Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17#include "tree-mod-log.h"
18
19/* Just an arbitrary number so we can be sure this happened */
20#define BACKREF_FOUND_SHARED 6
21
22struct extent_inode_elem {
23 u64 inum;
24 u64 offset;
25 struct extent_inode_elem *next;
26};
27
28static int check_extent_in_eb(const struct btrfs_key *key,
29 const struct extent_buffer *eb,
30 const struct btrfs_file_extent_item *fi,
31 u64 extent_item_pos,
32 struct extent_inode_elem **eie,
33 bool ignore_offset)
34{
35 u64 offset = 0;
36 struct extent_inode_elem *e;
37
38 if (!ignore_offset &&
39 !btrfs_file_extent_compression(eb, fi) &&
40 !btrfs_file_extent_encryption(eb, fi) &&
41 !btrfs_file_extent_other_encoding(eb, fi)) {
42 u64 data_offset;
43 u64 data_len;
44
45 data_offset = btrfs_file_extent_offset(eb, fi);
46 data_len = btrfs_file_extent_num_bytes(eb, fi);
47
48 if (extent_item_pos < data_offset ||
49 extent_item_pos >= data_offset + data_len)
50 return 1;
51 offset = extent_item_pos - data_offset;
52 }
53
54 e = kmalloc(sizeof(*e), GFP_NOFS);
55 if (!e)
56 return -ENOMEM;
57
58 e->next = *eie;
59 e->inum = key->objectid;
60 e->offset = key->offset + offset;
61 *eie = e;
62
63 return 0;
64}
65
66static void free_inode_elem_list(struct extent_inode_elem *eie)
67{
68 struct extent_inode_elem *eie_next;
69
70 for (; eie; eie = eie_next) {
71 eie_next = eie->next;
72 kfree(eie);
73 }
74}
75
76static int find_extent_in_eb(const struct extent_buffer *eb,
77 u64 wanted_disk_byte, u64 extent_item_pos,
78 struct extent_inode_elem **eie,
79 bool ignore_offset)
80{
81 u64 disk_byte;
82 struct btrfs_key key;
83 struct btrfs_file_extent_item *fi;
84 int slot;
85 int nritems;
86 int extent_type;
87 int ret;
88
89 /*
90 * from the shared data ref, we only have the leaf but we need
91 * the key. thus, we must look into all items and see that we
92 * find one (some) with a reference to our extent item.
93 */
94 nritems = btrfs_header_nritems(eb);
95 for (slot = 0; slot < nritems; ++slot) {
96 btrfs_item_key_to_cpu(eb, &key, slot);
97 if (key.type != BTRFS_EXTENT_DATA_KEY)
98 continue;
99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 extent_type = btrfs_file_extent_type(eb, fi);
101 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 continue;
103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 if (disk_byte != wanted_disk_byte)
106 continue;
107
108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114}
115
116struct preftree {
117 struct rb_root_cached root;
118 unsigned int count;
119};
120
121#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
122
123struct preftrees {
124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 struct preftree indirect_missing_keys;
127};
128
129/*
130 * Checks for a shared extent during backref search.
131 *
132 * The share_count tracks prelim_refs (direct and indirect) having a
133 * ref->count >0:
134 * - incremented when a ref->count transitions to >0
135 * - decremented when a ref->count transitions to <1
136 */
137struct share_check {
138 u64 root_objectid;
139 u64 inum;
140 int share_count;
141};
142
143static inline int extent_is_shared(struct share_check *sc)
144{
145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146}
147
148static struct kmem_cache *btrfs_prelim_ref_cache;
149
150int __init btrfs_prelim_ref_init(void)
151{
152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 sizeof(struct prelim_ref),
154 0,
155 SLAB_MEM_SPREAD,
156 NULL);
157 if (!btrfs_prelim_ref_cache)
158 return -ENOMEM;
159 return 0;
160}
161
162void __cold btrfs_prelim_ref_exit(void)
163{
164 kmem_cache_destroy(btrfs_prelim_ref_cache);
165}
166
167static void free_pref(struct prelim_ref *ref)
168{
169 kmem_cache_free(btrfs_prelim_ref_cache, ref);
170}
171
172/*
173 * Return 0 when both refs are for the same block (and can be merged).
174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175 * indicates a 'higher' block.
176 */
177static int prelim_ref_compare(struct prelim_ref *ref1,
178 struct prelim_ref *ref2)
179{
180 if (ref1->level < ref2->level)
181 return -1;
182 if (ref1->level > ref2->level)
183 return 1;
184 if (ref1->root_id < ref2->root_id)
185 return -1;
186 if (ref1->root_id > ref2->root_id)
187 return 1;
188 if (ref1->key_for_search.type < ref2->key_for_search.type)
189 return -1;
190 if (ref1->key_for_search.type > ref2->key_for_search.type)
191 return 1;
192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 return -1;
194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 return 1;
196 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 return -1;
198 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 return 1;
200 if (ref1->parent < ref2->parent)
201 return -1;
202 if (ref1->parent > ref2->parent)
203 return 1;
204
205 return 0;
206}
207
208static void update_share_count(struct share_check *sc, int oldcount,
209 int newcount)
210{
211 if ((!sc) || (oldcount == 0 && newcount < 1))
212 return;
213
214 if (oldcount > 0 && newcount < 1)
215 sc->share_count--;
216 else if (oldcount < 1 && newcount > 0)
217 sc->share_count++;
218}
219
220/*
221 * Add @newref to the @root rbtree, merging identical refs.
222 *
223 * Callers should assume that newref has been freed after calling.
224 */
225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 struct preftree *preftree,
227 struct prelim_ref *newref,
228 struct share_check *sc)
229{
230 struct rb_root_cached *root;
231 struct rb_node **p;
232 struct rb_node *parent = NULL;
233 struct prelim_ref *ref;
234 int result;
235 bool leftmost = true;
236
237 root = &preftree->root;
238 p = &root->rb_root.rb_node;
239
240 while (*p) {
241 parent = *p;
242 ref = rb_entry(parent, struct prelim_ref, rbnode);
243 result = prelim_ref_compare(ref, newref);
244 if (result < 0) {
245 p = &(*p)->rb_left;
246 } else if (result > 0) {
247 p = &(*p)->rb_right;
248 leftmost = false;
249 } else {
250 /* Identical refs, merge them and free @newref */
251 struct extent_inode_elem *eie = ref->inode_list;
252
253 while (eie && eie->next)
254 eie = eie->next;
255
256 if (!eie)
257 ref->inode_list = newref->inode_list;
258 else
259 eie->next = newref->inode_list;
260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 preftree->count);
262 /*
263 * A delayed ref can have newref->count < 0.
264 * The ref->count is updated to follow any
265 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 */
267 update_share_count(sc, ref->count,
268 ref->count + newref->count);
269 ref->count += newref->count;
270 free_pref(newref);
271 return;
272 }
273 }
274
275 update_share_count(sc, 0, newref->count);
276 preftree->count++;
277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 rb_link_node(&newref->rbnode, parent, p);
279 rb_insert_color_cached(&newref->rbnode, root, leftmost);
280}
281
282/*
283 * Release the entire tree. We don't care about internal consistency so
284 * just free everything and then reset the tree root.
285 */
286static void prelim_release(struct preftree *preftree)
287{
288 struct prelim_ref *ref, *next_ref;
289
290 rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 &preftree->root.rb_root, rbnode)
292 free_pref(ref);
293
294 preftree->root = RB_ROOT_CACHED;
295 preftree->count = 0;
296}
297
298/*
299 * the rules for all callers of this function are:
300 * - obtaining the parent is the goal
301 * - if you add a key, you must know that it is a correct key
302 * - if you cannot add the parent or a correct key, then we will look into the
303 * block later to set a correct key
304 *
305 * delayed refs
306 * ============
307 * backref type | shared | indirect | shared | indirect
308 * information | tree | tree | data | data
309 * --------------------+--------+----------+--------+----------
310 * parent logical | y | - | - | -
311 * key to resolve | - | y | y | y
312 * tree block logical | - | - | - | -
313 * root for resolving | y | y | y | y
314 *
315 * - column 1: we've the parent -> done
316 * - column 2, 3, 4: we use the key to find the parent
317 *
318 * on disk refs (inline or keyed)
319 * ==============================
320 * backref type | shared | indirect | shared | indirect
321 * information | tree | tree | data | data
322 * --------------------+--------+----------+--------+----------
323 * parent logical | y | - | y | -
324 * key to resolve | - | - | - | y
325 * tree block logical | y | y | y | y
326 * root for resolving | - | y | y | y
327 *
328 * - column 1, 3: we've the parent -> done
329 * - column 2: we take the first key from the block to find the parent
330 * (see add_missing_keys)
331 * - column 4: we use the key to find the parent
332 *
333 * additional information that's available but not required to find the parent
334 * block might help in merging entries to gain some speed.
335 */
336static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
337 struct preftree *preftree, u64 root_id,
338 const struct btrfs_key *key, int level, u64 parent,
339 u64 wanted_disk_byte, int count,
340 struct share_check *sc, gfp_t gfp_mask)
341{
342 struct prelim_ref *ref;
343
344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
345 return 0;
346
347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 if (!ref)
349 return -ENOMEM;
350
351 ref->root_id = root_id;
352 if (key)
353 ref->key_for_search = *key;
354 else
355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356
357 ref->inode_list = NULL;
358 ref->level = level;
359 ref->count = count;
360 ref->parent = parent;
361 ref->wanted_disk_byte = wanted_disk_byte;
362 prelim_ref_insert(fs_info, preftree, ref, sc);
363 return extent_is_shared(sc);
364}
365
366/* direct refs use root == 0, key == NULL */
367static int add_direct_ref(const struct btrfs_fs_info *fs_info,
368 struct preftrees *preftrees, int level, u64 parent,
369 u64 wanted_disk_byte, int count,
370 struct share_check *sc, gfp_t gfp_mask)
371{
372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373 parent, wanted_disk_byte, count, sc, gfp_mask);
374}
375
376/* indirect refs use parent == 0 */
377static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
378 struct preftrees *preftrees, u64 root_id,
379 const struct btrfs_key *key, int level,
380 u64 wanted_disk_byte, int count,
381 struct share_check *sc, gfp_t gfp_mask)
382{
383 struct preftree *tree = &preftrees->indirect;
384
385 if (!key)
386 tree = &preftrees->indirect_missing_keys;
387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388 wanted_disk_byte, count, sc, gfp_mask);
389}
390
391static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
392{
393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
394 struct rb_node *parent = NULL;
395 struct prelim_ref *ref = NULL;
396 struct prelim_ref target = {};
397 int result;
398
399 target.parent = bytenr;
400
401 while (*p) {
402 parent = *p;
403 ref = rb_entry(parent, struct prelim_ref, rbnode);
404 result = prelim_ref_compare(ref, &target);
405
406 if (result < 0)
407 p = &(*p)->rb_left;
408 else if (result > 0)
409 p = &(*p)->rb_right;
410 else
411 return 1;
412 }
413 return 0;
414}
415
416static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 struct ulist *parents,
418 struct preftrees *preftrees, struct prelim_ref *ref,
419 int level, u64 time_seq, const u64 *extent_item_pos,
420 bool ignore_offset)
421{
422 int ret = 0;
423 int slot;
424 struct extent_buffer *eb;
425 struct btrfs_key key;
426 struct btrfs_key *key_for_search = &ref->key_for_search;
427 struct btrfs_file_extent_item *fi;
428 struct extent_inode_elem *eie = NULL, *old = NULL;
429 u64 disk_byte;
430 u64 wanted_disk_byte = ref->wanted_disk_byte;
431 u64 count = 0;
432 u64 data_offset;
433
434 if (level != 0) {
435 eb = path->nodes[level];
436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 if (ret < 0)
438 return ret;
439 return 0;
440 }
441
442 /*
443 * 1. We normally enter this function with the path already pointing to
444 * the first item to check. But sometimes, we may enter it with
445 * slot == nritems.
