at v5.17-rc8 21 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_BITMAP_H 3#define __LINUX_BITMAP_H 4 5#ifndef __ASSEMBLY__ 6 7#include <linux/align.h> 8#include <linux/bitops.h> 9#include <linux/find.h> 10#include <linux/limits.h> 11#include <linux/string.h> 12#include <linux/types.h> 13 14struct device; 15 16/* 17 * bitmaps provide bit arrays that consume one or more unsigned 18 * longs. The bitmap interface and available operations are listed 19 * here, in bitmap.h 20 * 21 * Function implementations generic to all architectures are in 22 * lib/bitmap.c. Functions implementations that are architecture 23 * specific are in various include/asm-<arch>/bitops.h headers 24 * and other arch/<arch> specific files. 25 * 26 * See lib/bitmap.c for more details. 27 */ 28 29/** 30 * DOC: bitmap overview 31 * 32 * The available bitmap operations and their rough meaning in the 33 * case that the bitmap is a single unsigned long are thus: 34 * 35 * The generated code is more efficient when nbits is known at 36 * compile-time and at most BITS_PER_LONG. 37 * 38 * :: 39 * 40 * bitmap_zero(dst, nbits) *dst = 0UL 41 * bitmap_fill(dst, nbits) *dst = ~0UL 42 * bitmap_copy(dst, src, nbits) *dst = *src 43 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 44 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 45 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 46 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) 47 * bitmap_complement(dst, src, nbits) *dst = ~(*src) 48 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? 49 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? 50 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? 51 * bitmap_empty(src, nbits) Are all bits zero in *src? 52 * bitmap_full(src, nbits) Are all bits set in *src? 53 * bitmap_weight(src, nbits) Hamming Weight: number set bits 54 * bitmap_set(dst, pos, nbits) Set specified bit area 55 * bitmap_clear(dst, pos, nbits) Clear specified bit area 56 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area 57 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above 58 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n 59 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n 60 * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest 61 * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) 62 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) 63 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) 64 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap 65 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz 66 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf 67 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf 68 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf 69 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf 70 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region 71 * bitmap_release_region(bitmap, pos, order) Free specified bit region 72 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region 73 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst 74 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst 75 * bitmap_get_value8(map, start) Get 8bit value from map at start 76 * bitmap_set_value8(map, value, start) Set 8bit value to map at start 77 * 78 * Note, bitmap_zero() and bitmap_fill() operate over the region of 79 * unsigned longs, that is, bits behind bitmap till the unsigned long 80 * boundary will be zeroed or filled as well. Consider to use 81 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling 82 * respectively. 83 */ 84 85/** 86 * DOC: bitmap bitops 87 * 88 * Also the following operations in asm/bitops.h apply to bitmaps.:: 89 * 90 * set_bit(bit, addr) *addr |= bit 91 * clear_bit(bit, addr) *addr &= ~bit 92 * change_bit(bit, addr) *addr ^= bit 93 * test_bit(bit, addr) Is bit set in *addr? 94 * test_and_set_bit(bit, addr) Set bit and return old value 95 * test_and_clear_bit(bit, addr) Clear bit and return old value 96 * test_and_change_bit(bit, addr) Change bit and return old value 97 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr 98 * find_first_bit(addr, nbits) Position first set bit in *addr 99 * find_next_zero_bit(addr, nbits, bit) 100 * Position next zero bit in *addr >= bit 101 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit 102 * find_next_and_bit(addr1, addr2, nbits, bit) 103 * Same as find_next_bit, but in 104 * (*addr1 & *addr2) 105 * 106 */ 107 108/** 109 * DOC: declare bitmap 110 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used 111 * to declare an array named 'name' of just enough unsigned longs to 112 * contain all bit positions from 0 to 'bits' - 1. 113 */ 114 115/* 116 * Allocation and deallocation of bitmap. 117 * Provided in lib/bitmap.c to avoid circular dependency. 