Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/mm.h>
3#include <linux/slab.h>
4#include <linux/string.h>
5#include <linux/compiler.h>
6#include <linux/export.h>
7#include <linux/err.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/task_stack.h>
12#include <linux/security.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
17#include <linux/vmalloc.h>
18#include <linux/userfaultfd_k.h>
19#include <linux/elf.h>
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
22#include <linux/random.h>
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
26
27#include <linux/uaccess.h>
28
29#include "internal.h"
30
31/**
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
34 *
35 * Function calls kfree only if @x is not in .rodata section.
36 */
37void kfree_const(const void *x)
38{
39 if (!is_kernel_rodata((unsigned long)x))
40 kfree(x);
41}
42EXPORT_SYMBOL(kfree_const);
43
44/**
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 *
49 * Return: newly allocated copy of @s or %NULL in case of error
50 */
51char *kstrdup(const char *s, gfp_t gfp)
52{
53 size_t len;
54 char *buf;
55
56 if (!s)
57 return NULL;
58
59 len = strlen(s) + 1;
60 buf = kmalloc_track_caller(len, gfp);
61 if (buf)
62 memcpy(buf, s, len);
63 return buf;
64}
65EXPORT_SYMBOL(kstrdup);
66
67/**
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71 *
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73 * must not be passed to krealloc().
74 *
75 * Return: source string if it is in .rodata section otherwise
76 * fallback to kstrdup.
77 */
78const char *kstrdup_const(const char *s, gfp_t gfp)
79{
80 if (is_kernel_rodata((unsigned long)s))
81 return s;
82
83 return kstrdup(s, gfp);
84}
85EXPORT_SYMBOL(kstrdup_const);
86
87/**
88 * kstrndup - allocate space for and copy an existing string
89 * @s: the string to duplicate
90 * @max: read at most @max chars from @s
91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92 *
93 * Note: Use kmemdup_nul() instead if the size is known exactly.
94 *
95 * Return: newly allocated copy of @s or %NULL in case of error
96 */
97char *kstrndup(const char *s, size_t max, gfp_t gfp)
98{
99 size_t len;
100 char *buf;
101
102 if (!s)
103 return NULL;
104
105 len = strnlen(s, max);
106 buf = kmalloc_track_caller(len+1, gfp);
107 if (buf) {
108 memcpy(buf, s, len);
109 buf[len] = '\0';
110 }
111 return buf;
112}
113EXPORT_SYMBOL(kstrndup);
114
115/**
116 * kmemdup - duplicate region of memory
117 *
118 * @src: memory region to duplicate
119 * @len: memory region length
120 * @gfp: GFP mask to use
121 *
122 * Return: newly allocated copy of @src or %NULL in case of error
123 */
124void *kmemdup(const void *src, size_t len, gfp_t gfp)
125{
126 void *p;
127
128 p = kmalloc_track_caller(len, gfp);
129 if (p)
130 memcpy(p, src, len);
131 return p;
132}
133EXPORT_SYMBOL(kmemdup);
134
135/**
136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
137 * @s: The data to stringify
138 * @len: The size of the data
139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140 *
141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
142 * case of error
143 */
144char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145{
146 char *buf;
147
148 if (!s)
149 return NULL;
150
151 buf = kmalloc_track_caller(len + 1, gfp);
152 if (buf) {
153 memcpy(buf, s, len);
154 buf[len] = '\0';
155 }
156 return buf;
157}
158EXPORT_SYMBOL(kmemdup_nul);
159
160/**
161 * memdup_user - duplicate memory region from user space
162 *
163 * @src: source address in user space
164 * @len: number of bytes to copy
165 *
166 * Return: an ERR_PTR() on failure. Result is physically
167 * contiguous, to be freed by kfree().
168 */
169void *memdup_user(const void __user *src, size_t len)
170{
171 void *p;
172
173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 if (!p)
175 return ERR_PTR(-ENOMEM);
176
177 if (copy_from_user(p, src, len)) {
178 kfree(p);
179 return ERR_PTR(-EFAULT);
180 }
181
182 return p;
183}
184EXPORT_SYMBOL(memdup_user);
185
186/**
187 * vmemdup_user - duplicate memory region from user space
188 *
189 * @src: source address in user space
190 * @len: number of bytes to copy
191 *
192 * Return: an ERR_PTR() on failure. Result may be not
193 * physically contiguous. Use kvfree() to free.
