, get_block, wbc);
2789 if (ret == -EAGAIN)
2790 ret = __block_write_full_page(inode, page, get_block, wbc,
2791 end_buffer_async_write);
2792 return ret;
2793}
2794EXPORT_SYMBOL(nobh_writepage);
2795
2796int nobh_truncate_page(struct address_space *mapping,
2797 loff_t from, get_block_t *get_block)
2798{
2799 pgoff_t index = from >> PAGE_SHIFT;
2800 unsigned offset = from & (PAGE_SIZE-1);
2801 unsigned blocksize;
2802 sector_t iblock;
2803 unsigned length, pos;
2804 struct inode *inode = mapping->host;
2805 struct page *page;
2806 struct buffer_head map_bh;
2807 int err;
2808
2809 blocksize = i_blocksize(inode);
2810 length = offset & (blocksize - 1);
2811
2812 /* Block boundary? Nothing to do */
2813 if (!length)
2814 return 0;
2815
2816 length = blocksize - length;
2817 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2818
2819 page = grab_cache_page(mapping, index);
2820 err = -ENOMEM;
2821 if (!page)
2822 goto out;
2823
2824 if (page_has_buffers(page)) {
2825has_buffers:
2826 unlock_page(page);
2827 put_page(page);
2828 return block_truncate_page(mapping, from, get_block);
2829 }
2830
2831 /* Find the buffer that contains "offset" */
2832 pos = blocksize;
2833 while (offset >= pos) {
2834 iblock++;
2835 pos += blocksize;
2836 }
2837
2838 map_bh.b_size = blocksize;
2839 map_bh.b_state = 0;
2840 err = get_block(inode, iblock, &map_bh, 0);
2841 if (err)
2842 goto unlock;
2843 /* unmapped? It's a hole - nothing to do */
2844 if (!buffer_mapped(&map_bh))
2845 goto unlock;
2846
2847 /* Ok, it's mapped. Make sure it's up-to-date */
2848 if (!PageUptodate(page)) {
2849 err = mapping->a_ops->readpage(NULL, page);
2850 if (err) {
2851 put_page(page);
2852 goto out;
2853 }
2854 lock_page(page);
2855 if (!PageUptodate(page)) {
2856 err = -EIO;
2857 goto unlock;
2858 }
2859 if (page_has_buffers(page))
2860 goto has_buffers;
2861 }
2862 zero_user(page, offset, length);
2863 set_page_dirty(page);
2864 err = 0;
2865
2866unlock:
2867 unlock_page(page);
2868 put_page(page);
2869out:
2870 return err;
2871}
2872EXPORT_SYMBOL(nobh_truncate_page);
2873
2874int block_truncate_page(struct address_space *mapping,
2875 loff_t from, get_block_t *get_block)
2876{
2877 pgoff_t index = from >> PAGE_SHIFT;
2878 unsigned offset = from & (PAGE_SIZE-1);
2879 unsigned blocksize;
2880 sector_t iblock;
2881 unsigned length, pos;
2882 struct inode *inode = mapping->host;
2883 struct page *page;
2884 struct buffer_head *bh;
2885 int err;
2886
2887 blocksize = i_blocksize(inode);
2888 length = offset & (blocksize - 1);
2889
2890 /* Block boundary? Nothing to do */
2891 if (!length)
2892 return 0;
2893
2894 length = blocksize - length;
2895 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2896
2897 page = grab_cache_page(mapping, index);
2898 err = -ENOMEM;
2899 if (!page)
2900 goto out;
2901
2902 if (!page_has_buffers(page))
2903 create_empty_buffers(page, blocksize, 0);
2904
2905 /* Find the buffer that contains "offset" */
2906 bh = page_buffers(page);
2907 pos = blocksize;
2908 while (offset >= pos) {
2909 bh = bh->b_this_page;
2910 iblock++;
2911 pos += blocksize;
2912 }
2913
2914 err = 0;
2915 if (!buffer_mapped(bh)) {
2916 WARN_ON(bh->b_size != blocksize);
2917 err = get_block(inode, iblock, bh, 0);
2918 if (err)
2919 goto unlock;
2920 /* unmapped? It's a hole - nothing to do */
2921 if (!buffer_mapped(bh))
2922 goto unlock;