118 */ 119unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); 120unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); 121unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node); 122unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node); 123void bitmap_free(const unsigned long *bitmap); 124 125/* Managed variants of the above. */ 126unsigned long *devm_bitmap_alloc(struct device *dev, 127 unsigned int nbits, gfp_t flags); 128unsigned long *devm_bitmap_zalloc(struct device *dev, 129 unsigned int nbits, gfp_t flags); 130 131/* 132 * lib/bitmap.c provides these functions: 133 */ 134 135int __bitmap_equal(const unsigned long *bitmap1, 136 const unsigned long *bitmap2, unsigned int nbits); 137bool __pure __bitmap_or_equal(const unsigned long *src1, 138 const unsigned long *src2, 139 const unsigned long *src3, 140 unsigned int nbits); 141void __bitmap_complement(unsigned long *dst, const unsigned long *src, 142 unsigned int nbits); 143void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 144 unsigned int shift, unsigned int nbits); 145void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 146 unsigned int shift, unsigned int nbits); 147void bitmap_cut(unsigned long *dst, const unsigned long *src, 148 unsigned int first, unsigned int cut, unsigned int nbits); 149int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 150 const unsigned long *bitmap2, unsigned int nbits); 151void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 152 const unsigned long *bitmap2, unsigned int nbits); 153void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 154 const unsigned long *bitmap2, unsigned int nbits); 155int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 156 const unsigned long *bitmap2, unsigned int nbits); 157void __bitmap_replace(unsigned long *dst, 158 const unsigned long *old, const unsigned long *new, 159 const unsigned long *mask, unsigned int nbits); 160int __bitmap_intersects(const unsigned long *bitmap1, 161 const unsigned long *bitmap2, unsigned int nbits); 162int __bitmap_subset(const unsigned long *bitmap1, 163 const unsigned long *bitmap2, unsigned int nbits); 164int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); 165void __bitmap_set(unsigned long *map, unsigned int start, int len); 166void __bitmap_clear(unsigned long *map, unsigned int start, int len); 167 168unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 169 unsigned long size, 170 unsigned long start, 171 unsigned int nr, 172 unsigned long align_mask, 173 unsigned long align_offset); 174 175/** 176 * bitmap_find_next_zero_area - find a contiguous aligned zero area 177 * @map: The address to base the search on 178 * @size: The bitmap size in bits 179 * @start: The bitnumber to start searching at 180 * @nr: The number of zeroed bits we're looking for 181 * @align_mask: Alignment mask for zero area 182 * 183 * The @align_mask should be one less than a power of 2; the effect is that 184 * the bit offset of all zero areas this function finds is multiples of that 185 * power of 2. A @align_mask of 0 means no alignment is required. 186 */ 187static inline unsigned long 188bitmap_find_next_zero_area(unsigned long *map, 189 unsigned long size, 190 unsigned long start, 191 unsigned int nr, 192 unsigned long align_mask) 193{ 194 return bitmap_find_next_zero_area_off(map, size, start, nr, 195 align_mask, 0); 196} 197 198int bitmap_parse(const char *buf, unsigned int buflen, 199 unsigned long *dst, int nbits); 200int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, 201 unsigned long *dst, int nbits); 202int bitmap_parselist(const char *buf, unsigned long *maskp, 203 int nmaskbits); 204int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, 205 unsigned long *dst, int nbits); 206void bitmap_remap(unsigned long *dst, const unsigned long *src, 207 const unsigned long *old, const unsigned long *new, unsigned int nbits); 208int bitmap_bitremap(int oldbit, 209 const unsigned long *old, const unsigned long *new, int bits); 210void bitmap_onto(unsigned long *dst, const unsigned long *orig, 211 const unsigned long *relmap, unsigned int bits); 212void bitmap_fold(unsigned long *dst, const unsigned long *orig, 213 unsigned int sz, unsigned int nbits); 214int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); 215void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); 216int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); 217 218#ifdef __BIG_ENDIAN 219void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); 220#else 221#define bitmap_copy_le bitmap_copy 222#endif 223unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); 224int bitmap_print_to_pagebuf(bool list, char *buf, 225 const unsigned long *maskp, int nmaskbits); 226 227extern int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, 228 int nmaskbits, loff_t off, size_t count); 229 230extern int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, 231 int nmaskbits, loff_t off, size_t count); 232 233#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) 234#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) 235 236static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) 237{ 238 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 239 memset(dst, 0, len); 240} 241 242static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) 243{ 244 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 245 memset(dst, 0xff, len); 246} 247 248static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, 249 unsigned int nbits) 250{ 251 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 252 memcpy(dst, src, len); 253} 254 255/* 256 * Copy bitmap and clear tail bits in last word. 257 */ 258static inline void bitmap_copy_clear_tail(unsigned long *dst, 259 const unsigned long *src, unsigned int nbits) 260{ 261 bitmap_copy(dst, src, nbits); 262 if (nbits % BITS_PER_LONG) 263 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); 264} 265 266/* 267 * On 32-bit systems bitmaps are represented as u32 arrays internally, and 268 * therefore conversion is not needed when copying data from/to arrays of u32. 