446 * 2. We are searching for normal backref but bytenr of this leaf
447 * matches shared data backref
448 * 3. The leaf owner is not equal to the root we are searching
449 *
450 * For these cases, go to the next leaf before we continue.
451 */
452 eb = path->nodes[0];
453 if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 is_shared_data_backref(preftrees, eb->start) ||
455 ref->root_id != btrfs_header_owner(eb)) {
456 if (time_seq == BTRFS_SEQ_LAST)
457 ret = btrfs_next_leaf(root, path);
458 else
459 ret = btrfs_next_old_leaf(root, path, time_seq);
460 }
461
462 while (!ret && count < ref->count) {
463 eb = path->nodes[0];
464 slot = path->slots[0];
465
466 btrfs_item_key_to_cpu(eb, &key, slot);
467
468 if (key.objectid != key_for_search->objectid ||
469 key.type != BTRFS_EXTENT_DATA_KEY)
470 break;
471
472 /*
473 * We are searching for normal backref but bytenr of this leaf
474 * matches shared data backref, OR
475 * the leaf owner is not equal to the root we are searching for
476 */
477 if (slot == 0 &&
478 (is_shared_data_backref(preftrees, eb->start) ||
479 ref->root_id != btrfs_header_owner(eb))) {
480 if (time_seq == BTRFS_SEQ_LAST)
481 ret = btrfs_next_leaf(root, path);
482 else
483 ret = btrfs_next_old_leaf(root, path, time_seq);
484 continue;
485 }
486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488 data_offset = btrfs_file_extent_offset(eb, fi);
489
490 if (disk_byte == wanted_disk_byte) {
491 eie = NULL;
492 old = NULL;
493 if (ref->key_for_search.offset == key.offset - data_offset)
494 count++;
495 else
496 goto next;
497 if (extent_item_pos) {
498 ret = check_extent_in_eb(&key, eb, fi,
499 *extent_item_pos,
500 &eie, ignore_offset);
501 if (ret < 0)
502 break;
503 }
504 if (ret > 0)
505 goto next;
506 ret = ulist_add_merge_ptr(parents, eb->start,
507 eie, (void **)&old, GFP_NOFS);
508 if (ret < 0)
509 break;
510 if (!ret && extent_item_pos) {
511 while (old->next)
512 old = old->next;
513 old->next = eie;
514 }
515 eie = NULL;
516 }
517next:
518 if (time_seq == BTRFS_SEQ_LAST)
519 ret = btrfs_next_item(root, path);
520 else
521 ret = btrfs_next_old_item(root, path, time_seq);
522 }
523
524 if (ret > 0)
525 ret = 0;
526 else if (ret < 0)
527 free_inode_elem_list(eie);
528 return ret;
529}
530
531/*
532 * resolve an indirect backref in the form (root_id, key, level)
533 * to a logical address
534 */
535static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
536 struct btrfs_path *path, u64 time_seq,
537 struct preftrees *preftrees,
538 struct prelim_ref *ref, struct ulist *parents,
539 const u64 *extent_item_pos, bool ignore_offset)
540{
541 struct btrfs_root *root;
542 struct extent_buffer *eb;
543 int ret = 0;
544 int root_level;
545 int level = ref->level;
546 struct btrfs_key search_key = ref->key_for_search;
547
548 /*
549 * If we're search_commit_root we could possibly be holding locks on
550 * other tree nodes. This happens when qgroups does backref walks when
551 * adding new delayed refs. To deal with this we need to look in cache
552 * for the root, and if we don't find it then we need to search the
553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
554 * here.
555 */
556 if (path->search_commit_root)
557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
558 else
559 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 if (IS_ERR(root)) {
561 ret = PTR_ERR(root);
562 goto out_free;
563 }
564
565 if (!path->search_commit_root &&
566 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
567 ret = -ENOENT;
568 goto out;
569 }
570
571 if (btrfs_is_testing(fs_info)) {
572 ret = -ENOENT;
573 goto out;
574 }
575
576 if (path->search_commit_root)
577 root_level = btrfs_header_level(root->commit_root);
578 else if (time_seq == BTRFS_SEQ_LAST)
579 root_level = btrfs_header_level(root->node);
580 else
581 root_level = btrfs_old_root_level(root, time_seq);
582
583 if (root_level + 1 == level)
584 goto out;
585
586 /*
587 * We can often find data backrefs with an offset that is too large
588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 * subtracting a file's offset with the data offset of its
590 * corresponding extent data item. This can happen for example in the
591 * clone ioctl.
592 *
593 * So if we detect such case we set the search key's offset to zero to
594 * make sure we will find the matching file extent item at
595 * add_all_parents(), otherwise we will miss it because the offset
596 * taken form the backref is much larger then the offset of the file
597 * extent item. This can make us scan a very large number of file
598 * extent items, but at least it will not make us miss any.
599 *
600 * This is an ugly workaround for a behaviour that should have never
601 * existed, but it does and a fix for the clone ioctl would touch a lot
602 * of places, cause backwards incompatibility and would not fix the
603 * problem for extents cloned with older kernels.
604 */
605 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 search_key.offset >= LLONG_MAX)
607 search_key.offset = 0;
608 path->lowest_level = level;
609 if (time_seq == BTRFS_SEQ_LAST)
610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 else
612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613
614 btrfs_debug(fs_info,
615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 ref->root_id, level, ref->count, ret,
617 ref->key_for_search.objectid, ref->key_for_search.type,
618 ref->key_for_search.offset);
619 if (ret < 0)
620 goto out;
621
622 eb = path->nodes[level];
623 while (!eb) {
624 if (WARN_ON(!level)) {
625 ret = 1;
626 goto out;
627 }
628 level--;
629 eb = path->nodes[level];
630 }
631
632 ret = add_all_parents(root, path, parents, preftrees, ref, level,
633 time_seq, extent_item_pos, ignore_offset);
634out:
635 btrfs_put_root(root);
636out_free:
637 path->lowest_level = 0;
638 btrfs_release_path(path);
639 return ret;
640}
641
642static struct extent_inode_elem *
643unode_aux_to_inode_list(struct ulist_node *node)
644{
645 if (!node)
646 return NULL;
647 return (struct extent_inode_elem *)(uintptr_t)node->aux;
648}
649
650/*
651 * We maintain three separate rbtrees: one for direct refs, one for
652 * indirect refs which have a key, and one for indirect refs which do not
653 * have a key. Each tree does merge on insertion.
654 *
655 * Once all of the references are located, we iterate over the tree of
656 * indirect refs with missing keys. An appropriate key is located and
657 * the ref is moved onto the tree for indirect refs. After all missing
658 * keys are thus located, we iterate over the indirect ref tree, resolve
659 * each reference, and then insert the resolved reference onto the
660 * direct tree (merging there too).
661 *
662 * New backrefs (i.e., for parent nodes) are added to the appropriate
663 * rbtree as they are encountered. The new backrefs are subsequently
664 * resolved as above.
665 */
666static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
667 struct btrfs_path *path, u64 time_seq,
668 struct preftrees *preftrees,
669 const u64 *extent_item_pos,
670 struct share_check *sc, bool ignore_offset)
671{
672 int err;
673 int ret = 0;
674 struct ulist *parents;
675 struct ulist_node *node;
676 struct ulist_iterator uiter;
677 struct rb_node *rnode;
678
679 parents = ulist_alloc(GFP_NOFS);
680 if (!parents)
681 return -ENOMEM;
682
683 /*
684 * We could trade memory usage for performance here by iterating
685 * the tree, allocating new refs for each insertion, and then
686 * freeing the entire indirect tree when we're done. In some test
687 * cases, the tree can grow quite large (~200k objects).
688 */
689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 struct prelim_ref *ref;
691
692 ref = rb_entry(rnode, struct prelim_ref, rbnode);
693 if (WARN(ref->parent,
694 "BUG: direct ref found in indirect tree")) {
695 ret = -EINVAL;
696 goto out;
697 }
698
699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700 preftrees->indirect.count--;
701
702 if (ref->count == 0) {
703 free_pref(ref);
704 continue;
705 }
706
707 if (sc && sc->root_objectid &&
708 ref->root_id != sc->root_objectid) {
709 free_pref(ref);
710 ret = BACKREF_FOUND_SHARED;
711 goto out;
712 }
713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
714 ref, parents, extent_item_pos,
715 ignore_offset);
716 /*
717 * we can only tolerate ENOENT,otherwise,we should catch error
718 * and return directly.
719 */
720 if (err == -ENOENT) {
721 prelim_ref_insert(fs_info, &preftrees->direct, ref,
722 NULL);
723 continue;
724 } else if (err) {
725 free_pref(ref);
726 ret = err;
727 goto out;
728 }
729
730 /* we put the first parent into the ref at hand */
731 ULIST_ITER_INIT(&uiter);
732 node = ulist_next(parents, &uiter);
733 ref->parent = node ? node->val : 0;
734 ref->inode_list = unode_aux_to_inode_list(node);
735
736 /* Add a prelim_ref(s) for any other parent(s). */
737 while ((node = ulist_next(parents, &uiter))) {
738 struct prelim_ref *new_ref;
739
740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
741 GFP_NOFS);
742 if (!new_ref) {
743 free_pref(ref);
744 ret = -ENOMEM;
745 goto out;
746 }
747 memcpy(new_ref, ref, sizeof(*ref));
748 new_ref->parent = node->val;
749 new_ref->inode_list = unode_aux_to_inode_list(node);
750 prelim_ref_insert(fs_info, &preftrees->direct,
751 new_ref, NULL);
752 }
753
754 /*
755 * Now it's a direct ref, put it in the direct tree. We must
756 * do this last because the ref could be merged/freed here.
757 */
758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759
760 ulist_reinit(parents);
761 cond_resched();
762 }
763out:
764 ulist_free(parents);
765 return ret;
766}
767
768/*
769 * read tree blocks and add keys where required.
