Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42
43#include <acpi/cppc_acpi.h>
44
45struct cppc_pcc_data {
46 struct pcc_mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78};
79
80/* Array to represent the PCC channel per subspace ID */
81static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85/*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94/* pcc mapped address + header size + offset within PCC subspace */
95#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98/* Check if a CPC register is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Evaluates to True if reg is a NULL register descriptor */
104#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110/* Evaluates to True if an optional cpc field is supported */
111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114/*
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
118 */
119#define NUM_RETRIES 500ULL
120
121#define OVER_16BTS_MASK ~0xFFFFULL
122
123#define define_one_cppc_ro(_name) \
124static struct kobj_attribute _name = \
125__ATTR(_name, 0444, show_##_name, NULL)
126
127#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
128
129#define show_cppc_data(access_fn, struct_name, member_name) \
130 static ssize_t show_##member_name(struct kobject *kobj, \
131 struct kobj_attribute *attr, char *buf) \
132 { \
133 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
134 struct struct_name st_name = {0}; \
135 int ret; \
136 \
137 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
138 if (ret) \
139 return ret; \
140 \
141 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
142 (u64)st_name.member_name); \
143 } \
144 define_one_cppc_ro(member_name)
145
146show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
147show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
148show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
149show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
150show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
151show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
152
153show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
154show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
155
156static ssize_t show_feedback_ctrs(struct kobject *kobj,
157 struct kobj_attribute *attr, char *buf)
158{
159 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
160 struct cppc_perf_fb_ctrs fb_ctrs = {0};
161 int ret;
162
163 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
164 if (ret)
165 return ret;
166
167 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
168 fb_ctrs.reference, fb_ctrs.delivered);
169}
170define_one_cppc_ro(feedback_ctrs);
171
172static struct attribute *cppc_attrs[] = {
173 &feedback_ctrs.attr,
174 &reference_perf.attr,
175 &wraparound_time.attr,
176 &highest_perf.attr,
177 &lowest_perf.attr,
178 &lowest_nonlinear_perf.attr,
179 &nominal_perf.attr,
180 &nominal_freq.attr,
181 &lowest_freq.attr,
182 NULL
183};
184ATTRIBUTE_GROUPS(cppc);
185
186static struct kobj_type cppc_ktype = {
187 .sysfs_ops = &kobj_sysfs_ops,
188 .default_groups = cppc_groups,
189};
190
191static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
192{
193 int ret, status;
194 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
195 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
196 pcc_ss_data->pcc_comm_addr;
197
198 if (!pcc_ss_data->platform_owns_pcc)
199 return 0;
200
201 /*
202 * Poll PCC status register every 3us(delay_us) for maximum of
203 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
204 */
205 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
206 status & PCC_CMD_COMPLETE_MASK, 3,
207 pcc_ss_data->deadline_us);
208
209 if (likely(!ret)) {
210 pcc_ss_data->platform_owns_pcc = false;
211 if (chk_err_bit && (status & PCC_ERROR_MASK))
212 ret = -EIO;
213 }
214
215 if (unlikely(ret))
216 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
217 pcc_ss_id, ret);
218
219 return ret;
220}
221
222/*
223 * This function transfers the ownership of the PCC to the platform
224 * So it must be called while holding write_lock(pcc_lock)
225 */
226static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
227{
228 int ret = -EIO, i;
229 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
230 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
231 pcc_ss_data->pcc_comm_addr;
232 unsigned int time_delta;
233
234 /*
235 * For CMD_WRITE we know for a fact the caller should have checked
236 * the channel before writing to PCC space
237 */
238 if (cmd == CMD_READ) {
239 /*
240 * If there are pending cpc_writes, then we stole the channel
241 * before write completion, so first send a WRITE command to
242 * platform
243 */
244 if (pcc_ss_data->pending_pcc_write_cmd)
245 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
246
247 ret = check_pcc_chan(pcc_ss_id, false);
248 if (ret)
249 goto end;
250 } else /* CMD_WRITE */
251 pcc_ss_data->pending_pcc_write_cmd = FALSE;
252
253 /*
254 * Handle the Minimum Request Turnaround Time(MRTT)
255 * "The minimum amount of time that OSPM must wait after the completion
256 * of a command before issuing the next command, in microseconds"
257 */
258 if (pcc_ss_data->pcc_mrtt) {
259 time_delta = ktime_us_delta(ktime_get(),
260 pcc_ss_data->last_cmd_cmpl_time);
261 if (pcc_ss_data->pcc_mrtt > time_delta)
262 udelay(pcc_ss_data->pcc_mrtt - time_delta);
263 }
264
265 /*
266 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
267 * "The maximum number of periodic requests that the subspace channel can
268 * support, reported in commands per minute. 0 indicates no limitation."
