Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/blkdev.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/ratelimit.h>
18#include <linux/kthread.h>
19#include <linux/raid/md_p.h>
20#include <trace/events/block.h>
21#include "md.h"
22#include "raid10.h"
23#include "raid0.h"
24#include "md-bitmap.h"
25
26/*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
65 */
66
67static void allow_barrier(struct r10conf *conf);
68static void lower_barrier(struct r10conf *conf);
69static int _enough(struct r10conf *conf, int previous, int ignore);
70static int enough(struct r10conf *conf, int ignore);
71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74static void end_reshape_write(struct bio *bio);
75static void end_reshape(struct r10conf *conf);
76
77#define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80#include "raid1-10.c"
81
82/*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87{
88 return get_resync_pages(bio)->raid_bio;
89}
90
91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92{
93 struct r10conf *conf = data;
94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96 /* allocate a r10bio with room for raid_disks entries in the
97 * bios array */
98 return kzalloc(size, gfp_flags);
99}
100
101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102/* amount of memory to reserve for resync requests */
103#define RESYNC_WINDOW (1024*1024)
104/* maximum number of concurrent requests, memory permitting */
105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109/*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117{
118 struct r10conf *conf = data;
119 struct r10bio *r10_bio;
120 struct bio *bio;
121 int j;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
124
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 if (!r10_bio)
127 return NULL;
128
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 nalloc = conf->copies; /* resync */
132 else
133 nalloc = 2; /* recovery */
134
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
137 nalloc_rp = nalloc;
138 else
139 nalloc_rp = nalloc * 2;
140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 if (!rps)
142 goto out_free_r10bio;
143
144 /*
145 * Allocate bios.
146 */
147 for (j = nalloc ; j-- ; ) {
148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 if (!bio)
150 goto out_free_bio;
151 r10_bio->devs[j].bio = bio;
152 if (!conf->have_replacement)
153 continue;
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 if (!bio)
156 goto out_free_bio;
157 r10_bio->devs[j].repl_bio = bio;
158 }
159 /*
160 * Allocate RESYNC_PAGES data pages and attach them
161 * where needed.
162 */
163 for (j = 0; j < nalloc; j++) {
164 struct bio *rbio = r10_bio->devs[j].repl_bio;
165 struct resync_pages *rp, *rp_repl;
166
167 rp = &rps[j];
168 if (rbio)
169 rp_repl = &rps[nalloc + j];
170
171 bio = r10_bio->devs[j].bio;
172
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
176 goto out_free_pages;
177 } else {
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
180 }
181
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
184 if (rbio) {
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
187 }
188 }
189
190 return r10_bio;
191
192out_free_pages:
193 while (--j >= 0)
194 resync_free_pages(&rps[j]);
195
196 j = 0;
197out_free_bio:
198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
203 }
204 kfree(rps);
205out_free_r10bio:
206 rbio_pool_free(r10_bio, conf);
207 return NULL;
208}
209
210static void r10buf_pool_free(void *__r10_bio, void *data)
211{
212 struct r10conf *conf = data;
213 struct r10bio *r10bio = __r10_bio;
214 int j;
215 struct resync_pages *rp = NULL;
216
217 for (j = conf->copies; j--; ) {
218 struct bio *bio = r10bio->devs[j].bio;
219
220 if (bio) {
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
223 bio_put(bio);
224 }
225
226 bio = r10bio->devs[j].repl_bio;
227 if (bio)
228 bio_put(bio);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r10bio, conf);
235}
236
237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238{
239 int i;
240
241 for (i = 0; i < conf->geo.raid_disks; i++) {
242 struct bio **bio = & r10_bio->devs[i].bio;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251}
252
253static void free_r10bio(struct r10bio *r10_bio)
254{
255 struct r10conf *conf = r10_bio->mddev->private;
256
257 put_all_bios(conf, r10_bio);
258 mempool_free(r10_bio, &conf->r10bio_pool);
259}
260
261static void put_buf(struct r10bio *r10_bio)
262{
263 struct r10conf *conf = r10_bio->mddev->private;
264
265 mempool_free(r10_bio, &conf->r10buf_pool);
266
267 lower_barrier(conf);
268}
269
270static void reschedule_retry(struct r10bio *r10_bio)
271{
272 unsigned long flags;
273 struct mddev *mddev = r10_bio->mddev;
274 struct r10conf *conf = mddev->private;
275
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
278 conf->nr_queued ++;
279 spin_unlock_irqrestore(&conf->device_lock, flags);
280
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
283
284 md_wakeup_thread(mddev->thread);
285}
286
287/*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
292static void raid_end_bio_io(struct r10bio *r10_bio)
293{
294 struct bio *bio = r10_bio->master_bio;
295 struct r10conf *conf = r10_bio->mddev->private;
296
297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 bio->bi_status = BLK_STS_IOERR;
299
300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301 bio_end_io_acct(bio, r10_bio->start_time);
302 bio_endio(bio);
303 /*
304 * Wake up any possible resync thread that waits for the device
305 * to go idle.
306 */
307 allow_barrier(conf);
308
309 free_r10bio(r10_bio);
310}
311
312/*
313 * Update disk head position estimator based on IRQ completion info.
314 */
315static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316{
317 struct r10conf *conf = r10_bio->mddev->private;
318
319 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320 r10_bio->devs[slot].addr + (r10_bio->sectors);
321}
322
323/*
324 * Find the disk number which triggered given bio
325 */
326static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327 struct bio *bio, int *slotp, int *replp)
328{
329 int slot;
330 int repl = 0;
331
332 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333 if (r10_bio->devs[slot].bio == bio)
334 break;
335 if (r10_bio->devs[slot].repl_bio == bio) {
336 repl = 1;
337 break;
338 }
339 }
340
341 update_head_pos(slot, r10_bio);
342
343 if (slotp)
344 *slotp = slot;
345 if (replp)
346 *replp = repl;
347 return r10_bio->devs[slot].devnum;
348}
349
350static void raid10_end_read_request(struct bio *bio)
351{
352 int uptodate = !bio->bi_status;
353 struct r10bio *r10_bio = bio->bi_private;
354 int slot;
355 struct md_rdev *rdev;
356 struct r10conf *conf = r10_bio->mddev->private;
357
358 slot = r10_bio->read_slot;
359 rdev = r10_bio->devs[slot].rdev;
360 /*
361 * this branch is our 'one mirror IO has finished' event handler:
362 */
363 update_head_pos(slot, r10_bio);
364
365 if (uptodate) {
366 /*
367 * Set R10BIO_Uptodate in our master bio, so that
368 * we will return a good error code to the higher
369 * levels even if IO on some other mirrored buffer fails.
370 *
371 * The 'master' represents the composite IO operation to
372 * user-side. So if something waits for IO, then it will
373 * wait for the 'master' bio.
374 */
375 set_bit(R10BIO_Uptodate, &r10_bio->state);
376 } else {
377 /* If all other devices that store this block have
378 * failed, we want to return the error upwards rather
379 * than fail the last device. Here we redefine
380 * "uptodate" to mean "Don't want to retry"
381 */
382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383 rdev->raid_disk))
384 uptodate = 1;
385 }
386 if (uptodate) {
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
389 } else {
390 /*
391 * oops, read error - keep the refcount on the rdev
392 */
393 char b[BDEVNAME_SIZE];
394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395 mdname(conf->mddev),
396 bdevname(rdev->bdev, b),
397 (unsigned long long)r10_bio->sector);
398 set_bit(R10BIO_ReadError, &r10_bio->state);
399 reschedule_retry(r10_bio);
400 }
401}
402
403static void close_write(struct r10bio *r10_bio)
404{
405 /* clear the bitmap if all writes complete successfully */
406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407 r10_bio->sectors,
408 !test_bit(R10BIO_Degraded, &r10_bio->state),
409 0);
410 md_write_end(r10_bio->mddev);
411}
412
413static void one_write_done(struct r10bio *r10_bio)
414{
415 if (atomic_dec_and_test(&r10_bio->remaining)) {
416 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417 reschedule_retry(r10_bio);
418 else {
419 close_write(r10_bio);
420 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421 reschedule_retry(r10_bio);
422 else
423 raid_end_bio_io(r10_bio);
424 }
425 }
426}
427
428static void raid10_end_write_request(struct bio *bio)
429{
430 struct r10bio *r10_bio = bio->bi_private;
431 int dev;
432 int dec_rdev = 1;
433 struct r10conf *conf = r10_bio->mddev->private;
434 int slot, repl;
435 struct md_rdev *rdev = NULL;
436 struct bio *to_put = NULL;
437 bool discard_error;
438
439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440
441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442
443 if (repl)
444 rdev = conf->mirrors[dev].replacement;
445 if (!rdev) {
446 smp_rmb();
447 repl = 0;
448 rdev = conf->mirrors[dev].rdev;
449 }
450 /*
451 * this branch is our 'one mirror IO has finished' event handler:
452 */
453 if (bio->bi_status && !discard_error) {
454 if (repl)
455 /* Never record new bad blocks to replacement,
456 * just fail it.
457 */
458 md_error(rdev->mddev, rdev);
459 else {
460 set_bit(WriteErrorSeen, &rdev->flags);
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 set_bit(MD_RECOVERY_NEEDED,
463 &rdev->mddev->recovery);
464
465 dec_rdev = 0;
466 if (test_bit(FailFast, &rdev->flags) &&
467 (bio->bi_opf & MD_FAILFAST)) {
468 md_error(rdev->mddev, rdev);
469 }
470
471 /*
472 * When the device is faulty, it is not necessary to
473 * handle write error.
474 */
475 if (!test_bit(Faulty, &rdev->flags))
476 set_bit(R10BIO_WriteError, &r10_bio->state);
477 else {
478 /* Fail the request */
479 set_bit(R10BIO_Degraded, &r10_bio->state);
480 r10_bio->devs[slot].bio = NULL;
481 to_put = bio;
482 dec_rdev = 1;
483 }
484 }
485 } else {
486 /*
487 * Set R10BIO_Uptodate in our master bio, so that
488 * we will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer fails.
490 *
491 * The 'master' represents the composite IO operation to
492 * user-side. So if something waits for IO, then it will
493 * wait for the 'master' bio.
494 */
495 sector_t first_bad;
496 int bad_sectors;
497
498 /*
499 * Do not set R10BIO_Uptodate if the current device is
500 * rebuilding or Faulty. This is because we cannot use
501 * such device for properly reading the data back (we could
502 * potentially use it, if the current write would have felt
503 * before rdev->recovery_offset, but for simplicity we don't
504 * check this here.
505 */
506 if (test_bit(In_sync, &rdev->flags) &&
507 !test_bit(Faulty, &rdev->flags))
508 set_bit(R10BIO_Uptodate, &r10_bio->state);
509
510 /* Maybe we can clear some bad blocks. */
511 if (is_badblock(rdev,
512 r10_bio->devs[slot].addr,
513 r10_bio->sectors,
514 &first_bad, &bad_sectors) && !discard_error) {
515 bio_put(bio);
516 if (repl)
517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518 else
519 r10_bio->devs[slot].bio = IO_MADE_GOOD;
520 dec_rdev = 0;
521 set_bit(R10BIO_MadeGood, &r10_bio->state);
522 }
523 }
524
525 /*
526 *
527 * Let's see if all mirrored write operations have finished
528 * already.
529 */
530 one_write_done(r10_bio);
531 if (dec_rdev)
532 rdev_dec_pending(rdev, conf->mddev);
533 if (to_put)
534 bio_put(to_put);
535}
536
537/*
538 * RAID10 layout manager
539 * As well as the chunksize and raid_disks count, there are two
540 * parameters: near_copies and far_copies.
541 * near_copies * far_copies must be <= raid_disks.
542 * Normally one of these will be 1.
543 * If both are 1, we get raid0.
544 * If near_copies == raid_disks, we get raid1.
545 *
546 * Chunks are laid out in raid0 style with near_copies copies of the
547 * first chunk, followed by near_copies copies of the next chunk and
548 * so on.
549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
550 * as described above, we start again with a device offset of near_copies.
551 * So we effectively have another copy of the whole array further down all
552 * the drives, but with blocks on different drives.
553 * With this layout, and block is never stored twice on the one device.
554 *
555 * raid10_find_phys finds the sector offset of a given virtual sector
556 * on each device that it is on.
557 *
558 * raid10_find_virt does the reverse mapping, from a device and a
559 * sector offset to a virtual address
560 */
561
562static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563{
564 int n,f;
565 sector_t sector;
566 sector_t chunk;
567 sector_t stripe;
568 int dev;
569 int slot = 0;
570 int last_far_set_start, last_far_set_size;
571
572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573 last_far_set_start *= geo->far_set_size;
574
575 last_far_set_size = geo->far_set_size;
576 last_far_set_size += (geo->raid_disks % geo->far_set_size);
577
578 /* now calculate first sector/dev */
579 chunk = r10bio->sector >> geo->chunk_shift;
580 sector = r10bio->sector & geo->chunk_mask;
581
582 chunk *= geo->near_copies;
583 stripe = chunk;
584 dev = sector_div(stripe, geo->raid_disks);
585 if (geo->far_offset)
586 stripe *= geo->far_copies;
587
588 sector += stripe << geo->chunk_shift;
589
590 /* and calculate all the others */
591 for (n = 0; n < geo->near_copies; n++) {
592 int d = dev;
593 int set;
594 sector_t s = sector;
595 r10bio->devs[slot].devnum = d;
596 r10bio->devs[slot].addr = s;
597 slot++;
598
599 for (f = 1; f < geo->far_copies; f++) {
600 set = d / geo->far_set_size;
601 d += geo->near_copies;
602
603 if ((geo->raid_disks % geo->far_set_size) &&
604 (d > last_far_set_start)) {
605 d -= last_far_set_start;
606 d %= last_far_set_size;
607 d += last_far_set_start;
608 } else {
609 d %= geo->far_set_size;
610 d += geo->far_set_size * set;
611 }
612 s += geo->stride;
613 r10bio->devs[slot].devnum = d;
614 r10bio->devs[slot].addr = s;
615 slot++;
616 }
617 dev++;
618 if (dev >= geo->raid_disks) {
619 dev = 0;
620 sector += (geo->chunk_mask + 1);
621 }
622 }
623}
624
625static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626{
627 struct geom *geo = &conf->geo;
628
629 if (conf->reshape_progress != MaxSector &&
630 ((r10bio->sector >= conf->reshape_progress) !=
631 conf->mddev->reshape_backwards)) {
632 set_bit(R10BIO_Previous, &r10bio->state);
633 geo = &conf->prev;
634 } else
635 clear_bit(R10BIO_Previous, &r10bio->state);
636
637 __raid10_find_phys(geo, r10bio);
638}
639
640static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641{
642 sector_t offset, chunk, vchunk;
643 /* Never use conf->prev as this is only called during resync
644 * or recovery, so reshape isn't happening
645 */
646 struct geom *geo = &conf->geo;
647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648 int far_set_size = geo->far_set_size;
649 int last_far_set_start;
650
651 if (geo->raid_disks % geo->far_set_size) {
652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653 last_far_set_start *= geo->far_set_size;
654
655 if (dev >= last_far_set_start) {
656 far_set_size = geo->far_set_size;
657 far_set_size += (geo->raid_disks % geo->far_set_size);
658 far_set_start = last_far_set_start;
659 }
660 }
661
662 offset = sector & geo->chunk_mask;
663 if (geo->far_offset) {
664 int fc;
665 chunk = sector >> geo->chunk_shift;
666 fc = sector_div(chunk, geo->far_copies);
667 dev -= fc * geo->near_copies;
668 if (dev < far_set_start)
669 dev += far_set_size;
670 } else {
671 while (sector >= geo->stride) {
672 sector -= geo->stride;
673 if (dev < (geo->near_copies + far_set_start))
674 dev += far_set_size - geo->near_copies;
675 else
676 dev -= geo->near_copies;
677 }
678 chunk = sector >> geo->chunk_shift;
679 }
680 vchunk = chunk * geo->raid_disks + dev;
681 sector_div(vchunk, geo->near_copies);
682 return (vchunk << geo->chunk_shift) + offset;
683}
684
685/*
686 * This routine returns the disk from which the requested read should
687 * be done. There is a per-array 'next expected sequential IO' sector
688 * number - if this matches on the next IO then we use the last disk.
689 * There is also a per-disk 'last know head position' sector that is
690 * maintained from IRQ contexts, both the normal and the resync IO
691 * completion handlers update this position correctly. If there is no
692 * perfect sequential match then we pick the disk whose head is closest.
693 *
694 * If there are 2 mirrors in the same 2 devices, performance degrades
695 * because position is mirror, not device based.
696 *
697 * The rdev for the device selected will have nr_pending incremented.
698 */
699
700/*
701 * FIXME: possibly should rethink readbalancing and do it differently
702 * depending on near_copies / far_copies geometry.
703 */
704static struct md_rdev *read_balance(struct r10conf *conf,
705 struct r10bio *r10_bio,
706 int *max_sectors)
707{
708 const sector_t this_sector = r10_bio->sector;
709 int disk, slot;
710 int sectors = r10_bio->sectors;
711 int best_good_sectors;
712 sector_t new_distance, best_dist;
713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714 int do_balance;
715 int best_dist_slot, best_pending_slot;
716 bool has_nonrot_disk = false;
717 unsigned int min_pending;
718 struct geom *geo = &conf->geo;
719
720 raid10_find_phys(conf, r10_bio);
721 rcu_read_lock();
722 best_dist_slot = -1;
723 min_pending = UINT_MAX;
724 best_dist_rdev = NULL;
725 best_pending_rdev = NULL;
726 best_dist = MaxSector;
727 best_good_sectors = 0;
728 do_balance = 1;
729 clear_bit(R10BIO_FailFast, &r10_bio->state);
730 /*
731 * Check if we can balance. We can balance on the whole
732 * device if no resync is going on (recovery is ok), or below
733 * the resync window. We take the first readable disk when
734 * above the resync window.
735 */
736 if ((conf->mddev->recovery_cp < MaxSector
737 && (this_sector + sectors >= conf->next_resync)) ||
738 (mddev_is_clustered(conf->mddev) &&
739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740 this_sector + sectors)))
741 do_balance = 0;
742
743 for (slot = 0; slot < conf->copies ; slot++) {
744 sector_t first_bad;
745 int bad_sectors;
746 sector_t dev_sector;
747 unsigned int pending;
748 bool nonrot;
749
750 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751 continue;
752 disk = r10_bio->devs[slot].devnum;
753 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 rdev = rcu_dereference(conf->mirrors[disk].rdev);
757 if (rdev == NULL ||
758 test_bit(Faulty, &rdev->flags))
759 continue;
760 if (!test_bit(In_sync, &rdev->flags) &&
761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762 continue;
763
764 dev_sector = r10_bio->devs[slot].addr;
765 if (is_badblock(rdev, dev_sector, sectors,
766 &first_bad, &bad_sectors)) {
767 if (best_dist < MaxSector)
768 /* Already have a better slot */
769 continue;
770 if (first_bad <= dev_sector) {
771 /* Cannot read here. If this is the
772 * 'primary' device, then we must not read
773 * beyond 'bad_sectors' from another device.
774 */
775 bad_sectors -= (dev_sector - first_bad);
776 if (!do_balance && sectors > bad_sectors)
777 sectors = bad_sectors;
778 if (best_good_sectors > sectors)
779 best_good_sectors = sectors;
780 } else {
781 sector_t good_sectors =
782 first_bad - dev_sector;
783 if (good_sectors > best_good_sectors) {
784 best_good_sectors = good_sectors;
785 best_dist_slot = slot;
786 best_dist_rdev = rdev;
787 }
788 if (!do_balance)
789 /* Must read from here */
790 break;
791 }
792 continue;
793 } else
794 best_good_sectors = sectors;
795
796 if (!do_balance)
797 break;
798
799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800 has_nonrot_disk |= nonrot;
801 pending = atomic_read(&rdev->nr_pending);
802 if (min_pending > pending && nonrot) {
803 min_pending = pending;
804 best_pending_slot = slot;
805 best_pending_rdev = rdev;
806 }
807
808 if (best_dist_slot >= 0)
809 /* At least 2 disks to choose from so failfast is OK */
810 set_bit(R10BIO_FailFast, &r10_bio->state);
811 /* This optimisation is debatable, and completely destroys
812 * sequential read speed for 'far copies' arrays. So only
813 * keep it for 'near' arrays, and review those later.