2923 }
2924
2925 /* Ok, it's mapped. Make sure it's up-to-date */
2926 if (PageUptodate(page))
2927 set_buffer_uptodate(bh);
2928
2929 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2930 err = -EIO;
2931 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2932 wait_on_buffer(bh);
2933 /* Uhhuh. Read error. Complain and punt. */
2934 if (!buffer_uptodate(bh))
2935 goto unlock;
2936 }
2937
2938 zero_user(page, offset, length);
2939 mark_buffer_dirty(bh);
2940 err = 0;
2941
2942unlock:
2943 unlock_page(page);
2944 put_page(page);
2945out:
2946 return err;
2947}
2948EXPORT_SYMBOL(block_truncate_page);
2949
2950/*
2951 * The generic ->writepage function for buffer-backed address_spaces
2952 */
2953int block_write_full_page(struct page *page, get_block_t *get_block,
2954 struct writeback_control *wbc)
2955{
2956 struct inode * const inode = page->mapping->host;
2957 loff_t i_size = i_size_read(inode);
2958 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2959 unsigned offset;
2960
2961 /* Is the page fully inside i_size? */
2962 if (page->index < end_index)
2963 return __block_write_full_page(inode, page, get_block, wbc,
2964 end_buffer_async_write);
2965
2966 /* Is the page fully outside i_size? (truncate in progress) */
2967 offset = i_size & (PAGE_SIZE-1);
2968 if (page->index >= end_index+1 || !offset) {
2969 unlock_page(page);
2970 return 0; /* don't care */
2971 }
2972
2973 /*
2974 * The page straddles i_size. It must be zeroed out on each and every
2975 * writepage invocation because it may be mmapped. "A file is mapped
2976 * in multiples of the page size. For a file that is not a multiple of
2977 * the page size, the remaining memory is zeroed when mapped, and
2978 * writes to that region are not written out to the file."
2979 */
2980 zero_user_segment(page, offset, PAGE_SIZE);
2981 return __block_write_full_page(inode, page, get_block, wbc,
2982 end_buffer_async_write);
2983}
2984EXPORT_SYMBOL(block_write_full_page);
2985
2986sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2987 get_block_t *get_block)
2988{
2989 struct inode *inode = mapping->host;
2990 struct buffer_head tmp = {
2991 .b_size = i_blocksize(inode),
2992 };
2993
2994 get_block(inode, block, &tmp, 0);
2995 return tmp.b_blocknr;
2996}
2997EXPORT_SYMBOL(generic_block_bmap);
2998
2999static void end_bio_bh_io_sync(struct bio *bio)
3000{
3001 struct buffer_head *bh = bio->bi_private;
3002
3003 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3004 set_bit(BH_Quiet, &bh->b_state);
3005
3006 bh->b_end_io(bh, !bio->bi_status);
3007 bio_put(bio);
3008}
3009
3010static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3011 enum rw_hint write_hint, struct writeback_control *wbc)
3012{
3013 struct bio *bio;
3014
3015 BUG_ON(!buffer_locked(bh));
3016 BUG_ON(!buffer_mapped(bh));
3017 BUG_ON(!bh->b_end_io);
3018 BUG_ON(buffer_delay(bh));
3019 BUG_ON(buffer_unwritten(bh));
3020
3021 /*
3022 * Only clear out a write error when rewriting
3023 */
3024 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3025 clear_buffer_write_io_error(bh);
3026
3027 bio = bio_alloc(GFP_NOIO, 1);
3028
3029 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3030
3031 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3032 bio_set_dev(bio, bh->b_bdev);
3033 bio->bi_write_hint = write_hint;
3034