194 */
195void *vmemdup_user(const void __user *src, size_t len)
196{
197 void *p;
198
199 p = kvmalloc(len, GFP_USER);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kvfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207
208 return p;
209}
210EXPORT_SYMBOL(vmemdup_user);
211
212/**
213 * strndup_user - duplicate an existing string from user space
214 * @s: The string to duplicate
215 * @n: Maximum number of bytes to copy, including the trailing NUL.
216 *
217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218 */
219char *strndup_user(const char __user *s, long n)
220{
221 char *p;
222 long length;
223
224 length = strnlen_user(s, n);
225
226 if (!length)
227 return ERR_PTR(-EFAULT);
228
229 if (length > n)
230 return ERR_PTR(-EINVAL);
231
232 p = memdup_user(s, length);
233
234 if (IS_ERR(p))
235 return p;
236
237 p[length - 1] = '\0';
238
239 return p;
240}
241EXPORT_SYMBOL(strndup_user);
242
243/**
244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245 *
246 * @src: source address in user space
247 * @len: number of bytes to copy
248 *
249 * Return: an ERR_PTR() on failure.
250 */
251void *memdup_user_nul(const void __user *src, size_t len)
252{
253 char *p;
254
255 /*
256 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 * cause pagefault, which makes it pointless to use GFP_NOFS
258 * or GFP_ATOMIC.
259 */
260 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 if (!p)
262 return ERR_PTR(-ENOMEM);
263
264 if (copy_from_user(p, src, len)) {
265 kfree(p);
266 return ERR_PTR(-EFAULT);
267 }
268 p[len] = '\0';
269
270 return p;
271}
272EXPORT_SYMBOL(memdup_user_nul);
273
274void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 struct vm_area_struct *prev)
276{
277 struct vm_area_struct *next;
278
279 vma->vm_prev = prev;
280 if (prev) {
281 next = prev->vm_next;
282 prev->vm_next = vma;
283 } else {
284 next = mm->mmap;
285 mm->mmap = vma;
286 }
287 vma->vm_next = next;
288 if (next)
289 next->vm_prev = vma;
290}
291
292void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293{
294 struct vm_area_struct *prev, *next;
295
296 next = vma->vm_next;
297 prev = vma->vm_prev;
298 if (prev)
299 prev->vm_next = next;
300 else
301 mm->mmap = next;
302 if (next)
303 next->vm_prev = prev;
304}
305
306/* Check if the vma is being used as a stack by this task */
307int vma_is_stack_for_current(struct vm_area_struct *vma)
308{
309 struct task_struct * __maybe_unused t = current;
310
311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312}
313
314/*
315 * Change backing file, only valid to use during initial VMA setup.
316 */
317void vma_set_file(struct vm_area_struct *vma, struct file *file)
318{
319 /* Changing an anonymous vma with this is illegal */
320 get_file(file);
321 swap(vma->vm_file, file);
322 fput(file);
323}
324EXPORT_SYMBOL(vma_set_file);
325
326#ifndef STACK_RND_MASK
327#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
328#endif
329
330unsigned long randomize_stack_top(unsigned long stack_top)
331{
332 unsigned long random_variable = 0;
333
334 if (current->flags & PF_RANDOMIZE) {
335 random_variable = get_random_long();
336 random_variable &= STACK_RND_MASK;
337 random_variable <<= PAGE_SHIFT;
338 }
339#ifdef CONFIG_STACK_GROWSUP
340 return PAGE_ALIGN(stack_top) + random_variable;
341#else
342 return PAGE_ALIGN(stack_top) - random_variable;
343#endif
344}
345
346#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
347unsigned long arch_randomize_brk(struct mm_struct *mm)
348{
349 /* Is the current task 32bit ? */
350 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
351 return randomize_page(mm->brk, SZ_32M);
352
353 return randomize_page(mm->brk, SZ_1G);
354}
355
356unsigned long arch_mmap_rnd(void)
357{
358 unsigned long rnd;
359
360#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
361 if (is_compat_task())
362 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
363 else
364#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
365 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
366
367 return rnd << PAGE_SHIFT;
368}
369
370static int mmap_is_legacy(struct rlimit *rlim_stack)
371{
372 if (current->personality & ADDR_COMPAT_LAYOUT)
373 return 1;
374
375 if (rlim_stack->rlim_cur == RLIM_INFINITY)
376 return 1;
377
378 return sysctl_legacy_va_layout;
379}
380
381/*
382 * Leave enough space between the mmap area and the stack to honour ulimit in
383 * the face of randomisation.