814 */
815 if (geo->near_copies > 1 && !pending)
816 new_distance = 0;
817
818 /* for far > 1 always use the lowest address */
819 else if (geo->far_copies > 1)
820 new_distance = r10_bio->devs[slot].addr;
821 else
822 new_distance = abs(r10_bio->devs[slot].addr -
823 conf->mirrors[disk].head_position);
824
825 if (new_distance < best_dist) {
826 best_dist = new_distance;
827 best_dist_slot = slot;
828 best_dist_rdev = rdev;
829 }
830 }
831 if (slot >= conf->copies) {
832 if (has_nonrot_disk) {
833 slot = best_pending_slot;
834 rdev = best_pending_rdev;
835 } else {
836 slot = best_dist_slot;
837 rdev = best_dist_rdev;
838 }
839 }
840
841 if (slot >= 0) {
842 atomic_inc(&rdev->nr_pending);
843 r10_bio->read_slot = slot;
844 } else
845 rdev = NULL;
846 rcu_read_unlock();
847 *max_sectors = best_good_sectors;
848
849 return rdev;
850}
851
852static void flush_pending_writes(struct r10conf *conf)
853{
854 /* Any writes that have been queued but are awaiting
855 * bitmap updates get flushed here.
856 */
857 spin_lock_irq(&conf->device_lock);
858
859 if (conf->pending_bio_list.head) {
860 struct blk_plug plug;
861 struct bio *bio;
862
863 bio = bio_list_get(&conf->pending_bio_list);
864 conf->pending_count = 0;
865 spin_unlock_irq(&conf->device_lock);
866
867 /*
868 * As this is called in a wait_event() loop (see freeze_array),
869 * current->state might be TASK_UNINTERRUPTIBLE which will
870 * cause a warning when we prepare to wait again. As it is
871 * rare that this path is taken, it is perfectly safe to force
872 * us to go around the wait_event() loop again, so the warning
873 * is a false-positive. Silence the warning by resetting
874 * thread state
875 */
876 __set_current_state(TASK_RUNNING);
877
878 blk_start_plug(&plug);
879 /* flush any pending bitmap writes to disk
880 * before proceeding w/ I/O */
881 md_bitmap_unplug(conf->mddev->bitmap);
882 wake_up(&conf->wait_barrier);
883
884 while (bio) { /* submit pending writes */
885 struct bio *next = bio->bi_next;
886 struct md_rdev *rdev = (void*)bio->bi_bdev;
887 bio->bi_next = NULL;
888 bio_set_dev(bio, rdev->bdev);
889 if (test_bit(Faulty, &rdev->flags)) {
890 bio_io_error(bio);
891 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
892 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
893 /* Just ignore it */
894 bio_endio(bio);
895 else
896 submit_bio_noacct(bio);
897 bio = next;
898 }
899 blk_finish_plug(&plug);
900 } else
901 spin_unlock_irq(&conf->device_lock);
902}
903
904/* Barriers....
905 * Sometimes we need to suspend IO while we do something else,
906 * either some resync/recovery, or reconfigure the array.
907 * To do this we raise a 'barrier'.
908 * The 'barrier' is a counter that can be raised multiple times
909 * to count how many activities are happening which preclude
910 * normal IO.
911 * We can only raise the barrier if there is no pending IO.
912 * i.e. if nr_pending == 0.
913 * We choose only to raise the barrier if no-one is waiting for the
914 * barrier to go down. This means that as soon as an IO request
915 * is ready, no other operations which require a barrier will start
916 * until the IO request has had a chance.
917 *
918 * So: regular IO calls 'wait_barrier'. When that returns there
919 * is no backgroup IO happening, It must arrange to call
920 * allow_barrier when it has finished its IO.
921 * backgroup IO calls must call raise_barrier. Once that returns
922 * there is no normal IO happeing. It must arrange to call
923 * lower_barrier when the particular background IO completes.
924 */
925
926static void raise_barrier(struct r10conf *conf, int force)
927{
928 BUG_ON(force && !conf->barrier);
929 spin_lock_irq(&conf->resync_lock);
930
931 /* Wait until no block IO is waiting (unless 'force') */
932 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
933 conf->resync_lock);
934
935 /* block any new IO from starting */
936 conf->barrier++;
937
938 /* Now wait for all pending IO to complete */
939 wait_event_lock_irq(conf->wait_barrier,
940 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
941 conf->resync_lock);
942
943 spin_unlock_irq(&conf->resync_lock);
944}
945
946static void lower_barrier(struct r10conf *conf)
947{
948 unsigned long flags;
949 spin_lock_irqsave(&conf->resync_lock, flags);
950 conf->barrier--;
951 spin_unlock_irqrestore(&conf->resync_lock, flags);
952 wake_up(&conf->wait_barrier);
953}
954
955static bool wait_barrier(struct r10conf *conf, bool nowait)
956{
957 bool ret = true;
958
959 spin_lock_irq(&conf->resync_lock);
960 if (conf->barrier) {
961 struct bio_list *bio_list = current->bio_list;
962 conf->nr_waiting++;
963 /* Wait for the barrier to drop.
964 * However if there are already pending
965 * requests (preventing the barrier from
966 * rising completely), and the
967 * pre-process bio queue isn't empty,
968 * then don't wait, as we need to empty
969 * that queue to get the nr_pending
970 * count down.
971 */
972 /* Return false when nowait flag is set */
973 if (nowait) {
974 ret = false;
975 } else {
976 raid10_log(conf->mddev, "wait barrier");
977 wait_event_lock_irq(conf->wait_barrier,
978 !conf->barrier ||
979 (atomic_read(&conf->nr_pending) &&
980 bio_list &&
981 (!bio_list_empty(&bio_list[0]) ||
982 !bio_list_empty(&bio_list[1]))) ||
983 /* move on if recovery thread is
984 * blocked by us
985 */
986 (conf->mddev->thread->tsk == current &&
987 test_bit(MD_RECOVERY_RUNNING,
988 &conf->mddev->recovery) &&
989 conf->nr_queued > 0),
990 conf->resync_lock);
991 }
992 conf->nr_waiting--;
993 if (!conf->nr_waiting)
994 wake_up(&conf->wait_barrier);
995 }
996 /* Only increment nr_pending when we wait */
997 if (ret)
998 atomic_inc(&conf->nr_pending);
999 spin_unlock_irq(&conf->resync_lock);
1000 return ret;
1001}
1002
1003static void allow_barrier(struct r10conf *conf)
1004{
1005 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1006 (conf->array_freeze_pending))
1007 wake_up(&conf->wait_barrier);
1008}
1009
1010static void freeze_array(struct r10conf *conf, int extra)
1011{
1012 /* stop syncio and normal IO and wait for everything to
1013 * go quiet.
1014 * We increment barrier and nr_waiting, and then
1015 * wait until nr_pending match nr_queued+extra
1016 * This is called in the context of one normal IO request
1017 * that has failed. Thus any sync request that might be pending
1018 * will be blocked by nr_pending, and we need to wait for
1019 * pending IO requests to complete or be queued for re-try.
1020 * Thus the number queued (nr_queued) plus this request (extra)
1021 * must match the number of pending IOs (nr_pending) before
1022 * we continue.
1023 */
1024 spin_lock_irq(&conf->resync_lock);
1025 conf->array_freeze_pending++;
1026 conf->barrier++;
1027 conf->nr_waiting++;
1028 wait_event_lock_irq_cmd(conf->wait_barrier,
1029 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1030 conf->resync_lock,
1031 flush_pending_writes(conf));
1032
1033 conf->array_freeze_pending--;
1034 spin_unlock_irq(&conf->resync_lock);
1035}
1036
1037static void unfreeze_array(struct r10conf *conf)
1038{
1039 /* reverse the effect of the freeze */
1040 spin_lock_irq(&conf->resync_lock);
1041 conf->barrier--;
1042 conf->nr_waiting--;
1043 wake_up(&conf->wait_barrier);
1044 spin_unlock_irq(&conf->resync_lock);
1045}
1046
1047static sector_t choose_data_offset(struct r10bio *r10_bio,
1048 struct md_rdev *rdev)
1049{
1050 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1051 test_bit(R10BIO_Previous, &r10_bio->state))
1052 return rdev->data_offset;
1053 else
1054 return rdev->new_data_offset;
1055}
1056
1057struct raid10_plug_cb {
1058 struct blk_plug_cb cb;
1059 struct bio_list pending;
1060 int pending_cnt;
1061};
1062
1063static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1064{
1065 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1066 cb);
1067 struct mddev *mddev = plug->cb.data;
1068 struct r10conf *conf = mddev->private;
1069 struct bio *bio;
1070
1071 if (from_schedule || current->bio_list) {
1072 spin_lock_irq(&conf->device_lock);
1073 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1074 conf->pending_count += plug->pending_cnt;
1075 spin_unlock_irq(&conf->device_lock);
1076 wake_up(&conf->wait_barrier);
1077 md_wakeup_thread(mddev->thread);
1078 kfree(plug);
1079 return;
1080 }
1081
1082 /* we aren't scheduling, so we can do the write-out directly. */
1083 bio = bio_list_get(&plug->pending);
1084 md_bitmap_unplug(mddev->bitmap);
1085 wake_up(&conf->wait_barrier);
1086
1087 while (bio) { /* submit pending writes */
1088 struct bio *next = bio->bi_next;
1089 struct md_rdev *rdev = (void*)bio->bi_bdev;
1090 bio->bi_next = NULL;
1091 bio_set_dev(bio, rdev->bdev);
1092 if (test_bit(Faulty, &rdev->flags)) {
1093 bio_io_error(bio);
1094 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1095 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1096 /* Just ignore it */
1097 bio_endio(bio);
1098 else
1099 submit_bio_noacct(bio);
1100 bio = next;
1101 }
1102 kfree(plug);
1103}
1104
1105/*
1106 * 1. Register the new request and wait if the reconstruction thread has put
1107 * up a bar for new requests. Continue immediately if no resync is active
1108 * currently.
1109 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1110 */
1111static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1112 struct bio *bio, sector_t sectors)
1113{
1114 /* Bail out if REQ_NOWAIT is set for the bio */
1115 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1116 bio_wouldblock_error(bio);
1117 return false;
1118 }
1119 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1120 bio->bi_iter.bi_sector < conf->reshape_progress &&
1121 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1122 allow_barrier(conf);
1123 if (bio->bi_opf & REQ_NOWAIT) {
1124 bio_wouldblock_error(bio);
1125 return false;
1126 }
1127 raid10_log(conf->mddev, "wait reshape");
1128 wait_event(conf->wait_barrier,
1129 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1130 conf->reshape_progress >= bio->bi_iter.bi_sector +
1131 sectors);
1132 wait_barrier(conf, false);
1133 }
1134 return true;
1135}
1136
1137static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1138 struct r10bio *r10_bio)
1139{
1140 struct r10conf *conf = mddev->private;
1141 struct bio *read_bio;
1142 const int op = bio_op(bio);
1143 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1144 int max_sectors;
1145 struct md_rdev *rdev;
1146 char b[BDEVNAME_SIZE];
1147 int slot = r10_bio->read_slot;
1148 struct md_rdev *err_rdev = NULL;
1149 gfp_t gfp = GFP_NOIO;
1150
1151 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1152 /*
1153 * This is an error retry, but we cannot
1154 * safely dereference the rdev in the r10_bio,
1155 * we must use the one in conf.
1156 * If it has already been disconnected (unlikely)
1157 * we lose the device name in error messages.
1158 */
1159 int disk;
1160 /*
1161 * As we are blocking raid10, it is a little safer to
1162 * use __GFP_HIGH.
1163 */
1164 gfp = GFP_NOIO | __GFP_HIGH;
1165
1166 rcu_read_lock();
1167 disk = r10_bio->devs[slot].devnum;
1168 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1169 if (err_rdev)
1170 bdevname(err_rdev->bdev, b);
1171 else {
1172 strcpy(b, "???");
1173 /* This never gets dereferenced */
1174 err_rdev = r10_bio->devs[slot].rdev;
1175 }
1176 rcu_read_unlock();
1177 }
1178
1179 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1180 return;
1181 rdev = read_balance(conf, r10_bio, &max_sectors);
1182 if (!rdev) {
1183 if (err_rdev) {
1184 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1185 mdname(mddev), b,
1186 (unsigned long long)r10_bio->sector);
1187 }
1188 raid_end_bio_io(r10_bio);
1189 return;
1190 }
1191 if (err_rdev)
1192 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1193 mdname(mddev),
1194 bdevname(rdev->bdev, b),
1195 (unsigned long long)r10_bio->sector);
1196 if (max_sectors < bio_sectors(bio)) {
1197 struct bio *split = bio_split(bio, max_sectors,
1198 gfp, &conf->bio_split);
1199 bio_chain(split, bio);
1200 allow_barrier(conf);
1201 submit_bio_noacct(bio);
1202 wait_barrier(conf, false);
1203 bio = split;
1204 r10_bio->master_bio = bio;
1205 r10_bio->sectors = max_sectors;
1206 }
1207 slot = r10_bio->read_slot;
1208
1209 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1210 r10_bio->start_time = bio_start_io_acct(bio);
1211 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1212
1213 r10_bio->devs[slot].bio = read_bio;
1214 r10_bio->devs[slot].rdev = rdev;
1215
1216 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1217 choose_data_offset(r10_bio, rdev);
1218 bio_set_dev(read_bio, rdev->bdev);
1219 read_bio->bi_end_io = raid10_end_read_request;
1220 bio_set_op_attrs(read_bio, op, do_sync);
1221 if (test_bit(FailFast, &rdev->flags) &&
1222 test_bit(R10BIO_FailFast, &r10_bio->state))
1223 read_bio->bi_opf |= MD_FAILFAST;
1224 read_bio->bi_private = r10_bio;
1225
1226 if (mddev->gendisk)
1227 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1228 r10_bio->sector);
1229 submit_bio_noacct(read_bio);
1230 return;
1231}
1232
1233static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1234 struct bio *bio, bool replacement,
1235 int n_copy)
1236{
1237 const int op = bio_op(bio);
1238 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1239 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1240 unsigned long flags;
1241 struct blk_plug_cb *cb;
1242 struct raid10_plug_cb *plug = NULL;
1243 struct r10conf *conf = mddev->private;
1244 struct md_rdev *rdev;
1245 int devnum = r10_bio->devs[n_copy].devnum;
1246 struct bio *mbio;
1247
1248 if (replacement) {
1249 rdev = conf->mirrors[devnum].replacement;
1250 if (rdev == NULL) {
1251 /* Replacement just got moved to main 'rdev' */
1252 smp_mb();
1253 rdev = conf->mirrors[devnum].rdev;
1254 }
1255 } else
1256 rdev = conf->mirrors[devnum].rdev;
1257
1258 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1259 if (replacement)
1260 r10_bio->devs[n_copy].repl_bio = mbio;
1261 else
1262 r10_bio->devs[n_copy].bio = mbio;
1263
1264 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1265 choose_data_offset(r10_bio, rdev));
1266 bio_set_dev(mbio, rdev->bdev);
1267 mbio->bi_end_io = raid10_end_write_request;
1268 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1269 if (!replacement && test_bit(FailFast,
1270 &conf->mirrors[devnum].rdev->flags)
1271 && enough(conf, devnum))
1272 mbio->bi_opf |= MD_FAILFAST;
1273 mbio->bi_private = r10_bio;
1274
1275 if (conf->mddev->gendisk)
1276 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1277 r10_bio->sector);
1278 /* flush_pending_writes() needs access to the rdev so...*/
1279 mbio->bi_bdev = (void *)rdev;
1280
1281 atomic_inc(&r10_bio->remaining);
1282
1283 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1284 if (cb)
1285 plug = container_of(cb, struct raid10_plug_cb, cb);
1286 else
1287 plug = NULL;
1288 if (plug) {
1289 bio_list_add(&plug->pending, mbio);
1290 plug->pending_cnt++;
1291 } else {
1292 spin_lock_irqsave(&conf->device_lock, flags);
1293 bio_list_add(&conf->pending_bio_list, mbio);
1294 conf->pending_count++;
1295 spin_unlock_irqrestore(&conf->device_lock, flags);
1296 md_wakeup_thread(mddev->thread);
1297 }
1298}
1299
1300static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1301{
1302 int i;
1303 struct r10conf *conf = mddev->private;
1304 struct md_rdev *blocked_rdev;
1305
1306retry_wait:
1307 blocked_rdev = NULL;
1308 rcu_read_lock();
1309 for (i = 0; i < conf->copies; i++) {
1310 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1311 struct md_rdev *rrdev = rcu_dereference(
1312 conf->mirrors[i].replacement);
1313 if (rdev == rrdev)
1314 rrdev = NULL;
1315 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1316 atomic_inc(&rdev->nr_pending);
1317 blocked_rdev = rdev;
1318 break;
1319 }
1320 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1321 atomic_inc(&rrdev->nr_pending);
1322 blocked_rdev = rrdev;
1323 break;
1324 }
1325
1326 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1327 sector_t first_bad;
1328 sector_t dev_sector = r10_bio->devs[i].addr;
1329 int bad_sectors;
1330 int is_bad;
1331
1332 /*
1333 * Discard request doesn't care the write result
1334 * so it doesn't need to wait blocked disk here.
1335 */
1336 if (!r10_bio->sectors)
1337 continue;
1338
1339 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1340 &first_bad, &bad_sectors);
1341 if (is_bad < 0) {
1342 /*
1343 * Mustn't write here until the bad block
1344 * is acknowledged
1345 */
1346 atomic_inc(&rdev->nr_pending);
1347 set_bit(BlockedBadBlocks, &rdev->flags);
1348 blocked_rdev = rdev;
1349 break;
1350 }
1351 }
1352 }
1353 rcu_read_unlock();
1354
1355 if (unlikely(blocked_rdev)) {
1356 /* Have to wait for this device to get unblocked, then retry */
1357 allow_barrier(conf);
1358 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1359 __func__, blocked_rdev->raid_disk);
1360 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1361 wait_barrier(conf, false);
1362 goto retry_wait;
1363 }
1364}
1365
1366static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1367 struct r10bio *r10_bio)
1368{
1369 struct r10conf *conf = mddev->private;
1370 int i;
1371 sector_t sectors;
1372 int max_sectors;
1373
1374 if ((mddev_is_clustered(mddev) &&
1375 md_cluster_ops->area_resyncing(mddev, WRITE,
1376 bio->bi_iter.bi_sector,
1377 bio_end_sector(bio)))) {
1378 DEFINE_WAIT(w);
1379 /* Bail out if REQ_NOWAIT is set for the bio */
1380 if (bio->bi_opf & REQ_NOWAIT) {
1381 bio_wouldblock_error(bio);
1382 return;
1383 }
1384 for (;;) {
1385 prepare_to_wait(&conf->wait_barrier,
1386 &w, TASK_IDLE);
1387 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1388 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1389 break;
1390 schedule();
1391 }
1392 finish_wait(&conf->wait_barrier, &w);
1393 }
1394
1395 sectors = r10_bio->sectors;
1396 if (!regular_request_wait(mddev, conf, bio, sectors))
1397 return;
1398 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1399 (mddev->reshape_backwards
1400 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1401 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1402 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1403 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1404 /* Need to update reshape_position in metadata */
1405 mddev->reshape_position = conf->reshape_progress;
1406 set_mask_bits(&mddev->sb_flags, 0,
1407 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1408 md_wakeup_thread(mddev->thread);
1409 if (bio->bi_opf & REQ_NOWAIT) {
1410 allow_barrier(conf);
1411 bio_wouldblock_error(bio);
1412 return;
1413 }
1414 raid10_log(conf->mddev, "wait reshape metadata");
1415 wait_event(mddev->sb_wait,
1416 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1417
1418 conf->reshape_safe = mddev->reshape_position;
1419 }
1420
1421 /* first select target devices under rcu_lock and
1422 * inc refcount on their rdev. Record them by setting
1423 * bios[x] to bio
1424 * If there are known/acknowledged bad blocks on any device
1425 * on which we have seen a write error, we want to avoid
1426 * writing to those blocks. This potentially requires several
1427 * writes to write around the bad blocks. Each set of writes
1428 * gets its own r10_bio with a set of bios attached.
1429 */
1430
1431 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1432 raid10_find_phys(conf, r10_bio);
1433
1434 wait_blocked_dev(mddev, r10_bio);
1435
1436 rcu_read_lock();
1437 max_sectors = r10_bio->sectors;
1438
1439 for (i = 0; i < conf->copies; i++) {
1440 int d = r10_bio->devs[i].devnum;
1441 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1442 struct md_rdev *rrdev = rcu_dereference(
1443 conf->mirrors[d].replacement);
1444 if (rdev == rrdev)
1445 rrdev = NULL;
1446 if (rdev && (test_bit(Faulty, &rdev->flags)))
1447 rdev = NULL;
1448 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1449 rrdev = NULL;
1450
1451 r10_bio->devs[i].bio = NULL;
1452 r10_bio->devs[i].repl_bio = NULL;
1453
1454 if (!rdev && !rrdev) {
1455 set_bit(R10BIO_Degraded, &r10_bio->state);
1456 continue;
1457 }
1458 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1459 sector_t first_bad;
1460 sector_t dev_sector = r10_bio->devs[i].addr;
1461 int bad_sectors;
1462 int is_bad;
1463
1464 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1465 &first_bad, &bad_sectors);
1466 if (is_bad && first_bad <= dev_sector) {
1467 /* Cannot write here at all */
1468 bad_sectors -= (dev_sector - first_bad);
1469 if (bad_sectors < max_sectors)
1470 /* Mustn't write more than bad_sectors
1471 * to other devices yet
1472 */
1473 max_sectors = bad_sectors;
1474 /* We don't set R10BIO_Degraded as that
1475 * only applies if the disk is missing,
1476 * so it might be re-added, and we want to
1477 * know to recover this chunk.