770 */
771static int add_missing_keys(struct btrfs_fs_info *fs_info,
772 struct preftrees *preftrees, bool lock)
773{
774 struct prelim_ref *ref;
775 struct extent_buffer *eb;
776 struct preftree *tree = &preftrees->indirect_missing_keys;
777 struct rb_node *node;
778
779 while ((node = rb_first_cached(&tree->root))) {
780 ref = rb_entry(node, struct prelim_ref, rbnode);
781 rb_erase_cached(node, &tree->root);
782
783 BUG_ON(ref->parent); /* should not be a direct ref */
784 BUG_ON(ref->key_for_search.type);
785 BUG_ON(!ref->wanted_disk_byte);
786
787 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
788 ref->root_id, 0, ref->level - 1, NULL);
789 if (IS_ERR(eb)) {
790 free_pref(ref);
791 return PTR_ERR(eb);
792 } else if (!extent_buffer_uptodate(eb)) {
793 free_pref(ref);
794 free_extent_buffer(eb);
795 return -EIO;
796 }
797 if (lock)
798 btrfs_tree_read_lock(eb);
799 if (btrfs_header_level(eb) == 0)
800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 else
802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 if (lock)
804 btrfs_tree_read_unlock(eb);
805 free_extent_buffer(eb);
806 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
807 cond_resched();
808 }
809 return 0;
810}
811
812/*
813 * add all currently queued delayed refs from this head whose seq nr is
814 * smaller or equal that seq to the list
815 */
816static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
817 struct btrfs_delayed_ref_head *head, u64 seq,
818 struct preftrees *preftrees, struct share_check *sc)
819{
820 struct btrfs_delayed_ref_node *node;
821 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
822 struct btrfs_key key;
823 struct btrfs_key tmp_op_key;
824 struct rb_node *n;
825 int count;
826 int ret = 0;
827
828 if (extent_op && extent_op->update_key)
829 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
830
831 spin_lock(&head->lock);
832 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
833 node = rb_entry(n, struct btrfs_delayed_ref_node,
834 ref_node);
835 if (node->seq > seq)
836 continue;
837
838 switch (node->action) {
839 case BTRFS_ADD_DELAYED_EXTENT:
840 case BTRFS_UPDATE_DELAYED_HEAD:
841 WARN_ON(1);
842 continue;
843 case BTRFS_ADD_DELAYED_REF:
844 count = node->ref_mod;
845 break;
846 case BTRFS_DROP_DELAYED_REF:
847 count = node->ref_mod * -1;
848 break;
849 default:
850 BUG();
851 }
852 switch (node->type) {
853 case BTRFS_TREE_BLOCK_REF_KEY: {
854 /* NORMAL INDIRECT METADATA backref */
855 struct btrfs_delayed_tree_ref *ref;
856
857 ref = btrfs_delayed_node_to_tree_ref(node);
858 ret = add_indirect_ref(fs_info, preftrees, ref->root,
859 &tmp_op_key, ref->level + 1,
860 node->bytenr, count, sc,
861 GFP_ATOMIC);
862 break;
863 }
864 case BTRFS_SHARED_BLOCK_REF_KEY: {
865 /* SHARED DIRECT METADATA backref */
866 struct btrfs_delayed_tree_ref *ref;
867
868 ref = btrfs_delayed_node_to_tree_ref(node);
869
870 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
871 ref->parent, node->bytenr, count,
872 sc, GFP_ATOMIC);
873 break;
874 }
875 case BTRFS_EXTENT_DATA_REF_KEY: {
876 /* NORMAL INDIRECT DATA backref */
877 struct btrfs_delayed_data_ref *ref;
878 ref = btrfs_delayed_node_to_data_ref(node);
879
880 key.objectid = ref->objectid;
881 key.type = BTRFS_EXTENT_DATA_KEY;
882 key.offset = ref->offset;
883
884 /*
885 * Found a inum that doesn't match our known inum, we
886 * know it's shared.
887 */
888 if (sc && sc->inum && ref->objectid != sc->inum) {
889 ret = BACKREF_FOUND_SHARED;
890 goto out;
891 }
892
893 ret = add_indirect_ref(fs_info, preftrees, ref->root,
894 &key, 0, node->bytenr, count, sc,
895 GFP_ATOMIC);
896 break;
897 }
898 case BTRFS_SHARED_DATA_REF_KEY: {
899 /* SHARED DIRECT FULL backref */
900 struct btrfs_delayed_data_ref *ref;
901
902 ref = btrfs_delayed_node_to_data_ref(node);
903
904 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
905 node->bytenr, count, sc,
906 GFP_ATOMIC);
907 break;
908 }
909 default:
910 WARN_ON(1);
911 }
912 /*
913 * We must ignore BACKREF_FOUND_SHARED until all delayed
914 * refs have been checked.
915 */
916 if (ret && (ret != BACKREF_FOUND_SHARED))
917 break;
918 }
919 if (!ret)
920 ret = extent_is_shared(sc);
921out:
922 spin_unlock(&head->lock);
923 return ret;
924}
925
926/*
927 * add all inline backrefs for bytenr to the list
928 *
929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
930 */
931static int add_inline_refs(const struct btrfs_fs_info *fs_info,
932 struct btrfs_path *path, u64 bytenr,
933 int *info_level, struct preftrees *preftrees,
934 struct share_check *sc)
935{
936 int ret = 0;
937 int slot;
938 struct extent_buffer *leaf;
939 struct btrfs_key key;
940 struct btrfs_key found_key;
941 unsigned long ptr;
942 unsigned long end;
943 struct btrfs_extent_item *ei;
944 u64 flags;
945 u64 item_size;
946
947 /*
948 * enumerate all inline refs
949 */
950 leaf = path->nodes[0];
951 slot = path->slots[0];
952
953 item_size = btrfs_item_size(leaf, slot);
954 BUG_ON(item_size < sizeof(*ei));
955
956 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
957 flags = btrfs_extent_flags(leaf, ei);
958 btrfs_item_key_to_cpu(leaf, &found_key, slot);
959
960 ptr = (unsigned long)(ei + 1);
961 end = (unsigned long)ei + item_size;
962
963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
965 struct btrfs_tree_block_info *info;
966
967 info = (struct btrfs_tree_block_info *)ptr;
968 *info_level = btrfs_tree_block_level(leaf, info);
969 ptr += sizeof(struct btrfs_tree_block_info);
970 BUG_ON(ptr > end);
971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
972 *info_level = found_key.offset;
973 } else {
974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
975 }
976
977 while (ptr < end) {
978 struct btrfs_extent_inline_ref *iref;
979 u64 offset;
980 int type;
981
982 iref = (struct btrfs_extent_inline_ref *)ptr;
983 type = btrfs_get_extent_inline_ref_type(leaf, iref,
984 BTRFS_REF_TYPE_ANY);
985 if (type == BTRFS_REF_TYPE_INVALID)
986 return -EUCLEAN;
987
988 offset = btrfs_extent_inline_ref_offset(leaf, iref);
989
990 switch (type) {
991 case BTRFS_SHARED_BLOCK_REF_KEY:
992 ret = add_direct_ref(fs_info, preftrees,
993 *info_level + 1, offset,
994 bytenr, 1, NULL, GFP_NOFS);
995 break;
996 case BTRFS_SHARED_DATA_REF_KEY: {
997 struct btrfs_shared_data_ref *sdref;
998 int count;
999
1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001 count = btrfs_shared_data_ref_count(leaf, sdref);
1002
1003 ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004 bytenr, count, sc, GFP_NOFS);
1005 break;
1006 }
1007 case BTRFS_TREE_BLOCK_REF_KEY:
1008 ret = add_indirect_ref(fs_info, preftrees, offset,
1009 NULL, *info_level + 1,
1010 bytenr, 1, NULL, GFP_NOFS);
1011 break;
1012 case BTRFS_EXTENT_DATA_REF_KEY: {
1013 struct btrfs_extent_data_ref *dref;
1014 int count;
1015 u64 root;
1016
1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018 count = btrfs_extent_data_ref_count(leaf, dref);
1019 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020 dref);
1021 key.type = BTRFS_EXTENT_DATA_KEY;
1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023
1024 if (sc && sc->inum && key.objectid != sc->inum) {
1025 ret = BACKREF_FOUND_SHARED;
1026 break;
1027 }
1028
1029 root = btrfs_extent_data_ref_root(leaf, dref);
1030
1031 ret = add_indirect_ref(fs_info, preftrees, root,
1032 &key, 0, bytenr, count,
1033 sc, GFP_NOFS);
1034 break;
1035 }
1036 default:
1037 WARN_ON(1);
1038 }
1039 if (ret)
1040 return ret;
1041 ptr += btrfs_extent_inline_ref_size(type);
1042 }
1043
1044 return 0;
1045}
1046
1047/*
1048 * add all non-inline backrefs for bytenr to the list
1049 *
1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051 */
1052static int add_keyed_refs(struct btrfs_root *extent_root,
1053 struct btrfs_path *path, u64 bytenr,
1054 int info_level, struct preftrees *preftrees,
1055 struct share_check *sc)
1056{
1057 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1058 int ret;
1059 int slot;
1060 struct extent_buffer *leaf;
1061 struct btrfs_key key;
1062
1063 while (1) {
1064 ret = btrfs_next_item(extent_root, path);
1065 if (ret < 0)
1066 break;
1067 if (ret) {
1068 ret = 0;
1069 break;
1070 }
1071
1072 slot = path->slots[0];
1073 leaf = path->nodes[0];
1074 btrfs_item_key_to_cpu(leaf, &key, slot);
1075
1076 if (key.objectid != bytenr)
1077 break;
1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079 continue;
1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081 break;
1082
1083 switch (key.type) {
1084 case BTRFS_SHARED_BLOCK_REF_KEY:
1085 /* SHARED DIRECT METADATA backref */
1086 ret = add_direct_ref(fs_info, preftrees,
1087 info_level + 1, key.offset,
1088 bytenr, 1, NULL, GFP_NOFS);
1089 break;
1090 case BTRFS_SHARED_DATA_REF_KEY: {
1091 /* SHARED DIRECT FULL backref */
1092 struct btrfs_shared_data_ref *sdref;
1093 int count;
1094
1095 sdref = btrfs_item_ptr(leaf, slot,
1096 struct btrfs_shared_data_ref);
1097 count = btrfs_shared_data_ref_count(leaf, sdref);
1098 ret = add_direct_ref(fs_info, preftrees, 0,
1099 key.offset, bytenr, count,
1100 sc, GFP_NOFS);
1101 break;
1102 }
1103 case BTRFS_TREE_BLOCK_REF_KEY:
1104 /* NORMAL INDIRECT METADATA backref */
1105 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106 NULL, info_level + 1, bytenr,
1107 1, NULL, GFP_NOFS);
1108 break;
1109 case BTRFS_EXTENT_DATA_REF_KEY: {
1110 /* NORMAL INDIRECT DATA backref */
1111 struct btrfs_extent_data_ref *dref;
1112 int count;
1113 u64 root;
1114
1115 dref = btrfs_item_ptr(leaf, slot,
1116 struct btrfs_extent_data_ref);
1117 count = btrfs_extent_data_ref_count(leaf, dref);
1118 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119 dref);
1120 key.type = BTRFS_EXTENT_DATA_KEY;
1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122
1123 if (sc && sc->inum && key.objectid != sc->inum) {
1124 ret = BACKREF_FOUND_SHARED;
1125 break;
1126 }
1127
1128 root = btrfs_extent_data_ref_root(leaf, dref);
1129 ret = add_indirect_ref(fs_info, preftrees, root,
1130 &key, 0, bytenr, count,
1131 sc, GFP_NOFS);
1132 break;
1133 }
1134 default:
1135 WARN_ON(1);
1136 }
1137 if (ret)
1138 return ret;
1139
1140 }
1141
1142 return ret;
1143}
1144
1145/*
1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148 * indirect refs to their parent bytenr.
1149 * When roots are found, they're added to the roots list
1150 *
1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1152 * behave much like trans == NULL case, the difference only lies in it will not
1153 * commit root.
1154 * The special case is for qgroup to search roots in commit_transaction().
1155 *
1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157 * shared extent is detected.
1158 *
1159 * Otherwise this returns 0 for success and <0 for an error.
1160 *
1161 * If ignore_offset is set to false, only extent refs whose offsets match
1162 * extent_item_pos are returned. If true, every extent ref is returned
1163 * and extent_item_pos is ignored.
1164 *
1165 * FIXME some caching might speed things up
1166 */
1167static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168 struct btrfs_fs_info *fs_info, u64 bytenr,
1169 u64 time_seq, struct ulist *refs,
1170 struct ulist *roots, const u64 *extent_item_pos,
1171 struct share_check *sc, bool ignore_offset)
1172{
1173 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
1174 struct btrfs_key key;
1175 struct btrfs_path *path;
1176 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1177 struct btrfs_delayed_ref_head *head;
1178 int info_level = 0;
1179 int ret;
1180 struct prelim_ref *ref;
1181 struct rb_node *node;
1182 struct extent_inode_elem *eie = NULL;
1183 struct preftrees preftrees = {
1184 .direct = PREFTREE_INIT,
1185 .indirect = PREFTREE_INIT,
1186 .indirect_missing_keys = PREFTREE_INIT
1187 };
1188
1189 key.objectid = bytenr;
1190 key.offset = (u64)-1;
1191 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1192 key.type = BTRFS_METADATA_ITEM_KEY;
1193 else
1194 key.type = BTRFS_EXTENT_ITEM_KEY;
1195
1196 path = btrfs_alloc_path();
1197 if (!path)
1198 return -ENOMEM;
1199 if (!trans) {
1200 path->search_commit_root = 1;
1201 path->skip_locking = 1;
1202 }
1203
1204 if (time_seq == BTRFS_SEQ_LAST)
1205 path->skip_locking = 1;
1206
1207again:
1208 head = NULL;
1209
1210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1211 if (ret < 0)
1212 goto out;
1213 if (ret == 0) {
1214 /* This shouldn't happen, indicates a bug or fs corruption. */
1215 ASSERT(ret != 0);
1216 ret = -EUCLEAN;
1217 goto out;
1218 }
1219
1220 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1221 time_seq != BTRFS_SEQ_LAST) {
1222 /*
1223 * We have a specific time_seq we care about and trans which
1224 * means we have the path lock, we need to grab the ref head and
1225 * lock it so we have a consistent view of the refs at the given
1226 * time.
