Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/kthread.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sched/mm.h>
20#include <linux/log2.h>
21#include <crypto/hash.h>
22#include "misc.h"
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
27#include "volumes.h"
28#include "ordered-data.h"
29#include "compression.h"
30#include "extent_io.h"
31#include "extent_map.h"
32#include "subpage.h"
33#include "zoned.h"
34
35static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
36
37const char* btrfs_compress_type2str(enum btrfs_compression_type type)
38{
39 switch (type) {
40 case BTRFS_COMPRESS_ZLIB:
41 case BTRFS_COMPRESS_LZO:
42 case BTRFS_COMPRESS_ZSTD:
43 case BTRFS_COMPRESS_NONE:
44 return btrfs_compress_types[type];
45 default:
46 break;
47 }
48
49 return NULL;
50}
51
52bool btrfs_compress_is_valid_type(const char *str, size_t len)
53{
54 int i;
55
56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 size_t comp_len = strlen(btrfs_compress_types[i]);
58
59 if (len < comp_len)
60 continue;
61
62 if (!strncmp(btrfs_compress_types[i], str, comp_len))
63 return true;
64 }
65 return false;
66}
67
68static int compression_compress_pages(int type, struct list_head *ws,
69 struct address_space *mapping, u64 start, struct page **pages,
70 unsigned long *out_pages, unsigned long *total_in,
71 unsigned long *total_out)
72{
73 switch (type) {
74 case BTRFS_COMPRESS_ZLIB:
75 return zlib_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_LZO:
78 return lzo_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_ZSTD:
81 return zstd_compress_pages(ws, mapping, start, pages,
82 out_pages, total_in, total_out);
83 case BTRFS_COMPRESS_NONE:
84 default:
85 /*
86 * This can happen when compression races with remount setting
87 * it to 'no compress', while caller doesn't call
88 * inode_need_compress() to check if we really need to
89 * compress.
90 *
91 * Not a big deal, just need to inform caller that we
92 * haven't allocated any pages yet.
93 */
94 *out_pages = 0;
95 return -E2BIG;
96 }
97}
98
99static int compression_decompress_bio(struct list_head *ws,
100 struct compressed_bio *cb)
101{
102 switch (cb->compress_type) {
103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 case BTRFS_COMPRESS_NONE:
107 default:
108 /*
109 * This can't happen, the type is validated several times
110 * before we get here.
111 */
112 BUG();
113 }
114}
115
116static int compression_decompress(int type, struct list_head *ws,
117 unsigned char *data_in, struct page *dest_page,
118 unsigned long start_byte, size_t srclen, size_t destlen)
119{
120 switch (type) {
121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 start_byte, srclen, destlen);
127 case BTRFS_COMPRESS_NONE:
128 default:
129 /*
130 * This can't happen, the type is validated several times
131 * before we get here.
132 */
133 BUG();
134 }
135}
136
137static int btrfs_decompress_bio(struct compressed_bio *cb);
138
139static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 unsigned long disk_size)
141{
142 return sizeof(struct compressed_bio) +
143 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144}
145
146static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 u64 disk_start)
148{
149 struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 const u32 csum_size = fs_info->csum_size;
152 const u32 sectorsize = fs_info->sectorsize;
153 struct page *page;
154 unsigned int i;
155 char *kaddr;
156 u8 csum[BTRFS_CSUM_SIZE];
157 struct compressed_bio *cb = bio->bi_private;
158 u8 *cb_sum = cb->sums;
159
160 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
161 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
162 return 0;
163
164 shash->tfm = fs_info->csum_shash;
165
166 for (i = 0; i < cb->nr_pages; i++) {
167 u32 pg_offset;
168 u32 bytes_left = PAGE_SIZE;
169 page = cb->compressed_pages[i];
170
171 /* Determine the remaining bytes inside the page first */
172 if (i == cb->nr_pages - 1)
173 bytes_left = cb->compressed_len - i * PAGE_SIZE;
174
175 /* Hash through the page sector by sector */
176 for (pg_offset = 0; pg_offset < bytes_left;
177 pg_offset += sectorsize) {
178 kaddr = kmap_atomic(page);
179 crypto_shash_digest(shash, kaddr + pg_offset,
180 sectorsize, csum);
181 kunmap_atomic(kaddr);
182
183 if (memcmp(&csum, cb_sum, csum_size) != 0) {
184 btrfs_print_data_csum_error(inode, disk_start,
185 csum, cb_sum, cb->mirror_num);
186 if (btrfs_bio(bio)->device)
187 btrfs_dev_stat_inc_and_print(
188 btrfs_bio(bio)->device,
189 BTRFS_DEV_STAT_CORRUPTION_ERRS);
190 return -EIO;
191 }
192 cb_sum += csum_size;
193 disk_start += sectorsize;
194 }
195 }
196 return 0;
197}
198
199/*
200 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
201 *
202 * Return true if there is no pending bio nor io.
203 * Return false otherwise.
204 */
205static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
206{
207 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
208 unsigned int bi_size = 0;
209 bool last_io = false;
210 struct bio_vec *bvec;
211 struct bvec_iter_all iter_all;
212
213 /*
214 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
215 * Thus here we have to iterate through all segments to grab correct
216 * bio size.
217 */
218 bio_for_each_segment_all(bvec, bio, iter_all)
219 bi_size += bvec->bv_len;
220
221 if (bio->bi_status)
222 cb->errors = 1;
223
224 ASSERT(bi_size && bi_size <= cb->compressed_len);
225 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
226 &cb->pending_sectors);
227 /*
228 * Here we must wake up the possible error handler after all other
229 * operations on @cb finished, or we can race with
230 * finish_compressed_bio_*() which may free @cb.
231 */
232 wake_up_var(cb);
233
234 return last_io;
235}
236
237static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
238{
239 unsigned int index;
240 struct page *page;
241
242 /* Release the compressed pages */
243 for (index = 0; index < cb->nr_pages; index++) {
244 page = cb->compressed_pages[index];
245 page->mapping = NULL;
246 put_page(page);
247 }
248
249 /* Do io completion on the original bio */
250 if (cb->errors) {
251 bio_io_error(cb->orig_bio);
252 } else {
253 struct bio_vec *bvec;
254 struct bvec_iter_all iter_all;
255
256 ASSERT(bio);
257 ASSERT(!bio->bi_status);
258 /*
259 * We have verified the checksum already, set page checked so
260 * the end_io handlers know about it
261 */
262 ASSERT(!bio_flagged(bio, BIO_CLONED));
263 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
264 u64 bvec_start = page_offset(bvec->bv_page) +
265 bvec->bv_offset;
266
267 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
268 bvec->bv_page, bvec_start,
269 bvec->bv_len);
270 }
271
272 bio_endio(cb->orig_bio);
273 }
274
275 /* Finally free the cb struct */
276 kfree(cb->compressed_pages);
277 kfree(cb);
278}
279
280/* when we finish reading compressed pages from the disk, we
281 * decompress them and then run the bio end_io routines on the
282 * decompressed pages (in the inode address space).
