Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6#include <linux/backing-dev.h>
7#include <linux/moduleparam.h>
8#include <trace/events/block.h>
9#include "nvme.h"
10
11static bool multipath = true;
12module_param(multipath, bool, 0444);
13MODULE_PARM_DESC(multipath,
14 "turn on native support for multiple controllers per subsystem");
15
16static const char *nvme_iopolicy_names[] = {
17 [NVME_IOPOLICY_NUMA] = "numa",
18 [NVME_IOPOLICY_RR] = "round-robin",
19};
20
21static int iopolicy = NVME_IOPOLICY_NUMA;
22
23static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
24{
25 if (!val)
26 return -EINVAL;
27 if (!strncmp(val, "numa", 4))
28 iopolicy = NVME_IOPOLICY_NUMA;
29 else if (!strncmp(val, "round-robin", 11))
30 iopolicy = NVME_IOPOLICY_RR;
31 else
32 return -EINVAL;
33
34 return 0;
35}
36
37static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
38{
39 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
40}
41
42module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
43 &iopolicy, 0644);
44MODULE_PARM_DESC(iopolicy,
45 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
46
47void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
48{
49 subsys->iopolicy = iopolicy;
50}
51
52void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
53{
54 struct nvme_ns_head *h;
55
56 lockdep_assert_held(&subsys->lock);
57 list_for_each_entry(h, &subsys->nsheads, entry)
58 if (h->disk)
59 blk_mq_unfreeze_queue(h->disk->queue);
60}
61
62void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
63{
64 struct nvme_ns_head *h;
65
66 lockdep_assert_held(&subsys->lock);
67 list_for_each_entry(h, &subsys->nsheads, entry)
68 if (h->disk)
69 blk_mq_freeze_queue_wait(h->disk->queue);
70}
71
72void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
73{
74 struct nvme_ns_head *h;
75
76 lockdep_assert_held(&subsys->lock);
77 list_for_each_entry(h, &subsys->nsheads, entry)
78 if (h->disk)
79 blk_freeze_queue_start(h->disk->queue);
80}
81
82/*
83 * If multipathing is enabled we need to always use the subsystem instance
84 * number for numbering our devices to avoid conflicts between subsystems that
85 * have multiple controllers and thus use the multipath-aware subsystem node
86 * and those that have a single controller and use the controller node
87 * directly.
88 */
89bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
90{
91 if (!multipath)
92 return false;
93 if (!ns->head->disk) {
94 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
95 ns->head->instance);
96 return true;
97 }
98 sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
99 ns->ctrl->instance, ns->head->instance);
100 *flags = GENHD_FL_HIDDEN;
101 return true;
102}
103
104void nvme_failover_req(struct request *req)
105{
106 struct nvme_ns *ns = req->q->queuedata;
107 u16 status = nvme_req(req)->status & 0x7ff;
108 unsigned long flags;
109 struct bio *bio;
110
111 nvme_mpath_clear_current_path(ns);
112
113 /*
114 * If we got back an ANA error, we know the controller is alive but not
115 * ready to serve this namespace. Kick of a re-read of the ANA
116 * information page, and just try any other available path for now.