1478 * In this case the device is here, and the
1479 * fact that this chunk is not in-sync is
1480 * recorded in the bad block log.
1481 */
1482 continue;
1483 }
1484 if (is_bad) {
1485 int good_sectors = first_bad - dev_sector;
1486 if (good_sectors < max_sectors)
1487 max_sectors = good_sectors;
1488 }
1489 }
1490 if (rdev) {
1491 r10_bio->devs[i].bio = bio;
1492 atomic_inc(&rdev->nr_pending);
1493 }
1494 if (rrdev) {
1495 r10_bio->devs[i].repl_bio = bio;
1496 atomic_inc(&rrdev->nr_pending);
1497 }
1498 }
1499 rcu_read_unlock();
1500
1501 if (max_sectors < r10_bio->sectors)
1502 r10_bio->sectors = max_sectors;
1503
1504 if (r10_bio->sectors < bio_sectors(bio)) {
1505 struct bio *split = bio_split(bio, r10_bio->sectors,
1506 GFP_NOIO, &conf->bio_split);
1507 bio_chain(split, bio);
1508 allow_barrier(conf);
1509 submit_bio_noacct(bio);
1510 wait_barrier(conf, false);
1511 bio = split;
1512 r10_bio->master_bio = bio;
1513 }
1514
1515 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1516 r10_bio->start_time = bio_start_io_acct(bio);
1517 atomic_set(&r10_bio->remaining, 1);
1518 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1519
1520 for (i = 0; i < conf->copies; i++) {
1521 if (r10_bio->devs[i].bio)
1522 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1523 if (r10_bio->devs[i].repl_bio)
1524 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1525 }
1526 one_write_done(r10_bio);
1527}
1528
1529static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1530{
1531 struct r10conf *conf = mddev->private;
1532 struct r10bio *r10_bio;
1533
1534 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1535
1536 r10_bio->master_bio = bio;
1537 r10_bio->sectors = sectors;
1538
1539 r10_bio->mddev = mddev;
1540 r10_bio->sector = bio->bi_iter.bi_sector;
1541 r10_bio->state = 0;
1542 r10_bio->read_slot = -1;
1543 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1544 conf->geo.raid_disks);
1545
1546 if (bio_data_dir(bio) == READ)
1547 raid10_read_request(mddev, bio, r10_bio);
1548 else
1549 raid10_write_request(mddev, bio, r10_bio);
1550}
1551
1552static void raid_end_discard_bio(struct r10bio *r10bio)
1553{
1554 struct r10conf *conf = r10bio->mddev->private;
1555 struct r10bio *first_r10bio;
1556
1557 while (atomic_dec_and_test(&r10bio->remaining)) {
1558
1559 allow_barrier(conf);
1560
1561 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1562 first_r10bio = (struct r10bio *)r10bio->master_bio;
1563 free_r10bio(r10bio);
1564 r10bio = first_r10bio;
1565 } else {
1566 md_write_end(r10bio->mddev);
1567 bio_endio(r10bio->master_bio);
1568 free_r10bio(r10bio);
1569 break;
1570 }
1571 }
1572}
1573
1574static void raid10_end_discard_request(struct bio *bio)
1575{
1576 struct r10bio *r10_bio = bio->bi_private;
1577 struct r10conf *conf = r10_bio->mddev->private;
1578 struct md_rdev *rdev = NULL;
1579 int dev;
1580 int slot, repl;
1581
1582 /*
1583 * We don't care the return value of discard bio
1584 */
1585 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1586 set_bit(R10BIO_Uptodate, &r10_bio->state);
1587
1588 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1589 if (repl)
1590 rdev = conf->mirrors[dev].replacement;
1591 if (!rdev) {
1592 /*
1593 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1594 * replacement before setting replacement to NULL. It can read
1595 * rdev first without barrier protect even replacment is NULL
1596 */
1597 smp_rmb();
1598 rdev = conf->mirrors[dev].rdev;
1599 }
1600
1601 raid_end_discard_bio(r10_bio);
1602 rdev_dec_pending(rdev, conf->mddev);
1603}
1604
1605/*
1606 * There are some limitations to handle discard bio
1607 * 1st, the discard size is bigger than stripe_size*2.
1608 * 2st, if the discard bio spans reshape progress, we use the old way to
1609 * handle discard bio
1610 */
1611static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1612{
1613 struct r10conf *conf = mddev->private;
1614 struct geom *geo = &conf->geo;
1615 int far_copies = geo->far_copies;
1616 bool first_copy = true;
1617 struct r10bio *r10_bio, *first_r10bio;
1618 struct bio *split;
1619 int disk;
1620 sector_t chunk;
1621 unsigned int stripe_size;
1622 unsigned int stripe_data_disks;
1623 sector_t split_size;
1624 sector_t bio_start, bio_end;
1625 sector_t first_stripe_index, last_stripe_index;
1626 sector_t start_disk_offset;
1627 unsigned int start_disk_index;
1628 sector_t end_disk_offset;
1629 unsigned int end_disk_index;
1630 unsigned int remainder;
1631
1632 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1633 return -EAGAIN;
1634
1635 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1636 bio_wouldblock_error(bio);
1637 return 0;
1638 }
1639 wait_barrier(conf, false);
1640
1641 /*
1642 * Check reshape again to avoid reshape happens after checking
1643 * MD_RECOVERY_RESHAPE and before wait_barrier
1644 */
1645 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1646 goto out;
1647
1648 if (geo->near_copies)
1649 stripe_data_disks = geo->raid_disks / geo->near_copies +
1650 geo->raid_disks % geo->near_copies;
1651 else
1652 stripe_data_disks = geo->raid_disks;
1653
1654 stripe_size = stripe_data_disks << geo->chunk_shift;
1655
1656 bio_start = bio->bi_iter.bi_sector;
1657 bio_end = bio_end_sector(bio);
1658
1659 /*
1660 * Maybe one discard bio is smaller than strip size or across one
1661 * stripe and discard region is larger than one stripe size. For far
1662 * offset layout, if the discard region is not aligned with stripe
1663 * size, there is hole when we submit discard bio to member disk.
1664 * For simplicity, we only handle discard bio which discard region
1665 * is bigger than stripe_size * 2
1666 */
1667 if (bio_sectors(bio) < stripe_size*2)
1668 goto out;
1669
1670 /*
1671 * Keep bio aligned with strip size.
1672 */
1673 div_u64_rem(bio_start, stripe_size, &remainder);
1674 if (remainder) {
1675 split_size = stripe_size - remainder;
1676 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1677 bio_chain(split, bio);
1678 allow_barrier(conf);
1679 /* Resend the fist split part */
1680 submit_bio_noacct(split);
1681 wait_barrier(conf, false);
1682 }
1683 div_u64_rem(bio_end, stripe_size, &remainder);
1684 if (remainder) {
1685 split_size = bio_sectors(bio) - remainder;
1686 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1687 bio_chain(split, bio);
1688 allow_barrier(conf);
1689 /* Resend the second split part */
1690 submit_bio_noacct(bio);
1691 bio = split;
1692 wait_barrier(conf, false);
1693 }
1694
1695 bio_start = bio->bi_iter.bi_sector;
1696 bio_end = bio_end_sector(bio);
1697
1698 /*
1699 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1700 * One stripe contains the chunks from all member disk (one chunk from
1701 * one disk at the same HBA address). For layout detail, see 'man md 4'
1702 */
1703 chunk = bio_start >> geo->chunk_shift;
1704 chunk *= geo->near_copies;
1705 first_stripe_index = chunk;
1706 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1707 if (geo->far_offset)
1708 first_stripe_index *= geo->far_copies;
1709 start_disk_offset = (bio_start & geo->chunk_mask) +
1710 (first_stripe_index << geo->chunk_shift);
1711
1712 chunk = bio_end >> geo->chunk_shift;
1713 chunk *= geo->near_copies;
1714 last_stripe_index = chunk;
1715 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1716 if (geo->far_offset)
1717 last_stripe_index *= geo->far_copies;
1718 end_disk_offset = (bio_end & geo->chunk_mask) +
1719 (last_stripe_index << geo->chunk_shift);
1720
1721retry_discard:
1722 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1723 r10_bio->mddev = mddev;
1724 r10_bio->state = 0;
1725 r10_bio->sectors = 0;
1726 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1727 wait_blocked_dev(mddev, r10_bio);
1728
1729 /*
1730 * For far layout it needs more than one r10bio to cover all regions.
1731 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1732 * to record the discard bio. Other r10bio->master_bio record the first
1733 * r10bio. The first r10bio only release after all other r10bios finish.
1734 * The discard bio returns only first r10bio finishes
1735 */
1736 if (first_copy) {
1737 r10_bio->master_bio = bio;
1738 set_bit(R10BIO_Discard, &r10_bio->state);
1739 first_copy = false;
1740 first_r10bio = r10_bio;
1741 } else
1742 r10_bio->master_bio = (struct bio *)first_r10bio;
1743
1744 /*
1745 * first select target devices under rcu_lock and
1746 * inc refcount on their rdev. Record them by setting
1747 * bios[x] to bio
1748 */
1749 rcu_read_lock();
1750 for (disk = 0; disk < geo->raid_disks; disk++) {
1751 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1752 struct md_rdev *rrdev = rcu_dereference(
1753 conf->mirrors[disk].replacement);
1754
1755 r10_bio->devs[disk].bio = NULL;
1756 r10_bio->devs[disk].repl_bio = NULL;
1757
1758 if (rdev && (test_bit(Faulty, &rdev->flags)))
1759 rdev = NULL;
1760 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1761 rrdev = NULL;
1762 if (!rdev && !rrdev)
1763 continue;
1764
1765 if (rdev) {
1766 r10_bio->devs[disk].bio = bio;
1767 atomic_inc(&rdev->nr_pending);
1768 }
1769 if (rrdev) {
1770 r10_bio->devs[disk].repl_bio = bio;
1771 atomic_inc(&rrdev->nr_pending);
1772 }
1773 }
1774 rcu_read_unlock();
1775
1776 atomic_set(&r10_bio->remaining, 1);
1777 for (disk = 0; disk < geo->raid_disks; disk++) {
1778 sector_t dev_start, dev_end;
1779 struct bio *mbio, *rbio = NULL;
1780
1781 /*
1782 * Now start to calculate the start and end address for each disk.
1783 * The space between dev_start and dev_end is the discard region.
1784 *
1785 * For dev_start, it needs to consider three conditions:
1786 * 1st, the disk is before start_disk, you can imagine the disk in
1787 * the next stripe. So the dev_start is the start address of next
1788 * stripe.
1789 * 2st, the disk is after start_disk, it means the disk is at the
1790 * same stripe of first disk
1791 * 3st, the first disk itself, we can use start_disk_offset directly
1792 */
1793 if (disk < start_disk_index)
1794 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1795 else if (disk > start_disk_index)
1796 dev_start = first_stripe_index * mddev->chunk_sectors;
1797 else
1798 dev_start = start_disk_offset;
1799
1800 if (disk < end_disk_index)
1801 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1802 else if (disk > end_disk_index)
1803 dev_end = last_stripe_index * mddev->chunk_sectors;
1804 else
1805 dev_end = end_disk_offset;
1806
1807 /*
1808 * It only handles discard bio which size is >= stripe size, so
1809 * dev_end > dev_start all the time.
1810 * It doesn't need to use rcu lock to get rdev here. We already
1811 * add rdev->nr_pending in the first loop.
1812 */
1813 if (r10_bio->devs[disk].bio) {
1814 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1815 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1816 mbio->bi_end_io = raid10_end_discard_request;
1817 mbio->bi_private = r10_bio;
1818 r10_bio->devs[disk].bio = mbio;
1819 r10_bio->devs[disk].devnum = disk;
1820 atomic_inc(&r10_bio->remaining);
1821 md_submit_discard_bio(mddev, rdev, mbio,
1822 dev_start + choose_data_offset(r10_bio, rdev),
1823 dev_end - dev_start);
1824 bio_endio(mbio);
1825 }
1826 if (r10_bio->devs[disk].repl_bio) {
1827 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1828 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1829 rbio->bi_end_io = raid10_end_discard_request;
1830 rbio->bi_private = r10_bio;
1831 r10_bio->devs[disk].repl_bio = rbio;
1832 r10_bio->devs[disk].devnum = disk;
1833 atomic_inc(&r10_bio->remaining);
1834 md_submit_discard_bio(mddev, rrdev, rbio,
1835 dev_start + choose_data_offset(r10_bio, rrdev),
1836 dev_end - dev_start);
1837 bio_endio(rbio);
1838 }
1839 }
1840
1841 if (!geo->far_offset && --far_copies) {
1842 first_stripe_index += geo->stride >> geo->chunk_shift;
1843 start_disk_offset += geo->stride;
1844 last_stripe_index += geo->stride >> geo->chunk_shift;
1845 end_disk_offset += geo->stride;
1846 atomic_inc(&first_r10bio->remaining);
1847 raid_end_discard_bio(r10_bio);
1848 wait_barrier(conf, false);
1849 goto retry_discard;
1850 }
1851
1852 raid_end_discard_bio(r10_bio);
1853
1854 return 0;
1855out:
1856 allow_barrier(conf);
1857 return -EAGAIN;
1858}
1859
1860static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1861{
1862 struct r10conf *conf = mddev->private;
1863 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1864 int chunk_sects = chunk_mask + 1;
1865 int sectors = bio_sectors(bio);
1866
1867 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1868 && md_flush_request(mddev, bio))
1869 return true;
1870
1871 if (!md_write_start(mddev, bio))
1872 return false;
1873
1874 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1875 if (!raid10_handle_discard(mddev, bio))
1876 return true;
1877
1878 /*
1879 * If this request crosses a chunk boundary, we need to split
1880 * it.
1881 */
1882 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1883 sectors > chunk_sects
1884 && (conf->geo.near_copies < conf->geo.raid_disks
1885 || conf->prev.near_copies <
1886 conf->prev.raid_disks)))
1887 sectors = chunk_sects -
1888 (bio->bi_iter.bi_sector &
1889 (chunk_sects - 1));
1890 __make_request(mddev, bio, sectors);
1891
1892 /* In case raid10d snuck in to freeze_array */
1893 wake_up(&conf->wait_barrier);
1894 return true;
1895}
1896
1897static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1898{
1899 struct r10conf *conf = mddev->private;
1900 int i;
1901
1902 if (conf->geo.near_copies < conf->geo.raid_disks)
1903 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1904 if (conf->geo.near_copies > 1)
1905 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1906 if (conf->geo.far_copies > 1) {
1907 if (conf->geo.far_offset)
1908 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1909 else
1910 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1911 if (conf->geo.far_set_size != conf->geo.raid_disks)
1912 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1913 }
1914 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1915 conf->geo.raid_disks - mddev->degraded);
1916 rcu_read_lock();
1917 for (i = 0; i < conf->geo.raid_disks; i++) {
1918 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1919 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1920 }
1921 rcu_read_unlock();
1922 seq_printf(seq, "]");
1923}
1924
1925/* check if there are enough drives for
1926 * every block to appear on atleast one.
1927 * Don't consider the device numbered 'ignore'
1928 * as we might be about to remove it.
1929 */
1930static int _enough(struct r10conf *conf, int previous, int ignore)
1931{
1932 int first = 0;
1933 int has_enough = 0;
1934 int disks, ncopies;
1935 if (previous) {
1936 disks = conf->prev.raid_disks;
1937 ncopies = conf->prev.near_copies;
1938 } else {
1939 disks = conf->geo.raid_disks;
1940 ncopies = conf->geo.near_copies;
1941 }
1942
1943 rcu_read_lock();
1944 do {
1945 int n = conf->copies;
1946 int cnt = 0;
1947 int this = first;
1948 while (n--) {
1949 struct md_rdev *rdev;
1950 if (this != ignore &&
1951 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1952 test_bit(In_sync, &rdev->flags))
1953 cnt++;
1954 this = (this+1) % disks;
1955 }
1956 if (cnt == 0)
1957 goto out;
1958 first = (first + ncopies) % disks;
1959 } while (first != 0);
1960 has_enough = 1;
1961out:
1962 rcu_read_unlock();
1963 return has_enough;
1964}
1965
1966static int enough(struct r10conf *conf, int ignore)
1967{
1968 /* when calling 'enough', both 'prev' and 'geo' must
1969 * be stable.
1970 * This is ensured if ->reconfig_mutex or ->device_lock
1971 * is held.
1972 */
1973 return _enough(conf, 0, ignore) &&
1974 _enough(conf, 1, ignore);
1975}
1976
1977static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1978{
1979 char b[BDEVNAME_SIZE];
1980 struct r10conf *conf = mddev->private;
1981 unsigned long flags;
1982
1983 /*
1984 * If it is not operational, then we have already marked it as dead
1985 * else if it is the last working disks with "fail_last_dev == false",
1986 * ignore the error, let the next level up know.
1987 * else mark the drive as failed
1988 */
1989 spin_lock_irqsave(&conf->device_lock, flags);
1990 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1991 && !enough(conf, rdev->raid_disk)) {
1992 /*
1993 * Don't fail the drive, just return an IO error.
1994 */
1995 spin_unlock_irqrestore(&conf->device_lock, flags);
1996 return;
1997 }
1998 if (test_and_clear_bit(In_sync, &rdev->flags))
1999 mddev->degraded++;
2000 /*
2001 * If recovery is running, make sure it aborts.
2002 */
2003 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2004 set_bit(Blocked, &rdev->flags);
2005 set_bit(Faulty, &rdev->flags);
2006 set_mask_bits(&mddev->sb_flags, 0,
2007 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2008 spin_unlock_irqrestore(&conf->device_lock, flags);
2009 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
2010 "md/raid10:%s: Operation continuing on %d devices.\n",
2011 mdname(mddev), bdevname(rdev->bdev, b),
2012 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2013}
2014
2015static void print_conf(struct r10conf *conf)
2016{
2017 int i;
2018 struct md_rdev *rdev;
2019
2020 pr_debug("RAID10 conf printout:\n");
2021 if (!conf) {
2022 pr_debug("(!conf)\n");
2023 return;
2024 }
2025 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2026 conf->geo.raid_disks);
2027
2028 /* This is only called with ->reconfix_mutex held, so
2029 * rcu protection of rdev is not needed */
2030 for (i = 0; i < conf->geo.raid_disks; i++) {
2031 char b[BDEVNAME_SIZE];
2032 rdev = conf->mirrors[i].rdev;
2033 if (rdev)
2034 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2035 i, !test_bit(In_sync, &rdev->flags),
2036 !test_bit(Faulty, &rdev->flags),
2037 bdevname(rdev->bdev,b));
2038 }
2039}
2040
2041static void close_sync(struct r10conf *conf)
2042{
2043 wait_barrier(conf, false);
2044 allow_barrier(conf);
2045
2046 mempool_exit(&conf->r10buf_pool);
2047}
2048
2049static int raid10_spare_active(struct mddev *mddev)
2050{
2051 int i;
2052 struct r10conf *conf = mddev->private;
2053 struct raid10_info *tmp;
2054 int count = 0;
2055 unsigned long flags;
2056
2057 /*
2058 * Find all non-in_sync disks within the RAID10 configuration
2059 * and mark them in_sync
2060 */
2061 for (i = 0; i < conf->geo.raid_disks; i++) {
2062 tmp = conf->mirrors + i;
2063 if (tmp->replacement
2064 && tmp->replacement->recovery_offset == MaxSector
2065 && !test_bit(Faulty, &tmp->replacement->flags)
2066 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2067 /* Replacement has just become active */
2068 if (!tmp->rdev
2069 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2070 count++;
2071 if (tmp->rdev) {
2072 /* Replaced device not technically faulty,
2073 * but we need to be sure it gets removed
2074 * and never re-added.