283 *
284 * This allows the checksumming and other IO error handling routines
285 * to work normally
286 *
287 * The compressed pages are freed here, and it must be run
288 * in process context
289 */
290static void end_compressed_bio_read(struct bio *bio)
291{
292 struct compressed_bio *cb = bio->bi_private;
293 struct inode *inode;
294 unsigned int mirror = btrfs_bio(bio)->mirror_num;
295 int ret = 0;
296
297 if (!dec_and_test_compressed_bio(cb, bio))
298 goto out;
299
300 /*
301 * Record the correct mirror_num in cb->orig_bio so that
302 * read-repair can work properly.
303 */
304 btrfs_bio(cb->orig_bio)->mirror_num = mirror;
305 cb->mirror_num = mirror;
306
307 /*
308 * Some IO in this cb have failed, just skip checksum as there
309 * is no way it could be correct.
310 */
311 if (cb->errors == 1)
312 goto csum_failed;
313
314 inode = cb->inode;
315 ret = check_compressed_csum(BTRFS_I(inode), bio,
316 bio->bi_iter.bi_sector << 9);
317 if (ret)
318 goto csum_failed;
319
320 /* ok, we're the last bio for this extent, lets start
321 * the decompression.
322 */
323 ret = btrfs_decompress_bio(cb);
324
325csum_failed:
326 if (ret)
327 cb->errors = 1;
328 finish_compressed_bio_read(cb, bio);
329out:
330 bio_put(bio);
331}
332
333/*
334 * Clear the writeback bits on all of the file
335 * pages for a compressed write
336 */
337static noinline void end_compressed_writeback(struct inode *inode,
338 const struct compressed_bio *cb)
339{
340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
341 unsigned long index = cb->start >> PAGE_SHIFT;
342 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
343 struct page *pages[16];
344 unsigned long nr_pages = end_index - index + 1;
345 int i;
346 int ret;
347
348 if (cb->errors)
349 mapping_set_error(inode->i_mapping, -EIO);
350
351 while (nr_pages > 0) {
352 ret = find_get_pages_contig(inode->i_mapping, index,
353 min_t(unsigned long,
354 nr_pages, ARRAY_SIZE(pages)), pages);
355 if (ret == 0) {
356 nr_pages -= 1;
357 index += 1;
358 continue;
359 }
360 for (i = 0; i < ret; i++) {
361 if (cb->errors)
362 SetPageError(pages[i]);
363 btrfs_page_clamp_clear_writeback(fs_info, pages[i],
364 cb->start, cb->len);
365 put_page(pages[i]);
366 }
367 nr_pages -= ret;
368 index += ret;
369 }
370 /* the inode may be gone now */
371}
372
373static void finish_compressed_bio_write(struct compressed_bio *cb)
374{
375 struct inode *inode = cb->inode;
376 unsigned int index;
377
378 /*
379 * Ok, we're the last bio for this extent, step one is to call back
380 * into the FS and do all the end_io operations.
381 */
382 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383 cb->start, cb->start + cb->len - 1,
384 !cb->errors);
385
386 end_compressed_writeback(inode, cb);
387 /* Note, our inode could be gone now */
388
389 /*
390 * Release the compressed pages, these came from alloc_page and
391 * are not attached to the inode at all
392 */
393 for (index = 0; index < cb->nr_pages; index++) {
394 struct page *page = cb->compressed_pages[index];
395
396 page->mapping = NULL;
397 put_page(page);
398 }
399
400 /* Finally free the cb struct */
401 kfree(cb->compressed_pages);
402 kfree(cb);
403}
404
405/*
406 * Do the cleanup once all the compressed pages hit the disk. This will clear
407 * writeback on the file pages and free the compressed pages.
408 *
409 * This also calls the writeback end hooks for the file pages so that metadata
410 * and checksums can be updated in the file.
411 */
412static void end_compressed_bio_write(struct bio *bio)
413{
414 struct compressed_bio *cb = bio->bi_private;
415
416 if (!dec_and_test_compressed_bio(cb, bio))
417 goto out;
418
419 btrfs_record_physical_zoned(cb->inode, cb->start, bio);
420
421 finish_compressed_bio_write(cb);
422out:
423 bio_put(bio);
424}
425
426static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
427 struct compressed_bio *cb,
428 struct bio *bio, int mirror_num)
429{
430 blk_status_t ret;
431
432 ASSERT(bio->bi_iter.bi_size);
433 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
434 if (ret)
435 return ret;
436 ret = btrfs_map_bio(fs_info, bio, mirror_num);
437 return ret;
438}
439
440/*
441 * Allocate a compressed_bio, which will be used to read/write on-disk
442 * (aka, compressed) * data.
443 *
444 * @cb: The compressed_bio structure, which records all the needed
445 * information to bind the compressed data to the uncompressed
446 * page cache.
447 * @disk_byten: The logical bytenr where the compressed data will be read
448 * from or written to.
449 * @endio_func: The endio function to call after the IO for compressed data
450 * is finished.
451 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
452 * Let the caller know to only fill the bio up to the stripe
453 * boundary.
454 */
455
456
457static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
458 unsigned int opf, bio_end_io_t endio_func,
459 u64 *next_stripe_start)
460{
461 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
462 struct btrfs_io_geometry geom;
463 struct extent_map *em;
464 struct bio *bio;
465 int ret;
466
467 bio = btrfs_bio_alloc(BIO_MAX_VECS);
468
469 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
470 bio->bi_opf = opf;
471 bio->bi_private = cb;
472 bio->bi_end_io = endio_func;
473
474 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
475 if (IS_ERR(em)) {
476 bio_put(bio);
477 return ERR_CAST(em);
478 }
479
480 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
481 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
482
483 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
484 free_extent_map(em);
485 if (ret < 0) {
486 bio_put(bio);
487 return ERR_PTR(ret);
488 }
489 *next_stripe_start = disk_bytenr + geom.len;
490
491 return bio;
492}
493
494/*
495 * worker function to build and submit bios for previously compressed pages.
496 * The corresponding pages in the inode should be marked for writeback
497 * and the compressed pages should have a reference on them for dropping
498 * when the IO is complete.
499 *
500 * This also checksums the file bytes and gets things ready for
501 * the end io hooks.