1227 */
1228 delayed_refs = &trans->transaction->delayed_refs;
1229 spin_lock(&delayed_refs->lock);
1230 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1231 if (head) {
1232 if (!mutex_trylock(&head->mutex)) {
1233 refcount_inc(&head->refs);
1234 spin_unlock(&delayed_refs->lock);
1235
1236 btrfs_release_path(path);
1237
1238 /*
1239 * Mutex was contended, block until it's
1240 * released and try again
1241 */
1242 mutex_lock(&head->mutex);
1243 mutex_unlock(&head->mutex);
1244 btrfs_put_delayed_ref_head(head);
1245 goto again;
1246 }
1247 spin_unlock(&delayed_refs->lock);
1248 ret = add_delayed_refs(fs_info, head, time_seq,
1249 &preftrees, sc);
1250 mutex_unlock(&head->mutex);
1251 if (ret)
1252 goto out;
1253 } else {
1254 spin_unlock(&delayed_refs->lock);
1255 }
1256 }
1257
1258 if (path->slots[0]) {
1259 struct extent_buffer *leaf;
1260 int slot;
1261
1262 path->slots[0]--;
1263 leaf = path->nodes[0];
1264 slot = path->slots[0];
1265 btrfs_item_key_to_cpu(leaf, &key, slot);
1266 if (key.objectid == bytenr &&
1267 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1268 key.type == BTRFS_METADATA_ITEM_KEY)) {
1269 ret = add_inline_refs(fs_info, path, bytenr,
1270 &info_level, &preftrees, sc);
1271 if (ret)
1272 goto out;
1273 ret = add_keyed_refs(root, path, bytenr, info_level,
1274 &preftrees, sc);
1275 if (ret)
1276 goto out;
1277 }
1278 }
1279
1280 btrfs_release_path(path);
1281
1282 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1283 if (ret)
1284 goto out;
1285
1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1287
1288 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1289 extent_item_pos, sc, ignore_offset);
1290 if (ret)
1291 goto out;
1292
1293 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1294
1295 /*
1296 * This walks the tree of merged and resolved refs. Tree blocks are
1297 * read in as needed. Unique entries are added to the ulist, and
1298 * the list of found roots is updated.
1299 *
1300 * We release the entire tree in one go before returning.
1301 */
1302 node = rb_first_cached(&preftrees.direct.root);
1303 while (node) {
1304 ref = rb_entry(node, struct prelim_ref, rbnode);
1305 node = rb_next(&ref->rbnode);
1306 /*
1307 * ref->count < 0 can happen here if there are delayed
1308 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1309 * prelim_ref_insert() relies on this when merging
1310 * identical refs to keep the overall count correct.
1311 * prelim_ref_insert() will merge only those refs
1312 * which compare identically. Any refs having
1313 * e.g. different offsets would not be merged,
1314 * and would retain their original ref->count < 0.
1315 */
1316 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1317 if (sc && sc->root_objectid &&
1318 ref->root_id != sc->root_objectid) {
1319 ret = BACKREF_FOUND_SHARED;
1320 goto out;
1321 }
1322
1323 /* no parent == root of tree */
1324 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1325 if (ret < 0)
1326 goto out;
1327 }
1328 if (ref->count && ref->parent) {
1329 if (extent_item_pos && !ref->inode_list &&
1330 ref->level == 0) {
1331 struct extent_buffer *eb;
1332
1333 eb = read_tree_block(fs_info, ref->parent, 0,
1334 0, ref->level, NULL);
1335 if (IS_ERR(eb)) {
1336 ret = PTR_ERR(eb);
1337 goto out;
1338 } else if (!extent_buffer_uptodate(eb)) {
1339 free_extent_buffer(eb);
1340 ret = -EIO;
1341 goto out;
1342 }
1343
1344 if (!path->skip_locking)
1345 btrfs_tree_read_lock(eb);
1346 ret = find_extent_in_eb(eb, bytenr,
1347 *extent_item_pos, &eie, ignore_offset);
1348 if (!path->skip_locking)
1349 btrfs_tree_read_unlock(eb);
1350 free_extent_buffer(eb);
1351 if (ret < 0)
1352 goto out;
1353 ref->inode_list = eie;
1354 }
1355 ret = ulist_add_merge_ptr(refs, ref->parent,
1356 ref->inode_list,
1357 (void **)&eie, GFP_NOFS);
1358 if (ret < 0)
1359 goto out;
1360 if (!ret && extent_item_pos) {
1361 /*
1362 * We've recorded that parent, so we must extend
1363 * its inode list here.
1364 *
1365 * However if there was corruption we may not
1366 * have found an eie, return an error in this
1367 * case.
1368 */
1369 ASSERT(eie);
1370 if (!eie) {
1371 ret = -EUCLEAN;
1372 goto out;
1373 }
1374 while (eie->next)
1375 eie = eie->next;
1376 eie->next = ref->inode_list;
1377 }
1378 eie = NULL;
1379 }
1380 cond_resched();
1381 }
1382
1383out:
1384 btrfs_free_path(path);
1385
1386 prelim_release(&preftrees.direct);
1387 prelim_release(&preftrees.indirect);
1388 prelim_release(&preftrees.indirect_missing_keys);
1389
1390 if (ret < 0)
1391 free_inode_elem_list(eie);
1392 return ret;
1393}
1394
1395static void free_leaf_list(struct ulist *blocks)
1396{
1397 struct ulist_node *node = NULL;
1398 struct extent_inode_elem *eie;
1399 struct ulist_iterator uiter;
1400
1401 ULIST_ITER_INIT(&uiter);
1402 while ((node = ulist_next(blocks, &uiter))) {
1403 if (!node->aux)
1404 continue;
1405 eie = unode_aux_to_inode_list(node);
1406 free_inode_elem_list(eie);
1407 node->aux = 0;
1408 }
1409
1410 ulist_free(blocks);
1411}
1412
1413/*
1414 * Finds all leafs with a reference to the specified combination of bytenr and
1415 * offset. key_list_head will point to a list of corresponding keys (caller must
1416 * free each list element). The leafs will be stored in the leafs ulist, which
1417 * must be freed with ulist_free.
1418 *
1419 * returns 0 on success, <0 on error
1420 */
1421int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1422 struct btrfs_fs_info *fs_info, u64 bytenr,
1423 u64 time_seq, struct ulist **leafs,
1424 const u64 *extent_item_pos, bool ignore_offset)
1425{
1426 int ret;
1427
1428 *leafs = ulist_alloc(GFP_NOFS);
1429 if (!*leafs)
1430 return -ENOMEM;
1431
1432 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1433 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1434 if (ret < 0 && ret != -ENOENT) {
1435 free_leaf_list(*leafs);
1436 return ret;
1437 }
1438
1439 return 0;
1440}
1441
1442/*
1443 * walk all backrefs for a given extent to find all roots that reference this
1444 * extent. Walking a backref means finding all extents that reference this
1445 * extent and in turn walk the backrefs of those, too. Naturally this is a
1446 * recursive process, but here it is implemented in an iterative fashion: We
1447 * find all referencing extents for the extent in question and put them on a
1448 * list. In turn, we find all referencing extents for those, further appending
1449 * to the list. The way we iterate the list allows adding more elements after
1450 * the current while iterating. The process stops when we reach the end of the
1451 * list. Found roots are added to the roots list.
1452 *
1453 * returns 0 on success, < 0 on error.
1454 */
1455static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1456 struct btrfs_fs_info *fs_info, u64 bytenr,
1457 u64 time_seq, struct ulist **roots,
1458 bool ignore_offset)
1459{
1460 struct ulist *tmp;
1461 struct ulist_node *node = NULL;
1462 struct ulist_iterator uiter;
1463 int ret;
1464
1465 tmp = ulist_alloc(GFP_NOFS);
1466 if (!tmp)
1467 return -ENOMEM;
1468 *roots = ulist_alloc(GFP_NOFS);
1469 if (!*roots) {
1470 ulist_free(tmp);
1471 return -ENOMEM;
1472 }
1473
1474 ULIST_ITER_INIT(&uiter);
1475 while (1) {
1476 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1477 tmp, *roots, NULL, NULL, ignore_offset);
1478 if (ret < 0 && ret != -ENOENT) {
1479 ulist_free(tmp);
1480 ulist_free(*roots);
1481 *roots = NULL;
1482 return ret;
1483 }
1484 node = ulist_next(tmp, &uiter);
1485 if (!node)
1486 break;
1487 bytenr = node->val;
1488 cond_resched();
1489 }
1490
1491 ulist_free(tmp);
1492 return 0;
1493}
1494
1495int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1496 struct btrfs_fs_info *fs_info, u64 bytenr,
1497 u64 time_seq, struct ulist **roots,
1498 bool skip_commit_root_sem)
1499{
1500 int ret;
1501
1502 if (!trans && !skip_commit_root_sem)
1503 down_read(&fs_info->commit_root_sem);
1504 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1505 time_seq, roots, false);
1506 if (!trans && !skip_commit_root_sem)
1507 up_read(&fs_info->commit_root_sem);
1508 return ret;
1509}
1510
1511/**
1512 * Check if an extent is shared or not
1513 *
1514 * @root: root inode belongs to
1515 * @inum: inode number of the inode whose extent we are checking
1516 * @bytenr: logical bytenr of the extent we are checking
1517 * @roots: list of roots this extent is shared among
1518 * @tmp: temporary list used for iteration
1519 *
1520 * btrfs_check_shared uses the backref walking code but will short
1521 * circuit as soon as it finds a root or inode that doesn't match the
1522 * one passed in. This provides a significant performance benefit for
1523 * callers (such as fiemap) which want to know whether the extent is
1524 * shared but do not need a ref count.
1525 *
1526 * This attempts to attach to the running transaction in order to account for
1527 * delayed refs, but continues on even when no running transaction exists.