384 */
385#define MIN_GAP (SZ_128M)
386#define MAX_GAP (STACK_TOP / 6 * 5)
387
388static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
389{
390 unsigned long gap = rlim_stack->rlim_cur;
391 unsigned long pad = stack_guard_gap;
392
393 /* Account for stack randomization if necessary */
394 if (current->flags & PF_RANDOMIZE)
395 pad += (STACK_RND_MASK << PAGE_SHIFT);
396
397 /* Values close to RLIM_INFINITY can overflow. */
398 if (gap + pad > gap)
399 gap += pad;
400
401 if (gap < MIN_GAP)
402 gap = MIN_GAP;
403 else if (gap > MAX_GAP)
404 gap = MAX_GAP;
405
406 return PAGE_ALIGN(STACK_TOP - gap - rnd);
407}
408
409void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
410{
411 unsigned long random_factor = 0UL;
412
413 if (current->flags & PF_RANDOMIZE)
414 random_factor = arch_mmap_rnd();
415
416 if (mmap_is_legacy(rlim_stack)) {
417 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
418 mm->get_unmapped_area = arch_get_unmapped_area;
419 } else {
420 mm->mmap_base = mmap_base(random_factor, rlim_stack);
421 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
422 }
423}
424#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
425void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
426{
427 mm->mmap_base = TASK_UNMAPPED_BASE;
428 mm->get_unmapped_area = arch_get_unmapped_area;
429}
430#endif
431
432/**
433 * __account_locked_vm - account locked pages to an mm's locked_vm
434 * @mm: mm to account against
435 * @pages: number of pages to account
436 * @inc: %true if @pages should be considered positive, %false if not
437 * @task: task used to check RLIMIT_MEMLOCK
438 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
439 *
440 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
441 * that mmap_lock is held as writer.
442 *
443 * Return:
444 * * 0 on success
445 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
446 */
447int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
448 struct task_struct *task, bool bypass_rlim)
449{
450 unsigned long locked_vm, limit;
451 int ret = 0;
452
453 mmap_assert_write_locked(mm);
454
455 locked_vm = mm->locked_vm;
456 if (inc) {
457 if (!bypass_rlim) {
458 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
459 if (locked_vm + pages > limit)
460 ret = -ENOMEM;
461 }
462 if (!ret)
463 mm->locked_vm = locked_vm + pages;
464 } else {
465 WARN_ON_ONCE(pages > locked_vm);
466 mm->locked_vm = locked_vm - pages;
467 }
468
469 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
470 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
471 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
472 ret ? " - exceeded" : "");
473
474 return ret;
475}
476EXPORT_SYMBOL_GPL(__account_locked_vm);
477
478/**
479 * account_locked_vm - account locked pages to an mm's locked_vm
480 * @mm: mm to account against, may be NULL
481 * @pages: number of pages to account
482 * @inc: %true if @pages should be considered positive, %false if not
483 *
484 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
485 *
486 * Return:
487 * * 0 on success, or if mm is NULL
488 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
489 */
490int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
491{
492 int ret;
493
494 if (pages == 0 || !mm)
495 return 0;
496
497 mmap_write_lock(mm);
498 ret = __account_locked_vm(mm, pages, inc, current,
499 capable(CAP_IPC_LOCK));
500 mmap_write_unlock(mm);
501
502 return ret;
503}
504EXPORT_SYMBOL_GPL(account_locked_vm);
505
506unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
507 unsigned long len, unsigned long prot,
508 unsigned long flag, unsigned long pgoff)
509{
510 unsigned long ret;
511 struct mm_struct *mm = current->mm;
512 unsigned long populate;
513 LIST_HEAD(uf);
514
515 ret = security_mmap_file(file, prot, flag);
516 if (!ret) {
517 if (mmap_write_lock_killable(mm))
518 return -EINTR;
519 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
520 &uf);
521 mmap_write_unlock(mm);
522 userfaultfd_unmap_complete(mm, &uf);
523 if (populate)
524 mm_populate(ret, populate);
525 }
526 return ret;
527}
528
529unsigned long vm_mmap(struct file *file, unsigned long addr,
530 unsigned long len, unsigned long prot,
531 unsigned long flag, unsigned long offset)
532{
533 if (unlikely(offset + PAGE_ALIGN(len) < offset))
534 return -EINVAL;
535 if (unlikely(offset_in_page(offset)))
536 return -EINVAL;
537
538 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
539}
540EXPORT_SYMBOL(vm_mmap);
541
542/**
543 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
544 * failure, fall back to non-contiguous (vmalloc) allocation.