3035 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3036 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3037
3038 bio->bi_end_io = end_bio_bh_io_sync;
3039 bio->bi_private = bh;
3040
3041 if (buffer_meta(bh))
3042 op_flags |= REQ_META;
3043 if (buffer_prio(bh))
3044 op_flags |= REQ_PRIO;
3045 bio_set_op_attrs(bio, op, op_flags);
3046
3047 /* Take care of bh's that straddle the end of the device */
3048 guard_bio_eod(bio);
3049
3050 if (wbc) {
3051 wbc_init_bio(wbc, bio);
3052 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3053 }
3054
3055 submit_bio(bio);
3056 return 0;
3057}
3058
3059int submit_bh(int op, int op_flags, struct buffer_head *bh)
3060{
3061 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3062}
3063EXPORT_SYMBOL(submit_bh);
3064
3065/**
3066 * ll_rw_block: low-level access to block devices (DEPRECATED)
3067 * @op: whether to %READ or %WRITE
3068 * @op_flags: req_flag_bits
3069 * @nr: number of &struct buffer_heads in the array
3070 * @bhs: array of pointers to &struct buffer_head
3071 *
3072 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3073 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3074 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3075 * %REQ_RAHEAD.
3076 *
3077 * This function drops any buffer that it cannot get a lock on (with the
3078 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3079 * request, and any buffer that appears to be up-to-date when doing read
3080 * request. Further it marks as clean buffers that are processed for
3081 * writing (the buffer cache won't assume that they are actually clean
3082 * until the buffer gets unlocked).
3083 *
3084 * ll_rw_block sets b_end_io to simple completion handler that marks
3085 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3086 * any waiters.
3087 *
3088 * All of the buffers must be for the same device, and must also be a
3089 * multiple of the current approved size for the device.
3090 */
3091void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3092{
3093 int i;
3094
3095 for (i = 0; i < nr; i++) {
3096 struct buffer_head *bh = bhs[i];
3097
3098 if (!trylock_buffer(bh))
3099 continue;
3100 if (op == WRITE) {
3101 if (test_clear_buffer_dirty(bh)) {
3102 bh->b_end_io = end_buffer_write_sync;
3103 get_bh(bh);
3104 submit_bh(op, op_flags, bh);
3105 continue;
3106 }
3107 } else {
3108 if (!buffer_uptodate(bh)) {
3109 bh->b_end_io = end_buffer_read_sync;
3110 get_bh(bh);
3111 submit_bh(op, op_flags, bh);
3112 continue;
3113 }
3114 }
3115 unlock_buffer(bh);
3116 }
3117}
3118EXPORT_SYMBOL(ll_rw_block);
3119
3120void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3121{
3122 lock_buffer(bh);
3123 if (!test_clear_buffer_dirty(bh)) {
3124 unlock_buffer(bh);
3125 return;
3126 }
3127 bh->b_end_io = end_buffer_write_sync;
3128 get_bh(bh);
3129 submit_bh(REQ_OP_WRITE, op_flags, bh);
3130}
3131EXPORT_SYMBOL(write_dirty_buffer);
3132
3133/*
3134 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3135 * and then start new I/O and then wait upon it. The caller must have a ref on
3136 * the buffer_head.
3137 */
3138int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3139{
3140 int ret = 0;
3141
3142 WARN_ON(atomic_read(&bh->b_count) < 1);
3143 lock_buffer(bh);
3144 if (test_clear_buffer_dirty(bh)) {
3145 /*
3146 * The bh should be mapped, but it might not be if the
3147 * device was hot-removed. Not much we can do but fail the I/O.
