Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38*/
39
40#include <linux/sched/mm.h>
41#include <linux/sched/signal.h>
42#include <linux/kthread.h>
43#include <linux/blkdev.h>
44#include <linux/blk-integrity.h>
45#include <linux/badblocks.h>
46#include <linux/sysctl.h>
47#include <linux/seq_file.h>
48#include <linux/fs.h>
49#include <linux/poll.h>
50#include <linux/ctype.h>
51#include <linux/string.h>
52#include <linux/hdreg.h>
53#include <linux/proc_fs.h>
54#include <linux/random.h>
55#include <linux/major.h>
56#include <linux/module.h>
57#include <linux/reboot.h>
58#include <linux/file.h>
59#include <linux/compat.h>
60#include <linux/delay.h>
61#include <linux/raid/md_p.h>
62#include <linux/raid/md_u.h>
63#include <linux/raid/detect.h>
64#include <linux/slab.h>
65#include <linux/percpu-refcount.h>
66#include <linux/part_stat.h>
67
68#include <trace/events/block.h>
69#include "md.h"
70#include "md-bitmap.h"
71#include "md-cluster.h"
72
73/* pers_list is a list of registered personalities protected
74 * by pers_lock.
75 * pers_lock does extra service to protect accesses to
76 * mddev->thread when the mutex cannot be held.
77 */
78static LIST_HEAD(pers_list);
79static DEFINE_SPINLOCK(pers_lock);
80
81static struct kobj_type md_ktype;
82
83struct md_cluster_operations *md_cluster_ops;
84EXPORT_SYMBOL(md_cluster_ops);
85static struct module *md_cluster_mod;
86
87static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
88static struct workqueue_struct *md_wq;
89static struct workqueue_struct *md_misc_wq;
90static struct workqueue_struct *md_rdev_misc_wq;
91
92static int remove_and_add_spares(struct mddev *mddev,
93 struct md_rdev *this);
94static void mddev_detach(struct mddev *mddev);
95
96/*
97 * Default number of read corrections we'll attempt on an rdev
98 * before ejecting it from the array. We divide the read error
99 * count by 2 for every hour elapsed between read errors.
100 */
101#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
102/* Default safemode delay: 200 msec */
103#define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
104/*
105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
106 * is 1000 KB/sec, so the extra system load does not show up that much.
107 * Increase it if you want to have more _guaranteed_ speed. Note that
108 * the RAID driver will use the maximum available bandwidth if the IO
109 * subsystem is idle. There is also an 'absolute maximum' reconstruction
110 * speed limit - in case reconstruction slows down your system despite
111 * idle IO detection.
112 *
113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
114 * or /sys/block/mdX/md/sync_speed_{min,max}
115 */
116
117static int sysctl_speed_limit_min = 1000;
118static int sysctl_speed_limit_max = 200000;
119static inline int speed_min(struct mddev *mddev)
120{
121 return mddev->sync_speed_min ?
122 mddev->sync_speed_min : sysctl_speed_limit_min;
123}
124
125static inline int speed_max(struct mddev *mddev)
126{
127 return mddev->sync_speed_max ?
128 mddev->sync_speed_max : sysctl_speed_limit_max;
129}
130
131static void rdev_uninit_serial(struct md_rdev *rdev)
132{
133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
134 return;
135
136 kvfree(rdev->serial);
137 rdev->serial = NULL;
138}
139
140static void rdevs_uninit_serial(struct mddev *mddev)
141{
142 struct md_rdev *rdev;
143
144 rdev_for_each(rdev, mddev)
145 rdev_uninit_serial(rdev);
146}
147
148static int rdev_init_serial(struct md_rdev *rdev)
149{
150 /* serial_nums equals with BARRIER_BUCKETS_NR */
151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
152 struct serial_in_rdev *serial = NULL;
153
154 if (test_bit(CollisionCheck, &rdev->flags))
155 return 0;
156
157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
158 GFP_KERNEL);
159 if (!serial)
160 return -ENOMEM;
161
162 for (i = 0; i < serial_nums; i++) {
163 struct serial_in_rdev *serial_tmp = &serial[i];
164
165 spin_lock_init(&serial_tmp->serial_lock);
166 serial_tmp->serial_rb = RB_ROOT_CACHED;
167 init_waitqueue_head(&serial_tmp->serial_io_wait);
168 }
169
170 rdev->serial = serial;
171 set_bit(CollisionCheck, &rdev->flags);
172
173 return 0;
174}
175
176static int rdevs_init_serial(struct mddev *mddev)
177{
178 struct md_rdev *rdev;
179 int ret = 0;
180
181 rdev_for_each(rdev, mddev) {
182 ret = rdev_init_serial(rdev);
183 if (ret)
184 break;
185 }
186
187 /* Free all resources if pool is not existed */
188 if (ret && !mddev->serial_info_pool)
189 rdevs_uninit_serial(mddev);
190
191 return ret;
192}
193
194/*
195 * rdev needs to enable serial stuffs if it meets the conditions:
196 * 1. it is multi-queue device flaged with writemostly.
197 * 2. the write-behind mode is enabled.
198 */
199static int rdev_need_serial(struct md_rdev *rdev)
200{
201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
203 test_bit(WriteMostly, &rdev->flags));
204}
205
206/*
207 * Init resource for rdev(s), then create serial_info_pool if:
208 * 1. rdev is the first device which return true from rdev_enable_serial.
209 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
210 */
211void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
212 bool is_suspend)
213{
214 int ret = 0;
215
216 if (rdev && !rdev_need_serial(rdev) &&
217 !test_bit(CollisionCheck, &rdev->flags))
218 return;
219
220 if (!is_suspend)
221 mddev_suspend(mddev);
222
223 if (!rdev)
224 ret = rdevs_init_serial(mddev);
225 else
226 ret = rdev_init_serial(rdev);
227 if (ret)
228 goto abort;
229
230 if (mddev->serial_info_pool == NULL) {
231 /*
232 * already in memalloc noio context by
233 * mddev_suspend()
234 */
235 mddev->serial_info_pool =
236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
237 sizeof(struct serial_info));
238 if (!mddev->serial_info_pool) {
239 rdevs_uninit_serial(mddev);
240 pr_err("can't alloc memory pool for serialization\n");
241 }
242 }
243
244abort:
245 if (!is_suspend)
246 mddev_resume(mddev);
247}
248
249/*
250 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
251 * 1. rdev is the last device flaged with CollisionCheck.
252 * 2. when bitmap is destroyed while policy is not enabled.
253 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
254 */
255void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
256 bool is_suspend)
257{
258 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
259 return;
260
261 if (mddev->serial_info_pool) {
262 struct md_rdev *temp;
263 int num = 0; /* used to track if other rdevs need the pool */
264
265 if (!is_suspend)
266 mddev_suspend(mddev);
267 rdev_for_each(temp, mddev) {
268 if (!rdev) {
269 if (!mddev->serialize_policy ||
270 !rdev_need_serial(temp))
271 rdev_uninit_serial(temp);
272 else
273 num++;
274 } else if (temp != rdev &&
275 test_bit(CollisionCheck, &temp->flags))
276 num++;
277 }
278
279 if (rdev)
280 rdev_uninit_serial(rdev);
281
282 if (num)
283 pr_info("The mempool could be used by other devices\n");
284 else {
285 mempool_destroy(mddev->serial_info_pool);
286 mddev->serial_info_pool = NULL;
287 }
288 if (!is_suspend)
289 mddev_resume(mddev);
290 }
291}
292
293static struct ctl_table_header *raid_table_header;
294
295static struct ctl_table raid_table[] = {
296 {
297 .procname = "speed_limit_min",
298 .data = &sysctl_speed_limit_min,
299 .maxlen = sizeof(int),
300 .mode = S_IRUGO|S_IWUSR,
301 .proc_handler = proc_dointvec,
302 },
303 {
304 .procname = "speed_limit_max",
305 .data = &sysctl_speed_limit_max,
306 .maxlen = sizeof(int),
307 .mode = S_IRUGO|S_IWUSR,
308 .proc_handler = proc_dointvec,
309 },
310 { }
311};
312
313static struct ctl_table raid_dir_table[] = {
314 {
315 .procname = "raid",
316 .maxlen = 0,
317 .mode = S_IRUGO|S_IXUGO,
318 .child = raid_table,
319 },
320 { }
321};
322
323static struct ctl_table raid_root_table[] = {
324 {
325 .procname = "dev",
326 .maxlen = 0,
327 .mode = 0555,
328 .child = raid_dir_table,
329 },
330 { }
331};
332
333static int start_readonly;
334
335/*
336 * The original mechanism for creating an md device is to create
337 * a device node in /dev and to open it. This causes races with device-close.
338 * The preferred method is to write to the "new_array" module parameter.
339 * This can avoid races.
340 * Setting create_on_open to false disables the original mechanism
341 * so all the races disappear.
342 */
343static bool create_on_open = true;
344
345/*
346 * We have a system wide 'event count' that is incremented
347 * on any 'interesting' event, and readers of /proc/mdstat
348 * can use 'poll' or 'select' to find out when the event
349 * count increases.
350 *
351 * Events are:
352 * start array, stop array, error, add device, remove device,
353 * start build, activate spare
354 */
355static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
356static atomic_t md_event_count;
357void md_new_event(void)
358{
359 atomic_inc(&md_event_count);
360 wake_up(&md_event_waiters);
361}
362EXPORT_SYMBOL_GPL(md_new_event);
363
364/*
365 * Enables to iterate over all existing md arrays
366 * all_mddevs_lock protects this list.
367 */
368static LIST_HEAD(all_mddevs);
369static DEFINE_SPINLOCK(all_mddevs_lock);
370
371/*
372 * iterates through all used mddevs in the system.
373 * We take care to grab the all_mddevs_lock whenever navigating
374 * the list, and to always hold a refcount when unlocked.
375 * Any code which breaks out of this loop while own
376 * a reference to the current mddev and must mddev_put it.
377 */
378#define for_each_mddev(_mddev,_tmp) \
379 \
380 for (({ spin_lock(&all_mddevs_lock); \
381 _tmp = all_mddevs.next; \
382 _mddev = NULL;}); \
383 ({ if (_tmp != &all_mddevs) \
384 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
385 spin_unlock(&all_mddevs_lock); \
386 if (_mddev) mddev_put(_mddev); \
387 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
388 _tmp != &all_mddevs;}); \
389 ({ spin_lock(&all_mddevs_lock); \
390 _tmp = _tmp->next;}) \
391 )
392
393/* Rather than calling directly into the personality make_request function,
394 * IO requests come here first so that we can check if the device is
395 * being suspended pending a reconfiguration.
396 * We hold a refcount over the call to ->make_request. By the time that
397 * call has finished, the bio has been linked into some internal structure
398 * and so is visible to ->quiesce(), so we don't need the refcount any more.
399 */
400static bool is_suspended(struct mddev *mddev, struct bio *bio)
401{
402 if (mddev->suspended)
403 return true;
404 if (bio_data_dir(bio) != WRITE)
405 return false;
406 if (mddev->suspend_lo >= mddev->suspend_hi)
407 return false;
408 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
409 return false;
410 if (bio_end_sector(bio) < mddev->suspend_lo)
411 return false;
412 return true;
413}
414
415void md_handle_request(struct mddev *mddev, struct bio *bio)
416{
417check_suspended:
418 rcu_read_lock();
419 if (is_suspended(mddev, bio)) {
420 DEFINE_WAIT(__wait);
421 /* Bail out if REQ_NOWAIT is set for the bio */
422 if (bio->bi_opf & REQ_NOWAIT) {
423 rcu_read_unlock();
424 bio_wouldblock_error(bio);
425 return;
426 }
427 for (;;) {
428 prepare_to_wait(&mddev->sb_wait, &__wait,
429 TASK_UNINTERRUPTIBLE);
430 if (!is_suspended(mddev, bio))
431 break;
432 rcu_read_unlock();
433 schedule();
434 rcu_read_lock();
435 }
436 finish_wait(&mddev->sb_wait, &__wait);
437 }
438 atomic_inc(&mddev->active_io);
439 rcu_read_unlock();
440
441 if (!mddev->pers->make_request(mddev, bio)) {
442 atomic_dec(&mddev->active_io);
443 wake_up(&mddev->sb_wait);
444 goto check_suspended;
445 }
446
447 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
448 wake_up(&mddev->sb_wait);
449}
450EXPORT_SYMBOL(md_handle_request);
451
452static void md_submit_bio(struct bio *bio)
453{
454 const int rw = bio_data_dir(bio);
455 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
456
457 if (mddev == NULL || mddev->pers == NULL) {
458 bio_io_error(bio);
459 return;
460 }
461
462 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
463 bio_io_error(bio);
464 return;
465 }
466
467 blk_queue_split(&bio);
468
469 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
470 if (bio_sectors(bio) != 0)
471 bio->bi_status = BLK_STS_IOERR;
472 bio_endio(bio);
473 return;
474 }
475
476 /* bio could be mergeable after passing to underlayer */
477 bio->bi_opf &= ~REQ_NOMERGE;
478
479 md_handle_request(mddev, bio);
480}
481
482/* mddev_suspend makes sure no new requests are submitted
483 * to the device, and that any requests that have been submitted
484 * are completely handled.
485 * Once mddev_detach() is called and completes, the module will be
486 * completely unused.
487 */
488void mddev_suspend(struct mddev *mddev)
489{
490 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
491 lockdep_assert_held(&mddev->reconfig_mutex);
492 if (mddev->suspended++)
493 return;
494 synchronize_rcu();
495 wake_up(&mddev->sb_wait);
496 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
497 smp_mb__after_atomic();
498 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
499 mddev->pers->quiesce(mddev, 1);
500 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
501 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
502
503 del_timer_sync(&mddev->safemode_timer);
504 /* restrict memory reclaim I/O during raid array is suspend */
505 mddev->noio_flag = memalloc_noio_save();
506}
507EXPORT_SYMBOL_GPL(mddev_suspend);
508
509void mddev_resume(struct mddev *mddev)
510{
511 /* entred the memalloc scope from mddev_suspend() */
512 memalloc_noio_restore(mddev->noio_flag);
513 lockdep_assert_held(&mddev->reconfig_mutex);
514 if (--mddev->suspended)
515 return;
516 wake_up(&mddev->sb_wait);
517 mddev->pers->quiesce(mddev, 0);
518
519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
520 md_wakeup_thread(mddev->thread);
521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
522}
523EXPORT_SYMBOL_GPL(mddev_resume);
524
525/*
526 * Generic flush handling for md
527 */
528
529static void md_end_flush(struct bio *bio)
530{
531 struct md_rdev *rdev = bio->bi_private;
532 struct mddev *mddev = rdev->mddev;
533
534 rdev_dec_pending(rdev, mddev);
535
536 if (atomic_dec_and_test(&mddev->flush_pending)) {
537 /* The pre-request flush has finished */
538 queue_work(md_wq, &mddev->flush_work);
539 }
540 bio_put(bio);
541}
542
543static void md_submit_flush_data(struct work_struct *ws);
544
545static void submit_flushes(struct work_struct *ws)
546{
547 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
548 struct md_rdev *rdev;
549
550 mddev->start_flush = ktime_get_boottime();
551 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
552 atomic_set(&mddev->flush_pending, 1);
553 rcu_read_lock();
554 rdev_for_each_rcu(rdev, mddev)
555 if (rdev->raid_disk >= 0 &&
556 !test_bit(Faulty, &rdev->flags)) {
557 /* Take two references, one is dropped
558 * when request finishes, one after
559 * we reclaim rcu_read_lock
560 */
561 struct bio *bi;
562 atomic_inc(&rdev->nr_pending);
563 atomic_inc(&rdev->nr_pending);
564 rcu_read_unlock();
565 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
566 bi->bi_end_io = md_end_flush;
567 bi->bi_private = rdev;
568 bio_set_dev(bi, rdev->bdev);
569 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
570 atomic_inc(&mddev->flush_pending);
571 submit_bio(bi);
572 rcu_read_lock();
573 rdev_dec_pending(rdev, mddev);
574 }
575 rcu_read_unlock();
576 if (atomic_dec_and_test(&mddev->flush_pending))
577 queue_work(md_wq, &mddev->flush_work);
578}
579
580static void md_submit_flush_data(struct work_struct *ws)
581{
582 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
583 struct bio *bio = mddev->flush_bio;
584
585 /*
586 * must reset flush_bio before calling into md_handle_request to avoid a
587 * deadlock, because other bios passed md_handle_request suspend check
588 * could wait for this and below md_handle_request could wait for those
589 * bios because of suspend check
590 */
591 spin_lock_irq(&mddev->lock);
592 mddev->prev_flush_start = mddev->start_flush;
593 mddev->flush_bio = NULL;
594 spin_unlock_irq(&mddev->lock);
595 wake_up(&mddev->sb_wait);
596
597 if (bio->bi_iter.bi_size == 0) {
598 /* an empty barrier - all done */
599 bio_endio(bio);
600 } else {
601 bio->bi_opf &= ~REQ_PREFLUSH;
602 md_handle_request(mddev, bio);
603 }
604}
605
606/*
607 * Manages consolidation of flushes and submitting any flushes needed for
608 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
609 * being finished in another context. Returns false if the flushing is
610 * complete but still needs the I/O portion of the bio to be processed.
611 */
612bool md_flush_request(struct mddev *mddev, struct bio *bio)
613{
614 ktime_t req_start = ktime_get_boottime();
615 spin_lock_irq(&mddev->lock);
616 /* flush requests wait until ongoing flush completes,
617 * hence coalescing all the pending requests.
618 */
619 wait_event_lock_irq(mddev->sb_wait,
620 !mddev->flush_bio ||
621 ktime_before(req_start, mddev->prev_flush_start),
622 mddev->lock);
623 /* new request after previous flush is completed */
624 if (ktime_after(req_start, mddev->prev_flush_start)) {
625 WARN_ON(mddev->flush_bio);
626 mddev->flush_bio = bio;
627 bio = NULL;
628 }
629 spin_unlock_irq(&mddev->lock);
630
631 if (!bio) {
632 INIT_WORK(&mddev->flush_work, submit_flushes);
633 queue_work(md_wq, &mddev->flush_work);
634 } else {
635 /* flush was performed for some other bio while we waited. */
636 if (bio->bi_iter.bi_size == 0)
637 /* an empty barrier - all done */
638 bio_endio(bio);
639 else {
640 bio->bi_opf &= ~REQ_PREFLUSH;
641 return false;
642 }
643 }
644 return true;
645}
646EXPORT_SYMBOL(md_flush_request);
647
648static inline struct mddev *mddev_get(struct mddev *mddev)
649{
650 atomic_inc(&mddev->active);
651 return mddev;
652}
653
654static void mddev_delayed_delete(struct work_struct *ws);
655
656static void mddev_put(struct mddev *mddev)
657{
658 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
659 return;
660 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
661 mddev->ctime == 0 && !mddev->hold_active) {
662 /* Array is not configured at all, and not held active,
663 * so destroy it */
664 list_del_init(&mddev->all_mddevs);
665
666 /*
667 * Call queue_work inside the spinlock so that
668 * flush_workqueue() after mddev_find will succeed in waiting
669 * for the work to be done.
670 */
671 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
672 queue_work(md_misc_wq, &mddev->del_work);
673 }
674 spin_unlock(&all_mddevs_lock);
675}
676
677static void md_safemode_timeout(struct timer_list *t);
678
679void mddev_init(struct mddev *mddev)
680{
681 kobject_init(&mddev->kobj, &md_ktype);
682 mutex_init(&mddev->open_mutex);
683 mutex_init(&mddev->reconfig_mutex);
684 mutex_init(&mddev->bitmap_info.mutex);
685 INIT_LIST_HEAD(&mddev->disks);
686 INIT_LIST_HEAD(&mddev->all_mddevs);
687 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
688 atomic_set(&mddev->active, 1);
689 atomic_set(&mddev->openers, 0);
690 atomic_set(&mddev->active_io, 0);
691 spin_lock_init(&mddev->lock);
692 atomic_set(&mddev->flush_pending, 0);
693 init_waitqueue_head(&mddev->sb_wait);
694 init_waitqueue_head(&mddev->recovery_wait);
695 mddev->reshape_position = MaxSector;
696 mddev->reshape_backwards = 0;
697 mddev->last_sync_action = "none";
698 mddev->resync_min = 0;
699 mddev->resync_max = MaxSector;
700 mddev->level = LEVEL_NONE;
701}
702EXPORT_SYMBOL_GPL(mddev_init);
703
704static struct mddev *mddev_find_locked(dev_t unit)
705{
706 struct mddev *mddev;
707
708 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
709 if (mddev->unit == unit)
710 return mddev;
711
712 return NULL;
713}
714
715/* find an unused unit number */
716static dev_t mddev_alloc_unit(void)
717{
718 static int next_minor = 512;
719 int start = next_minor;
720 bool is_free = 0;
721 dev_t dev = 0;
722
723 while (!is_free) {
724 dev = MKDEV(MD_MAJOR, next_minor);
725 next_minor++;
726 if (next_minor > MINORMASK)
727 next_minor = 0;
728 if (next_minor == start)
729 return 0; /* Oh dear, all in use. */
730 is_free = !mddev_find_locked(dev);
731 }
732
733 return dev;
734}
735
736static struct mddev *mddev_find(dev_t unit)
737{
738 struct mddev *mddev;
739
740 if (MAJOR(unit) != MD_MAJOR)
741 unit &= ~((1 << MdpMinorShift) - 1);
742
743 spin_lock(&all_mddevs_lock);
744 mddev = mddev_find_locked(unit);
745 if (mddev)
746 mddev_get(mddev);
747 spin_unlock(&all_mddevs_lock);
748
749 return mddev;
750}
751
752static struct mddev *mddev_alloc(dev_t unit)
753{
754 struct mddev *new;
755 int error;
756
757 if (unit && MAJOR(unit) != MD_MAJOR)
758 unit &= ~((1 << MdpMinorShift) - 1);
759
760 new = kzalloc(sizeof(*new), GFP_KERNEL);
761 if (!new)
762 return ERR_PTR(-ENOMEM);
763 mddev_init(new);
764
765 spin_lock(&all_mddevs_lock);
766 if (unit) {
767 error = -EEXIST;
768 if (mddev_find_locked(unit))
769 goto out_free_new;
770 new->unit = unit;
771 if (MAJOR(unit) == MD_MAJOR)
772 new->md_minor = MINOR(unit);
773 else
774 new->md_minor = MINOR(unit) >> MdpMinorShift;
775 new->hold_active = UNTIL_IOCTL;
776 } else {
777 error = -ENODEV;
778 new->unit = mddev_alloc_unit();
779 if (!new->unit)
780 goto out_free_new;
781 new->md_minor = MINOR(new->unit);
782 new->hold_active = UNTIL_STOP;
783 }
784
785 list_add(&new->all_mddevs, &all_mddevs);
786 spin_unlock(&all_mddevs_lock);
787 return new;
788out_free_new:
789 spin_unlock(&all_mddevs_lock);
790 kfree(new);
791 return ERR_PTR(error);
792}
793
794static const struct attribute_group md_redundancy_group;
795
796void mddev_unlock(struct mddev *mddev)
797{
798 if (mddev->to_remove) {
799 /* These cannot be removed under reconfig_mutex as
800 * an access to the files will try to take reconfig_mutex
801 * while holding the file unremovable, which leads to
802 * a deadlock.
803 * So hold set sysfs_active while the remove in happeing,
804 * and anything else which might set ->to_remove or my
805 * otherwise change the sysfs namespace will fail with
806 * -EBUSY if sysfs_active is still set.
807 * We set sysfs_active under reconfig_mutex and elsewhere
808 * test it under the same mutex to ensure its correct value
809 * is seen.
810 */
811 const struct attribute_group *to_remove = mddev->to_remove;
812 mddev->to_remove = NULL;
813 mddev->sysfs_active = 1;
814 mutex_unlock(&mddev->reconfig_mutex);
815
816 if (mddev->kobj.sd) {
817 if (to_remove != &md_redundancy_group)
818 sysfs_remove_group(&mddev->kobj, to_remove);
819 if (mddev->pers == NULL ||
820 mddev->pers->sync_request == NULL) {
821 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
822 if (mddev->sysfs_action)
823 sysfs_put(mddev->sysfs_action);
824 if (mddev->sysfs_completed)
825 sysfs_put(mddev->sysfs_completed);
826 if (mddev->sysfs_degraded)
827 sysfs_put(mddev->sysfs_degraded);
828 mddev->sysfs_action = NULL;
829 mddev->sysfs_completed = NULL;
830 mddev->sysfs_degraded = NULL;
831 }
832 }
833 mddev->sysfs_active = 0;
834 } else
835 mutex_unlock(&mddev->reconfig_mutex);
836
837 /* As we've dropped the mutex we need a spinlock to
838 * make sure the thread doesn't disappear
839 */
840 spin_lock(&pers_lock);
841 md_wakeup_thread(mddev->thread);
842 wake_up(&mddev->sb_wait);
843 spin_unlock(&pers_lock);
844}
845EXPORT_SYMBOL_GPL(mddev_unlock);
846
847struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
848{
849 struct md_rdev *rdev;
850
851 rdev_for_each_rcu(rdev, mddev)
852 if (rdev->desc_nr == nr)
853 return rdev;
854
855 return NULL;
856}
857EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
858
859static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
860{
861 struct md_rdev *rdev;
862
863 rdev_for_each(rdev, mddev)
864 if (rdev->bdev->bd_dev == dev)
865 return rdev;
866
867 return NULL;
868}
869
870struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
871{
872 struct md_rdev *rdev;
873
874 rdev_for_each_rcu(rdev, mddev)
875 if (rdev->bdev->bd_dev == dev)
876 return rdev;
877
878 return NULL;
879}
880EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
881
882static struct md_personality *find_pers(int level, char *clevel)
883{
884 struct md_personality *pers;
885 list_for_each_entry(pers, &pers_list, list) {
886 if (level != LEVEL_NONE && pers->level == level)
887 return pers;
888 if (strcmp(pers->name, clevel)==0)
889 return pers;
890 }
891 return NULL;
892}
893
894/* return the offset of the super block in 512byte sectors */
895static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
896{
897 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
898}
899
900static int alloc_disk_sb(struct md_rdev *rdev)
901{
902 rdev->sb_page = alloc_page(GFP_KERNEL);
903 if (!rdev->sb_page)
904 return -ENOMEM;
905 return 0;
906}
907
908void md_rdev_clear(struct md_rdev *rdev)
909{
910 if (rdev->sb_page) {
911 put_page(rdev->sb_page);
912 rdev->sb_loaded = 0;
913 rdev->sb_page = NULL;
914 rdev->sb_start = 0;
915 rdev->sectors = 0;
916 }
917 if (rdev->bb_page) {
918 put_page(rdev->bb_page);
919 rdev->bb_page = NULL;
920 }
921 badblocks_exit(&rdev->badblocks);
922}
923EXPORT_SYMBOL_GPL(md_rdev_clear);
924
925static void super_written(struct bio *bio)
926{
927 struct md_rdev *rdev = bio->bi_private;
928 struct mddev *mddev = rdev->mddev;
929
930 if (bio->bi_status) {
931 pr_err("md: %s gets error=%d\n", __func__,
932 blk_status_to_errno(bio->bi_status));
933 md_error(mddev, rdev);
934 if (!test_bit(Faulty, &rdev->flags)
935 && (bio->bi_opf & MD_FAILFAST)) {
936 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
937 set_bit(LastDev, &rdev->flags);
938 }
939 } else
940 clear_bit(LastDev, &rdev->flags);
941
942 if (atomic_dec_and_test(&mddev->pending_writes))
943 wake_up(&mddev->sb_wait);
944 rdev_dec_pending(rdev, mddev);
945 bio_put(bio);
946}
947
948void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
949 sector_t sector, int size, struct page *page)
950{
951 /* write first size bytes of page to sector of rdev
952 * Increment mddev->pending_writes before returning
953 * and decrement it on completion, waking up sb_wait
954 * if zero is reached.
955 * If an error occurred, call md_error
956 */
957 struct bio *bio;
958 int ff = 0;
959
960 if (!page)
961 return;
962
963 if (test_bit(Faulty, &rdev->flags))
964 return;
965
966 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
967
968 atomic_inc(&rdev->nr_pending);
969
970 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
971 bio->bi_iter.bi_sector = sector;
972 bio_add_page(bio, page, size, 0);
973 bio->bi_private = rdev;
974 bio->bi_end_io = super_written;
975
976 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
977 test_bit(FailFast, &rdev->flags) &&
978 !test_bit(LastDev, &rdev->flags))
979 ff = MD_FAILFAST;
980 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
981
982 atomic_inc(&mddev->pending_writes);
983 submit_bio(bio);
984}
985
986int md_super_wait(struct mddev *mddev)
987{
988 /* wait for all superblock writes that were scheduled to complete */
989 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
990 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
991 return -EAGAIN;
992 return 0;
993}
994
995int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
996 struct page *page, int op, int op_flags, bool metadata_op)
997{
998 struct bio bio;
999 struct bio_vec bvec;
1000
1001 bio_init(&bio, &bvec, 1);
1002
1003 if (metadata_op && rdev->meta_bdev)
1004 bio_set_dev(&bio, rdev->meta_bdev);
1005 else
1006 bio_set_dev(&bio, rdev->bdev);
1007 bio.bi_opf = op | op_flags;
1008 if (metadata_op)
1009 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1010 else if (rdev->mddev->reshape_position != MaxSector &&
1011 (rdev->mddev->reshape_backwards ==
1012 (sector >= rdev->mddev->reshape_position)))
1013 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1014 else
1015 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1016 bio_add_page(&bio, page, size, 0);
1017
1018 submit_bio_wait(&bio);
1019
1020 return !bio.bi_status;
1021}
1022EXPORT_SYMBOL_GPL(sync_page_io);
1023
1024static int read_disk_sb(struct md_rdev *rdev, int size)
1025{
1026 char b[BDEVNAME_SIZE];
1027
1028 if (rdev->sb_loaded)
1029 return 0;
1030
1031 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1032 goto fail;
1033 rdev->sb_loaded = 1;
1034 return 0;
1035
1036fail:
1037 pr_err("md: disabled device %s, could not read superblock.\n",
1038 bdevname(rdev->bdev,b));
1039 return -EINVAL;
1040}
1041
1042static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1043{
1044 return sb1->set_uuid0 == sb2->set_uuid0 &&
1045 sb1->set_uuid1 == sb2->set_uuid1 &&
1046 sb1->set_uuid2 == sb2->set_uuid2 &&
1047 sb1->set_uuid3 == sb2->set_uuid3;
1048}
1049
1050static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1051{
1052 int ret;
1053 mdp_super_t *tmp1, *tmp2;
1054
1055 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1056 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1057
1058 if (!tmp1 || !tmp2) {
1059 ret = 0;
1060 goto abort;
1061 }
1062
1063 *tmp1 = *sb1;
1064 *tmp2 = *sb2;
1065
1066 /*
1067 * nr_disks is not constant
1068 */
1069 tmp1->nr_disks = 0;
1070 tmp2->nr_disks = 0;
1071
1072 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1073abort:
1074 kfree(tmp1);
1075 kfree(tmp2);
1076 return ret;
1077}
1078
1079static u32 md_csum_fold(u32 csum)
1080{
1081 csum = (csum & 0xffff) + (csum >> 16);
1082 return (csum & 0xffff) + (csum >> 16);
1083}
1084
1085static unsigned int calc_sb_csum(mdp_super_t *sb)
1086{
1087 u64 newcsum = 0;
1088 u32 *sb32 = (u32*)sb;
1089 int i;
1090 unsigned int disk_csum, csum;
1091
1092 disk_csum = sb->sb_csum;
1093 sb->sb_csum = 0;
1094
1095 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1096 newcsum += sb32[i];
1097 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1098
1099#ifdef CONFIG_ALPHA
1100 /* This used to use csum_partial, which was wrong for several
1101 * reasons including that different results are returned on
1102 * different architectures. It isn't critical that we get exactly
1103 * the same return value as before (we always csum_fold before
1104 * testing, and that removes any differences). However as we
1105 * know that csum_partial always returned a 16bit value on
1106 * alphas, do a fold to maximise conformity to previous behaviour.
1107 */
1108 sb->sb_csum = md_csum_fold(disk_csum);
1109#else
1110 sb->sb_csum = disk_csum;
1111#endif
1112 return csum;
1113}
1114
1115/*
1116 * Handle superblock details.
1117 * We want to be able to handle multiple superblock formats
1118 * so we have a common interface to them all, and an array of
1119 * different handlers.
1120 * We rely on user-space to write the initial superblock, and support
1121 * reading and updating of superblocks.
1122 * Interface methods are:
1123 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1124 * loads and validates a superblock on dev.
1125 * if refdev != NULL, compare superblocks on both devices
1126 * Return:
1127 * 0 - dev has a superblock that is compatible with refdev
1128 * 1 - dev has a superblock that is compatible and newer than refdev
1129 * so dev should be used as the refdev in future
1130 * -EINVAL superblock incompatible or invalid
1131 * -othererror e.g. -EIO
1132 *
1133 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1134 * Verify that dev is acceptable into mddev.
1135 * The first time, mddev->raid_disks will be 0, and data from
1136 * dev should be merged in. Subsequent calls check that dev
1137 * is new enough. Return 0 or -EINVAL
1138 *
1139 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1140 * Update the superblock for rdev with data in mddev
1141 * This does not write to disc.
1142 *
1143 */
1144
1145struct super_type {
1146 char *name;
1147 struct module *owner;
1148 int (*load_super)(struct md_rdev *rdev,
1149 struct md_rdev *refdev,
1150 int minor_version);
1151 int (*validate_super)(struct mddev *mddev,
1152 struct md_rdev *rdev);
1153 void (*sync_super)(struct mddev *mddev,
1154 struct md_rdev *rdev);
1155 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1156 sector_t num_sectors);
1157 int (*allow_new_offset)(struct md_rdev *rdev,
1158 unsigned long long new_offset);
1159};
1160
1161/*
1162 * Check that the given mddev has no bitmap.
1163 *
1164 * This function is called from the run method of all personalities that do not
1165 * support bitmaps. It prints an error message and returns non-zero if mddev
1166 * has a bitmap. Otherwise, it returns 0.
1167 *
1168 */
1169int md_check_no_bitmap(struct mddev *mddev)
1170{
1171 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1172 return 0;
1173 pr_warn("%s: bitmaps are not supported for %s\n",
1174 mdname(mddev), mddev->pers->name);
1175 return 1;
1176}
1177EXPORT_SYMBOL(md_check_no_bitmap);
1178
1179/*
1180 * load_super for 0.90.0
1181 */
1182static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1183{
1184 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1185 mdp_super_t *sb;
1186 int ret;
1187 bool spare_disk = true;
1188
1189 /*
1190 * Calculate the position of the superblock (512byte sectors),
1191 * it's at the end of the disk.
1192 *
1193 * It also happens to be a multiple of 4Kb.
1194 */
1195 rdev->sb_start = calc_dev_sboffset(rdev);
1196
1197 ret = read_disk_sb(rdev, MD_SB_BYTES);
1198 if (ret)
1199 return ret;
1200
1201 ret = -EINVAL;
1202
1203 bdevname(rdev->bdev, b);
1204 sb = page_address(rdev->sb_page);
1205
1206 if (sb->md_magic != MD_SB_MAGIC) {
1207 pr_warn("md: invalid raid superblock magic on %s\n", b);
1208 goto abort;
1209 }
1210
1211 if (sb->major_version != 0 ||
1212 sb->minor_version < 90 ||
1213 sb->minor_version > 91) {
1214 pr_warn("Bad version number %d.%d on %s\n",
1215 sb->major_version, sb->minor_version, b);
1216 goto abort;
1217 }
1218
1219 if (sb->raid_disks <= 0)
1220 goto abort;
1221
1222 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1223 pr_warn("md: invalid superblock checksum on %s\n", b);
1224 goto abort;
1225 }
1226
1227 rdev->preferred_minor = sb->md_minor;
1228 rdev->data_offset = 0;
1229 rdev->new_data_offset = 0;
1230 rdev->sb_size = MD_SB_BYTES;
1231 rdev->badblocks.shift = -1;
1232
1233 if (sb->level == LEVEL_MULTIPATH)
1234 rdev->desc_nr = -1;
1235 else
1236 rdev->desc_nr = sb->this_disk.number;
1237
1238 /* not spare disk, or LEVEL_MULTIPATH */
1239 if (sb->level == LEVEL_MULTIPATH ||
1240 (rdev->desc_nr >= 0 &&
1241 rdev->desc_nr < MD_SB_DISKS &&
1242 sb->disks[rdev->desc_nr].state &
1243 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1244 spare_disk = false;
1245
1246 if (!refdev) {
1247 if (!spare_disk)
1248 ret = 1;
1249 else
1250 ret = 0;
1251 } else {
1252 __u64 ev1, ev2;
1253 mdp_super_t *refsb = page_address(refdev->sb_page);
1254 if (!md_uuid_equal(refsb, sb)) {
1255 pr_warn("md: %s has different UUID to %s\n",
1256 b, bdevname(refdev->bdev,b2));
1257 goto abort;
1258 }
1259 if (!md_sb_equal(refsb, sb)) {
1260 pr_warn("md: %s has same UUID but different superblock to %s\n",
1261 b, bdevname(refdev->bdev, b2));
1262 goto abort;
1263 }
1264 ev1 = md_event(sb);
1265 ev2 = md_event(refsb);
1266
1267 if (!spare_disk && ev1 > ev2)
1268 ret = 1;
1269 else
1270 ret = 0;
1271 }
1272 rdev->sectors = rdev->sb_start;
1273 /* Limit to 4TB as metadata cannot record more than that.
