Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6#include <linux/module.h>
7#include <linux/parser.h>
8#include <uapi/scsi/fc/fc_fs.h>
9#include <uapi/scsi/fc/fc_els.h>
10#include <linux/delay.h>
11#include <linux/overflow.h>
12#include <linux/blk-cgroup.h>
13#include "nvme.h"
14#include "fabrics.h"
15#include <linux/nvme-fc-driver.h>
16#include <linux/nvme-fc.h>
17#include "fc.h"
18#include <scsi/scsi_transport_fc.h>
19#include <linux/blk-mq-pci.h>
20
21/* *************************** Data Structures/Defines ****************** */
22
23
24enum nvme_fc_queue_flags {
25 NVME_FC_Q_CONNECTED = 0,
26 NVME_FC_Q_LIVE,
27};
28
29#define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
30#define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
31 * when connected and a
32 * connection failure.
33 */
34
35struct nvme_fc_queue {
36 struct nvme_fc_ctrl *ctrl;
37 struct device *dev;
38 struct blk_mq_hw_ctx *hctx;
39 void *lldd_handle;
40 size_t cmnd_capsule_len;
41 u32 qnum;
42 u32 rqcnt;
43 u32 seqno;
44
45 u64 connection_id;
46 atomic_t csn;
47
48 unsigned long flags;
49} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
50
51enum nvme_fcop_flags {
52 FCOP_FLAGS_TERMIO = (1 << 0),
53 FCOP_FLAGS_AEN = (1 << 1),
54};
55
56struct nvmefc_ls_req_op {
57 struct nvmefc_ls_req ls_req;
58
59 struct nvme_fc_rport *rport;
60 struct nvme_fc_queue *queue;
61 struct request *rq;
62 u32 flags;
63
64 int ls_error;
65 struct completion ls_done;
66 struct list_head lsreq_list; /* rport->ls_req_list */
67 bool req_queued;
68};
69
70struct nvmefc_ls_rcv_op {
71 struct nvme_fc_rport *rport;
72 struct nvmefc_ls_rsp *lsrsp;
73 union nvmefc_ls_requests *rqstbuf;
74 union nvmefc_ls_responses *rspbuf;
75 u16 rqstdatalen;
76 bool handled;
77 dma_addr_t rspdma;
78 struct list_head lsrcv_list; /* rport->ls_rcv_list */
79} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
80
81enum nvme_fcpop_state {
82 FCPOP_STATE_UNINIT = 0,
83 FCPOP_STATE_IDLE = 1,
84 FCPOP_STATE_ACTIVE = 2,
85 FCPOP_STATE_ABORTED = 3,
86 FCPOP_STATE_COMPLETE = 4,
87};
88
89struct nvme_fc_fcp_op {
90 struct nvme_request nreq; /*
91 * nvme/host/core.c
92 * requires this to be
93 * the 1st element in the
94 * private structure
95 * associated with the
96 * request.
97 */
98 struct nvmefc_fcp_req fcp_req;
99
100 struct nvme_fc_ctrl *ctrl;
101 struct nvme_fc_queue *queue;
102 struct request *rq;
103
104 atomic_t state;
105 u32 flags;
106 u32 rqno;
107 u32 nents;
108
109 struct nvme_fc_cmd_iu cmd_iu;
110 struct nvme_fc_ersp_iu rsp_iu;
111};
112
113struct nvme_fcp_op_w_sgl {
114 struct nvme_fc_fcp_op op;
115 struct scatterlist sgl[NVME_INLINE_SG_CNT];
116 uint8_t priv[];
117};
118
119struct nvme_fc_lport {
120 struct nvme_fc_local_port localport;
121
122 struct ida endp_cnt;
123 struct list_head port_list; /* nvme_fc_port_list */
124 struct list_head endp_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_port_template *ops;
127 struct kref ref;
128 atomic_t act_rport_cnt;
129} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
130
131struct nvme_fc_rport {
132 struct nvme_fc_remote_port remoteport;
133
134 struct list_head endp_list; /* for lport->endp_list */
135 struct list_head ctrl_list;
136 struct list_head ls_req_list;
137 struct list_head ls_rcv_list;
138 struct list_head disc_list;
139 struct device *dev; /* physical device for dma */
140 struct nvme_fc_lport *lport;
141 spinlock_t lock;
142 struct kref ref;
143 atomic_t act_ctrl_cnt;
144 unsigned long dev_loss_end;
145 struct work_struct lsrcv_work;
146} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
147
148/* fc_ctrl flags values - specified as bit positions */
149#define ASSOC_ACTIVE 0
150#define ASSOC_FAILED 1
151#define FCCTRL_TERMIO 2
152
153struct nvme_fc_ctrl {
154 spinlock_t lock;
155 struct nvme_fc_queue *queues;
156 struct device *dev;
157 struct nvme_fc_lport *lport;
158 struct nvme_fc_rport *rport;
159 u32 cnum;
160
161 bool ioq_live;
162 u64 association_id;
163 struct nvmefc_ls_rcv_op *rcv_disconn;
164
165 struct list_head ctrl_list; /* rport->ctrl_list */
166
167 struct blk_mq_tag_set admin_tag_set;
168 struct blk_mq_tag_set tag_set;
169
170 struct work_struct ioerr_work;
171 struct delayed_work connect_work;
172
173 struct kref ref;
174 unsigned long flags;
175 u32 iocnt;
176 wait_queue_head_t ioabort_wait;
177
178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
179
180 struct nvme_ctrl ctrl;
181};
182
183static inline struct nvme_fc_ctrl *
184to_fc_ctrl(struct nvme_ctrl *ctrl)
185{
186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187}
188
189static inline struct nvme_fc_lport *
190localport_to_lport(struct nvme_fc_local_port *portptr)
191{
192 return container_of(portptr, struct nvme_fc_lport, localport);
193}
194
195static inline struct nvme_fc_rport *
196remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197{
198 return container_of(portptr, struct nvme_fc_rport, remoteport);
199}
200
201static inline struct nvmefc_ls_req_op *
202ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203{
204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205}
206
207static inline struct nvme_fc_fcp_op *
208fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209{
210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211}
212
213
214
215/* *************************** Globals **************************** */
216
217
218static DEFINE_SPINLOCK(nvme_fc_lock);
219
220static LIST_HEAD(nvme_fc_lport_list);
221static DEFINE_IDA(nvme_fc_local_port_cnt);
222static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224static struct workqueue_struct *nvme_fc_wq;
225
226static bool nvme_fc_waiting_to_unload;
227static DECLARE_COMPLETION(nvme_fc_unload_proceed);
228
229/*
230 * These items are short-term. They will eventually be moved into
231 * a generic FC class. See comments in module init.
232 */
233static struct device *fc_udev_device;
234
235static void nvme_fc_complete_rq(struct request *rq);
236
237/* *********************** FC-NVME Port Management ************************ */
238
239static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
240 struct nvme_fc_queue *, unsigned int);
241
242static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
243
244
245static void
246nvme_fc_free_lport(struct kref *ref)
247{
248 struct nvme_fc_lport *lport =
249 container_of(ref, struct nvme_fc_lport, ref);
250 unsigned long flags;
251
252 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
253 WARN_ON(!list_empty(&lport->endp_list));
254
255 /* remove from transport list */
256 spin_lock_irqsave(&nvme_fc_lock, flags);
257 list_del(&lport->port_list);
258 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
259 complete(&nvme_fc_unload_proceed);
260 spin_unlock_irqrestore(&nvme_fc_lock, flags);
261
262 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
263 ida_destroy(&lport->endp_cnt);
264
265 put_device(lport->dev);
266
267 kfree(lport);
268}
269
270static void
271nvme_fc_lport_put(struct nvme_fc_lport *lport)
272{
273 kref_put(&lport->ref, nvme_fc_free_lport);
274}
275
276static int
277nvme_fc_lport_get(struct nvme_fc_lport *lport)
278{
279 return kref_get_unless_zero(&lport->ref);
280}
281
282
283static struct nvme_fc_lport *
284nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
285 struct nvme_fc_port_template *ops,
286 struct device *dev)
287{
288 struct nvme_fc_lport *lport;
289 unsigned long flags;
290
291 spin_lock_irqsave(&nvme_fc_lock, flags);
292
293 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
294 if (lport->localport.node_name != pinfo->node_name ||
295 lport->localport.port_name != pinfo->port_name)
296 continue;
297
298 if (lport->dev != dev) {
299 lport = ERR_PTR(-EXDEV);
300 goto out_done;
301 }
302
303 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
304 lport = ERR_PTR(-EEXIST);
305 goto out_done;
306 }
307
308 if (!nvme_fc_lport_get(lport)) {
309 /*
310 * fails if ref cnt already 0. If so,
311 * act as if lport already deleted
312 */
313 lport = NULL;
314 goto out_done;
315 }
316
317 /* resume the lport */
318
319 lport->ops = ops;
320 lport->localport.port_role = pinfo->port_role;
321 lport->localport.port_id = pinfo->port_id;
322 lport->localport.port_state = FC_OBJSTATE_ONLINE;
323
324 spin_unlock_irqrestore(&nvme_fc_lock, flags);
325
326 return lport;
327 }
328
329 lport = NULL;
330
331out_done:
332 spin_unlock_irqrestore(&nvme_fc_lock, flags);
333
334 return lport;
335}
336
337/**
338 * nvme_fc_register_localport - transport entry point called by an
339 * LLDD to register the existence of a NVME
340 * host FC port.
341 * @pinfo: pointer to information about the port to be registered
342 * @template: LLDD entrypoints and operational parameters for the port
343 * @dev: physical hardware device node port corresponds to. Will be
344 * used for DMA mappings
345 * @portptr: pointer to a local port pointer. Upon success, the routine
346 * will allocate a nvme_fc_local_port structure and place its
347 * address in the local port pointer. Upon failure, local port
348 * pointer will be set to 0.
349 *
350 * Returns:
351 * a completion status. Must be 0 upon success; a negative errno
352 * (ex: -ENXIO) upon failure.
353 */
354int
355nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
356 struct nvme_fc_port_template *template,
357 struct device *dev,
358 struct nvme_fc_local_port **portptr)
359{
360 struct nvme_fc_lport *newrec;
361 unsigned long flags;
362 int ret, idx;
363
364 if (!template->localport_delete || !template->remoteport_delete ||
365 !template->ls_req || !template->fcp_io ||
366 !template->ls_abort || !template->fcp_abort ||
367 !template->max_hw_queues || !template->max_sgl_segments ||
368 !template->max_dif_sgl_segments || !template->dma_boundary) {
369 ret = -EINVAL;
370 goto out_reghost_failed;
371 }
372
373 /*
374 * look to see if there is already a localport that had been
375 * deregistered and in the process of waiting for all the
376 * references to fully be removed. If the references haven't
377 * expired, we can simply re-enable the localport. Remoteports
378 * and controller reconnections should resume naturally.
379 */
380 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
381
382 /* found an lport, but something about its state is bad */
383 if (IS_ERR(newrec)) {
384 ret = PTR_ERR(newrec);
385 goto out_reghost_failed;
386
387 /* found existing lport, which was resumed */
388 } else if (newrec) {
389 *portptr = &newrec->localport;
390 return 0;
391 }
392
393 /* nothing found - allocate a new localport struct */
394
395 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
396 GFP_KERNEL);
397 if (!newrec) {
398 ret = -ENOMEM;
399 goto out_reghost_failed;
400 }
401
402 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
403 if (idx < 0) {
404 ret = -ENOSPC;
405 goto out_fail_kfree;
406 }
407
408 if (!get_device(dev) && dev) {
409 ret = -ENODEV;
410 goto out_ida_put;
411 }
412
413 INIT_LIST_HEAD(&newrec->port_list);
414 INIT_LIST_HEAD(&newrec->endp_list);
415 kref_init(&newrec->ref);
416 atomic_set(&newrec->act_rport_cnt, 0);
417 newrec->ops = template;
418 newrec->dev = dev;
419 ida_init(&newrec->endp_cnt);
420 if (template->local_priv_sz)
421 newrec->localport.private = &newrec[1];
422 else
423 newrec->localport.private = NULL;
424 newrec->localport.node_name = pinfo->node_name;
425 newrec->localport.port_name = pinfo->port_name;
426 newrec->localport.port_role = pinfo->port_role;
427 newrec->localport.port_id = pinfo->port_id;
428 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
429 newrec->localport.port_num = idx;
430
431 spin_lock_irqsave(&nvme_fc_lock, flags);
432 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
433 spin_unlock_irqrestore(&nvme_fc_lock, flags);
434
435 if (dev)
436 dma_set_seg_boundary(dev, template->dma_boundary);
437
438 *portptr = &newrec->localport;
439 return 0;
440
441out_ida_put:
442 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
443out_fail_kfree:
444 kfree(newrec);
445out_reghost_failed:
446 *portptr = NULL;
447
448 return ret;
449}
450EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
451
452/**
453 * nvme_fc_unregister_localport - transport entry point called by an
454 * LLDD to deregister/remove a previously
455 * registered a NVME host FC port.
456 * @portptr: pointer to the (registered) local port that is to be deregistered.
457 *
458 * Returns:
459 * a completion status. Must be 0 upon success; a negative errno
460 * (ex: -ENXIO) upon failure.
461 */
462int
463nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
464{
465 struct nvme_fc_lport *lport = localport_to_lport(portptr);
466 unsigned long flags;
467
468 if (!portptr)
469 return -EINVAL;
470
471 spin_lock_irqsave(&nvme_fc_lock, flags);
472
473 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
474 spin_unlock_irqrestore(&nvme_fc_lock, flags);
475 return -EINVAL;
476 }
477 portptr->port_state = FC_OBJSTATE_DELETED;
478
479 spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481 if (atomic_read(&lport->act_rport_cnt) == 0)
482 lport->ops->localport_delete(&lport->localport);
483
484 nvme_fc_lport_put(lport);
485
486 return 0;
487}
488EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
489
490/*
491 * TRADDR strings, per FC-NVME are fixed format:
492 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
493 * udev event will only differ by prefix of what field is
494 * being specified:
495 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
496 * 19 + 43 + null_fudge = 64 characters
497 */
498#define FCNVME_TRADDR_LENGTH 64
499
500static void
501nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
502 struct nvme_fc_rport *rport)
503{
504 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
505 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
506 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
507
508 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
509 return;
510
511 snprintf(hostaddr, sizeof(hostaddr),
512 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
513 lport->localport.node_name, lport->localport.port_name);
514 snprintf(tgtaddr, sizeof(tgtaddr),
515 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
516 rport->remoteport.node_name, rport->remoteport.port_name);
517 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
518}
519
520static void
521nvme_fc_free_rport(struct kref *ref)
522{
523 struct nvme_fc_rport *rport =
524 container_of(ref, struct nvme_fc_rport, ref);
525 struct nvme_fc_lport *lport =
526 localport_to_lport(rport->remoteport.localport);
527 unsigned long flags;
528
529 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
530 WARN_ON(!list_empty(&rport->ctrl_list));
531
532 /* remove from lport list */
533 spin_lock_irqsave(&nvme_fc_lock, flags);
534 list_del(&rport->endp_list);
535 spin_unlock_irqrestore(&nvme_fc_lock, flags);
536
537 WARN_ON(!list_empty(&rport->disc_list));
538 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
539
540 kfree(rport);
541
542 nvme_fc_lport_put(lport);
543}
544
545static void
546nvme_fc_rport_put(struct nvme_fc_rport *rport)
547{
548 kref_put(&rport->ref, nvme_fc_free_rport);
549}
550
551static int
552nvme_fc_rport_get(struct nvme_fc_rport *rport)
553{
554 return kref_get_unless_zero(&rport->ref);
555}
556
557static void
558nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
559{
560 switch (ctrl->ctrl.state) {
561 case NVME_CTRL_NEW:
562 case NVME_CTRL_CONNECTING:
563 /*
564 * As all reconnects were suppressed, schedule a
565 * connect.