2075 */
2076 set_bit(Faulty, &tmp->rdev->flags);
2077 sysfs_notify_dirent_safe(
2078 tmp->rdev->sysfs_state);
2079 }
2080 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2081 } else if (tmp->rdev
2082 && tmp->rdev->recovery_offset == MaxSector
2083 && !test_bit(Faulty, &tmp->rdev->flags)
2084 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2085 count++;
2086 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2087 }
2088 }
2089 spin_lock_irqsave(&conf->device_lock, flags);
2090 mddev->degraded -= count;
2091 spin_unlock_irqrestore(&conf->device_lock, flags);
2092
2093 print_conf(conf);
2094 return count;
2095}
2096
2097static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2098{
2099 struct r10conf *conf = mddev->private;
2100 int err = -EEXIST;
2101 int mirror;
2102 int first = 0;
2103 int last = conf->geo.raid_disks - 1;
2104
2105 if (mddev->recovery_cp < MaxSector)
2106 /* only hot-add to in-sync arrays, as recovery is
2107 * very different from resync
2108 */
2109 return -EBUSY;
2110 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2111 return -EINVAL;
2112
2113 if (md_integrity_add_rdev(rdev, mddev))
2114 return -ENXIO;
2115
2116 if (rdev->raid_disk >= 0)
2117 first = last = rdev->raid_disk;
2118
2119 if (rdev->saved_raid_disk >= first &&
2120 rdev->saved_raid_disk < conf->geo.raid_disks &&
2121 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2122 mirror = rdev->saved_raid_disk;
2123 else
2124 mirror = first;
2125 for ( ; mirror <= last ; mirror++) {
2126 struct raid10_info *p = &conf->mirrors[mirror];
2127 if (p->recovery_disabled == mddev->recovery_disabled)
2128 continue;
2129 if (p->rdev) {
2130 if (!test_bit(WantReplacement, &p->rdev->flags) ||
2131 p->replacement != NULL)
2132 continue;
2133 clear_bit(In_sync, &rdev->flags);
2134 set_bit(Replacement, &rdev->flags);
2135 rdev->raid_disk = mirror;
2136 err = 0;
2137 if (mddev->gendisk)
2138 disk_stack_limits(mddev->gendisk, rdev->bdev,
2139 rdev->data_offset << 9);
2140 conf->fullsync = 1;
2141 rcu_assign_pointer(p->replacement, rdev);
2142 break;
2143 }
2144
2145 if (mddev->gendisk)
2146 disk_stack_limits(mddev->gendisk, rdev->bdev,
2147 rdev->data_offset << 9);
2148
2149 p->head_position = 0;
2150 p->recovery_disabled = mddev->recovery_disabled - 1;
2151 rdev->raid_disk = mirror;
2152 err = 0;
2153 if (rdev->saved_raid_disk != mirror)
2154 conf->fullsync = 1;
2155 rcu_assign_pointer(p->rdev, rdev);
2156 break;
2157 }
2158 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2159 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2160
2161 print_conf(conf);
2162 return err;
2163}
2164
2165static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2166{
2167 struct r10conf *conf = mddev->private;
2168 int err = 0;
2169 int number = rdev->raid_disk;
2170 struct md_rdev **rdevp;
2171 struct raid10_info *p = conf->mirrors + number;
2172
2173 print_conf(conf);
2174 if (rdev == p->rdev)
2175 rdevp = &p->rdev;
2176 else if (rdev == p->replacement)
2177 rdevp = &p->replacement;
2178 else
2179 return 0;
2180
2181 if (test_bit(In_sync, &rdev->flags) ||
2182 atomic_read(&rdev->nr_pending)) {
2183 err = -EBUSY;
2184 goto abort;
2185 }
2186 /* Only remove non-faulty devices if recovery
2187 * is not possible.
2188 */
2189 if (!test_bit(Faulty, &rdev->flags) &&
2190 mddev->recovery_disabled != p->recovery_disabled &&
2191 (!p->replacement || p->replacement == rdev) &&
2192 number < conf->geo.raid_disks &&
2193 enough(conf, -1)) {
2194 err = -EBUSY;
2195 goto abort;
2196 }
2197 *rdevp = NULL;
2198 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2199 synchronize_rcu();
2200 if (atomic_read(&rdev->nr_pending)) {
2201 /* lost the race, try later */
2202 err = -EBUSY;
2203 *rdevp = rdev;
2204 goto abort;
2205 }
2206 }
2207 if (p->replacement) {
2208 /* We must have just cleared 'rdev' */
2209 p->rdev = p->replacement;
2210 clear_bit(Replacement, &p->replacement->flags);
2211 smp_mb(); /* Make sure other CPUs may see both as identical
2212 * but will never see neither -- if they are careful.
2213 */
2214 p->replacement = NULL;
2215 }
2216
2217 clear_bit(WantReplacement, &rdev->flags);
2218 err = md_integrity_register(mddev);
2219
2220abort:
2221
2222 print_conf(conf);
2223 return err;
2224}
2225
2226static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2227{
2228 struct r10conf *conf = r10_bio->mddev->private;
2229
2230 if (!bio->bi_status)
2231 set_bit(R10BIO_Uptodate, &r10_bio->state);
2232 else
2233 /* The write handler will notice the lack of
2234 * R10BIO_Uptodate and record any errors etc
2235 */
2236 atomic_add(r10_bio->sectors,
2237 &conf->mirrors[d].rdev->corrected_errors);
2238
2239 /* for reconstruct, we always reschedule after a read.
2240 * for resync, only after all reads
2241 */
2242 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2243 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2244 atomic_dec_and_test(&r10_bio->remaining)) {
2245 /* we have read all the blocks,
2246 * do the comparison in process context in raid10d
2247 */
2248 reschedule_retry(r10_bio);
2249 }
2250}
2251
2252static void end_sync_read(struct bio *bio)
2253{
2254 struct r10bio *r10_bio = get_resync_r10bio(bio);
2255 struct r10conf *conf = r10_bio->mddev->private;
2256 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2257
2258 __end_sync_read(r10_bio, bio, d);
2259}
2260
2261static void end_reshape_read(struct bio *bio)
2262{
2263 /* reshape read bio isn't allocated from r10buf_pool */
2264 struct r10bio *r10_bio = bio->bi_private;
2265
2266 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2267}
2268
2269static void end_sync_request(struct r10bio *r10_bio)
2270{
2271 struct mddev *mddev = r10_bio->mddev;
2272
2273 while (atomic_dec_and_test(&r10_bio->remaining)) {
2274 if (r10_bio->master_bio == NULL) {
2275 /* the primary of several recovery bios */
2276 sector_t s = r10_bio->sectors;
2277 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2278 test_bit(R10BIO_WriteError, &r10_bio->state))
2279 reschedule_retry(r10_bio);
2280 else
2281 put_buf(r10_bio);
2282 md_done_sync(mddev, s, 1);
2283 break;
2284 } else {
2285 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2286 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2287 test_bit(R10BIO_WriteError, &r10_bio->state))
2288 reschedule_retry(r10_bio);
2289 else
2290 put_buf(r10_bio);
2291 r10_bio = r10_bio2;
2292 }
2293 }
2294}
2295
2296static void end_sync_write(struct bio *bio)
2297{
2298 struct r10bio *r10_bio = get_resync_r10bio(bio);
2299 struct mddev *mddev = r10_bio->mddev;
2300 struct r10conf *conf = mddev->private;
2301 int d;
2302 sector_t first_bad;
2303 int bad_sectors;
2304 int slot;
2305 int repl;
2306 struct md_rdev *rdev = NULL;
2307
2308 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2309 if (repl)
2310 rdev = conf->mirrors[d].replacement;
2311 else
2312 rdev = conf->mirrors[d].rdev;
2313
2314 if (bio->bi_status) {
2315 if (repl)
2316 md_error(mddev, rdev);
2317 else {
2318 set_bit(WriteErrorSeen, &rdev->flags);
2319 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2320 set_bit(MD_RECOVERY_NEEDED,
2321 &rdev->mddev->recovery);
2322 set_bit(R10BIO_WriteError, &r10_bio->state);
2323 }
2324 } else if (is_badblock(rdev,
2325 r10_bio->devs[slot].addr,
2326 r10_bio->sectors,
2327 &first_bad, &bad_sectors))
2328 set_bit(R10BIO_MadeGood, &r10_bio->state);
2329
2330 rdev_dec_pending(rdev, mddev);
2331
2332 end_sync_request(r10_bio);
2333}
2334
2335/*
2336 * Note: sync and recover and handled very differently for raid10
2337 * This code is for resync.
2338 * For resync, we read through virtual addresses and read all blocks.
2339 * If there is any error, we schedule a write. The lowest numbered
2340 * drive is authoritative.
2341 * However requests come for physical address, so we need to map.
2342 * For every physical address there are raid_disks/copies virtual addresses,
2343 * which is always are least one, but is not necessarly an integer.
2344 * This means that a physical address can span multiple chunks, so we may
2345 * have to submit multiple io requests for a single sync request.
2346 */
2347/*
2348 * We check if all blocks are in-sync and only write to blocks that
2349 * aren't in sync
2350 */
2351static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2352{
2353 struct r10conf *conf = mddev->private;
2354 int i, first;
2355 struct bio *tbio, *fbio;
2356 int vcnt;
2357 struct page **tpages, **fpages;
2358
2359 atomic_set(&r10_bio->remaining, 1);
2360
2361 /* find the first device with a block */
2362 for (i=0; i<conf->copies; i++)
2363 if (!r10_bio->devs[i].bio->bi_status)
2364 break;
2365
2366 if (i == conf->copies)
2367 goto done;
2368
2369 first = i;
2370 fbio = r10_bio->devs[i].bio;
2371 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2372 fbio->bi_iter.bi_idx = 0;
2373 fpages = get_resync_pages(fbio)->pages;
2374
2375 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2376 /* now find blocks with errors */
2377 for (i=0 ; i < conf->copies ; i++) {
2378 int j, d;
2379 struct md_rdev *rdev;
2380 struct resync_pages *rp;
2381
2382 tbio = r10_bio->devs[i].bio;
2383
2384 if (tbio->bi_end_io != end_sync_read)
2385 continue;
2386 if (i == first)
2387 continue;
2388
2389 tpages = get_resync_pages(tbio)->pages;
2390 d = r10_bio->devs[i].devnum;
2391 rdev = conf->mirrors[d].rdev;
2392 if (!r10_bio->devs[i].bio->bi_status) {
2393 /* We know that the bi_io_vec layout is the same for
2394 * both 'first' and 'i', so we just compare them.
2395 * All vec entries are PAGE_SIZE;
2396 */
2397 int sectors = r10_bio->sectors;
2398 for (j = 0; j < vcnt; j++) {
2399 int len = PAGE_SIZE;
2400 if (sectors < (len / 512))
2401 len = sectors * 512;
2402 if (memcmp(page_address(fpages[j]),
2403 page_address(tpages[j]),
2404 len))
2405 break;
2406 sectors -= len/512;
2407 }
2408 if (j == vcnt)
2409 continue;
2410 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2411 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2412 /* Don't fix anything. */
2413 continue;
2414 } else if (test_bit(FailFast, &rdev->flags)) {
2415 /* Just give up on this device */
2416 md_error(rdev->mddev, rdev);
2417 continue;
2418 }
2419 /* Ok, we need to write this bio, either to correct an
2420 * inconsistency or to correct an unreadable block.
2421 * First we need to fixup bv_offset, bv_len and
2422 * bi_vecs, as the read request might have corrupted these
2423 */
2424 rp = get_resync_pages(tbio);
2425 bio_reset(tbio);
2426
2427 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2428
2429 rp->raid_bio = r10_bio;
2430 tbio->bi_private = rp;
2431 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2432 tbio->bi_end_io = end_sync_write;
2433 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2434
2435 bio_copy_data(tbio, fbio);
2436
2437 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2438 atomic_inc(&r10_bio->remaining);
2439 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2440
2441 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2442 tbio->bi_opf |= MD_FAILFAST;
2443 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2444 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2445 submit_bio_noacct(tbio);
2446 }
2447
2448 /* Now write out to any replacement devices
2449 * that are active
2450 */
2451 for (i = 0; i < conf->copies; i++) {
2452 int d;
2453
2454 tbio = r10_bio->devs[i].repl_bio;
2455 if (!tbio || !tbio->bi_end_io)
2456 continue;
2457 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2458 && r10_bio->devs[i].bio != fbio)
2459 bio_copy_data(tbio, fbio);
2460 d = r10_bio->devs[i].devnum;
2461 atomic_inc(&r10_bio->remaining);
2462 md_sync_acct(conf->mirrors[d].replacement->bdev,
2463 bio_sectors(tbio));
2464 submit_bio_noacct(tbio);
2465 }
2466
2467done:
2468 if (atomic_dec_and_test(&r10_bio->remaining)) {
2469 md_done_sync(mddev, r10_bio->sectors, 1);
2470 put_buf(r10_bio);
2471 }
2472}
2473
2474/*
2475 * Now for the recovery code.
2476 * Recovery happens across physical sectors.
2477 * We recover all non-is_sync drives by finding the virtual address of
2478 * each, and then choose a working drive that also has that virt address.
2479 * There is a separate r10_bio for each non-in_sync drive.
2480 * Only the first two slots are in use. The first for reading,
2481 * The second for writing.
2482 *
2483 */
2484static void fix_recovery_read_error(struct r10bio *r10_bio)
2485{
2486 /* We got a read error during recovery.
2487 * We repeat the read in smaller page-sized sections.
2488 * If a read succeeds, write it to the new device or record
2489 * a bad block if we cannot.
2490 * If a read fails, record a bad block on both old and
2491 * new devices.
2492 */
2493 struct mddev *mddev = r10_bio->mddev;
2494 struct r10conf *conf = mddev->private;
2495 struct bio *bio = r10_bio->devs[0].bio;
2496 sector_t sect = 0;
2497 int sectors = r10_bio->sectors;
2498 int idx = 0;
2499 int dr = r10_bio->devs[0].devnum;
2500 int dw = r10_bio->devs[1].devnum;
2501 struct page **pages = get_resync_pages(bio)->pages;
2502
2503 while (sectors) {
2504 int s = sectors;
2505 struct md_rdev *rdev;
2506 sector_t addr;
2507 int ok;
2508
2509 if (s > (PAGE_SIZE>>9))
2510 s = PAGE_SIZE >> 9;
2511
2512 rdev = conf->mirrors[dr].rdev;
2513 addr = r10_bio->devs[0].addr + sect,
2514 ok = sync_page_io(rdev,
2515 addr,
2516 s << 9,
2517 pages[idx],
2518 REQ_OP_READ, 0, false);
2519 if (ok) {
2520 rdev = conf->mirrors[dw].rdev;
2521 addr = r10_bio->devs[1].addr + sect;
2522 ok = sync_page_io(rdev,
2523 addr,
2524 s << 9,
2525 pages[idx],
2526 REQ_OP_WRITE, 0, false);
2527 if (!ok) {
2528 set_bit(WriteErrorSeen, &rdev->flags);
2529 if (!test_and_set_bit(WantReplacement,
2530 &rdev->flags))
2531 set_bit(MD_RECOVERY_NEEDED,
2532 &rdev->mddev->recovery);
2533 }
2534 }
2535 if (!ok) {
2536 /* We don't worry if we cannot set a bad block -
2537 * it really is bad so there is no loss in not
2538 * recording it yet
2539 */
2540 rdev_set_badblocks(rdev, addr, s, 0);
2541
2542 if (rdev != conf->mirrors[dw].rdev) {
2543 /* need bad block on destination too */
2544 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2545 addr = r10_bio->devs[1].addr + sect;
2546 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2547 if (!ok) {
2548 /* just abort the recovery */
2549 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2550 mdname(mddev));
2551
2552 conf->mirrors[dw].recovery_disabled
2553 = mddev->recovery_disabled;
2554 set_bit(MD_RECOVERY_INTR,
2555 &mddev->recovery);
2556 break;
2557 }
2558 }
2559 }
2560
2561 sectors -= s;
2562 sect += s;
2563 idx++;
2564 }
2565}
2566
2567static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2568{
2569 struct r10conf *conf = mddev->private;
2570 int d;
2571 struct bio *wbio, *wbio2;
2572
2573 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2574 fix_recovery_read_error(r10_bio);
2575 end_sync_request(r10_bio);
2576 return;
2577 }
2578
2579 /*
2580 * share the pages with the first bio
2581 * and submit the write request
2582 */
2583 d = r10_bio->devs[1].devnum;
2584 wbio = r10_bio->devs[1].bio;
2585 wbio2 = r10_bio->devs[1].repl_bio;
2586 /* Need to test wbio2->bi_end_io before we call
2587 * submit_bio_noacct as if the former is NULL,
2588 * the latter is free to free wbio2.
2589 */
2590 if (wbio2 && !wbio2->bi_end_io)
2591 wbio2 = NULL;
2592 if (wbio->bi_end_io) {
2593 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2594 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2595 submit_bio_noacct(wbio);
2596 }
2597 if (wbio2) {
2598 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2599 md_sync_acct(conf->mirrors[d].replacement->bdev,
2600 bio_sectors(wbio2));
2601 submit_bio_noacct(wbio2);
2602 }
2603}
2604
2605/*
2606 * Used by fix_read_error() to decay the per rdev read_errors.
2607 * We halve the read error count for every hour that has elapsed
2608 * since the last recorded read error.
2609 *
2610 */
2611static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2612{
2613 long cur_time_mon;
2614 unsigned long hours_since_last;
2615 unsigned int read_errors = atomic_read(&rdev->read_errors);
2616
2617 cur_time_mon = ktime_get_seconds();
2618
2619 if (rdev->last_read_error == 0) {
2620 /* first time we've seen a read error */
2621 rdev->last_read_error = cur_time_mon;
2622 return;
2623 }
2624
2625 hours_since_last = (long)(cur_time_mon -
2626 rdev->last_read_error) / 3600;
2627
2628 rdev->last_read_error = cur_time_mon;
2629
2630 /*
2631 * if hours_since_last is > the number of bits in read_errors
2632 * just set read errors to 0. We do this to avoid
2633 * overflowing the shift of read_errors by hours_since_last.
2634 */
2635 if (hours_since_last >= 8 * sizeof(read_errors))
2636 atomic_set(&rdev->read_errors, 0);
2637 else
2638 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2639}
2640
2641static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2642 int sectors, struct page *page, int rw)
2643{
2644 sector_t first_bad;
2645 int bad_sectors;
2646
2647 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2648 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2649 return -1;
2650 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2651 /* success */
2652 return 1;
2653 if (rw == WRITE) {
2654 set_bit(WriteErrorSeen, &rdev->flags);
2655 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2656 set_bit(MD_RECOVERY_NEEDED,
2657 &rdev->mddev->recovery);
2658 }
2659 /* need to record an error - either for the block or the device */
2660 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2661 md_error(rdev->mddev, rdev);
2662 return 0;
2663}
2664
2665/*
2666 * This is a kernel thread which:
2667 *
2668 * 1. Retries failed read operations on working mirrors.
2669 * 2. Updates the raid superblock when problems encounter.
2670 * 3. Performs writes following reads for array synchronising.
2671 */
2672
2673static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2674{
2675 int sect = 0; /* Offset from r10_bio->sector */
2676 int sectors = r10_bio->sectors;
2677 struct md_rdev *rdev;
2678 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2679 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2680
2681 /* still own a reference to this rdev, so it cannot
2682 * have been cleared recently.
2683 */
2684 rdev = conf->mirrors[d].rdev;
2685
2686 if (test_bit(Faulty, &rdev->flags))
2687 /* drive has already been failed, just ignore any
2688 more fix_read_error() attempts */
2689 return;
2690
2691 check_decay_read_errors(mddev, rdev);
2692 atomic_inc(&rdev->read_errors);
2693 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2694 char b[BDEVNAME_SIZE];
2695 bdevname(rdev->bdev, b);
2696
2697 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2698 mdname(mddev), b,
2699 atomic_read(&rdev->read_errors), max_read_errors);
2700 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2701 mdname(mddev), b);
2702 md_error(mddev, rdev);
2703 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2704 return;
2705 }
2706
2707 while(sectors) {
2708 int s = sectors;
2709 int sl = r10_bio->read_slot;
2710 int success = 0;
2711 int start;
2712
2713 if (s > (PAGE_SIZE>>9))
2714 s = PAGE_SIZE >> 9;
2715
2716 rcu_read_lock();
2717 do {
2718 sector_t first_bad;
2719 int bad_sectors;
2720
2721 d = r10_bio->devs[sl].devnum;
2722 rdev = rcu_dereference(conf->mirrors[d].rdev);
2723 if (rdev &&
2724 test_bit(In_sync, &rdev->flags) &&
2725 !test_bit(Faulty, &rdev->flags) &&
2726 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2727 &first_bad, &bad_sectors) == 0) {
2728 atomic_inc(&rdev->nr_pending);
2729 rcu_read_unlock();
2730 success = sync_page_io(rdev,
2731 r10_bio->devs[sl].addr +
2732 sect,
2733 s<<9,
2734 conf->tmppage,
2735 REQ_OP_READ, 0, false);
2736 rdev_dec_pending(rdev, mddev);
2737 rcu_read_lock();
2738 if (success)
2739 break;
2740 }
2741 sl++;
2742 if (sl == conf->copies)
2743 sl = 0;
2744 } while (!success && sl != r10_bio->read_slot);
2745 rcu_read_unlock();
2746
2747 if (!success) {
2748 /* Cannot read from anywhere, just mark the block
2749 * as bad on the first device to discourage future
2750 * reads.