1274 * (not needed for Linear and RAID0 as metadata doesn't
1275 * record this size)
1276 */
1277 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1278 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1279
1280 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1281 /* "this cannot possibly happen" ... */
1282 ret = -EINVAL;
1283
1284 abort:
1285 return ret;
1286}
1287
1288/*
1289 * validate_super for 0.90.0
1290 */
1291static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1292{
1293 mdp_disk_t *desc;
1294 mdp_super_t *sb = page_address(rdev->sb_page);
1295 __u64 ev1 = md_event(sb);
1296
1297 rdev->raid_disk = -1;
1298 clear_bit(Faulty, &rdev->flags);
1299 clear_bit(In_sync, &rdev->flags);
1300 clear_bit(Bitmap_sync, &rdev->flags);
1301 clear_bit(WriteMostly, &rdev->flags);
1302
1303 if (mddev->raid_disks == 0) {
1304 mddev->major_version = 0;
1305 mddev->minor_version = sb->minor_version;
1306 mddev->patch_version = sb->patch_version;
1307 mddev->external = 0;
1308 mddev->chunk_sectors = sb->chunk_size >> 9;
1309 mddev->ctime = sb->ctime;
1310 mddev->utime = sb->utime;
1311 mddev->level = sb->level;
1312 mddev->clevel[0] = 0;
1313 mddev->layout = sb->layout;
1314 mddev->raid_disks = sb->raid_disks;
1315 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1316 mddev->events = ev1;
1317 mddev->bitmap_info.offset = 0;
1318 mddev->bitmap_info.space = 0;
1319 /* bitmap can use 60 K after the 4K superblocks */
1320 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1321 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1322 mddev->reshape_backwards = 0;
1323
1324 if (mddev->minor_version >= 91) {
1325 mddev->reshape_position = sb->reshape_position;
1326 mddev->delta_disks = sb->delta_disks;
1327 mddev->new_level = sb->new_level;
1328 mddev->new_layout = sb->new_layout;
1329 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1330 if (mddev->delta_disks < 0)
1331 mddev->reshape_backwards = 1;
1332 } else {
1333 mddev->reshape_position = MaxSector;
1334 mddev->delta_disks = 0;
1335 mddev->new_level = mddev->level;
1336 mddev->new_layout = mddev->layout;
1337 mddev->new_chunk_sectors = mddev->chunk_sectors;
1338 }
1339 if (mddev->level == 0)
1340 mddev->layout = -1;
1341
1342 if (sb->state & (1<<MD_SB_CLEAN))
1343 mddev->recovery_cp = MaxSector;
1344 else {
1345 if (sb->events_hi == sb->cp_events_hi &&
1346 sb->events_lo == sb->cp_events_lo) {
1347 mddev->recovery_cp = sb->recovery_cp;
1348 } else
1349 mddev->recovery_cp = 0;
1350 }
1351
1352 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1353 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1354 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1355 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1356
1357 mddev->max_disks = MD_SB_DISKS;
1358
1359 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1360 mddev->bitmap_info.file == NULL) {
1361 mddev->bitmap_info.offset =
1362 mddev->bitmap_info.default_offset;
1363 mddev->bitmap_info.space =
1364 mddev->bitmap_info.default_space;
1365 }
1366
1367 } else if (mddev->pers == NULL) {
1368 /* Insist on good event counter while assembling, except
1369 * for spares (which don't need an event count) */
1370 ++ev1;
1371 if (sb->disks[rdev->desc_nr].state & (
1372 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1373 if (ev1 < mddev->events)
1374 return -EINVAL;
1375 } else if (mddev->bitmap) {
1376 /* if adding to array with a bitmap, then we can accept an
1377 * older device ... but not too old.
1378 */
1379 if (ev1 < mddev->bitmap->events_cleared)
1380 return 0;
1381 if (ev1 < mddev->events)
1382 set_bit(Bitmap_sync, &rdev->flags);
1383 } else {
1384 if (ev1 < mddev->events)
1385 /* just a hot-add of a new device, leave raid_disk at -1 */
1386 return 0;
1387 }
1388
1389 if (mddev->level != LEVEL_MULTIPATH) {
1390 desc = sb->disks + rdev->desc_nr;
1391
1392 if (desc->state & (1<<MD_DISK_FAULTY))
1393 set_bit(Faulty, &rdev->flags);
1394 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1395 desc->raid_disk < mddev->raid_disks */) {
1396 set_bit(In_sync, &rdev->flags);
1397 rdev->raid_disk = desc->raid_disk;
1398 rdev->saved_raid_disk = desc->raid_disk;
1399 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1400 /* active but not in sync implies recovery up to
1401 * reshape position. We don't know exactly where
1402 * that is, so set to zero for now */
1403 if (mddev->minor_version >= 91) {
1404 rdev->recovery_offset = 0;
1405 rdev->raid_disk = desc->raid_disk;
1406 }
1407 }
1408 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1409 set_bit(WriteMostly, &rdev->flags);
1410 if (desc->state & (1<<MD_DISK_FAILFAST))
1411 set_bit(FailFast, &rdev->flags);
1412 } else /* MULTIPATH are always insync */
1413 set_bit(In_sync, &rdev->flags);
1414 return 0;
1415}
1416
1417/*
1418 * sync_super for 0.90.0
1419 */
1420static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1421{
1422 mdp_super_t *sb;
1423 struct md_rdev *rdev2;
1424 int next_spare = mddev->raid_disks;
1425
1426 /* make rdev->sb match mddev data..
1427 *
1428 * 1/ zero out disks
1429 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1430 * 3/ any empty disks < next_spare become removed
1431 *
1432 * disks[0] gets initialised to REMOVED because
1433 * we cannot be sure from other fields if it has
1434 * been initialised or not.
1435 */
1436 int i;
1437 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1438
1439 rdev->sb_size = MD_SB_BYTES;
1440
1441 sb = page_address(rdev->sb_page);
1442
1443 memset(sb, 0, sizeof(*sb));
1444
1445 sb->md_magic = MD_SB_MAGIC;
1446 sb->major_version = mddev->major_version;
1447 sb->patch_version = mddev->patch_version;
1448 sb->gvalid_words = 0; /* ignored */
1449 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1450 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1451 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1452 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1453
1454 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1455 sb->level = mddev->level;
1456 sb->size = mddev->dev_sectors / 2;
1457 sb->raid_disks = mddev->raid_disks;
1458 sb->md_minor = mddev->md_minor;
1459 sb->not_persistent = 0;
1460 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1461 sb->state = 0;
1462 sb->events_hi = (mddev->events>>32);
1463 sb->events_lo = (u32)mddev->events;
1464
1465 if (mddev->reshape_position == MaxSector)
1466 sb->minor_version = 90;
1467 else {
1468 sb->minor_version = 91;
1469 sb->reshape_position = mddev->reshape_position;
1470 sb->new_level = mddev->new_level;
1471 sb->delta_disks = mddev->delta_disks;
1472 sb->new_layout = mddev->new_layout;
1473 sb->new_chunk = mddev->new_chunk_sectors << 9;
1474 }
1475 mddev->minor_version = sb->minor_version;
1476 if (mddev->in_sync)
1477 {
1478 sb->recovery_cp = mddev->recovery_cp;
1479 sb->cp_events_hi = (mddev->events>>32);
1480 sb->cp_events_lo = (u32)mddev->events;
1481 if (mddev->recovery_cp == MaxSector)
1482 sb->state = (1<< MD_SB_CLEAN);
1483 } else
1484 sb->recovery_cp = 0;
1485
1486 sb->layout = mddev->layout;
1487 sb->chunk_size = mddev->chunk_sectors << 9;
1488
1489 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1490 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1491
1492 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1493 rdev_for_each(rdev2, mddev) {
1494 mdp_disk_t *d;
1495 int desc_nr;
1496 int is_active = test_bit(In_sync, &rdev2->flags);
1497
1498 if (rdev2->raid_disk >= 0 &&
1499 sb->minor_version >= 91)
1500 /* we have nowhere to store the recovery_offset,
1501 * but if it is not below the reshape_position,
1502 * we can piggy-back on that.
1503 */
1504 is_active = 1;
1505 if (rdev2->raid_disk < 0 ||
1506 test_bit(Faulty, &rdev2->flags))
1507 is_active = 0;
1508 if (is_active)
1509 desc_nr = rdev2->raid_disk;
1510 else
1511 desc_nr = next_spare++;
1512 rdev2->desc_nr = desc_nr;
1513 d = &sb->disks[rdev2->desc_nr];
1514 nr_disks++;
1515 d->number = rdev2->desc_nr;
1516 d->major = MAJOR(rdev2->bdev->bd_dev);
1517 d->minor = MINOR(rdev2->bdev->bd_dev);
1518 if (is_active)
1519 d->raid_disk = rdev2->raid_disk;
1520 else
1521 d->raid_disk = rdev2->desc_nr; /* compatibility */
1522 if (test_bit(Faulty, &rdev2->flags))
1523 d->state = (1<<MD_DISK_FAULTY);
1524 else if (is_active) {
1525 d->state = (1<<MD_DISK_ACTIVE);
1526 if (test_bit(In_sync, &rdev2->flags))
1527 d->state |= (1<<MD_DISK_SYNC);
1528 active++;
1529 working++;
1530 } else {
1531 d->state = 0;
1532 spare++;
1533 working++;
1534 }
1535 if (test_bit(WriteMostly, &rdev2->flags))
1536 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1537 if (test_bit(FailFast, &rdev2->flags))
1538 d->state |= (1<<MD_DISK_FAILFAST);
1539 }
1540 /* now set the "removed" and "faulty" bits on any missing devices */
1541 for (i=0 ; i < mddev->raid_disks ; i++) {
1542 mdp_disk_t *d = &sb->disks[i];
1543 if (d->state == 0 && d->number == 0) {
1544 d->number = i;
1545 d->raid_disk = i;
1546 d->state = (1<<MD_DISK_REMOVED);
1547 d->state |= (1<<MD_DISK_FAULTY);
1548 failed++;
1549 }
1550 }
1551 sb->nr_disks = nr_disks;
1552 sb->active_disks = active;
1553 sb->working_disks = working;
1554 sb->failed_disks = failed;
1555 sb->spare_disks = spare;
1556
1557 sb->this_disk = sb->disks[rdev->desc_nr];
1558 sb->sb_csum = calc_sb_csum(sb);
1559}
1560
1561/*
1562 * rdev_size_change for 0.90.0
1563 */
1564static unsigned long long
1565super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1566{
1567 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1568 return 0; /* component must fit device */
1569 if (rdev->mddev->bitmap_info.offset)
1570 return 0; /* can't move bitmap */
1571 rdev->sb_start = calc_dev_sboffset(rdev);
1572 if (!num_sectors || num_sectors > rdev->sb_start)
1573 num_sectors = rdev->sb_start;
1574 /* Limit to 4TB as metadata cannot record more than that.
1575 * 4TB == 2^32 KB, or 2*2^32 sectors.
1576 */
1577 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1578 num_sectors = (sector_t)(2ULL << 32) - 2;
1579 do {
1580 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1581 rdev->sb_page);
1582 } while (md_super_wait(rdev->mddev) < 0);
1583 return num_sectors;
1584}
1585
1586static int
1587super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1588{
1589 /* non-zero offset changes not possible with v0.90 */
1590 return new_offset == 0;
1591}
1592
1593/*
1594 * version 1 superblock
1595 */
1596
1597static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1598{
1599 __le32 disk_csum;
1600 u32 csum;
1601 unsigned long long newcsum;
1602 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1603 __le32 *isuper = (__le32*)sb;
1604
1605 disk_csum = sb->sb_csum;
1606 sb->sb_csum = 0;
1607 newcsum = 0;
1608 for (; size >= 4; size -= 4)
1609 newcsum += le32_to_cpu(*isuper++);
1610
1611 if (size == 2)
1612 newcsum += le16_to_cpu(*(__le16*) isuper);
1613
1614 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1615 sb->sb_csum = disk_csum;
1616 return cpu_to_le32(csum);
1617}
1618
1619static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1620{
1621 struct mdp_superblock_1 *sb;
1622 int ret;
1623 sector_t sb_start;
1624 sector_t sectors;
1625 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1626 int bmask;
1627 bool spare_disk = true;
1628
1629 /*
1630 * Calculate the position of the superblock in 512byte sectors.
1631 * It is always aligned to a 4K boundary and
1632 * depeding on minor_version, it can be:
1633 * 0: At least 8K, but less than 12K, from end of device
1634 * 1: At start of device
1635 * 2: 4K from start of device.
1636 */
1637 switch(minor_version) {
1638 case 0:
1639 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1640 sb_start &= ~(sector_t)(4*2-1);
1641 break;
1642 case 1:
1643 sb_start = 0;
1644 break;
1645 case 2:
1646 sb_start = 8;
1647 break;
1648 default:
1649 return -EINVAL;
1650 }
1651 rdev->sb_start = sb_start;
1652
1653 /* superblock is rarely larger than 1K, but it can be larger,
1654 * and it is safe to read 4k, so we do that
1655 */
1656 ret = read_disk_sb(rdev, 4096);
1657 if (ret) return ret;
1658
1659 sb = page_address(rdev->sb_page);
1660
1661 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1662 sb->major_version != cpu_to_le32(1) ||
1663 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1664 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1665 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1666 return -EINVAL;
1667
1668 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1669 pr_warn("md: invalid superblock checksum on %s\n",
1670 bdevname(rdev->bdev,b));
1671 return -EINVAL;
1672 }
1673 if (le64_to_cpu(sb->data_size) < 10) {
1674 pr_warn("md: data_size too small on %s\n",
1675 bdevname(rdev->bdev,b));
1676 return -EINVAL;
1677 }
1678 if (sb->pad0 ||
1679 sb->pad3[0] ||
1680 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1681 /* Some padding is non-zero, might be a new feature */
1682 return -EINVAL;
1683
1684 rdev->preferred_minor = 0xffff;
1685 rdev->data_offset = le64_to_cpu(sb->data_offset);
1686 rdev->new_data_offset = rdev->data_offset;
1687 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1688 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1689 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1690 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1691
1692 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1693 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1694 if (rdev->sb_size & bmask)
1695 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1696
1697 if (minor_version
1698 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1699 return -EINVAL;
1700 if (minor_version
1701 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1702 return -EINVAL;
1703
1704 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1705 rdev->desc_nr = -1;
1706 else
1707 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1708
1709 if (!rdev->bb_page) {
1710 rdev->bb_page = alloc_page(GFP_KERNEL);
1711 if (!rdev->bb_page)
1712 return -ENOMEM;
1713 }
1714 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1715 rdev->badblocks.count == 0) {
1716 /* need to load the bad block list.
1717 * Currently we limit it to one page.
1718 */
1719 s32 offset;
1720 sector_t bb_sector;
1721 __le64 *bbp;
1722 int i;
1723 int sectors = le16_to_cpu(sb->bblog_size);
1724 if (sectors > (PAGE_SIZE / 512))
1725 return -EINVAL;
1726 offset = le32_to_cpu(sb->bblog_offset);
1727 if (offset == 0)
1728 return -EINVAL;
1729 bb_sector = (long long)offset;
1730 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1731 rdev->bb_page, REQ_OP_READ, 0, true))
1732 return -EIO;
1733 bbp = (__le64 *)page_address(rdev->bb_page);
1734 rdev->badblocks.shift = sb->bblog_shift;
1735 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1736 u64 bb = le64_to_cpu(*bbp);
1737 int count = bb & (0x3ff);
1738 u64 sector = bb >> 10;
1739 sector <<= sb->bblog_shift;
1740 count <<= sb->bblog_shift;
1741 if (bb + 1 == 0)
1742 break;
1743 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1744 return -EINVAL;
1745 }
1746 } else if (sb->bblog_offset != 0)
1747 rdev->badblocks.shift = 0;
1748
1749 if ((le32_to_cpu(sb->feature_map) &
1750 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1751 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1752 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1753 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1754 }
1755
1756 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1757 sb->level != 0)
1758 return -EINVAL;
1759
1760 /* not spare disk, or LEVEL_MULTIPATH */
1761 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1762 (rdev->desc_nr >= 0 &&
1763 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1764 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1765 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1766 spare_disk = false;
1767
1768 if (!refdev) {
1769 if (!spare_disk)
1770 ret = 1;
1771 else
1772 ret = 0;
1773 } else {
1774 __u64 ev1, ev2;
1775 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1776
1777 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1778 sb->level != refsb->level ||
1779 sb->layout != refsb->layout ||
1780 sb->chunksize != refsb->chunksize) {
1781 pr_warn("md: %s has strangely different superblock to %s\n",
1782 bdevname(rdev->bdev,b),
1783 bdevname(refdev->bdev,b2));
1784 return -EINVAL;
1785 }
1786 ev1 = le64_to_cpu(sb->events);
1787 ev2 = le64_to_cpu(refsb->events);
1788
1789 if (!spare_disk && ev1 > ev2)
1790 ret = 1;
1791 else
1792 ret = 0;
1793 }
1794 if (minor_version)
1795 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1796 else
1797 sectors = rdev->sb_start;
1798 if (sectors < le64_to_cpu(sb->data_size))
1799 return -EINVAL;
1800 rdev->sectors = le64_to_cpu(sb->data_size);
1801 return ret;
1802}
1803
1804static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1805{
1806 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1807 __u64 ev1 = le64_to_cpu(sb->events);
1808
1809 rdev->raid_disk = -1;
1810 clear_bit(Faulty, &rdev->flags);
1811 clear_bit(In_sync, &rdev->flags);
1812 clear_bit(Bitmap_sync, &rdev->flags);
1813 clear_bit(WriteMostly, &rdev->flags);
1814
1815 if (mddev->raid_disks == 0) {
1816 mddev->major_version = 1;
1817 mddev->patch_version = 0;
1818 mddev->external = 0;
1819 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1820 mddev->ctime = le64_to_cpu(sb->ctime);
1821 mddev->utime = le64_to_cpu(sb->utime);
1822 mddev->level = le32_to_cpu(sb->level);
1823 mddev->clevel[0] = 0;
1824 mddev->layout = le32_to_cpu(sb->layout);
1825 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1826 mddev->dev_sectors = le64_to_cpu(sb->size);
1827 mddev->events = ev1;
1828 mddev->bitmap_info.offset = 0;
1829 mddev->bitmap_info.space = 0;
1830 /* Default location for bitmap is 1K after superblock
1831 * using 3K - total of 4K
1832 */
1833 mddev->bitmap_info.default_offset = 1024 >> 9;
1834 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1835 mddev->reshape_backwards = 0;
1836
1837 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1838 memcpy(mddev->uuid, sb->set_uuid, 16);
1839
1840 mddev->max_disks = (4096-256)/2;
1841
1842 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1843 mddev->bitmap_info.file == NULL) {
1844 mddev->bitmap_info.offset =
1845 (__s32)le32_to_cpu(sb->bitmap_offset);
1846 /* Metadata doesn't record how much space is available.
1847 * For 1.0, we assume we can use up to the superblock
1848 * if before, else to 4K beyond superblock.
1849 * For others, assume no change is possible.
1850 */
1851 if (mddev->minor_version > 0)
1852 mddev->bitmap_info.space = 0;
1853 else if (mddev->bitmap_info.offset > 0)
1854 mddev->bitmap_info.space =
1855 8 - mddev->bitmap_info.offset;
1856 else
1857 mddev->bitmap_info.space =
1858 -mddev->bitmap_info.offset;
1859 }
1860
1861 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1862 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1863 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1864 mddev->new_level = le32_to_cpu(sb->new_level);
1865 mddev->new_layout = le32_to_cpu(sb->new_layout);
1866 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1867 if (mddev->delta_disks < 0 ||
1868 (mddev->delta_disks == 0 &&
1869 (le32_to_cpu(sb->feature_map)
1870 & MD_FEATURE_RESHAPE_BACKWARDS)))
1871 mddev->reshape_backwards = 1;
1872 } else {
1873 mddev->reshape_position = MaxSector;
1874 mddev->delta_disks = 0;
1875 mddev->new_level = mddev->level;
1876 mddev->new_layout = mddev->layout;
1877 mddev->new_chunk_sectors = mddev->chunk_sectors;
1878 }
1879
1880 if (mddev->level == 0 &&
1881 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1882 mddev->layout = -1;
1883
1884 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1885 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1886
1887 if (le32_to_cpu(sb->feature_map) &
1888 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1889 if (le32_to_cpu(sb->feature_map) &
1890 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1891 return -EINVAL;
1892 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1893 (le32_to_cpu(sb->feature_map) &
1894 MD_FEATURE_MULTIPLE_PPLS))
1895 return -EINVAL;
1896 set_bit(MD_HAS_PPL, &mddev->flags);
1897 }
1898 } else if (mddev->pers == NULL) {
1899 /* Insist of good event counter while assembling, except for
1900 * spares (which don't need an event count) */
1901 ++ev1;
1902 if (rdev->desc_nr >= 0 &&
1903 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1904 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1905 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1906 if (ev1 < mddev->events)
1907 return -EINVAL;
1908 } else if (mddev->bitmap) {
1909 /* If adding to array with a bitmap, then we can accept an
1910 * older device, but not too old.
1911 */
1912 if (ev1 < mddev->bitmap->events_cleared)
1913 return 0;
1914 if (ev1 < mddev->events)
1915 set_bit(Bitmap_sync, &rdev->flags);
1916 } else {
1917 if (ev1 < mddev->events)
1918 /* just a hot-add of a new device, leave raid_disk at -1 */
1919 return 0;
1920 }
1921 if (mddev->level != LEVEL_MULTIPATH) {
1922 int role;
1923 if (rdev->desc_nr < 0 ||
1924 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1925 role = MD_DISK_ROLE_SPARE;
1926 rdev->desc_nr = -1;
1927 } else
1928 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1929 switch(role) {
1930 case MD_DISK_ROLE_SPARE: /* spare */
1931 break;
1932 case MD_DISK_ROLE_FAULTY: /* faulty */
1933 set_bit(Faulty, &rdev->flags);
1934 break;
1935 case MD_DISK_ROLE_JOURNAL: /* journal device */
1936 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1937 /* journal device without journal feature */
1938 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1939 return -EINVAL;
1940 }
1941 set_bit(Journal, &rdev->flags);
1942 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1943 rdev->raid_disk = 0;
1944 break;
1945 default:
1946 rdev->saved_raid_disk = role;
1947 if ((le32_to_cpu(sb->feature_map) &
1948 MD_FEATURE_RECOVERY_OFFSET)) {
1949 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1950 if (!(le32_to_cpu(sb->feature_map) &
1951 MD_FEATURE_RECOVERY_BITMAP))
1952 rdev->saved_raid_disk = -1;
1953 } else {
1954 /*
1955 * If the array is FROZEN, then the device can't
1956 * be in_sync with rest of array.
1957 */
1958 if (!test_bit(MD_RECOVERY_FROZEN,
1959 &mddev->recovery))
1960 set_bit(In_sync, &rdev->flags);
1961 }
1962 rdev->raid_disk = role;
1963 break;
1964 }
1965 if (sb->devflags & WriteMostly1)
1966 set_bit(WriteMostly, &rdev->flags);
1967 if (sb->devflags & FailFast1)
1968 set_bit(FailFast, &rdev->flags);
1969 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1970 set_bit(Replacement, &rdev->flags);
1971 } else /* MULTIPATH are always insync */
1972 set_bit(In_sync, &rdev->flags);
1973
1974 return 0;
1975}
1976
1977static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1978{
1979 struct mdp_superblock_1 *sb;
1980 struct md_rdev *rdev2;
1981 int max_dev, i;
1982 /* make rdev->sb match mddev and rdev data. */
1983
1984 sb = page_address(rdev->sb_page);
1985
1986 sb->feature_map = 0;
1987 sb->pad0 = 0;
1988 sb->recovery_offset = cpu_to_le64(0);
1989 memset(sb->pad3, 0, sizeof(sb->pad3));
1990
1991 sb->utime = cpu_to_le64((__u64)mddev->utime);
1992 sb->events = cpu_to_le64(mddev->events);
1993 if (mddev->in_sync)
1994 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1995 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1996 sb->resync_offset = cpu_to_le64(MaxSector);
1997 else
1998 sb->resync_offset = cpu_to_le64(0);
1999
2000 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2001
2002 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2003 sb->size = cpu_to_le64(mddev->dev_sectors);
2004 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2005 sb->level = cpu_to_le32(mddev->level);
2006 sb->layout = cpu_to_le32(mddev->layout);
2007 if (test_bit(FailFast, &rdev->flags))
2008 sb->devflags |= FailFast1;
2009 else
2010 sb->devflags &= ~FailFast1;
2011
2012 if (test_bit(WriteMostly, &rdev->flags))
2013 sb->devflags |= WriteMostly1;
2014 else
2015 sb->devflags &= ~WriteMostly1;
2016 sb->data_offset = cpu_to_le64(rdev->data_offset);
2017 sb->data_size = cpu_to_le64(rdev->sectors);
2018
2019 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2020 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2021 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2022 }
2023
2024 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2025 !test_bit(In_sync, &rdev->flags)) {
2026 sb->feature_map |=
2027 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2028 sb->recovery_offset =
2029 cpu_to_le64(rdev->recovery_offset);
2030 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2031 sb->feature_map |=
2032 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2033 }
2034 /* Note: recovery_offset and journal_tail share space */
2035 if (test_bit(Journal, &rdev->flags))
2036 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2037 if (test_bit(Replacement, &rdev->flags))
2038 sb->feature_map |=
2039 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2040
2041 if (mddev->reshape_position != MaxSector) {
2042 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2043 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2044 sb->new_layout = cpu_to_le32(mddev->new_layout);
2045 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2046 sb->new_level = cpu_to_le32(mddev->new_level);
2047 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2048 if (mddev->delta_disks == 0 &&
2049 mddev->reshape_backwards)
2050 sb->feature_map
2051 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2052 if (rdev->new_data_offset != rdev->data_offset) {
2053 sb->feature_map
2054 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2055 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2056 - rdev->data_offset));
2057 }
2058 }
2059
2060 if (mddev_is_clustered(mddev))
2061 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2062
2063 if (rdev->badblocks.count == 0)
2064 /* Nothing to do for bad blocks*/ ;
2065 else if (sb->bblog_offset == 0)
2066 /* Cannot record bad blocks on this device */
2067 md_error(mddev, rdev);
2068 else {
2069 struct badblocks *bb = &rdev->badblocks;
2070 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2071 u64 *p = bb->page;
2072 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2073 if (bb->changed) {
2074 unsigned seq;
2075
2076retry:
2077 seq = read_seqbegin(&bb->lock);
2078
2079 memset(bbp, 0xff, PAGE_SIZE);
2080
2081 for (i = 0 ; i < bb->count ; i++) {
2082 u64 internal_bb = p[i];
2083 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2084 | BB_LEN(internal_bb));
2085 bbp[i] = cpu_to_le64(store_bb);
2086 }
2087 bb->changed = 0;
2088 if (read_seqretry(&bb->lock, seq))
2089 goto retry;
2090
2091 bb->sector = (rdev->sb_start +
2092 (int)le32_to_cpu(sb->bblog_offset));
2093 bb->size = le16_to_cpu(sb->bblog_size);
2094 }
2095 }
2096
2097 max_dev = 0;
2098 rdev_for_each(rdev2, mddev)
2099 if (rdev2->desc_nr+1 > max_dev)
2100 max_dev = rdev2->desc_nr+1;
2101
2102 if (max_dev > le32_to_cpu(sb->max_dev)) {
2103 int bmask;
2104 sb->max_dev = cpu_to_le32(max_dev);
2105 rdev->sb_size = max_dev * 2 + 256;
2106 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2107 if (rdev->sb_size & bmask)
2108 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2109 } else
2110 max_dev = le32_to_cpu(sb->max_dev);
2111
2112 for (i=0; i<max_dev;i++)
2113 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2114
2115 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2116 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2117
2118 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2119 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2120 sb->feature_map |=
2121 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2122 else
2123 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2124 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2125 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2126 }
2127
2128 rdev_for_each(rdev2, mddev) {
2129 i = rdev2->desc_nr;
2130 if (test_bit(Faulty, &rdev2->flags))
2131 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2132 else if (test_bit(In_sync, &rdev2->flags))
2133 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2134 else if (test_bit(Journal, &rdev2->flags))
2135 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2136 else if (rdev2->raid_disk >= 0)
2137 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2138 else
2139 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2140 }
2141
2142 sb->sb_csum = calc_sb_1_csum(sb);
2143}
2144
2145static sector_t super_1_choose_bm_space(sector_t dev_size)
2146{
2147 sector_t bm_space;
2148
2149 /* if the device is bigger than 8Gig, save 64k for bitmap
2150 * usage, if bigger than 200Gig, save 128k
2151 */
2152 if (dev_size < 64*2)
2153 bm_space = 0;
2154 else if (dev_size - 64*2 >= 200*1024*1024*2)
2155 bm_space = 128*2;
2156 else if (dev_size - 4*2 > 8*1024*1024*2)
2157 bm_space = 64*2;
2158 else
2159 bm_space = 4*2;
2160 return bm_space;
2161}
2162
2163static unsigned long long
2164super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2165{
2166 struct mdp_superblock_1 *sb;
2167 sector_t max_sectors;
2168 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2169 return 0; /* component must fit device */
2170 if (rdev->data_offset != rdev->new_data_offset)
2171 return 0; /* too confusing */
2172 if (rdev->sb_start < rdev->data_offset) {
2173 /* minor versions 1 and 2; superblock before data */
2174 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2175 if (!num_sectors || num_sectors > max_sectors)
2176 num_sectors = max_sectors;
2177 } else if (rdev->mddev->bitmap_info.offset) {
2178 /* minor version 0 with bitmap we can't move */
2179 return 0;
2180 } else {
2181 /* minor version 0; superblock after data */
2182 sector_t sb_start, bm_space;
2183 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2184
2185 /* 8K is for superblock */
2186 sb_start = dev_size - 8*2;
2187 sb_start &= ~(sector_t)(4*2 - 1);
2188
2189 bm_space = super_1_choose_bm_space(dev_size);
2190
2191 /* Space that can be used to store date needs to decrease
2192 * superblock bitmap space and bad block space(4K)
2193 */
2194 max_sectors = sb_start - bm_space - 4*2;
2195
2196 if (!num_sectors || num_sectors > max_sectors)
2197 num_sectors = max_sectors;
2198 rdev->sb_start = sb_start;
2199 }
2200 sb = page_address(rdev->sb_page);
2201 sb->data_size = cpu_to_le64(num_sectors);
2202 sb->super_offset = cpu_to_le64(rdev->sb_start);
2203 sb->sb_csum = calc_sb_1_csum(sb);
2204 do {
2205 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2206 rdev->sb_page);
2207 } while (md_super_wait(rdev->mddev) < 0);
2208 return num_sectors;
2209
2210}
2211
2212static int
2213super_1_allow_new_offset(struct md_rdev *rdev,
2214 unsigned long long new_offset)
2215{
2216 /* All necessary checks on new >= old have been done */
2217 struct bitmap *bitmap;
2218 if (new_offset >= rdev->data_offset)
2219 return 1;
2220
2221 /* with 1.0 metadata, there is no metadata to tread on
2222 * so we can always move back */
2223 if (rdev->mddev->minor_version == 0)
2224 return 1;
2225
2226 /* otherwise we must be sure not to step on
2227 * any metadata, so stay:
2228 * 36K beyond start of superblock
2229 * beyond end of badblocks
2230 * beyond write-intent bitmap
2231 */
2232 if (rdev->sb_start + (32+4)*2 > new_offset)
2233 return 0;
2234 bitmap = rdev->mddev->bitmap;
2235 if (bitmap && !rdev->mddev->bitmap_info.file &&
2236 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2237 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2238 return 0;
2239 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2240 return 0;
2241
2242 return 1;
2243}
2244
2245static struct super_type super_types[] = {
2246 [0] = {
2247 .name = "0.90.0",
2248 .owner = THIS_MODULE,
2249 .load_super = super_90_load,
2250 .validate_super = super_90_validate,
2251 .sync_super = super_90_sync,
2252 .rdev_size_change = super_90_rdev_size_change,
2253 .allow_new_offset = super_90_allow_new_offset,
2254 },
2255 [1] = {
2256 .name = "md-1",
2257 .owner = THIS_MODULE,
2258 .load_super = super_1_load,
2259 .validate_super = super_1_validate,
2260 .sync_super = super_1_sync,
2261 .rdev_size_change = super_1_rdev_size_change,
2262 .allow_new_offset = super_1_allow_new_offset,
2263 },
2264};
2265
2266static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2267{
2268 if (mddev->sync_super) {
2269 mddev->sync_super(mddev, rdev);
2270 return;
2271 }
2272
2273 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2274
2275 super_types[mddev->major_version].sync_super(mddev, rdev);
2276}
2277
2278static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2279{
2280 struct md_rdev *rdev, *rdev2;
2281
2282 rcu_read_lock();
2283 rdev_for_each_rcu(rdev, mddev1) {
2284 if (test_bit(Faulty, &rdev->flags) ||
2285 test_bit(Journal, &rdev->flags) ||
2286 rdev->raid_disk == -1)
2287 continue;
2288 rdev_for_each_rcu(rdev2, mddev2) {
2289 if (test_bit(Faulty, &rdev2->flags) ||
2290 test_bit(Journal, &rdev2->flags) ||
2291 rdev2->raid_disk == -1)
2292 continue;
2293 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2294 rcu_read_unlock();
2295 return 1;
2296 }
2297 }
2298 }
2299 rcu_read_unlock();
2300 return 0;
2301}
2302
2303static LIST_HEAD(pending_raid_disks);
2304
2305/*
2306 * Try to register data integrity profile for an mddev
2307 *
2308 * This is called when an array is started and after a disk has been kicked
2309 * from the array. It only succeeds if all working and active component devices
2310 * are integrity capable with matching profiles.
2311 */
2312int md_integrity_register(struct mddev *mddev)
2313{
2314 struct md_rdev *rdev, *reference = NULL;
2315
2316 if (list_empty(&mddev->disks))
2317 return 0; /* nothing to do */
2318 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2319 return 0; /* shouldn't register, or already is */
2320 rdev_for_each(rdev, mddev) {
2321 /* skip spares and non-functional disks */
2322 if (test_bit(Faulty, &rdev->flags))
2323 continue;
2324 if (rdev->raid_disk < 0)
2325 continue;
2326 if (!reference) {
2327 /* Use the first rdev as the reference */
2328 reference = rdev;
2329 continue;
2330 }
2331 /* does this rdev's profile match the reference profile? */
2332 if (blk_integrity_compare(reference->bdev->bd_disk,
2333 rdev->bdev->bd_disk) < 0)
2334 return -EINVAL;
2335 }
2336 if (!reference || !bdev_get_integrity(reference->bdev))
2337 return 0;
2338 /*
2339 * All component devices are integrity capable and have matching
2340 * profiles, register the common profile for the md device.
2341 */
2342 blk_integrity_register(mddev->gendisk,
2343 bdev_get_integrity(reference->bdev));
2344
2345 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2346 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2347 (mddev->level != 1 && mddev->level != 10 &&
2348 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2349 /*
2350 * No need to handle the failure of bioset_integrity_create,
2351 * because the function is called by md_run() -> pers->run(),
2352 * md_run calls bioset_exit -> bioset_integrity_free in case
2353 * of failure case.
2354 */
2355 pr_err("md: failed to create integrity pool for %s\n",
2356 mdname(mddev));
2357 return -EINVAL;
2358 }
2359 return 0;
2360}
2361EXPORT_SYMBOL(md_integrity_register);
2362
2363/*
2364 * Attempt to add an rdev, but only if it is consistent with the current
2365 * integrity profile
2366 */
2367int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2368{
2369 struct blk_integrity *bi_mddev;
2370 char name[BDEVNAME_SIZE];
2371
2372 if (!mddev->gendisk)
2373 return 0;
2374
2375 bi_mddev = blk_get_integrity(mddev->gendisk);
2376
2377 if (!bi_mddev) /* nothing to do */
2378 return 0;
2379
2380 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2381 pr_err("%s: incompatible integrity profile for %s\n",
2382 mdname(mddev), bdevname(rdev->bdev, name));
2383 return -ENXIO;
2384 }
2385
2386 return 0;
2387}
2388EXPORT_SYMBOL(md_integrity_add_rdev);
2389
2390static bool rdev_read_only(struct md_rdev *rdev)
2391{
2392 return bdev_read_only(rdev->bdev) ||
2393 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2394}
2395
2396static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2397{
2398 char b[BDEVNAME_SIZE];
2399 int err;
2400
2401 /* prevent duplicates */
2402 if (find_rdev(mddev, rdev->bdev->bd_dev))
2403 return -EEXIST;
2404
2405 if (rdev_read_only(rdev) && mddev->pers)
2406 return -EROFS;
2407
2408 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2409 if (!test_bit(Journal, &rdev->flags) &&
2410 rdev->sectors &&
2411 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2412 if (mddev->pers) {
2413 /* Cannot change size, so fail
2414 * If mddev->level <= 0, then we don't care
2415 * about aligning sizes (e.g. linear)
2416 */
2417 if (mddev->level > 0)
2418 return -ENOSPC;
2419 } else
2420 mddev->dev_sectors = rdev->sectors;
2421 }
2422
2423 /* Verify rdev->desc_nr is unique.
2424 * If it is -1, assign a free number, else
2425 * check number is not in use
2426 */
2427 rcu_read_lock();
2428 if (rdev->desc_nr < 0) {
2429 int choice = 0;
2430 if (mddev->pers)
2431 choice = mddev->raid_disks;
2432 while (md_find_rdev_nr_rcu(mddev, choice))
2433 choice++;
2434 rdev->desc_nr = choice;
2435 } else {
2436 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2437 rcu_read_unlock();
2438 return -EBUSY;
2439 }
2440 }
2441 rcu_read_unlock();
2442 if (!test_bit(Journal, &rdev->flags) &&
2443 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2444 pr_warn("md: %s: array is limited to %d devices\n",
2445 mdname(mddev), mddev->max_disks);
2446 return -EBUSY;
2447 }
2448 bdevname(rdev->bdev,b);
2449 strreplace(b, '/', '!');
2450
2451 rdev->mddev = mddev;
2452 pr_debug("md: bind<%s>\n", b);
2453
2454 if (mddev->raid_disks)
2455 mddev_create_serial_pool(mddev, rdev, false);
2456
2457 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2458 goto fail;
2459
2460 /* failure here is OK */
2461 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2462 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2463 rdev->sysfs_unack_badblocks =
2464 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2465 rdev->sysfs_badblocks =
2466 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2467
2468 list_add_rcu(&rdev->same_set, &mddev->disks);
2469 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2470
2471 /* May as well allow recovery to be retried once */
2472 mddev->recovery_disabled++;
2473
2474 return 0;
2475
2476 fail:
2477 pr_warn("md: failed to register dev-%s for %s\n",
2478 b, mdname(mddev));
2479 return err;
2480}
2481
2482static void rdev_delayed_delete(struct work_struct *ws)
2483{
2484 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2485 kobject_del(&rdev->kobj);
2486 kobject_put(&rdev->kobj);
2487}
2488
2489static void unbind_rdev_from_array(struct md_rdev *rdev)
2490{
2491 char b[BDEVNAME_SIZE];
2492
2493 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2494 list_del_rcu(&rdev->same_set);
2495 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2496 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2497 rdev->mddev = NULL;
2498 sysfs_remove_link(&rdev->kobj, "block");
2499 sysfs_put(rdev->sysfs_state);
2500 sysfs_put(rdev->sysfs_unack_badblocks);
2501 sysfs_put(rdev->sysfs_badblocks);
2502 rdev->sysfs_state = NULL;
2503 rdev->sysfs_unack_badblocks = NULL;
2504 rdev->sysfs_badblocks = NULL;
2505 rdev->badblocks.count = 0;
2506 /* We need to delay this, otherwise we can deadlock when
2507 * writing to 'remove' to "dev/state". We also need
2508 * to delay it due to rcu usage.
