Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292{
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300}
301
302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303{
304 put_unaligned_be32(val << shift, buf);
305}
306
307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308{
309 put_unaligned_le32(val << shift, buf);
310}
311
312static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314{
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318}
319
320#ifdef CONFIG_64BIT
321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322{
323 put_unaligned_be64((u64) val << shift, buf);
324}
325
326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327{
328 put_unaligned_le64((u64) val << shift, buf);
329}
330
331static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333{
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337}
338#endif
339
340static void regmap_parse_inplace_noop(void *buf)
341{
342}
343
344static unsigned int regmap_parse_8(const void *buf)
345{
346 const u8 *b = buf;
347
348 return b[0];
349}
350
351static unsigned int regmap_parse_16_be(const void *buf)
352{
353 return get_unaligned_be16(buf);
354}
355
356static unsigned int regmap_parse_16_le(const void *buf)
357{
358 return get_unaligned_le16(buf);
359}
360
361static void regmap_parse_16_be_inplace(void *buf)
362{
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366}
367
368static void regmap_parse_16_le_inplace(void *buf)
369{
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373}
374
375static unsigned int regmap_parse_16_native(const void *buf)
376{
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381}
382
383static unsigned int regmap_parse_24(const void *buf)
384{
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391}
392
393static unsigned int regmap_parse_32_be(const void *buf)
394{
395 return get_unaligned_be32(buf);
396}
397
398static unsigned int regmap_parse_32_le(const void *buf)
399{
400 return get_unaligned_le32(buf);
401}
402
403static void regmap_parse_32_be_inplace(void *buf)
404{
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408}
409
410static void regmap_parse_32_le_inplace(void *buf)
411{
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415}
416
417static unsigned int regmap_parse_32_native(const void *buf)
418{
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423}
424
425#ifdef CONFIG_64BIT
426static unsigned int regmap_parse_64_be(const void *buf)
427{
428 return get_unaligned_be64(buf);
429}
430
431static unsigned int regmap_parse_64_le(const void *buf)
432{
433 return get_unaligned_le64(buf);
434}
435
436static void regmap_parse_64_be_inplace(void *buf)
437{
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441}
442
443static void regmap_parse_64_le_inplace(void *buf)
444{
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448}
449
450static unsigned int regmap_parse_64_native(const void *buf)
451{
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456}
457#endif
458
459static void regmap_lock_hwlock(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464}
465
466static void regmap_lock_hwlock_irq(void *__map)
467{
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471}
472
473static void regmap_lock_hwlock_irqsave(void *__map)
474{
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479}
480
481static void regmap_unlock_hwlock(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486}
487
488static void regmap_unlock_hwlock_irq(void *__map)
489{
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493}
494
495static void regmap_unlock_hwlock_irqrestore(void *__map)
496{
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500}
501
502static void regmap_lock_unlock_none(void *__map)
503{
504
505}
506
507static void regmap_lock_mutex(void *__map)
508{
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511}
512
513static void regmap_unlock_mutex(void *__map)
514{
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517}
518
519static void regmap_lock_spinlock(void *__map)
520__acquires(&map->spinlock)
521{
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527}
528
529static void regmap_unlock_spinlock(void *__map)
530__releases(&map->spinlock)
531{
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534}
535
536static void regmap_lock_raw_spinlock(void *__map)
537__acquires(&map->raw_spinlock)
538{
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544}
545
546static void regmap_unlock_raw_spinlock(void *__map)
547__releases(&map->raw_spinlock)
548{
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551}
552
553static void dev_get_regmap_release(struct device *dev, void *res)
554{
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560}
561
562static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564{
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585}
586
587static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589{
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605}
606
607static void regmap_range_exit(struct regmap *map)
608{
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621}
622
623static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624{
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636}
637
638int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640{
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
652
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 if (!m) {
656 regmap_debugfs_exit(map);
657 return -ENOMEM;
658 }
659 *m = map;
660 devres_add(dev, m);
661
662 return 0;
663}
664EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
666static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
668{
669 enum regmap_endian endian;
670
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
673
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
676 return endian;
677
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
681
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
688}
689
690enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
693{
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
696
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
699
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
702 return endian;
703
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
711
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
714 return endian;
715