269 *
270 * This parameter should be ideally zero or large enough so that it can
271 * handle maximum number of requests that all the cores in the system can
272 * collectively generate. If it is not, we will follow the spec and just
273 * not send the request to the platform after hitting the MPAR limit in
274 * any 60s window
275 */
276 if (pcc_ss_data->pcc_mpar) {
277 if (pcc_ss_data->mpar_count == 0) {
278 time_delta = ktime_ms_delta(ktime_get(),
279 pcc_ss_data->last_mpar_reset);
280 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
281 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
282 pcc_ss_id);
283 ret = -EIO;
284 goto end;
285 }
286 pcc_ss_data->last_mpar_reset = ktime_get();
287 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
288 }
289 pcc_ss_data->mpar_count--;
290 }
291
292 /* Write to the shared comm region. */
293 writew_relaxed(cmd, &generic_comm_base->command);
294
295 /* Flip CMD COMPLETE bit */
296 writew_relaxed(0, &generic_comm_base->status);
297
298 pcc_ss_data->platform_owns_pcc = true;
299
300 /* Ring doorbell */
301 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
302 if (ret < 0) {
303 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
304 pcc_ss_id, cmd, ret);
305 goto end;
306 }
307
308 /* wait for completion and check for PCC errro bit */
309 ret = check_pcc_chan(pcc_ss_id, true);
310
311 if (pcc_ss_data->pcc_mrtt)
312 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
313
314 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
315 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
316 else
317 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
318
319end:
320 if (cmd == CMD_WRITE) {
321 if (unlikely(ret)) {
322 for_each_possible_cpu(i) {
323 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324
325 if (!desc)
326 continue;
327
328 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
329 desc->write_cmd_status = ret;
330 }
331 }
332 pcc_ss_data->pcc_write_cnt++;
333 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
334 }
335
336 return ret;
337}
338
339static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
340{
341 if (ret < 0)
342 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
343 *(u16 *)msg, ret);
344 else
345 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
346 *(u16 *)msg, ret);
347}
348
349static struct mbox_client cppc_mbox_cl = {
350 .tx_done = cppc_chan_tx_done,
351 .knows_txdone = true,
352};
353
354static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
355{
356 int result = -EFAULT;
357 acpi_status status = AE_OK;
358 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
359 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
360 struct acpi_buffer state = {0, NULL};
361 union acpi_object *psd = NULL;
362 struct acpi_psd_package *pdomain;
363
364 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
365 &buffer, ACPI_TYPE_PACKAGE);
366 if (status == AE_NOT_FOUND) /* _PSD is optional */
367 return 0;
368 if (ACPI_FAILURE(status))
369 return -ENODEV;
370
371 psd = buffer.pointer;
372 if (!psd || psd->package.count != 1) {
373 pr_debug("Invalid _PSD data\n");
374 goto end;
375 }
376
377 pdomain = &(cpc_ptr->domain_info);
378
379 state.length = sizeof(struct acpi_psd_package);
380 state.pointer = pdomain;
381
382 status = acpi_extract_package(&(psd->package.elements[0]),
383 &format, &state);
384 if (ACPI_FAILURE(status)) {
385 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
386 goto end;
387 }
388
389 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
390 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
391 goto end;
392 }
393
394 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
395 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
396 goto end;
397 }
398
399 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
400 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
401 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
402 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
403 goto end;
404 }
405
406 result = 0;
407end:
408 kfree(buffer.pointer);
409 return result;
410}
411
412bool acpi_cpc_valid(void)
413{
414 struct cpc_desc *cpc_ptr;
415 int cpu;
416
417 for_each_present_cpu(cpu) {
418 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
419 if (!cpc_ptr)
420 return false;
421 }
422
423 return true;
424}
425EXPORT_SYMBOL_GPL(acpi_cpc_valid);
426
427/**
428 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
429 * @cpu: Find all CPUs that share a domain with cpu.
430 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
431 *
432 * Return: 0 for success or negative value for err.
433 */
434int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
435{
436 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
437 struct acpi_psd_package *match_pdomain;
438 struct acpi_psd_package *pdomain;
439 int count_target, i;
440
441 /*
442 * Now that we have _PSD data from all CPUs, let's setup P-state
443 * domain info.