545 * @size: size of the request.
546 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
547 * @node: numa node to allocate from
548 *
549 * Uses kmalloc to get the memory but if the allocation fails then falls back
550 * to the vmalloc allocator. Use kvfree for freeing the memory.
551 *
552 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
553 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
554 * preferable to the vmalloc fallback, due to visible performance drawbacks.
555 *
556 * Return: pointer to the allocated memory of %NULL in case of failure
557 */
558void *kvmalloc_node(size_t size, gfp_t flags, int node)
559{
560 gfp_t kmalloc_flags = flags;
561 void *ret;
562
563 /*
564 * We want to attempt a large physically contiguous block first because
565 * it is less likely to fragment multiple larger blocks and therefore
566 * contribute to a long term fragmentation less than vmalloc fallback.
567 * However make sure that larger requests are not too disruptive - no
568 * OOM killer and no allocation failure warnings as we have a fallback.
569 */
570 if (size > PAGE_SIZE) {
571 kmalloc_flags |= __GFP_NOWARN;
572
573 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
574 kmalloc_flags |= __GFP_NORETRY;
575
576 /* nofail semantic is implemented by the vmalloc fallback */
577 kmalloc_flags &= ~__GFP_NOFAIL;
578 }
579
580 ret = kmalloc_node(size, kmalloc_flags, node);
581
582 /*
583 * It doesn't really make sense to fallback to vmalloc for sub page
584 * requests
585 */
586 if (ret || size <= PAGE_SIZE)
587 return ret;
588
589 /* Don't even allow crazy sizes */
590 if (unlikely(size > INT_MAX)) {
591 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
592 return NULL;
593 }
594
595 return __vmalloc_node(size, 1, flags, node,
596 __builtin_return_address(0));
597}
598EXPORT_SYMBOL(kvmalloc_node);
599
600/**
601 * kvfree() - Free memory.
602 * @addr: Pointer to allocated memory.
603 *
604 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
605 * It is slightly more efficient to use kfree() or vfree() if you are certain
606 * that you know which one to use.
607 *
608 * Context: Either preemptible task context or not-NMI interrupt.
609 */
610void kvfree(const void *addr)
611{
612 if (is_vmalloc_addr(addr))
613 vfree(addr);
614 else
615 kfree(addr);
616}
617EXPORT_SYMBOL(kvfree);
618
619/**
620 * kvfree_sensitive - Free a data object containing sensitive information.
621 * @addr: address of the data object to be freed.
622 * @len: length of the data object.
623 *
624 * Use the special memzero_explicit() function to clear the content of a
625 * kvmalloc'ed object containing sensitive data to make sure that the
626 * compiler won't optimize out the data clearing.
627 */
628void kvfree_sensitive(const void *addr, size_t len)
629{
630 if (likely(!ZERO_OR_NULL_PTR(addr))) {
631 memzero_explicit((void *)addr, len);
632 kvfree(addr);
633 }
634}
635EXPORT_SYMBOL(kvfree_sensitive);
636
637void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
638{
639 void *newp;
640
641 if (oldsize >= newsize)
642 return (void *)p;
643 newp = kvmalloc(newsize, flags);
644 if (!newp)
645 return NULL;
646 memcpy(newp, p, oldsize);
647 kvfree(p);
648 return newp;
649}
650EXPORT_SYMBOL(kvrealloc);
651
652/* Neutral page->mapping pointer to address_space or anon_vma or other */
653void *page_rmapping(struct page *page)
654{
655 return folio_raw_mapping(page_folio(page));
656}
657
658/**
659 * folio_mapped - Is this folio mapped into userspace?