269 */ 270#if BITS_PER_LONG == 64 271void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, 272 unsigned int nbits); 273void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, 274 unsigned int nbits); 275#else 276#define bitmap_from_arr32(bitmap, buf, nbits) \ 277 bitmap_copy_clear_tail((unsigned long *) (bitmap), \ 278 (const unsigned long *) (buf), (nbits)) 279#define bitmap_to_arr32(buf, bitmap, nbits) \ 280 bitmap_copy_clear_tail((unsigned long *) (buf), \ 281 (const unsigned long *) (bitmap), (nbits)) 282#endif 283 284static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, 285 const unsigned long *src2, unsigned int nbits) 286{ 287 if (small_const_nbits(nbits)) 288 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; 289 return __bitmap_and(dst, src1, src2, nbits); 290} 291 292static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, 293 const unsigned long *src2, unsigned int nbits) 294{ 295 if (small_const_nbits(nbits)) 296 *dst = *src1 | *src2; 297 else 298 __bitmap_or(dst, src1, src2, nbits); 299} 300 301static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, 302 const unsigned long *src2, unsigned int nbits) 303{ 304 if (small_const_nbits(nbits)) 305 *dst = *src1 ^ *src2; 306 else 307 __bitmap_xor(dst, src1, src2, nbits); 308} 309 310static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, 311 const unsigned long *src2, unsigned int nbits) 312{ 313 if (small_const_nbits(nbits)) 314 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 315 return __bitmap_andnot(dst, src1, src2, nbits); 316} 317 318static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, 319 unsigned int nbits) 320{ 321 if (small_const_nbits(nbits)) 322 *dst = ~(*src); 323 else 324 __bitmap_complement(dst, src, nbits); 325} 326 327#ifdef __LITTLE_ENDIAN 328#define BITMAP_MEM_ALIGNMENT 8 329#else 330#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) 331#endif 332#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) 333 334static inline int bitmap_equal(const unsigned long *src1, 335 const unsigned long *src2, unsigned int nbits) 336{ 337 if (small_const_nbits(nbits)) 338 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); 339 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && 340 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 341 return !memcmp(src1, src2, nbits / 8); 342 return __bitmap_equal(src1, src2, nbits); 343} 344 345/** 346 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third 347 * @src1: Pointer to bitmap 1 348 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 349 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 350 * @nbits: number of bits in each of these bitmaps 351 * 352 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise 353 */ 354static inline bool bitmap_or_equal(const unsigned long *src1, 355 const unsigned long *src2, 356 const unsigned long *src3, 357 unsigned int nbits) 358{ 359 if (!small_const_nbits(nbits)) 360 return __bitmap_or_equal(src1, src2, src3, nbits); 361 362 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); 363} 364 365static inline int bitmap_intersects(const unsigned long *src1, 366 const unsigned long *src2, unsigned int nbits) 367{ 368 if (small_const_nbits(nbits)) 369 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 370 else 371 return __bitmap_intersects(src1, src2, nbits); 372} 373 374static inline int bitmap_subset(const unsigned long *src1, 375 const unsigned long *src2, unsigned int nbits) 376{ 377 if (small_const_nbits(nbits)) 378 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); 379 else 380 return __bitmap_subset(src1, src2, nbits); 381} 382 383static inline bool bitmap_empty(const unsigned long *src, unsigned nbits) 384{ 385 if (small_const_nbits(nbits)) 386 return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); 387 388 return find_first_bit(src, nbits) == nbits; 389} 390 391static inline bool bitmap_full(const unsigned long *src, unsigned int nbits) 392{ 393 if (small_const_nbits(nbits)) 394 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); 395 396 return find_first_zero_bit(src, nbits) == nbits; 397} 398 399static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) 400{ 401 if (small_const_nbits(nbits)) 402 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); 403 return __bitmap_weight(src, nbits); 404} 405 406static __always_inline void bitmap_set(unsigned long *map, unsigned int start, 407 unsigned int nbits) 408{ 409 if (__builtin_constant_p(nbits) && nbits == 1) 410 __set_bit(start, map); 411 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 412 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 413 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 414 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 415 memset((char *)map + start / 8, 0xff, nbits / 8); 416 else 417 __bitmap_set(map, start, nbits); 418} 419 420static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, 421 unsigned int nbits) 422{ 423 if (__builtin_constant_p(nbits) && nbits == 1) 424 __clear_bit(start, map); 425 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 426 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 427 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 428 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 429 memset((char *)map + start / 8, 0, nbits / 8); 430 else 431 __bitmap_clear(map, start, nbits); 432} 433 434static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, 435 unsigned int shift, unsigned int nbits) 436{ 437 if (small_const_nbits(nbits)) 438 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; 439 else 440 __bitmap_shift_right(dst, src, shift, nbits); 441} 442 443static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, 444 unsigned int shift, unsigned int nbits) 445{ 446 if (small_const_nbits(nbits)) 447 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); 448 else 449 __bitmap_shift_left(dst, src, shift, nbits); 450} 451 452static inline void bitmap_replace(unsigned long *dst, 453 const unsigned long *old, 454 const unsigned long *new, 455 const unsigned long *mask, 456 unsigned int nbits) 457{ 458 if (small_const_nbits(nbits)) 459 *dst = (*old & ~(*mask)) | (*new & *mask); 460 else 461 __bitmap_replace(dst, old, new, mask, nbits); 462} 463 464static inline void bitmap_next_set_region(unsigned long *bitmap, 465 unsigned int *rs, unsigned int *re, 466 unsigned int end) 467{ 468 *rs = find_next_bit(bitmap, end, *rs); 469 *re = find_next_zero_bit(bitmap, end, *rs + 1); 470} 471 472/** 473 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. 474 * @n: u64 value 475 * 476 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit 477 * integers in 32-bit environment, and 64-bit integers in 64-bit one. 478 * 479 * There are four combinations of endianness and length of the word in linux 480 * ABIs: LE64, BE64, LE32 and BE32. 481 * 482 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in 483 * bitmaps and therefore don't require any special handling. 484 * 485 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory 486 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the 487 * other hand is represented as an array of 32-bit words and the position of 488 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that 489 * word. For example, bit #42 is located at 10th position of 2nd word. 490 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit 491 * values in memory as it usually does. But for BE we need to swap hi and lo 492 * words manually. 493 * 494 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and 495 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps 496 * hi and lo words, as is expected by bitmap. 497 */ 498#if __BITS_PER_LONG == 64 499#define BITMAP_FROM_U64(n) (n) 500#else 501#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ 502 ((unsigned long) ((u64)(n) >> 32)) 503#endif 504 505/** 506 * bitmap_from_u64 - Check and swap words within u64. 507 * @mask: source bitmap 508 * @dst: destination bitmap 509 * 510 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` 511 * to read u64 mask, we will get the wrong word. 512 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, 513 * but we expect the lower 32-bits of u64. 514 */ 515static inline void bitmap_from_u64(unsigned long *dst, u64 mask) 516{ 517 dst[0] = mask & ULONG_MAX; 518 519 if (sizeof(mask) > sizeof(unsigned long)) 520 dst[1] = mask >> 32; 521} 522 523/** 524 * bitmap_get_value8 - get an 8-bit value within a memory region 525 * @map: address to the bitmap memory region 526 * @start: bit offset of the 8-bit value; must be a multiple of 8 527 * 528 * Returns the 8-bit value located at the @start bit offset within the @src 529 * memory region. 530 */ 531static inline unsigned long bitmap_get_value8(const unsigned long *map, 532 unsigned long start) 533{ 534 const size_t index = BIT_WORD(start); 535 const unsigned long offset = start % BITS_PER_LONG; 536 537 return (map[index] >> offset) & 0xFF; 538} 539 540/** 541 * bitmap_set_value8 - set an 8-bit value within a memory region 542 * @map: address to the bitmap memory region 543 * @value: the 8-bit value; values wider than 8 bits may clobber bitmap 544 * @start: bit offset of the 8-bit value; must be a multiple of 8 545 */ 546static inline void bitmap_set_value8(unsigned long *map, unsigned long value, 547 unsigned long start) 548{ 549 const size_t index = BIT_WORD(start); 550 const unsigned long offset = start % BITS_PER_LONG; 551 552 map[index] &= ~(0xFFUL << offset); 553 map[index] |= value << offset; 554} 555 556#endif /* __ASSEMBLY__ */ 557 558#endif /* __LINUX_BITMAP_H */