444 */
445 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
446 if (!cpc_ptr)
447 return -EFAULT;
448
449 pdomain = &(cpc_ptr->domain_info);
450 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
451 if (pdomain->num_processors <= 1)
452 return 0;
453
454 /* Validate the Domain info */
455 count_target = pdomain->num_processors;
456 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
457 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
458 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
459 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
460 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
461 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
462
463 for_each_possible_cpu(i) {
464 if (i == cpu)
465 continue;
466
467 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
468 if (!match_cpc_ptr)
469 goto err_fault;
470
471 match_pdomain = &(match_cpc_ptr->domain_info);
472 if (match_pdomain->domain != pdomain->domain)
473 continue;
474
475 /* Here i and cpu are in the same domain */
476 if (match_pdomain->num_processors != count_target)
477 goto err_fault;
478
479 if (pdomain->coord_type != match_pdomain->coord_type)
480 goto err_fault;
481
482 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
483 }
484
485 return 0;
486
487err_fault:
488 /* Assume no coordination on any error parsing domain info */
489 cpumask_clear(cpu_data->shared_cpu_map);
490 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
491 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
492
493 return -EFAULT;
494}
495EXPORT_SYMBOL_GPL(acpi_get_psd_map);
496
497static int register_pcc_channel(int pcc_ss_idx)
498{
499 struct pcc_mbox_chan *pcc_chan;
500 u64 usecs_lat;
501
502 if (pcc_ss_idx >= 0) {
503 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
504
505 if (IS_ERR(pcc_chan)) {
506 pr_err("Failed to find PCC channel for subspace %d\n",
507 pcc_ss_idx);
508 return -ENODEV;
509 }
510
511 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
512 /*
513 * cppc_ss->latency is just a Nominal value. In reality
514 * the remote processor could be much slower to reply.
515 * So add an arbitrary amount of wait on top of Nominal.
516 */
517 usecs_lat = NUM_RETRIES * pcc_chan->latency;
518 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
519 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
520 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
521 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
522
523 pcc_data[pcc_ss_idx]->pcc_comm_addr =
524 acpi_os_ioremap(pcc_chan->shmem_base_addr,
525 pcc_chan->shmem_size);
526 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
527 pr_err("Failed to ioremap PCC comm region mem for %d\n",
528 pcc_ss_idx);
529 return -ENOMEM;
530 }
531
532 /* Set flag so that we don't come here for each CPU. */
533 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
534 }
535
536 return 0;
537}
538
539/**
540 * cpc_ffh_supported() - check if FFH reading supported
541 *
542 * Check if the architecture has support for functional fixed hardware
543 * read/write capability.
544 *
545 * Return: true for supported, false for not supported
546 */
547bool __weak cpc_ffh_supported(void)
548{
549 return false;
550}
551
552/**
553 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
554 *
555 * Check and allocate the cppc_pcc_data memory.
556 * In some processor configurations it is possible that same subspace
557 * is shared between multiple CPUs. This is seen especially in CPUs
558 * with hardware multi-threading support.
559 *
560 * Return: 0 for success, errno for failure
561 */
562static int pcc_data_alloc(int pcc_ss_id)
563{
564 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
565 return -EINVAL;
566
567 if (pcc_data[pcc_ss_id]) {
568 pcc_data[pcc_ss_id]->refcount++;
569 } else {
570 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
571 GFP_KERNEL);
572 if (!pcc_data[pcc_ss_id])
573 return -ENOMEM;
574 pcc_data[pcc_ss_id]->refcount++;
575 }
576
577 return 0;
578}
579
580/* Check if CPPC revision + num_ent combination is supported */
581static bool is_cppc_supported(int revision, int num_ent)
582{
583 int expected_num_ent;
584
585 switch (revision) {
586 case CPPC_V2_REV:
587 expected_num_ent = CPPC_V2_NUM_ENT;
588 break;
589 case CPPC_V3_REV:
590 expected_num_ent = CPPC_V3_NUM_ENT;
591 break;
592 default:
593 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
594 revision);
595 return false;
596 }
597
598 if (expected_num_ent != num_ent) {
599 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
600 num_ent, expected_num_ent, revision);
601 return false;
602 }
603
604 return true;
605}
606
607/*
608 * An example CPC table looks like the following.
609 *
610 * Name (_CPC, Package() {
611 * 17, // NumEntries
612 * 1, // Revision
613 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
614 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
615 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
616 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
617 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
618 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
619 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
620 * ...
621 * ...
622 * ...
623 * }
624 * Each Register() encodes how to access that specific register.
625 * e.g. a sample PCC entry has the following encoding:
626 *
627 * Register (
628 * PCC, // AddressSpaceKeyword
629 * 8, // RegisterBitWidth
630 * 8, // RegisterBitOffset
631 * 0x30, // RegisterAddress
632 * 9, // AccessSize (subspace ID)
633 * )
634 */
635
636#ifndef init_freq_invariance_cppc
637static inline void init_freq_invariance_cppc(void) { }
638#endif
639
640/**
641 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
642 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
643 *
644 * Return: 0 for success or negative value for err.