660 * @folio: The folio.
661 *
662 * Return: True if any page in this folio is referenced by user page tables.
663 */
664bool folio_mapped(struct folio *folio)
665{
666 long i, nr;
667
668 if (!folio_test_large(folio))
669 return atomic_read(&folio->_mapcount) >= 0;
670 if (atomic_read(folio_mapcount_ptr(folio)) >= 0)
671 return true;
672 if (folio_test_hugetlb(folio))
673 return false;
674
675 nr = folio_nr_pages(folio);
676 for (i = 0; i < nr; i++) {
677 if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0)
678 return true;
679 }
680 return false;
681}
682EXPORT_SYMBOL(folio_mapped);
683
684struct anon_vma *page_anon_vma(struct page *page)
685{
686 struct folio *folio = page_folio(page);
687 unsigned long mapping = (unsigned long)folio->mapping;
688
689 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
690 return NULL;
691 return (void *)(mapping - PAGE_MAPPING_ANON);
692}
693
694/**
695 * folio_mapping - Find the mapping where this folio is stored.
696 * @folio: The folio.
697 *
698 * For folios which are in the page cache, return the mapping that this
699 * page belongs to. Folios in the swap cache return the swap mapping
700 * this page is stored in (which is different from the mapping for the
701 * swap file or swap device where the data is stored).
702 *
703 * You can call this for folios which aren't in the swap cache or page
704 * cache and it will return NULL.
705 */
706struct address_space *folio_mapping(struct folio *folio)
707{
708 struct address_space *mapping;
709
710 /* This happens if someone calls flush_dcache_page on slab page */
711 if (unlikely(folio_test_slab(folio)))
712 return NULL;
713
714 if (unlikely(folio_test_swapcache(folio)))
715 return swap_address_space(folio_swap_entry(folio));
716
717 mapping = folio->mapping;
718 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
719 return NULL;
720
721 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
722}
723EXPORT_SYMBOL(folio_mapping);
724
725/* Slow path of page_mapcount() for compound pages */
726int __page_mapcount(struct page *page)
727{
728 int ret;
729
730 ret = atomic_read(&page->_mapcount) + 1;
731 /*
732 * For file THP page->_mapcount contains total number of mapping
733 * of the page: no need to look into compound_mapcount.
734 */
735 if (!PageAnon(page) && !PageHuge(page))
736 return ret;
737 page = compound_head(page);
738 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
739 if (PageDoubleMap(page))
740 ret--;
741 return ret;
742}
743EXPORT_SYMBOL_GPL(__page_mapcount);
744
745/**
746 * folio_copy - Copy the contents of one folio to another.
747 * @dst: Folio to copy to.
748 * @src: Folio to copy from.
749 *
750 * The bytes in the folio represented by @src are copied to @dst.
751 * Assumes the caller has validated that @dst is at least as large as @src.
752 * Can be called in atomic context for order-0 folios, but if the folio is
753 * larger, it may sleep.