117 */
118 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
119 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
120 queue_work(nvme_wq, &ns->ctrl->ana_work);
121 }
122
123 spin_lock_irqsave(&ns->head->requeue_lock, flags);
124 for (bio = req->bio; bio; bio = bio->bi_next) {
125 bio_set_dev(bio, ns->head->disk->part0);
126 if (bio->bi_opf & REQ_POLLED) {
127 bio->bi_opf &= ~REQ_POLLED;
128 bio->bi_cookie = BLK_QC_T_NONE;
129 }
130 }
131 blk_steal_bios(&ns->head->requeue_list, req);
132 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
133
134 blk_mq_end_request(req, 0);
135 kblockd_schedule_work(&ns->head->requeue_work);
136}
137
138void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
139{
140 struct nvme_ns *ns;
141
142 down_read(&ctrl->namespaces_rwsem);
143 list_for_each_entry(ns, &ctrl->namespaces, list) {
144 if (!ns->head->disk)
145 continue;
146 kblockd_schedule_work(&ns->head->requeue_work);
147 if (ctrl->state == NVME_CTRL_LIVE)
148 disk_uevent(ns->head->disk, KOBJ_CHANGE);
149 }
150 up_read(&ctrl->namespaces_rwsem);
151}
152
153static const char *nvme_ana_state_names[] = {
154 [0] = "invalid state",
155 [NVME_ANA_OPTIMIZED] = "optimized",
156 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
157 [NVME_ANA_INACCESSIBLE] = "inaccessible",
158 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
159 [NVME_ANA_CHANGE] = "change",
160};
161
162bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
163{
164 struct nvme_ns_head *head = ns->head;
165 bool changed = false;
166 int node;
167
168 if (!head)
169 goto out;
170
171 for_each_node(node) {
172 if (ns == rcu_access_pointer(head->current_path[node])) {
173 rcu_assign_pointer(head->current_path[node], NULL);
174 changed = true;
175 }
176 }
177out:
178 return changed;
179}
180
181void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
182{
183 struct nvme_ns *ns;
184
185 down_read(&ctrl->namespaces_rwsem);
186 list_for_each_entry(ns, &ctrl->namespaces, list) {
187 nvme_mpath_clear_current_path(ns);
188 kblockd_schedule_work(&ns->head->requeue_work);
189 }
190 up_read(&ctrl->namespaces_rwsem);
191}
192
193void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
194{
195 struct nvme_ns_head *head = ns->head;
196 sector_t capacity = get_capacity(head->disk);
197 int node;
198
199 list_for_each_entry_rcu(ns, &head->list, siblings) {
200 if (capacity != get_capacity(ns->disk))
201 clear_bit(NVME_NS_READY, &ns->flags);
202 }
203
204 for_each_node(node)
205 rcu_assign_pointer(head->current_path[node], NULL);
206}
207
208static bool nvme_path_is_disabled(struct nvme_ns *ns)
209{
210 /*
211 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
212 * still be able to complete assuming that the controller is connected.
213 * Otherwise it will fail immediately and return to the requeue list.
214 */
215 if (ns->ctrl->state != NVME_CTRL_LIVE &&
216 ns->ctrl->state != NVME_CTRL_DELETING)
217 return true;
218 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
219 !test_bit(NVME_NS_READY, &ns->flags))
220 return true;
221 return false;
222}
223
224static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
225{
226 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
227 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
228
229 list_for_each_entry_rcu(ns, &head->list, siblings) {
230 if (nvme_path_is_disabled(ns))
231 continue;
232
233 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
234 distance = node_distance(node, ns->ctrl->numa_node);
235 else
236 distance = LOCAL_DISTANCE;
237
238 switch (ns->ana_state) {
239 case NVME_ANA_OPTIMIZED:
240 if (distance < found_distance) {
241 found_distance = distance;
242 found = ns;
243 }
244 break;
245 case NVME_ANA_NONOPTIMIZED:
246 if (distance < fallback_distance) {
247 fallback_distance = distance;
248 fallback = ns;
249 }
250 break;
251 default:
252 break;
253 }
254 }
255
256 if (!found)
257 found = fallback;
258 if (found)
259 rcu_assign_pointer(head->current_path[node], found);
260 return found;
261}
262
263static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
264 struct nvme_ns *ns)
265{
266 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
267 siblings);
268 if (ns)
269 return ns;
270 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
271}
272
273static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
274 int node, struct nvme_ns *old)
275{
276 struct nvme_ns *ns, *found = NULL;
277
278 if (list_is_singular(&head->list)) {
279 if (nvme_path_is_disabled(old))
280 return NULL;
281 return old;
282 }
283
284 for (ns = nvme_next_ns(head, old);
285 ns && ns != old;
286 ns = nvme_next_ns(head, ns)) {
287 if (nvme_path_is_disabled(ns))
288 continue;
289
290 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
291 found = ns;
292 goto out;
293 }
294 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
295 found = ns;
296 }
297
298 /*
299 * The loop above skips the current path for round-robin semantics.
300 * Fall back to the current path if either:
301 * - no other optimized path found and current is optimized,
302 * - no other usable path found and current is usable.