502 */
503blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
504 unsigned int len, u64 disk_start,
505 unsigned int compressed_len,
506 struct page **compressed_pages,
507 unsigned int nr_pages,
508 unsigned int write_flags,
509 struct cgroup_subsys_state *blkcg_css)
510{
511 struct btrfs_fs_info *fs_info = inode->root->fs_info;
512 struct bio *bio = NULL;
513 struct compressed_bio *cb;
514 u64 cur_disk_bytenr = disk_start;
515 u64 next_stripe_start;
516 blk_status_t ret;
517 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
518 const bool use_append = btrfs_use_zone_append(inode, disk_start);
519 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
520
521 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
522 IS_ALIGNED(len, fs_info->sectorsize));
523 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
524 if (!cb)
525 return BLK_STS_RESOURCE;
526 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
527 cb->errors = 0;
528 cb->inode = &inode->vfs_inode;
529 cb->start = start;
530 cb->len = len;
531 cb->mirror_num = 0;
532 cb->compressed_pages = compressed_pages;
533 cb->compressed_len = compressed_len;
534 cb->orig_bio = NULL;
535 cb->nr_pages = nr_pages;
536
537 while (cur_disk_bytenr < disk_start + compressed_len) {
538 u64 offset = cur_disk_bytenr - disk_start;
539 unsigned int index = offset >> PAGE_SHIFT;
540 unsigned int real_size;
541 unsigned int added;
542 struct page *page = compressed_pages[index];
543 bool submit = false;
544
545 /* Allocate new bio if submitted or not yet allocated */
546 if (!bio) {
547 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
548 bio_op | write_flags, end_compressed_bio_write,
549 &next_stripe_start);
550 if (IS_ERR(bio)) {
551 ret = errno_to_blk_status(PTR_ERR(bio));
552 bio = NULL;
553 goto finish_cb;
554 }
555 }
556 /*
557 * We should never reach next_stripe_start start as we will
558 * submit comp_bio when reach the boundary immediately.
559 */
560 ASSERT(cur_disk_bytenr != next_stripe_start);
561
562 /*
563 * We have various limits on the real read size:
564 * - stripe boundary
565 * - page boundary
566 * - compressed length boundary
567 */
568 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
569 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
570 real_size = min_t(u64, real_size, compressed_len - offset);
571 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
572
573 if (use_append)
574 added = bio_add_zone_append_page(bio, page, real_size,
575 offset_in_page(offset));
576 else
577 added = bio_add_page(bio, page, real_size,
578 offset_in_page(offset));
579 /* Reached zoned boundary */
580 if (added == 0)
581 submit = true;
582
583 cur_disk_bytenr += added;
584 /* Reached stripe boundary */
585 if (cur_disk_bytenr == next_stripe_start)
586 submit = true;
587
588 /* Finished the range */
589 if (cur_disk_bytenr == disk_start + compressed_len)
590 submit = true;
591
592 if (submit) {
593 if (!skip_sum) {
594 ret = btrfs_csum_one_bio(inode, bio, start, 1);
595 if (ret)
596 goto finish_cb;
597 }
598
599 ret = submit_compressed_bio(fs_info, cb, bio, 0);
600 if (ret)
601 goto finish_cb;
602 bio = NULL;
603 }
604 cond_resched();
605 }
606 if (blkcg_css)
607 kthread_associate_blkcg(NULL);
608
609 return 0;
610
611finish_cb:
612 if (bio) {
613 bio->bi_status = ret;
614 bio_endio(bio);
615 }
616 /* Last byte of @cb is submitted, endio will free @cb */
617 if (cur_disk_bytenr == disk_start + compressed_len)
618 return ret;
619
620 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
621 (disk_start + compressed_len - cur_disk_bytenr) >>
622 fs_info->sectorsize_bits);
623 /*
624 * Even with previous bio ended, we should still have io not yet
625 * submitted, thus need to finish manually.
626 */
627 ASSERT(refcount_read(&cb->pending_sectors));
628 /* Now we are the only one referring @cb, can finish it safely. */
629 finish_compressed_bio_write(cb);
630 return ret;
631}
632
633static u64 bio_end_offset(struct bio *bio)
634{
635 struct bio_vec *last = bio_last_bvec_all(bio);
636
637 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
638}
639
640/*
641 * Add extra pages in the same compressed file extent so that we don't need to
642 * re-read the same extent again and again.
643 *
644 * NOTE: this won't work well for subpage, as for subpage read, we lock the
645 * full page then submit bio for each compressed/regular extents.
646 *
647 * This means, if we have several sectors in the same page points to the same
648 * on-disk compressed data, we will re-read the same extent many times and
649 * this function can only help for the next page.
650 */
651static noinline int add_ra_bio_pages(struct inode *inode,
652 u64 compressed_end,
653 struct compressed_bio *cb)
654{
655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
656 unsigned long end_index;
657 u64 cur = bio_end_offset(cb->orig_bio);
658 u64 isize = i_size_read(inode);
659 int ret;
660 struct page *page;
661 struct extent_map *em;
662 struct address_space *mapping = inode->i_mapping;
663 struct extent_map_tree *em_tree;
664 struct extent_io_tree *tree;
665 int sectors_missed = 0;
666
667 em_tree = &BTRFS_I(inode)->extent_tree;
668 tree = &BTRFS_I(inode)->io_tree;
669
670 if (isize == 0)
671 return 0;
672
673 /*
674 * For current subpage support, we only support 64K page size,
675 * which means maximum compressed extent size (128K) is just 2x page
676 * size.
677 * This makes readahead less effective, so here disable readahead for
678 * subpage for now, until full compressed write is supported.
679 */
680 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
681 return 0;
682
683 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
684
685 while (cur < compressed_end) {
686 u64 page_end;
687 u64 pg_index = cur >> PAGE_SHIFT;
688 u32 add_size;
689
690 if (pg_index > end_index)
691 break;
692
693 page = xa_load(&mapping->i_pages, pg_index);
694 if (page && !xa_is_value(page)) {
695 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
696 fs_info->sectorsize_bits;
697
698 /* Beyond threshold, no need to continue */
699 if (sectors_missed > 4)
700 break;
701
702 /*
703 * Jump to next page start as we already have page for
704 * current offset.
705 */
706 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
707 continue;
708 }
709
710 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
711 ~__GFP_FS));
712 if (!page)
713 break;
714
715 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
716 put_page(page);
717 /* There is already a page, skip to page end */
718 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
719 continue;
720 }
721
722 ret = set_page_extent_mapped(page);
723 if (ret < 0) {
724 unlock_page(page);
725 put_page(page);
726 break;
727 }
728
729 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
730 lock_extent(tree, cur, page_end);
731 read_lock(&em_tree->lock);
732 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
733 read_unlock(&em_tree->lock);
734
735 /*
736 * At this point, we have a locked page in the page cache for
737 * these bytes in the file. But, we have to make sure they map
738 * to this compressed extent on disk.