1528 *
1529 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1530 */
1531int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1532 struct ulist *roots, struct ulist *tmp)
1533{
1534 struct btrfs_fs_info *fs_info = root->fs_info;
1535 struct btrfs_trans_handle *trans;
1536 struct ulist_iterator uiter;
1537 struct ulist_node *node;
1538 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1539 int ret = 0;
1540 struct share_check shared = {
1541 .root_objectid = root->root_key.objectid,
1542 .inum = inum,
1543 .share_count = 0,
1544 };
1545
1546 ulist_init(roots);
1547 ulist_init(tmp);
1548
1549 trans = btrfs_join_transaction_nostart(root);
1550 if (IS_ERR(trans)) {
1551 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1552 ret = PTR_ERR(trans);
1553 goto out;
1554 }
1555 trans = NULL;
1556 down_read(&fs_info->commit_root_sem);
1557 } else {
1558 btrfs_get_tree_mod_seq(fs_info, &elem);
1559 }
1560
1561 ULIST_ITER_INIT(&uiter);
1562 while (1) {
1563 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1564 roots, NULL, &shared, false);
1565 if (ret == BACKREF_FOUND_SHARED) {
1566 /* this is the only condition under which we return 1 */
1567 ret = 1;
1568 break;
1569 }
1570 if (ret < 0 && ret != -ENOENT)
1571 break;
1572 ret = 0;
1573 node = ulist_next(tmp, &uiter);
1574 if (!node)
1575 break;
1576 bytenr = node->val;
1577 shared.share_count = 0;
1578 cond_resched();
1579 }
1580
1581 if (trans) {
1582 btrfs_put_tree_mod_seq(fs_info, &elem);
1583 btrfs_end_transaction(trans);
1584 } else {
1585 up_read(&fs_info->commit_root_sem);
1586 }
1587out:
1588 ulist_release(roots);
1589 ulist_release(tmp);
1590 return ret;
1591}
1592
1593int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1594 u64 start_off, struct btrfs_path *path,
1595 struct btrfs_inode_extref **ret_extref,
1596 u64 *found_off)
1597{
1598 int ret, slot;
1599 struct btrfs_key key;
1600 struct btrfs_key found_key;
1601 struct btrfs_inode_extref *extref;
1602 const struct extent_buffer *leaf;
1603 unsigned long ptr;
1604
1605 key.objectid = inode_objectid;
1606 key.type = BTRFS_INODE_EXTREF_KEY;
1607 key.offset = start_off;
1608
1609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1610 if (ret < 0)
1611 return ret;
1612
1613 while (1) {
1614 leaf = path->nodes[0];
1615 slot = path->slots[0];
1616 if (slot >= btrfs_header_nritems(leaf)) {
1617 /*
1618 * If the item at offset is not found,
1619 * btrfs_search_slot will point us to the slot
1620 * where it should be inserted. In our case
1621 * that will be the slot directly before the
1622 * next INODE_REF_KEY_V2 item. In the case
1623 * that we're pointing to the last slot in a
1624 * leaf, we must move one leaf over.
1625 */
1626 ret = btrfs_next_leaf(root, path);
1627 if (ret) {
1628 if (ret >= 1)
1629 ret = -ENOENT;
1630 break;
1631 }
1632 continue;
1633 }
1634
1635 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1636
1637 /*
1638 * Check that we're still looking at an extended ref key for
1639 * this particular objectid. If we have different
1640 * objectid or type then there are no more to be found
1641 * in the tree and we can exit.
1642 */
1643 ret = -ENOENT;
1644 if (found_key.objectid != inode_objectid)
1645 break;
1646 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1647 break;
1648
1649 ret = 0;
1650 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1651 extref = (struct btrfs_inode_extref *)ptr;
1652 *ret_extref = extref;
1653 if (found_off)
1654 *found_off = found_key.offset;
1655 break;
1656 }
1657
1658 return ret;
1659}
1660
1661/*
1662 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1663 * Elements of the path are separated by '/' and the path is guaranteed to be
1664 * 0-terminated. the path is only given within the current file system.
1665 * Therefore, it never starts with a '/'. the caller is responsible to provide
1666 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1667 * the start point of the resulting string is returned. this pointer is within
1668 * dest, normally.
1669 * in case the path buffer would overflow, the pointer is decremented further
1670 * as if output was written to the buffer, though no more output is actually
1671 * generated. that way, the caller can determine how much space would be
1672 * required for the path to fit into the buffer. in that case, the returned
1673 * value will be smaller than dest. callers must check this!
1674 */
1675char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1676 u32 name_len, unsigned long name_off,
1677 struct extent_buffer *eb_in, u64 parent,
1678 char *dest, u32 size)
1679{
1680 int slot;
1681 u64 next_inum;
1682 int ret;
1683 s64 bytes_left = ((s64)size) - 1;
1684 struct extent_buffer *eb = eb_in;
1685 struct btrfs_key found_key;
1686 struct btrfs_inode_ref *iref;
1687
1688 if (bytes_left >= 0)
1689 dest[bytes_left] = '\0';
1690
1691 while (1) {
1692 bytes_left -= name_len;
1693 if (bytes_left >= 0)
1694 read_extent_buffer(eb, dest + bytes_left,
1695 name_off, name_len);
1696 if (eb != eb_in) {
1697 if (!path->skip_locking)
1698 btrfs_tree_read_unlock(eb);
1699 free_extent_buffer(eb);
1700 }
1701 ret = btrfs_find_item(fs_root, path, parent, 0,
1702 BTRFS_INODE_REF_KEY, &found_key);
1703 if (ret > 0)
1704 ret = -ENOENT;
1705 if (ret)
1706 break;
1707
1708 next_inum = found_key.offset;
1709
1710 /* regular exit ahead */
1711 if (parent == next_inum)
1712 break;
1713
1714 slot = path->slots[0];
1715 eb = path->nodes[0];
1716 /* make sure we can use eb after releasing the path */
1717 if (eb != eb_in) {
1718 path->nodes[0] = NULL;
1719 path->locks[0] = 0;
1720 }
1721 btrfs_release_path(path);
1722 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1723
1724 name_len = btrfs_inode_ref_name_len(eb, iref);
1725 name_off = (unsigned long)(iref + 1);
1726
1727 parent = next_inum;
1728 --bytes_left;
1729 if (bytes_left >= 0)
1730 dest[bytes_left] = '/';
1731 }
1732
1733 btrfs_release_path(path);
1734
1735 if (ret)
1736 return ERR_PTR(ret);
1737
1738 return dest + bytes_left;
1739}
1740
1741/*
1742 * this makes the path point to (logical EXTENT_ITEM *)
1743 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1744 * tree blocks and <0 on error.
1745 */
1746int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1747 struct btrfs_path *path, struct btrfs_key *found_key,
1748 u64 *flags_ret)
1749{
1750 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
1751 int ret;
1752 u64 flags;
1753 u64 size = 0;
1754 u32 item_size;
1755 const struct extent_buffer *eb;
1756 struct btrfs_extent_item *ei;
1757 struct btrfs_key key;
1758
1759 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1760 key.type = BTRFS_METADATA_ITEM_KEY;
1761 else
1762 key.type = BTRFS_EXTENT_ITEM_KEY;
1763 key.objectid = logical;
1764 key.offset = (u64)-1;
1765
1766 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1767 if (ret < 0)
1768 return ret;
1769
1770 ret = btrfs_previous_extent_item(extent_root, path, 0);
1771 if (ret) {
1772 if (ret > 0)
1773 ret = -ENOENT;
1774 return ret;
1775 }
1776 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1777 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1778 size = fs_info->nodesize;
1779 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1780 size = found_key->offset;
1781
1782 if (found_key->objectid > logical ||
1783 found_key->objectid + size <= logical) {
1784 btrfs_debug(fs_info,
1785 "logical %llu is not within any extent", logical);
1786 return -ENOENT;
1787 }
1788
1789 eb = path->nodes[0];
1790 item_size = btrfs_item_size(eb, path->slots[0]);
1791 BUG_ON(item_size < sizeof(*ei));
1792
1793 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1794 flags = btrfs_extent_flags(eb, ei);
1795
1796 btrfs_debug(fs_info,
1797 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1798 logical, logical - found_key->objectid, found_key->objectid,
1799 found_key->offset, flags, item_size);
1800
1801 WARN_ON(!flags_ret);
1802 if (flags_ret) {
1803 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1804 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1805 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1806 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1807 else
1808 BUG();
1809 return 0;
1810 }
1811
1812 return -EIO;
1813}
1814
1815/*
1816 * helper function to iterate extent inline refs. ptr must point to a 0 value
1817 * for the first call and may be modified. it is used to track state.
1818 * if more refs exist, 0 is returned and the next call to
1819 * get_extent_inline_ref must pass the modified ptr parameter to get the
1820 * next ref. after the last ref was processed, 1 is returned.
1821 * returns <0 on error
1822 */
1823static int get_extent_inline_ref(unsigned long *ptr,
1824 const struct extent_buffer *eb,
1825 const struct btrfs_key *key,
1826 const struct btrfs_extent_item *ei,
1827 u32 item_size,
1828 struct btrfs_extent_inline_ref **out_eiref,
1829 int *out_type)
1830{
1831 unsigned long end;
1832 u64 flags;
1833 struct btrfs_tree_block_info *info;
1834
1835 if (!*ptr) {
1836 /* first call */
1837 flags = btrfs_extent_flags(eb, ei);
1838 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1839 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1840 /* a skinny metadata extent */
1841 *out_eiref =
1842 (struct btrfs_extent_inline_ref *)(ei + 1);
1843 } else {
1844 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1845 info = (struct btrfs_tree_block_info *)(ei + 1);
1846 *out_eiref =
1847 (struct btrfs_extent_inline_ref *)(info + 1);
1848 }
1849 } else {
1850 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1851 }
1852 *ptr = (unsigned long)*out_eiref;
1853 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1854 return -ENOENT;
1855 }
1856
1857 end = (unsigned long)ei + item_size;
1858 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1859 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1860 BTRFS_REF_TYPE_ANY);
1861 if (*out_type == BTRFS_REF_TYPE_INVALID)
1862 return -EUCLEAN;
1863
1864 *ptr += btrfs_extent_inline_ref_size(*out_type);
1865 WARN_ON(*ptr > end);
1866 if (*ptr == end)
1867 return 1; /* last */
1868
1869 return 0;
1870}
1871
1872/*
1873 * reads the tree block backref for an extent. tree level and root are returned
1874 * through out_level and out_root. ptr must point to a 0 value for the first
1875 * call and may be modified (see get_extent_inline_ref comment).
1876 * returns 0 if data was provided, 1 if there was no more data to provide or
1877 * <0 on error.
1878 */
1879int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1880 struct btrfs_key *key, struct btrfs_extent_item *ei,
1881 u32 item_size, u64 *out_root, u8 *out_level)
1882{
1883 int ret;
1884 int type;
1885 struct btrfs_extent_inline_ref *eiref;
1886
1887 if (*ptr == (unsigned long)-1)
1888 return 1;
1889
1890 while (1) {
1891 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1892 &eiref, &type);
1893 if (ret < 0)
1894 return ret;
1895
1896 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1897 type == BTRFS_SHARED_BLOCK_REF_KEY)
1898 break;
1899
1900 if (ret == 1)
1901 return 1;
1902 }
1903
1904 /* we can treat both ref types equally here */
1905 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1906
1907 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1908 struct btrfs_tree_block_info *info;
1909
1910 info = (struct btrfs_tree_block_info *)(ei + 1);
1911 *out_level = btrfs_tree_block_level(eb, info);
1912 } else {
1913 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1914 *out_level = (u8)key->offset;
1915 }
1916
1917 if (ret == 1)
1918 *ptr = (unsigned long)-1;
1919
1920 return 0;
1921}
1922
1923static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1924 struct extent_inode_elem *inode_list,
1925 u64 root, u64 extent_item_objectid,
1926 iterate_extent_inodes_t *iterate, void *ctx)
1927{
1928 struct extent_inode_elem *eie;
1929 int ret = 0;
1930
1931 for (eie = inode_list; eie; eie = eie->next) {
1932 btrfs_debug(fs_info,
1933 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1934 extent_item_objectid, eie->inum,
1935 eie->offset, root);
1936 ret = iterate(eie->inum, eie->offset, root, ctx);
1937 if (ret) {
1938 btrfs_debug(fs_info,
1939 "stopping iteration for %llu due to ret=%d",
1940 extent_item_objectid, ret);
1941 break;
1942 }
1943 }
1944
1945 return ret;
1946}
1947
1948/*
1949 * calls iterate() for every inode that references the extent identified by
1950 * the given parameters.
1951 * when the iterator function returns a non-zero value, iteration stops.