645 */
646int acpi_cppc_processor_probe(struct acpi_processor *pr)
647{
648 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
649 union acpi_object *out_obj, *cpc_obj;
650 struct cpc_desc *cpc_ptr;
651 struct cpc_reg *gas_t;
652 struct device *cpu_dev;
653 acpi_handle handle = pr->handle;
654 unsigned int num_ent, i, cpc_rev;
655 int pcc_subspace_id = -1;
656 acpi_status status;
657 int ret = -EFAULT;
658
659 /* Parse the ACPI _CPC table for this CPU. */
660 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
661 ACPI_TYPE_PACKAGE);
662 if (ACPI_FAILURE(status)) {
663 ret = -ENODEV;
664 goto out_buf_free;
665 }
666
667 out_obj = (union acpi_object *) output.pointer;
668
669 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
670 if (!cpc_ptr) {
671 ret = -ENOMEM;
672 goto out_buf_free;
673 }
674
675 /* First entry is NumEntries. */
676 cpc_obj = &out_obj->package.elements[0];
677 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
678 num_ent = cpc_obj->integer.value;
679 } else {
680 pr_debug("Unexpected entry type(%d) for NumEntries\n",
681 cpc_obj->type);
682 goto out_free;
683 }
684 cpc_ptr->num_entries = num_ent;
685
686 /* Second entry should be revision. */
687 cpc_obj = &out_obj->package.elements[1];
688 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
689 cpc_rev = cpc_obj->integer.value;
690 } else {
691 pr_debug("Unexpected entry type(%d) for Revision\n",
692 cpc_obj->type);
693 goto out_free;
694 }
695 cpc_ptr->version = cpc_rev;
696
697 if (!is_cppc_supported(cpc_rev, num_ent))
698 goto out_free;
699
700 /* Iterate through remaining entries in _CPC */
701 for (i = 2; i < num_ent; i++) {
702 cpc_obj = &out_obj->package.elements[i];
703
704 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
706 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
707 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
708 gas_t = (struct cpc_reg *)
709 cpc_obj->buffer.pointer;
710
711 /*
712 * The PCC Subspace index is encoded inside
713 * the CPC table entries. The same PCC index
714 * will be used for all the PCC entries,
715 * so extract it only once.
716 */
717 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
718 if (pcc_subspace_id < 0) {
719 pcc_subspace_id = gas_t->access_width;
720 if (pcc_data_alloc(pcc_subspace_id))
721 goto out_free;
722 } else if (pcc_subspace_id != gas_t->access_width) {
723 pr_debug("Mismatched PCC ids.\n");
724 goto out_free;
725 }
726 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
727 if (gas_t->address) {
728 void __iomem *addr;
729
730 addr = ioremap(gas_t->address, gas_t->bit_width/8);
731 if (!addr)
732 goto out_free;
733 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
734 }
735 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
736 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
737 /*
738 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
739 * SystemIO doesn't implement 64-bit
740 * registers.
741 */
742 pr_debug("Invalid access width %d for SystemIO register\n",
743 gas_t->access_width);
744 goto out_free;
745 }
746 if (gas_t->address & OVER_16BTS_MASK) {
747 /* SystemIO registers use 16-bit integer addresses */
748 pr_debug("Invalid IO port %llu for SystemIO register\n",
749 gas_t->address);
750 goto out_free;
751 }
752 } else {
753 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
754 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
755 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
756 goto out_free;
757 }
758 }
759
760 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
761 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
762 } else {
763 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
764 goto out_free;
765 }
766 }
767 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
768
769 /*
770 * Initialize the remaining cpc_regs as unsupported.
771 * Example: In case FW exposes CPPC v2, the below loop will initialize
772 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
773 */
774 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
775 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
776 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
777 }
778
779
780 /* Store CPU Logical ID */
781 cpc_ptr->cpu_id = pr->id;
782
783 /* Parse PSD data for this CPU */
784 ret = acpi_get_psd(cpc_ptr, handle);
785 if (ret)
786 goto out_free;
787
788 /* Register PCC channel once for all PCC subspace ID. */
789 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
790 ret = register_pcc_channel(pcc_subspace_id);
791 if (ret)
792 goto out_free;
793
794 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
795 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
796 }
797
798 /* Everything looks okay */
799 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
800
801 /* Add per logical CPU nodes for reading its feedback counters. */
802 cpu_dev = get_cpu_device(pr->id);
803 if (!cpu_dev) {
804 ret = -EINVAL;
805 goto out_free;
806 }
807
808 /* Plug PSD data into this CPU's CPC descriptor. */
809 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
810
811 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
812 "acpi_cppc");
813 if (ret) {
814 per_cpu(cpc_desc_ptr, pr->id) = NULL;
815 kobject_put(&cpc_ptr->kobj);
816 goto out_free;
817 }
818
819 init_freq_invariance_cppc();
820
821 kfree(output.pointer);
822 return 0;
823
824out_free:
825 /* Free all the mapped sys mem areas for this CPU */
826 for (i = 2; i < cpc_ptr->num_entries; i++) {
827 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
828
829 if (addr)
830 iounmap(addr);
831 }
832 kfree(cpc_ptr);
833
834out_buf_free:
835 kfree(output.pointer);
836 return ret;
837}
838EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
839
840/**
841 * acpi_cppc_processor_exit - Cleanup CPC structs.