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
719
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
722 return endian;
723
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
726}
727EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
729struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
731 void *bus_context,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
735{
736 struct regmap *map;
737 int ret = -EINVAL;
738 enum regmap_endian reg_endian, val_endian;
739 int i, j;
740
741 if (!config)
742 goto err;
743
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
745 if (map == NULL) {
746 ret = -ENOMEM;
747 goto err;
748 }
749
750 ret = regmap_set_name(map, config);
751 if (ret)
752 goto err_map;
753
754 ret = -EINVAL; /* Later error paths rely on this */
755
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 if (!map->hwlock) {
768 ret = -ENXIO;
769 goto err_name;
770 }
771
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
776 break;
777 case HWLOCK_IRQ:
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
780 break;
781 default:
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
784 break;
785 }
786
787 map->lock_arg = map;
788 } else {
789 if ((bus && bus->fast_io) ||
790 config->fast_io) {
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
797 } else {
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
803 }
804 } else {
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
811 }
812 map->lock_arg = map;
813 }
814
815 /*
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
818 */
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
821 else
822 map->alloc_flags = GFP_KERNEL;
823
824 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
825 map->format.pad_bytes = config->pad_bits / 8;
826 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
827 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
828 config->val_bits + config->pad_bits, 8);
829 map->reg_shift = config->pad_bits % 8;
830 if (config->reg_stride)
831 map->reg_stride = config->reg_stride;
832 else
833 map->reg_stride = 1;
834 if (is_power_of_2(map->reg_stride))
835 map->reg_stride_order = ilog2(map->reg_stride);
836 else
837 map->reg_stride_order = -1;
838 map->use_single_read = config->use_single_read || !bus || !bus->read;
839 map->use_single_write = config->use_single_write || !bus || !bus->write;
840 map->can_multi_write = config->can_multi_write && bus && bus->write;
841 if (bus) {
842 map->max_raw_read = bus->max_raw_read;
843 map->max_raw_write = bus->max_raw_write;
844 }
845 map->dev = dev;
846 map->bus = bus;
847 map->bus_context = bus_context;
848 map->max_register = config->max_register;
849 map->wr_table = config->wr_table;
850 map->rd_table = config->rd_table;
851 map->volatile_table = config->volatile_table;
852 map->precious_table = config->precious_table;
853 map->wr_noinc_table = config->wr_noinc_table;
854 map->rd_noinc_table = config->rd_noinc_table;
855 map->writeable_reg = config->writeable_reg;
856 map->readable_reg = config->readable_reg;
857 map->volatile_reg = config->volatile_reg;
858 map->precious_reg = config->precious_reg;
859 map->writeable_noinc_reg = config->writeable_noinc_reg;
860 map->readable_noinc_reg = config->readable_noinc_reg;
861 map->cache_type = config->cache_type;
862
863 spin_lock_init(&map->async_lock);
864 INIT_LIST_HEAD(&map->async_list);
865 INIT_LIST_HEAD(&map->async_free);
866 init_waitqueue_head(&map->async_waitq);
867
868 if (config->read_flag_mask ||
869 config->write_flag_mask ||
870 config->zero_flag_mask) {
871 map->read_flag_mask = config->read_flag_mask;
872 map->write_flag_mask = config->write_flag_mask;
873 } else if (bus) {
874 map->read_flag_mask = bus->read_flag_mask;
875 }
876
877 if (!bus) {
878 map->reg_read = config->reg_read;
879 map->reg_write = config->reg_write;
880 map->reg_update_bits = config->reg_update_bits;
881
882 map->defer_caching = false;
883 goto skip_format_initialization;
884 } else if (!bus->read || !bus->write) {
885 map->reg_read = _regmap_bus_reg_read;
886 map->reg_write = _regmap_bus_reg_write;
887 map->reg_update_bits = bus->reg_update_bits;
888
889 map->defer_caching = false;
890 goto skip_format_initialization;
891 } else {
892 map->reg_read = _regmap_bus_read;
893 map->reg_update_bits = bus->reg_update_bits;
894 }
895
896 reg_endian = regmap_get_reg_endian(bus, config);
897 val_endian = regmap_get_val_endian(dev, bus, config);
898
899 switch (config->reg_bits + map->reg_shift) {
900 case 2:
901 switch (config->val_bits) {
902 case 6:
903 map->format.format_write = regmap_format_2_6_write;
904 break;
905 default:
906 goto err_hwlock;
907 }
908 break;
909
910 case 4:
911 switch (config->val_bits) {
912 case 12:
913 map->format.format_write = regmap_format_4_12_write;
914 break;
915 default:
916 goto err_hwlock;
917 }
918 break;
919
920 case 7:
921 switch (config->val_bits) {
922 case 9:
923 map->format.format_write = regmap_format_7_9_write;
924 break;
925 case 17:
926 map->format.format_write = regmap_format_7_17_write;
927 break;
928 default:
929 goto err_hwlock;
930 }
931 break;
932
933 case 10:
934 switch (config->val_bits) {
935 case 14:
936 map->format.format_write = regmap_format_10_14_write;
937 break;
938 default:
939 goto err_hwlock;
940 }
941 break;
942
943 case 12:
944 switch (config->val_bits) {
945 case 20:
946 map->format.format_write = regmap_format_12_20_write;
947 break;
948 default:
949 goto err_hwlock;
950 }
951 break;
952
953 case 8:
954 map->format.format_reg = regmap_format_8;
955 break;
956
957 case 16:
958 switch (reg_endian) {
959 case REGMAP_ENDIAN_BIG:
960 map->format.format_reg = regmap_format_16_be;
961 break;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_reg = regmap_format_16_le;
964 break;
965 case REGMAP_ENDIAN_NATIVE:
966 map->format.format_reg = regmap_format_16_native;
967 break;
968 default:
969 goto err_hwlock;
970 }
971 break;
972
973 case 24:
974 if (reg_endian != REGMAP_ENDIAN_BIG)
975 goto err_hwlock;
976 map->format.format_reg = regmap_format_24;
977 break;
978
979 case 32:
980 switch (reg_endian) {
981 case REGMAP_ENDIAN_BIG:
982 map->format.format_reg = regmap_format_32_be;
983 break;
984 case REGMAP_ENDIAN_LITTLE:
985 map->format.format_reg = regmap_format_32_le;
986 break;
987 case REGMAP_ENDIAN_NATIVE:
988 map->format.format_reg = regmap_format_32_native;