2751 */
2752 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2753 rdev = conf->mirrors[dn].rdev;
2754
2755 if (!rdev_set_badblocks(
2756 rdev,
2757 r10_bio->devs[r10_bio->read_slot].addr
2758 + sect,
2759 s, 0)) {
2760 md_error(mddev, rdev);
2761 r10_bio->devs[r10_bio->read_slot].bio
2762 = IO_BLOCKED;
2763 }
2764 break;
2765 }
2766
2767 start = sl;
2768 /* write it back and re-read */
2769 rcu_read_lock();
2770 while (sl != r10_bio->read_slot) {
2771 char b[BDEVNAME_SIZE];
2772
2773 if (sl==0)
2774 sl = conf->copies;
2775 sl--;
2776 d = r10_bio->devs[sl].devnum;
2777 rdev = rcu_dereference(conf->mirrors[d].rdev);
2778 if (!rdev ||
2779 test_bit(Faulty, &rdev->flags) ||
2780 !test_bit(In_sync, &rdev->flags))
2781 continue;
2782
2783 atomic_inc(&rdev->nr_pending);
2784 rcu_read_unlock();
2785 if (r10_sync_page_io(rdev,
2786 r10_bio->devs[sl].addr +
2787 sect,
2788 s, conf->tmppage, WRITE)
2789 == 0) {
2790 /* Well, this device is dead */
2791 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2792 mdname(mddev), s,
2793 (unsigned long long)(
2794 sect +
2795 choose_data_offset(r10_bio,
2796 rdev)),
2797 bdevname(rdev->bdev, b));
2798 pr_notice("md/raid10:%s: %s: failing drive\n",
2799 mdname(mddev),
2800 bdevname(rdev->bdev, b));
2801 }
2802 rdev_dec_pending(rdev, mddev);
2803 rcu_read_lock();
2804 }
2805 sl = start;
2806 while (sl != r10_bio->read_slot) {
2807 char b[BDEVNAME_SIZE];
2808
2809 if (sl==0)
2810 sl = conf->copies;
2811 sl--;
2812 d = r10_bio->devs[sl].devnum;
2813 rdev = rcu_dereference(conf->mirrors[d].rdev);
2814 if (!rdev ||
2815 test_bit(Faulty, &rdev->flags) ||
2816 !test_bit(In_sync, &rdev->flags))
2817 continue;
2818
2819 atomic_inc(&rdev->nr_pending);
2820 rcu_read_unlock();
2821 switch (r10_sync_page_io(rdev,
2822 r10_bio->devs[sl].addr +
2823 sect,
2824 s, conf->tmppage,
2825 READ)) {
2826 case 0:
2827 /* Well, this device is dead */
2828 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2829 mdname(mddev), s,
2830 (unsigned long long)(
2831 sect +
2832 choose_data_offset(r10_bio, rdev)),
2833 bdevname(rdev->bdev, b));
2834 pr_notice("md/raid10:%s: %s: failing drive\n",
2835 mdname(mddev),
2836 bdevname(rdev->bdev, b));
2837 break;
2838 case 1:
2839 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2840 mdname(mddev), s,
2841 (unsigned long long)(
2842 sect +
2843 choose_data_offset(r10_bio, rdev)),
2844 bdevname(rdev->bdev, b));
2845 atomic_add(s, &rdev->corrected_errors);
2846 }
2847
2848 rdev_dec_pending(rdev, mddev);
2849 rcu_read_lock();
2850 }
2851 rcu_read_unlock();
2852
2853 sectors -= s;
2854 sect += s;
2855 }
2856}
2857
2858static int narrow_write_error(struct r10bio *r10_bio, int i)
2859{
2860 struct bio *bio = r10_bio->master_bio;
2861 struct mddev *mddev = r10_bio->mddev;
2862 struct r10conf *conf = mddev->private;
2863 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2864 /* bio has the data to be written to slot 'i' where
2865 * we just recently had a write error.
2866 * We repeatedly clone the bio and trim down to one block,
2867 * then try the write. Where the write fails we record
2868 * a bad block.
2869 * It is conceivable that the bio doesn't exactly align with
2870 * blocks. We must handle this.
2871 *
2872 * We currently own a reference to the rdev.
2873 */
2874
2875 int block_sectors;
2876 sector_t sector;
2877 int sectors;
2878 int sect_to_write = r10_bio->sectors;
2879 int ok = 1;
2880
2881 if (rdev->badblocks.shift < 0)
2882 return 0;
2883
2884 block_sectors = roundup(1 << rdev->badblocks.shift,
2885 bdev_logical_block_size(rdev->bdev) >> 9);
2886 sector = r10_bio->sector;
2887 sectors = ((r10_bio->sector + block_sectors)
2888 & ~(sector_t)(block_sectors - 1))
2889 - sector;
2890
2891 while (sect_to_write) {
2892 struct bio *wbio;
2893 sector_t wsector;
2894 if (sectors > sect_to_write)
2895 sectors = sect_to_write;
2896 /* Write at 'sector' for 'sectors' */
2897 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2898 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2899 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2900 wbio->bi_iter.bi_sector = wsector +
2901 choose_data_offset(r10_bio, rdev);
2902 bio_set_dev(wbio, rdev->bdev);
2903 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2904
2905 if (submit_bio_wait(wbio) < 0)
2906 /* Failure! */
2907 ok = rdev_set_badblocks(rdev, wsector,
2908 sectors, 0)
2909 && ok;
2910
2911 bio_put(wbio);
2912 sect_to_write -= sectors;
2913 sector += sectors;
2914 sectors = block_sectors;
2915 }
2916 return ok;
2917}
2918
2919static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2920{
2921 int slot = r10_bio->read_slot;
2922 struct bio *bio;
2923 struct r10conf *conf = mddev->private;
2924 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2925
2926 /* we got a read error. Maybe the drive is bad. Maybe just
2927 * the block and we can fix it.
2928 * We freeze all other IO, and try reading the block from
2929 * other devices. When we find one, we re-write
2930 * and check it that fixes the read error.
2931 * This is all done synchronously while the array is
2932 * frozen.
2933 */
2934 bio = r10_bio->devs[slot].bio;
2935 bio_put(bio);
2936 r10_bio->devs[slot].bio = NULL;
2937
2938 if (mddev->ro)
2939 r10_bio->devs[slot].bio = IO_BLOCKED;
2940 else if (!test_bit(FailFast, &rdev->flags)) {
2941 freeze_array(conf, 1);
2942 fix_read_error(conf, mddev, r10_bio);
2943 unfreeze_array(conf);
2944 } else
2945 md_error(mddev, rdev);
2946
2947 rdev_dec_pending(rdev, mddev);
2948 allow_barrier(conf);
2949 r10_bio->state = 0;
2950 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2951}
2952
2953static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2954{
2955 /* Some sort of write request has finished and it
2956 * succeeded in writing where we thought there was a
2957 * bad block. So forget the bad block.
2958 * Or possibly if failed and we need to record
2959 * a bad block.
2960 */
2961 int m;
2962 struct md_rdev *rdev;
2963
2964 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2965 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2966 for (m = 0; m < conf->copies; m++) {
2967 int dev = r10_bio->devs[m].devnum;
2968 rdev = conf->mirrors[dev].rdev;
2969 if (r10_bio->devs[m].bio == NULL ||
2970 r10_bio->devs[m].bio->bi_end_io == NULL)
2971 continue;
2972 if (!r10_bio->devs[m].bio->bi_status) {
2973 rdev_clear_badblocks(
2974 rdev,
2975 r10_bio->devs[m].addr,
2976 r10_bio->sectors, 0);
2977 } else {
2978 if (!rdev_set_badblocks(
2979 rdev,
2980 r10_bio->devs[m].addr,
2981 r10_bio->sectors, 0))
2982 md_error(conf->mddev, rdev);
2983 }
2984 rdev = conf->mirrors[dev].replacement;
2985 if (r10_bio->devs[m].repl_bio == NULL ||
2986 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2987 continue;
2988
2989 if (!r10_bio->devs[m].repl_bio->bi_status) {
2990 rdev_clear_badblocks(
2991 rdev,
2992 r10_bio->devs[m].addr,
2993 r10_bio->sectors, 0);
2994 } else {
2995 if (!rdev_set_badblocks(
2996 rdev,
2997 r10_bio->devs[m].addr,
2998 r10_bio->sectors, 0))
2999 md_error(conf->mddev, rdev);
3000 }
3001 }
3002 put_buf(r10_bio);
3003 } else {
3004 bool fail = false;
3005 for (m = 0; m < conf->copies; m++) {
3006 int dev = r10_bio->devs[m].devnum;
3007 struct bio *bio = r10_bio->devs[m].bio;
3008 rdev = conf->mirrors[dev].rdev;
3009 if (bio == IO_MADE_GOOD) {
3010 rdev_clear_badblocks(
3011 rdev,
3012 r10_bio->devs[m].addr,
3013 r10_bio->sectors, 0);
3014 rdev_dec_pending(rdev, conf->mddev);
3015 } else if (bio != NULL && bio->bi_status) {
3016 fail = true;
3017 if (!narrow_write_error(r10_bio, m)) {
3018 md_error(conf->mddev, rdev);
3019 set_bit(R10BIO_Degraded,
3020 &r10_bio->state);
3021 }
3022 rdev_dec_pending(rdev, conf->mddev);
3023 }
3024 bio = r10_bio->devs[m].repl_bio;
3025 rdev = conf->mirrors[dev].replacement;
3026 if (rdev && bio == IO_MADE_GOOD) {
3027 rdev_clear_badblocks(
3028 rdev,
3029 r10_bio->devs[m].addr,
3030 r10_bio->sectors, 0);
3031 rdev_dec_pending(rdev, conf->mddev);
3032 }
3033 }
3034 if (fail) {
3035 spin_lock_irq(&conf->device_lock);
3036 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3037 conf->nr_queued++;
3038 spin_unlock_irq(&conf->device_lock);
3039 /*
3040 * In case freeze_array() is waiting for condition
3041 * nr_pending == nr_queued + extra to be true.
3042 */
3043 wake_up(&conf->wait_barrier);
3044 md_wakeup_thread(conf->mddev->thread);
3045 } else {
3046 if (test_bit(R10BIO_WriteError,
3047 &r10_bio->state))
3048 close_write(r10_bio);
3049 raid_end_bio_io(r10_bio);
3050 }
3051 }
3052}
3053
3054static void raid10d(struct md_thread *thread)
3055{
3056 struct mddev *mddev = thread->mddev;
3057 struct r10bio *r10_bio;
3058 unsigned long flags;
3059 struct r10conf *conf = mddev->private;
3060 struct list_head *head = &conf->retry_list;
3061 struct blk_plug plug;
3062
3063 md_check_recovery(mddev);
3064
3065 if (!list_empty_careful(&conf->bio_end_io_list) &&
3066 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3067 LIST_HEAD(tmp);
3068 spin_lock_irqsave(&conf->device_lock, flags);
3069 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3070 while (!list_empty(&conf->bio_end_io_list)) {
3071 list_move(conf->bio_end_io_list.prev, &tmp);
3072 conf->nr_queued--;
3073 }
3074 }
3075 spin_unlock_irqrestore(&conf->device_lock, flags);
3076 while (!list_empty(&tmp)) {
3077 r10_bio = list_first_entry(&tmp, struct r10bio,
3078 retry_list);
3079 list_del(&r10_bio->retry_list);
3080 if (mddev->degraded)
3081 set_bit(R10BIO_Degraded, &r10_bio->state);
3082
3083 if (test_bit(R10BIO_WriteError,
3084 &r10_bio->state))
3085 close_write(r10_bio);
3086 raid_end_bio_io(r10_bio);
3087 }
3088 }
3089
3090 blk_start_plug(&plug);
3091 for (;;) {
3092
3093 flush_pending_writes(conf);
3094
3095 spin_lock_irqsave(&conf->device_lock, flags);
3096 if (list_empty(head)) {
3097 spin_unlock_irqrestore(&conf->device_lock, flags);
3098 break;
3099 }
3100 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3101 list_del(head->prev);
3102 conf->nr_queued--;
3103 spin_unlock_irqrestore(&conf->device_lock, flags);
3104
3105 mddev = r10_bio->mddev;
3106 conf = mddev->private;
3107 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3108 test_bit(R10BIO_WriteError, &r10_bio->state))
3109 handle_write_completed(conf, r10_bio);
3110 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3111 reshape_request_write(mddev, r10_bio);
3112 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3113 sync_request_write(mddev, r10_bio);
3114 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3115 recovery_request_write(mddev, r10_bio);
3116 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3117 handle_read_error(mddev, r10_bio);
3118 else
3119 WARN_ON_ONCE(1);
3120
3121 cond_resched();
3122 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3123 md_check_recovery(mddev);
3124 }
3125 blk_finish_plug(&plug);
3126}
3127
3128static int init_resync(struct r10conf *conf)
3129{
3130 int ret, buffs, i;
3131
3132 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3133 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3134 conf->have_replacement = 0;
3135 for (i = 0; i < conf->geo.raid_disks; i++)
3136 if (conf->mirrors[i].replacement)
3137 conf->have_replacement = 1;
3138 ret = mempool_init(&conf->r10buf_pool, buffs,
3139 r10buf_pool_alloc, r10buf_pool_free, conf);
3140 if (ret)
3141 return ret;
3142 conf->next_resync = 0;
3143 return 0;
3144}
3145
3146static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3147{
3148 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3149 struct rsync_pages *rp;
3150 struct bio *bio;
3151 int nalloc;
3152 int i;
3153
3154 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3155 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3156 nalloc = conf->copies; /* resync */
3157 else
3158 nalloc = 2; /* recovery */
3159
3160 for (i = 0; i < nalloc; i++) {
3161 bio = r10bio->devs[i].bio;
3162 rp = bio->bi_private;
3163 bio_reset(bio);
3164 bio->bi_private = rp;
3165 bio = r10bio->devs[i].repl_bio;
3166 if (bio) {
3167 rp = bio->bi_private;
3168 bio_reset(bio);
3169 bio->bi_private = rp;
3170 }
3171 }
3172 return r10bio;
3173}
3174
3175/*
3176 * Set cluster_sync_high since we need other nodes to add the
3177 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3178 */
3179static void raid10_set_cluster_sync_high(struct r10conf *conf)
3180{
3181 sector_t window_size;
3182 int extra_chunk, chunks;
3183
3184 /*
3185 * First, here we define "stripe" as a unit which across
3186 * all member devices one time, so we get chunks by use
3187 * raid_disks / near_copies. Otherwise, if near_copies is
3188 * close to raid_disks, then resync window could increases
3189 * linearly with the increase of raid_disks, which means
3190 * we will suspend a really large IO window while it is not
3191 * necessary. If raid_disks is not divisible by near_copies,
3192 * an extra chunk is needed to ensure the whole "stripe" is
3193 * covered.
3194 */
3195
3196 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3197 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3198 extra_chunk = 0;
3199 else
3200 extra_chunk = 1;
3201 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3202
3203 /*
3204 * At least use a 32M window to align with raid1's resync window
3205 */
3206 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3207 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3208
3209 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3210}
3211
3212/*
3213 * perform a "sync" on one "block"
3214 *
3215 * We need to make sure that no normal I/O request - particularly write
3216 * requests - conflict with active sync requests.
3217 *
3218 * This is achieved by tracking pending requests and a 'barrier' concept
3219 * that can be installed to exclude normal IO requests.
3220 *
3221 * Resync and recovery are handled very differently.
3222 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3223 *
3224 * For resync, we iterate over virtual addresses, read all copies,
3225 * and update if there are differences. If only one copy is live,
3226 * skip it.
3227 * For recovery, we iterate over physical addresses, read a good
3228 * value for each non-in_sync drive, and over-write.
3229 *
3230 * So, for recovery we may have several outstanding complex requests for a
3231 * given address, one for each out-of-sync device. We model this by allocating
3232 * a number of r10_bio structures, one for each out-of-sync device.
3233 * As we setup these structures, we collect all bio's together into a list
3234 * which we then process collectively to add pages, and then process again
3235 * to pass to submit_bio_noacct.
3236 *
3237 * The r10_bio structures are linked using a borrowed master_bio pointer.
3238 * This link is counted in ->remaining. When the r10_bio that points to NULL
3239 * has its remaining count decremented to 0, the whole complex operation
3240 * is complete.
3241 *
3242 */
3243
3244static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3245 int *skipped)
3246{
3247 struct r10conf *conf = mddev->private;
3248 struct r10bio *r10_bio;
3249 struct bio *biolist = NULL, *bio;
3250 sector_t max_sector, nr_sectors;
3251 int i;
3252 int max_sync;
3253 sector_t sync_blocks;
3254 sector_t sectors_skipped = 0;
3255 int chunks_skipped = 0;
3256 sector_t chunk_mask = conf->geo.chunk_mask;
3257 int page_idx = 0;
3258
3259 if (!mempool_initialized(&conf->r10buf_pool))
3260 if (init_resync(conf))
3261 return 0;
3262
3263 /*
3264 * Allow skipping a full rebuild for incremental assembly
3265 * of a clean array, like RAID1 does.
3266 */
3267 if (mddev->bitmap == NULL &&
3268 mddev->recovery_cp == MaxSector &&
3269 mddev->reshape_position == MaxSector &&
3270 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3271 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3272 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3273 conf->fullsync == 0) {
3274 *skipped = 1;
3275 return mddev->dev_sectors - sector_nr;
3276 }
3277
3278 skipped:
3279 max_sector = mddev->dev_sectors;
3280 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3281 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3282 max_sector = mddev->resync_max_sectors;
3283 if (sector_nr >= max_sector) {
3284 conf->cluster_sync_low = 0;
3285 conf->cluster_sync_high = 0;
3286
3287 /* If we aborted, we need to abort the
3288 * sync on the 'current' bitmap chucks (there can
3289 * be several when recovering multiple devices).
3290 * as we may have started syncing it but not finished.
3291 * We can find the current address in
3292 * mddev->curr_resync, but for recovery,
3293 * we need to convert that to several
3294 * virtual addresses.
3295 */
3296 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3297 end_reshape(conf);
3298 close_sync(conf);
3299 return 0;
3300 }
3301
3302 if (mddev->curr_resync < max_sector) { /* aborted */
3303 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3304 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3305 &sync_blocks, 1);
3306 else for (i = 0; i < conf->geo.raid_disks; i++) {
3307 sector_t sect =
3308 raid10_find_virt(conf, mddev->curr_resync, i);
3309 md_bitmap_end_sync(mddev->bitmap, sect,
3310 &sync_blocks, 1);
3311 }
3312 } else {
3313 /* completed sync */
3314 if ((!mddev->bitmap || conf->fullsync)
3315 && conf->have_replacement
3316 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3317 /* Completed a full sync so the replacements
3318 * are now fully recovered.
3319 */
3320 rcu_read_lock();
3321 for (i = 0; i < conf->geo.raid_disks; i++) {
3322 struct md_rdev *rdev =
3323 rcu_dereference(conf->mirrors[i].replacement);
3324 if (rdev)
3325 rdev->recovery_offset = MaxSector;
3326 }
3327 rcu_read_unlock();
3328 }
3329 conf->fullsync = 0;
3330 }
3331 md_bitmap_close_sync(mddev->bitmap);
3332 close_sync(conf);
3333 *skipped = 1;
3334 return sectors_skipped;
3335 }
3336
3337 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3338 return reshape_request(mddev, sector_nr, skipped);
3339
3340 if (chunks_skipped >= conf->geo.raid_disks) {
3341 /* if there has been nothing to do on any drive,
3342 * then there is nothing to do at all..
3343 */
3344 *skipped = 1;
3345 return (max_sector - sector_nr) + sectors_skipped;
3346 }
3347
3348 if (max_sector > mddev->resync_max)
3349 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3350
3351 /* make sure whole request will fit in a chunk - if chunks
3352 * are meaningful
3353 */
3354 if (conf->geo.near_copies < conf->geo.raid_disks &&
3355 max_sector > (sector_nr | chunk_mask))
3356 max_sector = (sector_nr | chunk_mask) + 1;
3357
3358 /*
3359 * If there is non-resync activity waiting for a turn, then let it
3360 * though before starting on this new sync request.
3361 */
3362 if (conf->nr_waiting)
3363 schedule_timeout_uninterruptible(1);
3364
3365 /* Again, very different code for resync and recovery.
3366 * Both must result in an r10bio with a list of bios that
3367 * have bi_end_io, bi_sector, bi_bdev set,
3368 * and bi_private set to the r10bio.
3369 * For recovery, we may actually create several r10bios
3370 * with 2 bios in each, that correspond to the bios in the main one.
3371 * In this case, the subordinate r10bios link back through a
3372 * borrowed master_bio pointer, and the counter in the master
3373 * includes a ref from each subordinate.
3374 */
3375 /* First, we decide what to do and set ->bi_end_io
3376 * To end_sync_read if we want to read, and
3377 * end_sync_write if we will want to write.