3148 */
3149 if (!buffer_mapped(bh)) {
3150 unlock_buffer(bh);
3151 return -EIO;
3152 }
3153
3154 get_bh(bh);
3155 bh->b_end_io = end_buffer_write_sync;
3156 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3157 wait_on_buffer(bh);
3158 if (!ret && !buffer_uptodate(bh))
3159 ret = -EIO;
3160 } else {
3161 unlock_buffer(bh);
3162 }
3163 return ret;
3164}
3165EXPORT_SYMBOL(__sync_dirty_buffer);
3166
3167int sync_dirty_buffer(struct buffer_head *bh)
3168{
3169 return __sync_dirty_buffer(bh, REQ_SYNC);
3170}
3171EXPORT_SYMBOL(sync_dirty_buffer);
3172
3173/*
3174 * try_to_free_buffers() checks if all the buffers on this particular page
3175 * are unused, and releases them if so.
3176 *
3177 * Exclusion against try_to_free_buffers may be obtained by either
3178 * locking the page or by holding its mapping's private_lock.
3179 *
3180 * If the page is dirty but all the buffers are clean then we need to
3181 * be sure to mark the page clean as well. This is because the page
3182 * may be against a block device, and a later reattachment of buffers
3183 * to a dirty page will set *all* buffers dirty. Which would corrupt
3184 * filesystem data on the same device.
3185 *
3186 * The same applies to regular filesystem pages: if all the buffers are
3187 * clean then we set the page clean and proceed. To do that, we require
3188 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3189 * private_lock.
3190 *
3191 * try_to_free_buffers() is non-blocking.
3192 */
3193static inline int buffer_busy(struct buffer_head *bh)
3194{
3195 return atomic_read(&bh->b_count) |
3196 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3197}
3198
3199static int
3200drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3201{
3202 struct buffer_head *head = page_buffers(page);
3203 struct buffer_head *bh;
3204
3205 bh = head;
3206 do {
3207 if (buffer_busy(bh))
3208 goto failed;
3209 bh = bh->b_this_page;
3210 } while (bh != head);
3211
3212 do {
3213 struct buffer_head *next = bh->b_this_page;
3214
3215 if (bh->b_assoc_map)
3216 __remove_assoc_queue(bh);
3217 bh = next;
3218 } while (bh != head);
3219 *buffers_to_free = head;
3220 detach_page_private(page);
3221 return 1;
3222failed:
3223 return 0;
3224}
3225
3226int try_to_free_buffers(struct page *page)
3227{
3228 struct address_space * const mapping = page->mapping;
3229 struct buffer_head *buffers_to_free = NULL;
3230 int ret = 0;
3231
3232 BUG_ON(!PageLocked(page));
3233 if (PageWriteback(page))
3234 return 0;
3235
3236 if (mapping == NULL) { /* can this still happen? */
3237 ret = drop_buffers(page, &buffers_to_free);
3238 goto out;
3239 }
3240
3241 spin_lock(&mapping->private_lock);
3242 ret = drop_buffers(page, &buffers_to_free);
3243
3244 /*
3245 * If the filesystem writes its buffers by hand (eg ext3)
3246 * then we can have clean buffers against a dirty page. We
3247 * clean the page here; otherwise the VM will never notice
3248 * that the filesystem did any IO at all.
3249 *
3250 * Also, during truncate, discard_buffer will have marked all
3251 * the page's buffers clean. We discover that here and clean
3252 * the page also.
3253 *
3254 * private_lock must be held over this entire operation in order
3255 * to synchronise against __set_page_dirty_buffers and prevent the
3256 * dirty bit from being lost.
3257 */
3258 if (ret)
3259 cancel_dirty_page(page);
3260 spin_unlock(&mapping->private_lock);
3261out:
3262 if (buffers_to_free) {
3263 struct buffer_head *bh = buffers_to_free;
3264
3265 do {
3266 struct buffer_head *next = bh->b_this_page;
3267 free_buffer_head(bh);
3268 bh = next;
3269 } while (bh != buffers_to_free);
3270 }
3271 return ret;
3272}
3273EXPORT_SYMBOL(try_to_free_buffers);
3274
3275/*
3276 * Buffer-head allocation
3277 */
3278static struct kmem_cache *bh_cachep __read_mostly;
3279
3280/*
3281 * Once the number of bh's in the machine exceeds this level, we start
3282 * stripping them in writeback.