566 */
567 dev_info(ctrl->ctrl.device,
568 "NVME-FC{%d}: connectivity re-established. "
569 "Attempting reconnect\n", ctrl->cnum);
570
571 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
572 break;
573
574 case NVME_CTRL_RESETTING:
575 /*
576 * Controller is already in the process of terminating the
577 * association. No need to do anything further. The reconnect
578 * step will naturally occur after the reset completes.
579 */
580 break;
581
582 default:
583 /* no action to take - let it delete */
584 break;
585 }
586}
587
588static struct nvme_fc_rport *
589nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
590 struct nvme_fc_port_info *pinfo)
591{
592 struct nvme_fc_rport *rport;
593 struct nvme_fc_ctrl *ctrl;
594 unsigned long flags;
595
596 spin_lock_irqsave(&nvme_fc_lock, flags);
597
598 list_for_each_entry(rport, &lport->endp_list, endp_list) {
599 if (rport->remoteport.node_name != pinfo->node_name ||
600 rport->remoteport.port_name != pinfo->port_name)
601 continue;
602
603 if (!nvme_fc_rport_get(rport)) {
604 rport = ERR_PTR(-ENOLCK);
605 goto out_done;
606 }
607
608 spin_unlock_irqrestore(&nvme_fc_lock, flags);
609
610 spin_lock_irqsave(&rport->lock, flags);
611
612 /* has it been unregistered */
613 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
614 /* means lldd called us twice */
615 spin_unlock_irqrestore(&rport->lock, flags);
616 nvme_fc_rport_put(rport);
617 return ERR_PTR(-ESTALE);
618 }
619
620 rport->remoteport.port_role = pinfo->port_role;
621 rport->remoteport.port_id = pinfo->port_id;
622 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
623 rport->dev_loss_end = 0;
624
625 /*
626 * kick off a reconnect attempt on all associations to the
627 * remote port. A successful reconnects will resume i/o.
628 */
629 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
630 nvme_fc_resume_controller(ctrl);
631
632 spin_unlock_irqrestore(&rport->lock, flags);
633
634 return rport;
635 }
636
637 rport = NULL;
638
639out_done:
640 spin_unlock_irqrestore(&nvme_fc_lock, flags);
641
642 return rport;
643}
644
645static inline void
646__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
647 struct nvme_fc_port_info *pinfo)
648{
649 if (pinfo->dev_loss_tmo)
650 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
651 else
652 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
653}
654
655/**
656 * nvme_fc_register_remoteport - transport entry point called by an
657 * LLDD to register the existence of a NVME
658 * subsystem FC port on its fabric.
659 * @localport: pointer to the (registered) local port that the remote
660 * subsystem port is connected to.
661 * @pinfo: pointer to information about the port to be registered
662 * @portptr: pointer to a remote port pointer. Upon success, the routine
663 * will allocate a nvme_fc_remote_port structure and place its
664 * address in the remote port pointer. Upon failure, remote port
665 * pointer will be set to 0.
666 *
667 * Returns:
668 * a completion status. Must be 0 upon success; a negative errno
669 * (ex: -ENXIO) upon failure.
670 */
671int
672nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
673 struct nvme_fc_port_info *pinfo,
674 struct nvme_fc_remote_port **portptr)
675{
676 struct nvme_fc_lport *lport = localport_to_lport(localport);
677 struct nvme_fc_rport *newrec;
678 unsigned long flags;
679 int ret, idx;
680
681 if (!nvme_fc_lport_get(lport)) {
682 ret = -ESHUTDOWN;
683 goto out_reghost_failed;
684 }
685
686 /*
687 * look to see if there is already a remoteport that is waiting
688 * for a reconnect (within dev_loss_tmo) with the same WWN's.
689 * If so, transition to it and reconnect.
690 */
691 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
692
693 /* found an rport, but something about its state is bad */
694 if (IS_ERR(newrec)) {
695 ret = PTR_ERR(newrec);
696 goto out_lport_put;
697
698 /* found existing rport, which was resumed */
699 } else if (newrec) {
700 nvme_fc_lport_put(lport);
701 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
702 nvme_fc_signal_discovery_scan(lport, newrec);
703 *portptr = &newrec->remoteport;
704 return 0;
705 }
706
707 /* nothing found - allocate a new remoteport struct */
708
709 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
710 GFP_KERNEL);
711 if (!newrec) {
712 ret = -ENOMEM;
713 goto out_lport_put;
714 }
715
716 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
717 if (idx < 0) {
718 ret = -ENOSPC;
719 goto out_kfree_rport;
720 }
721
722 INIT_LIST_HEAD(&newrec->endp_list);
723 INIT_LIST_HEAD(&newrec->ctrl_list);
724 INIT_LIST_HEAD(&newrec->ls_req_list);
725 INIT_LIST_HEAD(&newrec->disc_list);
726 kref_init(&newrec->ref);
727 atomic_set(&newrec->act_ctrl_cnt, 0);
728 spin_lock_init(&newrec->lock);
729 newrec->remoteport.localport = &lport->localport;
730 INIT_LIST_HEAD(&newrec->ls_rcv_list);
731 newrec->dev = lport->dev;
732 newrec->lport = lport;
733 if (lport->ops->remote_priv_sz)
734 newrec->remoteport.private = &newrec[1];
735 else
736 newrec->remoteport.private = NULL;
737 newrec->remoteport.port_role = pinfo->port_role;
738 newrec->remoteport.node_name = pinfo->node_name;
739 newrec->remoteport.port_name = pinfo->port_name;
740 newrec->remoteport.port_id = pinfo->port_id;
741 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
742 newrec->remoteport.port_num = idx;
743 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
744 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
745
746 spin_lock_irqsave(&nvme_fc_lock, flags);
747 list_add_tail(&newrec->endp_list, &lport->endp_list);
748 spin_unlock_irqrestore(&nvme_fc_lock, flags);
749
750 nvme_fc_signal_discovery_scan(lport, newrec);
751
752 *portptr = &newrec->remoteport;
753 return 0;
754
755out_kfree_rport:
756 kfree(newrec);
757out_lport_put:
758 nvme_fc_lport_put(lport);
759out_reghost_failed:
760 *portptr = NULL;
761 return ret;
762}
763EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
764
765static int
766nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
767{
768 struct nvmefc_ls_req_op *lsop;
769 unsigned long flags;
770
771restart:
772 spin_lock_irqsave(&rport->lock, flags);
773
774 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
775 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
776 lsop->flags |= FCOP_FLAGS_TERMIO;
777 spin_unlock_irqrestore(&rport->lock, flags);
778 rport->lport->ops->ls_abort(&rport->lport->localport,
779 &rport->remoteport,
780 &lsop->ls_req);
781 goto restart;
782 }
783 }
784 spin_unlock_irqrestore(&rport->lock, flags);
785
786 return 0;
787}
788
789static void
790nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
791{
792 dev_info(ctrl->ctrl.device,
793 "NVME-FC{%d}: controller connectivity lost. Awaiting "
794 "Reconnect", ctrl->cnum);
795
796 switch (ctrl->ctrl.state) {
797 case NVME_CTRL_NEW:
798 case NVME_CTRL_LIVE:
799 /*
800 * Schedule a controller reset. The reset will terminate the
801 * association and schedule the reconnect timer. Reconnects
802 * will be attempted until either the ctlr_loss_tmo
803 * (max_retries * connect_delay) expires or the remoteport's
804 * dev_loss_tmo expires.
805 */
806 if (nvme_reset_ctrl(&ctrl->ctrl)) {
807 dev_warn(ctrl->ctrl.device,
808 "NVME-FC{%d}: Couldn't schedule reset.\n",
809 ctrl->cnum);
810 nvme_delete_ctrl(&ctrl->ctrl);
811 }
812 break;
813
814 case NVME_CTRL_CONNECTING:
815 /*
816 * The association has already been terminated and the
817 * controller is attempting reconnects. No need to do anything
818 * futher. Reconnects will be attempted until either the
819 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
820 * remoteport's dev_loss_tmo expires.
821 */
822 break;
823
824 case NVME_CTRL_RESETTING:
825 /*
826 * Controller is already in the process of terminating the
827 * association. No need to do anything further. The reconnect
828 * step will kick in naturally after the association is
829 * terminated.
830 */
831 break;
832
833 case NVME_CTRL_DELETING:
834 case NVME_CTRL_DELETING_NOIO:
835 default:
836 /* no action to take - let it delete */
837 break;
838 }
839}
840
841/**
842 * nvme_fc_unregister_remoteport - transport entry point called by an
843 * LLDD to deregister/remove a previously
844 * registered a NVME subsystem FC port.
845 * @portptr: pointer to the (registered) remote port that is to be
846 * deregistered.
847 *
848 * Returns:
849 * a completion status. Must be 0 upon success; a negative errno
850 * (ex: -ENXIO) upon failure.
851 */
852int
853nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
854{
855 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
856 struct nvme_fc_ctrl *ctrl;
857 unsigned long flags;
858
859 if (!portptr)
860 return -EINVAL;
861
862 spin_lock_irqsave(&rport->lock, flags);
863
864 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
865 spin_unlock_irqrestore(&rport->lock, flags);
866 return -EINVAL;
867 }
868 portptr->port_state = FC_OBJSTATE_DELETED;
869
870 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
871
872 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
873 /* if dev_loss_tmo==0, dev loss is immediate */
874 if (!portptr->dev_loss_tmo) {
875 dev_warn(ctrl->ctrl.device,
876 "NVME-FC{%d}: controller connectivity lost.\n",
877 ctrl->cnum);
878 nvme_delete_ctrl(&ctrl->ctrl);
879 } else
880 nvme_fc_ctrl_connectivity_loss(ctrl);
881 }
882
883 spin_unlock_irqrestore(&rport->lock, flags);
884
885 nvme_fc_abort_lsops(rport);
886
887 if (atomic_read(&rport->act_ctrl_cnt) == 0)
888 rport->lport->ops->remoteport_delete(portptr);
889
890 /*
891 * release the reference, which will allow, if all controllers
892 * go away, which should only occur after dev_loss_tmo occurs,
893 * for the rport to be torn down.
894 */
895 nvme_fc_rport_put(rport);
896
897 return 0;
898}
899EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
900
901/**
902 * nvme_fc_rescan_remoteport - transport entry point called by an
903 * LLDD to request a nvme device rescan.
904 * @remoteport: pointer to the (registered) remote port that is to be
905 * rescanned.
906 *
907 * Returns: N/A
908 */
909void
910nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
911{
912 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
913
914 nvme_fc_signal_discovery_scan(rport->lport, rport);
915}
916EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
917
918int
919nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
920 u32 dev_loss_tmo)
921{
922 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
923 unsigned long flags;
924
925 spin_lock_irqsave(&rport->lock, flags);
926
927 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
928 spin_unlock_irqrestore(&rport->lock, flags);
929 return -EINVAL;
930 }
931
932 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
933 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
934
935 spin_unlock_irqrestore(&rport->lock, flags);
936
937 return 0;
938}
939EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
940
941
942/* *********************** FC-NVME DMA Handling **************************** */
943
944/*
945 * The fcloop device passes in a NULL device pointer. Real LLD's will
946 * pass in a valid device pointer. If NULL is passed to the dma mapping
947 * routines, depending on the platform, it may or may not succeed, and
948 * may crash.
949 *
950 * As such:
951 * Wrapper all the dma routines and check the dev pointer.
952 *
953 * If simple mappings (return just a dma address, we'll noop them,
954 * returning a dma address of 0.
955 *
956 * On more complex mappings (dma_map_sg), a pseudo routine fills
957 * in the scatter list, setting all dma addresses to 0.