989 break;
990 default:
991 goto err_hwlock;
992 }
993 break;
994
995#ifdef CONFIG_64BIT
996 case 64:
997 switch (reg_endian) {
998 case REGMAP_ENDIAN_BIG:
999 map->format.format_reg = regmap_format_64_be;
1000 break;
1001 case REGMAP_ENDIAN_LITTLE:
1002 map->format.format_reg = regmap_format_64_le;
1003 break;
1004 case REGMAP_ENDIAN_NATIVE:
1005 map->format.format_reg = regmap_format_64_native;
1006 break;
1007 default:
1008 goto err_hwlock;
1009 }
1010 break;
1011#endif
1012
1013 default:
1014 goto err_hwlock;
1015 }
1016
1017 if (val_endian == REGMAP_ENDIAN_NATIVE)
1018 map->format.parse_inplace = regmap_parse_inplace_noop;
1019
1020 switch (config->val_bits) {
1021 case 8:
1022 map->format.format_val = regmap_format_8;
1023 map->format.parse_val = regmap_parse_8;
1024 map->format.parse_inplace = regmap_parse_inplace_noop;
1025 break;
1026 case 16:
1027 switch (val_endian) {
1028 case REGMAP_ENDIAN_BIG:
1029 map->format.format_val = regmap_format_16_be;
1030 map->format.parse_val = regmap_parse_16_be;
1031 map->format.parse_inplace = regmap_parse_16_be_inplace;
1032 break;
1033 case REGMAP_ENDIAN_LITTLE:
1034 map->format.format_val = regmap_format_16_le;
1035 map->format.parse_val = regmap_parse_16_le;
1036 map->format.parse_inplace = regmap_parse_16_le_inplace;
1037 break;
1038 case REGMAP_ENDIAN_NATIVE:
1039 map->format.format_val = regmap_format_16_native;
1040 map->format.parse_val = regmap_parse_16_native;
1041 break;
1042 default:
1043 goto err_hwlock;
1044 }
1045 break;
1046 case 24:
1047 if (val_endian != REGMAP_ENDIAN_BIG)
1048 goto err_hwlock;
1049 map->format.format_val = regmap_format_24;
1050 map->format.parse_val = regmap_parse_24;
1051 break;
1052 case 32:
1053 switch (val_endian) {
1054 case REGMAP_ENDIAN_BIG:
1055 map->format.format_val = regmap_format_32_be;
1056 map->format.parse_val = regmap_parse_32_be;
1057 map->format.parse_inplace = regmap_parse_32_be_inplace;
1058 break;
1059 case REGMAP_ENDIAN_LITTLE:
1060 map->format.format_val = regmap_format_32_le;
1061 map->format.parse_val = regmap_parse_32_le;
1062 map->format.parse_inplace = regmap_parse_32_le_inplace;
1063 break;
1064 case REGMAP_ENDIAN_NATIVE:
1065 map->format.format_val = regmap_format_32_native;
1066 map->format.parse_val = regmap_parse_32_native;
1067 break;
1068 default:
1069 goto err_hwlock;
1070 }
1071 break;
1072#ifdef CONFIG_64BIT
1073 case 64:
1074 switch (val_endian) {
1075 case REGMAP_ENDIAN_BIG:
1076 map->format.format_val = regmap_format_64_be;
1077 map->format.parse_val = regmap_parse_64_be;
1078 map->format.parse_inplace = regmap_parse_64_be_inplace;
1079 break;
1080 case REGMAP_ENDIAN_LITTLE:
1081 map->format.format_val = regmap_format_64_le;
1082 map->format.parse_val = regmap_parse_64_le;
1083 map->format.parse_inplace = regmap_parse_64_le_inplace;
1084 break;
1085 case REGMAP_ENDIAN_NATIVE:
1086 map->format.format_val = regmap_format_64_native;
1087 map->format.parse_val = regmap_parse_64_native;
1088 break;
1089 default:
1090 goto err_hwlock;
1091 }
1092 break;
1093#endif
1094 }
1095
1096 if (map->format.format_write) {
1097 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1098 (val_endian != REGMAP_ENDIAN_BIG))
1099 goto err_hwlock;
1100 map->use_single_write = true;
1101 }
1102
1103 if (!map->format.format_write &&
1104 !(map->format.format_reg && map->format.format_val))
1105 goto err_hwlock;
1106
1107 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1108 if (map->work_buf == NULL) {
1109 ret = -ENOMEM;
1110 goto err_hwlock;
1111 }
1112
1113 if (map->format.format_write) {
1114 map->defer_caching = false;
1115 map->reg_write = _regmap_bus_formatted_write;
1116 } else if (map->format.format_val) {
1117 map->defer_caching = true;
1118 map->reg_write = _regmap_bus_raw_write;
1119 }
1120
1121skip_format_initialization:
1122
1123 map->range_tree = RB_ROOT;
1124 for (i = 0; i < config->num_ranges; i++) {
1125 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1126 struct regmap_range_node *new;
1127
1128 /* Sanity check */
1129 if (range_cfg->range_max < range_cfg->range_min) {
1130 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1131 range_cfg->range_max, range_cfg->range_min);
1132 goto err_range;
1133 }
1134
1135 if (range_cfg->range_max > map->max_register) {
1136 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1137 range_cfg->range_max, map->max_register);
1138 goto err_range;
1139 }
1140
1141 if (range_cfg->selector_reg > map->max_register) {
1142 dev_err(map->dev,
1143 "Invalid range %d: selector out of map\n", i);
1144 goto err_range;
1145 }
1146
1147 if (range_cfg->window_len == 0) {
1148 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1149 i);
1150 goto err_range;
1151 }
1152
1153 /* Make sure, that this register range has no selector
1154 or data window within its boundary */
1155 for (j = 0; j < config->num_ranges; j++) {
1156 unsigned int sel_reg = config->ranges[j].selector_reg;
1157 unsigned int win_min = config->ranges[j].window_start;
1158 unsigned int win_max = win_min +
1159 config->ranges[j].window_len - 1;
1160
1161 /* Allow data window inside its own virtual range */
1162 if (j == i)
1163 continue;
1164
1165 if (range_cfg->range_min <= sel_reg &&
1166 sel_reg <= range_cfg->range_max) {
1167 dev_err(map->dev,
1168 "Range %d: selector for %d in window\n",
1169 i, j);
1170 goto err_range;
1171 }
1172
1173 if (!(win_max < range_cfg->range_min ||
1174 win_min > range_cfg->range_max)) {
1175 dev_err(map->dev,
1176 "Range %d: window for %d in window\n",
1177 i, j);
1178 goto err_range;
1179 }
1180 }
1181
1182 new = kzalloc(sizeof(*new), GFP_KERNEL);
1183 if (new == NULL) {
1184 ret = -ENOMEM;
1185 goto err_range;
1186 }
1187
1188 new->map = map;
1189 new->name = range_cfg->name;
1190 new->range_min = range_cfg->range_min;
1191 new->range_max = range_cfg->range_max;
1192 new->selector_reg = range_cfg->selector_reg;
1193 new->selector_mask = range_cfg->selector_mask;
1194 new->selector_shift = range_cfg->selector_shift;
1195 new->window_start = range_cfg->window_start;
1196 new->window_len = range_cfg->window_len;
1197
1198 if (!_regmap_range_add(map, new)) {
1199 dev_err(map->dev, "Failed to add range %d\n", i);
1200 kfree(new);
1201 goto err_range;
1202 }
1203
1204 if (map->selector_work_buf == NULL) {
1205 map->selector_work_buf =