303 */
304 if (!nvme_path_is_disabled(old) &&
305 (old->ana_state == NVME_ANA_OPTIMIZED ||
306 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
307 return old;
308
309 if (!found)
310 return NULL;
311out:
312 rcu_assign_pointer(head->current_path[node], found);
313 return found;
314}
315
316static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
317{
318 return ns->ctrl->state == NVME_CTRL_LIVE &&
319 ns->ana_state == NVME_ANA_OPTIMIZED;
320}
321
322inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
323{
324 int node = numa_node_id();
325 struct nvme_ns *ns;
326
327 ns = srcu_dereference(head->current_path[node], &head->srcu);
328 if (unlikely(!ns))
329 return __nvme_find_path(head, node);
330
331 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
332 return nvme_round_robin_path(head, node, ns);
333 if (unlikely(!nvme_path_is_optimized(ns)))
334 return __nvme_find_path(head, node);
335 return ns;
336}
337
338static bool nvme_available_path(struct nvme_ns_head *head)
339{
340 struct nvme_ns *ns;
341
342 list_for_each_entry_rcu(ns, &head->list, siblings) {
343 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
344 continue;
345 switch (ns->ctrl->state) {
346 case NVME_CTRL_LIVE:
347 case NVME_CTRL_RESETTING:
348 case NVME_CTRL_CONNECTING:
349 /* fallthru */
350 return true;
351 default:
352 break;
353 }
354 }
355 return false;
356}
357
358static void nvme_ns_head_submit_bio(struct bio *bio)
359{
360 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
361 struct device *dev = disk_to_dev(head->disk);
362 struct nvme_ns *ns;
363 int srcu_idx;
364
365 /*
366 * The namespace might be going away and the bio might be moved to a
367 * different queue via blk_steal_bios(), so we need to use the bio_split
368 * pool from the original queue to allocate the bvecs from.
369 */
370 blk_queue_split(&bio);
371
372 srcu_idx = srcu_read_lock(&head->srcu);
373 ns = nvme_find_path(head);
374 if (likely(ns)) {
375 bio_set_dev(bio, ns->disk->part0);
376 bio->bi_opf |= REQ_NVME_MPATH;
377 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
378 bio->bi_iter.bi_sector);
379 submit_bio_noacct(bio);
380 } else if (nvme_available_path(head)) {
381 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
382
383 spin_lock_irq(&head->requeue_lock);
384 bio_list_add(&head->requeue_list, bio);
385 spin_unlock_irq(&head->requeue_lock);
386 } else {
387 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
388
389 bio->bi_status = BLK_STS_IOERR;
390 bio_endio(bio);
391 }
392
393 srcu_read_unlock(&head->srcu, srcu_idx);
394}
395
396static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
397{
398 if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
399 return -ENXIO;
400 return 0;
401}
402
403static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
404{
405 nvme_put_ns_head(disk->private_data);
406}
407
408#ifdef CONFIG_BLK_DEV_ZONED
409static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
410 unsigned int nr_zones, report_zones_cb cb, void *data)
411{
412 struct nvme_ns_head *head = disk->private_data;
413 struct nvme_ns *ns;
414 int srcu_idx, ret = -EWOULDBLOCK;
415
416 srcu_idx = srcu_read_lock(&head->srcu);
417 ns = nvme_find_path(head);
418 if (ns)
419 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
420 srcu_read_unlock(&head->srcu, srcu_idx);
421 return ret;
422}
423#else
424#define nvme_ns_head_report_zones NULL
425#endif /* CONFIG_BLK_DEV_ZONED */
426
427const struct block_device_operations nvme_ns_head_ops = {
428 .owner = THIS_MODULE,
429 .submit_bio = nvme_ns_head_submit_bio,
430 .open = nvme_ns_head_open,
431 .release = nvme_ns_head_release,
432 .ioctl = nvme_ns_head_ioctl,
433 .getgeo = nvme_getgeo,