958 */
959
960static inline dma_addr_t
961fc_dma_map_single(struct device *dev, void *ptr, size_t size,
962 enum dma_data_direction dir)
963{
964 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
965}
966
967static inline int
968fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
969{
970 return dev ? dma_mapping_error(dev, dma_addr) : 0;
971}
972
973static inline void
974fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
975 enum dma_data_direction dir)
976{
977 if (dev)
978 dma_unmap_single(dev, addr, size, dir);
979}
980
981static inline void
982fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
983 enum dma_data_direction dir)
984{
985 if (dev)
986 dma_sync_single_for_cpu(dev, addr, size, dir);
987}
988
989static inline void
990fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
991 enum dma_data_direction dir)
992{
993 if (dev)
994 dma_sync_single_for_device(dev, addr, size, dir);
995}
996
997/* pseudo dma_map_sg call */
998static int
999fc_map_sg(struct scatterlist *sg, int nents)
1000{
1001 struct scatterlist *s;
1002 int i;
1003
1004 WARN_ON(nents == 0 || sg[0].length == 0);
1005
1006 for_each_sg(sg, s, nents, i) {
1007 s->dma_address = 0L;
1008#ifdef CONFIG_NEED_SG_DMA_LENGTH
1009 s->dma_length = s->length;
1010#endif
1011 }
1012 return nents;
1013}
1014
1015static inline int
1016fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 enum dma_data_direction dir)
1018{
1019 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1020}
1021
1022static inline void
1023fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1024 enum dma_data_direction dir)
1025{
1026 if (dev)
1027 dma_unmap_sg(dev, sg, nents, dir);
1028}
1029
1030/* *********************** FC-NVME LS Handling **************************** */
1031
1032static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1033static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1034
1035static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1036
1037static void
1038__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1039{
1040 struct nvme_fc_rport *rport = lsop->rport;
1041 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&rport->lock, flags);
1045
1046 if (!lsop->req_queued) {
1047 spin_unlock_irqrestore(&rport->lock, flags);
1048 return;
1049 }
1050
1051 list_del(&lsop->lsreq_list);
1052
1053 lsop->req_queued = false;
1054
1055 spin_unlock_irqrestore(&rport->lock, flags);
1056
1057 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1058 (lsreq->rqstlen + lsreq->rsplen),
1059 DMA_BIDIRECTIONAL);
1060
1061 nvme_fc_rport_put(rport);
1062}
1063
1064static int
1065__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1066 struct nvmefc_ls_req_op *lsop,
1067 void (*done)(struct nvmefc_ls_req *req, int status))
1068{
1069 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1070 unsigned long flags;
1071 int ret = 0;
1072
1073 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1074 return -ECONNREFUSED;
1075
1076 if (!nvme_fc_rport_get(rport))
1077 return -ESHUTDOWN;
1078
1079 lsreq->done = done;
1080 lsop->rport = rport;
1081 lsop->req_queued = false;
1082 INIT_LIST_HEAD(&lsop->lsreq_list);
1083 init_completion(&lsop->ls_done);
1084
1085 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1086 lsreq->rqstlen + lsreq->rsplen,
1087 DMA_BIDIRECTIONAL);
1088 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1089 ret = -EFAULT;
1090 goto out_putrport;
1091 }
1092 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1093
1094 spin_lock_irqsave(&rport->lock, flags);
1095
1096 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1097
1098 lsop->req_queued = true;
1099
1100 spin_unlock_irqrestore(&rport->lock, flags);
1101
1102 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1103 &rport->remoteport, lsreq);
1104 if (ret)
1105 goto out_unlink;
1106
1107 return 0;
1108
1109out_unlink:
1110 lsop->ls_error = ret;
1111 spin_lock_irqsave(&rport->lock, flags);
1112 lsop->req_queued = false;
1113 list_del(&lsop->lsreq_list);
1114 spin_unlock_irqrestore(&rport->lock, flags);
1115 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1116 (lsreq->rqstlen + lsreq->rsplen),
1117 DMA_BIDIRECTIONAL);
1118out_putrport:
1119 nvme_fc_rport_put(rport);
1120
1121 return ret;
1122}
1123
1124static void
1125nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1126{
1127 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1128
1129 lsop->ls_error = status;
1130 complete(&lsop->ls_done);
1131}
1132
1133static int
1134nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1135{
1136 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1137 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1138 int ret;
1139
1140 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1141
1142 if (!ret) {
1143 /*
1144 * No timeout/not interruptible as we need the struct
1145 * to exist until the lldd calls us back. Thus mandate
1146 * wait until driver calls back. lldd responsible for
1147 * the timeout action
1148 */
1149 wait_for_completion(&lsop->ls_done);
1150
1151 __nvme_fc_finish_ls_req(lsop);
1152
1153 ret = lsop->ls_error;
1154 }
1155
1156 if (ret)
1157 return ret;
1158
1159 /* ACC or RJT payload ? */
1160 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1161 return -ENXIO;
1162
1163 return 0;
1164}
1165
1166static int
1167nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1168 struct nvmefc_ls_req_op *lsop,
1169 void (*done)(struct nvmefc_ls_req *req, int status))
1170{
1171 /* don't wait for completion */
1172
1173 return __nvme_fc_send_ls_req(rport, lsop, done);
1174}
1175
1176static int
1177nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179{
1180 struct nvmefc_ls_req_op *lsop;
1181 struct nvmefc_ls_req *lsreq;
1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 unsigned long flags;
1185 int ret, fcret = 0;
1186
1187 lsop = kzalloc((sizeof(*lsop) +
1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1189 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1190 if (!lsop) {
1191 dev_info(ctrl->ctrl.device,
1192 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1193 ctrl->cnum);
1194 ret = -ENOMEM;
1195 goto out_no_memory;
1196 }
1197
1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200 lsreq = &lsop->ls_req;
1201 if (ctrl->lport->ops->lsrqst_priv_sz)
1202 lsreq->private = &assoc_acc[1];
1203 else
1204 lsreq->private = NULL;
1205
1206 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1207 assoc_rqst->desc_list_len =
1208 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209
1210 assoc_rqst->assoc_cmd.desc_tag =
1211 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1212 assoc_rqst->assoc_cmd.desc_len =
1213 fcnvme_lsdesc_len(
1214 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1215
1216 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1217 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1218 /* Linux supports only Dynamic controllers */
1219 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1220 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1221 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1222 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1223 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1224 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1225
1226 lsop->queue = queue;
1227 lsreq->rqstaddr = assoc_rqst;
1228 lsreq->rqstlen = sizeof(*assoc_rqst);
1229 lsreq->rspaddr = assoc_acc;
1230 lsreq->rsplen = sizeof(*assoc_acc);
1231 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1232
1233 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1234 if (ret)
1235 goto out_free_buffer;
1236
1237 /* process connect LS completion */
1238
1239 /* validate the ACC response */
1240 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1241 fcret = VERR_LSACC;
1242 else if (assoc_acc->hdr.desc_list_len !=
1243 fcnvme_lsdesc_len(
1244 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1245 fcret = VERR_CR_ASSOC_ACC_LEN;
1246 else if (assoc_acc->hdr.rqst.desc_tag !=
1247 cpu_to_be32(FCNVME_LSDESC_RQST))
1248 fcret = VERR_LSDESC_RQST;
1249 else if (assoc_acc->hdr.rqst.desc_len !=
1250 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1251 fcret = VERR_LSDESC_RQST_LEN;
1252 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1253 fcret = VERR_CR_ASSOC;
1254 else if (assoc_acc->associd.desc_tag !=
1255 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256 fcret = VERR_ASSOC_ID;
1257 else if (assoc_acc->associd.desc_len !=
1258 fcnvme_lsdesc_len(
1259 sizeof(struct fcnvme_lsdesc_assoc_id)))
1260 fcret = VERR_ASSOC_ID_LEN;
1261 else if (assoc_acc->connectid.desc_tag !=
1262 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1263 fcret = VERR_CONN_ID;
1264 else if (assoc_acc->connectid.desc_len !=
1265 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1266 fcret = VERR_CONN_ID_LEN;
1267
1268 if (fcret) {
1269 ret = -EBADF;
1270 dev_err(ctrl->dev,
1271 "q %d Create Association LS failed: %s\n",
1272 queue->qnum, validation_errors[fcret]);
1273 } else {
1274 spin_lock_irqsave(&ctrl->lock, flags);
1275 ctrl->association_id =
1276 be64_to_cpu(assoc_acc->associd.association_id);
1277 queue->connection_id =
1278 be64_to_cpu(assoc_acc->connectid.connection_id);
1279 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280 spin_unlock_irqrestore(&ctrl->lock, flags);
1281 }
1282
1283out_free_buffer:
1284 kfree(lsop);
1285out_no_memory:
1286 if (ret)
1287 dev_err(ctrl->dev,
1288 "queue %d connect admin queue failed (%d).\n",
1289 queue->qnum, ret);
1290 return ret;
1291}
1292
1293static int
1294nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1295 u16 qsize, u16 ersp_ratio)
1296{
1297 struct nvmefc_ls_req_op *lsop;
1298 struct nvmefc_ls_req *lsreq;
1299 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1300 struct fcnvme_ls_cr_conn_acc *conn_acc;
1301 int ret, fcret = 0;
1302
1303 lsop = kzalloc((sizeof(*lsop) +
1304 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1305 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1306 if (!lsop) {
1307 dev_info(ctrl->ctrl.device,
1308 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1309 ctrl->cnum);
1310 ret = -ENOMEM;
1311 goto out_no_memory;
1312 }
1313
1314 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1315 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1316 lsreq = &lsop->ls_req;
1317 if (ctrl->lport->ops->lsrqst_priv_sz)
1318 lsreq->private = (void *)&conn_acc[1];
1319 else
1320 lsreq->private = NULL;
1321
1322 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1323 conn_rqst->desc_list_len = cpu_to_be32(
1324 sizeof(struct fcnvme_lsdesc_assoc_id) +
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326
1327 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1328 conn_rqst->associd.desc_len =
1329 fcnvme_lsdesc_len(
1330 sizeof(struct fcnvme_lsdesc_assoc_id));
1331 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1332 conn_rqst->connect_cmd.desc_tag =
1333 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1334 conn_rqst->connect_cmd.desc_len =
1335 fcnvme_lsdesc_len(
1336 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1337 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1338 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1339 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1340
1341 lsop->queue = queue;
1342 lsreq->rqstaddr = conn_rqst;
1343 lsreq->rqstlen = sizeof(*conn_rqst);
1344 lsreq->rspaddr = conn_acc;
1345 lsreq->rsplen = sizeof(*conn_acc);
1346 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1347
1348 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1349 if (ret)
1350 goto out_free_buffer;
1351
1352 /* process connect LS completion */
1353
1354 /* validate the ACC response */
1355 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1356 fcret = VERR_LSACC;
1357 else if (conn_acc->hdr.desc_list_len !=
1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1359 fcret = VERR_CR_CONN_ACC_LEN;
1360 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1361 fcret = VERR_LSDESC_RQST;
1362 else if (conn_acc->hdr.rqst.desc_len !=
1363 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1364 fcret = VERR_LSDESC_RQST_LEN;
1365 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1366 fcret = VERR_CR_CONN;
1367 else if (conn_acc->connectid.desc_tag !=
1368 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1369 fcret = VERR_CONN_ID;
1370 else if (conn_acc->connectid.desc_len !=
1371 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1372 fcret = VERR_CONN_ID_LEN;
1373
1374 if (fcret) {
1375 ret = -EBADF;
1376 dev_err(ctrl->dev,
1377 "q %d Create I/O Connection LS failed: %s\n",
1378 queue->qnum, validation_errors[fcret]);
1379 } else {
1380 queue->connection_id =
1381 be64_to_cpu(conn_acc->connectid.connection_id);
1382 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1383 }
1384
1385out_free_buffer:
1386 kfree(lsop);
1387out_no_memory:
1388 if (ret)
1389 dev_err(ctrl->dev,
1390 "queue %d connect I/O queue failed (%d).\n",
1391 queue->qnum, ret);
1392 return ret;
1393}
1394
1395static void
1396nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1397{
1398 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1399
1400 __nvme_fc_finish_ls_req(lsop);
1401
1402 /* fc-nvme initiator doesn't care about success or failure of cmd */
1403
1404 kfree(lsop);
1405}
1406
1407/*
1408 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1409 * the FC-NVME Association. Terminating the association also
1410 * terminates the FC-NVME connections (per queue, both admin and io
1411 * queues) that are part of the association. E.g. things are torn
1412 * down, and the related FC-NVME Association ID and Connection IDs
1413 * become invalid.
1414 *
1415 * The behavior of the fc-nvme initiator is such that it's
1416 * understanding of the association and connections will implicitly
1417 * be torn down. The action is implicit as it may be due to a loss of
1418 * connectivity with the fc-nvme target, so you may never get a
1419 * response even if you tried. As such, the action of this routine
1420 * is to asynchronously send the LS, ignore any results of the LS, and
1421 * continue on with terminating the association. If the fc-nvme target
1422 * is present and receives the LS, it too can tear down.
1423 */
1424static void
1425nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1426{
1427 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1428 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1429 struct nvmefc_ls_req_op *lsop;
1430 struct nvmefc_ls_req *lsreq;
1431 int ret;
1432
1433 lsop = kzalloc((sizeof(*lsop) +
1434 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1435 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1436 if (!lsop) {
1437 dev_info(ctrl->ctrl.device,
1438 "NVME-FC{%d}: send Disconnect Association "
1439 "failed: ENOMEM\n",
1440 ctrl->cnum);
1441 return;
1442 }
1443
1444 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1445 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1446 lsreq = &lsop->ls_req;
1447 if (ctrl->lport->ops->lsrqst_priv_sz)
1448 lsreq->private = (void *)&discon_acc[1];
1449 else
1450 lsreq->private = NULL;
1451
1452 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1453 ctrl->association_id);
1454
1455 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1456 nvme_fc_disconnect_assoc_done);
1457 if (ret)
1458 kfree(lsop);
1459}
1460
1461static void
1462nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1463{
1464 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1465 struct nvme_fc_rport *rport = lsop->rport;
1466 struct nvme_fc_lport *lport = rport->lport;
1467 unsigned long flags;
1468
1469 spin_lock_irqsave(&rport->lock, flags);
1470 list_del(&lsop->lsrcv_list);
1471 spin_unlock_irqrestore(&rport->lock, flags);
1472
1473 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1474 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1475 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1476 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1477
1478 kfree(lsop);
1479
1480 nvme_fc_rport_put(rport);
1481}
1482
1483static void
1484nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1485{
1486 struct nvme_fc_rport *rport = lsop->rport;
1487 struct nvme_fc_lport *lport = rport->lport;
1488 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1489 int ret;
1490
1491 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1492 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1493
1494 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1495 lsop->lsrsp);
1496 if (ret) {
1497 dev_warn(lport->dev,
1498 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1499 w0->ls_cmd, ret);
1500 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1501 return;
1502 }
1503}
1504
1505static struct nvme_fc_ctrl *
1506nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1507 struct nvmefc_ls_rcv_op *lsop)
1508{
1509 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1510 &lsop->rqstbuf->rq_dis_assoc;
1511 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1512 struct nvmefc_ls_rcv_op *oldls = NULL;
1513 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&rport->lock, flags);
1517
1518 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1519 if (!nvme_fc_ctrl_get(ctrl))
1520 continue;
1521 spin_lock(&ctrl->lock);
1522 if (association_id == ctrl->association_id) {
1523 oldls = ctrl->rcv_disconn;
1524 ctrl->rcv_disconn = lsop;
1525 ret = ctrl;
1526 }
1527 spin_unlock(&ctrl->lock);
1528 if (ret)
1529 /* leave the ctrl get reference */
1530 break;
1531 nvme_fc_ctrl_put(ctrl);
1532 }
1533
1534 spin_unlock_irqrestore(&rport->lock, flags);
1535
1536 /* transmit a response for anything that was pending */
1537 if (oldls) {
1538 dev_info(rport->lport->dev,
1539 "NVME-FC{%d}: Multiple Disconnect Association "
1540 "LS's received\n", ctrl->cnum);
1541 /* overwrite good response with bogus failure */
1542 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1543 sizeof(*oldls->rspbuf),
1544 rqst->w0.ls_cmd,
1545 FCNVME_RJT_RC_UNAB,
1546 FCNVME_RJT_EXP_NONE, 0);
1547 nvme_fc_xmt_ls_rsp(oldls);
1548 }
1549
1550 return ret;
1551}
1552
1553/*
1554 * returns true to mean LS handled and ls_rsp can be sent
1555 * returns false to defer ls_rsp xmt (will be done as part of
1556 * association termination)
1557 */
1558static bool
1559nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1560{
1561 struct nvme_fc_rport *rport = lsop->rport;
1562 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1563 &lsop->rqstbuf->rq_dis_assoc;
1564 struct fcnvme_ls_disconnect_assoc_acc *acc =
1565 &lsop->rspbuf->rsp_dis_assoc;
1566 struct nvme_fc_ctrl *ctrl = NULL;
1567 int ret = 0;
1568
1569 memset(acc, 0, sizeof(*acc));
1570
1571 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1572 if (!ret) {
1573 /* match an active association */
1574 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1575 if (!ctrl)
1576 ret = VERR_NO_ASSOC;
1577 }
1578
1579 if (ret) {
1580 dev_info(rport->lport->dev,
1581 "Disconnect LS failed: %s\n",
1582 validation_errors[ret]);
1583 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1584 sizeof(*acc), rqst->w0.ls_cmd,
1585 (ret == VERR_NO_ASSOC) ?