2509 */
2510 synchronize_rcu();
2511 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2512 kobject_get(&rdev->kobj);
2513 queue_work(md_rdev_misc_wq, &rdev->del_work);
2514}
2515
2516/*
2517 * prevent the device from being mounted, repartitioned or
2518 * otherwise reused by a RAID array (or any other kernel
2519 * subsystem), by bd_claiming the device.
2520 */
2521static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2522{
2523 int err = 0;
2524 struct block_device *bdev;
2525
2526 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2527 shared ? (struct md_rdev *)lock_rdev : rdev);
2528 if (IS_ERR(bdev)) {
2529 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2530 MAJOR(dev), MINOR(dev));
2531 return PTR_ERR(bdev);
2532 }
2533 rdev->bdev = bdev;
2534 return err;
2535}
2536
2537static void unlock_rdev(struct md_rdev *rdev)
2538{
2539 struct block_device *bdev = rdev->bdev;
2540 rdev->bdev = NULL;
2541 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2542}
2543
2544void md_autodetect_dev(dev_t dev);
2545
2546static void export_rdev(struct md_rdev *rdev)
2547{
2548 char b[BDEVNAME_SIZE];
2549
2550 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2551 md_rdev_clear(rdev);
2552#ifndef MODULE
2553 if (test_bit(AutoDetected, &rdev->flags))
2554 md_autodetect_dev(rdev->bdev->bd_dev);
2555#endif
2556 unlock_rdev(rdev);
2557 kobject_put(&rdev->kobj);
2558}
2559
2560void md_kick_rdev_from_array(struct md_rdev *rdev)
2561{
2562 unbind_rdev_from_array(rdev);
2563 export_rdev(rdev);
2564}
2565EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2566
2567static void export_array(struct mddev *mddev)
2568{
2569 struct md_rdev *rdev;
2570
2571 while (!list_empty(&mddev->disks)) {
2572 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2573 same_set);
2574 md_kick_rdev_from_array(rdev);
2575 }
2576 mddev->raid_disks = 0;
2577 mddev->major_version = 0;
2578}
2579
2580static bool set_in_sync(struct mddev *mddev)
2581{
2582 lockdep_assert_held(&mddev->lock);
2583 if (!mddev->in_sync) {
2584 mddev->sync_checkers++;
2585 spin_unlock(&mddev->lock);
2586 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2587 spin_lock(&mddev->lock);
2588 if (!mddev->in_sync &&
2589 percpu_ref_is_zero(&mddev->writes_pending)) {
2590 mddev->in_sync = 1;
2591 /*
2592 * Ensure ->in_sync is visible before we clear
2593 * ->sync_checkers.
2594 */
2595 smp_mb();
2596 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2597 sysfs_notify_dirent_safe(mddev->sysfs_state);
2598 }
2599 if (--mddev->sync_checkers == 0)
2600 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2601 }
2602 if (mddev->safemode == 1)
2603 mddev->safemode = 0;
2604 return mddev->in_sync;
2605}
2606
2607static void sync_sbs(struct mddev *mddev, int nospares)
2608{
2609 /* Update each superblock (in-memory image), but
2610 * if we are allowed to, skip spares which already
2611 * have the right event counter, or have one earlier
2612 * (which would mean they aren't being marked as dirty
2613 * with the rest of the array)
2614 */
2615 struct md_rdev *rdev;
2616 rdev_for_each(rdev, mddev) {
2617 if (rdev->sb_events == mddev->events ||
2618 (nospares &&
2619 rdev->raid_disk < 0 &&
2620 rdev->sb_events+1 == mddev->events)) {
2621 /* Don't update this superblock */
2622 rdev->sb_loaded = 2;
2623 } else {
2624 sync_super(mddev, rdev);
2625 rdev->sb_loaded = 1;
2626 }
2627 }
2628}
2629
2630static bool does_sb_need_changing(struct mddev *mddev)
2631{
2632 struct md_rdev *rdev;
2633 struct mdp_superblock_1 *sb;
2634 int role;
2635
2636 /* Find a good rdev */
2637 rdev_for_each(rdev, mddev)
2638 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2639 break;
2640
2641 /* No good device found. */
2642 if (!rdev)
2643 return false;
2644
2645 sb = page_address(rdev->sb_page);
2646 /* Check if a device has become faulty or a spare become active */
2647 rdev_for_each(rdev, mddev) {
2648 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2649 /* Device activated? */
2650 if (role == 0xffff && rdev->raid_disk >=0 &&
2651 !test_bit(Faulty, &rdev->flags))
2652 return true;
2653 /* Device turned faulty? */
2654 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2655 return true;
2656 }
2657
2658 /* Check if any mddev parameters have changed */
2659 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2660 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2661 (mddev->layout != le32_to_cpu(sb->layout)) ||
2662 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2663 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2664 return true;
2665
2666 return false;
2667}
2668
2669void md_update_sb(struct mddev *mddev, int force_change)
2670{
2671 struct md_rdev *rdev;
2672 int sync_req;
2673 int nospares = 0;
2674 int any_badblocks_changed = 0;
2675 int ret = -1;
2676
2677 if (mddev->ro) {
2678 if (force_change)
2679 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2680 return;
2681 }
2682
2683repeat:
2684 if (mddev_is_clustered(mddev)) {
2685 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2686 force_change = 1;
2687 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2688 nospares = 1;
2689 ret = md_cluster_ops->metadata_update_start(mddev);
2690 /* Has someone else has updated the sb */
2691 if (!does_sb_need_changing(mddev)) {
2692 if (ret == 0)
2693 md_cluster_ops->metadata_update_cancel(mddev);
2694 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2695 BIT(MD_SB_CHANGE_DEVS) |
2696 BIT(MD_SB_CHANGE_CLEAN));
2697 return;
2698 }
2699 }
2700
2701 /*
2702 * First make sure individual recovery_offsets are correct
2703 * curr_resync_completed can only be used during recovery.
2704 * During reshape/resync it might use array-addresses rather
2705 * that device addresses.
2706 */
2707 rdev_for_each(rdev, mddev) {
2708 if (rdev->raid_disk >= 0 &&
2709 mddev->delta_disks >= 0 &&
2710 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2711 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2712 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2713 !test_bit(Journal, &rdev->flags) &&
2714 !test_bit(In_sync, &rdev->flags) &&
2715 mddev->curr_resync_completed > rdev->recovery_offset)
2716 rdev->recovery_offset = mddev->curr_resync_completed;
2717
2718 }
2719 if (!mddev->persistent) {
2720 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2721 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2722 if (!mddev->external) {
2723 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2724 rdev_for_each(rdev, mddev) {
2725 if (rdev->badblocks.changed) {
2726 rdev->badblocks.changed = 0;
2727 ack_all_badblocks(&rdev->badblocks);
2728 md_error(mddev, rdev);
2729 }
2730 clear_bit(Blocked, &rdev->flags);
2731 clear_bit(BlockedBadBlocks, &rdev->flags);
2732 wake_up(&rdev->blocked_wait);
2733 }
2734 }
2735 wake_up(&mddev->sb_wait);
2736 return;
2737 }
2738
2739 spin_lock(&mddev->lock);
2740
2741 mddev->utime = ktime_get_real_seconds();
2742
2743 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2744 force_change = 1;
2745 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2746 /* just a clean<-> dirty transition, possibly leave spares alone,
2747 * though if events isn't the right even/odd, we will have to do
2748 * spares after all
2749 */
2750 nospares = 1;
2751 if (force_change)
2752 nospares = 0;
2753 if (mddev->degraded)
2754 /* If the array is degraded, then skipping spares is both
2755 * dangerous and fairly pointless.
2756 * Dangerous because a device that was removed from the array
2757 * might have a event_count that still looks up-to-date,
2758 * so it can be re-added without a resync.
2759 * Pointless because if there are any spares to skip,
2760 * then a recovery will happen and soon that array won't
2761 * be degraded any more and the spare can go back to sleep then.
2762 */
2763 nospares = 0;
2764
2765 sync_req = mddev->in_sync;
2766
2767 /* If this is just a dirty<->clean transition, and the array is clean
2768 * and 'events' is odd, we can roll back to the previous clean state */
2769 if (nospares
2770 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2771 && mddev->can_decrease_events
2772 && mddev->events != 1) {
2773 mddev->events--;
2774 mddev->can_decrease_events = 0;
2775 } else {
2776 /* otherwise we have to go forward and ... */
2777 mddev->events ++;
2778 mddev->can_decrease_events = nospares;
2779 }
2780
2781 /*
2782 * This 64-bit counter should never wrap.
2783 * Either we are in around ~1 trillion A.C., assuming
2784 * 1 reboot per second, or we have a bug...
2785 */
2786 WARN_ON(mddev->events == 0);
2787
2788 rdev_for_each(rdev, mddev) {
2789 if (rdev->badblocks.changed)
2790 any_badblocks_changed++;
2791 if (test_bit(Faulty, &rdev->flags))
2792 set_bit(FaultRecorded, &rdev->flags);
2793 }
2794
2795 sync_sbs(mddev, nospares);
2796 spin_unlock(&mddev->lock);
2797
2798 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2799 mdname(mddev), mddev->in_sync);
2800
2801 if (mddev->queue)
2802 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2803rewrite:
2804 md_bitmap_update_sb(mddev->bitmap);
2805 rdev_for_each(rdev, mddev) {
2806 char b[BDEVNAME_SIZE];
2807
2808 if (rdev->sb_loaded != 1)
2809 continue; /* no noise on spare devices */
2810
2811 if (!test_bit(Faulty, &rdev->flags)) {
2812 md_super_write(mddev,rdev,
2813 rdev->sb_start, rdev->sb_size,
2814 rdev->sb_page);
2815 pr_debug("md: (write) %s's sb offset: %llu\n",
2816 bdevname(rdev->bdev, b),
2817 (unsigned long long)rdev->sb_start);
2818 rdev->sb_events = mddev->events;
2819 if (rdev->badblocks.size) {
2820 md_super_write(mddev, rdev,
2821 rdev->badblocks.sector,
2822 rdev->badblocks.size << 9,
2823 rdev->bb_page);
2824 rdev->badblocks.size = 0;
2825 }
2826
2827 } else
2828 pr_debug("md: %s (skipping faulty)\n",
2829 bdevname(rdev->bdev, b));
2830
2831 if (mddev->level == LEVEL_MULTIPATH)
2832 /* only need to write one superblock... */
2833 break;
2834 }
2835 if (md_super_wait(mddev) < 0)
2836 goto rewrite;
2837 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2838
2839 if (mddev_is_clustered(mddev) && ret == 0)
2840 md_cluster_ops->metadata_update_finish(mddev);
2841
2842 if (mddev->in_sync != sync_req ||
2843 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2844 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2845 /* have to write it out again */
2846 goto repeat;
2847 wake_up(&mddev->sb_wait);
2848 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2849 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2850
2851 rdev_for_each(rdev, mddev) {
2852 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2853 clear_bit(Blocked, &rdev->flags);
2854
2855 if (any_badblocks_changed)
2856 ack_all_badblocks(&rdev->badblocks);
2857 clear_bit(BlockedBadBlocks, &rdev->flags);
2858 wake_up(&rdev->blocked_wait);
2859 }
2860}
2861EXPORT_SYMBOL(md_update_sb);
2862
2863static int add_bound_rdev(struct md_rdev *rdev)
2864{
2865 struct mddev *mddev = rdev->mddev;
2866 int err = 0;
2867 bool add_journal = test_bit(Journal, &rdev->flags);
2868
2869 if (!mddev->pers->hot_remove_disk || add_journal) {
2870 /* If there is hot_add_disk but no hot_remove_disk
2871 * then added disks for geometry changes,
2872 * and should be added immediately.
2873 */
2874 super_types[mddev->major_version].
2875 validate_super(mddev, rdev);
2876 if (add_journal)
2877 mddev_suspend(mddev);
2878 err = mddev->pers->hot_add_disk(mddev, rdev);
2879 if (add_journal)
2880 mddev_resume(mddev);
2881 if (err) {
2882 md_kick_rdev_from_array(rdev);
2883 return err;
2884 }
2885 }
2886 sysfs_notify_dirent_safe(rdev->sysfs_state);
2887
2888 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2889 if (mddev->degraded)
2890 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2892 md_new_event();
2893 md_wakeup_thread(mddev->thread);
2894 return 0;
2895}
2896
2897/* words written to sysfs files may, or may not, be \n terminated.
2898 * We want to accept with case. For this we use cmd_match.
2899 */
2900static int cmd_match(const char *cmd, const char *str)
2901{
2902 /* See if cmd, written into a sysfs file, matches
2903 * str. They must either be the same, or cmd can
2904 * have a trailing newline
2905 */
2906 while (*cmd && *str && *cmd == *str) {
2907 cmd++;
2908 str++;
2909 }
2910 if (*cmd == '\n')
2911 cmd++;
2912 if (*str || *cmd)
2913 return 0;
2914 return 1;
2915}
2916
2917struct rdev_sysfs_entry {
2918 struct attribute attr;
2919 ssize_t (*show)(struct md_rdev *, char *);
2920 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2921};
2922
2923static ssize_t
2924state_show(struct md_rdev *rdev, char *page)
2925{
2926 char *sep = ",";
2927 size_t len = 0;
2928 unsigned long flags = READ_ONCE(rdev->flags);
2929
2930 if (test_bit(Faulty, &flags) ||
2931 (!test_bit(ExternalBbl, &flags) &&
2932 rdev->badblocks.unacked_exist))
2933 len += sprintf(page+len, "faulty%s", sep);
2934 if (test_bit(In_sync, &flags))
2935 len += sprintf(page+len, "in_sync%s", sep);
2936 if (test_bit(Journal, &flags))
2937 len += sprintf(page+len, "journal%s", sep);
2938 if (test_bit(WriteMostly, &flags))
2939 len += sprintf(page+len, "write_mostly%s", sep);
2940 if (test_bit(Blocked, &flags) ||
2941 (rdev->badblocks.unacked_exist
2942 && !test_bit(Faulty, &flags)))
2943 len += sprintf(page+len, "blocked%s", sep);
2944 if (!test_bit(Faulty, &flags) &&
2945 !test_bit(Journal, &flags) &&
2946 !test_bit(In_sync, &flags))
2947 len += sprintf(page+len, "spare%s", sep);
2948 if (test_bit(WriteErrorSeen, &flags))
2949 len += sprintf(page+len, "write_error%s", sep);
2950 if (test_bit(WantReplacement, &flags))
2951 len += sprintf(page+len, "want_replacement%s", sep);
2952 if (test_bit(Replacement, &flags))
2953 len += sprintf(page+len, "replacement%s", sep);
2954 if (test_bit(ExternalBbl, &flags))
2955 len += sprintf(page+len, "external_bbl%s", sep);
2956 if (test_bit(FailFast, &flags))
2957 len += sprintf(page+len, "failfast%s", sep);
2958
2959 if (len)
2960 len -= strlen(sep);
2961
2962 return len+sprintf(page+len, "\n");
2963}
2964
2965static ssize_t
2966state_store(struct md_rdev *rdev, const char *buf, size_t len)
2967{
2968 /* can write
2969 * faulty - simulates an error
2970 * remove - disconnects the device
2971 * writemostly - sets write_mostly
2972 * -writemostly - clears write_mostly
2973 * blocked - sets the Blocked flags
2974 * -blocked - clears the Blocked and possibly simulates an error
2975 * insync - sets Insync providing device isn't active
2976 * -insync - clear Insync for a device with a slot assigned,
2977 * so that it gets rebuilt based on bitmap
2978 * write_error - sets WriteErrorSeen
2979 * -write_error - clears WriteErrorSeen
2980 * {,-}failfast - set/clear FailFast
2981 */
2982
2983 struct mddev *mddev = rdev->mddev;
2984 int err = -EINVAL;
2985 bool need_update_sb = false;
2986
2987 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2988 md_error(rdev->mddev, rdev);
2989 if (test_bit(Faulty, &rdev->flags))
2990 err = 0;
2991 else
2992 err = -EBUSY;
2993 } else if (cmd_match(buf, "remove")) {
2994 if (rdev->mddev->pers) {
2995 clear_bit(Blocked, &rdev->flags);
2996 remove_and_add_spares(rdev->mddev, rdev);
2997 }
2998 if (rdev->raid_disk >= 0)
2999 err = -EBUSY;
3000 else {
3001 err = 0;
3002 if (mddev_is_clustered(mddev))
3003 err = md_cluster_ops->remove_disk(mddev, rdev);
3004
3005 if (err == 0) {
3006 md_kick_rdev_from_array(rdev);
3007 if (mddev->pers) {
3008 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3009 md_wakeup_thread(mddev->thread);
3010 }
3011 md_new_event();
3012 }
3013 }
3014 } else if (cmd_match(buf, "writemostly")) {
3015 set_bit(WriteMostly, &rdev->flags);
3016 mddev_create_serial_pool(rdev->mddev, rdev, false);
3017 need_update_sb = true;
3018 err = 0;
3019 } else if (cmd_match(buf, "-writemostly")) {
3020 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3021 clear_bit(WriteMostly, &rdev->flags);
3022 need_update_sb = true;
3023 err = 0;
3024 } else if (cmd_match(buf, "blocked")) {
3025 set_bit(Blocked, &rdev->flags);
3026 err = 0;
3027 } else if (cmd_match(buf, "-blocked")) {
3028 if (!test_bit(Faulty, &rdev->flags) &&
3029 !test_bit(ExternalBbl, &rdev->flags) &&
3030 rdev->badblocks.unacked_exist) {
3031 /* metadata handler doesn't understand badblocks,
3032 * so we need to fail the device
3033 */
3034 md_error(rdev->mddev, rdev);
3035 }
3036 clear_bit(Blocked, &rdev->flags);
3037 clear_bit(BlockedBadBlocks, &rdev->flags);
3038 wake_up(&rdev->blocked_wait);
3039 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3040 md_wakeup_thread(rdev->mddev->thread);
3041
3042 err = 0;
3043 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3044 set_bit(In_sync, &rdev->flags);
3045 err = 0;
3046 } else if (cmd_match(buf, "failfast")) {
3047 set_bit(FailFast, &rdev->flags);
3048 need_update_sb = true;
3049 err = 0;
3050 } else if (cmd_match(buf, "-failfast")) {
3051 clear_bit(FailFast, &rdev->flags);
3052 need_update_sb = true;
3053 err = 0;
3054 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3055 !test_bit(Journal, &rdev->flags)) {
3056 if (rdev->mddev->pers == NULL) {
3057 clear_bit(In_sync, &rdev->flags);
3058 rdev->saved_raid_disk = rdev->raid_disk;
3059 rdev->raid_disk = -1;
3060 err = 0;
3061 }
3062 } else if (cmd_match(buf, "write_error")) {
3063 set_bit(WriteErrorSeen, &rdev->flags);
3064 err = 0;
3065 } else if (cmd_match(buf, "-write_error")) {
3066 clear_bit(WriteErrorSeen, &rdev->flags);
3067 err = 0;
3068 } else if (cmd_match(buf, "want_replacement")) {
3069 /* Any non-spare device that is not a replacement can
3070 * become want_replacement at any time, but we then need to
3071 * check if recovery is needed.
3072 */
3073 if (rdev->raid_disk >= 0 &&
3074 !test_bit(Journal, &rdev->flags) &&
3075 !test_bit(Replacement, &rdev->flags))
3076 set_bit(WantReplacement, &rdev->flags);
3077 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3078 md_wakeup_thread(rdev->mddev->thread);
3079 err = 0;
3080 } else if (cmd_match(buf, "-want_replacement")) {
3081 /* Clearing 'want_replacement' is always allowed.
3082 * Once replacements starts it is too late though.
3083 */
3084 err = 0;
3085 clear_bit(WantReplacement, &rdev->flags);
3086 } else if (cmd_match(buf, "replacement")) {
3087 /* Can only set a device as a replacement when array has not
3088 * yet been started. Once running, replacement is automatic
3089 * from spares, or by assigning 'slot'.
3090 */
3091 if (rdev->mddev->pers)
3092 err = -EBUSY;
3093 else {
3094 set_bit(Replacement, &rdev->flags);
3095 err = 0;
3096 }
3097 } else if (cmd_match(buf, "-replacement")) {
3098 /* Similarly, can only clear Replacement before start */
3099 if (rdev->mddev->pers)
3100 err = -EBUSY;
3101 else {
3102 clear_bit(Replacement, &rdev->flags);
3103 err = 0;
3104 }
3105 } else if (cmd_match(buf, "re-add")) {
3106 if (!rdev->mddev->pers)
3107 err = -EINVAL;
3108 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3109 rdev->saved_raid_disk >= 0) {
3110 /* clear_bit is performed _after_ all the devices
3111 * have their local Faulty bit cleared. If any writes
3112 * happen in the meantime in the local node, they
3113 * will land in the local bitmap, which will be synced
3114 * by this node eventually
3115 */
3116 if (!mddev_is_clustered(rdev->mddev) ||
3117 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3118 clear_bit(Faulty, &rdev->flags);
3119 err = add_bound_rdev(rdev);
3120 }
3121 } else
3122 err = -EBUSY;
3123 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3124 set_bit(ExternalBbl, &rdev->flags);
3125 rdev->badblocks.shift = 0;
3126 err = 0;
3127 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3128 clear_bit(ExternalBbl, &rdev->flags);
3129 err = 0;
3130 }
3131 if (need_update_sb)
3132 md_update_sb(mddev, 1);
3133 if (!err)
3134 sysfs_notify_dirent_safe(rdev->sysfs_state);
3135 return err ? err : len;
3136}
3137static struct rdev_sysfs_entry rdev_state =
3138__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3139
3140static ssize_t
3141errors_show(struct md_rdev *rdev, char *page)
3142{
3143 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3144}
3145
3146static ssize_t
3147errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3148{
3149 unsigned int n;
3150 int rv;
3151
3152 rv = kstrtouint(buf, 10, &n);
3153 if (rv < 0)
3154 return rv;
3155 atomic_set(&rdev->corrected_errors, n);
3156 return len;
3157}
3158static struct rdev_sysfs_entry rdev_errors =
3159__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3160
3161static ssize_t
3162slot_show(struct md_rdev *rdev, char *page)
3163{
3164 if (test_bit(Journal, &rdev->flags))
3165 return sprintf(page, "journal\n");
3166 else if (rdev->raid_disk < 0)
3167 return sprintf(page, "none\n");
3168 else
3169 return sprintf(page, "%d\n", rdev->raid_disk);
3170}
3171
3172static ssize_t
3173slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3174{
3175 int slot;
3176 int err;
3177
3178 if (test_bit(Journal, &rdev->flags))
3179 return -EBUSY;
3180 if (strncmp(buf, "none", 4)==0)
3181 slot = -1;
3182 else {
3183 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3184 if (err < 0)
3185 return err;
3186 }
3187 if (rdev->mddev->pers && slot == -1) {
3188 /* Setting 'slot' on an active array requires also
3189 * updating the 'rd%d' link, and communicating
3190 * with the personality with ->hot_*_disk.
3191 * For now we only support removing
3192 * failed/spare devices. This normally happens automatically,
3193 * but not when the metadata is externally managed.
3194 */
3195 if (rdev->raid_disk == -1)
3196 return -EEXIST;
3197 /* personality does all needed checks */
3198 if (rdev->mddev->pers->hot_remove_disk == NULL)
3199 return -EINVAL;
3200 clear_bit(Blocked, &rdev->flags);
3201 remove_and_add_spares(rdev->mddev, rdev);
3202 if (rdev->raid_disk >= 0)
3203 return -EBUSY;
3204 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3205 md_wakeup_thread(rdev->mddev->thread);
3206 } else if (rdev->mddev->pers) {
3207 /* Activating a spare .. or possibly reactivating
3208 * if we ever get bitmaps working here.
3209 */
3210 int err;
3211
3212 if (rdev->raid_disk != -1)
3213 return -EBUSY;
3214
3215 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3216 return -EBUSY;
3217
3218 if (rdev->mddev->pers->hot_add_disk == NULL)
3219 return -EINVAL;
3220
3221 if (slot >= rdev->mddev->raid_disks &&
3222 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3223 return -ENOSPC;
3224
3225 rdev->raid_disk = slot;
3226 if (test_bit(In_sync, &rdev->flags))
3227 rdev->saved_raid_disk = slot;
3228 else
3229 rdev->saved_raid_disk = -1;
3230 clear_bit(In_sync, &rdev->flags);
3231 clear_bit(Bitmap_sync, &rdev->flags);
3232 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3233 if (err) {
3234 rdev->raid_disk = -1;
3235 return err;
3236 } else
3237 sysfs_notify_dirent_safe(rdev->sysfs_state);
3238 /* failure here is OK */;
3239 sysfs_link_rdev(rdev->mddev, rdev);
3240 /* don't wakeup anyone, leave that to userspace. */
3241 } else {
3242 if (slot >= rdev->mddev->raid_disks &&
3243 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3244 return -ENOSPC;
3245 rdev->raid_disk = slot;
3246 /* assume it is working */
3247 clear_bit(Faulty, &rdev->flags);
3248 clear_bit(WriteMostly, &rdev->flags);
3249 set_bit(In_sync, &rdev->flags);
3250 sysfs_notify_dirent_safe(rdev->sysfs_state);
3251 }
3252 return len;
3253}
3254
3255static struct rdev_sysfs_entry rdev_slot =
3256__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3257
3258static ssize_t
3259offset_show(struct md_rdev *rdev, char *page)
3260{
3261 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3262}
3263
3264static ssize_t
3265offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3266{
3267 unsigned long long offset;
3268 if (kstrtoull(buf, 10, &offset) < 0)
3269 return -EINVAL;
3270 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3271 return -EBUSY;
3272 if (rdev->sectors && rdev->mddev->external)
3273 /* Must set offset before size, so overlap checks
3274 * can be sane */
3275 return -EBUSY;
3276 rdev->data_offset = offset;
3277 rdev->new_data_offset = offset;
3278 return len;
3279}
3280
3281static struct rdev_sysfs_entry rdev_offset =
3282__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3283
3284static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3285{
3286 return sprintf(page, "%llu\n",
3287 (unsigned long long)rdev->new_data_offset);
3288}
3289
3290static ssize_t new_offset_store(struct md_rdev *rdev,
3291 const char *buf, size_t len)
3292{
3293 unsigned long long new_offset;
3294 struct mddev *mddev = rdev->mddev;
3295
3296 if (kstrtoull(buf, 10, &new_offset) < 0)
3297 return -EINVAL;
3298
3299 if (mddev->sync_thread ||
3300 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3301 return -EBUSY;
3302 if (new_offset == rdev->data_offset)
3303 /* reset is always permitted */
3304 ;
3305 else if (new_offset > rdev->data_offset) {
3306 /* must not push array size beyond rdev_sectors */
3307 if (new_offset - rdev->data_offset
3308 + mddev->dev_sectors > rdev->sectors)
3309 return -E2BIG;
3310 }
3311 /* Metadata worries about other space details. */
3312
3313 /* decreasing the offset is inconsistent with a backwards
3314 * reshape.
3315 */
3316 if (new_offset < rdev->data_offset &&
3317 mddev->reshape_backwards)
3318 return -EINVAL;
3319 /* Increasing offset is inconsistent with forwards
3320 * reshape. reshape_direction should be set to
3321 * 'backwards' first.
3322 */
3323 if (new_offset > rdev->data_offset &&
3324 !mddev->reshape_backwards)
3325 return -EINVAL;
3326
3327 if (mddev->pers && mddev->persistent &&
3328 !super_types[mddev->major_version]
3329 .allow_new_offset(rdev, new_offset))
3330 return -E2BIG;
3331 rdev->new_data_offset = new_offset;
3332 if (new_offset > rdev->data_offset)
3333 mddev->reshape_backwards = 1;
3334 else if (new_offset < rdev->data_offset)
3335 mddev->reshape_backwards = 0;
3336
3337 return len;
3338}
3339static struct rdev_sysfs_entry rdev_new_offset =
3340__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3341
3342static ssize_t
3343rdev_size_show(struct md_rdev *rdev, char *page)
3344{
3345 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3346}
3347
3348static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3349{
3350 /* check if two start/length pairs overlap */
3351 if (s1+l1 <= s2)
3352 return 0;
3353 if (s2+l2 <= s1)
3354 return 0;
3355 return 1;
3356}
3357
3358static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3359{
3360 unsigned long long blocks;
3361 sector_t new;
3362
3363 if (kstrtoull(buf, 10, &blocks) < 0)
3364 return -EINVAL;
3365
3366 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3367 return -EINVAL; /* sector conversion overflow */
3368
3369 new = blocks * 2;
3370 if (new != blocks * 2)
3371 return -EINVAL; /* unsigned long long to sector_t overflow */
3372
3373 *sectors = new;
3374 return 0;
3375}
3376
3377static ssize_t
3378rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3379{
3380 struct mddev *my_mddev = rdev->mddev;
3381 sector_t oldsectors = rdev->sectors;
3382 sector_t sectors;
3383
3384 if (test_bit(Journal, &rdev->flags))
3385 return -EBUSY;
3386 if (strict_blocks_to_sectors(buf, §ors) < 0)
3387 return -EINVAL;
3388 if (rdev->data_offset != rdev->new_data_offset)
3389 return -EINVAL; /* too confusing */
3390 if (my_mddev->pers && rdev->raid_disk >= 0) {
3391 if (my_mddev->persistent) {
3392 sectors = super_types[my_mddev->major_version].
3393 rdev_size_change(rdev, sectors);
3394 if (!sectors)
3395 return -EBUSY;
3396 } else if (!sectors)
3397 sectors = bdev_nr_sectors(rdev->bdev) -
3398 rdev->data_offset;
3399 if (!my_mddev->pers->resize)
3400 /* Cannot change size for RAID0 or Linear etc */
3401 return -EINVAL;
3402 }
3403 if (sectors < my_mddev->dev_sectors)
3404 return -EINVAL; /* component must fit device */
3405
3406 rdev->sectors = sectors;
3407 if (sectors > oldsectors && my_mddev->external) {
3408 /* Need to check that all other rdevs with the same
3409 * ->bdev do not overlap. 'rcu' is sufficient to walk
3410 * the rdev lists safely.
3411 * This check does not provide a hard guarantee, it
3412 * just helps avoid dangerous mistakes.
3413 */
3414 struct mddev *mddev;
3415 int overlap = 0;
3416 struct list_head *tmp;
3417
3418 rcu_read_lock();
3419 for_each_mddev(mddev, tmp) {
3420 struct md_rdev *rdev2;
3421
3422 rdev_for_each(rdev2, mddev)
3423 if (rdev->bdev == rdev2->bdev &&
3424 rdev != rdev2 &&
3425 overlaps(rdev->data_offset, rdev->sectors,
3426 rdev2->data_offset,
3427 rdev2->sectors)) {
3428 overlap = 1;
3429 break;
3430 }
3431 if (overlap) {
3432 mddev_put(mddev);
3433 break;
3434 }
3435 }
3436 rcu_read_unlock();
3437 if (overlap) {
3438 /* Someone else could have slipped in a size
3439 * change here, but doing so is just silly.
3440 * We put oldsectors back because we *know* it is
3441 * safe, and trust userspace not to race with
3442 * itself
3443 */
3444 rdev->sectors = oldsectors;
3445 return -EBUSY;
3446 }
3447 }
3448 return len;
3449}
3450
3451static struct rdev_sysfs_entry rdev_size =
3452__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3453
3454static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3455{
3456 unsigned long long recovery_start = rdev->recovery_offset;
3457
3458 if (test_bit(In_sync, &rdev->flags) ||
3459 recovery_start == MaxSector)
3460 return sprintf(page, "none\n");
3461
3462 return sprintf(page, "%llu\n", recovery_start);
3463}
3464
3465static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3466{
3467 unsigned long long recovery_start;
3468
3469 if (cmd_match(buf, "none"))
3470 recovery_start = MaxSector;
3471 else if (kstrtoull(buf, 10, &recovery_start))
3472 return -EINVAL;
3473
3474 if (rdev->mddev->pers &&
3475 rdev->raid_disk >= 0)
3476 return -EBUSY;
3477
3478 rdev->recovery_offset = recovery_start;
3479 if (recovery_start == MaxSector)
3480 set_bit(In_sync, &rdev->flags);
3481 else
3482 clear_bit(In_sync, &rdev->flags);
3483 return len;
3484}
3485
3486static struct rdev_sysfs_entry rdev_recovery_start =
3487__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3488
3489/* sysfs access to bad-blocks list.
3490 * We present two files.
3491 * 'bad-blocks' lists sector numbers and lengths of ranges that
3492 * are recorded as bad. The list is truncated to fit within
3493 * the one-page limit of sysfs.
3494 * Writing "sector length" to this file adds an acknowledged
3495 * bad block list.
3496 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3497 * been acknowledged. Writing to this file adds bad blocks
3498 * without acknowledging them. This is largely for testing.
3499 */
3500static ssize_t bb_show(struct md_rdev *rdev, char *page)
3501{
3502 return badblocks_show(&rdev->badblocks, page, 0);
3503}
3504static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3505{
3506 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3507 /* Maybe that ack was all we needed */
3508 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3509 wake_up(&rdev->blocked_wait);
3510 return rv;
3511}
3512static struct rdev_sysfs_entry rdev_bad_blocks =
3513__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3514
3515static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3516{
3517 return badblocks_show(&rdev->badblocks, page, 1);
3518}
3519static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3520{
3521 return badblocks_store(&rdev->badblocks, page, len, 1);
3522}
3523static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3524__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3525
3526static ssize_t
3527ppl_sector_show(struct md_rdev *rdev, char *page)
3528{
3529 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3530}
3531
3532static ssize_t
3533ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3534{
3535 unsigned long long sector;
3536
3537 if (kstrtoull(buf, 10, §or) < 0)
3538 return -EINVAL;
3539 if (sector != (sector_t)sector)
3540 return -EINVAL;
3541
3542 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3543 rdev->raid_disk >= 0)
3544 return -EBUSY;
3545
3546 if (rdev->mddev->persistent) {
3547 if (rdev->mddev->major_version == 0)
3548 return -EINVAL;
3549 if ((sector > rdev->sb_start &&
3550 sector - rdev->sb_start > S16_MAX) ||
3551 (sector < rdev->sb_start &&
3552 rdev->sb_start - sector > -S16_MIN))
3553 return -EINVAL;
3554 rdev->ppl.offset = sector - rdev->sb_start;
3555 } else if (!rdev->mddev->external) {
3556 return -EBUSY;
3557 }
3558 rdev->ppl.sector = sector;
3559 return len;
3560}
3561
3562static struct rdev_sysfs_entry rdev_ppl_sector =
3563__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3564
3565static ssize_t
3566ppl_size_show(struct md_rdev *rdev, char *page)
3567{
3568 return sprintf(page, "%u\n", rdev->ppl.size);
3569}
3570
3571static ssize_t
3572ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3573{
3574 unsigned int size;
3575
3576 if (kstrtouint(buf, 10, &size) < 0)
3577 return -EINVAL;
3578
3579 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3580 rdev->raid_disk >= 0)
3581 return -EBUSY;
3582
3583 if (rdev->mddev->persistent) {
3584 if (rdev->mddev->major_version == 0)
3585 return -EINVAL;
3586 if (size > U16_MAX)
3587 return -EINVAL;
3588 } else if (!rdev->mddev->external) {
3589 return -EBUSY;
3590 }
3591 rdev->ppl.size = size;
3592 return len;
3593}
3594
3595static struct rdev_sysfs_entry rdev_ppl_size =
3596__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3597
3598static struct attribute *rdev_default_attrs[] = {
3599 &rdev_state.attr,
3600 &rdev_errors.attr,
3601 &rdev_slot.attr,
3602 &rdev_offset.attr,
3603 &rdev_new_offset.attr,
3604 &rdev_size.attr,
3605 &rdev_recovery_start.attr,
3606 &rdev_bad_blocks.attr,
3607 &rdev_unack_bad_blocks.attr,
3608 &rdev_ppl_sector.attr,
3609 &rdev_ppl_size.attr,
3610 NULL,
3611};
3612ATTRIBUTE_GROUPS(rdev_default);
3613static ssize_t
3614rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3615{
3616 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3617 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3618
3619 if (!entry->show)
3620 return -EIO;
3621 if (!rdev->mddev)
3622 return -ENODEV;
3623 return entry->show(rdev, page);
3624}
3625
3626static ssize_t
3627rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3628 const char *page, size_t length)
3629{
3630 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3631 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3632 ssize_t rv;
3633 struct mddev *mddev = rdev->mddev;
3634
3635 if (!entry->store)
3636 return -EIO;
3637 if (!capable(CAP_SYS_ADMIN))
3638 return -EACCES;
3639 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3640 if (!rv) {
3641 if (rdev->mddev == NULL)
3642 rv = -ENODEV;
3643 else
3644 rv = entry->store(rdev, page, length);
3645 mddev_unlock(mddev);
3646 }
3647 return rv;
3648}
3649
3650static void rdev_free(struct kobject *ko)
3651{
3652 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3653 kfree(rdev);
3654}
3655static const struct sysfs_ops rdev_sysfs_ops = {
3656 .show = rdev_attr_show,
3657 .store = rdev_attr_store,
3658};
3659static struct kobj_type rdev_ktype = {
3660 .release = rdev_free,
3661 .sysfs_ops = &rdev_sysfs_ops,
3662 .default_groups = rdev_default_groups,
3663};
3664
3665int md_rdev_init(struct md_rdev *rdev)
3666{
3667 rdev->desc_nr = -1;
3668 rdev->saved_raid_disk = -1;
3669 rdev->raid_disk = -1;
3670 rdev->flags = 0;
3671 rdev->data_offset = 0;
3672 rdev->new_data_offset = 0;
3673 rdev->sb_events = 0;
3674 rdev->last_read_error = 0;
3675 rdev->sb_loaded = 0;
3676 rdev->bb_page = NULL;
3677 atomic_set(&rdev->nr_pending, 0);
3678 atomic_set(&rdev->read_errors, 0);
3679 atomic_set(&rdev->corrected_errors, 0);
3680
3681 INIT_LIST_HEAD(&rdev->same_set);
3682 init_waitqueue_head(&rdev->blocked_wait);
3683
3684 /* Add space to store bad block list.