434 .report_zones = nvme_ns_head_report_zones,
435 .pr_ops = &nvme_pr_ops,
436};
437
438static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
439{
440 return container_of(cdev, struct nvme_ns_head, cdev);
441}
442
443static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
444{
445 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
446 return -ENXIO;
447 return 0;
448}
449
450static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
451{
452 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
453 return 0;
454}
455
456static const struct file_operations nvme_ns_head_chr_fops = {
457 .owner = THIS_MODULE,
458 .open = nvme_ns_head_chr_open,
459 .release = nvme_ns_head_chr_release,
460 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
461 .compat_ioctl = compat_ptr_ioctl,
462};
463
464static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
465{
466 int ret;
467
468 head->cdev_device.parent = &head->subsys->dev;
469 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
470 head->subsys->instance, head->instance);
471 if (ret)
472 return ret;
473 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
474 &nvme_ns_head_chr_fops, THIS_MODULE);
475 return ret;
476}
477
478static void nvme_requeue_work(struct work_struct *work)
479{
480 struct nvme_ns_head *head =
481 container_of(work, struct nvme_ns_head, requeue_work);
482 struct bio *bio, *next;
483
484 spin_lock_irq(&head->requeue_lock);
485 next = bio_list_get(&head->requeue_list);
486 spin_unlock_irq(&head->requeue_lock);
487
488 while ((bio = next) != NULL) {
489 next = bio->bi_next;
490 bio->bi_next = NULL;
491
492 submit_bio_noacct(bio);
493 }
494}
495
496int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
497{
498 bool vwc = false;
499
500 mutex_init(&head->lock);
501 bio_list_init(&head->requeue_list);
502 spin_lock_init(&head->requeue_lock);
503 INIT_WORK(&head->requeue_work, nvme_requeue_work);
504
505 /*
506 * Add a multipath node if the subsystems supports multiple controllers.
507 * We also do this for private namespaces as the namespace sharing data could
508 * change after a rescan.
509 */
510 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
511 return 0;
512
513 head->disk = blk_alloc_disk(ctrl->numa_node);
514 if (!head->disk)
515 return -ENOMEM;
516 head->disk->fops = &nvme_ns_head_ops;
517 head->disk->private_data = head;
518 sprintf(head->disk->disk_name, "nvme%dn%d",
519 ctrl->subsys->instance, head->instance);
520
521 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
522 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
523 /*
524 * This assumes all controllers that refer to a namespace either
525 * support poll queues or not. That is not a strict guarantee,
526 * but if the assumption is wrong the effect is only suboptimal
527 * performance but not correctness problem.
528 */
529 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
530 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
531 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
532
533 /* set to a default value of 512 until the disk is validated */
534 blk_queue_logical_block_size(head->disk->queue, 512);
535 blk_set_stacking_limits(&head->disk->queue->limits);
536
537 /* we need to propagate up the VMC settings */
538 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
539 vwc = true;
540 blk_queue_write_cache(head->disk->queue, vwc, vwc);
541 return 0;
542}
543
544static void nvme_mpath_set_live(struct nvme_ns *ns)
545{
546 struct nvme_ns_head *head = ns->head;
547 int rc;
548
549 if (!head->disk)
550 return;
551
552 /*
553 * test_and_set_bit() is used because it is protecting against two nvme
554 * paths simultaneously calling device_add_disk() on the same namespace
555 * head.