1586 FCNVME_RJT_RC_INV_ASSOC :
1587 FCNVME_RJT_RC_LOGIC,
1588 FCNVME_RJT_EXP_NONE, 0);
1589 return true;
1590 }
1591
1592 /* format an ACCept response */
1593
1594 lsop->lsrsp->rsplen = sizeof(*acc);
1595
1596 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1597 fcnvme_lsdesc_len(
1598 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1599 FCNVME_LS_DISCONNECT_ASSOC);
1600
1601 /*
1602 * the transmit of the response will occur after the exchanges
1603 * for the association have been ABTS'd by
1604 * nvme_fc_delete_association().
1605 */
1606
1607 /* fail the association */
1608 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1609
1610 /* release the reference taken by nvme_fc_match_disconn_ls() */
1611 nvme_fc_ctrl_put(ctrl);
1612
1613 return false;
1614}
1615
1616/*
1617 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1618 * returns true if a response should be sent afterward, false if rsp will
1619 * be sent asynchronously.
1620 */
1621static bool
1622nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1623{
1624 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1625 bool ret = true;
1626
1627 lsop->lsrsp->nvme_fc_private = lsop;
1628 lsop->lsrsp->rspbuf = lsop->rspbuf;
1629 lsop->lsrsp->rspdma = lsop->rspdma;
1630 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1631 /* Be preventative. handlers will later set to valid length */
1632 lsop->lsrsp->rsplen = 0;
1633
1634 /*
1635 * handlers:
1636 * parse request input, execute the request, and format the
1637 * LS response
1638 */
1639 switch (w0->ls_cmd) {
1640 case FCNVME_LS_DISCONNECT_ASSOC:
1641 ret = nvme_fc_ls_disconnect_assoc(lsop);
1642 break;
1643 case FCNVME_LS_DISCONNECT_CONN:
1644 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1645 sizeof(*lsop->rspbuf), w0->ls_cmd,
1646 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1647 break;
1648 case FCNVME_LS_CREATE_ASSOCIATION:
1649 case FCNVME_LS_CREATE_CONNECTION:
1650 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1651 sizeof(*lsop->rspbuf), w0->ls_cmd,
1652 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1653 break;
1654 default:
1655 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1656 sizeof(*lsop->rspbuf), w0->ls_cmd,
1657 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1658 break;
1659 }
1660
1661 return(ret);
1662}
1663
1664static void
1665nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1666{
1667 struct nvme_fc_rport *rport =
1668 container_of(work, struct nvme_fc_rport, lsrcv_work);
1669 struct fcnvme_ls_rqst_w0 *w0;
1670 struct nvmefc_ls_rcv_op *lsop;
1671 unsigned long flags;
1672 bool sendrsp;
1673
1674restart:
1675 sendrsp = true;
1676 spin_lock_irqsave(&rport->lock, flags);
1677 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1678 if (lsop->handled)
1679 continue;
1680
1681 lsop->handled = true;
1682 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1683 spin_unlock_irqrestore(&rport->lock, flags);
1684 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1685 } else {
1686 spin_unlock_irqrestore(&rport->lock, flags);
1687 w0 = &lsop->rqstbuf->w0;
1688 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1689 lsop->rspbuf,
1690 sizeof(*lsop->rspbuf),
1691 w0->ls_cmd,
1692 FCNVME_RJT_RC_UNAB,
1693 FCNVME_RJT_EXP_NONE, 0);
1694 }
1695 if (sendrsp)
1696 nvme_fc_xmt_ls_rsp(lsop);
1697 goto restart;
1698 }
1699 spin_unlock_irqrestore(&rport->lock, flags);
1700}
1701
1702/**
1703 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1704 * upon the reception of a NVME LS request.
1705 *
1706 * The nvme-fc layer will copy payload to an internal structure for
1707 * processing. As such, upon completion of the routine, the LLDD may
1708 * immediately free/reuse the LS request buffer passed in the call.
1709 *
1710 * If this routine returns error, the LLDD should abort the exchange.
1711 *
1712 * @portptr: pointer to the (registered) remote port that the LS
1713 * was received from. The remoteport is associated with
1714 * a specific localport.
1715 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1716 * used to reference the exchange corresponding to the LS
1717 * when issuing an ls response.
1718 * @lsreqbuf: pointer to the buffer containing the LS Request
1719 * @lsreqbuf_len: length, in bytes, of the received LS request
1720 */
1721int
1722nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1723 struct nvmefc_ls_rsp *lsrsp,
1724 void *lsreqbuf, u32 lsreqbuf_len)
1725{
1726 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1727 struct nvme_fc_lport *lport = rport->lport;
1728 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1729 struct nvmefc_ls_rcv_op *lsop;
1730 unsigned long flags;
1731 int ret;
1732
1733 nvme_fc_rport_get(rport);
1734
1735 /* validate there's a routine to transmit a response */
1736 if (!lport->ops->xmt_ls_rsp) {
1737 dev_info(lport->dev,
1738 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1739 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1740 nvmefc_ls_names[w0->ls_cmd] : "");
1741 ret = -EINVAL;
1742 goto out_put;
1743 }
1744
1745 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1746 dev_info(lport->dev,
1747 "RCV %s LS failed: payload too large\n",
1748 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1749 nvmefc_ls_names[w0->ls_cmd] : "");
1750 ret = -E2BIG;
1751 goto out_put;
1752 }
1753
1754 lsop = kzalloc(sizeof(*lsop) +
1755 sizeof(union nvmefc_ls_requests) +
1756 sizeof(union nvmefc_ls_responses),
1757 GFP_KERNEL);
1758 if (!lsop) {
1759 dev_info(lport->dev,
1760 "RCV %s LS failed: No memory\n",
1761 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1762 nvmefc_ls_names[w0->ls_cmd] : "");
1763 ret = -ENOMEM;
1764 goto out_put;
1765 }
1766 lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1767 lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1768
1769 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1770 sizeof(*lsop->rspbuf),
1771 DMA_TO_DEVICE);
1772 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1773 dev_info(lport->dev,
1774 "RCV %s LS failed: DMA mapping failure\n",
1775 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1776 nvmefc_ls_names[w0->ls_cmd] : "");
1777 ret = -EFAULT;
1778 goto out_free;
1779 }
1780
1781 lsop->rport = rport;
1782 lsop->lsrsp = lsrsp;
1783
1784 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1785 lsop->rqstdatalen = lsreqbuf_len;
1786
1787 spin_lock_irqsave(&rport->lock, flags);
1788 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1789 spin_unlock_irqrestore(&rport->lock, flags);
1790 ret = -ENOTCONN;
1791 goto out_unmap;
1792 }
1793 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1794 spin_unlock_irqrestore(&rport->lock, flags);
1795
1796 schedule_work(&rport->lsrcv_work);
1797
1798 return 0;
1799
1800out_unmap:
1801 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1802 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1803out_free:
1804 kfree(lsop);
1805out_put:
1806 nvme_fc_rport_put(rport);
1807 return ret;
1808}
1809EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1810
1811
1812/* *********************** NVME Ctrl Routines **************************** */
1813
1814static void
1815__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1816 struct nvme_fc_fcp_op *op)
1817{
1818 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1819 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1820 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1821 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1822
1823 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1824}
1825
1826static void
1827nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1828 unsigned int hctx_idx)
1829{
1830 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1831
1832 return __nvme_fc_exit_request(set->driver_data, op);
1833}
1834
1835static int
1836__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1837{
1838 unsigned long flags;
1839 int opstate;
1840
1841 spin_lock_irqsave(&ctrl->lock, flags);
1842 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1843 if (opstate != FCPOP_STATE_ACTIVE)
1844 atomic_set(&op->state, opstate);
1845 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1846 op->flags |= FCOP_FLAGS_TERMIO;
1847 ctrl->iocnt++;
1848 }
1849 spin_unlock_irqrestore(&ctrl->lock, flags);
1850
1851 if (opstate != FCPOP_STATE_ACTIVE)
1852 return -ECANCELED;
1853
1854 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1855 &ctrl->rport->remoteport,
1856 op->queue->lldd_handle,
1857 &op->fcp_req);
1858
1859 return 0;
1860}
1861
1862static void
1863nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1864{
1865 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1866 int i;
1867
1868 /* ensure we've initialized the ops once */
1869 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1870 return;
1871
1872 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1873 __nvme_fc_abort_op(ctrl, aen_op);
1874}
1875
1876static inline void
1877__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1878 struct nvme_fc_fcp_op *op, int opstate)
1879{
1880 unsigned long flags;
1881
1882 if (opstate == FCPOP_STATE_ABORTED) {
1883 spin_lock_irqsave(&ctrl->lock, flags);
1884 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1885 op->flags & FCOP_FLAGS_TERMIO) {
1886 if (!--ctrl->iocnt)
1887 wake_up(&ctrl->ioabort_wait);
1888 }
1889 spin_unlock_irqrestore(&ctrl->lock, flags);
1890 }
1891}
1892
1893static void
1894nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1895{
1896 struct nvme_fc_ctrl *ctrl =
1897 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1898
1899 nvme_fc_error_recovery(ctrl, "transport detected io error");
1900}
1901
1902static void
1903nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1904{
1905 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1906 struct request *rq = op->rq;
1907 struct nvmefc_fcp_req *freq = &op->fcp_req;
1908 struct nvme_fc_ctrl *ctrl = op->ctrl;
1909 struct nvme_fc_queue *queue = op->queue;
1910 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1911 struct nvme_command *sqe = &op->cmd_iu.sqe;
1912 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1913 union nvme_result result;
1914 bool terminate_assoc = true;
1915 int opstate;
1916
1917 /*
1918 * WARNING:
1919 * The current linux implementation of a nvme controller
1920 * allocates a single tag set for all io queues and sizes
1921 * the io queues to fully hold all possible tags. Thus, the
1922 * implementation does not reference or care about the sqhd
1923 * value as it never needs to use the sqhd/sqtail pointers
1924 * for submission pacing.
1925 *
1926 * This affects the FC-NVME implementation in two ways:
1927 * 1) As the value doesn't matter, we don't need to waste
1928 * cycles extracting it from ERSPs and stamping it in the
1929 * cases where the transport fabricates CQEs on successful
1930 * completions.
1931 * 2) The FC-NVME implementation requires that delivery of
1932 * ERSP completions are to go back to the nvme layer in order
1933 * relative to the rsn, such that the sqhd value will always
1934 * be "in order" for the nvme layer. As the nvme layer in
1935 * linux doesn't care about sqhd, there's no need to return
1936 * them in order.
1937 *
1938 * Additionally:
1939 * As the core nvme layer in linux currently does not look at
1940 * every field in the cqe - in cases where the FC transport must
1941 * fabricate a CQE, the following fields will not be set as they
1942 * are not referenced:
1943 * cqe.sqid, cqe.sqhd, cqe.command_id
1944 *
1945 * Failure or error of an individual i/o, in a transport
1946 * detected fashion unrelated to the nvme completion status,
1947 * potentially cause the initiator and target sides to get out
1948 * of sync on SQ head/tail (aka outstanding io count allowed).
1949 * Per FC-NVME spec, failure of an individual command requires
1950 * the connection to be terminated, which in turn requires the
1951 * association to be terminated.
1952 */
1953
1954 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1955
1956 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1957 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1958
1959 if (opstate == FCPOP_STATE_ABORTED)
1960 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1961 else if (freq->status) {
1962 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1963 dev_info(ctrl->ctrl.device,
1964 "NVME-FC{%d}: io failed due to lldd error %d\n",
1965 ctrl->cnum, freq->status);
1966 }
1967
1968 /*
1969 * For the linux implementation, if we have an unsuccesful
1970 * status, they blk-mq layer can typically be called with the
1971 * non-zero status and the content of the cqe isn't important.
1972 */
1973 if (status)
1974 goto done;
1975
1976 /*
1977 * command completed successfully relative to the wire
1978 * protocol. However, validate anything received and
1979 * extract the status and result from the cqe (create it
1980 * where necessary).
1981 */
1982
1983 switch (freq->rcv_rsplen) {
1984
1985 case 0:
1986 case NVME_FC_SIZEOF_ZEROS_RSP:
1987 /*
1988 * No response payload or 12 bytes of payload (which
1989 * should all be zeros) are considered successful and
1990 * no payload in the CQE by the transport.
1991 */
1992 if (freq->transferred_length !=
1993 be32_to_cpu(op->cmd_iu.data_len)) {
1994 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1995 dev_info(ctrl->ctrl.device,
1996 "NVME-FC{%d}: io failed due to bad transfer "
1997 "length: %d vs expected %d\n",
1998 ctrl->cnum, freq->transferred_length,
1999 be32_to_cpu(op->cmd_iu.data_len));
2000 goto done;
2001 }
2002 result.u64 = 0;
2003 break;
2004
2005 case sizeof(struct nvme_fc_ersp_iu):
2006 /*
2007 * The ERSP IU contains a full completion with CQE.
2008 * Validate ERSP IU and look at cqe.