1206 kzalloc(map->format.buf_size, GFP_KERNEL);
1207 if (map->selector_work_buf == NULL) {
1208 ret = -ENOMEM;
1209 goto err_range;
1210 }
1211 }
1212 }
1213
1214 ret = regcache_init(map, config);
1215 if (ret != 0)
1216 goto err_range;
1217
1218 if (dev) {
1219 ret = regmap_attach_dev(dev, map, config);
1220 if (ret != 0)
1221 goto err_regcache;
1222 } else {
1223 regmap_debugfs_init(map);
1224 }
1225
1226 return map;
1227
1228err_regcache:
1229 regcache_exit(map);
1230err_range:
1231 regmap_range_exit(map);
1232 kfree(map->work_buf);
1233err_hwlock:
1234 if (map->hwlock)
1235 hwspin_lock_free(map->hwlock);
1236err_name:
1237 kfree_const(map->name);
1238err_map:
1239 kfree(map);
1240err:
1241 return ERR_PTR(ret);
1242}
1243EXPORT_SYMBOL_GPL(__regmap_init);
1244
1245static void devm_regmap_release(struct device *dev, void *res)
1246{
1247 regmap_exit(*(struct regmap **)res);
1248}
1249
1250struct regmap *__devm_regmap_init(struct device *dev,
1251 const struct regmap_bus *bus,
1252 void *bus_context,
1253 const struct regmap_config *config,
1254 struct lock_class_key *lock_key,
1255 const char *lock_name)
1256{
1257 struct regmap **ptr, *regmap;
1258
1259 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1260 if (!ptr)
1261 return ERR_PTR(-ENOMEM);
1262
1263 regmap = __regmap_init(dev, bus, bus_context, config,
1264 lock_key, lock_name);
1265 if (!IS_ERR(regmap)) {
1266 *ptr = regmap;
1267 devres_add(dev, ptr);
1268 } else {
1269 devres_free(ptr);
1270 }
1271
1272 return regmap;
1273}
1274EXPORT_SYMBOL_GPL(__devm_regmap_init);
1275
1276static void regmap_field_init(struct regmap_field *rm_field,
1277 struct regmap *regmap, struct reg_field reg_field)
1278{
1279 rm_field->regmap = regmap;
1280 rm_field->reg = reg_field.reg;
1281 rm_field->shift = reg_field.lsb;
1282 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1283 rm_field->id_size = reg_field.id_size;
1284 rm_field->id_offset = reg_field.id_offset;
1285}
1286
1287/**
1288 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1289 *
1290 * @dev: Device that will be interacted with
1291 * @regmap: regmap bank in which this register field is located.
1292 * @reg_field: Register field with in the bank.
1293 *
1294 * The return value will be an ERR_PTR() on error or a valid pointer
1295 * to a struct regmap_field. The regmap_field will be automatically freed
1296 * by the device management code.
1297 */
1298struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1299 struct regmap *regmap, struct reg_field reg_field)
1300{
1301 struct regmap_field *rm_field = devm_kzalloc(dev,
1302 sizeof(*rm_field), GFP_KERNEL);
1303 if (!rm_field)
1304 return ERR_PTR(-ENOMEM);
1305
1306 regmap_field_init(rm_field, regmap, reg_field);
1307
1308 return rm_field;
1309
1310}
1311EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1312
1313
1314/**
1315 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1316 *
1317 * @regmap: regmap bank in which this register field is located.
1318 * @rm_field: regmap register fields within the bank.
1319 * @reg_field: Register fields within the bank.
1320 * @num_fields: Number of register fields.
1321 *
1322 * The return value will be an -ENOMEM on error or zero for success.
1323 * Newly allocated regmap_fields should be freed by calling
1324 * regmap_field_bulk_free()
1325 */
1326int regmap_field_bulk_alloc(struct regmap *regmap,
1327 struct regmap_field **rm_field,
1328 const struct reg_field *reg_field,
1329 int num_fields)
1330{
1331 struct regmap_field *rf;
1332 int i;
1333
1334 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1335 if (!rf)
1336 return -ENOMEM;
1337
1338 for (i = 0; i < num_fields; i++) {
1339 regmap_field_init(&rf[i], regmap, reg_field[i]);
1340 rm_field[i] = &rf[i];
1341 }
1342
1343 return 0;
1344}
1345EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1346
1347/**
1348 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1349 * fields.
1350 *
1351 * @dev: Device that will be interacted with
1352 * @regmap: regmap bank in which this register field is located.
1353 * @rm_field: regmap register fields within the bank.
1354 * @reg_field: Register fields within the bank.
1355 * @num_fields: Number of register fields.
1356 *
1357 * The return value will be an -ENOMEM on error or zero for success.
1358 * Newly allocated regmap_fields will be automatically freed by the
1359 * device management code.
1360 */
1361int devm_regmap_field_bulk_alloc(struct device *dev,
1362 struct regmap *regmap,
1363 struct regmap_field **rm_field,
1364 const struct reg_field *reg_field,
1365 int num_fields)
1366{
1367 struct regmap_field *rf;
1368 int i;
1369
1370 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1371 if (!rf)
1372 return -ENOMEM;
1373
1374 for (i = 0; i < num_fields; i++) {
1375 regmap_field_init(&rf[i], regmap, reg_field[i]);
1376 rm_field[i] = &rf[i];
1377 }
1378
1379 return 0;
1380}
1381EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1382
1383/**
1384 * regmap_field_bulk_free() - Free register field allocated using
1385 * regmap_field_bulk_alloc.
1386 *
1387 * @field: regmap fields which should be freed.
1388 */
1389void regmap_field_bulk_free(struct regmap_field *field)
1390{
1391 kfree(field);
1392}
1393EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1394
1395/**
1396 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1397 * devm_regmap_field_bulk_alloc.
1398 *
1399 * @dev: Device that will be interacted with
1400 * @field: regmap field which should be freed.
1401 *
1402 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1403 * drivers need not call this function, as the memory allocated via devm
1404 * will be freed as per device-driver life-cycle.
1405 */
1406void devm_regmap_field_bulk_free(struct device *dev,
1407 struct regmap_field *field)
1408{
1409 devm_kfree(dev, field);
1410}
1411EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1412
1413/**
1414 * devm_regmap_field_free() - Free a register field allocated using
1415 * devm_regmap_field_alloc.
1416 *
1417 * @dev: Device that will be interacted with
1418 * @field: regmap field which should be freed.
1419 *
1420 * Free register field allocated using devm_regmap_field_alloc(). Usually
1421 * drivers need not call this function, as the memory allocated via devm
1422 * will be freed as per device-driver life-cyle.