3685 * This reserves the space even on arrays where it cannot
3686 * be used - I wonder if that matters
3687 */
3688 return badblocks_init(&rdev->badblocks, 0);
3689}
3690EXPORT_SYMBOL_GPL(md_rdev_init);
3691/*
3692 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3693 *
3694 * mark the device faulty if:
3695 *
3696 * - the device is nonexistent (zero size)
3697 * - the device has no valid superblock
3698 *
3699 * a faulty rdev _never_ has rdev->sb set.
3700 */
3701static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3702{
3703 char b[BDEVNAME_SIZE];
3704 int err;
3705 struct md_rdev *rdev;
3706 sector_t size;
3707
3708 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3709 if (!rdev)
3710 return ERR_PTR(-ENOMEM);
3711
3712 err = md_rdev_init(rdev);
3713 if (err)
3714 goto abort_free;
3715 err = alloc_disk_sb(rdev);
3716 if (err)
3717 goto abort_free;
3718
3719 err = lock_rdev(rdev, newdev, super_format == -2);
3720 if (err)
3721 goto abort_free;
3722
3723 kobject_init(&rdev->kobj, &rdev_ktype);
3724
3725 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3726 if (!size) {
3727 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3728 bdevname(rdev->bdev,b));
3729 err = -EINVAL;
3730 goto abort_free;
3731 }
3732
3733 if (super_format >= 0) {
3734 err = super_types[super_format].
3735 load_super(rdev, NULL, super_minor);
3736 if (err == -EINVAL) {
3737 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3738 bdevname(rdev->bdev,b),
3739 super_format, super_minor);
3740 goto abort_free;
3741 }
3742 if (err < 0) {
3743 pr_warn("md: could not read %s's sb, not importing!\n",
3744 bdevname(rdev->bdev,b));
3745 goto abort_free;
3746 }
3747 }
3748
3749 return rdev;
3750
3751abort_free:
3752 if (rdev->bdev)
3753 unlock_rdev(rdev);
3754 md_rdev_clear(rdev);
3755 kfree(rdev);
3756 return ERR_PTR(err);
3757}
3758
3759/*
3760 * Check a full RAID array for plausibility
3761 */
3762
3763static int analyze_sbs(struct mddev *mddev)
3764{
3765 int i;
3766 struct md_rdev *rdev, *freshest, *tmp;
3767 char b[BDEVNAME_SIZE];
3768
3769 freshest = NULL;
3770 rdev_for_each_safe(rdev, tmp, mddev)
3771 switch (super_types[mddev->major_version].
3772 load_super(rdev, freshest, mddev->minor_version)) {
3773 case 1:
3774 freshest = rdev;
3775 break;
3776 case 0:
3777 break;
3778 default:
3779 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3780 bdevname(rdev->bdev,b));
3781 md_kick_rdev_from_array(rdev);
3782 }
3783
3784 /* Cannot find a valid fresh disk */
3785 if (!freshest) {
3786 pr_warn("md: cannot find a valid disk\n");
3787 return -EINVAL;
3788 }
3789
3790 super_types[mddev->major_version].
3791 validate_super(mddev, freshest);
3792
3793 i = 0;
3794 rdev_for_each_safe(rdev, tmp, mddev) {
3795 if (mddev->max_disks &&
3796 (rdev->desc_nr >= mddev->max_disks ||
3797 i > mddev->max_disks)) {
3798 pr_warn("md: %s: %s: only %d devices permitted\n",
3799 mdname(mddev), bdevname(rdev->bdev, b),
3800 mddev->max_disks);
3801 md_kick_rdev_from_array(rdev);
3802 continue;
3803 }
3804 if (rdev != freshest) {
3805 if (super_types[mddev->major_version].
3806 validate_super(mddev, rdev)) {
3807 pr_warn("md: kicking non-fresh %s from array!\n",
3808 bdevname(rdev->bdev,b));
3809 md_kick_rdev_from_array(rdev);
3810 continue;
3811 }
3812 }
3813 if (mddev->level == LEVEL_MULTIPATH) {
3814 rdev->desc_nr = i++;
3815 rdev->raid_disk = rdev->desc_nr;
3816 set_bit(In_sync, &rdev->flags);
3817 } else if (rdev->raid_disk >=
3818 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3819 !test_bit(Journal, &rdev->flags)) {
3820 rdev->raid_disk = -1;
3821 clear_bit(In_sync, &rdev->flags);
3822 }
3823 }
3824
3825 return 0;
3826}
3827
3828/* Read a fixed-point number.
3829 * Numbers in sysfs attributes should be in "standard" units where
3830 * possible, so time should be in seconds.
3831 * However we internally use a a much smaller unit such as
3832 * milliseconds or jiffies.
3833 * This function takes a decimal number with a possible fractional
3834 * component, and produces an integer which is the result of
3835 * multiplying that number by 10^'scale'.
3836 * all without any floating-point arithmetic.
3837 */
3838int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3839{
3840 unsigned long result = 0;
3841 long decimals = -1;
3842 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3843 if (*cp == '.')
3844 decimals = 0;
3845 else if (decimals < scale) {
3846 unsigned int value;
3847 value = *cp - '0';
3848 result = result * 10 + value;
3849 if (decimals >= 0)
3850 decimals++;
3851 }
3852 cp++;
3853 }
3854 if (*cp == '\n')
3855 cp++;
3856 if (*cp)
3857 return -EINVAL;
3858 if (decimals < 0)
3859 decimals = 0;
3860 *res = result * int_pow(10, scale - decimals);
3861 return 0;
3862}
3863
3864static ssize_t
3865safe_delay_show(struct mddev *mddev, char *page)
3866{
3867 int msec = (mddev->safemode_delay*1000)/HZ;
3868 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3869}
3870static ssize_t
3871safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3872{
3873 unsigned long msec;
3874
3875 if (mddev_is_clustered(mddev)) {
3876 pr_warn("md: Safemode is disabled for clustered mode\n");
3877 return -EINVAL;
3878 }
3879
3880 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3881 return -EINVAL;
3882 if (msec == 0)
3883 mddev->safemode_delay = 0;
3884 else {
3885 unsigned long old_delay = mddev->safemode_delay;
3886 unsigned long new_delay = (msec*HZ)/1000;
3887
3888 if (new_delay == 0)
3889 new_delay = 1;
3890 mddev->safemode_delay = new_delay;
3891 if (new_delay < old_delay || old_delay == 0)
3892 mod_timer(&mddev->safemode_timer, jiffies+1);
3893 }
3894 return len;
3895}
3896static struct md_sysfs_entry md_safe_delay =
3897__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3898
3899static ssize_t
3900level_show(struct mddev *mddev, char *page)
3901{
3902 struct md_personality *p;
3903 int ret;
3904 spin_lock(&mddev->lock);
3905 p = mddev->pers;
3906 if (p)
3907 ret = sprintf(page, "%s\n", p->name);
3908 else if (mddev->clevel[0])
3909 ret = sprintf(page, "%s\n", mddev->clevel);
3910 else if (mddev->level != LEVEL_NONE)
3911 ret = sprintf(page, "%d\n", mddev->level);
3912 else
3913 ret = 0;
3914 spin_unlock(&mddev->lock);
3915 return ret;
3916}
3917
3918static ssize_t
3919level_store(struct mddev *mddev, const char *buf, size_t len)
3920{
3921 char clevel[16];
3922 ssize_t rv;
3923 size_t slen = len;
3924 struct md_personality *pers, *oldpers;
3925 long level;
3926 void *priv, *oldpriv;
3927 struct md_rdev *rdev;
3928
3929 if (slen == 0 || slen >= sizeof(clevel))
3930 return -EINVAL;
3931
3932 rv = mddev_lock(mddev);
3933 if (rv)
3934 return rv;
3935
3936 if (mddev->pers == NULL) {
3937 strncpy(mddev->clevel, buf, slen);
3938 if (mddev->clevel[slen-1] == '\n')
3939 slen--;
3940 mddev->clevel[slen] = 0;
3941 mddev->level = LEVEL_NONE;
3942 rv = len;
3943 goto out_unlock;
3944 }
3945 rv = -EROFS;
3946 if (mddev->ro)
3947 goto out_unlock;
3948
3949 /* request to change the personality. Need to ensure:
3950 * - array is not engaged in resync/recovery/reshape
3951 * - old personality can be suspended
3952 * - new personality will access other array.
3953 */
3954
3955 rv = -EBUSY;
3956 if (mddev->sync_thread ||
3957 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3958 mddev->reshape_position != MaxSector ||
3959 mddev->sysfs_active)
3960 goto out_unlock;
3961
3962 rv = -EINVAL;
3963 if (!mddev->pers->quiesce) {
3964 pr_warn("md: %s: %s does not support online personality change\n",
3965 mdname(mddev), mddev->pers->name);
3966 goto out_unlock;
3967 }
3968
3969 /* Now find the new personality */
3970 strncpy(clevel, buf, slen);
3971 if (clevel[slen-1] == '\n')
3972 slen--;
3973 clevel[slen] = 0;
3974 if (kstrtol(clevel, 10, &level))
3975 level = LEVEL_NONE;
3976
3977 if (request_module("md-%s", clevel) != 0)
3978 request_module("md-level-%s", clevel);
3979 spin_lock(&pers_lock);
3980 pers = find_pers(level, clevel);
3981 if (!pers || !try_module_get(pers->owner)) {
3982 spin_unlock(&pers_lock);
3983 pr_warn("md: personality %s not loaded\n", clevel);
3984 rv = -EINVAL;
3985 goto out_unlock;
3986 }
3987 spin_unlock(&pers_lock);
3988
3989 if (pers == mddev->pers) {
3990 /* Nothing to do! */
3991 module_put(pers->owner);
3992 rv = len;
3993 goto out_unlock;
3994 }
3995 if (!pers->takeover) {
3996 module_put(pers->owner);
3997 pr_warn("md: %s: %s does not support personality takeover\n",
3998 mdname(mddev), clevel);
3999 rv = -EINVAL;
4000 goto out_unlock;
4001 }
4002
4003 rdev_for_each(rdev, mddev)
4004 rdev->new_raid_disk = rdev->raid_disk;
4005
4006 /* ->takeover must set new_* and/or delta_disks
4007 * if it succeeds, and may set them when it fails.
4008 */
4009 priv = pers->takeover(mddev);
4010 if (IS_ERR(priv)) {
4011 mddev->new_level = mddev->level;
4012 mddev->new_layout = mddev->layout;
4013 mddev->new_chunk_sectors = mddev->chunk_sectors;
4014 mddev->raid_disks -= mddev->delta_disks;
4015 mddev->delta_disks = 0;
4016 mddev->reshape_backwards = 0;
4017 module_put(pers->owner);
4018 pr_warn("md: %s: %s would not accept array\n",
4019 mdname(mddev), clevel);
4020 rv = PTR_ERR(priv);
4021 goto out_unlock;
4022 }
4023
4024 /* Looks like we have a winner */
4025 mddev_suspend(mddev);
4026 mddev_detach(mddev);
4027
4028 spin_lock(&mddev->lock);
4029 oldpers = mddev->pers;
4030 oldpriv = mddev->private;
4031 mddev->pers = pers;
4032 mddev->private = priv;
4033 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4034 mddev->level = mddev->new_level;
4035 mddev->layout = mddev->new_layout;
4036 mddev->chunk_sectors = mddev->new_chunk_sectors;
4037 mddev->delta_disks = 0;
4038 mddev->reshape_backwards = 0;
4039 mddev->degraded = 0;
4040 spin_unlock(&mddev->lock);
4041
4042 if (oldpers->sync_request == NULL &&
4043 mddev->external) {
4044 /* We are converting from a no-redundancy array
4045 * to a redundancy array and metadata is managed
4046 * externally so we need to be sure that writes
4047 * won't block due to a need to transition
4048 * clean->dirty
4049 * until external management is started.
4050 */
4051 mddev->in_sync = 0;
4052 mddev->safemode_delay = 0;
4053 mddev->safemode = 0;
4054 }
4055
4056 oldpers->free(mddev, oldpriv);
4057
4058 if (oldpers->sync_request == NULL &&
4059 pers->sync_request != NULL) {
4060 /* need to add the md_redundancy_group */
4061 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4062 pr_warn("md: cannot register extra attributes for %s\n",
4063 mdname(mddev));
4064 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4065 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4066 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4067 }
4068 if (oldpers->sync_request != NULL &&
4069 pers->sync_request == NULL) {
4070 /* need to remove the md_redundancy_group */
4071 if (mddev->to_remove == NULL)
4072 mddev->to_remove = &md_redundancy_group;
4073 }
4074
4075 module_put(oldpers->owner);
4076
4077 rdev_for_each(rdev, mddev) {
4078 if (rdev->raid_disk < 0)
4079 continue;
4080 if (rdev->new_raid_disk >= mddev->raid_disks)
4081 rdev->new_raid_disk = -1;
4082 if (rdev->new_raid_disk == rdev->raid_disk)
4083 continue;
4084 sysfs_unlink_rdev(mddev, rdev);
4085 }
4086 rdev_for_each(rdev, mddev) {
4087 if (rdev->raid_disk < 0)
4088 continue;
4089 if (rdev->new_raid_disk == rdev->raid_disk)
4090 continue;
4091 rdev->raid_disk = rdev->new_raid_disk;
4092 if (rdev->raid_disk < 0)
4093 clear_bit(In_sync, &rdev->flags);
4094 else {
4095 if (sysfs_link_rdev(mddev, rdev))
4096 pr_warn("md: cannot register rd%d for %s after level change\n",
4097 rdev->raid_disk, mdname(mddev));
4098 }
4099 }
4100
4101 if (pers->sync_request == NULL) {
4102 /* this is now an array without redundancy, so
4103 * it must always be in_sync
4104 */
4105 mddev->in_sync = 1;
4106 del_timer_sync(&mddev->safemode_timer);
4107 }
4108 blk_set_stacking_limits(&mddev->queue->limits);
4109 pers->run(mddev);
4110 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4111 mddev_resume(mddev);
4112 if (!mddev->thread)
4113 md_update_sb(mddev, 1);
4114 sysfs_notify_dirent_safe(mddev->sysfs_level);
4115 md_new_event();
4116 rv = len;
4117out_unlock:
4118 mddev_unlock(mddev);
4119 return rv;
4120}
4121
4122static struct md_sysfs_entry md_level =
4123__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4124
4125static ssize_t
4126layout_show(struct mddev *mddev, char *page)
4127{
4128 /* just a number, not meaningful for all levels */
4129 if (mddev->reshape_position != MaxSector &&
4130 mddev->layout != mddev->new_layout)
4131 return sprintf(page, "%d (%d)\n",
4132 mddev->new_layout, mddev->layout);
4133 return sprintf(page, "%d\n", mddev->layout);
4134}
4135
4136static ssize_t
4137layout_store(struct mddev *mddev, const char *buf, size_t len)
4138{
4139 unsigned int n;
4140 int err;
4141
4142 err = kstrtouint(buf, 10, &n);
4143 if (err < 0)
4144 return err;
4145 err = mddev_lock(mddev);
4146 if (err)
4147 return err;
4148
4149 if (mddev->pers) {
4150 if (mddev->pers->check_reshape == NULL)
4151 err = -EBUSY;
4152 else if (mddev->ro)
4153 err = -EROFS;
4154 else {
4155 mddev->new_layout = n;
4156 err = mddev->pers->check_reshape(mddev);
4157 if (err)
4158 mddev->new_layout = mddev->layout;
4159 }
4160 } else {
4161 mddev->new_layout = n;
4162 if (mddev->reshape_position == MaxSector)
4163 mddev->layout = n;
4164 }
4165 mddev_unlock(mddev);
4166 return err ?: len;
4167}
4168static struct md_sysfs_entry md_layout =
4169__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4170
4171static ssize_t
4172raid_disks_show(struct mddev *mddev, char *page)
4173{
4174 if (mddev->raid_disks == 0)
4175 return 0;
4176 if (mddev->reshape_position != MaxSector &&
4177 mddev->delta_disks != 0)
4178 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4179 mddev->raid_disks - mddev->delta_disks);
4180 return sprintf(page, "%d\n", mddev->raid_disks);
4181}
4182
4183static int update_raid_disks(struct mddev *mddev, int raid_disks);
4184
4185static ssize_t
4186raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4187{
4188 unsigned int n;
4189 int err;
4190
4191 err = kstrtouint(buf, 10, &n);
4192 if (err < 0)
4193 return err;
4194
4195 err = mddev_lock(mddev);
4196 if (err)
4197 return err;
4198 if (mddev->pers)
4199 err = update_raid_disks(mddev, n);
4200 else if (mddev->reshape_position != MaxSector) {
4201 struct md_rdev *rdev;
4202 int olddisks = mddev->raid_disks - mddev->delta_disks;
4203
4204 err = -EINVAL;
4205 rdev_for_each(rdev, mddev) {
4206 if (olddisks < n &&
4207 rdev->data_offset < rdev->new_data_offset)
4208 goto out_unlock;
4209 if (olddisks > n &&
4210 rdev->data_offset > rdev->new_data_offset)
4211 goto out_unlock;
4212 }
4213 err = 0;
4214 mddev->delta_disks = n - olddisks;
4215 mddev->raid_disks = n;
4216 mddev->reshape_backwards = (mddev->delta_disks < 0);
4217 } else
4218 mddev->raid_disks = n;
4219out_unlock:
4220 mddev_unlock(mddev);
4221 return err ? err : len;
4222}
4223static struct md_sysfs_entry md_raid_disks =
4224__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4225
4226static ssize_t
4227uuid_show(struct mddev *mddev, char *page)
4228{
4229 return sprintf(page, "%pU\n", mddev->uuid);
4230}
4231static struct md_sysfs_entry md_uuid =
4232__ATTR(uuid, S_IRUGO, uuid_show, NULL);
4233
4234static ssize_t
4235chunk_size_show(struct mddev *mddev, char *page)
4236{
4237 if (mddev->reshape_position != MaxSector &&
4238 mddev->chunk_sectors != mddev->new_chunk_sectors)
4239 return sprintf(page, "%d (%d)\n",
4240 mddev->new_chunk_sectors << 9,
4241 mddev->chunk_sectors << 9);
4242 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4243}
4244
4245static ssize_t
4246chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4247{
4248 unsigned long n;
4249 int err;
4250
4251 err = kstrtoul(buf, 10, &n);
4252 if (err < 0)
4253 return err;
4254
4255 err = mddev_lock(mddev);
4256 if (err)
4257 return err;
4258 if (mddev->pers) {
4259 if (mddev->pers->check_reshape == NULL)
4260 err = -EBUSY;
4261 else if (mddev->ro)
4262 err = -EROFS;
4263 else {
4264 mddev->new_chunk_sectors = n >> 9;
4265 err = mddev->pers->check_reshape(mddev);
4266 if (err)
4267 mddev->new_chunk_sectors = mddev->chunk_sectors;
4268 }
4269 } else {
4270 mddev->new_chunk_sectors = n >> 9;
4271 if (mddev->reshape_position == MaxSector)
4272 mddev->chunk_sectors = n >> 9;
4273 }
4274 mddev_unlock(mddev);
4275 return err ?: len;
4276}
4277static struct md_sysfs_entry md_chunk_size =
4278__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4279
4280static ssize_t
4281resync_start_show(struct mddev *mddev, char *page)
4282{
4283 if (mddev->recovery_cp == MaxSector)
4284 return sprintf(page, "none\n");
4285 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4286}
4287
4288static ssize_t
4289resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4290{
4291 unsigned long long n;
4292 int err;
4293
4294 if (cmd_match(buf, "none"))
4295 n = MaxSector;
4296 else {
4297 err = kstrtoull(buf, 10, &n);
4298 if (err < 0)
4299 return err;
4300 if (n != (sector_t)n)
4301 return -EINVAL;
4302 }
4303
4304 err = mddev_lock(mddev);
4305 if (err)
4306 return err;
4307 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4308 err = -EBUSY;
4309
4310 if (!err) {
4311 mddev->recovery_cp = n;
4312 if (mddev->pers)
4313 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4314 }
4315 mddev_unlock(mddev);
4316 return err ?: len;
4317}
4318static struct md_sysfs_entry md_resync_start =
4319__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4320 resync_start_show, resync_start_store);
4321
4322/*
4323 * The array state can be:
4324 *
4325 * clear
4326 * No devices, no size, no level
4327 * Equivalent to STOP_ARRAY ioctl
4328 * inactive
4329 * May have some settings, but array is not active
4330 * all IO results in error
4331 * When written, doesn't tear down array, but just stops it
4332 * suspended (not supported yet)
4333 * All IO requests will block. The array can be reconfigured.
4334 * Writing this, if accepted, will block until array is quiescent
4335 * readonly
4336 * no resync can happen. no superblocks get written.
4337 * write requests fail
4338 * read-auto
4339 * like readonly, but behaves like 'clean' on a write request.
4340 *
4341 * clean - no pending writes, but otherwise active.
4342 * When written to inactive array, starts without resync
4343 * If a write request arrives then
4344 * if metadata is known, mark 'dirty' and switch to 'active'.
4345 * if not known, block and switch to write-pending
4346 * If written to an active array that has pending writes, then fails.
4347 * active
4348 * fully active: IO and resync can be happening.
4349 * When written to inactive array, starts with resync
4350 *
4351 * write-pending
4352 * clean, but writes are blocked waiting for 'active' to be written.
4353 *
4354 * active-idle
4355 * like active, but no writes have been seen for a while (100msec).
4356 *
4357 * broken
4358 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4359 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4360 * when a member is gone, so this state will at least alert the
4361 * user that something is wrong.
4362 */
4363enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4364 write_pending, active_idle, broken, bad_word};
4365static char *array_states[] = {
4366 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4367 "write-pending", "active-idle", "broken", NULL };
4368
4369static int match_word(const char *word, char **list)
4370{
4371 int n;
4372 for (n=0; list[n]; n++)
4373 if (cmd_match(word, list[n]))
4374 break;
4375 return n;
4376}
4377
4378static ssize_t
4379array_state_show(struct mddev *mddev, char *page)
4380{
4381 enum array_state st = inactive;
4382
4383 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4384 switch(mddev->ro) {
4385 case 1:
4386 st = readonly;
4387 break;
4388 case 2:
4389 st = read_auto;
4390 break;
4391 case 0:
4392 spin_lock(&mddev->lock);
4393 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4394 st = write_pending;
4395 else if (mddev->in_sync)
4396 st = clean;
4397 else if (mddev->safemode)
4398 st = active_idle;
4399 else
4400 st = active;
4401 spin_unlock(&mddev->lock);
4402 }
4403
4404 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4405 st = broken;
4406 } else {
4407 if (list_empty(&mddev->disks) &&
4408 mddev->raid_disks == 0 &&
4409 mddev->dev_sectors == 0)
4410 st = clear;
4411 else
4412 st = inactive;
4413 }
4414 return sprintf(page, "%s\n", array_states[st]);
4415}
4416
4417static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4418static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4419static int restart_array(struct mddev *mddev);
4420
4421static ssize_t
4422array_state_store(struct mddev *mddev, const char *buf, size_t len)
4423{
4424 int err = 0;
4425 enum array_state st = match_word(buf, array_states);
4426
4427 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4428 /* don't take reconfig_mutex when toggling between
4429 * clean and active
4430 */
4431 spin_lock(&mddev->lock);
4432 if (st == active) {
4433 restart_array(mddev);
4434 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4435 md_wakeup_thread(mddev->thread);
4436 wake_up(&mddev->sb_wait);
4437 } else /* st == clean */ {
4438 restart_array(mddev);
4439 if (!set_in_sync(mddev))
4440 err = -EBUSY;
4441 }
4442 if (!err)
4443 sysfs_notify_dirent_safe(mddev->sysfs_state);
4444 spin_unlock(&mddev->lock);
4445 return err ?: len;
4446 }
4447 err = mddev_lock(mddev);
4448 if (err)
4449 return err;
4450 err = -EINVAL;
4451 switch(st) {
4452 case bad_word:
4453 break;
4454 case clear:
4455 /* stopping an active array */
4456 err = do_md_stop(mddev, 0, NULL);
4457 break;
4458 case inactive:
4459 /* stopping an active array */
4460 if (mddev->pers)
4461 err = do_md_stop(mddev, 2, NULL);
4462 else
4463 err = 0; /* already inactive */
4464 break;
4465 case suspended:
4466 break; /* not supported yet */
4467 case readonly:
4468 if (mddev->pers)
4469 err = md_set_readonly(mddev, NULL);
4470 else {
4471 mddev->ro = 1;
4472 set_disk_ro(mddev->gendisk, 1);
4473 err = do_md_run(mddev);
4474 }
4475 break;
4476 case read_auto:
4477 if (mddev->pers) {
4478 if (mddev->ro == 0)
4479 err = md_set_readonly(mddev, NULL);
4480 else if (mddev->ro == 1)
4481 err = restart_array(mddev);
4482 if (err == 0) {
4483 mddev->ro = 2;
4484 set_disk_ro(mddev->gendisk, 0);
4485 }
4486 } else {
4487 mddev->ro = 2;
4488 err = do_md_run(mddev);
4489 }
4490 break;
4491 case clean:
4492 if (mddev->pers) {
4493 err = restart_array(mddev);
4494 if (err)
4495 break;
4496 spin_lock(&mddev->lock);
4497 if (!set_in_sync(mddev))
4498 err = -EBUSY;
4499 spin_unlock(&mddev->lock);
4500 } else
4501 err = -EINVAL;
4502 break;
4503 case active:
4504 if (mddev->pers) {
4505 err = restart_array(mddev);
4506 if (err)
4507 break;
4508 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4509 wake_up(&mddev->sb_wait);
4510 err = 0;
4511 } else {
4512 mddev->ro = 0;
4513 set_disk_ro(mddev->gendisk, 0);
4514 err = do_md_run(mddev);
4515 }
4516 break;
4517 case write_pending:
4518 case active_idle:
4519 case broken:
4520 /* these cannot be set */
4521 break;
4522 }
4523
4524 if (!err) {
4525 if (mddev->hold_active == UNTIL_IOCTL)
4526 mddev->hold_active = 0;
4527 sysfs_notify_dirent_safe(mddev->sysfs_state);
4528 }
4529 mddev_unlock(mddev);
4530 return err ?: len;
4531}
4532static struct md_sysfs_entry md_array_state =
4533__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4534
4535static ssize_t
4536max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4537 return sprintf(page, "%d\n",
4538 atomic_read(&mddev->max_corr_read_errors));
4539}
4540
4541static ssize_t
4542max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4543{
4544 unsigned int n;
4545 int rv;
4546
4547 rv = kstrtouint(buf, 10, &n);
4548 if (rv < 0)
4549 return rv;
4550 atomic_set(&mddev->max_corr_read_errors, n);
4551 return len;
4552}
4553
4554static struct md_sysfs_entry max_corr_read_errors =
4555__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4556 max_corrected_read_errors_store);
4557
4558static ssize_t
4559null_show(struct mddev *mddev, char *page)
4560{
4561 return -EINVAL;
4562}
4563
4564/* need to ensure rdev_delayed_delete() has completed */
4565static void flush_rdev_wq(struct mddev *mddev)
4566{
4567 struct md_rdev *rdev;
4568
4569 rcu_read_lock();
4570 rdev_for_each_rcu(rdev, mddev)
4571 if (work_pending(&rdev->del_work)) {
4572 flush_workqueue(md_rdev_misc_wq);
4573 break;
4574 }
4575 rcu_read_unlock();
4576}
4577
4578static ssize_t
4579new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4580{
4581 /* buf must be %d:%d\n? giving major and minor numbers */
4582 /* The new device is added to the array.
4583 * If the array has a persistent superblock, we read the
4584 * superblock to initialise info and check validity.
4585 * Otherwise, only checking done is that in bind_rdev_to_array,
4586 * which mainly checks size.
4587 */
4588 char *e;
4589 int major = simple_strtoul(buf, &e, 10);
4590 int minor;
4591 dev_t dev;
4592 struct md_rdev *rdev;
4593 int err;
4594
4595 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4596 return -EINVAL;
4597 minor = simple_strtoul(e+1, &e, 10);
4598 if (*e && *e != '\n')
4599 return -EINVAL;
4600 dev = MKDEV(major, minor);
4601 if (major != MAJOR(dev) ||
4602 minor != MINOR(dev))
4603 return -EOVERFLOW;
4604
4605 flush_rdev_wq(mddev);
4606 err = mddev_lock(mddev);
4607 if (err)
4608 return err;
4609 if (mddev->persistent) {
4610 rdev = md_import_device(dev, mddev->major_version,
4611 mddev->minor_version);
4612 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4613 struct md_rdev *rdev0
4614 = list_entry(mddev->disks.next,
4615 struct md_rdev, same_set);
4616 err = super_types[mddev->major_version]
4617 .load_super(rdev, rdev0, mddev->minor_version);
4618 if (err < 0)
4619 goto out;
4620 }
4621 } else if (mddev->external)
4622 rdev = md_import_device(dev, -2, -1);
4623 else
4624 rdev = md_import_device(dev, -1, -1);
4625
4626 if (IS_ERR(rdev)) {
4627 mddev_unlock(mddev);
4628 return PTR_ERR(rdev);
4629 }
4630 err = bind_rdev_to_array(rdev, mddev);
4631 out:
4632 if (err)
4633 export_rdev(rdev);
4634 mddev_unlock(mddev);
4635 if (!err)
4636 md_new_event();
4637 return err ? err : len;
4638}
4639
4640static struct md_sysfs_entry md_new_device =
4641__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4642
4643static ssize_t
4644bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4645{
4646 char *end;
4647 unsigned long chunk, end_chunk;
4648 int err;
4649
4650 err = mddev_lock(mddev);
4651 if (err)
4652 return err;
4653 if (!mddev->bitmap)
4654 goto out;
4655 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4656 while (*buf) {
4657 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4658 if (buf == end) break;
4659 if (*end == '-') { /* range */
4660 buf = end + 1;
4661 end_chunk = simple_strtoul(buf, &end, 0);
4662 if (buf == end) break;
4663 }
4664 if (*end && !isspace(*end)) break;
4665 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4666 buf = skip_spaces(end);
4667 }
4668 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4669out:
4670 mddev_unlock(mddev);
4671 return len;
4672}
4673
4674static struct md_sysfs_entry md_bitmap =
4675__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4676
4677static ssize_t
4678size_show(struct mddev *mddev, char *page)
4679{
4680 return sprintf(page, "%llu\n",
4681 (unsigned long long)mddev->dev_sectors / 2);
4682}
4683
4684static int update_size(struct mddev *mddev, sector_t num_sectors);
4685
4686static ssize_t
4687size_store(struct mddev *mddev, const char *buf, size_t len)
4688{
4689 /* If array is inactive, we can reduce the component size, but
4690 * not increase it (except from 0).
4691 * If array is active, we can try an on-line resize
4692 */
4693 sector_t sectors;
4694 int err = strict_blocks_to_sectors(buf, §ors);
4695
4696 if (err < 0)
4697 return err;
4698 err = mddev_lock(mddev);
4699 if (err)
4700 return err;
4701 if (mddev->pers) {
4702 err = update_size(mddev, sectors);
4703 if (err == 0)
4704 md_update_sb(mddev, 1);
4705 } else {
4706 if (mddev->dev_sectors == 0 ||
4707 mddev->dev_sectors > sectors)
4708 mddev->dev_sectors = sectors;
4709 else
4710 err = -ENOSPC;
4711 }
4712 mddev_unlock(mddev);
4713 return err ? err : len;
4714}
4715
4716static struct md_sysfs_entry md_size =
4717__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4718
4719/* Metadata version.
4720 * This is one of
4721 * 'none' for arrays with no metadata (good luck...)
4722 * 'external' for arrays with externally managed metadata,
4723 * or N.M for internally known formats
4724 */
4725static ssize_t
4726metadata_show(struct mddev *mddev, char *page)
4727{
4728 if (mddev->persistent)
4729 return sprintf(page, "%d.%d\n",
4730 mddev->major_version, mddev->minor_version);
4731 else if (mddev->external)
4732 return sprintf(page, "external:%s\n", mddev->metadata_type);
4733 else
4734 return sprintf(page, "none\n");
4735}
4736
4737static ssize_t
4738metadata_store(struct mddev *mddev, const char *buf, size_t len)
4739{
4740 int major, minor;
4741 char *e;
4742 int err;
4743 /* Changing the details of 'external' metadata is
4744 * always permitted. Otherwise there must be
4745 * no devices attached to the array.
4746 */
4747
4748 err = mddev_lock(mddev);
4749 if (err)
4750 return err;
4751 err = -EBUSY;
4752 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4753 ;
4754 else if (!list_empty(&mddev->disks))
4755 goto out_unlock;
4756
4757 err = 0;
4758 if (cmd_match(buf, "none")) {
4759 mddev->persistent = 0;
4760 mddev->external = 0;
4761 mddev->major_version = 0;
4762 mddev->minor_version = 90;
4763 goto out_unlock;
4764 }
4765 if (strncmp(buf, "external:", 9) == 0) {
4766 size_t namelen = len-9;
4767 if (namelen >= sizeof(mddev->metadata_type))
4768 namelen = sizeof(mddev->metadata_type)-1;
4769 strncpy(mddev->metadata_type, buf+9, namelen);
4770 mddev->metadata_type[namelen] = 0;
4771 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4772 mddev->metadata_type[--namelen] = 0;
4773 mddev->persistent = 0;
4774 mddev->external = 1;
4775 mddev->major_version = 0;
4776 mddev->minor_version = 90;
4777 goto out_unlock;
4778 }
4779 major = simple_strtoul(buf, &e, 10);
4780 err = -EINVAL;
4781 if (e==buf || *e != '.')