842 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
843 *
844 * Return: Void
845 */
846void acpi_cppc_processor_exit(struct acpi_processor *pr)
847{
848 struct cpc_desc *cpc_ptr;
849 unsigned int i;
850 void __iomem *addr;
851 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
852
853 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
854 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
855 pcc_data[pcc_ss_id]->refcount--;
856 if (!pcc_data[pcc_ss_id]->refcount) {
857 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
858 kfree(pcc_data[pcc_ss_id]);
859 pcc_data[pcc_ss_id] = NULL;
860 }
861 }
862 }
863
864 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
865 if (!cpc_ptr)
866 return;
867
868 /* Free all the mapped sys mem areas for this CPU */
869 for (i = 2; i < cpc_ptr->num_entries; i++) {
870 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
871 if (addr)
872 iounmap(addr);
873 }
874
875 kobject_put(&cpc_ptr->kobj);
876 kfree(cpc_ptr);
877}
878EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
879
880/**
881 * cpc_read_ffh() - Read FFH register
882 * @cpunum: CPU number to read
883 * @reg: cppc register information
884 * @val: place holder for return value
885 *
886 * Read bit_width bits from a specified address and bit_offset
887 *
888 * Return: 0 for success and error code
889 */
890int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
891{
892 return -ENOTSUPP;
893}
894
895/**
896 * cpc_write_ffh() - Write FFH register
897 * @cpunum: CPU number to write
898 * @reg: cppc register information
899 * @val: value to write
900 *
901 * Write value of bit_width bits to a specified address and bit_offset
902 *
903 * Return: 0 for success and error code
904 */
905int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
906{
907 return -ENOTSUPP;
908}
909
910/*
911 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
912 * as fast as possible. We have already mapped the PCC subspace during init, so
913 * we can directly write to it.
914 */
915
916static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
917{
918 void __iomem *vaddr = NULL;
919 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
920 struct cpc_reg *reg = ®_res->cpc_entry.reg;
921
922 if (reg_res->type == ACPI_TYPE_INTEGER) {
923 *val = reg_res->cpc_entry.int_value;
924 return 0;
925 }
926
927 *val = 0;
928
929 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
930 u32 width = 8 << (reg->access_width - 1);
931 u32 val_u32;
932 acpi_status status;
933
934 status = acpi_os_read_port((acpi_io_address)reg->address,
935 &val_u32, width);
936 if (ACPI_FAILURE(status)) {
937 pr_debug("Error: Failed to read SystemIO port %llx\n",
938 reg->address);
939 return -EFAULT;
940 }
941
942 *val = val_u32;
943 return 0;
944 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
945 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
946 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
947 vaddr = reg_res->sys_mem_vaddr;
948 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
949 return cpc_read_ffh(cpu, reg, val);
950 else
951 return acpi_os_read_memory((acpi_physical_address)reg->address,
952 val, reg->bit_width);
953
954 switch (reg->bit_width) {
955 case 8:
956 *val = readb_relaxed(vaddr);
957 break;
958 case 16:
959 *val = readw_relaxed(vaddr);
960 break;
961 case 32:
962 *val = readl_relaxed(vaddr);
963 break;
964 case 64:
965 *val = readq_relaxed(vaddr);
966 break;
967 default:
968 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
969 reg->bit_width, pcc_ss_id);
970 return -EFAULT;
971 }
972
973 return 0;
974}
975
976static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
977{
978 int ret_val = 0;
979 void __iomem *vaddr = NULL;
980 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
981 struct cpc_reg *reg = ®_res->cpc_entry.reg;
982
983 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
984 u32 width = 8 << (reg->access_width - 1);
985 acpi_status status;
986
987 status = acpi_os_write_port((acpi_io_address)reg->address,
988 (u32)val, width);
989 if (ACPI_FAILURE(status)) {
990 pr_debug("Error: Failed to write SystemIO port %llx\n",
991 reg->address);
992 return -EFAULT;
993 }
994
995 return 0;
996 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
997 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
998 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
999 vaddr = reg_res->sys_mem_vaddr;
1000 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1001 return cpc_write_ffh(cpu, reg, val);
1002 else
1003 return acpi_os_write_memory((acpi_physical_address)reg->address,
1004 val, reg->bit_width);
1005
1006 switch (reg->bit_width) {
1007 case 8:
1008 writeb_relaxed(val, vaddr);
1009 break;
1010 case 16:
1011 writew_relaxed(val, vaddr);
1012 break;
1013 case 32:
1014 writel_relaxed(val, vaddr);
1015 break;
1016 case 64:
1017 writeq_relaxed(val, vaddr);
1018 break;
1019 default:
1020 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1021 reg->bit_width, pcc_ss_id);
1022 ret_val = -EFAULT;
1023 break;
1024 }
1025
1026 return ret_val;
1027}
1028
1029static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1030{
1031 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1032 struct cpc_register_resource *reg;
1033
1034 if (!cpc_desc) {
1035 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1036 return -ENODEV;
1037 }
1038
1039 reg = &cpc_desc->cpc_regs[reg_idx];
1040
1041 if (CPC_IN_PCC(reg)) {
1042 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1043 struct cppc_pcc_data *pcc_ss_data = NULL;
1044 int ret = 0;
1045
1046 if (pcc_ss_id < 0)
1047 return -EIO;
1048
1049 pcc_ss_data = pcc_data[pcc_ss_id];
1050
1051 down_write(&pcc_ss_data->pcc_lock);
1052
1053 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1054 cpc_read(cpunum, reg, perf);
1055 else
1056 ret = -EIO;
1057
1058 up_write(&pcc_ss_data->pcc_lock);
1059
1060 return ret;
1061 }
1062
1063 cpc_read(cpunum, reg, perf);
1064
1065 return 0;
1066}
1067
1068/**
1069 * cppc_get_desired_perf - Get the desired performance register value.