739 */
740 if (!em || cur < em->start ||
741 (cur + fs_info->sectorsize > extent_map_end(em)) ||
742 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
743 free_extent_map(em);
744 unlock_extent(tree, cur, page_end);
745 unlock_page(page);
746 put_page(page);
747 break;
748 }
749 free_extent_map(em);
750
751 if (page->index == end_index) {
752 size_t zero_offset = offset_in_page(isize);
753
754 if (zero_offset) {
755 int zeros;
756 zeros = PAGE_SIZE - zero_offset;
757 memzero_page(page, zero_offset, zeros);
758 flush_dcache_page(page);
759 }
760 }
761
762 add_size = min(em->start + em->len, page_end + 1) - cur;
763 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
764 if (ret != add_size) {
765 unlock_extent(tree, cur, page_end);
766 unlock_page(page);
767 put_page(page);
768 break;
769 }
770 /*
771 * If it's subpage, we also need to increase its
772 * subpage::readers number, as at endio we will decrease
773 * subpage::readers and to unlock the page.
774 */
775 if (fs_info->sectorsize < PAGE_SIZE)
776 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
777 put_page(page);
778 cur += add_size;
779 }
780 return 0;
781}
782
783/*
784 * for a compressed read, the bio we get passed has all the inode pages
785 * in it. We don't actually do IO on those pages but allocate new ones
786 * to hold the compressed pages on disk.
787 *
788 * bio->bi_iter.bi_sector points to the compressed extent on disk
789 * bio->bi_io_vec points to all of the inode pages
790 *
791 * After the compressed pages are read, we copy the bytes into the
792 * bio we were passed and then call the bio end_io calls
793 */
794blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
795 int mirror_num, unsigned long bio_flags)
796{
797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
798 struct extent_map_tree *em_tree;
799 struct compressed_bio *cb;
800 unsigned int compressed_len;
801 unsigned int nr_pages;
802 unsigned int pg_index;
803 struct bio *comp_bio = NULL;
804 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
805 u64 cur_disk_byte = disk_bytenr;
806 u64 next_stripe_start;
807 u64 file_offset;
808 u64 em_len;
809 u64 em_start;
810 struct extent_map *em;
811 blk_status_t ret = BLK_STS_RESOURCE;
812 int faili = 0;
813 u8 *sums;
814
815 em_tree = &BTRFS_I(inode)->extent_tree;
816
817 file_offset = bio_first_bvec_all(bio)->bv_offset +
818 page_offset(bio_first_page_all(bio));
819
820 /* we need the actual starting offset of this extent in the file */
821 read_lock(&em_tree->lock);
822 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
823 read_unlock(&em_tree->lock);
824 if (!em)
825 return BLK_STS_IOERR;
826
827 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
828 compressed_len = em->block_len;
829 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
830 if (!cb)
831 goto out;
832
833 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
834 cb->errors = 0;
835 cb->inode = inode;
836 cb->mirror_num = mirror_num;
837 sums = cb->sums;
838
839 cb->start = em->orig_start;
840 em_len = em->len;
841 em_start = em->start;
842
843 free_extent_map(em);
844 em = NULL;
845
846 cb->len = bio->bi_iter.bi_size;
847 cb->compressed_len = compressed_len;
848 cb->compress_type = extent_compress_type(bio_flags);
849 cb->orig_bio = bio;
850
851 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
852 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
853 GFP_NOFS);
854 if (!cb->compressed_pages)
855 goto fail1;
856
857 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
858 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
859 if (!cb->compressed_pages[pg_index]) {
860 faili = pg_index - 1;
861 ret = BLK_STS_RESOURCE;
862 goto fail2;
863 }
864 }
865 faili = nr_pages - 1;
866 cb->nr_pages = nr_pages;
867
868 add_ra_bio_pages(inode, em_start + em_len, cb);
869
870 /* include any pages we added in add_ra-bio_pages */
871 cb->len = bio->bi_iter.bi_size;
872
873 while (cur_disk_byte < disk_bytenr + compressed_len) {
874 u64 offset = cur_disk_byte - disk_bytenr;
875 unsigned int index = offset >> PAGE_SHIFT;
876 unsigned int real_size;
877 unsigned int added;
878 struct page *page = cb->compressed_pages[index];
879 bool submit = false;
880
881 /* Allocate new bio if submitted or not yet allocated */
882 if (!comp_bio) {
883 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
884 REQ_OP_READ, end_compressed_bio_read,
885 &next_stripe_start);
886 if (IS_ERR(comp_bio)) {
887 ret = errno_to_blk_status(PTR_ERR(comp_bio));
888 comp_bio = NULL;
889 goto finish_cb;
890 }
891 }
892 /*
893 * We should never reach next_stripe_start start as we will
894 * submit comp_bio when reach the boundary immediately.
895 */
896 ASSERT(cur_disk_byte != next_stripe_start);
897 /*
898 * We have various limit on the real read size:
899 * - stripe boundary
900 * - page boundary
901 * - compressed length boundary
902 */
903 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
904 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
905 real_size = min_t(u64, real_size, compressed_len - offset);
906 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
907
908 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
909 /*
910 * Maximum compressed extent is smaller than bio size limit,
911 * thus bio_add_page() should always success.
912 */
913 ASSERT(added == real_size);
914 cur_disk_byte += added;
915
916 /* Reached stripe boundary, need to submit */
917 if (cur_disk_byte == next_stripe_start)
918 submit = true;
919
920 /* Has finished the range, need to submit */
921 if (cur_disk_byte == disk_bytenr + compressed_len)
922 submit = true;
923
924 if (submit) {
925 unsigned int nr_sectors;
926
927 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
928 if (ret)
929 goto finish_cb;
930
931 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
932 fs_info->sectorsize);
933 sums += fs_info->csum_size * nr_sectors;
934
935 ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
936 if (ret)
937 goto finish_cb;
938 comp_bio = NULL;
939 }
940 }
941 return 0;
942
943fail2:
944 while (faili >= 0) {
945 __free_page(cb->compressed_pages[faili]);
946 faili--;
947 }
948
949 kfree(cb->compressed_pages);
950fail1:
951 kfree(cb);
952out:
953 free_extent_map(em);
954 return ret;
955finish_cb:
956 if (comp_bio) {
957 comp_bio->bi_status = ret;
958 bio_endio(comp_bio);
959 }
960 /* All bytes of @cb is submitted, endio will free @cb */
961 if (cur_disk_byte == disk_bytenr + compressed_len)
962 return ret;
963
964 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
965 (disk_bytenr + compressed_len - cur_disk_byte) >>
966 fs_info->sectorsize_bits);
967 /*
968 * Even with previous bio ended, we should still have io not yet
969 * submitted, thus need to finish @cb manually.
970 */
971 ASSERT(refcount_read(&cb->pending_sectors));
972 /* Now we are the only one referring @cb, can finish it safely. */
973 finish_compressed_bio_read(cb, NULL);
974 return ret;
975}
976
977/*
978 * Heuristic uses systematic sampling to collect data from the input data
979 * range, the logic can be tuned by the following constants:
980 *
981 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
982 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
983 */
984#define SAMPLING_READ_SIZE (16)
985#define SAMPLING_INTERVAL (256)
986
987/*
988 * For statistical analysis of the input data we consider bytes that form a
989 * Galois Field of 256 objects. Each object has an attribute count, ie. how
990 * many times the object appeared in the sample.