4782 goto out_unlock;
4783 buf = e+1;
4784 minor = simple_strtoul(buf, &e, 10);
4785 if (e==buf || (*e && *e != '\n') )
4786 goto out_unlock;
4787 err = -ENOENT;
4788 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4789 goto out_unlock;
4790 mddev->major_version = major;
4791 mddev->minor_version = minor;
4792 mddev->persistent = 1;
4793 mddev->external = 0;
4794 err = 0;
4795out_unlock:
4796 mddev_unlock(mddev);
4797 return err ?: len;
4798}
4799
4800static struct md_sysfs_entry md_metadata =
4801__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4802
4803static ssize_t
4804action_show(struct mddev *mddev, char *page)
4805{
4806 char *type = "idle";
4807 unsigned long recovery = mddev->recovery;
4808 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4809 type = "frozen";
4810 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4811 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4812 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4813 type = "reshape";
4814 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4815 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4816 type = "resync";
4817 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4818 type = "check";
4819 else
4820 type = "repair";
4821 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4822 type = "recover";
4823 else if (mddev->reshape_position != MaxSector)
4824 type = "reshape";
4825 }
4826 return sprintf(page, "%s\n", type);
4827}
4828
4829static ssize_t
4830action_store(struct mddev *mddev, const char *page, size_t len)
4831{
4832 if (!mddev->pers || !mddev->pers->sync_request)
4833 return -EINVAL;
4834
4835
4836 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4837 if (cmd_match(page, "frozen"))
4838 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4839 else
4840 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4841 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4842 mddev_lock(mddev) == 0) {
4843 if (work_pending(&mddev->del_work))
4844 flush_workqueue(md_misc_wq);
4845 if (mddev->sync_thread) {
4846 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4847 md_reap_sync_thread(mddev);
4848 }
4849 mddev_unlock(mddev);
4850 }
4851 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4852 return -EBUSY;
4853 else if (cmd_match(page, "resync"))
4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 else if (cmd_match(page, "recover")) {
4856 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4857 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4858 } else if (cmd_match(page, "reshape")) {
4859 int err;
4860 if (mddev->pers->start_reshape == NULL)
4861 return -EINVAL;
4862 err = mddev_lock(mddev);
4863 if (!err) {
4864 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4865 err = -EBUSY;
4866 else {
4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 err = mddev->pers->start_reshape(mddev);
4869 }
4870 mddev_unlock(mddev);
4871 }
4872 if (err)
4873 return err;
4874 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4875 } else {
4876 if (cmd_match(page, "check"))
4877 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4878 else if (!cmd_match(page, "repair"))
4879 return -EINVAL;
4880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4881 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4882 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4883 }
4884 if (mddev->ro == 2) {
4885 /* A write to sync_action is enough to justify
4886 * canceling read-auto mode
4887 */
4888 mddev->ro = 0;
4889 md_wakeup_thread(mddev->sync_thread);
4890 }
4891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4892 md_wakeup_thread(mddev->thread);
4893 sysfs_notify_dirent_safe(mddev->sysfs_action);
4894 return len;
4895}
4896
4897static struct md_sysfs_entry md_scan_mode =
4898__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4899
4900static ssize_t
4901last_sync_action_show(struct mddev *mddev, char *page)
4902{
4903 return sprintf(page, "%s\n", mddev->last_sync_action);
4904}
4905
4906static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4907
4908static ssize_t
4909mismatch_cnt_show(struct mddev *mddev, char *page)
4910{
4911 return sprintf(page, "%llu\n",
4912 (unsigned long long)
4913 atomic64_read(&mddev->resync_mismatches));
4914}
4915
4916static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4917
4918static ssize_t
4919sync_min_show(struct mddev *mddev, char *page)
4920{
4921 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4922 mddev->sync_speed_min ? "local": "system");
4923}
4924
4925static ssize_t
4926sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4927{
4928 unsigned int min;
4929 int rv;
4930
4931 if (strncmp(buf, "system", 6)==0) {
4932 min = 0;
4933 } else {
4934 rv = kstrtouint(buf, 10, &min);
4935 if (rv < 0)
4936 return rv;
4937 if (min == 0)
4938 return -EINVAL;
4939 }
4940 mddev->sync_speed_min = min;
4941 return len;
4942}
4943
4944static struct md_sysfs_entry md_sync_min =
4945__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4946
4947static ssize_t
4948sync_max_show(struct mddev *mddev, char *page)
4949{
4950 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4951 mddev->sync_speed_max ? "local": "system");
4952}
4953
4954static ssize_t
4955sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4956{
4957 unsigned int max;
4958 int rv;
4959
4960 if (strncmp(buf, "system", 6)==0) {
4961 max = 0;
4962 } else {
4963 rv = kstrtouint(buf, 10, &max);
4964 if (rv < 0)
4965 return rv;
4966 if (max == 0)
4967 return -EINVAL;
4968 }
4969 mddev->sync_speed_max = max;
4970 return len;
4971}
4972
4973static struct md_sysfs_entry md_sync_max =
4974__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4975
4976static ssize_t
4977degraded_show(struct mddev *mddev, char *page)
4978{
4979 return sprintf(page, "%d\n", mddev->degraded);
4980}
4981static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4982
4983static ssize_t
4984sync_force_parallel_show(struct mddev *mddev, char *page)
4985{
4986 return sprintf(page, "%d\n", mddev->parallel_resync);
4987}
4988
4989static ssize_t
4990sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4991{
4992 long n;
4993
4994 if (kstrtol(buf, 10, &n))
4995 return -EINVAL;
4996
4997 if (n != 0 && n != 1)
4998 return -EINVAL;
4999
5000 mddev->parallel_resync = n;
5001
5002 if (mddev->sync_thread)
5003 wake_up(&resync_wait);
5004
5005 return len;
5006}
5007
5008/* force parallel resync, even with shared block devices */
5009static struct md_sysfs_entry md_sync_force_parallel =
5010__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5011 sync_force_parallel_show, sync_force_parallel_store);
5012
5013static ssize_t
5014sync_speed_show(struct mddev *mddev, char *page)
5015{
5016 unsigned long resync, dt, db;
5017 if (mddev->curr_resync == 0)
5018 return sprintf(page, "none\n");
5019 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5020 dt = (jiffies - mddev->resync_mark) / HZ;
5021 if (!dt) dt++;
5022 db = resync - mddev->resync_mark_cnt;
5023 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5024}
5025
5026static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5027
5028static ssize_t
5029sync_completed_show(struct mddev *mddev, char *page)
5030{
5031 unsigned long long max_sectors, resync;
5032
5033 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5034 return sprintf(page, "none\n");
5035
5036 if (mddev->curr_resync == 1 ||
5037 mddev->curr_resync == 2)
5038 return sprintf(page, "delayed\n");
5039
5040 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5041 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5042 max_sectors = mddev->resync_max_sectors;
5043 else
5044 max_sectors = mddev->dev_sectors;
5045
5046 resync = mddev->curr_resync_completed;
5047 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5048}
5049
5050static struct md_sysfs_entry md_sync_completed =
5051 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5052
5053static ssize_t
5054min_sync_show(struct mddev *mddev, char *page)
5055{
5056 return sprintf(page, "%llu\n",
5057 (unsigned long long)mddev->resync_min);
5058}
5059static ssize_t
5060min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5061{
5062 unsigned long long min;
5063 int err;
5064
5065 if (kstrtoull(buf, 10, &min))
5066 return -EINVAL;
5067
5068 spin_lock(&mddev->lock);
5069 err = -EINVAL;
5070 if (min > mddev->resync_max)
5071 goto out_unlock;
5072
5073 err = -EBUSY;
5074 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5075 goto out_unlock;
5076
5077 /* Round down to multiple of 4K for safety */
5078 mddev->resync_min = round_down(min, 8);
5079 err = 0;
5080
5081out_unlock:
5082 spin_unlock(&mddev->lock);
5083 return err ?: len;
5084}
5085
5086static struct md_sysfs_entry md_min_sync =
5087__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5088
5089static ssize_t
5090max_sync_show(struct mddev *mddev, char *page)
5091{
5092 if (mddev->resync_max == MaxSector)
5093 return sprintf(page, "max\n");
5094 else
5095 return sprintf(page, "%llu\n",
5096 (unsigned long long)mddev->resync_max);
5097}
5098static ssize_t
5099max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5100{
5101 int err;
5102 spin_lock(&mddev->lock);
5103 if (strncmp(buf, "max", 3) == 0)
5104 mddev->resync_max = MaxSector;
5105 else {
5106 unsigned long long max;
5107 int chunk;
5108
5109 err = -EINVAL;
5110 if (kstrtoull(buf, 10, &max))
5111 goto out_unlock;
5112 if (max < mddev->resync_min)
5113 goto out_unlock;
5114
5115 err = -EBUSY;
5116 if (max < mddev->resync_max &&
5117 mddev->ro == 0 &&
5118 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5119 goto out_unlock;
5120
5121 /* Must be a multiple of chunk_size */
5122 chunk = mddev->chunk_sectors;
5123 if (chunk) {
5124 sector_t temp = max;
5125
5126 err = -EINVAL;
5127 if (sector_div(temp, chunk))
5128 goto out_unlock;
5129 }
5130 mddev->resync_max = max;
5131 }
5132 wake_up(&mddev->recovery_wait);
5133 err = 0;
5134out_unlock:
5135 spin_unlock(&mddev->lock);
5136 return err ?: len;
5137}
5138
5139static struct md_sysfs_entry md_max_sync =
5140__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5141
5142static ssize_t
5143suspend_lo_show(struct mddev *mddev, char *page)
5144{
5145 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5146}
5147
5148static ssize_t
5149suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5150{
5151 unsigned long long new;
5152 int err;
5153
5154 err = kstrtoull(buf, 10, &new);
5155 if (err < 0)
5156 return err;
5157 if (new != (sector_t)new)
5158 return -EINVAL;
5159
5160 err = mddev_lock(mddev);
5161 if (err)
5162 return err;
5163 err = -EINVAL;
5164 if (mddev->pers == NULL ||
5165 mddev->pers->quiesce == NULL)
5166 goto unlock;
5167 mddev_suspend(mddev);
5168 mddev->suspend_lo = new;
5169 mddev_resume(mddev);
5170
5171 err = 0;
5172unlock:
5173 mddev_unlock(mddev);
5174 return err ?: len;
5175}
5176static struct md_sysfs_entry md_suspend_lo =
5177__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5178
5179static ssize_t
5180suspend_hi_show(struct mddev *mddev, char *page)
5181{
5182 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5183}
5184
5185static ssize_t
5186suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5187{
5188 unsigned long long new;
5189 int err;
5190
5191 err = kstrtoull(buf, 10, &new);
5192 if (err < 0)
5193 return err;
5194 if (new != (sector_t)new)
5195 return -EINVAL;
5196
5197 err = mddev_lock(mddev);
5198 if (err)
5199 return err;
5200 err = -EINVAL;
5201 if (mddev->pers == NULL)
5202 goto unlock;
5203
5204 mddev_suspend(mddev);
5205 mddev->suspend_hi = new;
5206 mddev_resume(mddev);
5207
5208 err = 0;
5209unlock:
5210 mddev_unlock(mddev);
5211 return err ?: len;
5212}
5213static struct md_sysfs_entry md_suspend_hi =
5214__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5215
5216static ssize_t
5217reshape_position_show(struct mddev *mddev, char *page)
5218{
5219 if (mddev->reshape_position != MaxSector)
5220 return sprintf(page, "%llu\n",
5221 (unsigned long long)mddev->reshape_position);
5222 strcpy(page, "none\n");
5223 return 5;
5224}
5225
5226static ssize_t
5227reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5228{
5229 struct md_rdev *rdev;
5230 unsigned long long new;
5231 int err;
5232
5233 err = kstrtoull(buf, 10, &new);
5234 if (err < 0)
5235 return err;
5236 if (new != (sector_t)new)
5237 return -EINVAL;
5238 err = mddev_lock(mddev);
5239 if (err)
5240 return err;
5241 err = -EBUSY;
5242 if (mddev->pers)
5243 goto unlock;
5244 mddev->reshape_position = new;
5245 mddev->delta_disks = 0;
5246 mddev->reshape_backwards = 0;
5247 mddev->new_level = mddev->level;
5248 mddev->new_layout = mddev->layout;
5249 mddev->new_chunk_sectors = mddev->chunk_sectors;
5250 rdev_for_each(rdev, mddev)
5251 rdev->new_data_offset = rdev->data_offset;
5252 err = 0;
5253unlock:
5254 mddev_unlock(mddev);
5255 return err ?: len;
5256}
5257
5258static struct md_sysfs_entry md_reshape_position =
5259__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5260 reshape_position_store);
5261
5262static ssize_t
5263reshape_direction_show(struct mddev *mddev, char *page)
5264{
5265 return sprintf(page, "%s\n",
5266 mddev->reshape_backwards ? "backwards" : "forwards");
5267}
5268
5269static ssize_t
5270reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5271{
5272 int backwards = 0;
5273 int err;
5274
5275 if (cmd_match(buf, "forwards"))
5276 backwards = 0;
5277 else if (cmd_match(buf, "backwards"))
5278 backwards = 1;
5279 else
5280 return -EINVAL;
5281 if (mddev->reshape_backwards == backwards)
5282 return len;
5283
5284 err = mddev_lock(mddev);
5285 if (err)
5286 return err;
5287 /* check if we are allowed to change */
5288 if (mddev->delta_disks)
5289 err = -EBUSY;
5290 else if (mddev->persistent &&
5291 mddev->major_version == 0)
5292 err = -EINVAL;
5293 else
5294 mddev->reshape_backwards = backwards;
5295 mddev_unlock(mddev);
5296 return err ?: len;
5297}
5298
5299static struct md_sysfs_entry md_reshape_direction =
5300__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5301 reshape_direction_store);
5302
5303static ssize_t
5304array_size_show(struct mddev *mddev, char *page)
5305{
5306 if (mddev->external_size)
5307 return sprintf(page, "%llu\n",
5308 (unsigned long long)mddev->array_sectors/2);
5309 else
5310 return sprintf(page, "default\n");
5311}
5312
5313static ssize_t
5314array_size_store(struct mddev *mddev, const char *buf, size_t len)
5315{
5316 sector_t sectors;
5317 int err;
5318
5319 err = mddev_lock(mddev);
5320 if (err)
5321 return err;
5322
5323 /* cluster raid doesn't support change array_sectors */
5324 if (mddev_is_clustered(mddev)) {
5325 mddev_unlock(mddev);
5326 return -EINVAL;
5327 }
5328
5329 if (strncmp(buf, "default", 7) == 0) {
5330 if (mddev->pers)
5331 sectors = mddev->pers->size(mddev, 0, 0);
5332 else
5333 sectors = mddev->array_sectors;
5334
5335 mddev->external_size = 0;
5336 } else {
5337 if (strict_blocks_to_sectors(buf, §ors) < 0)
5338 err = -EINVAL;
5339 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5340 err = -E2BIG;
5341 else
5342 mddev->external_size = 1;
5343 }
5344
5345 if (!err) {
5346 mddev->array_sectors = sectors;
5347 if (mddev->pers)
5348 set_capacity_and_notify(mddev->gendisk,
5349 mddev->array_sectors);
5350 }
5351 mddev_unlock(mddev);
5352 return err ?: len;
5353}
5354
5355static struct md_sysfs_entry md_array_size =
5356__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5357 array_size_store);
5358
5359static ssize_t
5360consistency_policy_show(struct mddev *mddev, char *page)
5361{
5362 int ret;
5363
5364 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5365 ret = sprintf(page, "journal\n");
5366 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5367 ret = sprintf(page, "ppl\n");
5368 } else if (mddev->bitmap) {
5369 ret = sprintf(page, "bitmap\n");
5370 } else if (mddev->pers) {
5371 if (mddev->pers->sync_request)
5372 ret = sprintf(page, "resync\n");
5373 else
5374 ret = sprintf(page, "none\n");
5375 } else {
5376 ret = sprintf(page, "unknown\n");
5377 }
5378
5379 return ret;
5380}
5381
5382static ssize_t
5383consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5384{
5385 int err = 0;
5386
5387 if (mddev->pers) {
5388 if (mddev->pers->change_consistency_policy)
5389 err = mddev->pers->change_consistency_policy(mddev, buf);
5390 else
5391 err = -EBUSY;
5392 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5393 set_bit(MD_HAS_PPL, &mddev->flags);
5394 } else {
5395 err = -EINVAL;
5396 }
5397
5398 return err ? err : len;
5399}
5400
5401static struct md_sysfs_entry md_consistency_policy =
5402__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5403 consistency_policy_store);
5404
5405static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5406{
5407 return sprintf(page, "%d\n", mddev->fail_last_dev);
5408}
5409
5410/*
5411 * Setting fail_last_dev to true to allow last device to be forcibly removed
5412 * from RAID1/RAID10.
5413 */
5414static ssize_t
5415fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5416{
5417 int ret;
5418 bool value;
5419
5420 ret = kstrtobool(buf, &value);
5421 if (ret)
5422 return ret;
5423
5424 if (value != mddev->fail_last_dev)
5425 mddev->fail_last_dev = value;
5426
5427 return len;
5428}
5429static struct md_sysfs_entry md_fail_last_dev =
5430__ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5431 fail_last_dev_store);
5432
5433static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5434{
5435 if (mddev->pers == NULL || (mddev->pers->level != 1))
5436 return sprintf(page, "n/a\n");
5437 else
5438 return sprintf(page, "%d\n", mddev->serialize_policy);
5439}
5440
5441/*
5442 * Setting serialize_policy to true to enforce write IO is not reordered
5443 * for raid1.
5444 */
5445static ssize_t
5446serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5447{
5448 int err;
5449 bool value;
5450
5451 err = kstrtobool(buf, &value);
5452 if (err)
5453 return err;
5454
5455 if (value == mddev->serialize_policy)
5456 return len;
5457
5458 err = mddev_lock(mddev);
5459 if (err)
5460 return err;
5461 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5462 pr_err("md: serialize_policy is only effective for raid1\n");
5463 err = -EINVAL;
5464 goto unlock;
5465 }
5466
5467 mddev_suspend(mddev);
5468 if (value)
5469 mddev_create_serial_pool(mddev, NULL, true);
5470 else
5471 mddev_destroy_serial_pool(mddev, NULL, true);
5472 mddev->serialize_policy = value;
5473 mddev_resume(mddev);
5474unlock:
5475 mddev_unlock(mddev);
5476 return err ?: len;
5477}
5478
5479static struct md_sysfs_entry md_serialize_policy =
5480__ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5481 serialize_policy_store);
5482
5483
5484static struct attribute *md_default_attrs[] = {
5485 &md_level.attr,
5486 &md_layout.attr,
5487 &md_raid_disks.attr,
5488 &md_uuid.attr,
5489 &md_chunk_size.attr,
5490 &md_size.attr,
5491 &md_resync_start.attr,
5492 &md_metadata.attr,
5493 &md_new_device.attr,
5494 &md_safe_delay.attr,
5495 &md_array_state.attr,
5496 &md_reshape_position.attr,
5497 &md_reshape_direction.attr,
5498 &md_array_size.attr,
5499 &max_corr_read_errors.attr,
5500 &md_consistency_policy.attr,
5501 &md_fail_last_dev.attr,
5502 &md_serialize_policy.attr,
5503 NULL,
5504};
5505
5506static const struct attribute_group md_default_group = {
5507 .attrs = md_default_attrs,
5508};
5509
5510static struct attribute *md_redundancy_attrs[] = {
5511 &md_scan_mode.attr,
5512 &md_last_scan_mode.attr,
5513 &md_mismatches.attr,
5514 &md_sync_min.attr,
5515 &md_sync_max.attr,
5516 &md_sync_speed.attr,
5517 &md_sync_force_parallel.attr,
5518 &md_sync_completed.attr,
5519 &md_min_sync.attr,
5520 &md_max_sync.attr,
5521 &md_suspend_lo.attr,
5522 &md_suspend_hi.attr,
5523 &md_bitmap.attr,
5524 &md_degraded.attr,
5525 NULL,
5526};
5527static const struct attribute_group md_redundancy_group = {
5528 .name = NULL,
5529 .attrs = md_redundancy_attrs,
5530};
5531
5532static const struct attribute_group *md_attr_groups[] = {
5533 &md_default_group,
5534 &md_bitmap_group,
5535 NULL,
5536};
5537
5538static ssize_t
5539md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5540{
5541 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5542 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5543 ssize_t rv;
5544
5545 if (!entry->show)
5546 return -EIO;
5547 spin_lock(&all_mddevs_lock);
5548 if (list_empty(&mddev->all_mddevs)) {
5549 spin_unlock(&all_mddevs_lock);
5550 return -EBUSY;
5551 }
5552 mddev_get(mddev);
5553 spin_unlock(&all_mddevs_lock);
5554
5555 rv = entry->show(mddev, page);
5556 mddev_put(mddev);
5557 return rv;
5558}
5559
5560static ssize_t
5561md_attr_store(struct kobject *kobj, struct attribute *attr,
5562 const char *page, size_t length)
5563{
5564 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5565 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5566 ssize_t rv;
5567
5568 if (!entry->store)
5569 return -EIO;
5570 if (!capable(CAP_SYS_ADMIN))
5571 return -EACCES;
5572 spin_lock(&all_mddevs_lock);
5573 if (list_empty(&mddev->all_mddevs)) {
5574 spin_unlock(&all_mddevs_lock);
5575 return -EBUSY;
5576 }
5577 mddev_get(mddev);
5578 spin_unlock(&all_mddevs_lock);
5579 rv = entry->store(mddev, page, length);
5580 mddev_put(mddev);
5581 return rv;
5582}
5583
5584static void md_free(struct kobject *ko)
5585{
5586 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5587
5588 if (mddev->sysfs_state)
5589 sysfs_put(mddev->sysfs_state);
5590 if (mddev->sysfs_level)
5591 sysfs_put(mddev->sysfs_level);
5592
5593 if (mddev->gendisk) {
5594 del_gendisk(mddev->gendisk);
5595 blk_cleanup_disk(mddev->gendisk);
5596 }
5597 percpu_ref_exit(&mddev->writes_pending);
5598
5599 bioset_exit(&mddev->bio_set);
5600 bioset_exit(&mddev->sync_set);
5601 if (mddev->level != 1 && mddev->level != 10)
5602 bioset_exit(&mddev->io_acct_set);
5603 kfree(mddev);
5604}
5605
5606static const struct sysfs_ops md_sysfs_ops = {
5607 .show = md_attr_show,
5608 .store = md_attr_store,
5609};
5610static struct kobj_type md_ktype = {
5611 .release = md_free,
5612 .sysfs_ops = &md_sysfs_ops,
5613 .default_groups = md_attr_groups,
5614};
5615
5616int mdp_major = 0;
5617
5618static void mddev_delayed_delete(struct work_struct *ws)
5619{
5620 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5621
5622 kobject_del(&mddev->kobj);
5623 kobject_put(&mddev->kobj);
5624}
5625
5626static void no_op(struct percpu_ref *r) {}
5627
5628int mddev_init_writes_pending(struct mddev *mddev)
5629{
5630 if (mddev->writes_pending.percpu_count_ptr)
5631 return 0;
5632 if (percpu_ref_init(&mddev->writes_pending, no_op,
5633 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5634 return -ENOMEM;
5635 /* We want to start with the refcount at zero */
5636 percpu_ref_put(&mddev->writes_pending);
5637 return 0;
5638}
5639EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5640
5641static int md_alloc(dev_t dev, char *name)
5642{
5643 /*
5644 * If dev is zero, name is the name of a device to allocate with
5645 * an arbitrary minor number. It will be "md_???"
5646 * If dev is non-zero it must be a device number with a MAJOR of
5647 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5648 * the device is being created by opening a node in /dev.
5649 * If "name" is not NULL, the device is being created by
5650 * writing to /sys/module/md_mod/parameters/new_array.
5651 */
5652 static DEFINE_MUTEX(disks_mutex);
5653 struct mddev *mddev;
5654 struct gendisk *disk;
5655 int partitioned;
5656 int shift;
5657 int unit;
5658 int error ;
5659
5660 /*
5661 * Wait for any previous instance of this device to be completely
5662 * removed (mddev_delayed_delete).
5663 */
5664 flush_workqueue(md_misc_wq);
5665
5666 mutex_lock(&disks_mutex);
5667 mddev = mddev_alloc(dev);
5668 if (IS_ERR(mddev)) {
5669 mutex_unlock(&disks_mutex);
5670 return PTR_ERR(mddev);
5671 }
5672
5673 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5674 shift = partitioned ? MdpMinorShift : 0;
5675 unit = MINOR(mddev->unit) >> shift;
5676
5677 if (name && !dev) {
5678 /* Need to ensure that 'name' is not a duplicate.
5679 */
5680 struct mddev *mddev2;
5681 spin_lock(&all_mddevs_lock);
5682
5683 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5684 if (mddev2->gendisk &&
5685 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5686 spin_unlock(&all_mddevs_lock);
5687 error = -EEXIST;
5688 goto out_unlock_disks_mutex;
5689 }
5690 spin_unlock(&all_mddevs_lock);
5691 }
5692 if (name && dev)
5693 /*
5694 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5695 */
5696 mddev->hold_active = UNTIL_STOP;
5697
5698 error = -ENOMEM;
5699 disk = blk_alloc_disk(NUMA_NO_NODE);
5700 if (!disk)
5701 goto out_unlock_disks_mutex;
5702
5703 disk->major = MAJOR(mddev->unit);
5704 disk->first_minor = unit << shift;
5705 disk->minors = 1 << shift;
5706 if (name)
5707 strcpy(disk->disk_name, name);
5708 else if (partitioned)
5709 sprintf(disk->disk_name, "md_d%d", unit);
5710 else
5711 sprintf(disk->disk_name, "md%d", unit);
5712 disk->fops = &md_fops;
5713 disk->private_data = mddev;
5714
5715 mddev->queue = disk->queue;
5716 blk_set_stacking_limits(&mddev->queue->limits);
5717 blk_queue_write_cache(mddev->queue, true, true);
5718 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5719 mddev->gendisk = disk;
5720 error = add_disk(disk);
5721 if (error)
5722 goto out_cleanup_disk;
5723
5724 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5725 if (error)
5726 goto out_del_gendisk;
5727
5728 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5729 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5730 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5731 goto out_unlock_disks_mutex;
5732
5733out_del_gendisk:
5734 del_gendisk(disk);
5735out_cleanup_disk:
5736 blk_cleanup_disk(disk);
5737out_unlock_disks_mutex:
5738 mutex_unlock(&disks_mutex);
5739 mddev_put(mddev);
5740 return error;
5741}
5742
5743static void md_probe(dev_t dev)
5744{
5745 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5746 return;
5747 if (create_on_open)
5748 md_alloc(dev, NULL);
5749}
5750
5751static int add_named_array(const char *val, const struct kernel_param *kp)
5752{
5753 /*
5754 * val must be "md_*" or "mdNNN".
5755 * For "md_*" we allocate an array with a large free minor number, and
5756 * set the name to val. val must not already be an active name.
5757 * For "mdNNN" we allocate an array with the minor number NNN
5758 * which must not already be in use.
5759 */
5760 int len = strlen(val);
5761 char buf[DISK_NAME_LEN];
5762 unsigned long devnum;
5763
5764 while (len && val[len-1] == '\n')
5765 len--;
5766 if (len >= DISK_NAME_LEN)
5767 return -E2BIG;
5768 strlcpy(buf, val, len+1);
5769 if (strncmp(buf, "md_", 3) == 0)
5770 return md_alloc(0, buf);
5771 if (strncmp(buf, "md", 2) == 0 &&
5772 isdigit(buf[2]) &&
5773 kstrtoul(buf+2, 10, &devnum) == 0 &&
5774 devnum <= MINORMASK)
5775 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5776
5777 return -EINVAL;
5778}
5779
5780static void md_safemode_timeout(struct timer_list *t)
5781{
5782 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5783
5784 mddev->safemode = 1;
5785 if (mddev->external)
5786 sysfs_notify_dirent_safe(mddev->sysfs_state);
5787
5788 md_wakeup_thread(mddev->thread);
5789}
5790
5791static int start_dirty_degraded;
5792
5793int md_run(struct mddev *mddev)
5794{
5795 int err;
5796 struct md_rdev *rdev;
5797 struct md_personality *pers;
5798 bool nowait = true;
5799
5800 if (list_empty(&mddev->disks))
5801 /* cannot run an array with no devices.. */
5802 return -EINVAL;
5803
5804 if (mddev->pers)
5805 return -EBUSY;
5806 /* Cannot run until previous stop completes properly */
5807 if (mddev->sysfs_active)
5808 return -EBUSY;
5809
5810 /*
5811 * Analyze all RAID superblock(s)
5812 */
5813 if (!mddev->raid_disks) {
5814 if (!mddev->persistent)
5815 return -EINVAL;
5816 err = analyze_sbs(mddev);
5817 if (err)
5818 return -EINVAL;
5819 }
5820
5821 if (mddev->level != LEVEL_NONE)
5822 request_module("md-level-%d", mddev->level);
5823 else if (mddev->clevel[0])
5824 request_module("md-%s", mddev->clevel);
5825
5826 /*
5827 * Drop all container device buffers, from now on
5828 * the only valid external interface is through the md
5829 * device.
5830 */
5831 mddev->has_superblocks = false;
5832 rdev_for_each(rdev, mddev) {
5833 if (test_bit(Faulty, &rdev->flags))
5834 continue;
5835 sync_blockdev(rdev->bdev);
5836 invalidate_bdev(rdev->bdev);
5837 if (mddev->ro != 1 && rdev_read_only(rdev)) {
5838 mddev->ro = 1;
5839 if (mddev->gendisk)
5840 set_disk_ro(mddev->gendisk, 1);
5841 }
5842
5843 if (rdev->sb_page)
5844 mddev->has_superblocks = true;
5845
5846 /* perform some consistency tests on the device.
5847 * We don't want the data to overlap the metadata,
5848 * Internal Bitmap issues have been handled elsewhere.
5849 */
5850 if (rdev->meta_bdev) {
5851 /* Nothing to check */;
5852 } else if (rdev->data_offset < rdev->sb_start) {
5853 if (mddev->dev_sectors &&
5854 rdev->data_offset + mddev->dev_sectors
5855 > rdev->sb_start) {
5856 pr_warn("md: %s: data overlaps metadata\n",
5857 mdname(mddev));
5858 return -EINVAL;
5859 }
5860 } else {
5861 if (rdev->sb_start + rdev->sb_size/512
5862 > rdev->data_offset) {
5863 pr_warn("md: %s: metadata overlaps data\n",
5864 mdname(mddev));
5865 return -EINVAL;
5866 }
5867 }
5868 sysfs_notify_dirent_safe(rdev->sysfs_state);
5869 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev));
5870 }
5871
5872 if (!bioset_initialized(&mddev->bio_set)) {
5873 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5874 if (err)
5875 return err;
5876 }
5877 if (!bioset_initialized(&mddev->sync_set)) {
5878 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5879 if (err)
5880 goto exit_bio_set;
5881 }
5882
5883 spin_lock(&pers_lock);
5884 pers = find_pers(mddev->level, mddev->clevel);
5885 if (!pers || !try_module_get(pers->owner)) {
5886 spin_unlock(&pers_lock);
5887 if (mddev->level != LEVEL_NONE)
5888 pr_warn("md: personality for level %d is not loaded!\n",
5889 mddev->level);
5890 else
5891 pr_warn("md: personality for level %s is not loaded!\n",
5892 mddev->clevel);
5893 err = -EINVAL;
5894 goto abort;
5895 }
5896 spin_unlock(&pers_lock);
5897 if (mddev->level != pers->level) {
5898 mddev->level = pers->level;
5899 mddev->new_level = pers->level;
5900 }
5901 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5902
5903 if (mddev->reshape_position != MaxSector &&
5904 pers->start_reshape == NULL) {
5905 /* This personality cannot handle reshaping... */
5906 module_put(pers->owner);
5907 err = -EINVAL;
5908 goto abort;
5909 }
5910
5911 if (pers->sync_request) {
5912 /* Warn if this is a potentially silly
5913 * configuration.
5914 */
5915 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5916 struct md_rdev *rdev2;
5917 int warned = 0;
5918
5919 rdev_for_each(rdev, mddev)
5920 rdev_for_each(rdev2, mddev) {
5921 if (rdev < rdev2 &&
5922 rdev->bdev->bd_disk ==
5923 rdev2->bdev->bd_disk) {
5924 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5925 mdname(mddev),
5926 bdevname(rdev->bdev,b),
5927 bdevname(rdev2->bdev,b2));
5928 warned = 1;
5929 }
5930 }
5931
5932 if (warned)
5933 pr_warn("True protection against single-disk failure might be compromised.\n");
5934 }
5935
5936 mddev->recovery = 0;
5937 /* may be over-ridden by personality */
5938 mddev->resync_max_sectors = mddev->dev_sectors;
5939
5940 mddev->ok_start_degraded = start_dirty_degraded;
5941
5942 if (start_readonly && mddev->ro == 0)
5943 mddev->ro = 2; /* read-only, but switch on first write */
5944
5945 err = pers->run(mddev);
5946 if (err)
5947 pr_warn("md: pers->run() failed ...\n");
5948 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5949 WARN_ONCE(!mddev->external_size,
5950 "%s: default size too small, but 'external_size' not in effect?\n",
5951 __func__);
5952 pr_warn("md: invalid array_size %llu > default size %llu\n",
5953 (unsigned long long)mddev->array_sectors / 2,
5954 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5955 err = -EINVAL;
5956 }
5957 if (err == 0 && pers->sync_request &&
5958 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5959 struct bitmap *bitmap;
5960
5961 bitmap = md_bitmap_create(mddev, -1);
5962 if (IS_ERR(bitmap)) {
5963 err = PTR_ERR(bitmap);
5964 pr_warn("%s: failed to create bitmap (%d)\n",
5965 mdname(mddev), err);
5966 } else
5967 mddev->bitmap = bitmap;
5968
5969 }
5970 if (err)
5971 goto bitmap_abort;
5972
5973 if (mddev->bitmap_info.max_write_behind > 0) {
5974 bool create_pool = false;
5975
5976 rdev_for_each(rdev, mddev) {
5977 if (test_bit(WriteMostly, &rdev->flags) &&
5978 rdev_init_serial(rdev))
5979 create_pool = true;
5980 }
5981 if (create_pool && mddev->serial_info_pool == NULL) {
5982 mddev->serial_info_pool =
5983 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5984 sizeof(struct serial_info));
5985 if (!mddev->serial_info_pool) {
5986 err = -ENOMEM;
5987 goto bitmap_abort;
5988 }
5989 }
5990 }
5991
5992 if (mddev->queue) {
5993 bool nonrot = true;
5994
5995 rdev_for_each(rdev, mddev) {
5996 if (rdev->raid_disk >= 0 &&
5997 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5998 nonrot = false;
5999 break;
6000 }
6001 }
6002 if (mddev->degraded)
6003 nonrot = false;
6004 if (nonrot)
6005 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6006 else
6007 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6008 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6009
6010 /* Set the NOWAIT flags if all underlying devices support it */
6011 if (nowait)
6012 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6013 }
6014 if (pers->sync_request) {
6015 if (mddev->kobj.sd &&
6016 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6017 pr_warn("md: cannot register extra attributes for %s\n",
6018 mdname(mddev));
6019 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6020 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6021 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6022 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6023 mddev->ro = 0;
6024
6025 atomic_set(&mddev->max_corr_read_errors,
6026 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6027 mddev->safemode = 0;
6028 if (mddev_is_clustered(mddev))
6029 mddev->safemode_delay = 0;
6030 else
6031 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6032 mddev->in_sync = 1;
6033 smp_wmb();
6034 spin_lock(&mddev->lock);
6035 mddev->pers = pers;
6036 spin_unlock(&mddev->lock);
6037 rdev_for_each(rdev, mddev)
6038 if (rdev->raid_disk >= 0)
6039 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6040
6041 if (mddev->degraded && !mddev->ro)
6042 /* This ensures that recovering status is reported immediately
6043 * via sysfs - until a lack of spares is confirmed.
6044 */
6045 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6047
6048 if (mddev->sb_flags)
6049 md_update_sb(mddev, 0);
6050
6051 md_new_event();
6052 return 0;
6053
6054bitmap_abort:
6055 mddev_detach(mddev);
6056 if (mddev->private)
6057 pers->free(mddev, mddev->private);
6058 mddev->private = NULL;
6059 module_put(pers->owner);
6060 md_bitmap_destroy(mddev);
6061abort:
6062 bioset_exit(&mddev->sync_set);
6063exit_bio_set:
6064 bioset_exit(&mddev->bio_set);
6065 return err;
6066}
6067EXPORT_SYMBOL_GPL(md_run);
6068
6069int do_md_run(struct mddev *mddev)
6070{
6071 int err;
6072
6073 set_bit(MD_NOT_READY, &mddev->flags);
6074 err = md_run(mddev);
6075 if (err)
6076 goto out;
6077 err = md_bitmap_load(mddev);
6078 if (err) {
6079 md_bitmap_destroy(mddev);
6080 goto out;
6081 }
6082
6083 if (mddev_is_clustered(mddev))
6084 md_allow_write(mddev);
6085
6086 /* run start up tasks that require md_thread */
6087 md_start(mddev);
6088
6089 md_wakeup_thread(mddev->thread);
6090 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6091
6092 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6093 clear_bit(MD_NOT_READY, &mddev->flags);
6094 mddev->changed = 1;
6095 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6096 sysfs_notify_dirent_safe(mddev->sysfs_state);
6097 sysfs_notify_dirent_safe(mddev->sysfs_action);
6098 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6099out:
6100 clear_bit(MD_NOT_READY, &mddev->flags);
6101 return err;
6102}
6103
6104int md_start(struct mddev *mddev)
6105{
6106 int ret = 0;
6107
6108 if (mddev->pers->start) {
6109 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6110 md_wakeup_thread(mddev->thread);
6111 ret = mddev->pers->start(mddev);
6112 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6113 md_wakeup_thread(mddev->sync_thread);
6114 }
6115 return ret;
6116}
6117EXPORT_SYMBOL_GPL(md_start);
6118
6119static int restart_array(struct mddev *mddev)
6120{
6121 struct gendisk *disk = mddev->gendisk;
6122 struct md_rdev *rdev;
6123 bool has_journal = false;
6124 bool has_readonly = false;
6125
6126 /* Complain if it has no devices */
6127 if (list_empty(&mddev->disks))
6128 return -ENXIO;
6129 if (!mddev->pers)
6130 return -EINVAL;
6131 if (!mddev->ro)
6132 return -EBUSY;
6133
6134 rcu_read_lock();
6135 rdev_for_each_rcu(rdev, mddev) {
6136 if (test_bit(Journal, &rdev->flags) &&
6137 !test_bit(Faulty, &rdev->flags))
6138 has_journal = true;
6139 if (rdev_read_only(rdev))
6140 has_readonly = true;
6141 }
6142 rcu_read_unlock();
6143 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6144 /* Don't restart rw with journal missing/faulty */
6145 return -EINVAL;
6146 if (has_readonly)
6147 return -EROFS;
6148
6149 mddev->safemode = 0;
6150 mddev->ro = 0;
6151 set_disk_ro(disk, 0);
6152 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6153 /* Kick recovery or resync if necessary */
6154 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6155 md_wakeup_thread(mddev->thread);
6156 md_wakeup_thread(mddev->sync_thread);
6157 sysfs_notify_dirent_safe(mddev->sysfs_state);
6158 return 0;
6159}
6160
6161static void md_clean(struct mddev *mddev)
6162{
6163 mddev->array_sectors = 0;
6164 mddev->external_size = 0;
6165 mddev->dev_sectors = 0;
6166 mddev->raid_disks = 0;
6167 mddev->recovery_cp = 0;
6168 mddev->resync_min = 0;
6169 mddev->resync_max = MaxSector;
6170 mddev->reshape_position = MaxSector;
6171 mddev->external = 0;
6172 mddev->persistent = 0;
6173 mddev->level = LEVEL_NONE;
6174 mddev->clevel[0] = 0;
6175 mddev->flags = 0;
6176 mddev->sb_flags = 0;
6177 mddev->ro = 0;
6178 mddev->metadata_type[0] = 0;
6179 mddev->chunk_sectors = 0;
6180 mddev->ctime = mddev->utime = 0;
6181 mddev->layout = 0;
6182 mddev->max_disks = 0;
6183 mddev->events = 0;
6184 mddev->can_decrease_events = 0;
6185 mddev->delta_disks = 0;
6186 mddev->reshape_backwards = 0;
6187 mddev->new_level = LEVEL_NONE;
6188 mddev->new_layout = 0;
6189 mddev->new_chunk_sectors = 0;
6190 mddev->curr_resync = 0;
6191 atomic64_set(&mddev->resync_mismatches, 0);
6192 mddev->suspend_lo = mddev->suspend_hi = 0;
6193 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6194 mddev->recovery = 0;
6195 mddev->in_sync = 0;
6196 mddev->changed = 0;
6197 mddev->degraded = 0;
6198 mddev->safemode = 0;
6199 mddev->private = NULL;
6200 mddev->cluster_info = NULL;
6201 mddev->bitmap_info.offset = 0;
6202 mddev->bitmap_info.default_offset = 0;
6203 mddev->bitmap_info.default_space = 0;
6204 mddev->bitmap_info.chunksize = 0;
6205 mddev->bitmap_info.daemon_sleep = 0;
6206 mddev->bitmap_info.max_write_behind = 0;
6207 mddev->bitmap_info.nodes = 0;
6208}
6209
6210static void __md_stop_writes(struct mddev *mddev)
6211{
6212 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6213 if (work_pending(&mddev->del_work))
6214 flush_workqueue(md_misc_wq);
6215 if (mddev->sync_thread) {
6216 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6217 md_reap_sync_thread(mddev);
6218 }
6219
6220 del_timer_sync(&mddev->safemode_timer);
6221
6222 if (mddev->pers && mddev->pers->quiesce) {
6223 mddev->pers->quiesce(mddev, 1);
6224 mddev->pers->quiesce(mddev, 0);
6225 }
6226 md_bitmap_flush(mddev);
6227
6228 if (mddev->ro == 0 &&
6229 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6230 mddev->sb_flags)) {
6231 /* mark array as shutdown cleanly */
6232 if (!mddev_is_clustered(mddev))
6233 mddev->in_sync = 1;
6234 md_update_sb(mddev, 1);
6235 }
6236 /* disable policy to guarantee rdevs free resources for serialization */
6237 mddev->serialize_policy = 0;
6238 mddev_destroy_serial_pool(mddev, NULL, true);
6239}
6240
6241void md_stop_writes(struct mddev *mddev)
6242{
6243 mddev_lock_nointr(mddev);
6244 __md_stop_writes(mddev);
6245 mddev_unlock(mddev);
6246}
6247EXPORT_SYMBOL_GPL(md_stop_writes);
6248
6249static void mddev_detach(struct mddev *mddev)
6250{
6251 md_bitmap_wait_behind_writes(mddev);
6252 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6253 mddev->pers->quiesce(mddev, 1);
6254 mddev->pers->quiesce(mddev, 0);
6255 }
6256 md_unregister_thread(&mddev->thread);
6257 if (mddev->queue)
6258 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6259}
6260
6261static void __md_stop(struct mddev *mddev)
6262{
6263 struct md_personality *pers = mddev->pers;
6264 md_bitmap_destroy(mddev);
6265 mddev_detach(mddev);
6266 /* Ensure ->event_work is done */
6267 if (mddev->event_work.func)
6268 flush_workqueue(md_misc_wq);
6269 spin_lock(&mddev->lock);
6270 mddev->pers = NULL;
6271 spin_unlock(&mddev->lock);
6272 if (mddev->private)
6273 pers->free(mddev, mddev->private);
6274 mddev->private = NULL;
6275 if (pers->sync_request && mddev->to_remove == NULL)
6276 mddev->to_remove = &md_redundancy_group;
6277 module_put(pers->owner);
6278 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6279}
6280
6281void md_stop(struct mddev *mddev)
6282{
6283 /* stop the array and free an attached data structures.