2009 */
2010 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2011 (freq->rcv_rsplen / 4) ||
2012 be32_to_cpu(op->rsp_iu.xfrd_len) !=
2013 freq->transferred_length ||
2014 op->rsp_iu.ersp_result ||
2015 sqe->common.command_id != cqe->command_id)) {
2016 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2017 dev_info(ctrl->ctrl.device,
2018 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2019 "iu len %d, xfr len %d vs %d, status code "
2020 "%d, cmdid %d vs %d\n",
2021 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2022 be32_to_cpu(op->rsp_iu.xfrd_len),
2023 freq->transferred_length,
2024 op->rsp_iu.ersp_result,
2025 sqe->common.command_id,
2026 cqe->command_id);
2027 goto done;
2028 }
2029 result = cqe->result;
2030 status = cqe->status;
2031 break;
2032
2033 default:
2034 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2035 dev_info(ctrl->ctrl.device,
2036 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2037 "len %d\n",
2038 ctrl->cnum, freq->rcv_rsplen);
2039 goto done;
2040 }
2041
2042 terminate_assoc = false;
2043
2044done:
2045 if (op->flags & FCOP_FLAGS_AEN) {
2046 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2047 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2048 atomic_set(&op->state, FCPOP_STATE_IDLE);
2049 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2050 nvme_fc_ctrl_put(ctrl);
2051 goto check_error;
2052 }
2053
2054 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2055 if (!nvme_try_complete_req(rq, status, result))
2056 nvme_fc_complete_rq(rq);
2057
2058check_error:
2059 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2060 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2061}
2062
2063static int
2064__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2065 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2066 struct request *rq, u32 rqno)
2067{
2068 struct nvme_fcp_op_w_sgl *op_w_sgl =
2069 container_of(op, typeof(*op_w_sgl), op);
2070 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2071 int ret = 0;
2072
2073 memset(op, 0, sizeof(*op));
2074 op->fcp_req.cmdaddr = &op->cmd_iu;
2075 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2076 op->fcp_req.rspaddr = &op->rsp_iu;
2077 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2078 op->fcp_req.done = nvme_fc_fcpio_done;
2079 op->ctrl = ctrl;
2080 op->queue = queue;
2081 op->rq = rq;
2082 op->rqno = rqno;
2083
2084 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2085 cmdiu->fc_id = NVME_CMD_FC_ID;
2086 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2087 if (queue->qnum)
2088 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2089 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2090 else
2091 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2092
2093 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2094 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2095 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2096 dev_err(ctrl->dev,
2097 "FCP Op failed - cmdiu dma mapping failed.\n");
2098 ret = -EFAULT;
2099 goto out_on_error;
2100 }
2101
2102 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2103 &op->rsp_iu, sizeof(op->rsp_iu),
2104 DMA_FROM_DEVICE);
2105 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2106 dev_err(ctrl->dev,
2107 "FCP Op failed - rspiu dma mapping failed.\n");
2108 ret = -EFAULT;
2109 }
2110
2111 atomic_set(&op->state, FCPOP_STATE_IDLE);
2112out_on_error:
2113 return ret;
2114}
2115
2116static int
2117nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2118 unsigned int hctx_idx, unsigned int numa_node)
2119{
2120 struct nvme_fc_ctrl *ctrl = set->driver_data;
2121 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2122 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2123 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2124 int res;
2125
2126 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2127 if (res)
2128 return res;
2129 op->op.fcp_req.first_sgl = op->sgl;
2130 op->op.fcp_req.private = &op->priv[0];
2131 nvme_req(rq)->ctrl = &ctrl->ctrl;
2132 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2133 return res;
2134}
2135
2136static int
2137nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2138{
2139 struct nvme_fc_fcp_op *aen_op;
2140 struct nvme_fc_cmd_iu *cmdiu;
2141 struct nvme_command *sqe;
2142 void *private = NULL;
2143 int i, ret;
2144
2145 aen_op = ctrl->aen_ops;
2146 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2147 if (ctrl->lport->ops->fcprqst_priv_sz) {
2148 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2149 GFP_KERNEL);
2150 if (!private)
2151 return -ENOMEM;
2152 }
2153
2154 cmdiu = &aen_op->cmd_iu;
2155 sqe = &cmdiu->sqe;
2156 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2157 aen_op, (struct request *)NULL,
2158 (NVME_AQ_BLK_MQ_DEPTH + i));
2159 if (ret) {
2160 kfree(private);
2161 return ret;
2162 }
2163
2164 aen_op->flags = FCOP_FLAGS_AEN;
2165 aen_op->fcp_req.private = private;
2166
2167 memset(sqe, 0, sizeof(*sqe));
2168 sqe->common.opcode = nvme_admin_async_event;
2169 /* Note: core layer may overwrite the sqe.command_id value */
2170 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2171 }
2172 return 0;
2173}
2174
2175static void
2176nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2177{
2178 struct nvme_fc_fcp_op *aen_op;
2179 int i;
2180
2181 cancel_work_sync(&ctrl->ctrl.async_event_work);
2182 aen_op = ctrl->aen_ops;
2183 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2184 __nvme_fc_exit_request(ctrl, aen_op);
2185
2186 kfree(aen_op->fcp_req.private);
2187 aen_op->fcp_req.private = NULL;
2188 }
2189}
2190
2191static inline void
2192__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2193 unsigned int qidx)
2194{
2195 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2196
2197 hctx->driver_data = queue;
2198 queue->hctx = hctx;
2199}
2200
2201static int
2202nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2203 unsigned int hctx_idx)
2204{
2205 struct nvme_fc_ctrl *ctrl = data;
2206
2207 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2208
2209 return 0;
2210}
2211
2212static int
2213nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2214 unsigned int hctx_idx)
2215{
2216 struct nvme_fc_ctrl *ctrl = data;
2217
2218 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2219
2220 return 0;
2221}
2222
2223static void
2224nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2225{
2226 struct nvme_fc_queue *queue;
2227
2228 queue = &ctrl->queues[idx];
2229 memset(queue, 0, sizeof(*queue));
2230 queue->ctrl = ctrl;
2231 queue->qnum = idx;
2232 atomic_set(&queue->csn, 0);
2233 queue->dev = ctrl->dev;
2234
2235 if (idx > 0)
2236 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2237 else
2238 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2239
2240 /*
2241 * Considered whether we should allocate buffers for all SQEs
2242 * and CQEs and dma map them - mapping their respective entries
2243 * into the request structures (kernel vm addr and dma address)
2244 * thus the driver could use the buffers/mappings directly.
2245 * It only makes sense if the LLDD would use them for its
2246 * messaging api. It's very unlikely most adapter api's would use
2247 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2248 * structures were used instead.
2249 */
2250}
2251
2252/*
2253 * This routine terminates a queue at the transport level.
2254 * The transport has already ensured that all outstanding ios on
2255 * the queue have been terminated.
2256 * The transport will send a Disconnect LS request to terminate
2257 * the queue's connection. Termination of the admin queue will also
2258 * terminate the association at the target.
2259 */
2260static void
2261nvme_fc_free_queue(struct nvme_fc_queue *queue)
2262{
2263 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2264 return;
2265
2266 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2267 /*
2268 * Current implementation never disconnects a single queue.
2269 * It always terminates a whole association. So there is never
2270 * a disconnect(queue) LS sent to the target.
2271 */
2272
2273 queue->connection_id = 0;
2274 atomic_set(&queue->csn, 0);
2275}
2276
2277static void
2278__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2279 struct nvme_fc_queue *queue, unsigned int qidx)
2280{
2281 if (ctrl->lport->ops->delete_queue)
2282 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2283 queue->lldd_handle);
2284 queue->lldd_handle = NULL;
2285}
2286
2287static void
2288nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2289{
2290 int i;
2291
2292 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2293 nvme_fc_free_queue(&ctrl->queues[i]);
2294}
2295
2296static int
2297__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2298 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2299{
2300 int ret = 0;
2301
2302 queue->lldd_handle = NULL;
2303 if (ctrl->lport->ops->create_queue)
2304 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2305 qidx, qsize, &queue->lldd_handle);
2306
2307 return ret;
2308}
2309
2310static void
2311nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2312{
2313 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2314 int i;
2315
2316 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2317 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2318}
2319
2320static int
2321nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2322{
2323 struct nvme_fc_queue *queue = &ctrl->queues[1];
2324 int i, ret;
2325
2326 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2327 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2328 if (ret)
2329 goto delete_queues;
2330 }
2331
2332 return 0;
2333
2334delete_queues:
2335 for (; i > 0; i--)
2336 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2337 return ret;
2338}
2339
2340static int
2341nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2342{
2343 int i, ret = 0;
2344
2345 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2346 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2347 (qsize / 5));
2348 if (ret)
2349 break;
2350 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2351 if (ret)
2352 break;
2353
2354 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2355 }
2356
2357 return ret;
2358}
2359
2360static void
2361nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2362{
2363 int i;
2364
2365 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2366 nvme_fc_init_queue(ctrl, i);
2367}
2368
2369static void
2370nvme_fc_ctrl_free(struct kref *ref)
2371{
2372 struct nvme_fc_ctrl *ctrl =
2373 container_of(ref, struct nvme_fc_ctrl, ref);
2374 unsigned long flags;
2375
2376 if (ctrl->ctrl.tagset) {
2377 blk_cleanup_queue(ctrl->ctrl.connect_q);
2378 blk_mq_free_tag_set(&ctrl->tag_set);
2379 }
2380
2381 /* remove from rport list */
2382 spin_lock_irqsave(&ctrl->rport->lock, flags);
2383 list_del(&ctrl->ctrl_list);
2384 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2385
2386 nvme_start_admin_queue(&ctrl->ctrl);
2387 blk_cleanup_queue(ctrl->ctrl.admin_q);
2388 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2389 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2390
2391 kfree(ctrl->queues);
2392
2393 put_device(ctrl->dev);
2394 nvme_fc_rport_put(ctrl->rport);
2395
2396 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2397 if (ctrl->ctrl.opts)
2398 nvmf_free_options(ctrl->ctrl.opts);
2399 kfree(ctrl);
2400}
2401
2402static void
2403nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2404{
2405 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2406}
2407
2408static int
2409nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2410{
2411 return kref_get_unless_zero(&ctrl->ref);
2412}
2413
2414/*
2415 * All accesses from nvme core layer done - can now free the
2416 * controller. Called after last nvme_put_ctrl() call
2417 */
2418static void
2419nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2420{
2421 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2422
2423 WARN_ON(nctrl != &ctrl->ctrl);
2424
2425 nvme_fc_ctrl_put(ctrl);
2426}
2427
2428/*
2429 * This routine is used by the transport when it needs to find active
2430 * io on a queue that is to be terminated. The transport uses
2431 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2432 * this routine to kill them on a 1 by 1 basis.
2433 *
2434 * As FC allocates FC exchange for each io, the transport must contact
2435 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2436 * After terminating the exchange the LLDD will call the transport's
2437 * normal io done path for the request, but it will have an aborted
2438 * status. The done path will return the io request back to the block
2439 * layer with an error status.
2440 */
2441static bool
2442nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2443{
2444 struct nvme_ctrl *nctrl = data;
2445 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2446 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2447
2448 op->nreq.flags |= NVME_REQ_CANCELLED;
2449 __nvme_fc_abort_op(ctrl, op);
2450 return true;
2451}
2452
2453/*
2454 * This routine runs through all outstanding commands on the association
2455 * and aborts them. This routine is typically be called by the
2456 * delete_association routine. It is also called due to an error during
2457 * reconnect. In that scenario, it is most likely a command that initializes
2458 * the controller, including fabric Connect commands on io queues, that
2459 * may have timed out or failed thus the io must be killed for the connect
2460 * thread to see the error.
2461 */
2462static void
2463__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2464{
2465 int q;
2466
2467 /*
2468 * if aborting io, the queues are no longer good, mark them
2469 * all as not live.
2470 */
2471 if (ctrl->ctrl.queue_count > 1) {
2472 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2473 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2474 }
2475 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2476
2477 /*
2478 * If io queues are present, stop them and terminate all outstanding
2479 * ios on them. As FC allocates FC exchange for each io, the
2480 * transport must contact the LLDD to terminate the exchange,
2481 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2482 * to tell us what io's are busy and invoke a transport routine
2483 * to kill them with the LLDD. After terminating the exchange
2484 * the LLDD will call the transport's normal io done path, but it
2485 * will have an aborted status. The done path will return the
2486 * io requests back to the block layer as part of normal completions
2487 * (but with error status).
2488 */
2489 if (ctrl->ctrl.queue_count > 1) {
2490 nvme_stop_queues(&ctrl->ctrl);
2491 nvme_sync_io_queues(&ctrl->ctrl);
2492 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2493 nvme_fc_terminate_exchange, &ctrl->ctrl);
2494 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2495 if (start_queues)
2496 nvme_start_queues(&ctrl->ctrl);
2497 }
2498
2499 /*
2500 * Other transports, which don't have link-level contexts bound
2501 * to sqe's, would try to gracefully shutdown the controller by
2502 * writing the registers for shutdown and polling (call
2503 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2504 * just aborted and we will wait on those contexts, and given
2505 * there was no indication of how live the controlelr is on the
2506 * link, don't send more io to create more contexts for the
2507 * shutdown. Let the controller fail via keepalive failure if
2508 * its still present.
2509 */
2510
2511 /*
2512 * clean up the admin queue. Same thing as above.
2513 */
2514 nvme_stop_admin_queue(&ctrl->ctrl);
2515 blk_sync_queue(ctrl->ctrl.admin_q);
2516 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2517 nvme_fc_terminate_exchange, &ctrl->ctrl);
2518 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2519}
2520
2521static void
2522nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2523{
2524 /*
2525 * if an error (io timeout, etc) while (re)connecting, the remote
2526 * port requested terminating of the association (disconnect_ls)
2527 * or an error (timeout or abort) occurred on an io while creating
2528 * the controller. Abort any ios on the association and let the
2529 * create_association error path resolve things.
2530 */
2531 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2532 __nvme_fc_abort_outstanding_ios(ctrl, true);
2533 set_bit(ASSOC_FAILED, &ctrl->flags);
2534 return;
2535 }
2536
2537 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2538 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2539 return;
2540
2541 dev_warn(ctrl->ctrl.device,
2542 "NVME-FC{%d}: transport association event: %s\n",
2543 ctrl->cnum, errmsg);
2544 dev_warn(ctrl->ctrl.device,
2545 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2546
2547 nvme_reset_ctrl(&ctrl->ctrl);
2548}
2549
2550static enum blk_eh_timer_return
2551nvme_fc_timeout(struct request *rq, bool reserved)
2552{
2553 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2554 struct nvme_fc_ctrl *ctrl = op->ctrl;
2555 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2556 struct nvme_command *sqe = &cmdiu->sqe;
2557
2558 /*
2559 * Attempt to abort the offending command. Command completion
2560 * will detect the aborted io and will fail the connection.
2561 */
2562 dev_info(ctrl->ctrl.device,
2563 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2564 "x%08x/x%08x\n",
2565 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2566 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2567 if (__nvme_fc_abort_op(ctrl, op))
2568 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2569
2570 /*
2571 * the io abort has been initiated. Have the reset timer
2572 * restarted and the abort completion will complete the io
2573 * shortly. Avoids a synchronous wait while the abort finishes.