991 */
992#define BUCKET_SIZE (256)
993
994/*
995 * The size of the sample is based on a statistical sampling rule of thumb.
996 * The common way is to perform sampling tests as long as the number of
997 * elements in each cell is at least 5.
998 *
999 * Instead of 5, we choose 32 to obtain more accurate results.
1000 * If the data contain the maximum number of symbols, which is 256, we obtain a
1001 * sample size bound by 8192.
1002 *
1003 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1004 * from up to 512 locations.
1005 */
1006#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
1007 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1008
1009struct bucket_item {
1010 u32 count;
1011};
1012
1013struct heuristic_ws {
1014 /* Partial copy of input data */
1015 u8 *sample;
1016 u32 sample_size;
1017 /* Buckets store counters for each byte value */
1018 struct bucket_item *bucket;
1019 /* Sorting buffer */
1020 struct bucket_item *bucket_b;
1021 struct list_head list;
1022};
1023
1024static struct workspace_manager heuristic_wsm;
1025
1026static void free_heuristic_ws(struct list_head *ws)
1027{
1028 struct heuristic_ws *workspace;
1029
1030 workspace = list_entry(ws, struct heuristic_ws, list);
1031
1032 kvfree(workspace->sample);
1033 kfree(workspace->bucket);
1034 kfree(workspace->bucket_b);
1035 kfree(workspace);
1036}
1037
1038static struct list_head *alloc_heuristic_ws(unsigned int level)
1039{
1040 struct heuristic_ws *ws;
1041
1042 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1043 if (!ws)
1044 return ERR_PTR(-ENOMEM);
1045
1046 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1047 if (!ws->sample)
1048 goto fail;
1049
1050 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1051 if (!ws->bucket)
1052 goto fail;
1053
1054 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1055 if (!ws->bucket_b)
1056 goto fail;
1057
1058 INIT_LIST_HEAD(&ws->list);
1059 return &ws->list;
1060fail:
1061 free_heuristic_ws(&ws->list);
1062 return ERR_PTR(-ENOMEM);
1063}
1064
1065const struct btrfs_compress_op btrfs_heuristic_compress = {
1066 .workspace_manager = &heuristic_wsm,
1067};
1068
1069static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1070 /* The heuristic is represented as compression type 0 */
1071 &btrfs_heuristic_compress,
1072 &btrfs_zlib_compress,
1073 &btrfs_lzo_compress,
1074 &btrfs_zstd_compress,
1075};
1076
1077static struct list_head *alloc_workspace(int type, unsigned int level)
1078{
1079 switch (type) {
1080 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1081 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1082 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
1083 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1084 default:
1085 /*
1086 * This can't happen, the type is validated several times
1087 * before we get here.
1088 */
1089 BUG();
1090 }
1091}
1092
1093static void free_workspace(int type, struct list_head *ws)
1094{
1095 switch (type) {
1096 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1097 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1098 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
1099 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1100 default:
1101 /*
1102 * This can't happen, the type is validated several times
1103 * before we get here.
1104 */
1105 BUG();
1106 }
1107}
1108
1109static void btrfs_init_workspace_manager(int type)
1110{
1111 struct workspace_manager *wsm;
1112 struct list_head *workspace;
1113
1114 wsm = btrfs_compress_op[type]->workspace_manager;
1115 INIT_LIST_HEAD(&wsm->idle_ws);
1116 spin_lock_init(&wsm->ws_lock);
1117 atomic_set(&wsm->total_ws, 0);
1118 init_waitqueue_head(&wsm->ws_wait);
1119
1120 /*
1121 * Preallocate one workspace for each compression type so we can
1122 * guarantee forward progress in the worst case
1123 */
1124 workspace = alloc_workspace(type, 0);
1125 if (IS_ERR(workspace)) {
1126 pr_warn(
1127 "BTRFS: cannot preallocate compression workspace, will try later\n");
1128 } else {
1129 atomic_set(&wsm->total_ws, 1);
1130 wsm->free_ws = 1;
1131 list_add(workspace, &wsm->idle_ws);
1132 }
1133}
1134
1135static void btrfs_cleanup_workspace_manager(int type)
1136{
1137 struct workspace_manager *wsman;
1138 struct list_head *ws;
1139
1140 wsman = btrfs_compress_op[type]->workspace_manager;
1141 while (!list_empty(&wsman->idle_ws)) {
1142 ws = wsman->idle_ws.next;
1143 list_del(ws);
1144 free_workspace(type, ws);
1145 atomic_dec(&wsman->total_ws);
1146 }
1147}
1148
1149/*
1150 * This finds an available workspace or allocates a new one.
1151 * If it's not possible to allocate a new one, waits until there's one.
1152 * Preallocation makes a forward progress guarantees and we do not return
1153 * errors.
1154 */
1155struct list_head *btrfs_get_workspace(int type, unsigned int level)
1156{
1157 struct workspace_manager *wsm;
1158 struct list_head *workspace;
1159 int cpus = num_online_cpus();
1160 unsigned nofs_flag;
1161 struct list_head *idle_ws;
1162 spinlock_t *ws_lock;
1163 atomic_t *total_ws;
1164 wait_queue_head_t *ws_wait;
1165 int *free_ws;
1166
1167 wsm = btrfs_compress_op[type]->workspace_manager;
1168 idle_ws = &wsm->idle_ws;
1169 ws_lock = &wsm->ws_lock;
1170 total_ws = &wsm->total_ws;
1171 ws_wait = &wsm->ws_wait;
1172 free_ws = &wsm->free_ws;
1173
1174again:
1175 spin_lock(ws_lock);
1176 if (!list_empty(idle_ws)) {
1177 workspace = idle_ws->next;
1178 list_del(workspace);
1179 (*free_ws)--;
1180 spin_unlock(ws_lock);
1181 return workspace;
1182
1183 }
1184 if (atomic_read(total_ws) > cpus) {
1185 DEFINE_WAIT(wait);
1186
1187 spin_unlock(ws_lock);
1188 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1189 if (atomic_read(total_ws) > cpus && !*free_ws)
1190 schedule();
1191 finish_wait(ws_wait, &wait);
1192 goto again;
1193 }
1194 atomic_inc(total_ws);
1195 spin_unlock(ws_lock);
1196
1197 /*
1198 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1199 * to turn it off here because we might get called from the restricted
1200 * context of btrfs_compress_bio/btrfs_compress_pages
1201 */
1202 nofs_flag = memalloc_nofs_save();
1203 workspace = alloc_workspace(type, level);
1204 memalloc_nofs_restore(nofs_flag);
1205
1206 if (IS_ERR(workspace)) {
1207 atomic_dec(total_ws);
1208 wake_up(ws_wait);
1209
1210 /*
1211 * Do not return the error but go back to waiting. There's a
1212 * workspace preallocated for each type and the compression
1213 * time is bounded so we get to a workspace eventually. This
1214 * makes our caller's life easier.