3378 */
3379
3380 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3381 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3382 /* recovery... the complicated one */
3383 int j;
3384 r10_bio = NULL;
3385
3386 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3387 int still_degraded;
3388 struct r10bio *rb2;
3389 sector_t sect;
3390 int must_sync;
3391 int any_working;
3392 int need_recover = 0;
3393 int need_replace = 0;
3394 struct raid10_info *mirror = &conf->mirrors[i];
3395 struct md_rdev *mrdev, *mreplace;
3396
3397 rcu_read_lock();
3398 mrdev = rcu_dereference(mirror->rdev);
3399 mreplace = rcu_dereference(mirror->replacement);
3400
3401 if (mrdev != NULL &&
3402 !test_bit(Faulty, &mrdev->flags) &&
3403 !test_bit(In_sync, &mrdev->flags))
3404 need_recover = 1;
3405 if (mreplace != NULL &&
3406 !test_bit(Faulty, &mreplace->flags))
3407 need_replace = 1;
3408
3409 if (!need_recover && !need_replace) {
3410 rcu_read_unlock();
3411 continue;
3412 }
3413
3414 still_degraded = 0;
3415 /* want to reconstruct this device */
3416 rb2 = r10_bio;
3417 sect = raid10_find_virt(conf, sector_nr, i);
3418 if (sect >= mddev->resync_max_sectors) {
3419 /* last stripe is not complete - don't
3420 * try to recover this sector.
3421 */
3422 rcu_read_unlock();
3423 continue;
3424 }
3425 if (mreplace && test_bit(Faulty, &mreplace->flags))
3426 mreplace = NULL;
3427 /* Unless we are doing a full sync, or a replacement
3428 * we only need to recover the block if it is set in
3429 * the bitmap
3430 */
3431 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3432 &sync_blocks, 1);
3433 if (sync_blocks < max_sync)
3434 max_sync = sync_blocks;
3435 if (!must_sync &&
3436 mreplace == NULL &&
3437 !conf->fullsync) {
3438 /* yep, skip the sync_blocks here, but don't assume
3439 * that there will never be anything to do here
3440 */
3441 chunks_skipped = -1;
3442 rcu_read_unlock();
3443 continue;
3444 }
3445 atomic_inc(&mrdev->nr_pending);
3446 if (mreplace)
3447 atomic_inc(&mreplace->nr_pending);
3448 rcu_read_unlock();
3449
3450 r10_bio = raid10_alloc_init_r10buf(conf);
3451 r10_bio->state = 0;
3452 raise_barrier(conf, rb2 != NULL);
3453 atomic_set(&r10_bio->remaining, 0);
3454
3455 r10_bio->master_bio = (struct bio*)rb2;
3456 if (rb2)
3457 atomic_inc(&rb2->remaining);
3458 r10_bio->mddev = mddev;
3459 set_bit(R10BIO_IsRecover, &r10_bio->state);
3460 r10_bio->sector = sect;
3461
3462 raid10_find_phys(conf, r10_bio);
3463
3464 /* Need to check if the array will still be
3465 * degraded
3466 */
3467 rcu_read_lock();
3468 for (j = 0; j < conf->geo.raid_disks; j++) {
3469 struct md_rdev *rdev = rcu_dereference(
3470 conf->mirrors[j].rdev);
3471 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3472 still_degraded = 1;
3473 break;
3474 }
3475 }
3476
3477 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3478 &sync_blocks, still_degraded);
3479
3480 any_working = 0;
3481 for (j=0; j<conf->copies;j++) {
3482 int k;
3483 int d = r10_bio->devs[j].devnum;
3484 sector_t from_addr, to_addr;
3485 struct md_rdev *rdev =
3486 rcu_dereference(conf->mirrors[d].rdev);
3487 sector_t sector, first_bad;
3488 int bad_sectors;
3489 if (!rdev ||
3490 !test_bit(In_sync, &rdev->flags))
3491 continue;
3492 /* This is where we read from */
3493 any_working = 1;
3494 sector = r10_bio->devs[j].addr;
3495
3496 if (is_badblock(rdev, sector, max_sync,
3497 &first_bad, &bad_sectors)) {
3498 if (first_bad > sector)
3499 max_sync = first_bad - sector;
3500 else {
3501 bad_sectors -= (sector
3502 - first_bad);
3503 if (max_sync > bad_sectors)
3504 max_sync = bad_sectors;
3505 continue;
3506 }
3507 }
3508 bio = r10_bio->devs[0].bio;
3509 bio->bi_next = biolist;
3510 biolist = bio;
3511 bio->bi_end_io = end_sync_read;
3512 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3513 if (test_bit(FailFast, &rdev->flags))
3514 bio->bi_opf |= MD_FAILFAST;
3515 from_addr = r10_bio->devs[j].addr;
3516 bio->bi_iter.bi_sector = from_addr +
3517 rdev->data_offset;
3518 bio_set_dev(bio, rdev->bdev);
3519 atomic_inc(&rdev->nr_pending);
3520 /* and we write to 'i' (if not in_sync) */
3521
3522 for (k=0; k<conf->copies; k++)
3523 if (r10_bio->devs[k].devnum == i)
3524 break;
3525 BUG_ON(k == conf->copies);
3526 to_addr = r10_bio->devs[k].addr;
3527 r10_bio->devs[0].devnum = d;
3528 r10_bio->devs[0].addr = from_addr;
3529 r10_bio->devs[1].devnum = i;
3530 r10_bio->devs[1].addr = to_addr;
3531
3532 if (need_recover) {
3533 bio = r10_bio->devs[1].bio;
3534 bio->bi_next = biolist;
3535 biolist = bio;
3536 bio->bi_end_io = end_sync_write;
3537 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3538 bio->bi_iter.bi_sector = to_addr
3539 + mrdev->data_offset;
3540 bio_set_dev(bio, mrdev->bdev);
3541 atomic_inc(&r10_bio->remaining);
3542 } else
3543 r10_bio->devs[1].bio->bi_end_io = NULL;
3544
3545 /* and maybe write to replacement */
3546 bio = r10_bio->devs[1].repl_bio;
3547 if (bio)
3548 bio->bi_end_io = NULL;
3549 /* Note: if need_replace, then bio
3550 * cannot be NULL as r10buf_pool_alloc will
3551 * have allocated it.
3552 */
3553 if (!need_replace)
3554 break;
3555 bio->bi_next = biolist;
3556 biolist = bio;
3557 bio->bi_end_io = end_sync_write;
3558 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3559 bio->bi_iter.bi_sector = to_addr +
3560 mreplace->data_offset;
3561 bio_set_dev(bio, mreplace->bdev);
3562 atomic_inc(&r10_bio->remaining);
3563 break;
3564 }
3565 rcu_read_unlock();
3566 if (j == conf->copies) {
3567 /* Cannot recover, so abort the recovery or
3568 * record a bad block */
3569 if (any_working) {
3570 /* problem is that there are bad blocks
3571 * on other device(s)
3572 */
3573 int k;
3574 for (k = 0; k < conf->copies; k++)
3575 if (r10_bio->devs[k].devnum == i)
3576 break;
3577 if (!test_bit(In_sync,
3578 &mrdev->flags)
3579 && !rdev_set_badblocks(
3580 mrdev,
3581 r10_bio->devs[k].addr,
3582 max_sync, 0))
3583 any_working = 0;
3584 if (mreplace &&
3585 !rdev_set_badblocks(
3586 mreplace,
3587 r10_bio->devs[k].addr,
3588 max_sync, 0))
3589 any_working = 0;
3590 }
3591 if (!any_working) {
3592 if (!test_and_set_bit(MD_RECOVERY_INTR,
3593 &mddev->recovery))
3594 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3595 mdname(mddev));
3596 mirror->recovery_disabled
3597 = mddev->recovery_disabled;
3598 }
3599 put_buf(r10_bio);
3600 if (rb2)
3601 atomic_dec(&rb2->remaining);
3602 r10_bio = rb2;
3603 rdev_dec_pending(mrdev, mddev);
3604 if (mreplace)
3605 rdev_dec_pending(mreplace, mddev);
3606 break;
3607 }
3608 rdev_dec_pending(mrdev, mddev);
3609 if (mreplace)
3610 rdev_dec_pending(mreplace, mddev);
3611 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3612 /* Only want this if there is elsewhere to
3613 * read from. 'j' is currently the first
3614 * readable copy.
3615 */
3616 int targets = 1;
3617 for (; j < conf->copies; j++) {
3618 int d = r10_bio->devs[j].devnum;
3619 if (conf->mirrors[d].rdev &&
3620 test_bit(In_sync,
3621 &conf->mirrors[d].rdev->flags))
3622 targets++;
3623 }
3624 if (targets == 1)
3625 r10_bio->devs[0].bio->bi_opf
3626 &= ~MD_FAILFAST;
3627 }
3628 }
3629 if (biolist == NULL) {
3630 while (r10_bio) {
3631 struct r10bio *rb2 = r10_bio;
3632 r10_bio = (struct r10bio*) rb2->master_bio;
3633 rb2->master_bio = NULL;
3634 put_buf(rb2);
3635 }
3636 goto giveup;
3637 }
3638 } else {
3639 /* resync. Schedule a read for every block at this virt offset */
3640 int count = 0;
3641
3642 /*
3643 * Since curr_resync_completed could probably not update in
3644 * time, and we will set cluster_sync_low based on it.
3645 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3646 * safety reason, which ensures curr_resync_completed is
3647 * updated in bitmap_cond_end_sync.
3648 */
3649 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3650 mddev_is_clustered(mddev) &&
3651 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3652
3653 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3654 &sync_blocks, mddev->degraded) &&
3655 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3656 &mddev->recovery)) {
3657 /* We can skip this block */
3658 *skipped = 1;
3659 return sync_blocks + sectors_skipped;
3660 }
3661 if (sync_blocks < max_sync)
3662 max_sync = sync_blocks;
3663 r10_bio = raid10_alloc_init_r10buf(conf);
3664 r10_bio->state = 0;
3665
3666 r10_bio->mddev = mddev;
3667 atomic_set(&r10_bio->remaining, 0);
3668 raise_barrier(conf, 0);
3669 conf->next_resync = sector_nr;
3670
3671 r10_bio->master_bio = NULL;
3672 r10_bio->sector = sector_nr;
3673 set_bit(R10BIO_IsSync, &r10_bio->state);
3674 raid10_find_phys(conf, r10_bio);
3675 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3676
3677 for (i = 0; i < conf->copies; i++) {
3678 int d = r10_bio->devs[i].devnum;
3679 sector_t first_bad, sector;
3680 int bad_sectors;
3681 struct md_rdev *rdev;
3682
3683 if (r10_bio->devs[i].repl_bio)
3684 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3685
3686 bio = r10_bio->devs[i].bio;
3687 bio->bi_status = BLK_STS_IOERR;
3688 rcu_read_lock();
3689 rdev = rcu_dereference(conf->mirrors[d].rdev);
3690 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3691 rcu_read_unlock();
3692 continue;
3693 }
3694 sector = r10_bio->devs[i].addr;
3695 if (is_badblock(rdev, sector, max_sync,
3696 &first_bad, &bad_sectors)) {
3697 if (first_bad > sector)
3698 max_sync = first_bad - sector;
3699 else {
3700 bad_sectors -= (sector - first_bad);
3701 if (max_sync > bad_sectors)
3702 max_sync = bad_sectors;
3703 rcu_read_unlock();
3704 continue;
3705 }
3706 }
3707 atomic_inc(&rdev->nr_pending);
3708 atomic_inc(&r10_bio->remaining);
3709 bio->bi_next = biolist;
3710 biolist = bio;
3711 bio->bi_end_io = end_sync_read;
3712 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3713 if (test_bit(FailFast, &rdev->flags))
3714 bio->bi_opf |= MD_FAILFAST;
3715 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3716 bio_set_dev(bio, rdev->bdev);
3717 count++;
3718
3719 rdev = rcu_dereference(conf->mirrors[d].replacement);
3720 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3721 rcu_read_unlock();
3722 continue;
3723 }
3724 atomic_inc(&rdev->nr_pending);
3725
3726 /* Need to set up for writing to the replacement */
3727 bio = r10_bio->devs[i].repl_bio;
3728 bio->bi_status = BLK_STS_IOERR;
3729
3730 sector = r10_bio->devs[i].addr;
3731 bio->bi_next = biolist;
3732 biolist = bio;
3733 bio->bi_end_io = end_sync_write;
3734 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3735 if (test_bit(FailFast, &rdev->flags))
3736 bio->bi_opf |= MD_FAILFAST;
3737 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3738 bio_set_dev(bio, rdev->bdev);
3739 count++;
3740 rcu_read_unlock();
3741 }
3742
3743 if (count < 2) {
3744 for (i=0; i<conf->copies; i++) {
3745 int d = r10_bio->devs[i].devnum;
3746 if (r10_bio->devs[i].bio->bi_end_io)
3747 rdev_dec_pending(conf->mirrors[d].rdev,
3748 mddev);
3749 if (r10_bio->devs[i].repl_bio &&
3750 r10_bio->devs[i].repl_bio->bi_end_io)
3751 rdev_dec_pending(
3752 conf->mirrors[d].replacement,
3753 mddev);
3754 }
3755 put_buf(r10_bio);
3756 biolist = NULL;
3757 goto giveup;
3758 }
3759 }
3760
3761 nr_sectors = 0;
3762 if (sector_nr + max_sync < max_sector)
3763 max_sector = sector_nr + max_sync;
3764 do {
3765 struct page *page;
3766 int len = PAGE_SIZE;
3767 if (sector_nr + (len>>9) > max_sector)
3768 len = (max_sector - sector_nr) << 9;
3769 if (len == 0)
3770 break;
3771 for (bio= biolist ; bio ; bio=bio->bi_next) {
3772 struct resync_pages *rp = get_resync_pages(bio);
3773 page = resync_fetch_page(rp, page_idx);
3774 /*
3775 * won't fail because the vec table is big enough
3776 * to hold all these pages
3777 */
3778 bio_add_page(bio, page, len, 0);
3779 }
3780 nr_sectors += len>>9;
3781 sector_nr += len>>9;
3782 } while (++page_idx < RESYNC_PAGES);
3783 r10_bio->sectors = nr_sectors;
3784
3785 if (mddev_is_clustered(mddev) &&
3786 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3787 /* It is resync not recovery */
3788 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3789 conf->cluster_sync_low = mddev->curr_resync_completed;
3790 raid10_set_cluster_sync_high(conf);
3791 /* Send resync message */
3792 md_cluster_ops->resync_info_update(mddev,
3793 conf->cluster_sync_low,
3794 conf->cluster_sync_high);
3795 }
3796 } else if (mddev_is_clustered(mddev)) {
3797 /* This is recovery not resync */
3798 sector_t sect_va1, sect_va2;
3799 bool broadcast_msg = false;
3800
3801 for (i = 0; i < conf->geo.raid_disks; i++) {
3802 /*
3803 * sector_nr is a device address for recovery, so we
3804 * need translate it to array address before compare
3805 * with cluster_sync_high.
3806 */
3807 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3808
3809 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3810 broadcast_msg = true;
3811 /*
3812 * curr_resync_completed is similar as
3813 * sector_nr, so make the translation too.
3814 */
3815 sect_va2 = raid10_find_virt(conf,
3816 mddev->curr_resync_completed, i);
3817
3818 if (conf->cluster_sync_low == 0 ||
3819 conf->cluster_sync_low > sect_va2)
3820 conf->cluster_sync_low = sect_va2;
3821 }
3822 }
3823 if (broadcast_msg) {
3824 raid10_set_cluster_sync_high(conf);
3825 md_cluster_ops->resync_info_update(mddev,
3826 conf->cluster_sync_low,
3827 conf->cluster_sync_high);
3828 }
3829 }
3830
3831 while (biolist) {
3832 bio = biolist;
3833 biolist = biolist->bi_next;
3834
3835 bio->bi_next = NULL;
3836 r10_bio = get_resync_r10bio(bio);
3837 r10_bio->sectors = nr_sectors;
3838
3839 if (bio->bi_end_io == end_sync_read) {
3840 md_sync_acct_bio(bio, nr_sectors);
3841 bio->bi_status = 0;
3842 submit_bio_noacct(bio);
3843 }
3844 }
3845
3846 if (sectors_skipped)
3847 /* pretend they weren't skipped, it makes
3848 * no important difference in this case
3849 */
3850 md_done_sync(mddev, sectors_skipped, 1);
3851
3852 return sectors_skipped + nr_sectors;
3853 giveup:
3854 /* There is nowhere to write, so all non-sync
3855 * drives must be failed or in resync, all drives
3856 * have a bad block, so try the next chunk...
3857 */
3858 if (sector_nr + max_sync < max_sector)
3859 max_sector = sector_nr + max_sync;
3860
3861 sectors_skipped += (max_sector - sector_nr);
3862 chunks_skipped ++;
3863 sector_nr = max_sector;
3864 goto skipped;
3865}
3866
3867static sector_t
3868raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3869{
3870 sector_t size;
3871 struct r10conf *conf = mddev->private;
3872
3873 if (!raid_disks)
3874 raid_disks = min(conf->geo.raid_disks,
3875 conf->prev.raid_disks);
3876 if (!sectors)
3877 sectors = conf->dev_sectors;
3878
3879 size = sectors >> conf->geo.chunk_shift;
3880 sector_div(size, conf->geo.far_copies);
3881 size = size * raid_disks;
3882 sector_div(size, conf->geo.near_copies);
3883
3884 return size << conf->geo.chunk_shift;
3885}
3886
3887static void calc_sectors(struct r10conf *conf, sector_t size)
3888{
3889 /* Calculate the number of sectors-per-device that will
3890 * actually be used, and set conf->dev_sectors and
3891 * conf->stride
3892 */
3893
3894 size = size >> conf->geo.chunk_shift;
3895 sector_div(size, conf->geo.far_copies);
3896 size = size * conf->geo.raid_disks;
3897 sector_div(size, conf->geo.near_copies);
3898 /* 'size' is now the number of chunks in the array */
3899 /* calculate "used chunks per device" */
3900 size = size * conf->copies;
3901
3902 /* We need to round up when dividing by raid_disks to
3903 * get the stride size.