556 */
557 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
558 rc = device_add_disk(&head->subsys->dev, head->disk,
559 nvme_ns_id_attr_groups);
560 if (rc) {
561 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
562 return;
563 }
564 nvme_add_ns_head_cdev(head);
565 }
566
567 mutex_lock(&head->lock);
568 if (nvme_path_is_optimized(ns)) {
569 int node, srcu_idx;
570
571 srcu_idx = srcu_read_lock(&head->srcu);
572 for_each_node(node)
573 __nvme_find_path(head, node);
574 srcu_read_unlock(&head->srcu, srcu_idx);
575 }
576 mutex_unlock(&head->lock);
577
578 synchronize_srcu(&head->srcu);
579 kblockd_schedule_work(&head->requeue_work);
580}
581
582static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
583 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
584 void *))
585{
586 void *base = ctrl->ana_log_buf;
587 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
588 int error, i;
589
590 lockdep_assert_held(&ctrl->ana_lock);
591
592 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
593 struct nvme_ana_group_desc *desc = base + offset;
594 u32 nr_nsids;
595 size_t nsid_buf_size;
596
597 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
598 return -EINVAL;
599
600 nr_nsids = le32_to_cpu(desc->nnsids);
601 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
602
603 if (WARN_ON_ONCE(desc->grpid == 0))
604 return -EINVAL;
605 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
606 return -EINVAL;
607 if (WARN_ON_ONCE(desc->state == 0))
608 return -EINVAL;
609 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
610 return -EINVAL;
611
612 offset += sizeof(*desc);
613 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
614 return -EINVAL;
615
616 error = cb(ctrl, desc, data);
617 if (error)
618 return error;
619
620 offset += nsid_buf_size;
621 }
622
623 return 0;
624}
625
626static inline bool nvme_state_is_live(enum nvme_ana_state state)
627{
628 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
629}
630
631static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
632 struct nvme_ns *ns)
633{
634 ns->ana_grpid = le32_to_cpu(desc->grpid);
635 ns->ana_state = desc->state;
636 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
637
638 if (nvme_state_is_live(ns->ana_state))
639 nvme_mpath_set_live(ns);
640}
641
642static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
643 struct nvme_ana_group_desc *desc, void *data)
644{
645 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
646 unsigned *nr_change_groups = data;
647 struct nvme_ns *ns;
648
649 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
650 le32_to_cpu(desc->grpid),
651 nvme_ana_state_names[desc->state]);
652
653 if (desc->state == NVME_ANA_CHANGE)
654 (*nr_change_groups)++;
655
656 if (!nr_nsids)
657 return 0;
658
659 down_read(&ctrl->namespaces_rwsem);
660 list_for_each_entry(ns, &ctrl->namespaces, list) {
661 unsigned nsid;
662again:
663 nsid = le32_to_cpu(desc->nsids[n]);
664 if (ns->head->ns_id < nsid)
665 continue;
666 if (ns->head->ns_id == nsid)
667 nvme_update_ns_ana_state(desc, ns);
668 if (++n == nr_nsids)
669 break;
670 if (ns->head->ns_id > nsid)
671 goto again;
672 }
673 up_read(&ctrl->namespaces_rwsem);
674 return 0;
675}
676
677static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
678{
679 u32 nr_change_groups = 0;
680 int error;
681
682 mutex_lock(&ctrl->ana_lock);
683 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
684 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
685 if (error) {
686 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
687 goto out_unlock;
688 }
689
690 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
691 nvme_update_ana_state);
692 if (error)
693 goto out_unlock;
694
695 /*
696 * In theory we should have an ANATT timer per group as they might enter
697 * the change state at different times. But that is a lot of overhead
698 * just to protect against a target that keeps entering new changes
699 * states while never finishing previous ones. But we'll still
700 * eventually time out once all groups are in change state, so this
701 * isn't a big deal.
702 *
703 * We also double the ANATT value to provide some slack for transports
704 * or AEN processing overhead.
705 */
706 if (nr_change_groups)
707 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
708 else
709 del_timer_sync(&ctrl->anatt_timer);
710out_unlock:
711 mutex_unlock(&ctrl->ana_lock);
712 return error;
713}
714
715static void nvme_ana_work(struct work_struct *work)
716{
717 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
718
719 if (ctrl->state != NVME_CTRL_LIVE)
720 return;
721
722 nvme_read_ana_log(ctrl);
723}
724
725static void nvme_anatt_timeout(struct timer_list *t)
726{
727 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
728
729 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
730 nvme_reset_ctrl(ctrl);
731}
732
733void nvme_mpath_stop(struct nvme_ctrl *ctrl)
734{
735 if (!nvme_ctrl_use_ana(ctrl))
736 return;
737 del_timer_sync(&ctrl->anatt_timer);
738 cancel_work_sync(&ctrl->ana_work);
739}
740
741#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
742 struct device_attribute subsys_attr_##_name = \
743 __ATTR(_name, _mode, _show, _store)
744