1215 *
1216 * To prevent silent and low-probability deadlocks (when the
1217 * initial preallocation fails), check if there are any
1218 * workspaces at all.
1219 */
1220 if (atomic_read(total_ws) == 0) {
1221 static DEFINE_RATELIMIT_STATE(_rs,
1222 /* once per minute */ 60 * HZ,
1223 /* no burst */ 1);
1224
1225 if (__ratelimit(&_rs)) {
1226 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1227 }
1228 }
1229 goto again;
1230 }
1231 return workspace;
1232}
1233
1234static struct list_head *get_workspace(int type, int level)
1235{
1236 switch (type) {
1237 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1238 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1239 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1240 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1241 default:
1242 /*
1243 * This can't happen, the type is validated several times
1244 * before we get here.
1245 */
1246 BUG();
1247 }
1248}
1249
1250/*
1251 * put a workspace struct back on the list or free it if we have enough
1252 * idle ones sitting around
1253 */
1254void btrfs_put_workspace(int type, struct list_head *ws)
1255{
1256 struct workspace_manager *wsm;
1257 struct list_head *idle_ws;
1258 spinlock_t *ws_lock;
1259 atomic_t *total_ws;
1260 wait_queue_head_t *ws_wait;
1261 int *free_ws;
1262
1263 wsm = btrfs_compress_op[type]->workspace_manager;
1264 idle_ws = &wsm->idle_ws;
1265 ws_lock = &wsm->ws_lock;
1266 total_ws = &wsm->total_ws;
1267 ws_wait = &wsm->ws_wait;
1268 free_ws = &wsm->free_ws;
1269
1270 spin_lock(ws_lock);
1271 if (*free_ws <= num_online_cpus()) {
1272 list_add(ws, idle_ws);
1273 (*free_ws)++;
1274 spin_unlock(ws_lock);
1275 goto wake;
1276 }
1277 spin_unlock(ws_lock);
1278
1279 free_workspace(type, ws);
1280 atomic_dec(total_ws);
1281wake:
1282 cond_wake_up(ws_wait);
1283}
1284
1285static void put_workspace(int type, struct list_head *ws)
1286{
1287 switch (type) {
1288 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1289 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1290 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1291 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1292 default:
1293 /*
1294 * This can't happen, the type is validated several times
1295 * before we get here.
1296 */
1297 BUG();
1298 }
1299}
1300
1301/*
1302 * Adjust @level according to the limits of the compression algorithm or
1303 * fallback to default
1304 */
1305static unsigned int btrfs_compress_set_level(int type, unsigned level)
1306{
1307 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1308
1309 if (level == 0)
1310 level = ops->default_level;
1311 else
1312 level = min(level, ops->max_level);
1313
1314 return level;
1315}
1316
1317/*
1318 * Given an address space and start and length, compress the bytes into @pages
1319 * that are allocated on demand.
1320 *
1321 * @type_level is encoded algorithm and level, where level 0 means whatever
1322 * default the algorithm chooses and is opaque here;
1323 * - compression algo are 0-3
1324 * - the level are bits 4-7
1325 *
1326 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1327 * and returns number of actually allocated pages
1328 *
1329 * @total_in is used to return the number of bytes actually read. It
1330 * may be smaller than the input length if we had to exit early because we
1331 * ran out of room in the pages array or because we cross the
1332 * max_out threshold.
1333 *
1334 * @total_out is an in/out parameter, must be set to the input length and will
1335 * be also used to return the total number of compressed bytes
1336 */
1337int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1338 u64 start, struct page **pages,
1339 unsigned long *out_pages,
1340 unsigned long *total_in,
1341 unsigned long *total_out)
1342{
1343 int type = btrfs_compress_type(type_level);
1344 int level = btrfs_compress_level(type_level);
1345 struct list_head *workspace;
1346 int ret;
1347
1348 level = btrfs_compress_set_level(type, level);
1349 workspace = get_workspace(type, level);
1350 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1351 out_pages, total_in, total_out);
1352 put_workspace(type, workspace);
1353 return ret;
1354}
1355
1356static int btrfs_decompress_bio(struct compressed_bio *cb)
1357{
1358 struct list_head *workspace;
1359 int ret;
1360 int type = cb->compress_type;
1361
1362 workspace = get_workspace(type, 0);
1363 ret = compression_decompress_bio(workspace, cb);
1364 put_workspace(type, workspace);
1365
1366 return ret;
1367}
1368
1369/*
1370 * a less complex decompression routine. Our compressed data fits in a
1371 * single page, and we want to read a single page out of it.
1372 * start_byte tells us the offset into the compressed data we're interested in
1373 */
1374int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1375 unsigned long start_byte, size_t srclen, size_t destlen)
1376{
1377 struct list_head *workspace;
1378 int ret;
1379
1380 workspace = get_workspace(type, 0);
1381 ret = compression_decompress(type, workspace, data_in, dest_page,
1382 start_byte, srclen, destlen);
1383 put_workspace(type, workspace);
1384
1385 return ret;
1386}
1387
1388void __init btrfs_init_compress(void)
1389{
1390 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1391 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1392 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1393 zstd_init_workspace_manager();
1394}
1395
1396void __cold btrfs_exit_compress(void)
1397{
1398 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1399 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1400 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1401 zstd_cleanup_workspace_manager();
1402}
1403
1404/*
1405 * Copy decompressed data from working buffer to pages.
1406 *
1407 * @buf: The decompressed data buffer
1408 * @buf_len: The decompressed data length
1409 * @decompressed: Number of bytes that are already decompressed inside the
1410 * compressed extent
1411 * @cb: The compressed extent descriptor
1412 * @orig_bio: The original bio that the caller wants to read for
1413 *
1414 * An easier to understand graph is like below:
1415 *
1416 * |<- orig_bio ->| |<- orig_bio->|
1417 * |<------- full decompressed extent ----->|
1418 * |<----------- @cb range ---->|
1419 * | |<-- @buf_len -->|
1420 * |<--- @decompressed --->|
1421 *
1422 * Note that, @cb can be a subpage of the full decompressed extent, but
1423 * @cb->start always has the same as the orig_file_offset value of the full
1424 * decompressed extent.
1425 *
1426 * When reading compressed extent, we have to read the full compressed extent,
1427 * while @orig_bio may only want part of the range.
1428 * Thus this function will ensure only data covered by @orig_bio will be copied
1429 * to.
1430 *
1431 * Return 0 if we have copied all needed contents for @orig_bio.