3283 */
3284static unsigned long max_buffer_heads;
3285
3286int buffer_heads_over_limit;
3287
3288struct bh_accounting {
3289 int nr; /* Number of live bh's */
3290 int ratelimit; /* Limit cacheline bouncing */
3291};
3292
3293static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3294
3295static void recalc_bh_state(void)
3296{
3297 int i;
3298 int tot = 0;
3299
3300 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3301 return;
3302 __this_cpu_write(bh_accounting.ratelimit, 0);
3303 for_each_online_cpu(i)
3304 tot += per_cpu(bh_accounting, i).nr;
3305 buffer_heads_over_limit = (tot > max_buffer_heads);
3306}
3307
3308struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3309{
3310 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3311 if (ret) {
3312 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3313 spin_lock_init(&ret->b_uptodate_lock);
3314 preempt_disable();
3315 __this_cpu_inc(bh_accounting.nr);
3316 recalc_bh_state();
3317 preempt_enable();
3318 }
3319 return ret;
3320}
3321EXPORT_SYMBOL(alloc_buffer_head);
3322
3323void free_buffer_head(struct buffer_head *bh)
3324{
3325 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3326 kmem_cache_free(bh_cachep, bh);
3327 preempt_disable();
3328 __this_cpu_dec(bh_accounting.nr);
3329 recalc_bh_state();
3330 preempt_enable();
3331}
3332EXPORT_SYMBOL(free_buffer_head);
3333
3334static int buffer_exit_cpu_dead(unsigned int cpu)
3335{
3336 int i;
3337 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3338
3339 for (i = 0; i < BH_LRU_SIZE; i++) {
3340 brelse(b->bhs[i]);
3341 b->bhs[i] = NULL;
3342 }
3343 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3344 per_cpu(bh_accounting, cpu).nr = 0;
3345 return 0;
3346}
3347
3348/**
3349 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3350 * @bh: struct buffer_head
3351 *
3352 * Return true if the buffer is up-to-date and false,
3353 * with the buffer locked, if not.
3354 */
3355int bh_uptodate_or_lock(struct buffer_head *bh)
3356{
3357 if (!buffer_uptodate(bh)) {
3358 lock_buffer(bh);
3359 if (!buffer_uptodate(bh))
3360 return 0;
3361 unlock_buffer(bh);
3362 }
3363 return 1;
3364}
3365EXPORT_SYMBOL(bh_uptodate_or_lock);
3366
3367/**
3368 * bh_submit_read - Submit a locked buffer for reading
3369 * @bh: struct buffer_head
3370 *
3371 * Returns zero on success and -EIO on error.
3372 */
3373int bh_submit_read(struct buffer_head *bh)
3374{
3375 BUG_ON(!buffer_locked(bh));
3376
3377 if (buffer_uptodate(bh)) {
3378 unlock_buffer(bh);
3379 return 0;
3380 }
3381
3382 get_bh(bh);
3383 bh->b_end_io = end_buffer_read_sync;
3384 submit_bh(REQ_OP_READ, 0, bh);
3385 wait_on_buffer(bh);
3386 if (buffer_uptodate(bh))
3387 return 0;
3388 return -EIO;
3389}
3390EXPORT_SYMBOL(bh_submit_read);
3391
3392void __init buffer_init(void)
3393{
3394 unsigned long nrpages;
3395 int ret;
3396
3397 bh_cachep = kmem_cache_create("buffer_head",
3398 sizeof(struct buffer_head), 0,
3399 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3400 SLAB_MEM_SPREAD),
3401 NULL);
3402
3403 /*
3404 * Limit the bh occupancy to 10% of ZONE_NORMAL
3405 */
3406 nrpages = (nr_free_buffer_pages() * 10) / 100;
3407 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3408 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3409 NULL, buffer_exit_cpu_dead);
3410 WARN_ON(ret < 0);
3411}