1070 * @cpunum: CPU from which to get desired performance.
1071 * @desired_perf: Return address.
1072 *
1073 * Return: 0 for success, -EIO otherwise.
1074 */
1075int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1076{
1077 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1078}
1079EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1080
1081/**
1082 * cppc_get_nominal_perf - Get the nominal performance register value.
1083 * @cpunum: CPU from which to get nominal performance.
1084 * @nominal_perf: Return address.
1085 *
1086 * Return: 0 for success, -EIO otherwise.
1087 */
1088int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1089{
1090 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1091}
1092
1093/**
1094 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1095 * @cpunum: CPU from which to get capabilities info.
1096 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1097 *
1098 * Return: 0 for success with perf_caps populated else -ERRNO.
1099 */
1100int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1101{
1102 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1103 struct cpc_register_resource *highest_reg, *lowest_reg,
1104 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1105 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1106 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1107 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1108 struct cppc_pcc_data *pcc_ss_data = NULL;
1109 int ret = 0, regs_in_pcc = 0;
1110
1111 if (!cpc_desc) {
1112 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1113 return -ENODEV;
1114 }
1115
1116 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1117 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1118 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1119 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1120 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1121 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1122 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1123
1124 /* Are any of the regs PCC ?*/
1125 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1126 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1127 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1128 if (pcc_ss_id < 0) {
1129 pr_debug("Invalid pcc_ss_id\n");
1130 return -ENODEV;
1131 }
1132 pcc_ss_data = pcc_data[pcc_ss_id];
1133 regs_in_pcc = 1;
1134 down_write(&pcc_ss_data->pcc_lock);
1135 /* Ring doorbell once to update PCC subspace */
1136 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1137 ret = -EIO;
1138 goto out_err;
1139 }
1140 }
1141
1142 cpc_read(cpunum, highest_reg, &high);
1143 perf_caps->highest_perf = high;
1144
1145 cpc_read(cpunum, lowest_reg, &low);
1146 perf_caps->lowest_perf = low;
1147
1148 cpc_read(cpunum, nominal_reg, &nom);
1149 perf_caps->nominal_perf = nom;
1150
1151 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1152 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1153 perf_caps->guaranteed_perf = 0;
1154 } else {
1155 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1156 perf_caps->guaranteed_perf = guaranteed;
1157 }
1158
1159 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1160 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1161
1162 if (!high || !low || !nom || !min_nonlinear)
1163 ret = -EFAULT;
1164
1165 /* Read optional lowest and nominal frequencies if present */
1166 if (CPC_SUPPORTED(low_freq_reg))
1167 cpc_read(cpunum, low_freq_reg, &low_f);
1168
1169 if (CPC_SUPPORTED(nom_freq_reg))
1170 cpc_read(cpunum, nom_freq_reg, &nom_f);
1171
1172 perf_caps->lowest_freq = low_f;
1173 perf_caps->nominal_freq = nom_f;
1174
1175
1176out_err:
1177 if (regs_in_pcc)
1178 up_write(&pcc_ss_data->pcc_lock);
1179 return ret;
1180}
1181EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1182
1183/**
1184 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1185 * @cpunum: CPU from which to read counters.