1432 * Return >0 if we need continue decompress.
1433 */
1434int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1435 struct compressed_bio *cb, u32 decompressed)
1436{
1437 struct bio *orig_bio = cb->orig_bio;
1438 /* Offset inside the full decompressed extent */
1439 u32 cur_offset;
1440
1441 cur_offset = decompressed;
1442 /* The main loop to do the copy */
1443 while (cur_offset < decompressed + buf_len) {
1444 struct bio_vec bvec;
1445 size_t copy_len;
1446 u32 copy_start;
1447 /* Offset inside the full decompressed extent */
1448 u32 bvec_offset;
1449
1450 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1451 /*
1452 * cb->start may underflow, but subtracting that value can still
1453 * give us correct offset inside the full decompressed extent.
1454 */
1455 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1456
1457 /* Haven't reached the bvec range, exit */
1458 if (decompressed + buf_len <= bvec_offset)
1459 return 1;
1460
1461 copy_start = max(cur_offset, bvec_offset);
1462 copy_len = min(bvec_offset + bvec.bv_len,
1463 decompressed + buf_len) - copy_start;
1464 ASSERT(copy_len);
1465
1466 /*
1467 * Extra range check to ensure we didn't go beyond
1468 * @buf + @buf_len.
1469 */
1470 ASSERT(copy_start - decompressed < buf_len);
1471 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1472 buf + copy_start - decompressed, copy_len);
1473 flush_dcache_page(bvec.bv_page);
1474 cur_offset += copy_len;
1475
1476 bio_advance(orig_bio, copy_len);
1477 /* Finished the bio */
1478 if (!orig_bio->bi_iter.bi_size)
1479 return 0;
1480 }
1481 return 1;
1482}
1483
1484/*
1485 * Shannon Entropy calculation
1486 *
1487 * Pure byte distribution analysis fails to determine compressibility of data.
1488 * Try calculating entropy to estimate the average minimum number of bits
1489 * needed to encode the sampled data.
1490 *
1491 * For convenience, return the percentage of needed bits, instead of amount of
1492 * bits directly.
1493 *
1494 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1495 * and can be compressible with high probability
1496 *
1497 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1498 *
1499 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1500 */
1501#define ENTROPY_LVL_ACEPTABLE (65)
1502#define ENTROPY_LVL_HIGH (80)
1503
1504/*
1505 * For increasead precision in shannon_entropy calculation,
1506 * let's do pow(n, M) to save more digits after comma:
1507 *
1508 * - maximum int bit length is 64
1509 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1510 * - 13 * 4 = 52 < 64 -> M = 4
1511 *
1512 * So use pow(n, 4).
1513 */
1514static inline u32 ilog2_w(u64 n)
1515{
1516 return ilog2(n * n * n * n);
1517}
1518
1519static u32 shannon_entropy(struct heuristic_ws *ws)
1520{
1521 const u32 entropy_max = 8 * ilog2_w(2);
1522 u32 entropy_sum = 0;
1523 u32 p, p_base, sz_base;
1524 u32 i;
1525
1526 sz_base = ilog2_w(ws->sample_size);
1527 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1528 p = ws->bucket[i].count;
1529 p_base = ilog2_w(p);
1530 entropy_sum += p * (sz_base - p_base);
1531 }
1532
1533 entropy_sum /= ws->sample_size;
1534 return entropy_sum * 100 / entropy_max;
1535}
1536
1537#define RADIX_BASE 4U
1538#define COUNTERS_SIZE (1U << RADIX_BASE)
1539
1540static u8 get4bits(u64 num, int shift) {
1541 u8 low4bits;
1542
1543 num >>= shift;
1544 /* Reverse order */
1545 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1546 return low4bits;
1547}
1548
1549/*
1550 * Use 4 bits as radix base
1551 * Use 16 u32 counters for calculating new position in buf array
1552 *
1553 * @array - array that will be sorted
1554 * @array_buf - buffer array to store sorting results
1555 * must be equal in size to @array
1556 * @num - array size
1557 */
1558static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1559 int num)
1560{
1561 u64 max_num;
1562 u64 buf_num;
1563 u32 counters[COUNTERS_SIZE];
1564 u32 new_addr;
1565 u32 addr;
1566 int bitlen;
1567 int shift;
1568 int i;
1569
1570 /*
1571 * Try avoid useless loop iterations for small numbers stored in big
1572 * counters. Example: 48 33 4 ... in 64bit array
1573 */
1574 max_num = array[0].count;
1575 for (i = 1; i < num; i++) {
1576 buf_num = array[i].count;
1577 if (buf_num > max_num)
1578 max_num = buf_num;
1579 }
1580
1581 buf_num = ilog2(max_num);
1582 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1583
1584 shift = 0;
1585 while (shift < bitlen) {
1586 memset(counters, 0, sizeof(counters));
1587
1588 for (i = 0; i < num; i++) {
1589 buf_num = array[i].count;
1590 addr = get4bits(buf_num, shift);
1591 counters[addr]++;
1592 }
1593
1594 for (i = 1; i < COUNTERS_SIZE; i++)
1595 counters[i] += counters[i - 1];
1596
1597 for (i = num - 1; i >= 0; i--) {
1598 buf_num = array[i].count;
1599 addr = get4bits(buf_num, shift);
1600 counters[addr]--;
1601 new_addr = counters[addr];
1602 array_buf[new_addr] = array[i];
1603 }
1604
1605 shift += RADIX_BASE;
1606
1607 /*
1608 * Normal radix expects to move data from a temporary array, to
1609 * the main one. But that requires some CPU time. Avoid that
1610 * by doing another sort iteration to original array instead of
1611 * memcpy()
1612 */
1613 memset(counters, 0, sizeof(counters));
1614
1615 for (i = 0; i < num; i ++) {
1616 buf_num = array_buf[i].count;
1617 addr = get4bits(buf_num, shift);
1618 counters[addr]++;
1619 }
1620
1621 for (i = 1; i < COUNTERS_SIZE; i++)
1622 counters[i] += counters[i - 1];
1623
1624 for (i = num - 1; i >= 0; i--) {
1625 buf_num = array_buf[i].count;
1626 addr = get4bits(buf_num, shift);
1627 counters[addr]--;
1628 new_addr = counters[addr];
1629 array[new_addr] = array_buf[i];
1630 }
1631
1632 shift += RADIX_BASE;
1633 }
1634}
1635
1636/*
1637 * Size of the core byte set - how many bytes cover 90% of the sample
1638 *
1639 * There are several types of structured binary data that use nearly all byte
1640 * values. The distribution can be uniform and counts in all buckets will be
1641 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1642 *
1643 * Other possibility is normal (Gaussian) distribution, where the data could
1644 * be potentially compressible, but we have to take a few more steps to decide
1645 * how much.