745static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
746 struct device_attribute *attr, char *buf)
747{
748 struct nvme_subsystem *subsys =
749 container_of(dev, struct nvme_subsystem, dev);
750
751 return sysfs_emit(buf, "%s\n",
752 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
753}
754
755static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
756 struct device_attribute *attr, const char *buf, size_t count)
757{
758 struct nvme_subsystem *subsys =
759 container_of(dev, struct nvme_subsystem, dev);
760 int i;
761
762 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
763 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
764 WRITE_ONCE(subsys->iopolicy, i);
765 return count;
766 }
767 }
768
769 return -EINVAL;
770}
771SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
772 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
773
774static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
775 char *buf)
776{
777 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
778}
779DEVICE_ATTR_RO(ana_grpid);
780
781static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
782 char *buf)
783{
784 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
785
786 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
787}
788DEVICE_ATTR_RO(ana_state);
789
790static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
791 struct nvme_ana_group_desc *desc, void *data)
792{
793 struct nvme_ana_group_desc *dst = data;
794
795 if (desc->grpid != dst->grpid)
796 return 0;
797
798 *dst = *desc;
799 return -ENXIO; /* just break out of the loop */
800}
801
802void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
803{
804 if (nvme_ctrl_use_ana(ns->ctrl)) {
805 struct nvme_ana_group_desc desc = {
806 .grpid = id->anagrpid,
807 .state = 0,
808 };
809
810 mutex_lock(&ns->ctrl->ana_lock);
811 ns->ana_grpid = le32_to_cpu(id->anagrpid);
812 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
813 mutex_unlock(&ns->ctrl->ana_lock);
814 if (desc.state) {
815 /* found the group desc: update */
816 nvme_update_ns_ana_state(&desc, ns);
817 } else {
818 /* group desc not found: trigger a re-read */
819 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
820 queue_work(nvme_wq, &ns->ctrl->ana_work);
821 }
822 } else {
823 ns->ana_state = NVME_ANA_OPTIMIZED;
824 nvme_mpath_set_live(ns);
825 }
826
827 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
828 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
829 ns->head->disk->queue);
830#ifdef CONFIG_BLK_DEV_ZONED
831 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
832 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
833#endif
834}
835
836void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
837{
838 if (!head->disk)
839 return;
840 kblockd_schedule_work(&head->requeue_work);
841 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
842 nvme_cdev_del(&head->cdev, &head->cdev_device);
843 del_gendisk(head->disk);
844 }
845}
846
847void nvme_mpath_remove_disk(struct nvme_ns_head *head)
848{
849 if (!head->disk)
850 return;
851 blk_mark_disk_dead(head->disk);
852 /* make sure all pending bios are cleaned up */
853 kblockd_schedule_work(&head->requeue_work);
854 flush_work(&head->requeue_work);
855 blk_cleanup_disk(head->disk);
856}
857
858void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
859{
860 mutex_init(&ctrl->ana_lock);
861 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
862 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
863}
864
865int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
866{
867 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
868 size_t ana_log_size;
869 int error = 0;
870
871 /* check if multipath is enabled and we have the capability */
872 if (!multipath || !ctrl->subsys ||
873 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
874 return 0;
875
876 if (!ctrl->max_namespaces ||
877 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
878 dev_err(ctrl->device,
879 "Invalid MNAN value %u\n", ctrl->max_namespaces);
880 return -EINVAL;
881 }
882
883 ctrl->anacap = id->anacap;
884 ctrl->anatt = id->anatt;
885 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
886 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
887
888 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
889 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
890 ctrl->max_namespaces * sizeof(__le32);
891 if (ana_log_size > max_transfer_size) {
892 dev_err(ctrl->device,
893 "ANA log page size (%zd) larger than MDTS (%zd).\n",
894 ana_log_size, max_transfer_size);
895 dev_err(ctrl->device, "disabling ANA support.\n");
896 goto out_uninit;
897 }
898 if (ana_log_size > ctrl->ana_log_size) {
899 nvme_mpath_stop(ctrl);
900 nvme_mpath_uninit(ctrl);
901 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
902 if (!ctrl->ana_log_buf)
903 return -ENOMEM;
904 }
905 ctrl->ana_log_size = ana_log_size;
906 error = nvme_read_ana_log(ctrl);
907 if (error)
908 goto out_uninit;
909 return 0;
910
911out_uninit:
912 nvme_mpath_uninit(ctrl);
913 return error;
914}
915
916void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
917{
918 kfree(ctrl->ana_log_buf);
919 ctrl->ana_log_buf = NULL;
920 ctrl->ana_log_size = 0;
921}