6284 * This is called from dm-raid
6285 */
6286 __md_stop(mddev);
6287 bioset_exit(&mddev->bio_set);
6288 bioset_exit(&mddev->sync_set);
6289 if (mddev->level != 1 && mddev->level != 10)
6290 bioset_exit(&mddev->io_acct_set);
6291}
6292
6293EXPORT_SYMBOL_GPL(md_stop);
6294
6295static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6296{
6297 int err = 0;
6298 int did_freeze = 0;
6299
6300 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6301 did_freeze = 1;
6302 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6303 md_wakeup_thread(mddev->thread);
6304 }
6305 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6306 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6307 if (mddev->sync_thread)
6308 /* Thread might be blocked waiting for metadata update
6309 * which will now never happen */
6310 wake_up_process(mddev->sync_thread->tsk);
6311
6312 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6313 return -EBUSY;
6314 mddev_unlock(mddev);
6315 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6316 &mddev->recovery));
6317 wait_event(mddev->sb_wait,
6318 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6319 mddev_lock_nointr(mddev);
6320
6321 mutex_lock(&mddev->open_mutex);
6322 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6323 mddev->sync_thread ||
6324 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6325 pr_warn("md: %s still in use.\n",mdname(mddev));
6326 if (did_freeze) {
6327 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6329 md_wakeup_thread(mddev->thread);
6330 }
6331 err = -EBUSY;
6332 goto out;
6333 }
6334 if (mddev->pers) {
6335 __md_stop_writes(mddev);
6336
6337 err = -ENXIO;
6338 if (mddev->ro==1)
6339 goto out;
6340 mddev->ro = 1;
6341 set_disk_ro(mddev->gendisk, 1);
6342 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6343 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6344 md_wakeup_thread(mddev->thread);
6345 sysfs_notify_dirent_safe(mddev->sysfs_state);
6346 err = 0;
6347 }
6348out:
6349 mutex_unlock(&mddev->open_mutex);
6350 return err;
6351}
6352
6353/* mode:
6354 * 0 - completely stop and dis-assemble array
6355 * 2 - stop but do not disassemble array
6356 */
6357static int do_md_stop(struct mddev *mddev, int mode,
6358 struct block_device *bdev)
6359{
6360 struct gendisk *disk = mddev->gendisk;
6361 struct md_rdev *rdev;
6362 int did_freeze = 0;
6363
6364 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6365 did_freeze = 1;
6366 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6367 md_wakeup_thread(mddev->thread);
6368 }
6369 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6370 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6371 if (mddev->sync_thread)
6372 /* Thread might be blocked waiting for metadata update
6373 * which will now never happen */
6374 wake_up_process(mddev->sync_thread->tsk);
6375
6376 mddev_unlock(mddev);
6377 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6378 !test_bit(MD_RECOVERY_RUNNING,
6379 &mddev->recovery)));
6380 mddev_lock_nointr(mddev);
6381
6382 mutex_lock(&mddev->open_mutex);
6383 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6384 mddev->sysfs_active ||
6385 mddev->sync_thread ||
6386 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6387 pr_warn("md: %s still in use.\n",mdname(mddev));
6388 mutex_unlock(&mddev->open_mutex);
6389 if (did_freeze) {
6390 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6391 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6392 md_wakeup_thread(mddev->thread);
6393 }
6394 return -EBUSY;
6395 }
6396 if (mddev->pers) {
6397 if (mddev->ro)
6398 set_disk_ro(disk, 0);
6399
6400 __md_stop_writes(mddev);
6401 __md_stop(mddev);
6402
6403 /* tell userspace to handle 'inactive' */
6404 sysfs_notify_dirent_safe(mddev->sysfs_state);
6405
6406 rdev_for_each(rdev, mddev)
6407 if (rdev->raid_disk >= 0)
6408 sysfs_unlink_rdev(mddev, rdev);
6409
6410 set_capacity_and_notify(disk, 0);
6411 mutex_unlock(&mddev->open_mutex);
6412 mddev->changed = 1;
6413
6414 if (mddev->ro)
6415 mddev->ro = 0;
6416 } else
6417 mutex_unlock(&mddev->open_mutex);
6418 /*
6419 * Free resources if final stop
6420 */
6421 if (mode == 0) {
6422 pr_info("md: %s stopped.\n", mdname(mddev));
6423
6424 if (mddev->bitmap_info.file) {
6425 struct file *f = mddev->bitmap_info.file;
6426 spin_lock(&mddev->lock);
6427 mddev->bitmap_info.file = NULL;
6428 spin_unlock(&mddev->lock);
6429 fput(f);
6430 }
6431 mddev->bitmap_info.offset = 0;
6432
6433 export_array(mddev);
6434
6435 md_clean(mddev);
6436 if (mddev->hold_active == UNTIL_STOP)
6437 mddev->hold_active = 0;
6438 }
6439 md_new_event();
6440 sysfs_notify_dirent_safe(mddev->sysfs_state);
6441 return 0;
6442}
6443
6444#ifndef MODULE
6445static void autorun_array(struct mddev *mddev)
6446{
6447 struct md_rdev *rdev;
6448 int err;
6449
6450 if (list_empty(&mddev->disks))
6451 return;
6452
6453 pr_info("md: running: ");
6454
6455 rdev_for_each(rdev, mddev) {
6456 char b[BDEVNAME_SIZE];
6457 pr_cont("<%s>", bdevname(rdev->bdev,b));
6458 }
6459 pr_cont("\n");
6460
6461 err = do_md_run(mddev);
6462 if (err) {
6463 pr_warn("md: do_md_run() returned %d\n", err);
6464 do_md_stop(mddev, 0, NULL);
6465 }
6466}
6467
6468/*
6469 * lets try to run arrays based on all disks that have arrived
6470 * until now. (those are in pending_raid_disks)
6471 *
6472 * the method: pick the first pending disk, collect all disks with
6473 * the same UUID, remove all from the pending list and put them into
6474 * the 'same_array' list. Then order this list based on superblock
6475 * update time (freshest comes first), kick out 'old' disks and
6476 * compare superblocks. If everything's fine then run it.
6477 *
6478 * If "unit" is allocated, then bump its reference count
6479 */
6480static void autorun_devices(int part)
6481{
6482 struct md_rdev *rdev0, *rdev, *tmp;
6483 struct mddev *mddev;
6484 char b[BDEVNAME_SIZE];
6485
6486 pr_info("md: autorun ...\n");
6487 while (!list_empty(&pending_raid_disks)) {
6488 int unit;
6489 dev_t dev;
6490 LIST_HEAD(candidates);
6491 rdev0 = list_entry(pending_raid_disks.next,
6492 struct md_rdev, same_set);
6493
6494 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6495 INIT_LIST_HEAD(&candidates);
6496 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6497 if (super_90_load(rdev, rdev0, 0) >= 0) {
6498 pr_debug("md: adding %s ...\n",
6499 bdevname(rdev->bdev,b));
6500 list_move(&rdev->same_set, &candidates);
6501 }
6502 /*
6503 * now we have a set of devices, with all of them having
6504 * mostly sane superblocks. It's time to allocate the
6505 * mddev.
6506 */
6507 if (part) {
6508 dev = MKDEV(mdp_major,
6509 rdev0->preferred_minor << MdpMinorShift);
6510 unit = MINOR(dev) >> MdpMinorShift;
6511 } else {
6512 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6513 unit = MINOR(dev);
6514 }
6515 if (rdev0->preferred_minor != unit) {
6516 pr_warn("md: unit number in %s is bad: %d\n",
6517 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6518 break;
6519 }
6520
6521 md_probe(dev);
6522 mddev = mddev_find(dev);
6523 if (!mddev)
6524 break;
6525
6526 if (mddev_lock(mddev))
6527 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6528 else if (mddev->raid_disks || mddev->major_version
6529 || !list_empty(&mddev->disks)) {
6530 pr_warn("md: %s already running, cannot run %s\n",
6531 mdname(mddev), bdevname(rdev0->bdev,b));
6532 mddev_unlock(mddev);
6533 } else {
6534 pr_debug("md: created %s\n", mdname(mddev));
6535 mddev->persistent = 1;
6536 rdev_for_each_list(rdev, tmp, &candidates) {
6537 list_del_init(&rdev->same_set);
6538 if (bind_rdev_to_array(rdev, mddev))
6539 export_rdev(rdev);
6540 }
6541 autorun_array(mddev);
6542 mddev_unlock(mddev);
6543 }
6544 /* on success, candidates will be empty, on error
6545 * it won't...
6546 */
6547 rdev_for_each_list(rdev, tmp, &candidates) {
6548 list_del_init(&rdev->same_set);
6549 export_rdev(rdev);
6550 }
6551 mddev_put(mddev);
6552 }
6553 pr_info("md: ... autorun DONE.\n");
6554}
6555#endif /* !MODULE */
6556
6557static int get_version(void __user *arg)
6558{
6559 mdu_version_t ver;
6560
6561 ver.major = MD_MAJOR_VERSION;
6562 ver.minor = MD_MINOR_VERSION;
6563 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6564
6565 if (copy_to_user(arg, &ver, sizeof(ver)))
6566 return -EFAULT;
6567
6568 return 0;
6569}
6570
6571static int get_array_info(struct mddev *mddev, void __user *arg)
6572{
6573 mdu_array_info_t info;
6574 int nr,working,insync,failed,spare;
6575 struct md_rdev *rdev;
6576
6577 nr = working = insync = failed = spare = 0;
6578 rcu_read_lock();
6579 rdev_for_each_rcu(rdev, mddev) {
6580 nr++;
6581 if (test_bit(Faulty, &rdev->flags))
6582 failed++;
6583 else {
6584 working++;
6585 if (test_bit(In_sync, &rdev->flags))
6586 insync++;
6587 else if (test_bit(Journal, &rdev->flags))
6588 /* TODO: add journal count to md_u.h */
6589 ;
6590 else
6591 spare++;
6592 }
6593 }
6594 rcu_read_unlock();
6595
6596 info.major_version = mddev->major_version;
6597 info.minor_version = mddev->minor_version;
6598 info.patch_version = MD_PATCHLEVEL_VERSION;
6599 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6600 info.level = mddev->level;
6601 info.size = mddev->dev_sectors / 2;
6602 if (info.size != mddev->dev_sectors / 2) /* overflow */
6603 info.size = -1;
6604 info.nr_disks = nr;
6605 info.raid_disks = mddev->raid_disks;
6606 info.md_minor = mddev->md_minor;
6607 info.not_persistent= !mddev->persistent;
6608
6609 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6610 info.state = 0;
6611 if (mddev->in_sync)
6612 info.state = (1<<MD_SB_CLEAN);
6613 if (mddev->bitmap && mddev->bitmap_info.offset)
6614 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6615 if (mddev_is_clustered(mddev))
6616 info.state |= (1<<MD_SB_CLUSTERED);
6617 info.active_disks = insync;
6618 info.working_disks = working;
6619 info.failed_disks = failed;
6620 info.spare_disks = spare;
6621
6622 info.layout = mddev->layout;
6623 info.chunk_size = mddev->chunk_sectors << 9;
6624
6625 if (copy_to_user(arg, &info, sizeof(info)))
6626 return -EFAULT;
6627
6628 return 0;
6629}
6630
6631static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6632{
6633 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6634 char *ptr;
6635 int err;
6636
6637 file = kzalloc(sizeof(*file), GFP_NOIO);
6638 if (!file)
6639 return -ENOMEM;
6640
6641 err = 0;
6642 spin_lock(&mddev->lock);
6643 /* bitmap enabled */
6644 if (mddev->bitmap_info.file) {
6645 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6646 sizeof(file->pathname));
6647 if (IS_ERR(ptr))
6648 err = PTR_ERR(ptr);
6649 else
6650 memmove(file->pathname, ptr,
6651 sizeof(file->pathname)-(ptr-file->pathname));
6652 }
6653 spin_unlock(&mddev->lock);
6654
6655 if (err == 0 &&
6656 copy_to_user(arg, file, sizeof(*file)))
6657 err = -EFAULT;
6658
6659 kfree(file);
6660 return err;
6661}
6662
6663static int get_disk_info(struct mddev *mddev, void __user * arg)
6664{
6665 mdu_disk_info_t info;
6666 struct md_rdev *rdev;
6667
6668 if (copy_from_user(&info, arg, sizeof(info)))
6669 return -EFAULT;
6670
6671 rcu_read_lock();
6672 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6673 if (rdev) {
6674 info.major = MAJOR(rdev->bdev->bd_dev);
6675 info.minor = MINOR(rdev->bdev->bd_dev);
6676 info.raid_disk = rdev->raid_disk;
6677 info.state = 0;
6678 if (test_bit(Faulty, &rdev->flags))
6679 info.state |= (1<<MD_DISK_FAULTY);
6680 else if (test_bit(In_sync, &rdev->flags)) {
6681 info.state |= (1<<MD_DISK_ACTIVE);
6682 info.state |= (1<<MD_DISK_SYNC);
6683 }
6684 if (test_bit(Journal, &rdev->flags))
6685 info.state |= (1<<MD_DISK_JOURNAL);
6686 if (test_bit(WriteMostly, &rdev->flags))
6687 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6688 if (test_bit(FailFast, &rdev->flags))
6689 info.state |= (1<<MD_DISK_FAILFAST);
6690 } else {
6691 info.major = info.minor = 0;
6692 info.raid_disk = -1;
6693 info.state = (1<<MD_DISK_REMOVED);
6694 }
6695 rcu_read_unlock();
6696
6697 if (copy_to_user(arg, &info, sizeof(info)))
6698 return -EFAULT;
6699
6700 return 0;
6701}
6702
6703int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6704{
6705 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6706 struct md_rdev *rdev;
6707 dev_t dev = MKDEV(info->major,info->minor);
6708
6709 if (mddev_is_clustered(mddev) &&
6710 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6711 pr_warn("%s: Cannot add to clustered mddev.\n",
6712 mdname(mddev));
6713 return -EINVAL;
6714 }
6715
6716 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6717 return -EOVERFLOW;
6718
6719 if (!mddev->raid_disks) {
6720 int err;
6721 /* expecting a device which has a superblock */
6722 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6723 if (IS_ERR(rdev)) {
6724 pr_warn("md: md_import_device returned %ld\n",
6725 PTR_ERR(rdev));
6726 return PTR_ERR(rdev);
6727 }
6728 if (!list_empty(&mddev->disks)) {
6729 struct md_rdev *rdev0
6730 = list_entry(mddev->disks.next,
6731 struct md_rdev, same_set);
6732 err = super_types[mddev->major_version]
6733 .load_super(rdev, rdev0, mddev->minor_version);
6734 if (err < 0) {
6735 pr_warn("md: %s has different UUID to %s\n",
6736 bdevname(rdev->bdev,b),
6737 bdevname(rdev0->bdev,b2));
6738 export_rdev(rdev);
6739 return -EINVAL;
6740 }
6741 }
6742 err = bind_rdev_to_array(rdev, mddev);
6743 if (err)
6744 export_rdev(rdev);
6745 return err;
6746 }
6747
6748 /*
6749 * md_add_new_disk can be used once the array is assembled
6750 * to add "hot spares". They must already have a superblock
6751 * written
6752 */
6753 if (mddev->pers) {
6754 int err;
6755 if (!mddev->pers->hot_add_disk) {
6756 pr_warn("%s: personality does not support diskops!\n",
6757 mdname(mddev));
6758 return -EINVAL;
6759 }
6760 if (mddev->persistent)
6761 rdev = md_import_device(dev, mddev->major_version,
6762 mddev->minor_version);
6763 else
6764 rdev = md_import_device(dev, -1, -1);
6765 if (IS_ERR(rdev)) {
6766 pr_warn("md: md_import_device returned %ld\n",
6767 PTR_ERR(rdev));
6768 return PTR_ERR(rdev);
6769 }
6770 /* set saved_raid_disk if appropriate */
6771 if (!mddev->persistent) {
6772 if (info->state & (1<<MD_DISK_SYNC) &&
6773 info->raid_disk < mddev->raid_disks) {
6774 rdev->raid_disk = info->raid_disk;
6775 set_bit(In_sync, &rdev->flags);
6776 clear_bit(Bitmap_sync, &rdev->flags);
6777 } else
6778 rdev->raid_disk = -1;
6779 rdev->saved_raid_disk = rdev->raid_disk;
6780 } else
6781 super_types[mddev->major_version].
6782 validate_super(mddev, rdev);
6783 if ((info->state & (1<<MD_DISK_SYNC)) &&
6784 rdev->raid_disk != info->raid_disk) {
6785 /* This was a hot-add request, but events doesn't
6786 * match, so reject it.
6787 */
6788 export_rdev(rdev);
6789 return -EINVAL;
6790 }
6791
6792 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6793 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6794 set_bit(WriteMostly, &rdev->flags);
6795 else
6796 clear_bit(WriteMostly, &rdev->flags);
6797 if (info->state & (1<<MD_DISK_FAILFAST))
6798 set_bit(FailFast, &rdev->flags);
6799 else
6800 clear_bit(FailFast, &rdev->flags);
6801
6802 if (info->state & (1<<MD_DISK_JOURNAL)) {
6803 struct md_rdev *rdev2;
6804 bool has_journal = false;
6805
6806 /* make sure no existing journal disk */
6807 rdev_for_each(rdev2, mddev) {
6808 if (test_bit(Journal, &rdev2->flags)) {
6809 has_journal = true;
6810 break;
6811 }
6812 }
6813 if (has_journal || mddev->bitmap) {
6814 export_rdev(rdev);
6815 return -EBUSY;
6816 }
6817 set_bit(Journal, &rdev->flags);
6818 }
6819 /*
6820 * check whether the device shows up in other nodes
6821 */
6822 if (mddev_is_clustered(mddev)) {
6823 if (info->state & (1 << MD_DISK_CANDIDATE))
6824 set_bit(Candidate, &rdev->flags);
6825 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6826 /* --add initiated by this node */
6827 err = md_cluster_ops->add_new_disk(mddev, rdev);
6828 if (err) {
6829 export_rdev(rdev);
6830 return err;
6831 }
6832 }
6833 }
6834
6835 rdev->raid_disk = -1;
6836 err = bind_rdev_to_array(rdev, mddev);
6837
6838 if (err)
6839 export_rdev(rdev);
6840
6841 if (mddev_is_clustered(mddev)) {
6842 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6843 if (!err) {
6844 err = md_cluster_ops->new_disk_ack(mddev,
6845 err == 0);
6846 if (err)
6847 md_kick_rdev_from_array(rdev);
6848 }
6849 } else {
6850 if (err)
6851 md_cluster_ops->add_new_disk_cancel(mddev);
6852 else
6853 err = add_bound_rdev(rdev);
6854 }
6855
6856 } else if (!err)
6857 err = add_bound_rdev(rdev);
6858
6859 return err;
6860 }
6861
6862 /* otherwise, md_add_new_disk is only allowed
6863 * for major_version==0 superblocks
6864 */
6865 if (mddev->major_version != 0) {
6866 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6867 return -EINVAL;
6868 }
6869
6870 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6871 int err;
6872 rdev = md_import_device(dev, -1, 0);
6873 if (IS_ERR(rdev)) {
6874 pr_warn("md: error, md_import_device() returned %ld\n",
6875 PTR_ERR(rdev));
6876 return PTR_ERR(rdev);
6877 }
6878 rdev->desc_nr = info->number;
6879 if (info->raid_disk < mddev->raid_disks)
6880 rdev->raid_disk = info->raid_disk;
6881 else
6882 rdev->raid_disk = -1;
6883
6884 if (rdev->raid_disk < mddev->raid_disks)
6885 if (info->state & (1<<MD_DISK_SYNC))
6886 set_bit(In_sync, &rdev->flags);
6887
6888 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6889 set_bit(WriteMostly, &rdev->flags);
6890 if (info->state & (1<<MD_DISK_FAILFAST))
6891 set_bit(FailFast, &rdev->flags);
6892
6893 if (!mddev->persistent) {
6894 pr_debug("md: nonpersistent superblock ...\n");
6895 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6896 } else
6897 rdev->sb_start = calc_dev_sboffset(rdev);
6898 rdev->sectors = rdev->sb_start;
6899
6900 err = bind_rdev_to_array(rdev, mddev);
6901 if (err) {
6902 export_rdev(rdev);
6903 return err;
6904 }
6905 }
6906
6907 return 0;
6908}
6909
6910static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6911{
6912 char b[BDEVNAME_SIZE];
6913 struct md_rdev *rdev;
6914
6915 if (!mddev->pers)
6916 return -ENODEV;
6917
6918 rdev = find_rdev(mddev, dev);
6919 if (!rdev)
6920 return -ENXIO;
6921
6922 if (rdev->raid_disk < 0)
6923 goto kick_rdev;
6924
6925 clear_bit(Blocked, &rdev->flags);
6926 remove_and_add_spares(mddev, rdev);
6927
6928 if (rdev->raid_disk >= 0)
6929 goto busy;
6930
6931kick_rdev:
6932 if (mddev_is_clustered(mddev)) {
6933 if (md_cluster_ops->remove_disk(mddev, rdev))
6934 goto busy;
6935 }
6936
6937 md_kick_rdev_from_array(rdev);
6938 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6939 if (mddev->thread)
6940 md_wakeup_thread(mddev->thread);
6941 else
6942 md_update_sb(mddev, 1);
6943 md_new_event();
6944
6945 return 0;
6946busy:
6947 pr_debug("md: cannot remove active disk %s from %s ...\n",
6948 bdevname(rdev->bdev,b), mdname(mddev));
6949 return -EBUSY;
6950}
6951
6952static int hot_add_disk(struct mddev *mddev, dev_t dev)
6953{
6954 char b[BDEVNAME_SIZE];
6955 int err;
6956 struct md_rdev *rdev;
6957
6958 if (!mddev->pers)
6959 return -ENODEV;
6960
6961 if (mddev->major_version != 0) {
6962 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6963 mdname(mddev));
6964 return -EINVAL;
6965 }
6966 if (!mddev->pers->hot_add_disk) {
6967 pr_warn("%s: personality does not support diskops!\n",
6968 mdname(mddev));
6969 return -EINVAL;
6970 }
6971
6972 rdev = md_import_device(dev, -1, 0);
6973 if (IS_ERR(rdev)) {
6974 pr_warn("md: error, md_import_device() returned %ld\n",
6975 PTR_ERR(rdev));
6976 return -EINVAL;
6977 }
6978
6979 if (mddev->persistent)
6980 rdev->sb_start = calc_dev_sboffset(rdev);
6981 else
6982 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6983
6984 rdev->sectors = rdev->sb_start;
6985
6986 if (test_bit(Faulty, &rdev->flags)) {
6987 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6988 bdevname(rdev->bdev,b), mdname(mddev));
6989 err = -EINVAL;
6990 goto abort_export;
6991 }
6992
6993 clear_bit(In_sync, &rdev->flags);
6994 rdev->desc_nr = -1;
6995 rdev->saved_raid_disk = -1;
6996 err = bind_rdev_to_array(rdev, mddev);
6997 if (err)
6998 goto abort_export;
6999
7000 /*
7001 * The rest should better be atomic, we can have disk failures
7002 * noticed in interrupt contexts ...
7003 */
7004
7005 rdev->raid_disk = -1;
7006
7007 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7008 if (!mddev->thread)
7009 md_update_sb(mddev, 1);
7010 /*
7011 * If the new disk does not support REQ_NOWAIT,
7012 * disable on the whole MD.
7013 */
7014 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) {
7015 pr_info("%s: Disabling nowait because %s does not support nowait\n",
7016 mdname(mddev), bdevname(rdev->bdev, b));
7017 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7018 }
7019 /*
7020 * Kick recovery, maybe this spare has to be added to the
7021 * array immediately.
7022 */
7023 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7024 md_wakeup_thread(mddev->thread);
7025 md_new_event();
7026 return 0;
7027
7028abort_export:
7029 export_rdev(rdev);
7030 return err;
7031}
7032
7033static int set_bitmap_file(struct mddev *mddev, int fd)
7034{
7035 int err = 0;
7036
7037 if (mddev->pers) {
7038 if (!mddev->pers->quiesce || !mddev->thread)
7039 return -EBUSY;
7040 if (mddev->recovery || mddev->sync_thread)
7041 return -EBUSY;
7042 /* we should be able to change the bitmap.. */
7043 }
7044
7045 if (fd >= 0) {
7046 struct inode *inode;
7047 struct file *f;
7048
7049 if (mddev->bitmap || mddev->bitmap_info.file)
7050 return -EEXIST; /* cannot add when bitmap is present */
7051 f = fget(fd);
7052
7053 if (f == NULL) {
7054 pr_warn("%s: error: failed to get bitmap file\n",
7055 mdname(mddev));
7056 return -EBADF;
7057 }
7058
7059 inode = f->f_mapping->host;
7060 if (!S_ISREG(inode->i_mode)) {
7061 pr_warn("%s: error: bitmap file must be a regular file\n",
7062 mdname(mddev));
7063 err = -EBADF;
7064 } else if (!(f->f_mode & FMODE_WRITE)) {
7065 pr_warn("%s: error: bitmap file must open for write\n",
7066 mdname(mddev));
7067 err = -EBADF;
7068 } else if (atomic_read(&inode->i_writecount) != 1) {
7069 pr_warn("%s: error: bitmap file is already in use\n",
7070 mdname(mddev));
7071 err = -EBUSY;
7072 }
7073 if (err) {
7074 fput(f);
7075 return err;
7076 }
7077 mddev->bitmap_info.file = f;
7078 mddev->bitmap_info.offset = 0; /* file overrides offset */
7079 } else if (mddev->bitmap == NULL)
7080 return -ENOENT; /* cannot remove what isn't there */
7081 err = 0;
7082 if (mddev->pers) {
7083 if (fd >= 0) {
7084 struct bitmap *bitmap;
7085
7086 bitmap = md_bitmap_create(mddev, -1);
7087 mddev_suspend(mddev);
7088 if (!IS_ERR(bitmap)) {
7089 mddev->bitmap = bitmap;
7090 err = md_bitmap_load(mddev);
7091 } else
7092 err = PTR_ERR(bitmap);
7093 if (err) {
7094 md_bitmap_destroy(mddev);
7095 fd = -1;
7096 }
7097 mddev_resume(mddev);
7098 } else if (fd < 0) {
7099 mddev_suspend(mddev);
7100 md_bitmap_destroy(mddev);
7101 mddev_resume(mddev);
7102 }
7103 }
7104 if (fd < 0) {
7105 struct file *f = mddev->bitmap_info.file;
7106 if (f) {
7107 spin_lock(&mddev->lock);
7108 mddev->bitmap_info.file = NULL;
7109 spin_unlock(&mddev->lock);
7110 fput(f);
7111 }
7112 }
7113
7114 return err;
7115}
7116
7117/*
7118 * md_set_array_info is used two different ways
7119 * The original usage is when creating a new array.
7120 * In this usage, raid_disks is > 0 and it together with
7121 * level, size, not_persistent,layout,chunksize determine the
7122 * shape of the array.
7123 * This will always create an array with a type-0.90.0 superblock.
7124 * The newer usage is when assembling an array.
7125 * In this case raid_disks will be 0, and the major_version field is
7126 * use to determine which style super-blocks are to be found on the devices.
7127 * The minor and patch _version numbers are also kept incase the
7128 * super_block handler wishes to interpret them.
7129 */
7130int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7131{
7132 if (info->raid_disks == 0) {
7133 /* just setting version number for superblock loading */
7134 if (info->major_version < 0 ||
7135 info->major_version >= ARRAY_SIZE(super_types) ||
7136 super_types[info->major_version].name == NULL) {
7137 /* maybe try to auto-load a module? */
7138 pr_warn("md: superblock version %d not known\n",
7139 info->major_version);
7140 return -EINVAL;
7141 }
7142 mddev->major_version = info->major_version;
7143 mddev->minor_version = info->minor_version;
7144 mddev->patch_version = info->patch_version;
7145 mddev->persistent = !info->not_persistent;
7146 /* ensure mddev_put doesn't delete this now that there
7147 * is some minimal configuration.
7148 */
7149 mddev->ctime = ktime_get_real_seconds();
7150 return 0;
7151 }
7152 mddev->major_version = MD_MAJOR_VERSION;
7153 mddev->minor_version = MD_MINOR_VERSION;
7154 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7155 mddev->ctime = ktime_get_real_seconds();
7156
7157 mddev->level = info->level;
7158 mddev->clevel[0] = 0;
7159 mddev->dev_sectors = 2 * (sector_t)info->size;
7160 mddev->raid_disks = info->raid_disks;
7161 /* don't set md_minor, it is determined by which /dev/md* was
7162 * openned
7163 */
7164 if (info->state & (1<<MD_SB_CLEAN))
7165 mddev->recovery_cp = MaxSector;
7166 else
7167 mddev->recovery_cp = 0;
7168 mddev->persistent = ! info->not_persistent;
7169 mddev->external = 0;
7170
7171 mddev->layout = info->layout;
7172 if (mddev->level == 0)
7173 /* Cannot trust RAID0 layout info here */
7174 mddev->layout = -1;
7175 mddev->chunk_sectors = info->chunk_size >> 9;
7176
7177 if (mddev->persistent) {
7178 mddev->max_disks = MD_SB_DISKS;
7179 mddev->flags = 0;
7180 mddev->sb_flags = 0;
7181 }
7182 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7183
7184 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7185 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7186 mddev->bitmap_info.offset = 0;
7187
7188 mddev->reshape_position = MaxSector;
7189
7190 /*
7191 * Generate a 128 bit UUID
7192 */
7193 get_random_bytes(mddev->uuid, 16);
7194
7195 mddev->new_level = mddev->level;
7196 mddev->new_chunk_sectors = mddev->chunk_sectors;
7197 mddev->new_layout = mddev->layout;
7198 mddev->delta_disks = 0;
7199 mddev->reshape_backwards = 0;
7200
7201 return 0;
7202}
7203
7204void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7205{
7206 lockdep_assert_held(&mddev->reconfig_mutex);
7207
7208 if (mddev->external_size)
7209 return;
7210
7211 mddev->array_sectors = array_sectors;
7212}
7213EXPORT_SYMBOL(md_set_array_sectors);
7214
7215static int update_size(struct mddev *mddev, sector_t num_sectors)
7216{
7217 struct md_rdev *rdev;
7218 int rv;
7219 int fit = (num_sectors == 0);
7220 sector_t old_dev_sectors = mddev->dev_sectors;
7221
7222 if (mddev->pers->resize == NULL)
7223 return -EINVAL;
7224 /* The "num_sectors" is the number of sectors of each device that
7225 * is used. This can only make sense for arrays with redundancy.
7226 * linear and raid0 always use whatever space is available. We can only
7227 * consider changing this number if no resync or reconstruction is
7228 * happening, and if the new size is acceptable. It must fit before the
7229 * sb_start or, if that is <data_offset, it must fit before the size
7230 * of each device. If num_sectors is zero, we find the largest size
7231 * that fits.
7232 */
7233 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7234 mddev->sync_thread)
7235 return -EBUSY;
7236 if (mddev->ro)
7237 return -EROFS;
7238
7239 rdev_for_each(rdev, mddev) {
7240 sector_t avail = rdev->sectors;
7241
7242 if (fit && (num_sectors == 0 || num_sectors > avail))
7243 num_sectors = avail;
7244 if (avail < num_sectors)
7245 return -ENOSPC;
7246 }
7247 rv = mddev->pers->resize(mddev, num_sectors);
7248 if (!rv) {
7249 if (mddev_is_clustered(mddev))
7250 md_cluster_ops->update_size(mddev, old_dev_sectors);
7251 else if (mddev->queue) {
7252 set_capacity_and_notify(mddev->gendisk,
7253 mddev->array_sectors);
7254 }
7255 }
7256 return rv;
7257}
7258
7259static int update_raid_disks(struct mddev *mddev, int raid_disks)
7260{
7261 int rv;
7262 struct md_rdev *rdev;
7263 /* change the number of raid disks */
7264 if (mddev->pers->check_reshape == NULL)
7265 return -EINVAL;
7266 if (mddev->ro)
7267 return -EROFS;
7268 if (raid_disks <= 0 ||
7269 (mddev->max_disks && raid_disks >= mddev->max_disks))
7270 return -EINVAL;
7271 if (mddev->sync_thread ||
7272 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7273 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7274 mddev->reshape_position != MaxSector)
7275 return -EBUSY;
7276
7277 rdev_for_each(rdev, mddev) {
7278 if (mddev->raid_disks < raid_disks &&
7279 rdev->data_offset < rdev->new_data_offset)
7280 return -EINVAL;
7281 if (mddev->raid_disks > raid_disks &&
7282 rdev->data_offset > rdev->new_data_offset)
7283 return -EINVAL;
7284 }
7285
7286 mddev->delta_disks = raid_disks - mddev->raid_disks;
7287 if (mddev->delta_disks < 0)
7288 mddev->reshape_backwards = 1;
7289 else if (mddev->delta_disks > 0)
7290 mddev->reshape_backwards = 0;
7291
7292 rv = mddev->pers->check_reshape(mddev);
7293 if (rv < 0) {
7294 mddev->delta_disks = 0;
7295 mddev->reshape_backwards = 0;
7296 }
7297 return rv;
7298}
7299
7300/*
7301 * update_array_info is used to change the configuration of an
7302 * on-line array.
7303 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7304 * fields in the info are checked against the array.
7305 * Any differences that cannot be handled will cause an error.
7306 * Normally, only one change can be managed at a time.
7307 */
7308static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7309{
7310 int rv = 0;
7311 int cnt = 0;
7312 int state = 0;
7313
7314 /* calculate expected state,ignoring low bits */
7315 if (mddev->bitmap && mddev->bitmap_info.offset)
7316 state |= (1 << MD_SB_BITMAP_PRESENT);
7317
7318 if (mddev->major_version != info->major_version ||
7319 mddev->minor_version != info->minor_version ||
7320/* mddev->patch_version != info->patch_version || */
7321 mddev->ctime != info->ctime ||
7322 mddev->level != info->level ||
7323/* mddev->layout != info->layout || */
7324 mddev->persistent != !info->not_persistent ||
7325 mddev->chunk_sectors != info->chunk_size >> 9 ||
7326 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7327 ((state^info->state) & 0xfffffe00)
7328 )
7329 return -EINVAL;
7330 /* Check there is only one change */
7331 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7332 cnt++;
7333 if (mddev->raid_disks != info->raid_disks)
7334 cnt++;
7335 if (mddev->layout != info->layout)
7336 cnt++;
7337 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7338 cnt++;
7339 if (cnt == 0)
7340 return 0;
7341 if (cnt > 1)
7342 return -EINVAL;
7343
7344 if (mddev->layout != info->layout) {
7345 /* Change layout
7346 * we don't need to do anything at the md level, the
7347 * personality will take care of it all.