1952 */
1953int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1954 u64 extent_item_objectid, u64 extent_item_pos,
1955 int search_commit_root,
1956 iterate_extent_inodes_t *iterate, void *ctx,
1957 bool ignore_offset)
1958{
1959 int ret;
1960 struct btrfs_trans_handle *trans = NULL;
1961 struct ulist *refs = NULL;
1962 struct ulist *roots = NULL;
1963 struct ulist_node *ref_node = NULL;
1964 struct ulist_node *root_node = NULL;
1965 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1966 struct ulist_iterator ref_uiter;
1967 struct ulist_iterator root_uiter;
1968
1969 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1970 extent_item_objectid);
1971
1972 if (!search_commit_root) {
1973 trans = btrfs_attach_transaction(fs_info->tree_root);
1974 if (IS_ERR(trans)) {
1975 if (PTR_ERR(trans) != -ENOENT &&
1976 PTR_ERR(trans) != -EROFS)
1977 return PTR_ERR(trans);
1978 trans = NULL;
1979 }
1980 }
1981
1982 if (trans)
1983 btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1984 else
1985 down_read(&fs_info->commit_root_sem);
1986
1987 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1988 seq_elem.seq, &refs,
1989 &extent_item_pos, ignore_offset);
1990 if (ret)
1991 goto out;
1992
1993 ULIST_ITER_INIT(&ref_uiter);
1994 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1995 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1996 seq_elem.seq, &roots,
1997 ignore_offset);
1998 if (ret)
1999 break;
2000 ULIST_ITER_INIT(&root_uiter);
2001 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2002 btrfs_debug(fs_info,
2003 "root %llu references leaf %llu, data list %#llx",
2004 root_node->val, ref_node->val,
2005 ref_node->aux);
2006 ret = iterate_leaf_refs(fs_info,
2007 (struct extent_inode_elem *)
2008 (uintptr_t)ref_node->aux,
2009 root_node->val,
2010 extent_item_objectid,
2011 iterate, ctx);
2012 }
2013 ulist_free(roots);
2014 }
2015
2016 free_leaf_list(refs);
2017out:
2018 if (trans) {
2019 btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2020 btrfs_end_transaction(trans);
2021 } else {
2022 up_read(&fs_info->commit_root_sem);
2023 }
2024
2025 return ret;
2026}
2027
2028int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2029 struct btrfs_path *path,
2030 iterate_extent_inodes_t *iterate, void *ctx,
2031 bool ignore_offset)
2032{
2033 int ret;
2034 u64 extent_item_pos;
2035 u64 flags = 0;
2036 struct btrfs_key found_key;
2037 int search_commit_root = path->search_commit_root;
2038
2039 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2040 btrfs_release_path(path);
2041 if (ret < 0)
2042 return ret;
2043 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2044 return -EINVAL;
2045
2046 extent_item_pos = logical - found_key.objectid;
2047 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2048 extent_item_pos, search_commit_root,
2049 iterate, ctx, ignore_offset);
2050
2051 return ret;
2052}
2053
2054typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2055 struct extent_buffer *eb, void *ctx);
2056
2057static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2058 struct btrfs_path *path,
2059 iterate_irefs_t *iterate, void *ctx)
2060{
2061 int ret = 0;
2062 int slot;
2063 u32 cur;
2064 u32 len;
2065 u32 name_len;
2066 u64 parent = 0;
2067 int found = 0;
2068 struct extent_buffer *eb;
2069 struct btrfs_inode_ref *iref;
2070 struct btrfs_key found_key;
2071
2072 while (!ret) {
2073 ret = btrfs_find_item(fs_root, path, inum,
2074 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2075 &found_key);
2076
2077 if (ret < 0)
2078 break;
2079 if (ret) {
2080 ret = found ? 0 : -ENOENT;
2081 break;
2082 }
2083 ++found;
2084
2085 parent = found_key.offset;
2086 slot = path->slots[0];
2087 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2088 if (!eb) {
2089 ret = -ENOMEM;
2090 break;
2091 }
2092 btrfs_release_path(path);
2093
2094 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2095
2096 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2097 name_len = btrfs_inode_ref_name_len(eb, iref);
2098 /* path must be released before calling iterate()! */
2099 btrfs_debug(fs_root->fs_info,
2100 "following ref at offset %u for inode %llu in tree %llu",
2101 cur, found_key.objectid,
2102 fs_root->root_key.objectid);
2103 ret = iterate(parent, name_len,
2104 (unsigned long)(iref + 1), eb, ctx);
2105 if (ret)
2106 break;
2107 len = sizeof(*iref) + name_len;
2108 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2109 }
2110 free_extent_buffer(eb);
2111 }
2112
2113 btrfs_release_path(path);
2114
2115 return ret;
2116}
2117
2118static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2119 struct btrfs_path *path,
2120 iterate_irefs_t *iterate, void *ctx)
2121{
2122 int ret;
2123 int slot;
2124 u64 offset = 0;
2125 u64 parent;
2126 int found = 0;
2127 struct extent_buffer *eb;
2128 struct btrfs_inode_extref *extref;
2129 u32 item_size;
2130 u32 cur_offset;
2131 unsigned long ptr;
2132
2133 while (1) {
2134 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2135 &offset);
2136 if (ret < 0)
2137 break;
2138 if (ret) {
2139 ret = found ? 0 : -ENOENT;
2140 break;
2141 }
2142 ++found;
2143
2144 slot = path->slots[0];
2145 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2146 if (!eb) {
2147 ret = -ENOMEM;
2148 break;
2149 }
2150 btrfs_release_path(path);
2151
2152 item_size = btrfs_item_size(eb, slot);
2153 ptr = btrfs_item_ptr_offset(eb, slot);
2154 cur_offset = 0;
2155
2156 while (cur_offset < item_size) {
2157 u32 name_len;
2158
2159 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2160 parent = btrfs_inode_extref_parent(eb, extref);
2161 name_len = btrfs_inode_extref_name_len(eb, extref);
2162 ret = iterate(parent, name_len,
2163 (unsigned long)&extref->name, eb, ctx);
2164 if (ret)
2165 break;
2166
2167 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2168 cur_offset += sizeof(*extref);
2169 }
2170 free_extent_buffer(eb);
2171
2172 offset++;
2173 }
2174
2175 btrfs_release_path(path);
2176
2177 return ret;
2178}
2179
2180static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2181 struct btrfs_path *path, iterate_irefs_t *iterate,
2182 void *ctx)
2183{
2184 int ret;
2185 int found_refs = 0;
2186
2187 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2188 if (!ret)
2189 ++found_refs;
2190 else if (ret != -ENOENT)
2191 return ret;
2192
2193 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2194 if (ret == -ENOENT && found_refs)
2195 return 0;
2196
2197 return ret;
2198}
2199
2200/*
2201 * returns 0 if the path could be dumped (probably truncated)
2202 * returns <0 in case of an error
2203 */
2204static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2205 struct extent_buffer *eb, void *ctx)
2206{
2207 struct inode_fs_paths *ipath = ctx;
2208 char *fspath;
2209 char *fspath_min;
2210 int i = ipath->fspath->elem_cnt;
2211 const int s_ptr = sizeof(char *);
2212 u32 bytes_left;
2213
2214 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2215 ipath->fspath->bytes_left - s_ptr : 0;
2216
2217 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2218 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2219 name_off, eb, inum, fspath_min, bytes_left);
2220 if (IS_ERR(fspath))
2221 return PTR_ERR(fspath);
2222
2223 if (fspath > fspath_min) {
2224 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2225 ++ipath->fspath->elem_cnt;
2226 ipath->fspath->bytes_left = fspath - fspath_min;
2227 } else {
2228 ++ipath->fspath->elem_missed;
2229 ipath->fspath->bytes_missing += fspath_min - fspath;
2230 ipath->fspath->bytes_left = 0;
2231 }
2232
2233 return 0;
2234}
2235
2236/*
2237 * this dumps all file system paths to the inode into the ipath struct, provided
2238 * is has been created large enough. each path is zero-terminated and accessed
2239 * from ipath->fspath->val[i].
2240 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2241 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2242 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2243 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2244 * have been needed to return all paths.
2245 */
2246int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2247{
2248 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2249 inode_to_path, ipath);
2250}
2251
2252struct btrfs_data_container *init_data_container(u32 total_bytes)
2253{
2254 struct btrfs_data_container *data;
2255 size_t alloc_bytes;
2256
2257 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2258 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2259 if (!data)
2260 return ERR_PTR(-ENOMEM);
2261
2262 if (total_bytes >= sizeof(*data)) {
2263 data->bytes_left = total_bytes - sizeof(*data);
2264 data->bytes_missing = 0;
2265 } else {
2266 data->bytes_missing = sizeof(*data) - total_bytes;
2267 data->bytes_left = 0;
2268 }
2269
2270 data->elem_cnt = 0;
2271 data->elem_missed = 0;
2272
2273 return data;
2274}
2275
2276/*
2277 * allocates space to return multiple file system paths for an inode.
2278 * total_bytes to allocate are passed, note that space usable for actual path
2279 * information will be total_bytes - sizeof(struct inode_fs_paths).
2280 * the returned pointer must be freed with free_ipath() in the end.
2281 */
2282struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2283 struct btrfs_path *path)
2284{
2285 struct inode_fs_paths *ifp;
2286 struct btrfs_data_container *fspath;
2287
2288 fspath = init_data_container(total_bytes);
2289 if (IS_ERR(fspath))
2290 return ERR_CAST(fspath);
2291
2292 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2293 if (!ifp) {
2294 kvfree(fspath);
2295 return ERR_PTR(-ENOMEM);
2296 }
2297
2298 ifp->btrfs_path = path;
2299 ifp->fspath = fspath;
2300 ifp->fs_root = fs_root;
2301
2302 return ifp;
2303}
2304
2305void free_ipath(struct inode_fs_paths *ipath)
2306{
2307 if (!ipath)
2308 return;
2309 kvfree(ipath->fspath);
2310 kfree(ipath);
2311}
2312
2313struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2314 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2315{
2316 struct btrfs_backref_iter *ret;
2317
2318 ret = kzalloc(sizeof(*ret), gfp_flag);
2319 if (!ret)
2320 return NULL;
2321
2322 ret->path = btrfs_alloc_path();
2323 if (!ret->path) {
2324 kfree(ret);
2325 return NULL;
2326 }
2327
2328 /* Current backref iterator only supports iteration in commit root */
2329 ret->path->search_commit_root = 1;
2330 ret->path->skip_locking = 1;
2331 ret->fs_info = fs_info;
2332
2333 return ret;
2334}
2335
2336int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2337{
2338 struct btrfs_fs_info *fs_info = iter->fs_info;
2339 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2340 struct btrfs_path *path = iter->path;
2341 struct btrfs_extent_item *ei;
2342 struct btrfs_key key;
2343 int ret;
2344
2345 key.objectid = bytenr;
2346 key.type = BTRFS_METADATA_ITEM_KEY;
2347 key.offset = (u64)-1;
2348 iter->bytenr = bytenr;
2349
2350 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2351 if (ret < 0)
2352 return ret;
2353 if (ret == 0) {
2354 ret = -EUCLEAN;
2355 goto release;
2356 }
2357 if (path->slots[0] == 0) {
2358 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2359 ret = -EUCLEAN;
2360 goto release;
2361 }
2362 path->slots[0]--;
2363
2364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2365 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2366 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2367 ret = -ENOENT;
2368 goto release;
2369 }
2370 memcpy(&iter->cur_key, &key, sizeof(key));
2371 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2372 path->slots[0]);
2373 iter->end_ptr = (u32)(iter->item_ptr +
2374 btrfs_item_size(path->nodes[0], path->slots[0]));
2375 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2376 struct btrfs_extent_item);
2377
2378 /*
2379 * Only support iteration on tree backref yet.
2380 *
2381 * This is an extra precaution for non skinny-metadata, where
2382 * EXTENT_ITEM is also used for tree blocks, that we can only use
2383 * extent flags to determine if it's a tree block.