2574 */
2575 return BLK_EH_RESET_TIMER;
2576}
2577
2578static int
2579nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2580 struct nvme_fc_fcp_op *op)
2581{
2582 struct nvmefc_fcp_req *freq = &op->fcp_req;
2583 int ret;
2584
2585 freq->sg_cnt = 0;
2586
2587 if (!blk_rq_nr_phys_segments(rq))
2588 return 0;
2589
2590 freq->sg_table.sgl = freq->first_sgl;
2591 ret = sg_alloc_table_chained(&freq->sg_table,
2592 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2593 NVME_INLINE_SG_CNT);
2594 if (ret)
2595 return -ENOMEM;
2596
2597 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2598 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2599 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2600 op->nents, rq_dma_dir(rq));
2601 if (unlikely(freq->sg_cnt <= 0)) {
2602 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2603 freq->sg_cnt = 0;
2604 return -EFAULT;
2605 }
2606
2607 /*
2608 * TODO: blk_integrity_rq(rq) for DIF
2609 */
2610 return 0;
2611}
2612
2613static void
2614nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2615 struct nvme_fc_fcp_op *op)
2616{
2617 struct nvmefc_fcp_req *freq = &op->fcp_req;
2618
2619 if (!freq->sg_cnt)
2620 return;
2621
2622 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2623 rq_dma_dir(rq));
2624
2625 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2626
2627 freq->sg_cnt = 0;
2628}
2629
2630/*
2631 * In FC, the queue is a logical thing. At transport connect, the target
2632 * creates its "queue" and returns a handle that is to be given to the
2633 * target whenever it posts something to the corresponding SQ. When an
2634 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2635 * command contained within the SQE, an io, and assigns a FC exchange
2636 * to it. The SQE and the associated SQ handle are sent in the initial
2637 * CMD IU sents on the exchange. All transfers relative to the io occur
2638 * as part of the exchange. The CQE is the last thing for the io,
2639 * which is transferred (explicitly or implicitly) with the RSP IU
2640 * sent on the exchange. After the CQE is received, the FC exchange is
2641 * terminaed and the Exchange may be used on a different io.
2642 *
2643 * The transport to LLDD api has the transport making a request for a
2644 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2645 * resource and transfers the command. The LLDD will then process all
2646 * steps to complete the io. Upon completion, the transport done routine
2647 * is called.
2648 *
2649 * So - while the operation is outstanding to the LLDD, there is a link
2650 * level FC exchange resource that is also outstanding. This must be
2651 * considered in all cleanup operations.
2652 */
2653static blk_status_t
2654nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2655 struct nvme_fc_fcp_op *op, u32 data_len,
2656 enum nvmefc_fcp_datadir io_dir)
2657{
2658 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2659 struct nvme_command *sqe = &cmdiu->sqe;
2660 int ret, opstate;
2661
2662 /*
2663 * before attempting to send the io, check to see if we believe
2664 * the target device is present
2665 */
2666 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2667 return BLK_STS_RESOURCE;
2668
2669 if (!nvme_fc_ctrl_get(ctrl))
2670 return BLK_STS_IOERR;
2671
2672 /* format the FC-NVME CMD IU and fcp_req */
2673 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2674 cmdiu->data_len = cpu_to_be32(data_len);
2675 switch (io_dir) {
2676 case NVMEFC_FCP_WRITE:
2677 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2678 break;
2679 case NVMEFC_FCP_READ:
2680 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2681 break;
2682 case NVMEFC_FCP_NODATA:
2683 cmdiu->flags = 0;
2684 break;
2685 }
2686 op->fcp_req.payload_length = data_len;
2687 op->fcp_req.io_dir = io_dir;
2688 op->fcp_req.transferred_length = 0;
2689 op->fcp_req.rcv_rsplen = 0;
2690 op->fcp_req.status = NVME_SC_SUCCESS;
2691 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2692
2693 /*
2694 * validate per fabric rules, set fields mandated by fabric spec
2695 * as well as those by FC-NVME spec.
2696 */
2697 WARN_ON_ONCE(sqe->common.metadata);
2698 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2699
2700 /*
2701 * format SQE DPTR field per FC-NVME rules:
2702 * type=0x5 Transport SGL Data Block Descriptor
2703 * subtype=0xA Transport-specific value
2704 * address=0
2705 * length=length of the data series
2706 */
2707 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2708 NVME_SGL_FMT_TRANSPORT_A;
2709 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2710 sqe->rw.dptr.sgl.addr = 0;
2711
2712 if (!(op->flags & FCOP_FLAGS_AEN)) {
2713 ret = nvme_fc_map_data(ctrl, op->rq, op);
2714 if (ret < 0) {
2715 nvme_cleanup_cmd(op->rq);
2716 nvme_fc_ctrl_put(ctrl);
2717 if (ret == -ENOMEM || ret == -EAGAIN)
2718 return BLK_STS_RESOURCE;
2719 return BLK_STS_IOERR;
2720 }
2721 }
2722
2723 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2724 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2725
2726 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2727
2728 if (!(op->flags & FCOP_FLAGS_AEN))
2729 blk_mq_start_request(op->rq);
2730
2731 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2732 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2733 &ctrl->rport->remoteport,
2734 queue->lldd_handle, &op->fcp_req);
2735
2736 if (ret) {
2737 /*
2738 * If the lld fails to send the command is there an issue with
2739 * the csn value? If the command that fails is the Connect,
2740 * no - as the connection won't be live. If it is a command
2741 * post-connect, it's possible a gap in csn may be created.
2742 * Does this matter? As Linux initiators don't send fused
2743 * commands, no. The gap would exist, but as there's nothing
2744 * that depends on csn order to be delivered on the target
2745 * side, it shouldn't hurt. It would be difficult for a
2746 * target to even detect the csn gap as it has no idea when the
2747 * cmd with the csn was supposed to arrive.
2748 */
2749 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2750 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2751
2752 if (!(op->flags & FCOP_FLAGS_AEN)) {
2753 nvme_fc_unmap_data(ctrl, op->rq, op);
2754 nvme_cleanup_cmd(op->rq);
2755 }
2756
2757 nvme_fc_ctrl_put(ctrl);
2758
2759 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2760 ret != -EBUSY)
2761 return BLK_STS_IOERR;
2762
2763 return BLK_STS_RESOURCE;
2764 }
2765
2766 return BLK_STS_OK;
2767}
2768
2769static blk_status_t
2770nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2771 const struct blk_mq_queue_data *bd)
2772{
2773 struct nvme_ns *ns = hctx->queue->queuedata;
2774 struct nvme_fc_queue *queue = hctx->driver_data;
2775 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2776 struct request *rq = bd->rq;
2777 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2778 enum nvmefc_fcp_datadir io_dir;
2779 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2780 u32 data_len;
2781 blk_status_t ret;
2782
2783 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2784 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2785 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2786
2787 ret = nvme_setup_cmd(ns, rq);
2788 if (ret)
2789 return ret;
2790
2791 /*
2792 * nvme core doesn't quite treat the rq opaquely. Commands such
2793 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2794 * there is no actual payload to be transferred.
2795 * To get it right, key data transmission on there being 1 or
2796 * more physical segments in the sg list. If there is no
2797 * physical segments, there is no payload.
2798 */
2799 if (blk_rq_nr_phys_segments(rq)) {
2800 data_len = blk_rq_payload_bytes(rq);
2801 io_dir = ((rq_data_dir(rq) == WRITE) ?
2802 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2803 } else {
2804 data_len = 0;
2805 io_dir = NVMEFC_FCP_NODATA;
2806 }
2807
2808
2809 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2810}
2811
2812static void
2813nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2814{
2815 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2816 struct nvme_fc_fcp_op *aen_op;
2817 blk_status_t ret;
2818
2819 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2820 return;
2821
2822 aen_op = &ctrl->aen_ops[0];
2823
2824 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2825 NVMEFC_FCP_NODATA);
2826 if (ret)
2827 dev_err(ctrl->ctrl.device,
2828 "failed async event work\n");
2829}
2830
2831static void
2832nvme_fc_complete_rq(struct request *rq)
2833{
2834 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2835 struct nvme_fc_ctrl *ctrl = op->ctrl;
2836
2837 atomic_set(&op->state, FCPOP_STATE_IDLE);
2838 op->flags &= ~FCOP_FLAGS_TERMIO;
2839
2840 nvme_fc_unmap_data(ctrl, rq, op);
2841 nvme_complete_rq(rq);
2842 nvme_fc_ctrl_put(ctrl);
2843}
2844
2845static int nvme_fc_map_queues(struct blk_mq_tag_set *set)
2846{
2847 struct nvme_fc_ctrl *ctrl = set->driver_data;
2848 int i;
2849
2850 for (i = 0; i < set->nr_maps; i++) {
2851 struct blk_mq_queue_map *map = &set->map[i];
2852
2853 if (!map->nr_queues) {
2854 WARN_ON(i == HCTX_TYPE_DEFAULT);
2855 continue;
2856 }
2857
2858 /* Call LLDD map queue functionality if defined */
2859 if (ctrl->lport->ops->map_queues)
2860 ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2861 map);
2862 else
2863 blk_mq_map_queues(map);
2864 }
2865 return 0;
2866}
2867
2868static const struct blk_mq_ops nvme_fc_mq_ops = {
2869 .queue_rq = nvme_fc_queue_rq,
2870 .complete = nvme_fc_complete_rq,
2871 .init_request = nvme_fc_init_request,
2872 .exit_request = nvme_fc_exit_request,
2873 .init_hctx = nvme_fc_init_hctx,
2874 .timeout = nvme_fc_timeout,
2875 .map_queues = nvme_fc_map_queues,
2876};
2877
2878static int
2879nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2880{
2881 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2882 unsigned int nr_io_queues;
2883 int ret;
2884
2885 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2886 ctrl->lport->ops->max_hw_queues);
2887 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2888 if (ret) {
2889 dev_info(ctrl->ctrl.device,
2890 "set_queue_count failed: %d\n", ret);
2891 return ret;
2892 }
2893
2894 ctrl->ctrl.queue_count = nr_io_queues + 1;
2895 if (!nr_io_queues)
2896 return 0;
2897
2898 nvme_fc_init_io_queues(ctrl);
2899
2900 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2901 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2902 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2903 ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS;
2904 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2905 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2906 ctrl->tag_set.cmd_size =
2907 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2908 ctrl->lport->ops->fcprqst_priv_sz);
2909 ctrl->tag_set.driver_data = ctrl;
2910 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2911 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2912
2913 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2914 if (ret)
2915 return ret;
2916
2917 ctrl->ctrl.tagset = &ctrl->tag_set;
2918
2919 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2920 if (IS_ERR(ctrl->ctrl.connect_q)) {
2921 ret = PTR_ERR(ctrl->ctrl.connect_q);
2922 goto out_free_tag_set;
2923 }
2924
2925 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2926 if (ret)
2927 goto out_cleanup_blk_queue;
2928
2929 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2930 if (ret)
2931 goto out_delete_hw_queues;
2932
2933 ctrl->ioq_live = true;
2934
2935 return 0;
2936
2937out_delete_hw_queues:
2938 nvme_fc_delete_hw_io_queues(ctrl);
2939out_cleanup_blk_queue:
2940 blk_cleanup_queue(ctrl->ctrl.connect_q);
2941out_free_tag_set:
2942 blk_mq_free_tag_set(&ctrl->tag_set);
2943 nvme_fc_free_io_queues(ctrl);
2944
2945 /* force put free routine to ignore io queues */
2946 ctrl->ctrl.tagset = NULL;
2947
2948 return ret;
2949}
2950
2951static int
2952nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2953{
2954 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2955 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2956 unsigned int nr_io_queues;
2957 int ret;
2958
2959 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2960 ctrl->lport->ops->max_hw_queues);
2961 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2962 if (ret) {
2963 dev_info(ctrl->ctrl.device,
2964 "set_queue_count failed: %d\n", ret);
2965 return ret;
2966 }
2967
2968 if (!nr_io_queues && prior_ioq_cnt) {
2969 dev_info(ctrl->ctrl.device,
2970 "Fail Reconnect: At least 1 io queue "
2971 "required (was %d)\n", prior_ioq_cnt);
2972 return -ENOSPC;
2973 }
2974
2975 ctrl->ctrl.queue_count = nr_io_queues + 1;
2976 /* check for io queues existing */
2977 if (ctrl->ctrl.queue_count == 1)
2978 return 0;
2979
2980 if (prior_ioq_cnt != nr_io_queues) {
2981 dev_info(ctrl->ctrl.device,
2982 "reconnect: revising io queue count from %d to %d\n",
2983 prior_ioq_cnt, nr_io_queues);
2984 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2985 }
2986
2987 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2988 if (ret)
2989 goto out_free_io_queues;
2990
2991 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2992 if (ret)
2993 goto out_delete_hw_queues;
2994
2995 return 0;
2996
2997out_delete_hw_queues:
2998 nvme_fc_delete_hw_io_queues(ctrl);
2999out_free_io_queues:
3000 nvme_fc_free_io_queues(ctrl);
3001 return ret;
3002}
3003
3004static void
3005nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3006{
3007 struct nvme_fc_lport *lport = rport->lport;
3008
3009 atomic_inc(&lport->act_rport_cnt);
3010}
3011
3012static void
3013nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3014{
3015 struct nvme_fc_lport *lport = rport->lport;
3016 u32 cnt;
3017
3018 cnt = atomic_dec_return(&lport->act_rport_cnt);
3019 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3020 lport->ops->localport_delete(&lport->localport);
3021}
3022
3023static int
3024nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3025{
3026 struct nvme_fc_rport *rport = ctrl->rport;
3027 u32 cnt;
3028
3029 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3030 return 1;
3031
3032 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3033 if (cnt == 1)
3034 nvme_fc_rport_active_on_lport(rport);
3035
3036 return 0;
3037}
3038
3039static int
3040nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3041{
3042 struct nvme_fc_rport *rport = ctrl->rport;
3043 struct nvme_fc_lport *lport = rport->lport;
3044 u32 cnt;
3045
3046 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3047
3048 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3049 if (cnt == 0) {
3050 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3051 lport->ops->remoteport_delete(&rport->remoteport);
3052 nvme_fc_rport_inactive_on_lport(rport);
3053 }
3054
3055 return 0;
3056}
3057
3058/*
3059 * This routine restarts the controller on the host side, and
3060 * on the link side, recreates the controller association.