1423 */
1424void devm_regmap_field_free(struct device *dev,
1425 struct regmap_field *field)
1426{
1427 devm_kfree(dev, field);
1428}
1429EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1430
1431/**
1432 * regmap_field_alloc() - Allocate and initialise a register field.
1433 *
1434 * @regmap: regmap bank in which this register field is located.
1435 * @reg_field: Register field with in the bank.
1436 *
1437 * The return value will be an ERR_PTR() on error or a valid pointer
1438 * to a struct regmap_field. The regmap_field should be freed by the
1439 * user once its finished working with it using regmap_field_free().
1440 */
1441struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1442 struct reg_field reg_field)
1443{
1444 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1445
1446 if (!rm_field)
1447 return ERR_PTR(-ENOMEM);
1448
1449 regmap_field_init(rm_field, regmap, reg_field);
1450
1451 return rm_field;
1452}
1453EXPORT_SYMBOL_GPL(regmap_field_alloc);
1454
1455/**
1456 * regmap_field_free() - Free register field allocated using
1457 * regmap_field_alloc.
1458 *
1459 * @field: regmap field which should be freed.
1460 */
1461void regmap_field_free(struct regmap_field *field)
1462{
1463 kfree(field);
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_free);
1466
1467/**
1468 * regmap_reinit_cache() - Reinitialise the current register cache
1469 *
1470 * @map: Register map to operate on.
1471 * @config: New configuration. Only the cache data will be used.
1472 *
1473 * Discard any existing register cache for the map and initialize a
1474 * new cache. This can be used to restore the cache to defaults or to
1475 * update the cache configuration to reflect runtime discovery of the
1476 * hardware.
1477 *
1478 * No explicit locking is done here, the user needs to ensure that
1479 * this function will not race with other calls to regmap.
1480 */
1481int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1482{
1483 int ret;
1484
1485 regcache_exit(map);
1486 regmap_debugfs_exit(map);
1487
1488 map->max_register = config->max_register;
1489 map->writeable_reg = config->writeable_reg;
1490 map->readable_reg = config->readable_reg;
1491 map->volatile_reg = config->volatile_reg;
1492 map->precious_reg = config->precious_reg;
1493 map->writeable_noinc_reg = config->writeable_noinc_reg;
1494 map->readable_noinc_reg = config->readable_noinc_reg;
1495 map->cache_type = config->cache_type;
1496
1497 ret = regmap_set_name(map, config);
1498 if (ret)
1499 return ret;
1500
1501 regmap_debugfs_init(map);
1502
1503 map->cache_bypass = false;
1504 map->cache_only = false;
1505
1506 return regcache_init(map, config);
1507}
1508EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1509
1510/**
1511 * regmap_exit() - Free a previously allocated register map
1512 *
1513 * @map: Register map to operate on.
1514 */
1515void regmap_exit(struct regmap *map)
1516{
1517 struct regmap_async *async;
1518
1519 regcache_exit(map);
1520 regmap_debugfs_exit(map);
1521 regmap_range_exit(map);
1522 if (map->bus && map->bus->free_context)
1523 map->bus->free_context(map->bus_context);
1524 kfree(map->work_buf);
1525 while (!list_empty(&map->async_free)) {
1526 async = list_first_entry_or_null(&map->async_free,
1527 struct regmap_async,
1528 list);
1529 list_del(&async->list);
1530 kfree(async->work_buf);
1531 kfree(async);
1532 }
1533 if (map->hwlock)
1534 hwspin_lock_free(map->hwlock);
1535 if (map->lock == regmap_lock_mutex)
1536 mutex_destroy(&map->mutex);
1537 kfree_const(map->name);
1538 kfree(map->patch);
1539 if (map->bus && map->bus->free_on_exit)
1540 kfree(map->bus);
1541 kfree(map);
1542}
1543EXPORT_SYMBOL_GPL(regmap_exit);
1544
1545static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1546{
1547 struct regmap **r = res;
1548 if (!r || !*r) {
1549 WARN_ON(!r || !*r);
1550 return 0;
1551 }
1552
1553 /* If the user didn't specify a name match any */
1554 if (data)
1555 return !strcmp((*r)->name, data);
1556 else
1557 return 1;
1558}
1559
1560/**
1561 * dev_get_regmap() - Obtain the regmap (if any) for a device
1562 *
1563 * @dev: Device to retrieve the map for
1564 * @name: Optional name for the register map, usually NULL.
1565 *
1566 * Returns the regmap for the device if one is present, or NULL. If
1567 * name is specified then it must match the name specified when
1568 * registering the device, if it is NULL then the first regmap found
1569 * will be used. Devices with multiple register maps are very rare,
1570 * generic code should normally not need to specify a name.
1571 */
1572struct regmap *dev_get_regmap(struct device *dev, const char *name)
1573{
1574 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1575 dev_get_regmap_match, (void *)name);
1576
1577 if (!r)
1578 return NULL;
1579 return *r;
1580}
1581EXPORT_SYMBOL_GPL(dev_get_regmap);
1582
1583/**
1584 * regmap_get_device() - Obtain the device from a regmap
1585 *
1586 * @map: Register map to operate on.
1587 *
1588 * Returns the underlying device that the regmap has been created for.
1589 */
1590struct device *regmap_get_device(struct regmap *map)
1591{
1592 return map->dev;
1593}
1594EXPORT_SYMBOL_GPL(regmap_get_device);
1595
1596static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1597 struct regmap_range_node *range,
1598 unsigned int val_num)
1599{
1600 void *orig_work_buf;
1601 unsigned int win_offset;
1602 unsigned int win_page;
1603 bool page_chg;
1604 int ret;
1605
1606 win_offset = (*reg - range->range_min) % range->window_len;
1607 win_page = (*reg - range->range_min) / range->window_len;
1608
1609 if (val_num > 1) {
1610 /* Bulk write shouldn't cross range boundary */
1611 if (*reg + val_num - 1 > range->range_max)
1612 return -EINVAL;
1613
1614 /* ... or single page boundary */
1615 if (val_num > range->window_len - win_offset)
1616 return -EINVAL;
1617 }
1618
1619 /* It is possible to have selector register inside data window.