2384 */
2385 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2386 ret = -ENOTSUPP;
2387 goto release;
2388 }
2389 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2390
2391 /* If there is no inline backref, go search for keyed backref */
2392 if (iter->cur_ptr >= iter->end_ptr) {
2393 ret = btrfs_next_item(extent_root, path);
2394
2395 /* No inline nor keyed ref */
2396 if (ret > 0) {
2397 ret = -ENOENT;
2398 goto release;
2399 }
2400 if (ret < 0)
2401 goto release;
2402
2403 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2404 path->slots[0]);
2405 if (iter->cur_key.objectid != bytenr ||
2406 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2407 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2408 ret = -ENOENT;
2409 goto release;
2410 }
2411 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2412 path->slots[0]);
2413 iter->item_ptr = iter->cur_ptr;
2414 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2415 path->nodes[0], path->slots[0]));
2416 }
2417
2418 return 0;
2419release:
2420 btrfs_backref_iter_release(iter);
2421 return ret;
2422}
2423
2424/*
2425 * Go to the next backref item of current bytenr, can be either inlined or
2426 * keyed.
2427 *
2428 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2429 *
2430 * Return 0 if we get next backref without problem.
2431 * Return >0 if there is no extra backref for this bytenr.
2432 * Return <0 if there is something wrong happened.
2433 */
2434int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2435{
2436 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2437 struct btrfs_root *extent_root;
2438 struct btrfs_path *path = iter->path;
2439 struct btrfs_extent_inline_ref *iref;
2440 int ret;
2441 u32 size;
2442
2443 if (btrfs_backref_iter_is_inline_ref(iter)) {
2444 /* We're still inside the inline refs */
2445 ASSERT(iter->cur_ptr < iter->end_ptr);
2446
2447 if (btrfs_backref_has_tree_block_info(iter)) {
2448 /* First tree block info */
2449 size = sizeof(struct btrfs_tree_block_info);
2450 } else {
2451 /* Use inline ref type to determine the size */
2452 int type;
2453
2454 iref = (struct btrfs_extent_inline_ref *)
2455 ((unsigned long)iter->cur_ptr);
2456 type = btrfs_extent_inline_ref_type(eb, iref);
2457
2458 size = btrfs_extent_inline_ref_size(type);
2459 }
2460 iter->cur_ptr += size;
2461 if (iter->cur_ptr < iter->end_ptr)
2462 return 0;
2463
2464 /* All inline items iterated, fall through */
2465 }
2466
2467 /* We're at keyed items, there is no inline item, go to the next one */
2468 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2469 ret = btrfs_next_item(extent_root, iter->path);
2470 if (ret)
2471 return ret;
2472
2473 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2474 if (iter->cur_key.objectid != iter->bytenr ||
2475 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2476 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2477 return 1;
2478 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2479 path->slots[0]);
2480 iter->cur_ptr = iter->item_ptr;
2481 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2482 path->slots[0]);
2483 return 0;
2484}
2485
2486void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2487 struct btrfs_backref_cache *cache, int is_reloc)
2488{
2489 int i;
2490
2491 cache->rb_root = RB_ROOT;
2492 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2493 INIT_LIST_HEAD(&cache->pending[i]);
2494 INIT_LIST_HEAD(&cache->changed);
2495 INIT_LIST_HEAD(&cache->detached);
2496 INIT_LIST_HEAD(&cache->leaves);
2497 INIT_LIST_HEAD(&cache->pending_edge);
2498 INIT_LIST_HEAD(&cache->useless_node);
2499 cache->fs_info = fs_info;
2500 cache->is_reloc = is_reloc;
2501}
2502
2503struct btrfs_backref_node *btrfs_backref_alloc_node(
2504 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2505{
2506 struct btrfs_backref_node *node;
2507
2508 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2509 node = kzalloc(sizeof(*node), GFP_NOFS);
2510 if (!node)
2511 return node;
2512
2513 INIT_LIST_HEAD(&node->list);
2514 INIT_LIST_HEAD(&node->upper);
2515 INIT_LIST_HEAD(&node->lower);
2516 RB_CLEAR_NODE(&node->rb_node);
2517 cache->nr_nodes++;
2518 node->level = level;
2519 node->bytenr = bytenr;
2520
2521 return node;
2522}
2523
2524struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2525 struct btrfs_backref_cache *cache)
2526{
2527 struct btrfs_backref_edge *edge;
2528
2529 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2530 if (edge)
2531 cache->nr_edges++;
2532 return edge;
2533}
2534
2535/*
2536 * Drop the backref node from cache, also cleaning up all its
2537 * upper edges and any uncached nodes in the path.
2538 *
2539 * This cleanup happens bottom up, thus the node should either
2540 * be the lowest node in the cache or a detached node.
2541 */
2542void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2543 struct btrfs_backref_node *node)
2544{
2545 struct btrfs_backref_node *upper;
2546 struct btrfs_backref_edge *edge;
2547
2548 if (!node)
2549 return;
2550
2551 BUG_ON(!node->lowest && !node->detached);
2552 while (!list_empty(&node->upper)) {
2553 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2554 list[LOWER]);
2555 upper = edge->node[UPPER];
2556 list_del(&edge->list[LOWER]);
2557 list_del(&edge->list[UPPER]);
2558 btrfs_backref_free_edge(cache, edge);
2559
2560 /*
2561 * Add the node to leaf node list if no other child block
2562 * cached.
2563 */
2564 if (list_empty(&upper->lower)) {
2565 list_add_tail(&upper->lower, &cache->leaves);
2566 upper->lowest = 1;
2567 }
2568 }
2569
2570 btrfs_backref_drop_node(cache, node);
2571}
2572
2573/*
2574 * Release all nodes/edges from current cache
2575 */
2576void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2577{
2578 struct btrfs_backref_node *node;
2579 int i;
2580
2581 while (!list_empty(&cache->detached)) {
2582 node = list_entry(cache->detached.next,
2583 struct btrfs_backref_node, list);
2584 btrfs_backref_cleanup_node(cache, node);
2585 }
2586
2587 while (!list_empty(&cache->leaves)) {
2588 node = list_entry(cache->leaves.next,
2589 struct btrfs_backref_node, lower);
2590 btrfs_backref_cleanup_node(cache, node);
2591 }
2592
2593 cache->last_trans = 0;
2594
2595 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2596 ASSERT(list_empty(&cache->pending[i]));
2597 ASSERT(list_empty(&cache->pending_edge));
2598 ASSERT(list_empty(&cache->useless_node));
2599 ASSERT(list_empty(&cache->changed));
2600 ASSERT(list_empty(&cache->detached));
2601 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2602 ASSERT(!cache->nr_nodes);
2603 ASSERT(!cache->nr_edges);
2604}
2605
2606/*
2607 * Handle direct tree backref
2608 *
2609 * Direct tree backref means, the backref item shows its parent bytenr
2610 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2611 *
2612 * @ref_key: The converted backref key.
2613 * For keyed backref, it's the item key.
2614 * For inlined backref, objectid is the bytenr,
2615 * type is btrfs_inline_ref_type, offset is
2616 * btrfs_inline_ref_offset.
2617 */
2618static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2619 struct btrfs_key *ref_key,
2620 struct btrfs_backref_node *cur)
2621{
2622 struct btrfs_backref_edge *edge;
2623 struct btrfs_backref_node *upper;
2624 struct rb_node *rb_node;
2625
2626 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2627
2628 /* Only reloc root uses backref pointing to itself */
2629 if (ref_key->objectid == ref_key->offset) {
2630 struct btrfs_root *root;
2631
2632 cur->is_reloc_root = 1;
2633 /* Only reloc backref cache cares about a specific root */
2634 if (cache->is_reloc) {
2635 root = find_reloc_root(cache->fs_info, cur->bytenr);
2636 if (!root)
2637 return -ENOENT;
2638 cur->root = root;
2639 } else {
2640 /*
2641 * For generic purpose backref cache, reloc root node
2642 * is useless.
2643 */
2644 list_add(&cur->list, &cache->useless_node);
2645 }
2646 return 0;
2647 }
2648
2649 edge = btrfs_backref_alloc_edge(cache);
2650 if (!edge)
2651 return -ENOMEM;
2652
2653 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2654 if (!rb_node) {
2655 /* Parent node not yet cached */
2656 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2657 cur->level + 1);
2658 if (!upper) {
2659 btrfs_backref_free_edge(cache, edge);
2660 return -ENOMEM;
2661 }
2662
2663 /*
2664 * Backrefs for the upper level block isn't cached, add the
2665 * block to pending list
2666 */
2667 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2668 } else {
2669 /* Parent node already cached */
2670 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2671 ASSERT(upper->checked);
2672 INIT_LIST_HEAD(&edge->list[UPPER]);
2673 }
2674 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2675 return 0;
2676}
2677
2678/*
2679 * Handle indirect tree backref
2680 *
2681 * Indirect tree backref means, we only know which tree the node belongs to.
2682 * We still need to do a tree search to find out the parents. This is for
2683 * TREE_BLOCK_REF backref (keyed or inlined).
2684 *
2685 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2686 * @tree_key: The first key of this tree block.
2687 * @path: A clean (released) path, to avoid allocating path every time
2688 * the function get called.
2689 */
2690static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2691 struct btrfs_path *path,
2692 struct btrfs_key *ref_key,
2693 struct btrfs_key *tree_key,
2694 struct btrfs_backref_node *cur)
2695{
2696 struct btrfs_fs_info *fs_info = cache->fs_info;
2697 struct btrfs_backref_node *upper;
2698 struct btrfs_backref_node *lower;
2699 struct btrfs_backref_edge *edge;
2700 struct extent_buffer *eb;
2701 struct btrfs_root *root;
2702 struct rb_node *rb_node;
2703 int level;
2704 bool need_check = true;
2705 int ret;
2706
2707 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2708 if (IS_ERR(root))
2709 return PTR_ERR(root);
2710 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2711 cur->cowonly = 1;
2712
2713 if (btrfs_root_level(&root->root_item) == cur->level) {
2714 /* Tree root */
2715 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2716 /*
2717 * For reloc backref cache, we may ignore reloc root. But for
2718 * general purpose backref cache, we can't rely on
2719 * btrfs_should_ignore_reloc_root() as it may conflict with
2720 * current running relocation and lead to missing root.
2721 *
2722 * For general purpose backref cache, reloc root detection is
2723 * completely relying on direct backref (key->offset is parent
2724 * bytenr), thus only do such check for reloc cache.
2725 */
2726 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2727 btrfs_put_root(root);
2728 list_add(&cur->list, &cache->useless_node);
2729 } else {
2730 cur->root = root;
2731 }
2732 return 0;
2733 }
2734
2735 level = cur->level + 1;
2736
2737 /* Search the tree to find parent blocks referring to the block */
2738 path->search_commit_root = 1;
2739 path->skip_locking = 1;
2740 path->lowest_level = level;
2741 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2742 path->lowest_level = 0;
2743 if (ret < 0) {
2744 btrfs_put_root(root);
2745 return ret;
2746 }
2747 if (ret > 0 && path->slots[level] > 0)
2748 path->slots[level]--;
2749
2750 eb = path->nodes[level];
2751 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2752 btrfs_err(fs_info,
2753"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2754 cur->bytenr, level - 1, root->root_key.objectid,
2755 tree_key->objectid, tree_key->type, tree_key->offset);
2756 btrfs_put_root(root);
2757 ret = -ENOENT;
2758 goto out;
2759 }
2760 lower = cur;
2761
2762 /* Add all nodes and edges in the path */
2763 for (; level < BTRFS_MAX_LEVEL; level++) {
2764 if (!path->nodes[level]) {
2765 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2766 lower->bytenr);
2767 /* Same as previous should_ignore_reloc_root() call */
2768 if (btrfs_should_ignore_reloc_root(root) &&
2769 cache->is_reloc) {
2770 btrfs_put_root(root);
2771 list_add(&lower->list, &cache->useless_node);
2772 } else {
2773 lower->root = root;
2774 }
2775 break;
2776 }
2777
2778 edge = btrfs_backref_alloc_edge(cache);
2779 if (!edge) {
2780 btrfs_put_root(root);
2781 ret = -ENOMEM;
2782 goto out;
2783 }
2784
2785 eb = path->nodes[level];
2786 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2787 if (!rb_node) {
2788 upper = btrfs_backref_alloc_node(cache, eb->start,
2789 lower->level + 1);
2790 if (!upper) {
2791 btrfs_put_root(root);
2792 btrfs_backref_free_edge(cache, edge);
2793 ret = -ENOMEM;
2794 goto out;
2795 }
2796 upper->owner = btrfs_header_owner(eb);
2797 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2798 upper->cowonly = 1;
2799
2800 /*
2801 * If we know the block isn't shared we can avoid
2802 * checking its backrefs.