1186 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1187 *
1188 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1189 */
1190int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1191{
1192 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1193 struct cpc_register_resource *delivered_reg, *reference_reg,
1194 *ref_perf_reg, *ctr_wrap_reg;
1195 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1196 struct cppc_pcc_data *pcc_ss_data = NULL;
1197 u64 delivered, reference, ref_perf, ctr_wrap_time;
1198 int ret = 0, regs_in_pcc = 0;
1199
1200 if (!cpc_desc) {
1201 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1202 return -ENODEV;
1203 }
1204
1205 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1206 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1207 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1208 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1209
1210 /*
1211 * If reference perf register is not supported then we should
1212 * use the nominal perf value
1213 */
1214 if (!CPC_SUPPORTED(ref_perf_reg))
1215 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1216
1217 /* Are any of the regs PCC ?*/
1218 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1219 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1220 if (pcc_ss_id < 0) {
1221 pr_debug("Invalid pcc_ss_id\n");
1222 return -ENODEV;
1223 }
1224 pcc_ss_data = pcc_data[pcc_ss_id];
1225 down_write(&pcc_ss_data->pcc_lock);
1226 regs_in_pcc = 1;
1227 /* Ring doorbell once to update PCC subspace */
1228 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1229 ret = -EIO;
1230 goto out_err;
1231 }
1232 }
1233
1234 cpc_read(cpunum, delivered_reg, &delivered);
1235 cpc_read(cpunum, reference_reg, &reference);
1236 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1237
1238 /*
1239 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1240 * performance counters are assumed to never wrap during the lifetime of
1241 * platform
1242 */
1243 ctr_wrap_time = (u64)(~((u64)0));
1244 if (CPC_SUPPORTED(ctr_wrap_reg))
1245 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1246
1247 if (!delivered || !reference || !ref_perf) {
1248 ret = -EFAULT;
1249 goto out_err;
1250 }
1251
1252 perf_fb_ctrs->delivered = delivered;
1253 perf_fb_ctrs->reference = reference;
1254 perf_fb_ctrs->reference_perf = ref_perf;
1255 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1256out_err:
1257 if (regs_in_pcc)
1258 up_write(&pcc_ss_data->pcc_lock);
1259 return ret;
1260}
1261EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1262
1263/**
1264 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1265 * Continuous Performance Control package EnableRegister field.
1266 * @cpu: CPU for which to enable CPPC register.
1267 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1268 *
1269 * Return: 0 for success, -ERRNO or -EIO otherwise.
1270 */
1271int cppc_set_enable(int cpu, bool enable)
1272{
1273 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1274 struct cpc_register_resource *enable_reg;
1275 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1276 struct cppc_pcc_data *pcc_ss_data = NULL;
1277 int ret = -EINVAL;
1278
1279 if (!cpc_desc) {
1280 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1281 return -EINVAL;
1282 }
1283
1284 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1285
1286 if (CPC_IN_PCC(enable_reg)) {
1287
1288 if (pcc_ss_id < 0)
1289 return -EIO;
1290
1291 ret = cpc_write(cpu, enable_reg, enable);
1292 if (ret)
1293 return ret;
1294
1295 pcc_ss_data = pcc_data[pcc_ss_id];
1296
1297 down_write(&pcc_ss_data->pcc_lock);
1298 /* after writing CPC, transfer the ownership of PCC to platfrom */
1299 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1300 up_write(&pcc_ss_data->pcc_lock);
1301 return ret;
1302 }
1303
1304 return cpc_write(cpu, enable_reg, enable);
1305}
1306EXPORT_SYMBOL_GPL(cppc_set_enable);
1307
1308/**
1309 * cppc_set_perf - Set a CPU's performance controls.
1310 * @cpu: CPU for which to set performance controls.
1311 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1312 *
1313 * Return: 0 for success, -ERRNO otherwise.
1314 */
1315int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1316{
1317 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1318 struct cpc_register_resource *desired_reg;
1319 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1320 struct cppc_pcc_data *pcc_ss_data = NULL;
1321 int ret = 0;
1322
1323 if (!cpc_desc) {
1324 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1325 return -ENODEV;
1326 }
1327
1328 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1329
1330 /*
1331 * This is Phase-I where we want to write to CPC registers
1332 * -> We want all CPUs to be able to execute this phase in parallel
1333 *
1334 * Since read_lock can be acquired by multiple CPUs simultaneously we
1335 * achieve that goal here
1336 */
1337 if (CPC_IN_PCC(desired_reg)) {
1338 if (pcc_ss_id < 0) {
1339 pr_debug("Invalid pcc_ss_id\n");
1340 return -ENODEV;
1341 }
1342 pcc_ss_data = pcc_data[pcc_ss_id];
1343 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1344 if (pcc_ss_data->platform_owns_pcc) {
1345 ret = check_pcc_chan(pcc_ss_id, false);
1346 if (ret) {
1347 up_read(&pcc_ss_data->pcc_lock);
1348 return ret;
1349 }
1350 }
1351 /*
1352 * Update the pending_write to make sure a PCC CMD_READ will not
1353 * arrive and steal the channel during the switch to write lock
1354 */
1355 pcc_ss_data->pending_pcc_write_cmd = true;
1356 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1357 cpc_desc->write_cmd_status = 0;
1358 }
1359
1360 /*
1361 * Skip writing MIN/MAX until Linux knows how to come up with
1362 * useful values.