3904 */
3905 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3906
3907 conf->dev_sectors = size << conf->geo.chunk_shift;
3908
3909 if (conf->geo.far_offset)
3910 conf->geo.stride = 1 << conf->geo.chunk_shift;
3911 else {
3912 sector_div(size, conf->geo.far_copies);
3913 conf->geo.stride = size << conf->geo.chunk_shift;
3914 }
3915}
3916
3917enum geo_type {geo_new, geo_old, geo_start};
3918static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3919{
3920 int nc, fc, fo;
3921 int layout, chunk, disks;
3922 switch (new) {
3923 case geo_old:
3924 layout = mddev->layout;
3925 chunk = mddev->chunk_sectors;
3926 disks = mddev->raid_disks - mddev->delta_disks;
3927 break;
3928 case geo_new:
3929 layout = mddev->new_layout;
3930 chunk = mddev->new_chunk_sectors;
3931 disks = mddev->raid_disks;
3932 break;
3933 default: /* avoid 'may be unused' warnings */
3934 case geo_start: /* new when starting reshape - raid_disks not
3935 * updated yet. */
3936 layout = mddev->new_layout;
3937 chunk = mddev->new_chunk_sectors;
3938 disks = mddev->raid_disks + mddev->delta_disks;
3939 break;
3940 }
3941 if (layout >> 19)
3942 return -1;
3943 if (chunk < (PAGE_SIZE >> 9) ||
3944 !is_power_of_2(chunk))
3945 return -2;
3946 nc = layout & 255;
3947 fc = (layout >> 8) & 255;
3948 fo = layout & (1<<16);
3949 geo->raid_disks = disks;
3950 geo->near_copies = nc;
3951 geo->far_copies = fc;
3952 geo->far_offset = fo;
3953 switch (layout >> 17) {
3954 case 0: /* original layout. simple but not always optimal */
3955 geo->far_set_size = disks;
3956 break;
3957 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3958 * actually using this, but leave code here just in case.*/
3959 geo->far_set_size = disks/fc;
3960 WARN(geo->far_set_size < fc,
3961 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3962 break;
3963 case 2: /* "improved" layout fixed to match documentation */
3964 geo->far_set_size = fc * nc;
3965 break;
3966 default: /* Not a valid layout */
3967 return -1;
3968 }
3969 geo->chunk_mask = chunk - 1;
3970 geo->chunk_shift = ffz(~chunk);
3971 return nc*fc;
3972}
3973
3974static struct r10conf *setup_conf(struct mddev *mddev)
3975{
3976 struct r10conf *conf = NULL;
3977 int err = -EINVAL;
3978 struct geom geo;
3979 int copies;
3980
3981 copies = setup_geo(&geo, mddev, geo_new);
3982
3983 if (copies == -2) {
3984 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3985 mdname(mddev), PAGE_SIZE);
3986 goto out;
3987 }
3988
3989 if (copies < 2 || copies > mddev->raid_disks) {
3990 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3991 mdname(mddev), mddev->new_layout);
3992 goto out;
3993 }
3994
3995 err = -ENOMEM;
3996 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3997 if (!conf)
3998 goto out;
3999
4000 /* FIXME calc properly */
4001 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4002 sizeof(struct raid10_info),
4003 GFP_KERNEL);
4004 if (!conf->mirrors)
4005 goto out;
4006
4007 conf->tmppage = alloc_page(GFP_KERNEL);
4008 if (!conf->tmppage)
4009 goto out;
4010
4011 conf->geo = geo;
4012 conf->copies = copies;
4013 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4014 rbio_pool_free, conf);
4015 if (err)
4016 goto out;
4017
4018 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4019 if (err)
4020 goto out;
4021
4022 calc_sectors(conf, mddev->dev_sectors);
4023 if (mddev->reshape_position == MaxSector) {
4024 conf->prev = conf->geo;
4025 conf->reshape_progress = MaxSector;
4026 } else {
4027 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4028 err = -EINVAL;
4029 goto out;
4030 }
4031 conf->reshape_progress = mddev->reshape_position;
4032 if (conf->prev.far_offset)
4033 conf->prev.stride = 1 << conf->prev.chunk_shift;
4034 else
4035 /* far_copies must be 1 */
4036 conf->prev.stride = conf->dev_sectors;
4037 }
4038 conf->reshape_safe = conf->reshape_progress;
4039 spin_lock_init(&conf->device_lock);
4040 INIT_LIST_HEAD(&conf->retry_list);
4041 INIT_LIST_HEAD(&conf->bio_end_io_list);
4042
4043 spin_lock_init(&conf->resync_lock);
4044 init_waitqueue_head(&conf->wait_barrier);
4045 atomic_set(&conf->nr_pending, 0);
4046
4047 err = -ENOMEM;
4048 conf->thread = md_register_thread(raid10d, mddev, "raid10");
4049 if (!conf->thread)
4050 goto out;
4051
4052 conf->mddev = mddev;
4053 return conf;
4054
4055 out:
4056 if (conf) {
4057 mempool_exit(&conf->r10bio_pool);
4058 kfree(conf->mirrors);
4059 safe_put_page(conf->tmppage);
4060 bioset_exit(&conf->bio_split);
4061 kfree(conf);
4062 }
4063 return ERR_PTR(err);
4064}
4065
4066static void raid10_set_io_opt(struct r10conf *conf)
4067{
4068 int raid_disks = conf->geo.raid_disks;
4069
4070 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4071 raid_disks /= conf->geo.near_copies;
4072 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4073 raid_disks);
4074}
4075
4076static int raid10_run(struct mddev *mddev)
4077{
4078 struct r10conf *conf;
4079 int i, disk_idx;
4080 struct raid10_info *disk;
4081 struct md_rdev *rdev;
4082 sector_t size;
4083 sector_t min_offset_diff = 0;
4084 int first = 1;
4085 bool discard_supported = false;
4086
4087 if (mddev_init_writes_pending(mddev) < 0)
4088 return -ENOMEM;
4089
4090 if (mddev->private == NULL) {
4091 conf = setup_conf(mddev);
4092 if (IS_ERR(conf))
4093 return PTR_ERR(conf);
4094 mddev->private = conf;
4095 }
4096 conf = mddev->private;
4097 if (!conf)
4098 goto out;
4099
4100 if (mddev_is_clustered(conf->mddev)) {
4101 int fc, fo;
4102
4103 fc = (mddev->layout >> 8) & 255;
4104 fo = mddev->layout & (1<<16);
4105 if (fc > 1 || fo > 0) {
4106 pr_err("only near layout is supported by clustered"
4107 " raid10\n");
4108 goto out_free_conf;
4109 }
4110 }
4111
4112 mddev->thread = conf->thread;
4113 conf->thread = NULL;
4114
4115 if (mddev->queue) {
4116 blk_queue_max_discard_sectors(mddev->queue,
4117 UINT_MAX);
4118 blk_queue_max_write_same_sectors(mddev->queue, 0);
4119 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4120 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4121 raid10_set_io_opt(conf);
4122 }
4123
4124 rdev_for_each(rdev, mddev) {
4125 long long diff;
4126
4127 disk_idx = rdev->raid_disk;
4128 if (disk_idx < 0)
4129 continue;
4130 if (disk_idx >= conf->geo.raid_disks &&
4131 disk_idx >= conf->prev.raid_disks)
4132 continue;
4133 disk = conf->mirrors + disk_idx;
4134
4135 if (test_bit(Replacement, &rdev->flags)) {
4136 if (disk->replacement)
4137 goto out_free_conf;
4138 disk->replacement = rdev;
4139 } else {
4140 if (disk->rdev)
4141 goto out_free_conf;
4142 disk->rdev = rdev;
4143 }
4144 diff = (rdev->new_data_offset - rdev->data_offset);
4145 if (!mddev->reshape_backwards)
4146 diff = -diff;
4147 if (diff < 0)
4148 diff = 0;
4149 if (first || diff < min_offset_diff)
4150 min_offset_diff = diff;
4151
4152 if (mddev->gendisk)
4153 disk_stack_limits(mddev->gendisk, rdev->bdev,
4154 rdev->data_offset << 9);
4155
4156 disk->head_position = 0;
4157
4158 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4159 discard_supported = true;
4160 first = 0;
4161 }
4162
4163 if (mddev->queue) {
4164 if (discard_supported)
4165 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4166 mddev->queue);
4167 else
4168 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4169 mddev->queue);
4170 }
4171 /* need to check that every block has at least one working mirror */
4172 if (!enough(conf, -1)) {
4173 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4174 mdname(mddev));
4175 goto out_free_conf;
4176 }
4177
4178 if (conf->reshape_progress != MaxSector) {
4179 /* must ensure that shape change is supported */
4180 if (conf->geo.far_copies != 1 &&
4181 conf->geo.far_offset == 0)
4182 goto out_free_conf;
4183 if (conf->prev.far_copies != 1 &&
4184 conf->prev.far_offset == 0)
4185 goto out_free_conf;
4186 }
4187
4188 mddev->degraded = 0;
4189 for (i = 0;
4190 i < conf->geo.raid_disks
4191 || i < conf->prev.raid_disks;
4192 i++) {
4193
4194 disk = conf->mirrors + i;
4195
4196 if (!disk->rdev && disk->replacement) {
4197 /* The replacement is all we have - use it */
4198 disk->rdev = disk->replacement;
4199 disk->replacement = NULL;
4200 clear_bit(Replacement, &disk->rdev->flags);
4201 }
4202
4203 if (!disk->rdev ||
4204 !test_bit(In_sync, &disk->rdev->flags)) {
4205 disk->head_position = 0;
4206 mddev->degraded++;
4207 if (disk->rdev &&
4208 disk->rdev->saved_raid_disk < 0)
4209 conf->fullsync = 1;
4210 }
4211
4212 if (disk->replacement &&
4213 !test_bit(In_sync, &disk->replacement->flags) &&
4214 disk->replacement->saved_raid_disk < 0) {
4215 conf->fullsync = 1;
4216 }
4217
4218 disk->recovery_disabled = mddev->recovery_disabled - 1;
4219 }
4220
4221 if (mddev->recovery_cp != MaxSector)
4222 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4223 mdname(mddev));
4224 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4225 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4226 conf->geo.raid_disks);
4227 /*
4228 * Ok, everything is just fine now
4229 */
4230 mddev->dev_sectors = conf->dev_sectors;
4231 size = raid10_size(mddev, 0, 0);
4232 md_set_array_sectors(mddev, size);
4233 mddev->resync_max_sectors = size;
4234 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4235
4236 if (md_integrity_register(mddev))
4237 goto out_free_conf;
4238
4239 if (conf->reshape_progress != MaxSector) {
4240 unsigned long before_length, after_length;
4241
4242 before_length = ((1 << conf->prev.chunk_shift) *
4243 conf->prev.far_copies);
4244 after_length = ((1 << conf->geo.chunk_shift) *
4245 conf->geo.far_copies);
4246
4247 if (max(before_length, after_length) > min_offset_diff) {
4248 /* This cannot work */
4249 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4250 goto out_free_conf;
4251 }
4252 conf->offset_diff = min_offset_diff;
4253
4254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4255 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4256 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4257 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4258 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4259 "reshape");
4260 if (!mddev->sync_thread)
4261 goto out_free_conf;
4262 }
4263
4264 return 0;
4265
4266out_free_conf:
4267 md_unregister_thread(&mddev->thread);
4268 mempool_exit(&conf->r10bio_pool);
4269 safe_put_page(conf->tmppage);
4270 kfree(conf->mirrors);
4271 kfree(conf);
4272 mddev->private = NULL;
4273out:
4274 return -EIO;
4275}
4276
4277static void raid10_free(struct mddev *mddev, void *priv)
4278{
4279 struct r10conf *conf = priv;
4280
4281 mempool_exit(&conf->r10bio_pool);
4282 safe_put_page(conf->tmppage);
4283 kfree(conf->mirrors);
4284 kfree(conf->mirrors_old);
4285 kfree(conf->mirrors_new);
4286 bioset_exit(&conf->bio_split);
4287 kfree(conf);
4288}
4289
4290static void raid10_quiesce(struct mddev *mddev, int quiesce)
4291{
4292 struct r10conf *conf = mddev->private;
4293
4294 if (quiesce)
4295 raise_barrier(conf, 0);
4296 else
4297 lower_barrier(conf);
4298}
4299
4300static int raid10_resize(struct mddev *mddev, sector_t sectors)
4301{
4302 /* Resize of 'far' arrays is not supported.
4303 * For 'near' and 'offset' arrays we can set the
4304 * number of sectors used to be an appropriate multiple
4305 * of the chunk size.
4306 * For 'offset', this is far_copies*chunksize.
4307 * For 'near' the multiplier is the LCM of
4308 * near_copies and raid_disks.
4309 * So if far_copies > 1 && !far_offset, fail.
4310 * Else find LCM(raid_disks, near_copy)*far_copies and
4311 * multiply by chunk_size. Then round to this number.
4312 * This is mostly done by raid10_size()
4313 */
4314 struct r10conf *conf = mddev->private;
4315 sector_t oldsize, size;
4316
4317 if (mddev->reshape_position != MaxSector)
4318 return -EBUSY;
4319
4320 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4321 return -EINVAL;
4322
4323 oldsize = raid10_size(mddev, 0, 0);
4324 size = raid10_size(mddev, sectors, 0);
4325 if (mddev->external_size &&
4326 mddev->array_sectors > size)
4327 return -EINVAL;
4328 if (mddev->bitmap) {
4329 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4330 if (ret)
4331 return ret;
4332 }
4333 md_set_array_sectors(mddev, size);
4334 if (sectors > mddev->dev_sectors &&
4335 mddev->recovery_cp > oldsize) {
4336 mddev->recovery_cp = oldsize;
4337 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4338 }
4339 calc_sectors(conf, sectors);
4340 mddev->dev_sectors = conf->dev_sectors;
4341 mddev->resync_max_sectors = size;
4342 return 0;
4343}
4344
4345static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4346{
4347 struct md_rdev *rdev;
4348 struct r10conf *conf;
4349
4350 if (mddev->degraded > 0) {
4351 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4352 mdname(mddev));
4353 return ERR_PTR(-EINVAL);
4354 }
4355 sector_div(size, devs);
4356
4357 /* Set new parameters */
4358 mddev->new_level = 10;
4359 /* new layout: far_copies = 1, near_copies = 2 */
4360 mddev->new_layout = (1<<8) + 2;
4361 mddev->new_chunk_sectors = mddev->chunk_sectors;
4362 mddev->delta_disks = mddev->raid_disks;
4363 mddev->raid_disks *= 2;
4364 /* make sure it will be not marked as dirty */
4365 mddev->recovery_cp = MaxSector;
4366 mddev->dev_sectors = size;
4367
4368 conf = setup_conf(mddev);
4369 if (!IS_ERR(conf)) {
4370 rdev_for_each(rdev, mddev)
4371 if (rdev->raid_disk >= 0) {
4372 rdev->new_raid_disk = rdev->raid_disk * 2;
4373 rdev->sectors = size;
4374 }
4375 conf->barrier = 1;
4376 }
4377
4378 return conf;
4379}
4380
4381static void *raid10_takeover(struct mddev *mddev)
4382{
4383 struct r0conf *raid0_conf;
4384
4385 /* raid10 can take over:
4386 * raid0 - providing it has only two drives
4387 */
4388 if (mddev->level == 0) {
4389 /* for raid0 takeover only one zone is supported */
4390 raid0_conf = mddev->private;
4391 if (raid0_conf->nr_strip_zones > 1) {
4392 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4393 mdname(mddev));
4394 return ERR_PTR(-EINVAL);
4395 }
4396 return raid10_takeover_raid0(mddev,
4397 raid0_conf->strip_zone->zone_end,
4398 raid0_conf->strip_zone->nb_dev);
4399 }
4400 return ERR_PTR(-EINVAL);
4401}
4402
4403static int raid10_check_reshape(struct mddev *mddev)
4404{
4405 /* Called when there is a request to change
4406 * - layout (to ->new_layout)
4407 * - chunk size (to ->new_chunk_sectors)
4408 * - raid_disks (by delta_disks)
4409 * or when trying to restart a reshape that was ongoing.
4410 *
4411 * We need to validate the request and possibly allocate
4412 * space if that might be an issue later.
4413 *
4414 * Currently we reject any reshape of a 'far' mode array,
4415 * allow chunk size to change if new is generally acceptable,
4416 * allow raid_disks to increase, and allow
4417 * a switch between 'near' mode and 'offset' mode.
4418 */
4419 struct r10conf *conf = mddev->private;
4420 struct geom geo;
4421
4422 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4423 return -EINVAL;
4424
4425 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4426 /* mustn't change number of copies */
4427 return -EINVAL;
4428 if (geo.far_copies > 1 && !geo.far_offset)
4429 /* Cannot switch to 'far' mode */
4430 return -EINVAL;
4431
4432 if (mddev->array_sectors & geo.chunk_mask)
4433 /* not factor of array size */
4434 return -EINVAL;
4435
4436 if (!enough(conf, -1))
4437 return -EINVAL;
4438
4439 kfree(conf->mirrors_new);
4440 conf->mirrors_new = NULL;
4441 if (mddev->delta_disks > 0) {
4442 /* allocate new 'mirrors' list */
4443 conf->mirrors_new =
4444 kcalloc(mddev->raid_disks + mddev->delta_disks,
4445 sizeof(struct raid10_info),
4446 GFP_KERNEL);
4447 if (!conf->mirrors_new)
4448 return -ENOMEM;
4449 }
4450 return 0;
4451}
4452
4453/*
4454 * Need to check if array has failed when deciding whether to:
4455 * - start an array
4456 * - remove non-faulty devices
4457 * - add a spare
4458 * - allow a reshape
4459 * This determination is simple when no reshape is happening.
4460 * However if there is a reshape, we need to carefully check
4461 * both the before and after sections.
4462 * This is because some failed devices may only affect one
4463 * of the two sections, and some non-in_sync devices may
4464 * be insync in the section most affected by failed devices.
4465 */
4466static int calc_degraded(struct r10conf *conf)
4467{
4468 int degraded, degraded2;
4469 int i;
4470
4471 rcu_read_lock();
4472 degraded = 0;
4473 /* 'prev' section first */
4474 for (i = 0; i < conf->prev.raid_disks; i++) {
4475 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4476 if (!rdev || test_bit(Faulty, &rdev->flags))
4477 degraded++;
4478 else if (!test_bit(In_sync, &rdev->flags))
4479 /* When we can reduce the number of devices in
4480 * an array, this might not contribute to
4481 * 'degraded'. It does now.
4482 */
4483 degraded++;
4484 }
4485 rcu_read_unlock();
4486 if (conf->geo.raid_disks == conf->prev.raid_disks)
4487 return degraded;
4488 rcu_read_lock();
4489 degraded2 = 0;
4490 for (i = 0; i < conf->geo.raid_disks; i++) {
4491 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4492 if (!rdev || test_bit(Faulty, &rdev->flags))
4493 degraded2++;
4494 else if (!test_bit(In_sync, &rdev->flags)) {
4495 /* If reshape is increasing the number of devices,
4496 * this section has already been recovered, so
4497 * it doesn't contribute to degraded.
4498 * else it does.
4499 */
4500 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4501 degraded2++;
4502 }
4503 }
4504 rcu_read_unlock();
4505 if (degraded2 > degraded)
4506 return degraded2;
4507 return degraded;
4508}
4509
4510static int raid10_start_reshape(struct mddev *mddev)
4511{
4512 /* A 'reshape' has been requested. This commits
4513 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4514 * This also checks if there are enough spares and adds them
4515 * to the array.
4516 * We currently require enough spares to make the final
4517 * array non-degraded. We also require that the difference
4518 * between old and new data_offset - on each device - is
4519 * enough that we never risk over-writing.
4520 */
4521
4522 unsigned long before_length, after_length;
4523 sector_t min_offset_diff = 0;
4524 int first = 1;
4525 struct geom new;
4526 struct r10conf *conf = mddev->private;
4527 struct md_rdev *rdev;
4528 int spares = 0;
4529 int ret;
4530
4531 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4532 return -EBUSY;
4533
4534 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4535 return -EINVAL;
4536
4537 before_length = ((1 << conf->prev.chunk_shift) *
4538 conf->prev.far_copies);
4539 after_length = ((1 << conf->geo.chunk_shift) *
4540 conf->geo.far_copies);
4541
4542 rdev_for_each(rdev, mddev) {
4543 if (!test_bit(In_sync, &rdev->flags)
4544 && !test_bit(Faulty, &rdev->flags))
4545 spares++;
4546 if (rdev->raid_disk >= 0) {
4547 long long diff = (rdev->new_data_offset
4548 - rdev->data_offset);
4549 if (!mddev->reshape_backwards)
4550 diff = -diff;
4551 if (diff < 0)
4552 diff = 0;
4553 if (first || diff < min_offset_diff)
4554 min_offset_diff = diff;
4555 first = 0;
4556 }
4557 }
4558
4559 if (max(before_length, after_length) > min_offset_diff)
4560 return -EINVAL;
4561
4562 if (spares < mddev->delta_disks)
4563 return -EINVAL;
4564
4565 conf->offset_diff = min_offset_diff;
4566 spin_lock_irq(&conf->device_lock);
4567 if (conf->mirrors_new) {
4568 memcpy(conf->mirrors_new, conf->mirrors,
4569 sizeof(struct raid10_info)*conf->prev.raid_disks);
4570 smp_mb();
4571 kfree(conf->mirrors_old);
4572 conf->mirrors_old = conf->mirrors;
4573 conf->mirrors = conf->mirrors_new;
4574 conf->mirrors_new = NULL;
4575 }
4576 setup_geo(&conf->geo, mddev, geo_start);
4577 smp_mb();
4578 if (mddev->reshape_backwards) {
4579 sector_t size = raid10_size(mddev, 0, 0);
4580 if (size < mddev->array_sectors) {
4581 spin_unlock_irq(&conf->device_lock);
4582 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4583 mdname(mddev));
4584 return -EINVAL;
4585 }
4586 mddev->resync_max_sectors = size;
4587 conf->reshape_progress = size;
4588 } else
4589 conf->reshape_progress = 0;
4590 conf->reshape_safe = conf->reshape_progress;
4591 spin_unlock_irq(&conf->device_lock);
4592
4593 if (mddev->delta_disks && mddev->bitmap) {
4594 struct mdp_superblock_1 *sb = NULL;
4595 sector_t oldsize, newsize;
4596
4597 oldsize = raid10_size(mddev, 0, 0);
4598 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4599
4600 if (!mddev_is_clustered(mddev)) {
4601 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4602 if (ret)
4603 goto abort;
4604 else
4605 goto out;
4606 }
4607
4608 rdev_for_each(rdev, mddev) {
4609 if (rdev->raid_disk > -1 &&
4610 !test_bit(Faulty, &rdev->flags))
4611 sb = page_address(rdev->sb_page);
4612 }
4613
4614 /*
4615 * some node is already performing reshape, and no need to
4616 * call md_bitmap_resize again since it should be called when
4617 * receiving BITMAP_RESIZE msg
4618 */
4619 if ((sb && (le32_to_cpu(sb->feature_map) &
4620 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4621 goto out;
4622
4623 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4624 if (ret)
4625 goto abort;
4626
4627 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4628 if (ret) {
4629 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4630 goto abort;
4631 }
4632 }
4633out:
4634 if (mddev->delta_disks > 0) {
4635 rdev_for_each(rdev, mddev)
4636 if (rdev->raid_disk < 0 &&
4637 !test_bit(Faulty, &rdev->flags)) {
4638 if (raid10_add_disk(mddev, rdev) == 0) {
4639 if (rdev->raid_disk >=
4640 conf->prev.raid_disks)
4641 set_bit(In_sync, &rdev->flags);
4642 else
4643 rdev->recovery_offset = 0;
4644
4645 /* Failure here is OK */
4646 sysfs_link_rdev(mddev, rdev);
4647 }
4648 } else if (rdev->raid_disk >= conf->prev.raid_disks
4649 && !test_bit(Faulty, &rdev->flags)) {
4650 /* This is a spare that was manually added */
4651 set_bit(In_sync, &rdev->flags);
4652 }
4653 }
4654 /* When a reshape changes the number of devices,
4655 * ->degraded is measured against the larger of the
4656 * pre and post numbers.