2803 */
2804 if (btrfs_block_can_be_shared(root, eb))
2805 upper->checked = 0;
2806 else
2807 upper->checked = 1;
2808
2809 /*
2810 * Add the block to pending list if we need to check its
2811 * backrefs, we only do this once while walking up a
2812 * tree as we will catch anything else later on.
2813 */
2814 if (!upper->checked && need_check) {
2815 need_check = false;
2816 list_add_tail(&edge->list[UPPER],
2817 &cache->pending_edge);
2818 } else {
2819 if (upper->checked)
2820 need_check = true;
2821 INIT_LIST_HEAD(&edge->list[UPPER]);
2822 }
2823 } else {
2824 upper = rb_entry(rb_node, struct btrfs_backref_node,
2825 rb_node);
2826 ASSERT(upper->checked);
2827 INIT_LIST_HEAD(&edge->list[UPPER]);
2828 if (!upper->owner)
2829 upper->owner = btrfs_header_owner(eb);
2830 }
2831 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2832
2833 if (rb_node) {
2834 btrfs_put_root(root);
2835 break;
2836 }
2837 lower = upper;
2838 upper = NULL;
2839 }
2840out:
2841 btrfs_release_path(path);
2842 return ret;
2843}
2844
2845/*
2846 * Add backref node @cur into @cache.
2847 *
2848 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2849 * links aren't yet bi-directional. Needs to finish such links.
2850 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2851 *
2852 * @path: Released path for indirect tree backref lookup
2853 * @iter: Released backref iter for extent tree search
2854 * @node_key: The first key of the tree block
2855 */
2856int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2857 struct btrfs_path *path,
2858 struct btrfs_backref_iter *iter,
2859 struct btrfs_key *node_key,
2860 struct btrfs_backref_node *cur)
2861{
2862 struct btrfs_fs_info *fs_info = cache->fs_info;
2863 struct btrfs_backref_edge *edge;
2864 struct btrfs_backref_node *exist;
2865 int ret;
2866
2867 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2868 if (ret < 0)
2869 return ret;
2870 /*
2871 * We skip the first btrfs_tree_block_info, as we don't use the key
2872 * stored in it, but fetch it from the tree block
2873 */
2874 if (btrfs_backref_has_tree_block_info(iter)) {
2875 ret = btrfs_backref_iter_next(iter);
2876 if (ret < 0)
2877 goto out;
2878 /* No extra backref? This means the tree block is corrupted */
2879 if (ret > 0) {
2880 ret = -EUCLEAN;
2881 goto out;
2882 }
2883 }
2884 WARN_ON(cur->checked);
2885 if (!list_empty(&cur->upper)) {
2886 /*
2887 * The backref was added previously when processing backref of
2888 * type BTRFS_TREE_BLOCK_REF_KEY
2889 */
2890 ASSERT(list_is_singular(&cur->upper));
2891 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2892 list[LOWER]);
2893 ASSERT(list_empty(&edge->list[UPPER]));
2894 exist = edge->node[UPPER];
2895 /*
2896 * Add the upper level block to pending list if we need check
2897 * its backrefs
2898 */
2899 if (!exist->checked)
2900 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2901 } else {
2902 exist = NULL;
2903 }
2904
2905 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2906 struct extent_buffer *eb;
2907 struct btrfs_key key;
2908 int type;
2909
2910 cond_resched();
2911 eb = btrfs_backref_get_eb(iter);
2912
2913 key.objectid = iter->bytenr;
2914 if (btrfs_backref_iter_is_inline_ref(iter)) {
2915 struct btrfs_extent_inline_ref *iref;
2916
2917 /* Update key for inline backref */
2918 iref = (struct btrfs_extent_inline_ref *)
2919 ((unsigned long)iter->cur_ptr);
2920 type = btrfs_get_extent_inline_ref_type(eb, iref,
2921 BTRFS_REF_TYPE_BLOCK);
2922 if (type == BTRFS_REF_TYPE_INVALID) {
2923 ret = -EUCLEAN;
2924 goto out;
2925 }
2926 key.type = type;
2927 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2928 } else {
2929 key.type = iter->cur_key.type;
2930 key.offset = iter->cur_key.offset;
2931 }
2932
2933 /*
2934 * Parent node found and matches current inline ref, no need to
2935 * rebuild this node for this inline ref
2936 */
2937 if (exist &&
2938 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2939 exist->owner == key.offset) ||
2940 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2941 exist->bytenr == key.offset))) {
2942 exist = NULL;
2943 continue;
2944 }
2945
2946 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2947 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2948 ret = handle_direct_tree_backref(cache, &key, cur);
2949 if (ret < 0)
2950 goto out;
2951 continue;
2952 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2953 ret = -EINVAL;
2954 btrfs_print_v0_err(fs_info);
2955 btrfs_handle_fs_error(fs_info, ret, NULL);
2956 goto out;
2957 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2958 continue;
2959 }
2960
2961 /*
2962 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2963 * means the root objectid. We need to search the tree to get
2964 * its parent bytenr.
2965 */
2966 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2967 cur);
2968 if (ret < 0)
2969 goto out;
2970 }
2971 ret = 0;
2972 cur->checked = 1;
2973 WARN_ON(exist);
2974out:
2975 btrfs_backref_iter_release(iter);
2976 return ret;
2977}
2978
2979/*
2980 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2981 */
2982int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2983 struct btrfs_backref_node *start)
2984{
2985 struct list_head *useless_node = &cache->useless_node;
2986 struct btrfs_backref_edge *edge;
2987 struct rb_node *rb_node;
2988 LIST_HEAD(pending_edge);
2989
2990 ASSERT(start->checked);
2991
2992 /* Insert this node to cache if it's not COW-only */
2993 if (!start->cowonly) {
2994 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2995 &start->rb_node);
2996 if (rb_node)
2997 btrfs_backref_panic(cache->fs_info, start->bytenr,
2998 -EEXIST);
2999 list_add_tail(&start->lower, &cache->leaves);
3000 }
3001
3002 /*
3003 * Use breadth first search to iterate all related edges.
3004 *
3005 * The starting points are all the edges of this node
3006 */
3007 list_for_each_entry(edge, &start->upper, list[LOWER])
3008 list_add_tail(&edge->list[UPPER], &pending_edge);
3009
3010 while (!list_empty(&pending_edge)) {
3011 struct btrfs_backref_node *upper;
3012 struct btrfs_backref_node *lower;
3013
3014 edge = list_first_entry(&pending_edge,
3015 struct btrfs_backref_edge, list[UPPER]);
3016 list_del_init(&edge->list[UPPER]);
3017 upper = edge->node[UPPER];
3018 lower = edge->node[LOWER];
3019
3020 /* Parent is detached, no need to keep any edges */
3021 if (upper->detached) {
3022 list_del(&edge->list[LOWER]);
3023 btrfs_backref_free_edge(cache, edge);
3024
3025 /* Lower node is orphan, queue for cleanup */
3026 if (list_empty(&lower->upper))
3027 list_add(&lower->list, useless_node);
3028 continue;
3029 }
3030
3031 /*
3032 * All new nodes added in current build_backref_tree() haven't
3033 * been linked to the cache rb tree.
3034 * So if we have upper->rb_node populated, this means a cache
3035 * hit. We only need to link the edge, as @upper and all its
3036 * parents have already been linked.
3037 */
3038 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3039 if (upper->lowest) {
3040 list_del_init(&upper->lower);
3041 upper->lowest = 0;
3042 }
3043
3044 list_add_tail(&edge->list[UPPER], &upper->lower);
3045 continue;
3046 }
3047
3048 /* Sanity check, we shouldn't have any unchecked nodes */
3049 if (!upper->checked) {
3050 ASSERT(0);
3051 return -EUCLEAN;
3052 }
3053
3054 /* Sanity check, COW-only node has non-COW-only parent */
3055 if (start->cowonly != upper->cowonly) {
3056 ASSERT(0);
3057 return -EUCLEAN;
3058 }
3059
3060 /* Only cache non-COW-only (subvolume trees) tree blocks */
3061 if (!upper->cowonly) {
3062 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3063 &upper->rb_node);
3064 if (rb_node) {
3065 btrfs_backref_panic(cache->fs_info,
3066 upper->bytenr, -EEXIST);
3067 return -EUCLEAN;
3068 }
3069 }
3070
3071 list_add_tail(&edge->list[UPPER], &upper->lower);
3072
3073 /*
3074 * Also queue all the parent edges of this uncached node
3075 * to finish the upper linkage
3076 */
3077 list_for_each_entry(edge, &upper->upper, list[LOWER])
3078 list_add_tail(&edge->list[UPPER], &pending_edge);
3079 }
3080 return 0;
3081}
3082
3083void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3084 struct btrfs_backref_node *node)
3085{
3086 struct btrfs_backref_node *lower;
3087 struct btrfs_backref_node *upper;
3088 struct btrfs_backref_edge *edge;
3089
3090 while (!list_empty(&cache->useless_node)) {
3091 lower = list_first_entry(&cache->useless_node,
3092 struct btrfs_backref_node, list);
3093 list_del_init(&lower->list);
3094 }
3095 while (!list_empty(&cache->pending_edge)) {
3096 edge = list_first_entry(&cache->pending_edge,
3097 struct btrfs_backref_edge, list[UPPER]);
3098 list_del(&edge->list[UPPER]);
3099 list_del(&edge->list[LOWER]);
3100 lower = edge->node[LOWER];
3101 upper = edge->node[UPPER];
3102 btrfs_backref_free_edge(cache, edge);
3103
3104 /*
3105 * Lower is no longer linked to any upper backref nodes and
3106 * isn't in the cache, we can free it ourselves.
3107 */
3108 if (list_empty(&lower->upper) &&
3109 RB_EMPTY_NODE(&lower->rb_node))
3110 list_add(&lower->list, &cache->useless_node);
3111
3112 if (!RB_EMPTY_NODE(&upper->rb_node))
3113 continue;
3114
3115 /* Add this guy's upper edges to the list to process */
3116 list_for_each_entry(edge, &upper->upper, list[LOWER])
3117 list_add_tail(&edge->list[UPPER],
3118 &cache->pending_edge);
3119 if (list_empty(&upper->upper))
3120 list_add(&upper->list, &cache->useless_node);
3121 }
3122
3123 while (!list_empty(&cache->useless_node)) {
3124 lower = list_first_entry(&cache->useless_node,
3125 struct btrfs_backref_node, list);
3126 list_del_init(&lower->list);
3127 if (lower == node)
3128 node = NULL;
3129 btrfs_backref_drop_node(cache, lower);
3130 }
3131
3132 btrfs_backref_cleanup_node(cache, node);
3133 ASSERT(list_empty(&cache->useless_node) &&
3134 list_empty(&cache->pending_edge));
3135}