1363 */
1364 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1365
1366 if (CPC_IN_PCC(desired_reg))
1367 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1368 /*
1369 * This is Phase-II where we transfer the ownership of PCC to Platform
1370 *
1371 * Short Summary: Basically if we think of a group of cppc_set_perf
1372 * requests that happened in short overlapping interval. The last CPU to
1373 * come out of Phase-I will enter Phase-II and ring the doorbell.
1374 *
1375 * We have the following requirements for Phase-II:
1376 * 1. We want to execute Phase-II only when there are no CPUs
1377 * currently executing in Phase-I
1378 * 2. Once we start Phase-II we want to avoid all other CPUs from
1379 * entering Phase-I.
1380 * 3. We want only one CPU among all those who went through Phase-I
1381 * to run phase-II
1382 *
1383 * If write_trylock fails to get the lock and doesn't transfer the
1384 * PCC ownership to the platform, then one of the following will be TRUE
1385 * 1. There is at-least one CPU in Phase-I which will later execute
1386 * write_trylock, so the CPUs in Phase-I will be responsible for
1387 * executing the Phase-II.
1388 * 2. Some other CPU has beaten this CPU to successfully execute the
1389 * write_trylock and has already acquired the write_lock. We know for a
1390 * fact it (other CPU acquiring the write_lock) couldn't have happened
1391 * before this CPU's Phase-I as we held the read_lock.
1392 * 3. Some other CPU executing pcc CMD_READ has stolen the
1393 * down_write, in which case, send_pcc_cmd will check for pending
1394 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1395 * So this CPU can be certain that its request will be delivered
1396 * So in all cases, this CPU knows that its request will be delivered
1397 * by another CPU and can return
1398 *
1399 * After getting the down_write we still need to check for
1400 * pending_pcc_write_cmd to take care of the following scenario
1401 * The thread running this code could be scheduled out between
1402 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1403 * could have delivered the request to Platform by triggering the
1404 * doorbell and transferred the ownership of PCC to platform. So this
1405 * avoids triggering an unnecessary doorbell and more importantly before
1406 * triggering the doorbell it makes sure that the PCC channel ownership
1407 * is still with OSPM.
1408 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1409 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1410 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1411 * case during a CMD_READ and if there are pending writes it delivers
1412 * the write command before servicing the read command
1413 */
1414 if (CPC_IN_PCC(desired_reg)) {
1415 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1416 /* Update only if there are pending write commands */
1417 if (pcc_ss_data->pending_pcc_write_cmd)
1418 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1419 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1420 } else
1421 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1422 wait_event(pcc_ss_data->pcc_write_wait_q,
1423 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1424
1425 /* send_pcc_cmd updates the status in case of failure */
1426 ret = cpc_desc->write_cmd_status;
1427 }
1428 return ret;
1429}
1430EXPORT_SYMBOL_GPL(cppc_set_perf);
1431
1432/**
1433 * cppc_get_transition_latency - returns frequency transition latency in ns
1434 *
1435 * ACPI CPPC does not explicitly specify how a platform can specify the
1436 * transition latency for performance change requests. The closest we have
1437 * is the timing information from the PCCT tables which provides the info
1438 * on the number and frequency of PCC commands the platform can handle.
1439 */
1440unsigned int cppc_get_transition_latency(int cpu_num)
1441{
1442 /*
1443 * Expected transition latency is based on the PCCT timing values
1444 * Below are definition from ACPI spec:
1445 * pcc_nominal- Expected latency to process a command, in microseconds
1446 * pcc_mpar - The maximum number of periodic requests that the subspace
1447 * channel can support, reported in commands per minute. 0
1448 * indicates no limitation.
1449 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1450 * completion of a command before issuing the next command,
1451 * in microseconds.
1452 */
1453 unsigned int latency_ns = 0;
1454 struct cpc_desc *cpc_desc;
1455 struct cpc_register_resource *desired_reg;
1456 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1457 struct cppc_pcc_data *pcc_ss_data;
1458
1459 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1460 if (!cpc_desc)
1461 return CPUFREQ_ETERNAL;
1462
1463 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1464 if (!CPC_IN_PCC(desired_reg))
1465 return CPUFREQ_ETERNAL;
1466
1467 if (pcc_ss_id < 0)
1468 return CPUFREQ_ETERNAL;
1469
1470 pcc_ss_data = pcc_data[pcc_ss_id];
1471 if (pcc_ss_data->pcc_mpar)
1472 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1473
1474 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1475 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1476
1477 return latency_ns;
1478}
1479EXPORT_SYMBOL_GPL(cppc_get_transition_latency);