1620 In that case, selector register is located on every page and
1621 it needs no page switching, when accessed alone. */
1622 if (val_num > 1 ||
1623 range->window_start + win_offset != range->selector_reg) {
1624 /* Use separate work_buf during page switching */
1625 orig_work_buf = map->work_buf;
1626 map->work_buf = map->selector_work_buf;
1627
1628 ret = _regmap_update_bits(map, range->selector_reg,
1629 range->selector_mask,
1630 win_page << range->selector_shift,
1631 &page_chg, false);
1632
1633 map->work_buf = orig_work_buf;
1634
1635 if (ret != 0)
1636 return ret;
1637 }
1638
1639 *reg = range->window_start + win_offset;
1640
1641 return 0;
1642}
1643
1644static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1645 unsigned long mask)
1646{
1647 u8 *buf;
1648 int i;
1649
1650 if (!mask || !map->work_buf)
1651 return;
1652
1653 buf = map->work_buf;
1654
1655 for (i = 0; i < max_bytes; i++)
1656 buf[i] |= (mask >> (8 * i)) & 0xff;
1657}
1658
1659static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1660 const void *val, size_t val_len, bool noinc)
1661{
1662 struct regmap_range_node *range;
1663 unsigned long flags;
1664 void *work_val = map->work_buf + map->format.reg_bytes +
1665 map->format.pad_bytes;
1666 void *buf;
1667 int ret = -ENOTSUPP;
1668 size_t len;
1669 int i;
1670
1671 WARN_ON(!map->bus);
1672
1673 /* Check for unwritable or noinc registers in range
1674 * before we start
1675 */
1676 if (!regmap_writeable_noinc(map, reg)) {
1677 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1678 unsigned int element =
1679 reg + regmap_get_offset(map, i);
1680 if (!regmap_writeable(map, element) ||
1681 regmap_writeable_noinc(map, element))
1682 return -EINVAL;
1683 }
1684 }
1685
1686 if (!map->cache_bypass && map->format.parse_val) {
1687 unsigned int ival;
1688 int val_bytes = map->format.val_bytes;
1689 for (i = 0; i < val_len / val_bytes; i++) {
1690 ival = map->format.parse_val(val + (i * val_bytes));
1691 ret = regcache_write(map,
1692 reg + regmap_get_offset(map, i),
1693 ival);
1694 if (ret) {
1695 dev_err(map->dev,
1696 "Error in caching of register: %x ret: %d\n",
1697 reg + regmap_get_offset(map, i), ret);
1698 return ret;
1699 }
1700 }
1701 if (map->cache_only) {
1702 map->cache_dirty = true;
1703 return 0;
1704 }
1705 }
1706
1707 range = _regmap_range_lookup(map, reg);
1708 if (range) {
1709 int val_num = val_len / map->format.val_bytes;
1710 int win_offset = (reg - range->range_min) % range->window_len;
1711 int win_residue = range->window_len - win_offset;
1712
1713 /* If the write goes beyond the end of the window split it */
1714 while (val_num > win_residue) {
1715 dev_dbg(map->dev, "Writing window %d/%zu\n",
1716 win_residue, val_len / map->format.val_bytes);
1717 ret = _regmap_raw_write_impl(map, reg, val,
1718 win_residue *
1719 map->format.val_bytes, noinc);
1720 if (ret != 0)
1721 return ret;
1722
1723 reg += win_residue;
1724 val_num -= win_residue;
1725 val += win_residue * map->format.val_bytes;
1726 val_len -= win_residue * map->format.val_bytes;
1727
1728 win_offset = (reg - range->range_min) %
1729 range->window_len;
1730 win_residue = range->window_len - win_offset;
1731 }
1732
1733 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1734 if (ret != 0)
1735 return ret;
1736 }
1737
1738 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1739 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1740 map->write_flag_mask);
1741
1742 /*
1743 * Essentially all I/O mechanisms will be faster with a single
1744 * buffer to write. Since register syncs often generate raw
1745 * writes of single registers optimise that case.
1746 */
1747 if (val != work_val && val_len == map->format.val_bytes) {
1748 memcpy(work_val, val, map->format.val_bytes);
1749 val = work_val;
1750 }
1751
1752 if (map->async && map->bus->async_write) {
1753 struct regmap_async *async;
1754
1755 trace_regmap_async_write_start(map, reg, val_len);
1756
1757 spin_lock_irqsave(&map->async_lock, flags);
1758 async = list_first_entry_or_null(&map->async_free,
1759 struct regmap_async,
1760 list);
1761 if (async)
1762 list_del(&async->list);
1763 spin_unlock_irqrestore(&map->async_lock, flags);
1764
1765 if (!async) {
1766 async = map->bus->async_alloc();
1767 if (!async)
1768 return -ENOMEM;
1769
1770 async->work_buf = kzalloc(map->format.buf_size,
1771 GFP_KERNEL | GFP_DMA);
1772 if (!async->work_buf) {
1773 kfree(async);
1774 return -ENOMEM;
1775 }
1776 }
1777
1778 async->map = map;
1779
1780 /* If the caller supplied the value we can use it safely. */
1781 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1782 map->format.reg_bytes + map->format.val_bytes);
1783
1784 spin_lock_irqsave(&map->async_lock, flags);
1785 list_add_tail(&async->list, &map->async_list);
1786 spin_unlock_irqrestore(&map->async_lock, flags);
1787
1788 if (val != work_val)
1789 ret = map->bus->async_write(map->bus_context,
1790 async->work_buf,
1791 map->format.reg_bytes +
1792 map->format.pad_bytes,
1793 val, val_len, async);
1794 else
1795 ret = map->bus->async_write(map->bus_context,
1796 async->work_buf,
1797 map->format.reg_bytes +
1798 map->format.pad_bytes +
1799 val_len, NULL, 0, async);
1800
1801 if (ret != 0) {
1802 dev_err(map->dev, "Failed to schedule write: %d\n",
1803 ret);
1804
1805 spin_lock_irqsave(&map->async_lock, flags);
1806 list_move(&async->list, &map->async_free);
1807 spin_unlock_irqrestore(&map->async_lock, flags);
1808 }
1809
1810 return ret;
1811 }
1812
1813 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1814
1815 /* If we're doing a single register write we can probably just
1816 * send the work_buf directly, otherwise try to do a gather
1817 * write.