754 */
755void folio_copy(struct folio *dst, struct folio *src)
756{
757 long i = 0;
758 long nr = folio_nr_pages(src);
759
760 for (;;) {
761 copy_highpage(folio_page(dst, i), folio_page(src, i));
762 if (++i == nr)
763 break;
764 cond_resched();
765 }
766}
767
768int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
769int sysctl_overcommit_ratio __read_mostly = 50;
770unsigned long sysctl_overcommit_kbytes __read_mostly;
771int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
772unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
773unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
774
775int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
776 size_t *lenp, loff_t *ppos)
777{
778 int ret;
779
780 ret = proc_dointvec(table, write, buffer, lenp, ppos);
781 if (ret == 0 && write)
782 sysctl_overcommit_kbytes = 0;
783 return ret;
784}
785
786static void sync_overcommit_as(struct work_struct *dummy)
787{
788 percpu_counter_sync(&vm_committed_as);
789}
790
791int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
792 size_t *lenp, loff_t *ppos)
793{
794 struct ctl_table t;
795 int new_policy = -1;
796 int ret;
797
798 /*
799 * The deviation of sync_overcommit_as could be big with loose policy
800 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
801 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
802 * with the strict "NEVER", and to avoid possible race condition (even
803 * though user usually won't too frequently do the switching to policy
804 * OVERCOMMIT_NEVER), the switch is done in the following order:
805 * 1. changing the batch
806 * 2. sync percpu count on each CPU
807 * 3. switch the policy
808 */
809 if (write) {
810 t = *table;
811 t.data = &new_policy;
812 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
813 if (ret || new_policy == -1)
814 return ret;
815
816 mm_compute_batch(new_policy);
817 if (new_policy == OVERCOMMIT_NEVER)
818 schedule_on_each_cpu(sync_overcommit_as);
819 sysctl_overcommit_memory = new_policy;
820 } else {
821 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
822 }
823
824 return ret;
825}
826
827int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
828 size_t *lenp, loff_t *ppos)
829{
830 int ret;
831
832 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
833 if (ret == 0 && write)
834 sysctl_overcommit_ratio = 0;
835 return ret;
836}
837
838/*
839 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
840 */
841unsigned long vm_commit_limit(void)
842{
843 unsigned long allowed;
844
845 if (sysctl_overcommit_kbytes)
846 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
847 else
848 allowed = ((totalram_pages() - hugetlb_total_pages())
849 * sysctl_overcommit_ratio / 100);
850 allowed += total_swap_pages;
851
852 return allowed;
853}
854
855/*
856 * Make sure vm_committed_as in one cacheline and not cacheline shared with
857 * other variables. It can be updated by several CPUs frequently.
858 */
859struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
860
861/*
862 * The global memory commitment made in the system can be a metric
863 * that can be used to drive ballooning decisions when Linux is hosted
864 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
865 * balancing memory across competing virtual machines that are hosted.
866 * Several metrics drive this policy engine including the guest reported
867 * memory commitment.
868 *
869 * The time cost of this is very low for small platforms, and for big
870 * platform like a 2S/36C/72T Skylake server, in worst case where
871 * vm_committed_as's spinlock is under severe contention, the time cost
872 * could be about 30~40 microseconds.
873 */
874unsigned long vm_memory_committed(void)
875{
876 return percpu_counter_sum_positive(&vm_committed_as);
877}
878EXPORT_SYMBOL_GPL(vm_memory_committed);
879
880/*
881 * Check that a process has enough memory to allocate a new virtual
882 * mapping. 0 means there is enough memory for the allocation to
883 * succeed and -ENOMEM implies there is not.
884 *
885 * We currently support three overcommit policies, which are set via the
886 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
887 *
888 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
889 * Additional code 2002 Jul 20 by Robert Love.
890 *
891 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
892 *
893 * Note this is a helper function intended to be used by LSMs which
894 * wish to use this logic.
895 */
896int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
897{
898 long allowed;
899
900 vm_acct_memory(pages);
901
902 /*
903 * Sometimes we want to use more memory than we have
904 */
905 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
906 return 0;
907
908 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
909 if (pages > totalram_pages() + total_swap_pages)
910 goto error;
911 return 0;
912 }
913
914 allowed = vm_commit_limit();
915 /*
916 * Reserve some for root
917 */
918 if (!cap_sys_admin)
919 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
920
921 /*
922 * Don't let a single process grow so big a user can't recover
923 */
924 if (mm) {
925 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
926
927 allowed -= min_t(long, mm->total_vm / 32, reserve);
928 }
929
930 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
931 return 0;
932error:
933 vm_unacct_memory(pages);
934
935 return -ENOMEM;
936}
937
938/**
939 * get_cmdline() - copy the cmdline value to a buffer.
940 * @task: the task whose cmdline value to copy.
941 * @buffer: the buffer to copy to.
942 * @buflen: the length of the buffer. Larger cmdline values are truncated
943 * to this length.
944 *
945 * Return: the size of the cmdline field copied. Note that the copy does
946 * not guarantee an ending NULL byte.