1646 *
1647 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1648 * compression algo can easy fix that
1649 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1650 * probability is not compressible
1651 */
1652#define BYTE_CORE_SET_LOW (64)
1653#define BYTE_CORE_SET_HIGH (200)
1654
1655static int byte_core_set_size(struct heuristic_ws *ws)
1656{
1657 u32 i;
1658 u32 coreset_sum = 0;
1659 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1660 struct bucket_item *bucket = ws->bucket;
1661
1662 /* Sort in reverse order */
1663 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1664
1665 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1666 coreset_sum += bucket[i].count;
1667
1668 if (coreset_sum > core_set_threshold)
1669 return i;
1670
1671 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1672 coreset_sum += bucket[i].count;
1673 if (coreset_sum > core_set_threshold)
1674 break;
1675 }
1676
1677 return i;
1678}
1679
1680/*
1681 * Count byte values in buckets.
1682 * This heuristic can detect textual data (configs, xml, json, html, etc).
1683 * Because in most text-like data byte set is restricted to limited number of
1684 * possible characters, and that restriction in most cases makes data easy to
1685 * compress.
1686 *
1687 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1688 * less - compressible
1689 * more - need additional analysis
1690 */
1691#define BYTE_SET_THRESHOLD (64)
1692
1693static u32 byte_set_size(const struct heuristic_ws *ws)
1694{
1695 u32 i;
1696 u32 byte_set_size = 0;
1697
1698 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1699 if (ws->bucket[i].count > 0)
1700 byte_set_size++;
1701 }
1702
1703 /*
1704 * Continue collecting count of byte values in buckets. If the byte
1705 * set size is bigger then the threshold, it's pointless to continue,
1706 * the detection technique would fail for this type of data.
1707 */
1708 for (; i < BUCKET_SIZE; i++) {
1709 if (ws->bucket[i].count > 0) {
1710 byte_set_size++;
1711 if (byte_set_size > BYTE_SET_THRESHOLD)
1712 return byte_set_size;
1713 }
1714 }
1715
1716 return byte_set_size;
1717}
1718
1719static bool sample_repeated_patterns(struct heuristic_ws *ws)
1720{
1721 const u32 half_of_sample = ws->sample_size / 2;
1722 const u8 *data = ws->sample;
1723
1724 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1725}
1726
1727static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1728 struct heuristic_ws *ws)
1729{
1730 struct page *page;
1731 u64 index, index_end;
1732 u32 i, curr_sample_pos;
1733 u8 *in_data;
1734
1735 /*
1736 * Compression handles the input data by chunks of 128KiB
1737 * (defined by BTRFS_MAX_UNCOMPRESSED)
1738 *
1739 * We do the same for the heuristic and loop over the whole range.
1740 *
1741 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1742 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1743 */
1744 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1745 end = start + BTRFS_MAX_UNCOMPRESSED;
1746
1747 index = start >> PAGE_SHIFT;
1748 index_end = end >> PAGE_SHIFT;
1749
1750 /* Don't miss unaligned end */
1751 if (!IS_ALIGNED(end, PAGE_SIZE))
1752 index_end++;
1753
1754 curr_sample_pos = 0;
1755 while (index < index_end) {
1756 page = find_get_page(inode->i_mapping, index);
1757 in_data = kmap_local_page(page);
1758 /* Handle case where the start is not aligned to PAGE_SIZE */
1759 i = start % PAGE_SIZE;
1760 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1761 /* Don't sample any garbage from the last page */
1762 if (start > end - SAMPLING_READ_SIZE)
1763 break;
1764 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1765 SAMPLING_READ_SIZE);
1766 i += SAMPLING_INTERVAL;
1767 start += SAMPLING_INTERVAL;
1768 curr_sample_pos += SAMPLING_READ_SIZE;
1769 }
1770 kunmap_local(in_data);
1771 put_page(page);
1772
1773 index++;
1774 }
1775
1776 ws->sample_size = curr_sample_pos;
1777}
1778
1779/*
1780 * Compression heuristic.
1781 *
1782 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1783 * quickly (compared to direct compression) detect data characteristics
1784 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1785 * data.
1786 *
1787 * The following types of analysis can be performed:
1788 * - detect mostly zero data
1789 * - detect data with low "byte set" size (text, etc)
1790 * - detect data with low/high "core byte" set
1791 *
1792 * Return non-zero if the compression should be done, 0 otherwise.
1793 */
1794int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1795{
1796 struct list_head *ws_list = get_workspace(0, 0);
1797 struct heuristic_ws *ws;
1798 u32 i;
1799 u8 byte;
1800 int ret = 0;
1801
1802 ws = list_entry(ws_list, struct heuristic_ws, list);
1803
1804 heuristic_collect_sample(inode, start, end, ws);
1805
1806 if (sample_repeated_patterns(ws)) {
1807 ret = 1;
1808 goto out;
1809 }
1810
1811 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1812
1813 for (i = 0; i < ws->sample_size; i++) {
1814 byte = ws->sample[i];
1815 ws->bucket[byte].count++;
1816 }
1817
1818 i = byte_set_size(ws);
1819 if (i < BYTE_SET_THRESHOLD) {
1820 ret = 2;
1821 goto out;
1822 }
1823
1824 i = byte_core_set_size(ws);
1825 if (i <= BYTE_CORE_SET_LOW) {
1826 ret = 3;
1827 goto out;
1828 }
1829
1830 if (i >= BYTE_CORE_SET_HIGH) {
1831 ret = 0;
1832 goto out;
1833 }
1834
1835 i = shannon_entropy(ws);
1836 if (i <= ENTROPY_LVL_ACEPTABLE) {
1837 ret = 4;
1838 goto out;
1839 }
1840
1841 /*
1842 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1843 * needed to give green light to compression.
1844 *
1845 * For now just assume that compression at that level is not worth the
1846 * resources because:
1847 *
1848 * 1. it is possible to defrag the data later
1849 *
1850 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1851 * values, every bucket has counter at level ~54. The heuristic would
1852 * be confused. This can happen when data have some internal repeated
1853 * patterns like "abbacbbc...". This can be detected by analyzing
1854 * pairs of bytes, which is too costly.
1855 */
1856 if (i < ENTROPY_LVL_HIGH) {
1857 ret = 5;
1858 goto out;
1859 } else {
1860 ret = 0;
1861 goto out;
1862 }
1863
1864out:
1865 put_workspace(0, ws_list);
1866 return ret;
1867}
1868
1869/*
1870 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1871 * level, unrecognized string will set the default level
1872 */
1873unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1874{
1875 unsigned int level = 0;
1876 int ret;
1877
1878 if (!type)
1879 return 0;
1880
1881 if (str[0] == ':') {
1882 ret = kstrtouint(str + 1, 10, &level);
1883 if (ret)
1884 level = 0;
1885 }
1886
1887 level = btrfs_compress_set_level(type, level);
1888
1889 return level;
1890}