7348 */
7349 if (mddev->pers->check_reshape == NULL)
7350 return -EINVAL;
7351 else {
7352 mddev->new_layout = info->layout;
7353 rv = mddev->pers->check_reshape(mddev);
7354 if (rv)
7355 mddev->new_layout = mddev->layout;
7356 return rv;
7357 }
7358 }
7359 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7360 rv = update_size(mddev, (sector_t)info->size * 2);
7361
7362 if (mddev->raid_disks != info->raid_disks)
7363 rv = update_raid_disks(mddev, info->raid_disks);
7364
7365 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7366 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7367 rv = -EINVAL;
7368 goto err;
7369 }
7370 if (mddev->recovery || mddev->sync_thread) {
7371 rv = -EBUSY;
7372 goto err;
7373 }
7374 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7375 struct bitmap *bitmap;
7376 /* add the bitmap */
7377 if (mddev->bitmap) {
7378 rv = -EEXIST;
7379 goto err;
7380 }
7381 if (mddev->bitmap_info.default_offset == 0) {
7382 rv = -EINVAL;
7383 goto err;
7384 }
7385 mddev->bitmap_info.offset =
7386 mddev->bitmap_info.default_offset;
7387 mddev->bitmap_info.space =
7388 mddev->bitmap_info.default_space;
7389 bitmap = md_bitmap_create(mddev, -1);
7390 mddev_suspend(mddev);
7391 if (!IS_ERR(bitmap)) {
7392 mddev->bitmap = bitmap;
7393 rv = md_bitmap_load(mddev);
7394 } else
7395 rv = PTR_ERR(bitmap);
7396 if (rv)
7397 md_bitmap_destroy(mddev);
7398 mddev_resume(mddev);
7399 } else {
7400 /* remove the bitmap */
7401 if (!mddev->bitmap) {
7402 rv = -ENOENT;
7403 goto err;
7404 }
7405 if (mddev->bitmap->storage.file) {
7406 rv = -EINVAL;
7407 goto err;
7408 }
7409 if (mddev->bitmap_info.nodes) {
7410 /* hold PW on all the bitmap lock */
7411 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7412 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7413 rv = -EPERM;
7414 md_cluster_ops->unlock_all_bitmaps(mddev);
7415 goto err;
7416 }
7417
7418 mddev->bitmap_info.nodes = 0;
7419 md_cluster_ops->leave(mddev);
7420 module_put(md_cluster_mod);
7421 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7422 }
7423 mddev_suspend(mddev);
7424 md_bitmap_destroy(mddev);
7425 mddev_resume(mddev);
7426 mddev->bitmap_info.offset = 0;
7427 }
7428 }
7429 md_update_sb(mddev, 1);
7430 return rv;
7431err:
7432 return rv;
7433}
7434
7435static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7436{
7437 struct md_rdev *rdev;
7438 int err = 0;
7439
7440 if (mddev->pers == NULL)
7441 return -ENODEV;
7442
7443 rcu_read_lock();
7444 rdev = md_find_rdev_rcu(mddev, dev);
7445 if (!rdev)
7446 err = -ENODEV;
7447 else {
7448 md_error(mddev, rdev);
7449 if (!test_bit(Faulty, &rdev->flags))
7450 err = -EBUSY;
7451 }
7452 rcu_read_unlock();
7453 return err;
7454}
7455
7456/*
7457 * We have a problem here : there is no easy way to give a CHS
7458 * virtual geometry. We currently pretend that we have a 2 heads
7459 * 4 sectors (with a BIG number of cylinders...). This drives
7460 * dosfs just mad... ;-)
7461 */
7462static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7463{
7464 struct mddev *mddev = bdev->bd_disk->private_data;
7465
7466 geo->heads = 2;
7467 geo->sectors = 4;
7468 geo->cylinders = mddev->array_sectors / 8;
7469 return 0;
7470}
7471
7472static inline bool md_ioctl_valid(unsigned int cmd)
7473{
7474 switch (cmd) {
7475 case ADD_NEW_DISK:
7476 case GET_ARRAY_INFO:
7477 case GET_BITMAP_FILE:
7478 case GET_DISK_INFO:
7479 case HOT_ADD_DISK:
7480 case HOT_REMOVE_DISK:
7481 case RAID_VERSION:
7482 case RESTART_ARRAY_RW:
7483 case RUN_ARRAY:
7484 case SET_ARRAY_INFO:
7485 case SET_BITMAP_FILE:
7486 case SET_DISK_FAULTY:
7487 case STOP_ARRAY:
7488 case STOP_ARRAY_RO:
7489 case CLUSTERED_DISK_NACK:
7490 return true;
7491 default:
7492 return false;
7493 }
7494}
7495
7496static int md_ioctl(struct block_device *bdev, fmode_t mode,
7497 unsigned int cmd, unsigned long arg)
7498{
7499 int err = 0;
7500 void __user *argp = (void __user *)arg;
7501 struct mddev *mddev = NULL;
7502 bool did_set_md_closing = false;
7503
7504 if (!md_ioctl_valid(cmd))
7505 return -ENOTTY;
7506
7507 switch (cmd) {
7508 case RAID_VERSION:
7509 case GET_ARRAY_INFO:
7510 case GET_DISK_INFO:
7511 break;
7512 default:
7513 if (!capable(CAP_SYS_ADMIN))
7514 return -EACCES;
7515 }
7516
7517 /*
7518 * Commands dealing with the RAID driver but not any
7519 * particular array:
7520 */
7521 switch (cmd) {
7522 case RAID_VERSION:
7523 err = get_version(argp);
7524 goto out;
7525 default:;
7526 }
7527
7528 /*
7529 * Commands creating/starting a new array:
7530 */
7531
7532 mddev = bdev->bd_disk->private_data;
7533
7534 if (!mddev) {
7535 BUG();
7536 goto out;
7537 }
7538
7539 /* Some actions do not requires the mutex */
7540 switch (cmd) {
7541 case GET_ARRAY_INFO:
7542 if (!mddev->raid_disks && !mddev->external)
7543 err = -ENODEV;
7544 else
7545 err = get_array_info(mddev, argp);
7546 goto out;
7547
7548 case GET_DISK_INFO:
7549 if (!mddev->raid_disks && !mddev->external)
7550 err = -ENODEV;
7551 else
7552 err = get_disk_info(mddev, argp);
7553 goto out;
7554
7555 case SET_DISK_FAULTY:
7556 err = set_disk_faulty(mddev, new_decode_dev(arg));
7557 goto out;
7558
7559 case GET_BITMAP_FILE:
7560 err = get_bitmap_file(mddev, argp);
7561 goto out;
7562
7563 }
7564
7565 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7566 flush_rdev_wq(mddev);
7567
7568 if (cmd == HOT_REMOVE_DISK)
7569 /* need to ensure recovery thread has run */
7570 wait_event_interruptible_timeout(mddev->sb_wait,
7571 !test_bit(MD_RECOVERY_NEEDED,
7572 &mddev->recovery),
7573 msecs_to_jiffies(5000));
7574 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7575 /* Need to flush page cache, and ensure no-one else opens
7576 * and writes
7577 */
7578 mutex_lock(&mddev->open_mutex);
7579 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7580 mutex_unlock(&mddev->open_mutex);
7581 err = -EBUSY;
7582 goto out;
7583 }
7584 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7585 mutex_unlock(&mddev->open_mutex);
7586 err = -EBUSY;
7587 goto out;
7588 }
7589 did_set_md_closing = true;
7590 mutex_unlock(&mddev->open_mutex);
7591 sync_blockdev(bdev);
7592 }
7593 err = mddev_lock(mddev);
7594 if (err) {
7595 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7596 err, cmd);
7597 goto out;
7598 }
7599
7600 if (cmd == SET_ARRAY_INFO) {
7601 mdu_array_info_t info;
7602 if (!arg)
7603 memset(&info, 0, sizeof(info));
7604 else if (copy_from_user(&info, argp, sizeof(info))) {
7605 err = -EFAULT;
7606 goto unlock;
7607 }
7608 if (mddev->pers) {
7609 err = update_array_info(mddev, &info);
7610 if (err) {
7611 pr_warn("md: couldn't update array info. %d\n", err);
7612 goto unlock;
7613 }
7614 goto unlock;
7615 }
7616 if (!list_empty(&mddev->disks)) {
7617 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7618 err = -EBUSY;
7619 goto unlock;
7620 }
7621 if (mddev->raid_disks) {
7622 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7623 err = -EBUSY;
7624 goto unlock;
7625 }
7626 err = md_set_array_info(mddev, &info);
7627 if (err) {
7628 pr_warn("md: couldn't set array info. %d\n", err);
7629 goto unlock;
7630 }
7631 goto unlock;
7632 }
7633
7634 /*
7635 * Commands querying/configuring an existing array:
7636 */
7637 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7638 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7639 if ((!mddev->raid_disks && !mddev->external)
7640 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7641 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7642 && cmd != GET_BITMAP_FILE) {
7643 err = -ENODEV;
7644 goto unlock;
7645 }
7646
7647 /*
7648 * Commands even a read-only array can execute:
7649 */
7650 switch (cmd) {
7651 case RESTART_ARRAY_RW:
7652 err = restart_array(mddev);
7653 goto unlock;
7654
7655 case STOP_ARRAY:
7656 err = do_md_stop(mddev, 0, bdev);
7657 goto unlock;
7658
7659 case STOP_ARRAY_RO:
7660 err = md_set_readonly(mddev, bdev);
7661 goto unlock;
7662
7663 case HOT_REMOVE_DISK:
7664 err = hot_remove_disk(mddev, new_decode_dev(arg));
7665 goto unlock;
7666
7667 case ADD_NEW_DISK:
7668 /* We can support ADD_NEW_DISK on read-only arrays
7669 * only if we are re-adding a preexisting device.
7670 * So require mddev->pers and MD_DISK_SYNC.
7671 */
7672 if (mddev->pers) {
7673 mdu_disk_info_t info;
7674 if (copy_from_user(&info, argp, sizeof(info)))
7675 err = -EFAULT;
7676 else if (!(info.state & (1<<MD_DISK_SYNC)))
7677 /* Need to clear read-only for this */
7678 break;
7679 else
7680 err = md_add_new_disk(mddev, &info);
7681 goto unlock;
7682 }
7683 break;
7684 }
7685
7686 /*
7687 * The remaining ioctls are changing the state of the
7688 * superblock, so we do not allow them on read-only arrays.
7689 */
7690 if (mddev->ro && mddev->pers) {
7691 if (mddev->ro == 2) {
7692 mddev->ro = 0;
7693 sysfs_notify_dirent_safe(mddev->sysfs_state);
7694 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7695 /* mddev_unlock will wake thread */
7696 /* If a device failed while we were read-only, we
7697 * need to make sure the metadata is updated now.
7698 */
7699 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7700 mddev_unlock(mddev);
7701 wait_event(mddev->sb_wait,
7702 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7703 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7704 mddev_lock_nointr(mddev);
7705 }
7706 } else {
7707 err = -EROFS;
7708 goto unlock;
7709 }
7710 }
7711
7712 switch (cmd) {
7713 case ADD_NEW_DISK:
7714 {
7715 mdu_disk_info_t info;
7716 if (copy_from_user(&info, argp, sizeof(info)))
7717 err = -EFAULT;
7718 else
7719 err = md_add_new_disk(mddev, &info);
7720 goto unlock;
7721 }
7722
7723 case CLUSTERED_DISK_NACK:
7724 if (mddev_is_clustered(mddev))
7725 md_cluster_ops->new_disk_ack(mddev, false);
7726 else
7727 err = -EINVAL;
7728 goto unlock;
7729
7730 case HOT_ADD_DISK:
7731 err = hot_add_disk(mddev, new_decode_dev(arg));
7732 goto unlock;
7733
7734 case RUN_ARRAY:
7735 err = do_md_run(mddev);
7736 goto unlock;
7737
7738 case SET_BITMAP_FILE:
7739 err = set_bitmap_file(mddev, (int)arg);
7740 goto unlock;
7741
7742 default:
7743 err = -EINVAL;
7744 goto unlock;
7745 }
7746
7747unlock:
7748 if (mddev->hold_active == UNTIL_IOCTL &&
7749 err != -EINVAL)
7750 mddev->hold_active = 0;
7751 mddev_unlock(mddev);
7752out:
7753 if(did_set_md_closing)
7754 clear_bit(MD_CLOSING, &mddev->flags);
7755 return err;
7756}
7757#ifdef CONFIG_COMPAT
7758static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7759 unsigned int cmd, unsigned long arg)
7760{
7761 switch (cmd) {
7762 case HOT_REMOVE_DISK:
7763 case HOT_ADD_DISK:
7764 case SET_DISK_FAULTY:
7765 case SET_BITMAP_FILE:
7766 /* These take in integer arg, do not convert */
7767 break;
7768 default:
7769 arg = (unsigned long)compat_ptr(arg);
7770 break;
7771 }
7772
7773 return md_ioctl(bdev, mode, cmd, arg);
7774}
7775#endif /* CONFIG_COMPAT */
7776
7777static int md_set_read_only(struct block_device *bdev, bool ro)
7778{
7779 struct mddev *mddev = bdev->bd_disk->private_data;
7780 int err;
7781
7782 err = mddev_lock(mddev);
7783 if (err)
7784 return err;
7785
7786 if (!mddev->raid_disks && !mddev->external) {
7787 err = -ENODEV;
7788 goto out_unlock;
7789 }
7790
7791 /*
7792 * Transitioning to read-auto need only happen for arrays that call
7793 * md_write_start and which are not ready for writes yet.
7794 */
7795 if (!ro && mddev->ro == 1 && mddev->pers) {
7796 err = restart_array(mddev);
7797 if (err)
7798 goto out_unlock;
7799 mddev->ro = 2;
7800 }
7801
7802out_unlock:
7803 mddev_unlock(mddev);
7804 return err;
7805}
7806
7807static int md_open(struct block_device *bdev, fmode_t mode)
7808{
7809 /*
7810 * Succeed if we can lock the mddev, which confirms that
7811 * it isn't being stopped right now.
7812 */
7813 struct mddev *mddev = mddev_find(bdev->bd_dev);
7814 int err;
7815
7816 if (!mddev)
7817 return -ENODEV;
7818
7819 if (mddev->gendisk != bdev->bd_disk) {
7820 /* we are racing with mddev_put which is discarding this
7821 * bd_disk.
7822 */
7823 mddev_put(mddev);
7824 /* Wait until bdev->bd_disk is definitely gone */
7825 if (work_pending(&mddev->del_work))
7826 flush_workqueue(md_misc_wq);
7827 return -EBUSY;
7828 }
7829 BUG_ON(mddev != bdev->bd_disk->private_data);
7830
7831 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7832 goto out;
7833
7834 if (test_bit(MD_CLOSING, &mddev->flags)) {
7835 mutex_unlock(&mddev->open_mutex);
7836 err = -ENODEV;
7837 goto out;
7838 }
7839
7840 err = 0;
7841 atomic_inc(&mddev->openers);
7842 mutex_unlock(&mddev->open_mutex);
7843
7844 bdev_check_media_change(bdev);
7845 out:
7846 if (err)
7847 mddev_put(mddev);
7848 return err;
7849}
7850
7851static void md_release(struct gendisk *disk, fmode_t mode)
7852{
7853 struct mddev *mddev = disk->private_data;
7854
7855 BUG_ON(!mddev);
7856 atomic_dec(&mddev->openers);
7857 mddev_put(mddev);
7858}
7859
7860static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7861{
7862 struct mddev *mddev = disk->private_data;
7863 unsigned int ret = 0;
7864
7865 if (mddev->changed)
7866 ret = DISK_EVENT_MEDIA_CHANGE;
7867 mddev->changed = 0;
7868 return ret;
7869}
7870
7871const struct block_device_operations md_fops =
7872{
7873 .owner = THIS_MODULE,
7874 .submit_bio = md_submit_bio,
7875 .open = md_open,
7876 .release = md_release,
7877 .ioctl = md_ioctl,
7878#ifdef CONFIG_COMPAT
7879 .compat_ioctl = md_compat_ioctl,
7880#endif
7881 .getgeo = md_getgeo,
7882 .check_events = md_check_events,
7883 .set_read_only = md_set_read_only,
7884};
7885
7886static int md_thread(void *arg)
7887{
7888 struct md_thread *thread = arg;
7889
7890 /*
7891 * md_thread is a 'system-thread', it's priority should be very
7892 * high. We avoid resource deadlocks individually in each
7893 * raid personality. (RAID5 does preallocation) We also use RR and
7894 * the very same RT priority as kswapd, thus we will never get
7895 * into a priority inversion deadlock.
7896 *
7897 * we definitely have to have equal or higher priority than
7898 * bdflush, otherwise bdflush will deadlock if there are too
7899 * many dirty RAID5 blocks.
7900 */
7901
7902 allow_signal(SIGKILL);
7903 while (!kthread_should_stop()) {
7904
7905 /* We need to wait INTERRUPTIBLE so that
7906 * we don't add to the load-average.
7907 * That means we need to be sure no signals are
7908 * pending
7909 */
7910 if (signal_pending(current))
7911 flush_signals(current);
7912
7913 wait_event_interruptible_timeout
7914 (thread->wqueue,
7915 test_bit(THREAD_WAKEUP, &thread->flags)
7916 || kthread_should_stop() || kthread_should_park(),
7917 thread->timeout);
7918
7919 clear_bit(THREAD_WAKEUP, &thread->flags);
7920 if (kthread_should_park())
7921 kthread_parkme();
7922 if (!kthread_should_stop())
7923 thread->run(thread);
7924 }
7925
7926 return 0;
7927}
7928
7929void md_wakeup_thread(struct md_thread *thread)
7930{
7931 if (thread) {
7932 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7933 set_bit(THREAD_WAKEUP, &thread->flags);
7934 wake_up(&thread->wqueue);
7935 }
7936}
7937EXPORT_SYMBOL(md_wakeup_thread);
7938
7939struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7940 struct mddev *mddev, const char *name)
7941{
7942 struct md_thread *thread;
7943
7944 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7945 if (!thread)
7946 return NULL;
7947
7948 init_waitqueue_head(&thread->wqueue);
7949
7950 thread->run = run;
7951 thread->mddev = mddev;
7952 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7953 thread->tsk = kthread_run(md_thread, thread,
7954 "%s_%s",
7955 mdname(thread->mddev),
7956 name);
7957 if (IS_ERR(thread->tsk)) {
7958 kfree(thread);
7959 return NULL;
7960 }
7961 return thread;
7962}
7963EXPORT_SYMBOL(md_register_thread);
7964
7965void md_unregister_thread(struct md_thread **threadp)
7966{
7967 struct md_thread *thread = *threadp;
7968 if (!thread)
7969 return;
7970 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7971 /* Locking ensures that mddev_unlock does not wake_up a
7972 * non-existent thread
7973 */
7974 spin_lock(&pers_lock);
7975 *threadp = NULL;
7976 spin_unlock(&pers_lock);
7977
7978 kthread_stop(thread->tsk);
7979 kfree(thread);
7980}
7981EXPORT_SYMBOL(md_unregister_thread);
7982
7983void md_error(struct mddev *mddev, struct md_rdev *rdev)
7984{
7985 if (!rdev || test_bit(Faulty, &rdev->flags))
7986 return;
7987
7988 if (!mddev->pers || !mddev->pers->error_handler)
7989 return;
7990 mddev->pers->error_handler(mddev,rdev);
7991 if (mddev->degraded)
7992 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7993 sysfs_notify_dirent_safe(rdev->sysfs_state);
7994 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7995 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7996 md_wakeup_thread(mddev->thread);
7997 if (mddev->event_work.func)
7998 queue_work(md_misc_wq, &mddev->event_work);
7999 md_new_event();
8000}
8001EXPORT_SYMBOL(md_error);
8002
8003/* seq_file implementation /proc/mdstat */
8004
8005static void status_unused(struct seq_file *seq)
8006{
8007 int i = 0;
8008 struct md_rdev *rdev;
8009
8010 seq_printf(seq, "unused devices: ");
8011
8012 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8013 char b[BDEVNAME_SIZE];
8014 i++;
8015 seq_printf(seq, "%s ",
8016 bdevname(rdev->bdev,b));
8017 }
8018 if (!i)
8019 seq_printf(seq, "<none>");
8020
8021 seq_printf(seq, "\n");
8022}
8023
8024static int status_resync(struct seq_file *seq, struct mddev *mddev)
8025{
8026 sector_t max_sectors, resync, res;
8027 unsigned long dt, db = 0;
8028 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8029 int scale, recovery_active;
8030 unsigned int per_milli;
8031
8032 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8033 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8034 max_sectors = mddev->resync_max_sectors;
8035 else
8036 max_sectors = mddev->dev_sectors;
8037
8038 resync = mddev->curr_resync;
8039 if (resync <= 3) {
8040 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8041 /* Still cleaning up */
8042 resync = max_sectors;
8043 } else if (resync > max_sectors)
8044 resync = max_sectors;
8045 else
8046 resync -= atomic_read(&mddev->recovery_active);
8047
8048 if (resync == 0) {
8049 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8050 struct md_rdev *rdev;
8051
8052 rdev_for_each(rdev, mddev)
8053 if (rdev->raid_disk >= 0 &&
8054 !test_bit(Faulty, &rdev->flags) &&
8055 rdev->recovery_offset != MaxSector &&
8056 rdev->recovery_offset) {
8057 seq_printf(seq, "\trecover=REMOTE");
8058 return 1;
8059 }
8060 if (mddev->reshape_position != MaxSector)
8061 seq_printf(seq, "\treshape=REMOTE");
8062 else
8063 seq_printf(seq, "\tresync=REMOTE");
8064 return 1;
8065 }
8066 if (mddev->recovery_cp < MaxSector) {
8067 seq_printf(seq, "\tresync=PENDING");
8068 return 1;
8069 }
8070 return 0;
8071 }
8072 if (resync < 3) {
8073 seq_printf(seq, "\tresync=DELAYED");
8074 return 1;
8075 }
8076
8077 WARN_ON(max_sectors == 0);
8078 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8079 * in a sector_t, and (max_sectors>>scale) will fit in a
8080 * u32, as those are the requirements for sector_div.
8081 * Thus 'scale' must be at least 10
8082 */
8083 scale = 10;
8084 if (sizeof(sector_t) > sizeof(unsigned long)) {
8085 while ( max_sectors/2 > (1ULL<<(scale+32)))
8086 scale++;
8087 }
8088 res = (resync>>scale)*1000;
8089 sector_div(res, (u32)((max_sectors>>scale)+1));
8090
8091 per_milli = res;
8092 {
8093 int i, x = per_milli/50, y = 20-x;
8094 seq_printf(seq, "[");
8095 for (i = 0; i < x; i++)
8096 seq_printf(seq, "=");
8097 seq_printf(seq, ">");
8098 for (i = 0; i < y; i++)
8099 seq_printf(seq, ".");
8100 seq_printf(seq, "] ");
8101 }
8102 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8103 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8104 "reshape" :
8105 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8106 "check" :
8107 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8108 "resync" : "recovery"))),
8109 per_milli/10, per_milli % 10,
8110 (unsigned long long) resync/2,
8111 (unsigned long long) max_sectors/2);
8112
8113 /*
8114 * dt: time from mark until now
8115 * db: blocks written from mark until now
8116 * rt: remaining time
8117 *
8118 * rt is a sector_t, which is always 64bit now. We are keeping
8119 * the original algorithm, but it is not really necessary.
8120 *
8121 * Original algorithm:
8122 * So we divide before multiply in case it is 32bit and close
8123 * to the limit.
8124 * We scale the divisor (db) by 32 to avoid losing precision
8125 * near the end of resync when the number of remaining sectors
8126 * is close to 'db'.
8127 * We then divide rt by 32 after multiplying by db to compensate.
8128 * The '+1' avoids division by zero if db is very small.
8129 */
8130 dt = ((jiffies - mddev->resync_mark) / HZ);
8131 if (!dt) dt++;
8132
8133 curr_mark_cnt = mddev->curr_mark_cnt;
8134 recovery_active = atomic_read(&mddev->recovery_active);
8135 resync_mark_cnt = mddev->resync_mark_cnt;
8136
8137 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8138 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8139
8140 rt = max_sectors - resync; /* number of remaining sectors */
8141 rt = div64_u64(rt, db/32+1);
8142 rt *= dt;
8143 rt >>= 5;
8144
8145 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8146 ((unsigned long)rt % 60)/6);
8147
8148 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8149 return 1;
8150}
8151
8152static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8153{
8154 struct list_head *tmp;
8155 loff_t l = *pos;
8156 struct mddev *mddev;
8157
8158 if (l == 0x10000) {
8159 ++*pos;
8160 return (void *)2;
8161 }
8162 if (l > 0x10000)
8163 return NULL;
8164 if (!l--)
8165 /* header */
8166 return (void*)1;
8167
8168 spin_lock(&all_mddevs_lock);
8169 list_for_each(tmp,&all_mddevs)
8170 if (!l--) {
8171 mddev = list_entry(tmp, struct mddev, all_mddevs);
8172 mddev_get(mddev);
8173 spin_unlock(&all_mddevs_lock);
8174 return mddev;
8175 }
8176 spin_unlock(&all_mddevs_lock);
8177 if (!l--)
8178 return (void*)2;/* tail */
8179 return NULL;
8180}
8181
8182static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8183{
8184 struct list_head *tmp;
8185 struct mddev *next_mddev, *mddev = v;
8186
8187 ++*pos;
8188 if (v == (void*)2)
8189 return NULL;
8190
8191 spin_lock(&all_mddevs_lock);
8192 if (v == (void*)1)
8193 tmp = all_mddevs.next;
8194 else
8195 tmp = mddev->all_mddevs.next;
8196 if (tmp != &all_mddevs)
8197 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8198 else {
8199 next_mddev = (void*)2;
8200 *pos = 0x10000;
8201 }
8202 spin_unlock(&all_mddevs_lock);
8203
8204 if (v != (void*)1)
8205 mddev_put(mddev);
8206 return next_mddev;
8207
8208}
8209
8210static void md_seq_stop(struct seq_file *seq, void *v)
8211{
8212 struct mddev *mddev = v;
8213
8214 if (mddev && v != (void*)1 && v != (void*)2)
8215 mddev_put(mddev);
8216}
8217
8218static int md_seq_show(struct seq_file *seq, void *v)
8219{
8220 struct mddev *mddev = v;
8221 sector_t sectors;
8222 struct md_rdev *rdev;
8223
8224 if (v == (void*)1) {
8225 struct md_personality *pers;
8226 seq_printf(seq, "Personalities : ");
8227 spin_lock(&pers_lock);
8228 list_for_each_entry(pers, &pers_list, list)
8229 seq_printf(seq, "[%s] ", pers->name);
8230
8231 spin_unlock(&pers_lock);
8232 seq_printf(seq, "\n");
8233 seq->poll_event = atomic_read(&md_event_count);
8234 return 0;
8235 }
8236 if (v == (void*)2) {
8237 status_unused(seq);
8238 return 0;
8239 }
8240
8241 spin_lock(&mddev->lock);
8242 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8243 seq_printf(seq, "%s : %sactive", mdname(mddev),
8244 mddev->pers ? "" : "in");
8245 if (mddev->pers) {
8246 if (mddev->ro==1)
8247 seq_printf(seq, " (read-only)");
8248 if (mddev->ro==2)
8249 seq_printf(seq, " (auto-read-only)");
8250 seq_printf(seq, " %s", mddev->pers->name);
8251 }
8252
8253 sectors = 0;
8254 rcu_read_lock();
8255 rdev_for_each_rcu(rdev, mddev) {
8256 char b[BDEVNAME_SIZE];
8257 seq_printf(seq, " %s[%d]",
8258 bdevname(rdev->bdev,b), rdev->desc_nr);
8259 if (test_bit(WriteMostly, &rdev->flags))
8260 seq_printf(seq, "(W)");
8261 if (test_bit(Journal, &rdev->flags))
8262 seq_printf(seq, "(J)");
8263 if (test_bit(Faulty, &rdev->flags)) {
8264 seq_printf(seq, "(F)");
8265 continue;
8266 }
8267 if (rdev->raid_disk < 0)
8268 seq_printf(seq, "(S)"); /* spare */
8269 if (test_bit(Replacement, &rdev->flags))
8270 seq_printf(seq, "(R)");
8271 sectors += rdev->sectors;
8272 }
8273 rcu_read_unlock();
8274
8275 if (!list_empty(&mddev->disks)) {
8276 if (mddev->pers)
8277 seq_printf(seq, "\n %llu blocks",
8278 (unsigned long long)
8279 mddev->array_sectors / 2);
8280 else
8281 seq_printf(seq, "\n %llu blocks",
8282 (unsigned long long)sectors / 2);
8283 }
8284 if (mddev->persistent) {
8285 if (mddev->major_version != 0 ||
8286 mddev->minor_version != 90) {
8287 seq_printf(seq," super %d.%d",
8288 mddev->major_version,
8289 mddev->minor_version);
8290 }
8291 } else if (mddev->external)
8292 seq_printf(seq, " super external:%s",
8293 mddev->metadata_type);
8294 else
8295 seq_printf(seq, " super non-persistent");
8296
8297 if (mddev->pers) {
8298 mddev->pers->status(seq, mddev);
8299 seq_printf(seq, "\n ");
8300 if (mddev->pers->sync_request) {
8301 if (status_resync(seq, mddev))
8302 seq_printf(seq, "\n ");
8303 }
8304 } else
8305 seq_printf(seq, "\n ");
8306
8307 md_bitmap_status(seq, mddev->bitmap);
8308
8309 seq_printf(seq, "\n");
8310 }
8311 spin_unlock(&mddev->lock);
8312
8313 return 0;
8314}
8315
8316static const struct seq_operations md_seq_ops = {
8317 .start = md_seq_start,
8318 .next = md_seq_next,
8319 .stop = md_seq_stop,
8320 .show = md_seq_show,
8321};
8322
8323static int md_seq_open(struct inode *inode, struct file *file)
8324{
8325 struct seq_file *seq;
8326 int error;
8327
8328 error = seq_open(file, &md_seq_ops);
8329 if (error)
8330 return error;
8331
8332 seq = file->private_data;
8333 seq->poll_event = atomic_read(&md_event_count);
8334 return error;
8335}
8336
8337static int md_unloading;
8338static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8339{
8340 struct seq_file *seq = filp->private_data;
8341 __poll_t mask;
8342
8343 if (md_unloading)
8344 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8345 poll_wait(filp, &md_event_waiters, wait);
8346
8347 /* always allow read */
8348 mask = EPOLLIN | EPOLLRDNORM;
8349
8350 if (seq->poll_event != atomic_read(&md_event_count))
8351 mask |= EPOLLERR | EPOLLPRI;
8352 return mask;
8353}
8354
8355static const struct proc_ops mdstat_proc_ops = {
8356 .proc_open = md_seq_open,
8357 .proc_read = seq_read,
8358 .proc_lseek = seq_lseek,
8359 .proc_release = seq_release,
8360 .proc_poll = mdstat_poll,
8361};
8362
8363int register_md_personality(struct md_personality *p)
8364{
8365 pr_debug("md: %s personality registered for level %d\n",
8366 p->name, p->level);
8367 spin_lock(&pers_lock);
8368 list_add_tail(&p->list, &pers_list);
8369 spin_unlock(&pers_lock);
8370 return 0;
8371}
8372EXPORT_SYMBOL(register_md_personality);
8373
8374int unregister_md_personality(struct md_personality *p)
8375{
8376 pr_debug("md: %s personality unregistered\n", p->name);
8377 spin_lock(&pers_lock);
8378 list_del_init(&p->list);
8379 spin_unlock(&pers_lock);
8380 return 0;
8381}
8382EXPORT_SYMBOL(unregister_md_personality);
8383
8384int register_md_cluster_operations(struct md_cluster_operations *ops,
8385 struct module *module)
8386{
8387 int ret = 0;
8388 spin_lock(&pers_lock);
8389 if (md_cluster_ops != NULL)
8390 ret = -EALREADY;
8391 else {
8392 md_cluster_ops = ops;
8393 md_cluster_mod = module;
8394 }
8395 spin_unlock(&pers_lock);
8396 return ret;
8397}
8398EXPORT_SYMBOL(register_md_cluster_operations);
8399
8400int unregister_md_cluster_operations(void)
8401{
8402 spin_lock(&pers_lock);
8403 md_cluster_ops = NULL;
8404 spin_unlock(&pers_lock);
8405 return 0;
8406}
8407EXPORT_SYMBOL(unregister_md_cluster_operations);
8408
8409int md_setup_cluster(struct mddev *mddev, int nodes)
8410{
8411 int ret;
8412 if (!md_cluster_ops)
8413 request_module("md-cluster");
8414 spin_lock(&pers_lock);
8415 /* ensure module won't be unloaded */
8416 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8417 pr_warn("can't find md-cluster module or get its reference.\n");
8418 spin_unlock(&pers_lock);
8419 return -ENOENT;
8420 }
8421 spin_unlock(&pers_lock);
8422
8423 ret = md_cluster_ops->join(mddev, nodes);
8424 if (!ret)
8425 mddev->safemode_delay = 0;
8426 return ret;
8427}
8428
8429void md_cluster_stop(struct mddev *mddev)
8430{
8431 if (!md_cluster_ops)
8432 return;
8433 md_cluster_ops->leave(mddev);
8434 module_put(md_cluster_mod);
8435}
8436
8437static int is_mddev_idle(struct mddev *mddev, int init)
8438{
8439 struct md_rdev *rdev;
8440 int idle;
8441 int curr_events;
8442
8443 idle = 1;
8444 rcu_read_lock();
8445 rdev_for_each_rcu(rdev, mddev) {
8446 struct gendisk *disk = rdev->bdev->bd_disk;
8447 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8448 atomic_read(&disk->sync_io);
8449 /* sync IO will cause sync_io to increase before the disk_stats
8450 * as sync_io is counted when a request starts, and
8451 * disk_stats is counted when it completes.
8452 * So resync activity will cause curr_events to be smaller than
8453 * when there was no such activity.
8454 * non-sync IO will cause disk_stat to increase without
8455 * increasing sync_io so curr_events will (eventually)
8456 * be larger than it was before. Once it becomes
8457 * substantially larger, the test below will cause
8458 * the array to appear non-idle, and resync will slow
8459 * down.
8460 * If there is a lot of outstanding resync activity when
8461 * we set last_event to curr_events, then all that activity
8462 * completing might cause the array to appear non-idle
8463 * and resync will be slowed down even though there might
8464 * not have been non-resync activity. This will only
8465 * happen once though. 'last_events' will soon reflect
8466 * the state where there is little or no outstanding
8467 * resync requests, and further resync activity will
8468 * always make curr_events less than last_events.
8469 *
8470 */
8471 if (init || curr_events - rdev->last_events > 64) {
8472 rdev->last_events = curr_events;
8473 idle = 0;
8474 }
8475 }
8476 rcu_read_unlock();
8477 return idle;
8478}
8479
8480void md_done_sync(struct mddev *mddev, int blocks, int ok)
8481{
8482 /* another "blocks" (512byte) blocks have been synced */
8483 atomic_sub(blocks, &mddev->recovery_active);
8484 wake_up(&mddev->recovery_wait);
8485 if (!ok) {
8486 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8487 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8488 md_wakeup_thread(mddev->thread);
8489 // stop recovery, signal do_sync ....
8490 }
8491}
8492EXPORT_SYMBOL(md_done_sync);
8493
8494/* md_write_start(mddev, bi)
8495 * If we need to update some array metadata (e.g. 'active' flag
8496 * in superblock) before writing, schedule a superblock update
8497 * and wait for it to complete.
8498 * A return value of 'false' means that the write wasn't recorded
8499 * and cannot proceed as the array is being suspend.
8500 */
8501bool md_write_start(struct mddev *mddev, struct bio *bi)
8502{
8503 int did_change = 0;
8504
8505 if (bio_data_dir(bi) != WRITE)
8506 return true;
8507
8508 BUG_ON(mddev->ro == 1);
8509 if (mddev->ro == 2) {
8510 /* need to switch to read/write */
8511 mddev->ro = 0;
8512 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8513 md_wakeup_thread(mddev->thread);
8514 md_wakeup_thread(mddev->sync_thread);
8515 did_change = 1;
8516 }
8517 rcu_read_lock();
8518 percpu_ref_get(&mddev->writes_pending);
8519 smp_mb(); /* Match smp_mb in set_in_sync() */
8520 if (mddev->safemode == 1)
8521 mddev->safemode = 0;
8522 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8523 if (mddev->in_sync || mddev->sync_checkers) {
8524 spin_lock(&mddev->lock);
8525 if (mddev->in_sync) {
8526 mddev->in_sync = 0;
8527 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8528 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8529 md_wakeup_thread(mddev->thread);
8530 did_change = 1;
8531 }
8532 spin_unlock(&mddev->lock);
8533 }
8534 rcu_read_unlock();
8535 if (did_change)
8536 sysfs_notify_dirent_safe(mddev->sysfs_state);
8537 if (!mddev->has_superblocks)
8538 return true;
8539 wait_event(mddev->sb_wait,
8540 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8541 mddev->suspended);
8542 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8543 percpu_ref_put(&mddev->writes_pending);
8544 return false;
8545 }
8546 return true;
8547}
8548EXPORT_SYMBOL(md_write_start);
8549
8550/* md_write_inc can only be called when md_write_start() has
8551 * already been called at least once of the current request.
8552 * It increments the counter and is useful when a single request
8553 * is split into several parts. Each part causes an increment and
8554 * so needs a matching md_write_end().
8555 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8556 * a spinlocked region.
8557 */
8558void md_write_inc(struct mddev *mddev, struct bio *bi)
8559{
8560 if (bio_data_dir(bi) != WRITE)
8561 return;
8562 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8563 percpu_ref_get(&mddev->writes_pending);
8564}
8565EXPORT_SYMBOL(md_write_inc);
8566
8567void md_write_end(struct mddev *mddev)
8568{
8569 percpu_ref_put(&mddev->writes_pending);
8570
8571 if (mddev->safemode == 2)
8572 md_wakeup_thread(mddev->thread);
8573 else if (mddev->safemode_delay)
8574 /* The roundup() ensures this only performs locking once
8575 * every ->safemode_delay jiffies
8576 */
8577 mod_timer(&mddev->safemode_timer,
8578 roundup(jiffies, mddev->safemode_delay) +
8579 mddev->safemode_delay);
8580}
8581
8582EXPORT_SYMBOL(md_write_end);
8583
8584/* This is used by raid0 and raid10 */
8585void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8586 struct bio *bio, sector_t start, sector_t size)
8587{
8588 struct bio *discard_bio = NULL;
8589
8590 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8591 &discard_bio) || !discard_bio)
8592 return;
8593
8594 bio_chain(discard_bio, bio);
8595 bio_clone_blkg_association(discard_bio, bio);
8596 if (mddev->gendisk)
8597 trace_block_bio_remap(discard_bio,
8598 disk_devt(mddev->gendisk),
8599 bio->bi_iter.bi_sector);
8600 submit_bio_noacct(discard_bio);
8601}
8602EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8603
8604int acct_bioset_init(struct mddev *mddev)
8605{
8606 int err = 0;
8607
8608 if (!bioset_initialized(&mddev->io_acct_set))
8609 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8610 offsetof(struct md_io_acct, bio_clone), 0);
8611 return err;
8612}
8613EXPORT_SYMBOL_GPL(acct_bioset_init);
8614
8615void acct_bioset_exit(struct mddev *mddev)
8616{
8617 bioset_exit(&mddev->io_acct_set);
8618}
8619EXPORT_SYMBOL_GPL(acct_bioset_exit);
8620
8621static void md_end_io_acct(struct bio *bio)
8622{
8623 struct md_io_acct *md_io_acct = bio->bi_private;
8624 struct bio *orig_bio = md_io_acct->orig_bio;
8625
8626 orig_bio->bi_status = bio->bi_status;
8627
8628 bio_end_io_acct(orig_bio, md_io_acct->start_time);
8629 bio_put(bio);
8630 bio_endio(orig_bio);
8631}
8632
8633/*
8634 * Used by personalities that don't already clone the bio and thus can't
8635 * easily add the timestamp to their extended bio structure.
8636 */
8637void md_account_bio(struct mddev *mddev, struct bio **bio)
8638{
8639 struct md_io_acct *md_io_acct;
8640 struct bio *clone;
8641
8642 if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue))
8643 return;
8644
8645 clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set);
8646 md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8647 md_io_acct->orig_bio = *bio;
8648 md_io_acct->start_time = bio_start_io_acct(*bio);
8649
8650 clone->bi_end_io = md_end_io_acct;
8651 clone->bi_private = md_io_acct;
8652 *bio = clone;
8653}
8654EXPORT_SYMBOL_GPL(md_account_bio);
8655
8656/* md_allow_write(mddev)
8657 * Calling this ensures that the array is marked 'active' so that writes
8658 * may proceed without blocking. It is important to call this before
8659 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8660 * Must be called with mddev_lock held.