947 */
948int get_cmdline(struct task_struct *task, char *buffer, int buflen)
949{
950 int res = 0;
951 unsigned int len;
952 struct mm_struct *mm = get_task_mm(task);
953 unsigned long arg_start, arg_end, env_start, env_end;
954 if (!mm)
955 goto out;
956 if (!mm->arg_end)
957 goto out_mm; /* Shh! No looking before we're done */
958
959 spin_lock(&mm->arg_lock);
960 arg_start = mm->arg_start;
961 arg_end = mm->arg_end;
962 env_start = mm->env_start;
963 env_end = mm->env_end;
964 spin_unlock(&mm->arg_lock);
965
966 len = arg_end - arg_start;
967
968 if (len > buflen)
969 len = buflen;
970
971 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
972
973 /*
974 * If the nul at the end of args has been overwritten, then
975 * assume application is using setproctitle(3).
976 */
977 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
978 len = strnlen(buffer, res);
979 if (len < res) {
980 res = len;
981 } else {
982 len = env_end - env_start;
983 if (len > buflen - res)
984 len = buflen - res;
985 res += access_process_vm(task, env_start,
986 buffer+res, len,
987 FOLL_FORCE);
988 res = strnlen(buffer, res);
989 }
990 }
991out_mm:
992 mmput(mm);
993out:
994 return res;
995}
996
997int __weak memcmp_pages(struct page *page1, struct page *page2)
998{
999 char *addr1, *addr2;
1000 int ret;
1001
1002 addr1 = kmap_atomic(page1);
1003 addr2 = kmap_atomic(page2);
1004 ret = memcmp(addr1, addr2, PAGE_SIZE);
1005 kunmap_atomic(addr2);
1006 kunmap_atomic(addr1);
1007 return ret;
1008}
1009
1010#ifdef CONFIG_PRINTK
1011/**
1012 * mem_dump_obj - Print available provenance information
1013 * @object: object for which to find provenance information.
1014 *
1015 * This function uses pr_cont(), so that the caller is expected to have
1016 * printed out whatever preamble is appropriate. The provenance information
1017 * depends on the type of object and on how much debugging is enabled.
1018 * For example, for a slab-cache object, the slab name is printed, and,
1019 * if available, the return address and stack trace from the allocation
1020 * and last free path of that object.
1021 */
1022void mem_dump_obj(void *object)
1023{
1024 const char *type;
1025
1026 if (kmem_valid_obj(object)) {
1027 kmem_dump_obj(object);
1028 return;
1029 }
1030
1031 if (vmalloc_dump_obj(object))
1032 return;
1033
1034 if (virt_addr_valid(object))
1035 type = "non-slab/vmalloc memory";
1036 else if (object == NULL)
1037 type = "NULL pointer";
1038 else if (object == ZERO_SIZE_PTR)
1039 type = "zero-size pointer";
1040 else
1041 type = "non-paged memory";
1042
1043 pr_cont(" %s\n", type);
1044}
1045EXPORT_SYMBOL_GPL(mem_dump_obj);
1046#endif
1047
1048/*
1049 * A driver might set a page logically offline -- PageOffline() -- and
1050 * turn the page inaccessible in the hypervisor; after that, access to page
1051 * content can be fatal.
1052 *
1053 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1054 * pages after checking PageOffline(); however, these PFN walkers can race
1055 * with drivers that set PageOffline().
1056 *
1057 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1058 * synchronize with such drivers, achieving that a page cannot be set
1059 * PageOffline() while frozen.
1060 *
1061 * page_offline_begin()/page_offline_end() is used by drivers that care about
1062 * such races when setting a page PageOffline().
1063 */
1064static DECLARE_RWSEM(page_offline_rwsem);
1065
1066void page_offline_freeze(void)
1067{
1068 down_read(&page_offline_rwsem);
1069}
1070
1071void page_offline_thaw(void)
1072{
1073 up_read(&page_offline_rwsem);
1074}
1075
1076void page_offline_begin(void)
1077{
1078 down_write(&page_offline_rwsem);
1079}
1080EXPORT_SYMBOL(page_offline_begin);
1081
1082void page_offline_end(void)
1083{
1084 up_write(&page_offline_rwsem);
1085}
1086EXPORT_SYMBOL(page_offline_end);
1087
1088#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1089void flush_dcache_folio(struct folio *folio)
1090{
1091 long i, nr = folio_nr_pages(folio);
1092
1093 for (i = 0; i < nr; i++)
1094 flush_dcache_page(folio_page(folio, i));
1095}
1096EXPORT_SYMBOL(flush_dcache_folio);
1097#endif