1818 */
1819 if (val == work_val)
1820 ret = map->bus->write(map->bus_context, map->work_buf,
1821 map->format.reg_bytes +
1822 map->format.pad_bytes +
1823 val_len);
1824 else if (map->bus->gather_write)
1825 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1826 map->format.reg_bytes +
1827 map->format.pad_bytes,
1828 val, val_len);
1829 else
1830 ret = -ENOTSUPP;
1831
1832 /* If that didn't work fall back on linearising by hand. */
1833 if (ret == -ENOTSUPP) {
1834 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1835 buf = kzalloc(len, GFP_KERNEL);
1836 if (!buf)
1837 return -ENOMEM;
1838
1839 memcpy(buf, map->work_buf, map->format.reg_bytes);
1840 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1841 val, val_len);
1842 ret = map->bus->write(map->bus_context, buf, len);
1843
1844 kfree(buf);
1845 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1846 /* regcache_drop_region() takes lock that we already have,
1847 * thus call map->cache_ops->drop() directly
1848 */
1849 if (map->cache_ops && map->cache_ops->drop)
1850 map->cache_ops->drop(map, reg, reg + 1);
1851 }
1852
1853 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1854
1855 return ret;
1856}
1857
1858/**
1859 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1860 *
1861 * @map: Map to check.
1862 */
1863bool regmap_can_raw_write(struct regmap *map)
1864{
1865 return map->bus && map->bus->write && map->format.format_val &&
1866 map->format.format_reg;
1867}
1868EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1869
1870/**
1871 * regmap_get_raw_read_max - Get the maximum size we can read
1872 *
1873 * @map: Map to check.
1874 */
1875size_t regmap_get_raw_read_max(struct regmap *map)
1876{
1877 return map->max_raw_read;
1878}
1879EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1880
1881/**
1882 * regmap_get_raw_write_max - Get the maximum size we can read
1883 *
1884 * @map: Map to check.
1885 */
1886size_t regmap_get_raw_write_max(struct regmap *map)
1887{
1888 return map->max_raw_write;
1889}
1890EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1891
1892static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1893 unsigned int val)
1894{
1895 int ret;
1896 struct regmap_range_node *range;
1897 struct regmap *map = context;
1898
1899 WARN_ON(!map->bus || !map->format.format_write);
1900
1901 range = _regmap_range_lookup(map, reg);
1902 if (range) {
1903 ret = _regmap_select_page(map, ®, range, 1);
1904 if (ret != 0)
1905 return ret;
1906 }
1907
1908 map->format.format_write(map, reg, val);
1909
1910 trace_regmap_hw_write_start(map, reg, 1);
1911
1912 ret = map->bus->write(map->bus_context, map->work_buf,
1913 map->format.buf_size);
1914
1915 trace_regmap_hw_write_done(map, reg, 1);
1916
1917 return ret;
1918}
1919
1920static int _regmap_bus_reg_write(void *context, unsigned int reg,
1921 unsigned int val)
1922{
1923 struct regmap *map = context;
1924
1925 return map->bus->reg_write(map->bus_context, reg, val);
1926}
1927
1928static int _regmap_bus_raw_write(void *context, unsigned int reg,
1929 unsigned int val)
1930{
1931 struct regmap *map = context;
1932
1933 WARN_ON(!map->bus || !map->format.format_val);
1934
1935 map->format.format_val(map->work_buf + map->format.reg_bytes
1936 + map->format.pad_bytes, val, 0);
1937 return _regmap_raw_write_impl(map, reg,
1938 map->work_buf +
1939 map->format.reg_bytes +
1940 map->format.pad_bytes,
1941 map->format.val_bytes,
1942 false);
1943}
1944
1945static inline void *_regmap_map_get_context(struct regmap *map)
1946{
1947 return (map->bus) ? map : map->bus_context;
1948}
1949
1950int _regmap_write(struct regmap *map, unsigned int reg,
1951 unsigned int val)
1952{
1953 int ret;
1954 void *context = _regmap_map_get_context(map);
1955
1956 if (!regmap_writeable(map, reg))
1957 return -EIO;
1958
1959 if (!map->cache_bypass && !map->defer_caching) {
1960 ret = regcache_write(map, reg, val);
1961 if (ret != 0)
1962 return ret;
1963 if (map->cache_only) {
1964 map->cache_dirty = true;
1965 return 0;
1966 }
1967 }
1968
1969 ret = map->reg_write(context, reg, val);
1970 if (ret == 0) {
1971 if (regmap_should_log(map))
1972 dev_info(map->dev, "%x <= %x\n", reg, val);
1973
1974 trace_regmap_reg_write(map, reg, val);
1975 }
1976
1977 return ret;
1978}
1979
1980/**
1981 * regmap_write() - Write a value to a single register
1982 *
1983 * @map: Register map to write to
1984 * @reg: Register to write to
1985 * @val: Value to be written
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1991{
1992 int ret;
1993
1994 if (!IS_ALIGNED(reg, map->reg_stride))
1995 return -EINVAL;
1996
1997 map->lock(map->lock_arg);
1998
1999 ret = _regmap_write(map, reg, val);
2000
2001 map->unlock(map->lock_arg);
2002
2003 return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_write);
2006
2007/**
2008 * regmap_write_async() - Write a value to a single register asynchronously
2009 *
2010 * @map: Register map to write to
2011 * @reg: Register to write to
2012 * @val: Value to be written
2013 *
2014 * A value of zero will be returned on success, a negative errno will
2015 * be returned in error cases.