3061 */
3062static int
3063nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3064{
3065 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3066 struct nvmefc_ls_rcv_op *disls = NULL;
3067 unsigned long flags;
3068 int ret;
3069 bool changed;
3070
3071 ++ctrl->ctrl.nr_reconnects;
3072
3073 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3074 return -ENODEV;
3075
3076 if (nvme_fc_ctlr_active_on_rport(ctrl))
3077 return -ENOTUNIQ;
3078
3079 dev_info(ctrl->ctrl.device,
3080 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3081 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3082 ctrl->cnum, ctrl->lport->localport.port_name,
3083 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3084
3085 clear_bit(ASSOC_FAILED, &ctrl->flags);
3086
3087 /*
3088 * Create the admin queue
3089 */
3090
3091 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3092 NVME_AQ_DEPTH);
3093 if (ret)
3094 goto out_free_queue;
3095
3096 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3097 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3098 if (ret)
3099 goto out_delete_hw_queue;
3100
3101 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3102 if (ret)
3103 goto out_disconnect_admin_queue;
3104
3105 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3106
3107 /*
3108 * Check controller capabilities
3109 *
3110 * todo:- add code to check if ctrl attributes changed from
3111 * prior connection values
3112 */
3113
3114 ret = nvme_enable_ctrl(&ctrl->ctrl);
3115 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3116 goto out_disconnect_admin_queue;
3117
3118 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3119 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3120 (ilog2(SZ_4K) - 9);
3121
3122 nvme_start_admin_queue(&ctrl->ctrl);
3123
3124 ret = nvme_init_ctrl_finish(&ctrl->ctrl);
3125 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3126 goto out_disconnect_admin_queue;
3127
3128 /* sanity checks */
3129
3130 /* FC-NVME does not have other data in the capsule */
3131 if (ctrl->ctrl.icdoff) {
3132 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3133 ctrl->ctrl.icdoff);
3134 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3135 goto out_disconnect_admin_queue;
3136 }
3137
3138 /* FC-NVME supports normal SGL Data Block Descriptors */
3139 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3140 dev_err(ctrl->ctrl.device,
3141 "Mandatory sgls are not supported!\n");
3142 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3143 goto out_disconnect_admin_queue;
3144 }
3145
3146 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3147 /* warn if maxcmd is lower than queue_size */
3148 dev_warn(ctrl->ctrl.device,
3149 "queue_size %zu > ctrl maxcmd %u, reducing "
3150 "to maxcmd\n",
3151 opts->queue_size, ctrl->ctrl.maxcmd);
3152 opts->queue_size = ctrl->ctrl.maxcmd;
3153 }
3154
3155 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3156 /* warn if sqsize is lower than queue_size */
3157 dev_warn(ctrl->ctrl.device,
3158 "queue_size %zu > ctrl sqsize %u, reducing "
3159 "to sqsize\n",
3160 opts->queue_size, ctrl->ctrl.sqsize + 1);
3161 opts->queue_size = ctrl->ctrl.sqsize + 1;
3162 }
3163
3164 ret = nvme_fc_init_aen_ops(ctrl);
3165 if (ret)
3166 goto out_term_aen_ops;
3167
3168 /*
3169 * Create the io queues
3170 */
3171
3172 if (ctrl->ctrl.queue_count > 1) {
3173 if (!ctrl->ioq_live)
3174 ret = nvme_fc_create_io_queues(ctrl);
3175 else
3176 ret = nvme_fc_recreate_io_queues(ctrl);
3177 }
3178 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3179 goto out_term_aen_ops;
3180
3181 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3182
3183 ctrl->ctrl.nr_reconnects = 0;
3184
3185 if (changed)
3186 nvme_start_ctrl(&ctrl->ctrl);
3187
3188 return 0; /* Success */
3189
3190out_term_aen_ops:
3191 nvme_fc_term_aen_ops(ctrl);
3192out_disconnect_admin_queue:
3193 /* send a Disconnect(association) LS to fc-nvme target */
3194 nvme_fc_xmt_disconnect_assoc(ctrl);
3195 spin_lock_irqsave(&ctrl->lock, flags);
3196 ctrl->association_id = 0;
3197 disls = ctrl->rcv_disconn;
3198 ctrl->rcv_disconn = NULL;
3199 spin_unlock_irqrestore(&ctrl->lock, flags);
3200 if (disls)
3201 nvme_fc_xmt_ls_rsp(disls);
3202out_delete_hw_queue:
3203 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3204out_free_queue:
3205 nvme_fc_free_queue(&ctrl->queues[0]);
3206 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3207 nvme_fc_ctlr_inactive_on_rport(ctrl);
3208
3209 return ret;
3210}
3211
3212
3213/*
3214 * This routine stops operation of the controller on the host side.
3215 * On the host os stack side: Admin and IO queues are stopped,
3216 * outstanding ios on them terminated via FC ABTS.
3217 * On the link side: the association is terminated.
3218 */
3219static void
3220nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3221{
3222 struct nvmefc_ls_rcv_op *disls = NULL;
3223 unsigned long flags;
3224
3225 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3226 return;
3227
3228 spin_lock_irqsave(&ctrl->lock, flags);
3229 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3230 ctrl->iocnt = 0;
3231 spin_unlock_irqrestore(&ctrl->lock, flags);
3232
3233 __nvme_fc_abort_outstanding_ios(ctrl, false);
3234
3235 /* kill the aens as they are a separate path */
3236 nvme_fc_abort_aen_ops(ctrl);
3237
3238 /* wait for all io that had to be aborted */
3239 spin_lock_irq(&ctrl->lock);
3240 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3241 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3242 spin_unlock_irq(&ctrl->lock);
3243
3244 nvme_fc_term_aen_ops(ctrl);
3245
3246 /*
3247 * send a Disconnect(association) LS to fc-nvme target
3248 * Note: could have been sent at top of process, but
3249 * cleaner on link traffic if after the aborts complete.
3250 * Note: if association doesn't exist, association_id will be 0
3251 */
3252 if (ctrl->association_id)
3253 nvme_fc_xmt_disconnect_assoc(ctrl);
3254
3255 spin_lock_irqsave(&ctrl->lock, flags);
3256 ctrl->association_id = 0;
3257 disls = ctrl->rcv_disconn;
3258 ctrl->rcv_disconn = NULL;
3259 spin_unlock_irqrestore(&ctrl->lock, flags);
3260 if (disls)
3261 /*
3262 * if a Disconnect Request was waiting for a response, send
3263 * now that all ABTS's have been issued (and are complete).
3264 */
3265 nvme_fc_xmt_ls_rsp(disls);
3266
3267 if (ctrl->ctrl.tagset) {
3268 nvme_fc_delete_hw_io_queues(ctrl);
3269 nvme_fc_free_io_queues(ctrl);
3270 }
3271
3272 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3273 nvme_fc_free_queue(&ctrl->queues[0]);
3274
3275 /* re-enable the admin_q so anything new can fast fail */
3276 nvme_start_admin_queue(&ctrl->ctrl);
3277
3278 /* resume the io queues so that things will fast fail */
3279 nvme_start_queues(&ctrl->ctrl);
3280
3281 nvme_fc_ctlr_inactive_on_rport(ctrl);
3282}
3283
3284static void
3285nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3286{
3287 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3288
3289 cancel_work_sync(&ctrl->ioerr_work);
3290 cancel_delayed_work_sync(&ctrl->connect_work);
3291 /*
3292 * kill the association on the link side. this will block
3293 * waiting for io to terminate
3294 */
3295 nvme_fc_delete_association(ctrl);
3296}
3297
3298static void
3299nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3300{
3301 struct nvme_fc_rport *rport = ctrl->rport;
3302 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3303 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3304 bool recon = true;
3305
3306 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3307 return;
3308
3309 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3310 dev_info(ctrl->ctrl.device,
3311 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3312 ctrl->cnum, status);
3313 if (status > 0 && (status & NVME_SC_DNR))
3314 recon = false;
3315 } else if (time_after_eq(jiffies, rport->dev_loss_end))
3316 recon = false;
3317
3318 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3319 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3320 dev_info(ctrl->ctrl.device,
3321 "NVME-FC{%d}: Reconnect attempt in %ld "
3322 "seconds\n",
3323 ctrl->cnum, recon_delay / HZ);
3324 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3325 recon_delay = rport->dev_loss_end - jiffies;
3326
3327 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3328 } else {
3329 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3330 if (status > 0 && (status & NVME_SC_DNR))
3331 dev_warn(ctrl->ctrl.device,
3332 "NVME-FC{%d}: reconnect failure\n",
3333 ctrl->cnum);
3334 else
3335 dev_warn(ctrl->ctrl.device,
3336 "NVME-FC{%d}: Max reconnect attempts "
3337 "(%d) reached.\n",
3338 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3339 } else
3340 dev_warn(ctrl->ctrl.device,
3341 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3342 "while waiting for remoteport connectivity.\n",
3343 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3344 (ctrl->ctrl.opts->max_reconnects *
3345 ctrl->ctrl.opts->reconnect_delay)));
3346 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3347 }
3348}
3349
3350static void
3351nvme_fc_reset_ctrl_work(struct work_struct *work)
3352{
3353 struct nvme_fc_ctrl *ctrl =
3354 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3355
3356 nvme_stop_ctrl(&ctrl->ctrl);
3357
3358 /* will block will waiting for io to terminate */
3359 nvme_fc_delete_association(ctrl);
3360
3361 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3362 dev_err(ctrl->ctrl.device,
3363 "NVME-FC{%d}: error_recovery: Couldn't change state "
3364 "to CONNECTING\n", ctrl->cnum);
3365
3366 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3367 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3368 dev_err(ctrl->ctrl.device,
3369 "NVME-FC{%d}: failed to schedule connect "
3370 "after reset\n", ctrl->cnum);
3371 } else {
3372 flush_delayed_work(&ctrl->connect_work);
3373 }
3374 } else {
3375 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3376 }
3377}
3378
3379
3380static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3381 .name = "fc",
3382 .module = THIS_MODULE,
3383 .flags = NVME_F_FABRICS,
3384 .reg_read32 = nvmf_reg_read32,
3385 .reg_read64 = nvmf_reg_read64,
3386 .reg_write32 = nvmf_reg_write32,
3387 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3388 .submit_async_event = nvme_fc_submit_async_event,
3389 .delete_ctrl = nvme_fc_delete_ctrl,
3390 .get_address = nvmf_get_address,
3391};
3392
3393static void
3394nvme_fc_connect_ctrl_work(struct work_struct *work)
3395{
3396 int ret;
3397
3398 struct nvme_fc_ctrl *ctrl =
3399 container_of(to_delayed_work(work),
3400 struct nvme_fc_ctrl, connect_work);
3401
3402 ret = nvme_fc_create_association(ctrl);
3403 if (ret)
3404 nvme_fc_reconnect_or_delete(ctrl, ret);
3405 else
3406 dev_info(ctrl->ctrl.device,
3407 "NVME-FC{%d}: controller connect complete\n",
3408 ctrl->cnum);
3409}
3410
3411
3412static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3413 .queue_rq = nvme_fc_queue_rq,
3414 .complete = nvme_fc_complete_rq,
3415 .init_request = nvme_fc_init_request,
3416 .exit_request = nvme_fc_exit_request,
3417 .init_hctx = nvme_fc_init_admin_hctx,
3418 .timeout = nvme_fc_timeout,
3419};
3420
3421
3422/*
3423 * Fails a controller request if it matches an existing controller
3424 * (association) with the same tuple:
3425 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3426 *
3427 * The ports don't need to be compared as they are intrinsically
3428 * already matched by the port pointers supplied.
3429 */
3430static bool
3431nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3432 struct nvmf_ctrl_options *opts)
3433{
3434 struct nvme_fc_ctrl *ctrl;
3435 unsigned long flags;
3436 bool found = false;
3437
3438 spin_lock_irqsave(&rport->lock, flags);
3439 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3440 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3441 if (found)
3442 break;
3443 }
3444 spin_unlock_irqrestore(&rport->lock, flags);
3445
3446 return found;
3447}
3448
3449static struct nvme_ctrl *
3450nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3451 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3452{
3453 struct nvme_fc_ctrl *ctrl;
3454 unsigned long flags;
3455 int ret, idx, ctrl_loss_tmo;
3456
3457 if (!(rport->remoteport.port_role &
3458 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3459 ret = -EBADR;
3460 goto out_fail;
3461 }
3462
3463 if (!opts->duplicate_connect &&
3464 nvme_fc_existing_controller(rport, opts)) {
3465 ret = -EALREADY;
3466 goto out_fail;
3467 }
3468
3469 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3470 if (!ctrl) {
3471 ret = -ENOMEM;
3472 goto out_fail;
3473 }
3474
3475 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3476 if (idx < 0) {
3477 ret = -ENOSPC;
3478 goto out_free_ctrl;
3479 }
3480
3481 /*
3482 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3483 * is being used, change to a shorter reconnect delay for FC.
3484 */
3485 if (opts->max_reconnects != -1 &&
3486 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3487 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3488 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3489 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3490 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3491 opts->reconnect_delay);
3492 }
3493
3494 ctrl->ctrl.opts = opts;
3495 ctrl->ctrl.nr_reconnects = 0;
3496 if (lport->dev)
3497 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3498 else
3499 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3500 INIT_LIST_HEAD(&ctrl->ctrl_list);
3501 ctrl->lport = lport;
3502 ctrl->rport = rport;
3503 ctrl->dev = lport->dev;
3504 ctrl->cnum = idx;
3505 ctrl->ioq_live = false;
3506 init_waitqueue_head(&ctrl->ioabort_wait);
3507
3508 get_device(ctrl->dev);
3509 kref_init(&ctrl->ref);
3510
3511 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3512 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3513 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3514 spin_lock_init(&ctrl->lock);
3515
3516 /* io queue count */
3517 ctrl->ctrl.queue_count = min_t(unsigned int,
3518 opts->nr_io_queues,
3519 lport->ops->max_hw_queues);
3520 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3521
3522 ctrl->ctrl.sqsize = opts->queue_size - 1;
3523 ctrl->ctrl.kato = opts->kato;
3524 ctrl->ctrl.cntlid = 0xffff;
3525
3526 ret = -ENOMEM;
3527 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3528 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3529 if (!ctrl->queues)
3530 goto out_free_ida;
3531
3532 nvme_fc_init_queue(ctrl, 0);
3533
3534 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3535 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3536 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3537 ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS;
3538 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3539 ctrl->admin_tag_set.cmd_size =
3540 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3541 ctrl->lport->ops->fcprqst_priv_sz);
3542 ctrl->admin_tag_set.driver_data = ctrl;
3543 ctrl->admin_tag_set.nr_hw_queues = 1;
3544 ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT;
3545 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3546
3547 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3548 if (ret)
3549 goto out_free_queues;
3550 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3551
3552 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3553 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3554 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3555 goto out_free_admin_tag_set;
3556 }
3557
3558 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3559 if (IS_ERR(ctrl->ctrl.admin_q)) {
3560 ret = PTR_ERR(ctrl->ctrl.admin_q);
3561 goto out_cleanup_fabrics_q;
3562 }
3563
3564 /*
3565 * Would have been nice to init io queues tag set as well.