4657 */
4658 spin_lock_irq(&conf->device_lock);
4659 mddev->degraded = calc_degraded(conf);
4660 spin_unlock_irq(&conf->device_lock);
4661 mddev->raid_disks = conf->geo.raid_disks;
4662 mddev->reshape_position = conf->reshape_progress;
4663 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4664
4665 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4666 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4667 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4668 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4669 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4670
4671 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4672 "reshape");
4673 if (!mddev->sync_thread) {
4674 ret = -EAGAIN;
4675 goto abort;
4676 }
4677 conf->reshape_checkpoint = jiffies;
4678 md_wakeup_thread(mddev->sync_thread);
4679 md_new_event();
4680 return 0;
4681
4682abort:
4683 mddev->recovery = 0;
4684 spin_lock_irq(&conf->device_lock);
4685 conf->geo = conf->prev;
4686 mddev->raid_disks = conf->geo.raid_disks;
4687 rdev_for_each(rdev, mddev)
4688 rdev->new_data_offset = rdev->data_offset;
4689 smp_wmb();
4690 conf->reshape_progress = MaxSector;
4691 conf->reshape_safe = MaxSector;
4692 mddev->reshape_position = MaxSector;
4693 spin_unlock_irq(&conf->device_lock);
4694 return ret;
4695}
4696
4697/* Calculate the last device-address that could contain
4698 * any block from the chunk that includes the array-address 's'
4699 * and report the next address.
4700 * i.e. the address returned will be chunk-aligned and after
4701 * any data that is in the chunk containing 's'.
4702 */
4703static sector_t last_dev_address(sector_t s, struct geom *geo)
4704{
4705 s = (s | geo->chunk_mask) + 1;
4706 s >>= geo->chunk_shift;
4707 s *= geo->near_copies;
4708 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4709 s *= geo->far_copies;
4710 s <<= geo->chunk_shift;
4711 return s;
4712}
4713
4714/* Calculate the first device-address that could contain
4715 * any block from the chunk that includes the array-address 's'.
4716 * This too will be the start of a chunk
4717 */
4718static sector_t first_dev_address(sector_t s, struct geom *geo)
4719{
4720 s >>= geo->chunk_shift;
4721 s *= geo->near_copies;
4722 sector_div(s, geo->raid_disks);
4723 s *= geo->far_copies;
4724 s <<= geo->chunk_shift;
4725 return s;
4726}
4727
4728static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4729 int *skipped)
4730{
4731 /* We simply copy at most one chunk (smallest of old and new)
4732 * at a time, possibly less if that exceeds RESYNC_PAGES,
4733 * or we hit a bad block or something.
4734 * This might mean we pause for normal IO in the middle of
4735 * a chunk, but that is not a problem as mddev->reshape_position
4736 * can record any location.
4737 *
4738 * If we will want to write to a location that isn't
4739 * yet recorded as 'safe' (i.e. in metadata on disk) then
4740 * we need to flush all reshape requests and update the metadata.
4741 *
4742 * When reshaping forwards (e.g. to more devices), we interpret
4743 * 'safe' as the earliest block which might not have been copied
4744 * down yet. We divide this by previous stripe size and multiply
4745 * by previous stripe length to get lowest device offset that we
4746 * cannot write to yet.
4747 * We interpret 'sector_nr' as an address that we want to write to.
4748 * From this we use last_device_address() to find where we might
4749 * write to, and first_device_address on the 'safe' position.
4750 * If this 'next' write position is after the 'safe' position,
4751 * we must update the metadata to increase the 'safe' position.
4752 *
4753 * When reshaping backwards, we round in the opposite direction
4754 * and perform the reverse test: next write position must not be
4755 * less than current safe position.
4756 *
4757 * In all this the minimum difference in data offsets
4758 * (conf->offset_diff - always positive) allows a bit of slack,
4759 * so next can be after 'safe', but not by more than offset_diff
4760 *
4761 * We need to prepare all the bios here before we start any IO
4762 * to ensure the size we choose is acceptable to all devices.
4763 * The means one for each copy for write-out and an extra one for
4764 * read-in.
4765 * We store the read-in bio in ->master_bio and the others in
4766 * ->devs[x].bio and ->devs[x].repl_bio.
4767 */
4768 struct r10conf *conf = mddev->private;
4769 struct r10bio *r10_bio;
4770 sector_t next, safe, last;
4771 int max_sectors;
4772 int nr_sectors;
4773 int s;
4774 struct md_rdev *rdev;
4775 int need_flush = 0;
4776 struct bio *blist;
4777 struct bio *bio, *read_bio;
4778 int sectors_done = 0;
4779 struct page **pages;
4780
4781 if (sector_nr == 0) {
4782 /* If restarting in the middle, skip the initial sectors */
4783 if (mddev->reshape_backwards &&
4784 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4785 sector_nr = (raid10_size(mddev, 0, 0)
4786 - conf->reshape_progress);
4787 } else if (!mddev->reshape_backwards &&
4788 conf->reshape_progress > 0)
4789 sector_nr = conf->reshape_progress;
4790 if (sector_nr) {
4791 mddev->curr_resync_completed = sector_nr;
4792 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4793 *skipped = 1;
4794 return sector_nr;
4795 }
4796 }
4797
4798 /* We don't use sector_nr to track where we are up to
4799 * as that doesn't work well for ->reshape_backwards.
4800 * So just use ->reshape_progress.
4801 */
4802 if (mddev->reshape_backwards) {
4803 /* 'next' is the earliest device address that we might
4804 * write to for this chunk in the new layout
4805 */
4806 next = first_dev_address(conf->reshape_progress - 1,
4807 &conf->geo);
4808
4809 /* 'safe' is the last device address that we might read from
4810 * in the old layout after a restart
4811 */
4812 safe = last_dev_address(conf->reshape_safe - 1,
4813 &conf->prev);
4814
4815 if (next + conf->offset_diff < safe)
4816 need_flush = 1;
4817
4818 last = conf->reshape_progress - 1;
4819 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4820 & conf->prev.chunk_mask);
4821 if (sector_nr + RESYNC_SECTORS < last)
4822 sector_nr = last + 1 - RESYNC_SECTORS;
4823 } else {
4824 /* 'next' is after the last device address that we
4825 * might write to for this chunk in the new layout
4826 */
4827 next = last_dev_address(conf->reshape_progress, &conf->geo);
4828
4829 /* 'safe' is the earliest device address that we might
4830 * read from in the old layout after a restart
4831 */
4832 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4833
4834 /* Need to update metadata if 'next' might be beyond 'safe'
4835 * as that would possibly corrupt data
4836 */
4837 if (next > safe + conf->offset_diff)
4838 need_flush = 1;
4839
4840 sector_nr = conf->reshape_progress;
4841 last = sector_nr | (conf->geo.chunk_mask
4842 & conf->prev.chunk_mask);
4843
4844 if (sector_nr + RESYNC_SECTORS <= last)
4845 last = sector_nr + RESYNC_SECTORS - 1;
4846 }
4847
4848 if (need_flush ||
4849 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4850 /* Need to update reshape_position in metadata */
4851 wait_barrier(conf, false);
4852 mddev->reshape_position = conf->reshape_progress;
4853 if (mddev->reshape_backwards)
4854 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4855 - conf->reshape_progress;
4856 else
4857 mddev->curr_resync_completed = conf->reshape_progress;
4858 conf->reshape_checkpoint = jiffies;
4859 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4860 md_wakeup_thread(mddev->thread);
4861 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4862 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4863 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4864 allow_barrier(conf);
4865 return sectors_done;
4866 }
4867 conf->reshape_safe = mddev->reshape_position;
4868 allow_barrier(conf);
4869 }
4870
4871 raise_barrier(conf, 0);
4872read_more:
4873 /* Now schedule reads for blocks from sector_nr to last */
4874 r10_bio = raid10_alloc_init_r10buf(conf);
4875 r10_bio->state = 0;
4876 raise_barrier(conf, 1);
4877 atomic_set(&r10_bio->remaining, 0);
4878 r10_bio->mddev = mddev;
4879 r10_bio->sector = sector_nr;
4880 set_bit(R10BIO_IsReshape, &r10_bio->state);
4881 r10_bio->sectors = last - sector_nr + 1;
4882 rdev = read_balance(conf, r10_bio, &max_sectors);
4883 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4884
4885 if (!rdev) {
4886 /* Cannot read from here, so need to record bad blocks
4887 * on all the target devices.
4888 */
4889 // FIXME
4890 mempool_free(r10_bio, &conf->r10buf_pool);
4891 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4892 return sectors_done;
4893 }
4894
4895 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4896
4897 bio_set_dev(read_bio, rdev->bdev);
4898 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4899 + rdev->data_offset);
4900 read_bio->bi_private = r10_bio;
4901 read_bio->bi_end_io = end_reshape_read;
4902 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4903 r10_bio->master_bio = read_bio;
4904 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4905
4906 /*
4907 * Broadcast RESYNC message to other nodes, so all nodes would not
4908 * write to the region to avoid conflict.
4909 */
4910 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4911 struct mdp_superblock_1 *sb = NULL;
4912 int sb_reshape_pos = 0;
4913
4914 conf->cluster_sync_low = sector_nr;
4915 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4916 sb = page_address(rdev->sb_page);
4917 if (sb) {
4918 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4919 /*
4920 * Set cluster_sync_low again if next address for array
4921 * reshape is less than cluster_sync_low. Since we can't
4922 * update cluster_sync_low until it has finished reshape.
4923 */
4924 if (sb_reshape_pos < conf->cluster_sync_low)
4925 conf->cluster_sync_low = sb_reshape_pos;
4926 }
4927
4928 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4929 conf->cluster_sync_high);
4930 }
4931
4932 /* Now find the locations in the new layout */
4933 __raid10_find_phys(&conf->geo, r10_bio);
4934
4935 blist = read_bio;
4936 read_bio->bi_next = NULL;
4937
4938 rcu_read_lock();
4939 for (s = 0; s < conf->copies*2; s++) {
4940 struct bio *b;
4941 int d = r10_bio->devs[s/2].devnum;
4942 struct md_rdev *rdev2;
4943 if (s&1) {
4944 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4945 b = r10_bio->devs[s/2].repl_bio;
4946 } else {
4947 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4948 b = r10_bio->devs[s/2].bio;
4949 }
4950 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4951 continue;
4952
4953 bio_set_dev(b, rdev2->bdev);
4954 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4955 rdev2->new_data_offset;
4956 b->bi_end_io = end_reshape_write;
4957 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4958 b->bi_next = blist;
4959 blist = b;
4960 }
4961
4962 /* Now add as many pages as possible to all of these bios. */
4963
4964 nr_sectors = 0;
4965 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4966 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4967 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4968 int len = (max_sectors - s) << 9;
4969 if (len > PAGE_SIZE)
4970 len = PAGE_SIZE;
4971 for (bio = blist; bio ; bio = bio->bi_next) {
4972 /*
4973 * won't fail because the vec table is big enough
4974 * to hold all these pages
4975 */
4976 bio_add_page(bio, page, len, 0);
4977 }
4978 sector_nr += len >> 9;
4979 nr_sectors += len >> 9;
4980 }
4981 rcu_read_unlock();
4982 r10_bio->sectors = nr_sectors;
4983
4984 /* Now submit the read */
4985 md_sync_acct_bio(read_bio, r10_bio->sectors);
4986 atomic_inc(&r10_bio->remaining);
4987 read_bio->bi_next = NULL;
4988 submit_bio_noacct(read_bio);
4989 sectors_done += nr_sectors;
4990 if (sector_nr <= last)
4991 goto read_more;
4992
4993 lower_barrier(conf);
4994
4995 /* Now that we have done the whole section we can
4996 * update reshape_progress
4997 */
4998 if (mddev->reshape_backwards)
4999 conf->reshape_progress -= sectors_done;
5000 else
5001 conf->reshape_progress += sectors_done;
5002
5003 return sectors_done;
5004}
5005
5006static void end_reshape_request(struct r10bio *r10_bio);
5007static int handle_reshape_read_error(struct mddev *mddev,
5008 struct r10bio *r10_bio);
5009static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5010{
5011 /* Reshape read completed. Hopefully we have a block
5012 * to write out.
5013 * If we got a read error then we do sync 1-page reads from
5014 * elsewhere until we find the data - or give up.
5015 */
5016 struct r10conf *conf = mddev->private;
5017 int s;
5018
5019 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5020 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5021 /* Reshape has been aborted */
5022 md_done_sync(mddev, r10_bio->sectors, 0);
5023 return;
5024 }
5025
5026 /* We definitely have the data in the pages, schedule the
5027 * writes.
5028 */
5029 atomic_set(&r10_bio->remaining, 1);
5030 for (s = 0; s < conf->copies*2; s++) {
5031 struct bio *b;
5032 int d = r10_bio->devs[s/2].devnum;
5033 struct md_rdev *rdev;
5034 rcu_read_lock();
5035 if (s&1) {
5036 rdev = rcu_dereference(conf->mirrors[d].replacement);
5037 b = r10_bio->devs[s/2].repl_bio;
5038 } else {
5039 rdev = rcu_dereference(conf->mirrors[d].rdev);
5040 b = r10_bio->devs[s/2].bio;
5041 }
5042 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5043 rcu_read_unlock();
5044 continue;
5045 }
5046 atomic_inc(&rdev->nr_pending);
5047 rcu_read_unlock();
5048 md_sync_acct_bio(b, r10_bio->sectors);
5049 atomic_inc(&r10_bio->remaining);
5050 b->bi_next = NULL;
5051 submit_bio_noacct(b);
5052 }
5053 end_reshape_request(r10_bio);
5054}
5055
5056static void end_reshape(struct r10conf *conf)
5057{
5058 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5059 return;
5060
5061 spin_lock_irq(&conf->device_lock);
5062 conf->prev = conf->geo;
5063 md_finish_reshape(conf->mddev);
5064 smp_wmb();
5065 conf->reshape_progress = MaxSector;
5066 conf->reshape_safe = MaxSector;
5067 spin_unlock_irq(&conf->device_lock);
5068
5069 if (conf->mddev->queue)
5070 raid10_set_io_opt(conf);
5071 conf->fullsync = 0;
5072}
5073
5074static void raid10_update_reshape_pos(struct mddev *mddev)
5075{
5076 struct r10conf *conf = mddev->private;
5077 sector_t lo, hi;
5078
5079 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5080 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5081 || mddev->reshape_position == MaxSector)
5082 conf->reshape_progress = mddev->reshape_position;
5083 else
5084 WARN_ON_ONCE(1);
5085}
5086
5087static int handle_reshape_read_error(struct mddev *mddev,
5088 struct r10bio *r10_bio)
5089{
5090 /* Use sync reads to get the blocks from somewhere else */
5091 int sectors = r10_bio->sectors;
5092 struct r10conf *conf = mddev->private;
5093 struct r10bio *r10b;
5094 int slot = 0;
5095 int idx = 0;
5096 struct page **pages;
5097
5098 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5099 if (!r10b) {
5100 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5101 return -ENOMEM;
5102 }
5103
5104 /* reshape IOs share pages from .devs[0].bio */
5105 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5106
5107 r10b->sector = r10_bio->sector;
5108 __raid10_find_phys(&conf->prev, r10b);
5109
5110 while (sectors) {
5111 int s = sectors;
5112 int success = 0;
5113 int first_slot = slot;
5114
5115 if (s > (PAGE_SIZE >> 9))
5116 s = PAGE_SIZE >> 9;
5117
5118 rcu_read_lock();
5119 while (!success) {
5120 int d = r10b->devs[slot].devnum;
5121 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5122 sector_t addr;
5123 if (rdev == NULL ||
5124 test_bit(Faulty, &rdev->flags) ||
5125 !test_bit(In_sync, &rdev->flags))
5126 goto failed;
5127
5128 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5129 atomic_inc(&rdev->nr_pending);
5130 rcu_read_unlock();
5131 success = sync_page_io(rdev,
5132 addr,
5133 s << 9,
5134 pages[idx],
5135 REQ_OP_READ, 0, false);
5136 rdev_dec_pending(rdev, mddev);
5137 rcu_read_lock();
5138 if (success)
5139 break;
5140 failed:
5141 slot++;
5142 if (slot >= conf->copies)
5143 slot = 0;
5144 if (slot == first_slot)
5145 break;
5146 }
5147 rcu_read_unlock();
5148 if (!success) {
5149 /* couldn't read this block, must give up */
5150 set_bit(MD_RECOVERY_INTR,
5151 &mddev->recovery);
5152 kfree(r10b);
5153 return -EIO;
5154 }
5155 sectors -= s;
5156 idx++;
5157 }
5158 kfree(r10b);
5159 return 0;
5160}
5161
5162static void end_reshape_write(struct bio *bio)
5163{
5164 struct r10bio *r10_bio = get_resync_r10bio(bio);
5165 struct mddev *mddev = r10_bio->mddev;
5166 struct r10conf *conf = mddev->private;
5167 int d;
5168 int slot;
5169 int repl;
5170 struct md_rdev *rdev = NULL;
5171
5172 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5173 if (repl)
5174 rdev = conf->mirrors[d].replacement;
5175 if (!rdev) {
5176 smp_mb();
5177 rdev = conf->mirrors[d].rdev;
5178 }
5179
5180 if (bio->bi_status) {
5181 /* FIXME should record badblock */
5182 md_error(mddev, rdev);
5183 }
5184
5185 rdev_dec_pending(rdev, mddev);
5186 end_reshape_request(r10_bio);
5187}
5188
5189static void end_reshape_request(struct r10bio *r10_bio)
5190{
5191 if (!atomic_dec_and_test(&r10_bio->remaining))
5192 return;
5193 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5194 bio_put(r10_bio->master_bio);
5195 put_buf(r10_bio);
5196}
5197
5198static void raid10_finish_reshape(struct mddev *mddev)
5199{
5200 struct r10conf *conf = mddev->private;
5201
5202 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5203 return;
5204
5205 if (mddev->delta_disks > 0) {
5206 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5207 mddev->recovery_cp = mddev->resync_max_sectors;
5208 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5209 }
5210 mddev->resync_max_sectors = mddev->array_sectors;
5211 } else {
5212 int d;
5213 rcu_read_lock();
5214 for (d = conf->geo.raid_disks ;
5215 d < conf->geo.raid_disks - mddev->delta_disks;
5216 d++) {
5217 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5218 if (rdev)
5219 clear_bit(In_sync, &rdev->flags);
5220 rdev = rcu_dereference(conf->mirrors[d].replacement);
5221 if (rdev)
5222 clear_bit(In_sync, &rdev->flags);
5223 }
5224 rcu_read_unlock();
5225 }
5226 mddev->layout = mddev->new_layout;
5227 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5228 mddev->reshape_position = MaxSector;
5229 mddev->delta_disks = 0;
5230 mddev->reshape_backwards = 0;
5231}
5232
5233static struct md_personality raid10_personality =
5234{
5235 .name = "raid10",
5236 .level = 10,
5237 .owner = THIS_MODULE,
5238 .make_request = raid10_make_request,
5239 .run = raid10_run,
5240 .free = raid10_free,
5241 .status = raid10_status,
5242 .error_handler = raid10_error,
5243 .hot_add_disk = raid10_add_disk,
5244 .hot_remove_disk= raid10_remove_disk,
5245 .spare_active = raid10_spare_active,
5246 .sync_request = raid10_sync_request,
5247 .quiesce = raid10_quiesce,
5248 .size = raid10_size,
5249 .resize = raid10_resize,
5250 .takeover = raid10_takeover,
5251 .check_reshape = raid10_check_reshape,
5252 .start_reshape = raid10_start_reshape,
5253 .finish_reshape = raid10_finish_reshape,
5254 .update_reshape_pos = raid10_update_reshape_pos,
5255};
5256
5257static int __init raid_init(void)
5258{
5259 return register_md_personality(&raid10_personality);
5260}
5261
5262static void raid_exit(void)
5263{
5264 unregister_md_personality(&raid10_personality);
5265}
5266
5267module_init(raid_init);
5268module_exit(raid_exit);
5269MODULE_LICENSE("GPL");
5270MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5271MODULE_ALIAS("md-personality-9"); /* RAID10 */
5272MODULE_ALIAS("md-raid10");
5273MODULE_ALIAS("md-level-10");