8661 */
8662void md_allow_write(struct mddev *mddev)
8663{
8664 if (!mddev->pers)
8665 return;
8666 if (mddev->ro)
8667 return;
8668 if (!mddev->pers->sync_request)
8669 return;
8670
8671 spin_lock(&mddev->lock);
8672 if (mddev->in_sync) {
8673 mddev->in_sync = 0;
8674 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8675 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8676 if (mddev->safemode_delay &&
8677 mddev->safemode == 0)
8678 mddev->safemode = 1;
8679 spin_unlock(&mddev->lock);
8680 md_update_sb(mddev, 0);
8681 sysfs_notify_dirent_safe(mddev->sysfs_state);
8682 /* wait for the dirty state to be recorded in the metadata */
8683 wait_event(mddev->sb_wait,
8684 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8685 } else
8686 spin_unlock(&mddev->lock);
8687}
8688EXPORT_SYMBOL_GPL(md_allow_write);
8689
8690#define SYNC_MARKS 10
8691#define SYNC_MARK_STEP (3*HZ)
8692#define UPDATE_FREQUENCY (5*60*HZ)
8693void md_do_sync(struct md_thread *thread)
8694{
8695 struct mddev *mddev = thread->mddev;
8696 struct mddev *mddev2;
8697 unsigned int currspeed = 0, window;
8698 sector_t max_sectors,j, io_sectors, recovery_done;
8699 unsigned long mark[SYNC_MARKS];
8700 unsigned long update_time;
8701 sector_t mark_cnt[SYNC_MARKS];
8702 int last_mark,m;
8703 struct list_head *tmp;
8704 sector_t last_check;
8705 int skipped = 0;
8706 struct md_rdev *rdev;
8707 char *desc, *action = NULL;
8708 struct blk_plug plug;
8709 int ret;
8710
8711 /* just incase thread restarts... */
8712 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8713 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8714 return;
8715 if (mddev->ro) {/* never try to sync a read-only array */
8716 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8717 return;
8718 }
8719
8720 if (mddev_is_clustered(mddev)) {
8721 ret = md_cluster_ops->resync_start(mddev);
8722 if (ret)
8723 goto skip;
8724
8725 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8726 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8727 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8728 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8729 && ((unsigned long long)mddev->curr_resync_completed
8730 < (unsigned long long)mddev->resync_max_sectors))
8731 goto skip;
8732 }
8733
8734 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8735 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8736 desc = "data-check";
8737 action = "check";
8738 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8739 desc = "requested-resync";
8740 action = "repair";
8741 } else
8742 desc = "resync";
8743 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8744 desc = "reshape";
8745 else
8746 desc = "recovery";
8747
8748 mddev->last_sync_action = action ?: desc;
8749
8750 /* we overload curr_resync somewhat here.
8751 * 0 == not engaged in resync at all
8752 * 2 == checking that there is no conflict with another sync
8753 * 1 == like 2, but have yielded to allow conflicting resync to
8754 * commence
8755 * other == active in resync - this many blocks
8756 *
8757 * Before starting a resync we must have set curr_resync to
8758 * 2, and then checked that every "conflicting" array has curr_resync
8759 * less than ours. When we find one that is the same or higher
8760 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8761 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8762 * This will mean we have to start checking from the beginning again.
8763 *
8764 */
8765
8766 do {
8767 int mddev2_minor = -1;
8768 mddev->curr_resync = 2;
8769
8770 try_again:
8771 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8772 goto skip;
8773 for_each_mddev(mddev2, tmp) {
8774 if (mddev2 == mddev)
8775 continue;
8776 if (!mddev->parallel_resync
8777 && mddev2->curr_resync
8778 && match_mddev_units(mddev, mddev2)) {
8779 DEFINE_WAIT(wq);
8780 if (mddev < mddev2 && mddev->curr_resync == 2) {
8781 /* arbitrarily yield */
8782 mddev->curr_resync = 1;
8783 wake_up(&resync_wait);
8784 }
8785 if (mddev > mddev2 && mddev->curr_resync == 1)
8786 /* no need to wait here, we can wait the next
8787 * time 'round when curr_resync == 2
8788 */
8789 continue;
8790 /* We need to wait 'interruptible' so as not to
8791 * contribute to the load average, and not to
8792 * be caught by 'softlockup'
8793 */
8794 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8795 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8796 mddev2->curr_resync >= mddev->curr_resync) {
8797 if (mddev2_minor != mddev2->md_minor) {
8798 mddev2_minor = mddev2->md_minor;
8799 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8800 desc, mdname(mddev),
8801 mdname(mddev2));
8802 }
8803 mddev_put(mddev2);
8804 if (signal_pending(current))
8805 flush_signals(current);
8806 schedule();
8807 finish_wait(&resync_wait, &wq);
8808 goto try_again;
8809 }
8810 finish_wait(&resync_wait, &wq);
8811 }
8812 }
8813 } while (mddev->curr_resync < 2);
8814
8815 j = 0;
8816 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8817 /* resync follows the size requested by the personality,
8818 * which defaults to physical size, but can be virtual size
8819 */
8820 max_sectors = mddev->resync_max_sectors;
8821 atomic64_set(&mddev->resync_mismatches, 0);
8822 /* we don't use the checkpoint if there's a bitmap */
8823 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8824 j = mddev->resync_min;
8825 else if (!mddev->bitmap)
8826 j = mddev->recovery_cp;
8827
8828 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8829 max_sectors = mddev->resync_max_sectors;
8830 /*
8831 * If the original node aborts reshaping then we continue the
8832 * reshaping, so set j again to avoid restart reshape from the
8833 * first beginning
8834 */
8835 if (mddev_is_clustered(mddev) &&
8836 mddev->reshape_position != MaxSector)
8837 j = mddev->reshape_position;
8838 } else {
8839 /* recovery follows the physical size of devices */
8840 max_sectors = mddev->dev_sectors;
8841 j = MaxSector;
8842 rcu_read_lock();
8843 rdev_for_each_rcu(rdev, mddev)
8844 if (rdev->raid_disk >= 0 &&
8845 !test_bit(Journal, &rdev->flags) &&
8846 !test_bit(Faulty, &rdev->flags) &&
8847 !test_bit(In_sync, &rdev->flags) &&
8848 rdev->recovery_offset < j)
8849 j = rdev->recovery_offset;
8850 rcu_read_unlock();
8851
8852 /* If there is a bitmap, we need to make sure all
8853 * writes that started before we added a spare
8854 * complete before we start doing a recovery.
8855 * Otherwise the write might complete and (via
8856 * bitmap_endwrite) set a bit in the bitmap after the
8857 * recovery has checked that bit and skipped that
8858 * region.
8859 */
8860 if (mddev->bitmap) {
8861 mddev->pers->quiesce(mddev, 1);
8862 mddev->pers->quiesce(mddev, 0);
8863 }
8864 }
8865
8866 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8867 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8868 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8869 speed_max(mddev), desc);
8870
8871 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8872
8873 io_sectors = 0;
8874 for (m = 0; m < SYNC_MARKS; m++) {
8875 mark[m] = jiffies;
8876 mark_cnt[m] = io_sectors;
8877 }
8878 last_mark = 0;
8879 mddev->resync_mark = mark[last_mark];
8880 mddev->resync_mark_cnt = mark_cnt[last_mark];
8881
8882 /*
8883 * Tune reconstruction:
8884 */
8885 window = 32 * (PAGE_SIZE / 512);
8886 pr_debug("md: using %dk window, over a total of %lluk.\n",
8887 window/2, (unsigned long long)max_sectors/2);
8888
8889 atomic_set(&mddev->recovery_active, 0);
8890 last_check = 0;
8891
8892 if (j>2) {
8893 pr_debug("md: resuming %s of %s from checkpoint.\n",
8894 desc, mdname(mddev));
8895 mddev->curr_resync = j;
8896 } else
8897 mddev->curr_resync = 3; /* no longer delayed */
8898 mddev->curr_resync_completed = j;
8899 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8900 md_new_event();
8901 update_time = jiffies;
8902
8903 blk_start_plug(&plug);
8904 while (j < max_sectors) {
8905 sector_t sectors;
8906
8907 skipped = 0;
8908
8909 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8910 ((mddev->curr_resync > mddev->curr_resync_completed &&
8911 (mddev->curr_resync - mddev->curr_resync_completed)
8912 > (max_sectors >> 4)) ||
8913 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8914 (j - mddev->curr_resync_completed)*2
8915 >= mddev->resync_max - mddev->curr_resync_completed ||
8916 mddev->curr_resync_completed > mddev->resync_max
8917 )) {
8918 /* time to update curr_resync_completed */
8919 wait_event(mddev->recovery_wait,
8920 atomic_read(&mddev->recovery_active) == 0);
8921 mddev->curr_resync_completed = j;
8922 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8923 j > mddev->recovery_cp)
8924 mddev->recovery_cp = j;
8925 update_time = jiffies;
8926 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8927 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8928 }
8929
8930 while (j >= mddev->resync_max &&
8931 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8932 /* As this condition is controlled by user-space,
8933 * we can block indefinitely, so use '_interruptible'
8934 * to avoid triggering warnings.
8935 */
8936 flush_signals(current); /* just in case */
8937 wait_event_interruptible(mddev->recovery_wait,
8938 mddev->resync_max > j
8939 || test_bit(MD_RECOVERY_INTR,
8940 &mddev->recovery));
8941 }
8942
8943 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8944 break;
8945
8946 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8947 if (sectors == 0) {
8948 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8949 break;
8950 }
8951
8952 if (!skipped) { /* actual IO requested */
8953 io_sectors += sectors;
8954 atomic_add(sectors, &mddev->recovery_active);
8955 }
8956
8957 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8958 break;
8959
8960 j += sectors;
8961 if (j > max_sectors)
8962 /* when skipping, extra large numbers can be returned. */
8963 j = max_sectors;
8964 if (j > 2)
8965 mddev->curr_resync = j;
8966 mddev->curr_mark_cnt = io_sectors;
8967 if (last_check == 0)
8968 /* this is the earliest that rebuild will be
8969 * visible in /proc/mdstat
8970 */
8971 md_new_event();
8972
8973 if (last_check + window > io_sectors || j == max_sectors)
8974 continue;
8975
8976 last_check = io_sectors;
8977 repeat:
8978 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8979 /* step marks */
8980 int next = (last_mark+1) % SYNC_MARKS;
8981
8982 mddev->resync_mark = mark[next];
8983 mddev->resync_mark_cnt = mark_cnt[next];
8984 mark[next] = jiffies;
8985 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8986 last_mark = next;
8987 }
8988
8989 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8990 break;
8991
8992 /*
8993 * this loop exits only if either when we are slower than
8994 * the 'hard' speed limit, or the system was IO-idle for
8995 * a jiffy.
8996 * the system might be non-idle CPU-wise, but we only care
8997 * about not overloading the IO subsystem. (things like an
8998 * e2fsck being done on the RAID array should execute fast)
8999 */
9000 cond_resched();
9001
9002 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9003 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9004 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9005
9006 if (currspeed > speed_min(mddev)) {
9007 if (currspeed > speed_max(mddev)) {
9008 msleep(500);
9009 goto repeat;
9010 }
9011 if (!is_mddev_idle(mddev, 0)) {
9012 /*
9013 * Give other IO more of a chance.
9014 * The faster the devices, the less we wait.
9015 */
9016 wait_event(mddev->recovery_wait,
9017 !atomic_read(&mddev->recovery_active));
9018 }
9019 }
9020 }
9021 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9022 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9023 ? "interrupted" : "done");
9024 /*
9025 * this also signals 'finished resyncing' to md_stop
9026 */
9027 blk_finish_plug(&plug);
9028 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9029
9030 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9031 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9032 mddev->curr_resync > 3) {
9033 mddev->curr_resync_completed = mddev->curr_resync;
9034 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9035 }
9036 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9037
9038 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9039 mddev->curr_resync > 3) {
9040 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9041 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9042 if (mddev->curr_resync >= mddev->recovery_cp) {
9043 pr_debug("md: checkpointing %s of %s.\n",
9044 desc, mdname(mddev));
9045 if (test_bit(MD_RECOVERY_ERROR,
9046 &mddev->recovery))
9047 mddev->recovery_cp =
9048 mddev->curr_resync_completed;
9049 else
9050 mddev->recovery_cp =
9051 mddev->curr_resync;
9052 }
9053 } else
9054 mddev->recovery_cp = MaxSector;
9055 } else {
9056 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9057 mddev->curr_resync = MaxSector;
9058 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9059 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9060 rcu_read_lock();
9061 rdev_for_each_rcu(rdev, mddev)
9062 if (rdev->raid_disk >= 0 &&
9063 mddev->delta_disks >= 0 &&
9064 !test_bit(Journal, &rdev->flags) &&
9065 !test_bit(Faulty, &rdev->flags) &&
9066 !test_bit(In_sync, &rdev->flags) &&
9067 rdev->recovery_offset < mddev->curr_resync)
9068 rdev->recovery_offset = mddev->curr_resync;
9069 rcu_read_unlock();
9070 }
9071 }
9072 }
9073 skip:
9074 /* set CHANGE_PENDING here since maybe another update is needed,
9075 * so other nodes are informed. It should be harmless for normal
9076 * raid */
9077 set_mask_bits(&mddev->sb_flags, 0,
9078 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9079
9080 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9081 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9082 mddev->delta_disks > 0 &&
9083 mddev->pers->finish_reshape &&
9084 mddev->pers->size &&
9085 mddev->queue) {
9086 mddev_lock_nointr(mddev);
9087 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9088 mddev_unlock(mddev);
9089 if (!mddev_is_clustered(mddev))
9090 set_capacity_and_notify(mddev->gendisk,
9091 mddev->array_sectors);
9092 }
9093
9094 spin_lock(&mddev->lock);
9095 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9096 /* We completed so min/max setting can be forgotten if used. */
9097 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9098 mddev->resync_min = 0;
9099 mddev->resync_max = MaxSector;
9100 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9101 mddev->resync_min = mddev->curr_resync_completed;
9102 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9103 mddev->curr_resync = 0;
9104 spin_unlock(&mddev->lock);
9105
9106 wake_up(&resync_wait);
9107 md_wakeup_thread(mddev->thread);
9108 return;
9109}
9110EXPORT_SYMBOL_GPL(md_do_sync);
9111
9112static int remove_and_add_spares(struct mddev *mddev,
9113 struct md_rdev *this)
9114{
9115 struct md_rdev *rdev;
9116 int spares = 0;
9117 int removed = 0;
9118 bool remove_some = false;
9119
9120 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9121 /* Mustn't remove devices when resync thread is running */
9122 return 0;
9123
9124 rdev_for_each(rdev, mddev) {
9125 if ((this == NULL || rdev == this) &&
9126 rdev->raid_disk >= 0 &&
9127 !test_bit(Blocked, &rdev->flags) &&
9128 test_bit(Faulty, &rdev->flags) &&
9129 atomic_read(&rdev->nr_pending)==0) {
9130 /* Faulty non-Blocked devices with nr_pending == 0
9131 * never get nr_pending incremented,
9132 * never get Faulty cleared, and never get Blocked set.
9133 * So we can synchronize_rcu now rather than once per device
9134 */
9135 remove_some = true;
9136 set_bit(RemoveSynchronized, &rdev->flags);
9137 }
9138 }
9139
9140 if (remove_some)
9141 synchronize_rcu();
9142 rdev_for_each(rdev, mddev) {
9143 if ((this == NULL || rdev == this) &&
9144 rdev->raid_disk >= 0 &&
9145 !test_bit(Blocked, &rdev->flags) &&
9146 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9147 (!test_bit(In_sync, &rdev->flags) &&
9148 !test_bit(Journal, &rdev->flags))) &&
9149 atomic_read(&rdev->nr_pending)==0)) {
9150 if (mddev->pers->hot_remove_disk(
9151 mddev, rdev) == 0) {
9152 sysfs_unlink_rdev(mddev, rdev);
9153 rdev->saved_raid_disk = rdev->raid_disk;
9154 rdev->raid_disk = -1;
9155 removed++;
9156 }
9157 }
9158 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9159 clear_bit(RemoveSynchronized, &rdev->flags);
9160 }
9161
9162 if (removed && mddev->kobj.sd)
9163 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9164
9165 if (this && removed)
9166 goto no_add;
9167
9168 rdev_for_each(rdev, mddev) {
9169 if (this && this != rdev)
9170 continue;
9171 if (test_bit(Candidate, &rdev->flags))
9172 continue;
9173 if (rdev->raid_disk >= 0 &&
9174 !test_bit(In_sync, &rdev->flags) &&
9175 !test_bit(Journal, &rdev->flags) &&
9176 !test_bit(Faulty, &rdev->flags))
9177 spares++;
9178 if (rdev->raid_disk >= 0)
9179 continue;
9180 if (test_bit(Faulty, &rdev->flags))
9181 continue;
9182 if (!test_bit(Journal, &rdev->flags)) {
9183 if (mddev->ro &&
9184 ! (rdev->saved_raid_disk >= 0 &&
9185 !test_bit(Bitmap_sync, &rdev->flags)))
9186 continue;
9187
9188 rdev->recovery_offset = 0;
9189 }
9190 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9191 /* failure here is OK */
9192 sysfs_link_rdev(mddev, rdev);
9193 if (!test_bit(Journal, &rdev->flags))
9194 spares++;
9195 md_new_event();
9196 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9197 }
9198 }
9199no_add:
9200 if (removed)
9201 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9202 return spares;
9203}
9204
9205static void md_start_sync(struct work_struct *ws)
9206{
9207 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9208
9209 mddev->sync_thread = md_register_thread(md_do_sync,
9210 mddev,
9211 "resync");
9212 if (!mddev->sync_thread) {
9213 pr_warn("%s: could not start resync thread...\n",
9214 mdname(mddev));
9215 /* leave the spares where they are, it shouldn't hurt */
9216 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9217 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9218 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9219 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9220 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9221 wake_up(&resync_wait);
9222 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9223 &mddev->recovery))
9224 if (mddev->sysfs_action)
9225 sysfs_notify_dirent_safe(mddev->sysfs_action);
9226 } else
9227 md_wakeup_thread(mddev->sync_thread);
9228 sysfs_notify_dirent_safe(mddev->sysfs_action);
9229 md_new_event();
9230}
9231
9232/*
9233 * This routine is regularly called by all per-raid-array threads to
9234 * deal with generic issues like resync and super-block update.
9235 * Raid personalities that don't have a thread (linear/raid0) do not
9236 * need this as they never do any recovery or update the superblock.
9237 *
9238 * It does not do any resync itself, but rather "forks" off other threads
9239 * to do that as needed.
9240 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9241 * "->recovery" and create a thread at ->sync_thread.
9242 * When the thread finishes it sets MD_RECOVERY_DONE
9243 * and wakeups up this thread which will reap the thread and finish up.
9244 * This thread also removes any faulty devices (with nr_pending == 0).
9245 *
9246 * The overall approach is:
9247 * 1/ if the superblock needs updating, update it.
9248 * 2/ If a recovery thread is running, don't do anything else.
9249 * 3/ If recovery has finished, clean up, possibly marking spares active.
9250 * 4/ If there are any faulty devices, remove them.
9251 * 5/ If array is degraded, try to add spares devices
9252 * 6/ If array has spares or is not in-sync, start a resync thread.
9253 */
9254void md_check_recovery(struct mddev *mddev)
9255{
9256 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9257 /* Write superblock - thread that called mddev_suspend()
9258 * holds reconfig_mutex for us.
9259 */
9260 set_bit(MD_UPDATING_SB, &mddev->flags);
9261 smp_mb__after_atomic();
9262 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9263 md_update_sb(mddev, 0);
9264 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9265 wake_up(&mddev->sb_wait);
9266 }
9267
9268 if (mddev->suspended)
9269 return;
9270
9271 if (mddev->bitmap)
9272 md_bitmap_daemon_work(mddev);
9273
9274 if (signal_pending(current)) {
9275 if (mddev->pers->sync_request && !mddev->external) {
9276 pr_debug("md: %s in immediate safe mode\n",
9277 mdname(mddev));
9278 mddev->safemode = 2;
9279 }
9280 flush_signals(current);
9281 }
9282
9283 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9284 return;
9285 if ( ! (
9286 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9287 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9288 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9289 (mddev->external == 0 && mddev->safemode == 1) ||
9290 (mddev->safemode == 2
9291 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9292 ))
9293 return;
9294
9295 if (mddev_trylock(mddev)) {
9296 int spares = 0;
9297 bool try_set_sync = mddev->safemode != 0;
9298
9299 if (!mddev->external && mddev->safemode == 1)
9300 mddev->safemode = 0;
9301
9302 if (mddev->ro) {
9303 struct md_rdev *rdev;
9304 if (!mddev->external && mddev->in_sync)
9305 /* 'Blocked' flag not needed as failed devices
9306 * will be recorded if array switched to read/write.
9307 * Leaving it set will prevent the device
9308 * from being removed.
9309 */
9310 rdev_for_each(rdev, mddev)
9311 clear_bit(Blocked, &rdev->flags);
9312 /* On a read-only array we can:
9313 * - remove failed devices
9314 * - add already-in_sync devices if the array itself
9315 * is in-sync.
9316 * As we only add devices that are already in-sync,
9317 * we can activate the spares immediately.
9318 */
9319 remove_and_add_spares(mddev, NULL);
9320 /* There is no thread, but we need to call
9321 * ->spare_active and clear saved_raid_disk
9322 */
9323 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9324 md_reap_sync_thread(mddev);
9325 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9326 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9327 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9328 goto unlock;
9329 }
9330
9331 if (mddev_is_clustered(mddev)) {
9332 struct md_rdev *rdev, *tmp;
9333 /* kick the device if another node issued a
9334 * remove disk.
9335 */
9336 rdev_for_each_safe(rdev, tmp, mddev) {
9337 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9338 rdev->raid_disk < 0)
9339 md_kick_rdev_from_array(rdev);
9340 }
9341 }
9342
9343 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9344 spin_lock(&mddev->lock);
9345 set_in_sync(mddev);
9346 spin_unlock(&mddev->lock);
9347 }
9348
9349 if (mddev->sb_flags)
9350 md_update_sb(mddev, 0);
9351
9352 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9353 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9354 /* resync/recovery still happening */
9355 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9356 goto unlock;
9357 }
9358 if (mddev->sync_thread) {
9359 md_reap_sync_thread(mddev);
9360 goto unlock;
9361 }
9362 /* Set RUNNING before clearing NEEDED to avoid
9363 * any transients in the value of "sync_action".
9364 */
9365 mddev->curr_resync_completed = 0;
9366 spin_lock(&mddev->lock);
9367 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9368 spin_unlock(&mddev->lock);
9369 /* Clear some bits that don't mean anything, but
9370 * might be left set
9371 */
9372 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9373 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9374
9375 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9376 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9377 goto not_running;
9378 /* no recovery is running.
9379 * remove any failed drives, then
9380 * add spares if possible.
9381 * Spares are also removed and re-added, to allow
9382 * the personality to fail the re-add.
9383 */
9384
9385 if (mddev->reshape_position != MaxSector) {
9386 if (mddev->pers->check_reshape == NULL ||
9387 mddev->pers->check_reshape(mddev) != 0)
9388 /* Cannot proceed */
9389 goto not_running;
9390 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9391 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9392 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9393 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9394 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9395 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9396 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9397 } else if (mddev->recovery_cp < MaxSector) {
9398 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9399 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9400 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9401 /* nothing to be done ... */
9402 goto not_running;
9403
9404 if (mddev->pers->sync_request) {
9405 if (spares) {
9406 /* We are adding a device or devices to an array
9407 * which has the bitmap stored on all devices.
9408 * So make sure all bitmap pages get written
9409 */
9410 md_bitmap_write_all(mddev->bitmap);
9411 }
9412 INIT_WORK(&mddev->del_work, md_start_sync);
9413 queue_work(md_misc_wq, &mddev->del_work);
9414 goto unlock;
9415 }
9416 not_running:
9417 if (!mddev->sync_thread) {
9418 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9419 wake_up(&resync_wait);
9420 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9421 &mddev->recovery))
9422 if (mddev->sysfs_action)
9423 sysfs_notify_dirent_safe(mddev->sysfs_action);
9424 }
9425 unlock:
9426 wake_up(&mddev->sb_wait);
9427 mddev_unlock(mddev);
9428 }
9429}
9430EXPORT_SYMBOL(md_check_recovery);
9431
9432void md_reap_sync_thread(struct mddev *mddev)
9433{
9434 struct md_rdev *rdev;
9435 sector_t old_dev_sectors = mddev->dev_sectors;
9436 bool is_reshaped = false;
9437
9438 /* resync has finished, collect result */
9439 md_unregister_thread(&mddev->sync_thread);
9440 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9441 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9442 mddev->degraded != mddev->raid_disks) {
9443 /* success...*/
9444 /* activate any spares */
9445 if (mddev->pers->spare_active(mddev)) {
9446 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9447 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9448 }
9449 }
9450 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9451 mddev->pers->finish_reshape) {
9452 mddev->pers->finish_reshape(mddev);
9453 if (mddev_is_clustered(mddev))
9454 is_reshaped = true;
9455 }
9456
9457 /* If array is no-longer degraded, then any saved_raid_disk
9458 * information must be scrapped.
9459 */
9460 if (!mddev->degraded)
9461 rdev_for_each(rdev, mddev)
9462 rdev->saved_raid_disk = -1;
9463
9464 md_update_sb(mddev, 1);
9465 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9466 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9467 * clustered raid */
9468 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9469 md_cluster_ops->resync_finish(mddev);
9470 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9471 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9472 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9473 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9474 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9475 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9476 /*
9477 * We call md_cluster_ops->update_size here because sync_size could
9478 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9479 * so it is time to update size across cluster.
9480 */
9481 if (mddev_is_clustered(mddev) && is_reshaped
9482 && !test_bit(MD_CLOSING, &mddev->flags))
9483 md_cluster_ops->update_size(mddev, old_dev_sectors);
9484 wake_up(&resync_wait);
9485 /* flag recovery needed just to double check */
9486 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9487 sysfs_notify_dirent_safe(mddev->sysfs_action);
9488 md_new_event();
9489 if (mddev->event_work.func)
9490 queue_work(md_misc_wq, &mddev->event_work);
9491}
9492EXPORT_SYMBOL(md_reap_sync_thread);
9493
9494void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9495{
9496 sysfs_notify_dirent_safe(rdev->sysfs_state);
9497 wait_event_timeout(rdev->blocked_wait,
9498 !test_bit(Blocked, &rdev->flags) &&
9499 !test_bit(BlockedBadBlocks, &rdev->flags),
9500 msecs_to_jiffies(5000));
9501 rdev_dec_pending(rdev, mddev);
9502}
9503EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9504
9505void md_finish_reshape(struct mddev *mddev)
9506{
9507 /* called be personality module when reshape completes. */
9508 struct md_rdev *rdev;
9509
9510 rdev_for_each(rdev, mddev) {
9511 if (rdev->data_offset > rdev->new_data_offset)
9512 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9513 else
9514 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9515 rdev->data_offset = rdev->new_data_offset;
9516 }
9517}
9518EXPORT_SYMBOL(md_finish_reshape);
9519
9520/* Bad block management */
9521
9522/* Returns 1 on success, 0 on failure */
9523int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9524 int is_new)
9525{
9526 struct mddev *mddev = rdev->mddev;
9527 int rv;
9528 if (is_new)
9529 s += rdev->new_data_offset;
9530 else
9531 s += rdev->data_offset;
9532 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9533 if (rv == 0) {
9534 /* Make sure they get written out promptly */
9535 if (test_bit(ExternalBbl, &rdev->flags))
9536 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9537 sysfs_notify_dirent_safe(rdev->sysfs_state);
9538 set_mask_bits(&mddev->sb_flags, 0,
9539 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9540 md_wakeup_thread(rdev->mddev->thread);
9541 return 1;
9542 } else
9543 return 0;
9544}
9545EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9546
9547int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9548 int is_new)
9549{
9550 int rv;
9551 if (is_new)
9552 s += rdev->new_data_offset;
9553 else
9554 s += rdev->data_offset;
9555 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9556 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9557 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9558 return rv;
9559}
9560EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9561
9562static int md_notify_reboot(struct notifier_block *this,
9563 unsigned long code, void *x)
9564{
9565 struct list_head *tmp;
9566 struct mddev *mddev;
9567 int need_delay = 0;
9568
9569 for_each_mddev(mddev, tmp) {
9570 if (mddev_trylock(mddev)) {
9571 if (mddev->pers)
9572 __md_stop_writes(mddev);
9573 if (mddev->persistent)
9574 mddev->safemode = 2;
9575 mddev_unlock(mddev);
9576 }
9577 need_delay = 1;
9578 }
9579 /*
9580 * certain more exotic SCSI devices are known to be
9581 * volatile wrt too early system reboots. While the
9582 * right place to handle this issue is the given
9583 * driver, we do want to have a safe RAID driver ...
9584 */
9585 if (need_delay)
9586 mdelay(1000*1);
9587
9588 return NOTIFY_DONE;
9589}
9590
9591static struct notifier_block md_notifier = {
9592 .notifier_call = md_notify_reboot,
9593 .next = NULL,
9594 .priority = INT_MAX, /* before any real devices */
9595};
9596
9597static void md_geninit(void)
9598{
9599 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9600
9601 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9602}
9603
9604static int __init md_init(void)
9605{
9606 int ret = -ENOMEM;
9607
9608 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9609 if (!md_wq)
9610 goto err_wq;
9611
9612 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9613 if (!md_misc_wq)
9614 goto err_misc_wq;
9615
9616 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9617 if (!md_rdev_misc_wq)
9618 goto err_rdev_misc_wq;
9619
9620 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9621 if (ret < 0)
9622 goto err_md;
9623
9624 ret = __register_blkdev(0, "mdp", md_probe);
9625 if (ret < 0)
9626 goto err_mdp;
9627 mdp_major = ret;
9628
9629 register_reboot_notifier(&md_notifier);
9630 raid_table_header = register_sysctl_table(raid_root_table);
9631
9632 md_geninit();
9633 return 0;
9634
9635err_mdp:
9636 unregister_blkdev(MD_MAJOR, "md");
9637err_md:
9638 destroy_workqueue(md_rdev_misc_wq);
9639err_rdev_misc_wq:
9640 destroy_workqueue(md_misc_wq);
9641err_misc_wq:
9642 destroy_workqueue(md_wq);
9643err_wq:
9644 return ret;
9645}
9646
9647static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9648{
9649 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9650 struct md_rdev *rdev2, *tmp;
9651 int role, ret;
9652 char b[BDEVNAME_SIZE];
9653
9654 /*
9655 * If size is changed in another node then we need to
9656 * do resize as well.
9657 */
9658 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9659 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9660 if (ret)
9661 pr_info("md-cluster: resize failed\n");
9662 else
9663 md_bitmap_update_sb(mddev->bitmap);
9664 }
9665
9666 /* Check for change of roles in the active devices */
9667 rdev_for_each_safe(rdev2, tmp, mddev) {
9668 if (test_bit(Faulty, &rdev2->flags))
9669 continue;
9670
9671 /* Check if the roles changed */
9672 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9673
9674 if (test_bit(Candidate, &rdev2->flags)) {
9675 if (role == 0xfffe) {
9676 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9677 md_kick_rdev_from_array(rdev2);
9678 continue;
9679 }
9680 else
9681 clear_bit(Candidate, &rdev2->flags);
9682 }
9683
9684 if (role != rdev2->raid_disk) {
9685 /*
9686 * got activated except reshape is happening.
9687 */
9688 if (rdev2->raid_disk == -1 && role != 0xffff &&
9689 !(le32_to_cpu(sb->feature_map) &
9690 MD_FEATURE_RESHAPE_ACTIVE)) {
9691 rdev2->saved_raid_disk = role;
9692 ret = remove_and_add_spares(mddev, rdev2);
9693 pr_info("Activated spare: %s\n",
9694 bdevname(rdev2->bdev,b));
9695 /* wakeup mddev->thread here, so array could
9696 * perform resync with the new activated disk */
9697 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9698 md_wakeup_thread(mddev->thread);
9699 }
9700 /* device faulty
9701 * We just want to do the minimum to mark the disk
9702 * as faulty. The recovery is performed by the
9703 * one who initiated the error.
9704 */
9705 if ((role == 0xfffe) || (role == 0xfffd)) {
9706 md_error(mddev, rdev2);
9707 clear_bit(Blocked, &rdev2->flags);
9708 }
9709 }
9710 }
9711
9712 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9713 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9714 if (ret)
9715 pr_warn("md: updating array disks failed. %d\n", ret);
9716 }
9717
9718 /*
9719 * Since mddev->delta_disks has already updated in update_raid_disks,
9720 * so it is time to check reshape.
9721 */
9722 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9723 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9724 /*
9725 * reshape is happening in the remote node, we need to
9726 * update reshape_position and call start_reshape.
9727 */
9728 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9729 if (mddev->pers->update_reshape_pos)
9730 mddev->pers->update_reshape_pos(mddev);
9731 if (mddev->pers->start_reshape)
9732 mddev->pers->start_reshape(mddev);
9733 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9734 mddev->reshape_position != MaxSector &&
9735 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9736 /* reshape is just done in another node. */
9737 mddev->reshape_position = MaxSector;
9738 if (mddev->pers->update_reshape_pos)
9739 mddev->pers->update_reshape_pos(mddev);
9740 }
9741
9742 /* Finally set the event to be up to date */
9743 mddev->events = le64_to_cpu(sb->events);
9744}
9745
9746static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9747{
9748 int err;
9749 struct page *swapout = rdev->sb_page;
9750 struct mdp_superblock_1 *sb;
9751
9752 /* Store the sb page of the rdev in the swapout temporary
9753 * variable in case we err in the future
9754 */
9755 rdev->sb_page = NULL;
9756 err = alloc_disk_sb(rdev);
9757 if (err == 0) {
9758 ClearPageUptodate(rdev->sb_page);
9759 rdev->sb_loaded = 0;
9760 err = super_types[mddev->major_version].
9761 load_super(rdev, NULL, mddev->minor_version);
9762 }
9763 if (err < 0) {
9764 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9765 __func__, __LINE__, rdev->desc_nr, err);
9766 if (rdev->sb_page)
9767 put_page(rdev->sb_page);
9768 rdev->sb_page = swapout;
9769 rdev->sb_loaded = 1;
9770 return err;
9771 }
9772
9773 sb = page_address(rdev->sb_page);
9774 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9775 * is not set
9776 */
9777
9778 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9779 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9780
9781 /* The other node finished recovery, call spare_active to set
9782 * device In_sync and mddev->degraded
9783 */
9784 if (rdev->recovery_offset == MaxSector &&
9785 !test_bit(In_sync, &rdev->flags) &&
9786 mddev->pers->spare_active(mddev))
9787 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9788
9789 put_page(swapout);
9790 return 0;
9791}
9792
9793void md_reload_sb(struct mddev *mddev, int nr)
9794{
9795 struct md_rdev *rdev;
9796 int err;
9797
9798 /* Find the rdev */
9799 rdev_for_each_rcu(rdev, mddev) {
9800 if (rdev->desc_nr == nr)
9801 break;
9802 }
9803
9804 if (!rdev || rdev->desc_nr != nr) {
9805 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9806 return;
9807 }
9808
9809 err = read_rdev(mddev, rdev);
9810 if (err < 0)
9811 return;
9812
9813 check_sb_changes(mddev, rdev);
9814
9815 /* Read all rdev's to update recovery_offset */
9816 rdev_for_each_rcu(rdev, mddev) {
9817 if (!test_bit(Faulty, &rdev->flags))
9818 read_rdev(mddev, rdev);
9819 }
9820}
9821EXPORT_SYMBOL(md_reload_sb);
9822
9823#ifndef MODULE
9824
9825/*
9826 * Searches all registered partitions for autorun RAID arrays
9827 * at boot time.
9828 */
9829
9830static DEFINE_MUTEX(detected_devices_mutex);
9831static LIST_HEAD(all_detected_devices);
9832struct detected_devices_node {
9833 struct list_head list;
9834 dev_t dev;
9835};
9836
9837void md_autodetect_dev(dev_t dev)
9838{
9839 struct detected_devices_node *node_detected_dev;
9840
9841 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9842 if (node_detected_dev) {
9843 node_detected_dev->dev = dev;
9844 mutex_lock(&detected_devices_mutex);
9845 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9846 mutex_unlock(&detected_devices_mutex);
9847 }
9848}
9849
9850void md_autostart_arrays(int part)
9851{
9852 struct md_rdev *rdev;
9853 struct detected_devices_node *node_detected_dev;
9854 dev_t dev;
9855 int i_scanned, i_passed;
9856
9857 i_scanned = 0;
9858 i_passed = 0;
9859
9860 pr_info("md: Autodetecting RAID arrays.\n");
9861
9862 mutex_lock(&detected_devices_mutex);
9863 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9864 i_scanned++;
9865 node_detected_dev = list_entry(all_detected_devices.next,
9866 struct detected_devices_node, list);
9867 list_del(&node_detected_dev->list);
9868 dev = node_detected_dev->dev;
9869 kfree(node_detected_dev);
9870 mutex_unlock(&detected_devices_mutex);
9871 rdev = md_import_device(dev,0, 90);
9872 mutex_lock(&detected_devices_mutex);
9873 if (IS_ERR(rdev))
9874 continue;
9875
9876 if (test_bit(Faulty, &rdev->flags))
9877 continue;
9878
9879 set_bit(AutoDetected, &rdev->flags);
9880 list_add(&rdev->same_set, &pending_raid_disks);
9881 i_passed++;
9882 }
9883 mutex_unlock(&detected_devices_mutex);
9884
9885 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9886
9887 autorun_devices(part);
9888}
9889
9890#endif /* !MODULE */
9891
9892static __exit void md_exit(void)
9893{
9894 struct mddev *mddev;
9895 struct list_head *tmp;
9896 int delay = 1;
9897
9898 unregister_blkdev(MD_MAJOR,"md");
9899 unregister_blkdev(mdp_major, "mdp");
9900 unregister_reboot_notifier(&md_notifier);
9901 unregister_sysctl_table(raid_table_header);
9902
9903 /* We cannot unload the modules while some process is
9904 * waiting for us in select() or poll() - wake them up
9905 */
9906 md_unloading = 1;
9907 while (waitqueue_active(&md_event_waiters)) {
9908 /* not safe to leave yet */
9909 wake_up(&md_event_waiters);
9910 msleep(delay);
9911 delay += delay;
9912 }
9913 remove_proc_entry("mdstat", NULL);
9914
9915 for_each_mddev(mddev, tmp) {
9916 export_array(mddev);
9917 mddev->ctime = 0;
9918 mddev->hold_active = 0;
9919 /*
9920 * for_each_mddev() will call mddev_put() at the end of each
9921 * iteration. As the mddev is now fully clear, this will
9922 * schedule the mddev for destruction by a workqueue, and the
9923 * destroy_workqueue() below will wait for that to complete.
9924 */
9925 }
9926 destroy_workqueue(md_rdev_misc_wq);
9927 destroy_workqueue(md_misc_wq);
9928 destroy_workqueue(md_wq);
9929}
9930
9931subsys_initcall(md_init);
9932module_exit(md_exit)
9933
9934static int get_ro(char *buffer, const struct kernel_param *kp)
9935{
9936 return sprintf(buffer, "%d\n", start_readonly);
9937}
9938static int set_ro(const char *val, const struct kernel_param *kp)
9939{
9940 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9941}
9942
9943module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9944module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9945module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9946module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9947
9948MODULE_LICENSE("GPL");
9949MODULE_DESCRIPTION("MD RAID framework");
9950MODULE_ALIAS("md");
9951MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);