3566 * However, we require interaction from the controller
3567 * for max io queue count before we can do so.
3568 * Defer this to the connect path.
3569 */
3570
3571 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3572 if (ret)
3573 goto out_cleanup_admin_q;
3574
3575 /* at this point, teardown path changes to ref counting on nvme ctrl */
3576
3577 spin_lock_irqsave(&rport->lock, flags);
3578 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3579 spin_unlock_irqrestore(&rport->lock, flags);
3580
3581 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3582 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3583 dev_err(ctrl->ctrl.device,
3584 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3585 goto fail_ctrl;
3586 }
3587
3588 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3589 dev_err(ctrl->ctrl.device,
3590 "NVME-FC{%d}: failed to schedule initial connect\n",
3591 ctrl->cnum);
3592 goto fail_ctrl;
3593 }
3594
3595 flush_delayed_work(&ctrl->connect_work);
3596
3597 dev_info(ctrl->ctrl.device,
3598 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3599 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3600
3601 return &ctrl->ctrl;
3602
3603fail_ctrl:
3604 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3605 cancel_work_sync(&ctrl->ioerr_work);
3606 cancel_work_sync(&ctrl->ctrl.reset_work);
3607 cancel_delayed_work_sync(&ctrl->connect_work);
3608
3609 ctrl->ctrl.opts = NULL;
3610
3611 /* initiate nvme ctrl ref counting teardown */
3612 nvme_uninit_ctrl(&ctrl->ctrl);
3613
3614 /* Remove core ctrl ref. */
3615 nvme_put_ctrl(&ctrl->ctrl);
3616
3617 /* as we're past the point where we transition to the ref
3618 * counting teardown path, if we return a bad pointer here,
3619 * the calling routine, thinking it's prior to the
3620 * transition, will do an rport put. Since the teardown
3621 * path also does a rport put, we do an extra get here to
3622 * so proper order/teardown happens.
3623 */
3624 nvme_fc_rport_get(rport);
3625
3626 return ERR_PTR(-EIO);
3627
3628out_cleanup_admin_q:
3629 blk_cleanup_queue(ctrl->ctrl.admin_q);
3630out_cleanup_fabrics_q:
3631 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3632out_free_admin_tag_set:
3633 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3634out_free_queues:
3635 kfree(ctrl->queues);
3636out_free_ida:
3637 put_device(ctrl->dev);
3638 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3639out_free_ctrl:
3640 kfree(ctrl);
3641out_fail:
3642 /* exit via here doesn't follow ctlr ref points */
3643 return ERR_PTR(ret);
3644}
3645
3646
3647struct nvmet_fc_traddr {
3648 u64 nn;
3649 u64 pn;
3650};
3651
3652static int
3653__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3654{
3655 u64 token64;
3656
3657 if (match_u64(sstr, &token64))
3658 return -EINVAL;
3659 *val = token64;
3660
3661 return 0;
3662}
3663
3664/*
3665 * This routine validates and extracts the WWN's from the TRADDR string.
3666 * As kernel parsers need the 0x to determine number base, universally
3667 * build string to parse with 0x prefix before parsing name strings.
3668 */
3669static int
3670nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3671{
3672 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3673 substring_t wwn = { name, &name[sizeof(name)-1] };
3674 int nnoffset, pnoffset;
3675
3676 /* validate if string is one of the 2 allowed formats */
3677 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3678 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3679 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3680 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3681 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3682 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3683 NVME_FC_TRADDR_OXNNLEN;
3684 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3685 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3686 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3687 "pn-", NVME_FC_TRADDR_NNLEN))) {
3688 nnoffset = NVME_FC_TRADDR_NNLEN;
3689 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3690 } else
3691 goto out_einval;
3692
3693 name[0] = '0';
3694 name[1] = 'x';
3695 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3696
3697 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3698 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3699 goto out_einval;
3700
3701 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3702 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3703 goto out_einval;
3704
3705 return 0;
3706
3707out_einval:
3708 pr_warn("%s: bad traddr string\n", __func__);
3709 return -EINVAL;
3710}
3711
3712static struct nvme_ctrl *
3713nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3714{
3715 struct nvme_fc_lport *lport;
3716 struct nvme_fc_rport *rport;
3717 struct nvme_ctrl *ctrl;
3718 struct nvmet_fc_traddr laddr = { 0L, 0L };
3719 struct nvmet_fc_traddr raddr = { 0L, 0L };
3720 unsigned long flags;
3721 int ret;
3722
3723 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3724 if (ret || !raddr.nn || !raddr.pn)
3725 return ERR_PTR(-EINVAL);
3726
3727 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3728 if (ret || !laddr.nn || !laddr.pn)
3729 return ERR_PTR(-EINVAL);
3730
3731 /* find the host and remote ports to connect together */
3732 spin_lock_irqsave(&nvme_fc_lock, flags);
3733 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3734 if (lport->localport.node_name != laddr.nn ||
3735 lport->localport.port_name != laddr.pn ||
3736 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3737 continue;
3738
3739 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3740 if (rport->remoteport.node_name != raddr.nn ||
3741 rport->remoteport.port_name != raddr.pn ||
3742 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3743 continue;
3744
3745 /* if fail to get reference fall through. Will error */
3746 if (!nvme_fc_rport_get(rport))
3747 break;
3748
3749 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3750
3751 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3752 if (IS_ERR(ctrl))
3753 nvme_fc_rport_put(rport);
3754 return ctrl;
3755 }
3756 }
3757 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3758
3759 pr_warn("%s: %s - %s combination not found\n",
3760 __func__, opts->traddr, opts->host_traddr);
3761 return ERR_PTR(-ENOENT);
3762}
3763
3764
3765static struct nvmf_transport_ops nvme_fc_transport = {
3766 .name = "fc",
3767 .module = THIS_MODULE,
3768 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3769 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3770 .create_ctrl = nvme_fc_create_ctrl,
3771};
3772
3773/* Arbitrary successive failures max. With lots of subsystems could be high */
3774#define DISCOVERY_MAX_FAIL 20
3775
3776static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3777 struct device_attribute *attr, const char *buf, size_t count)
3778{
3779 unsigned long flags;
3780 LIST_HEAD(local_disc_list);
3781 struct nvme_fc_lport *lport;
3782 struct nvme_fc_rport *rport;
3783 int failcnt = 0;
3784
3785 spin_lock_irqsave(&nvme_fc_lock, flags);
3786restart:
3787 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3788 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3789 if (!nvme_fc_lport_get(lport))
3790 continue;
3791 if (!nvme_fc_rport_get(rport)) {
3792 /*
3793 * This is a temporary condition. Upon restart
3794 * this rport will be gone from the list.
3795 *
3796 * Revert the lport put and retry. Anything
3797 * added to the list already will be skipped (as
3798 * they are no longer list_empty). Loops should
3799 * resume at rports that were not yet seen.
3800 */
3801 nvme_fc_lport_put(lport);
3802
3803 if (failcnt++ < DISCOVERY_MAX_FAIL)
3804 goto restart;
3805
3806 pr_err("nvme_discovery: too many reference "
3807 "failures\n");
3808 goto process_local_list;
3809 }
3810 if (list_empty(&rport->disc_list))
3811 list_add_tail(&rport->disc_list,
3812 &local_disc_list);
3813 }
3814 }
3815
3816process_local_list:
3817 while (!list_empty(&local_disc_list)) {
3818 rport = list_first_entry(&local_disc_list,
3819 struct nvme_fc_rport, disc_list);
3820 list_del_init(&rport->disc_list);
3821 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3822
3823 lport = rport->lport;
3824 /* signal discovery. Won't hurt if it repeats */
3825 nvme_fc_signal_discovery_scan(lport, rport);
3826 nvme_fc_rport_put(rport);
3827 nvme_fc_lport_put(lport);
3828
3829 spin_lock_irqsave(&nvme_fc_lock, flags);
3830 }
3831 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3832
3833 return count;
3834}
3835
3836/* Parse the cgroup id from a buf and return the length of cgrpid */
3837static int fc_parse_cgrpid(const char *buf, u64 *id)
3838{
3839 char cgrp_id[16+1];
3840 int cgrpid_len, j;
3841
3842 memset(cgrp_id, 0x0, sizeof(cgrp_id));
3843 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3844 if (buf[cgrpid_len] != ':')
3845 cgrp_id[cgrpid_len] = buf[cgrpid_len];
3846 else {
3847 j = 1;
3848 break;
3849 }
3850 }
3851 if (!j)
3852 return -EINVAL;
3853 if (kstrtou64(cgrp_id, 16, id) < 0)
3854 return -EINVAL;
3855 return cgrpid_len;
3856}
3857
3858/*
3859 * fc_update_appid: Parse and update the appid in the blkcg associated with
3860 * cgroupid.
3861 * @buf: buf contains both cgrpid and appid info
3862 * @count: size of the buffer
3863 */
3864static int fc_update_appid(const char *buf, size_t count)
3865{
3866 u64 cgrp_id;
3867 int appid_len = 0;
3868 int cgrpid_len = 0;
3869 char app_id[FC_APPID_LEN];
3870 int ret = 0;
3871
3872 if (buf[count-1] == '\n')
3873 count--;
3874
3875 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3876 return -EINVAL;
3877
3878 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3879 if (cgrpid_len < 0)
3880 return -EINVAL;
3881 appid_len = count - cgrpid_len - 1;
3882 if (appid_len > FC_APPID_LEN)
3883 return -EINVAL;
3884
3885 memset(app_id, 0x0, sizeof(app_id));
3886 memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3887 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3888 if (ret < 0)
3889 return ret;
3890 return count;
3891}
3892
3893static ssize_t fc_appid_store(struct device *dev,
3894 struct device_attribute *attr, const char *buf, size_t count)
3895{
3896 int ret = 0;
3897
3898 ret = fc_update_appid(buf, count);
3899 if (ret < 0)
3900 return -EINVAL;
3901 return count;
3902}
3903static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3904static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3905
3906static struct attribute *nvme_fc_attrs[] = {
3907 &dev_attr_nvme_discovery.attr,
3908 &dev_attr_appid_store.attr,
3909 NULL
3910};
3911
3912static const struct attribute_group nvme_fc_attr_group = {
3913 .attrs = nvme_fc_attrs,
3914};
3915
3916static const struct attribute_group *nvme_fc_attr_groups[] = {
3917 &nvme_fc_attr_group,
3918 NULL
3919};
3920
3921static struct class fc_class = {
3922 .name = "fc",
3923 .dev_groups = nvme_fc_attr_groups,
3924 .owner = THIS_MODULE,
3925};
3926
3927static int __init nvme_fc_init_module(void)
3928{
3929 int ret;
3930
3931 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3932 if (!nvme_fc_wq)
3933 return -ENOMEM;
3934
3935 /*
3936 * NOTE:
3937 * It is expected that in the future the kernel will combine
3938 * the FC-isms that are currently under scsi and now being
3939 * added to by NVME into a new standalone FC class. The SCSI
3940 * and NVME protocols and their devices would be under this
3941 * new FC class.
3942 *
3943 * As we need something to post FC-specific udev events to,
3944 * specifically for nvme probe events, start by creating the
3945 * new device class. When the new standalone FC class is
3946 * put in place, this code will move to a more generic
3947 * location for the class.
3948 */
3949 ret = class_register(&fc_class);
3950 if (ret) {
3951 pr_err("couldn't register class fc\n");
3952 goto out_destroy_wq;
3953 }
3954
3955 /*
3956 * Create a device for the FC-centric udev events
3957 */
3958 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3959 "fc_udev_device");
3960 if (IS_ERR(fc_udev_device)) {
3961 pr_err("couldn't create fc_udev device!\n");
3962 ret = PTR_ERR(fc_udev_device);
3963 goto out_destroy_class;
3964 }
3965
3966 ret = nvmf_register_transport(&nvme_fc_transport);
3967 if (ret)
3968 goto out_destroy_device;
3969
3970 return 0;
3971
3972out_destroy_device:
3973 device_destroy(&fc_class, MKDEV(0, 0));
3974out_destroy_class:
3975 class_unregister(&fc_class);
3976out_destroy_wq:
3977 destroy_workqueue(nvme_fc_wq);
3978
3979 return ret;
3980}
3981
3982static void
3983nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3984{
3985 struct nvme_fc_ctrl *ctrl;
3986
3987 spin_lock(&rport->lock);
3988 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3989 dev_warn(ctrl->ctrl.device,
3990 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3991 ctrl->cnum);
3992 nvme_delete_ctrl(&ctrl->ctrl);
3993 }
3994 spin_unlock(&rport->lock);
3995}
3996
3997static void
3998nvme_fc_cleanup_for_unload(void)
3999{
4000 struct nvme_fc_lport *lport;
4001 struct nvme_fc_rport *rport;
4002
4003 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
4004 list_for_each_entry(rport, &lport->endp_list, endp_list) {
4005 nvme_fc_delete_controllers(rport);
4006 }
4007 }
4008}
4009
4010static void __exit nvme_fc_exit_module(void)
4011{
4012 unsigned long flags;
4013 bool need_cleanup = false;
4014
4015 spin_lock_irqsave(&nvme_fc_lock, flags);
4016 nvme_fc_waiting_to_unload = true;
4017 if (!list_empty(&nvme_fc_lport_list)) {
4018 need_cleanup = true;
4019 nvme_fc_cleanup_for_unload();
4020 }
4021 spin_unlock_irqrestore(&nvme_fc_lock, flags);
4022 if (need_cleanup) {
4023 pr_info("%s: waiting for ctlr deletes\n", __func__);
4024 wait_for_completion(&nvme_fc_unload_proceed);
4025 pr_info("%s: ctrl deletes complete\n", __func__);
4026 }
4027
4028 nvmf_unregister_transport(&nvme_fc_transport);
4029
4030 ida_destroy(&nvme_fc_local_port_cnt);
4031 ida_destroy(&nvme_fc_ctrl_cnt);
4032
4033 device_destroy(&fc_class, MKDEV(0, 0));
4034 class_unregister(&fc_class);
4035 destroy_workqueue(nvme_fc_wq);
4036}
4037
4038module_init(nvme_fc_init_module);
4039module_exit(nvme_fc_exit_module);
4040
4041MODULE_LICENSE("GPL v2");