2016 */
2017int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2018{
2019 int ret;
2020
2021 if (!IS_ALIGNED(reg, map->reg_stride))
2022 return -EINVAL;
2023
2024 map->lock(map->lock_arg);
2025
2026 map->async = true;
2027
2028 ret = _regmap_write(map, reg, val);
2029
2030 map->async = false;
2031
2032 map->unlock(map->lock_arg);
2033
2034 return ret;
2035}
2036EXPORT_SYMBOL_GPL(regmap_write_async);
2037
2038int _regmap_raw_write(struct regmap *map, unsigned int reg,
2039 const void *val, size_t val_len, bool noinc)
2040{
2041 size_t val_bytes = map->format.val_bytes;
2042 size_t val_count = val_len / val_bytes;
2043 size_t chunk_count, chunk_bytes;
2044 size_t chunk_regs = val_count;
2045 int ret, i;
2046
2047 if (!val_count)
2048 return -EINVAL;
2049
2050 if (map->use_single_write)
2051 chunk_regs = 1;
2052 else if (map->max_raw_write && val_len > map->max_raw_write)
2053 chunk_regs = map->max_raw_write / val_bytes;
2054
2055 chunk_count = val_count / chunk_regs;
2056 chunk_bytes = chunk_regs * val_bytes;
2057
2058 /* Write as many bytes as possible with chunk_size */
2059 for (i = 0; i < chunk_count; i++) {
2060 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2061 if (ret)
2062 return ret;
2063
2064 reg += regmap_get_offset(map, chunk_regs);
2065 val += chunk_bytes;
2066 val_len -= chunk_bytes;
2067 }
2068
2069 /* Write remaining bytes */
2070 if (val_len)
2071 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2072
2073 return ret;
2074}
2075
2076/**
2077 * regmap_raw_write() - Write raw values to one or more registers
2078 *
2079 * @map: Register map to write to
2080 * @reg: Initial register to write to
2081 * @val: Block of data to be written, laid out for direct transmission to the
2082 * device
2083 * @val_len: Length of data pointed to by val.
2084 *
2085 * This function is intended to be used for things like firmware
2086 * download where a large block of data needs to be transferred to the
2087 * device. No formatting will be done on the data provided.
2088 *
2089 * A value of zero will be returned on success, a negative errno will
2090 * be returned in error cases.
2091 */
2092int regmap_raw_write(struct regmap *map, unsigned int reg,
2093 const void *val, size_t val_len)
2094{
2095 int ret;
2096
2097 if (!regmap_can_raw_write(map))
2098 return -EINVAL;
2099 if (val_len % map->format.val_bytes)
2100 return -EINVAL;
2101
2102 map->lock(map->lock_arg);
2103
2104 ret = _regmap_raw_write(map, reg, val, val_len, false);
2105
2106 map->unlock(map->lock_arg);
2107
2108 return ret;
2109}
2110EXPORT_SYMBOL_GPL(regmap_raw_write);
2111
2112/**
2113 * regmap_noinc_write(): Write data from a register without incrementing the
2114 * register number
2115 *
2116 * @map: Register map to write to
2117 * @reg: Register to write to
2118 * @val: Pointer to data buffer
2119 * @val_len: Length of output buffer in bytes.
2120 *
2121 * The regmap API usually assumes that bulk bus write operations will write a
2122 * range of registers. Some devices have certain registers for which a write
2123 * operation can write to an internal FIFO.
2124 *
2125 * The target register must be volatile but registers after it can be
2126 * completely unrelated cacheable registers.
2127 *
2128 * This will attempt multiple writes as required to write val_len bytes.
2129 *
2130 * A value of zero will be returned on success, a negative errno will be
2131 * returned in error cases.
2132 */
2133int regmap_noinc_write(struct regmap *map, unsigned int reg,
2134 const void *val, size_t val_len)
2135{
2136 size_t write_len;
2137 int ret;
2138
2139 if (!map->bus)
2140 return -EINVAL;
2141 if (!map->bus->write)
2142 return -ENOTSUPP;
2143 if (val_len % map->format.val_bytes)
2144 return -EINVAL;
2145 if (!IS_ALIGNED(reg, map->reg_stride))
2146 return -EINVAL;
2147 if (val_len == 0)
2148 return -EINVAL;
2149
2150 map->lock(map->lock_arg);
2151
2152 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2153 ret = -EINVAL;
2154 goto out_unlock;
2155 }
2156
2157 while (val_len) {
2158 if (map->max_raw_write && map->max_raw_write < val_len)
2159 write_len = map->max_raw_write;
2160 else
2161 write_len = val_len;
2162 ret = _regmap_raw_write(map, reg, val, write_len, true);
2163 if (ret)
2164 goto out_unlock;
2165 val = ((u8 *)val) + write_len;
2166 val_len -= write_len;
2167 }
2168
2169out_unlock:
2170 map->unlock(map->lock_arg);
2171 return ret;
2172}
2173EXPORT_SYMBOL_GPL(regmap_noinc_write);
2174
2175/**
2176 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2177 * register field.
2178 *
2179 * @field: Register field to write to
2180 * @mask: Bitmask to change
2181 * @val: Value to be written
2182 * @change: Boolean indicating if a write was done
2183 * @async: Boolean indicating asynchronously
2184 * @force: Boolean indicating use force update
2185 *
2186 * Perform a read/modify/write cycle on the register field with change,
2187 * async, force option.
2188 *
2189 * A value of zero will be returned on success, a negative errno will
2190 * be returned in error cases.
2191 */
2192int regmap_field_update_bits_base(struct regmap_field *field,
2193 unsigned int mask, unsigned int val,
2194 bool *change, bool async, bool force)
2195{
2196 mask = (mask << field->shift) & field->mask;
2197
2198 return regmap_update_bits_base(field->regmap, field->reg,
2199 mask, val << field->shift,
2200 change, async, force);
2201}
2202EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2203
2204/**
2205 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2206 * register field with port ID
2207 *
2208 * @field: Register field to write to
2209 * @id: port ID
2210 * @mask: Bitmask to change
2211 * @val: Value to be written
2212 * @change: Boolean indicating if a write was done
2213 * @async: Boolean indicating asynchronously
2214 * @force: Boolean indicating use force update
2215 *
2216 * A value of zero will be returned on success, a negative errno will
2217 * be returned in error cases.
2218 */
2219int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2220 unsigned int mask, unsigned int val,
2221 bool *change, bool async, bool force)
2222{
2223 if (id >= field->id_size)
2224 return -EINVAL;
2225
2226 mask = (mask << field->shift) & field->mask;
2227
2228 return regmap_update_bits_base(field->regmap,
2229 field->reg + (field->id_offset * id),
2230 mask, val << field->shift,
2231 change, async, force);
2232}
2233EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2234
2235/**
2236 * regmap_bulk_write() - Write multiple registers to the device
2237 *
2238 * @map: Register map to write to
2239 * @reg: First register to be write from
2240 * @val: Block of data to be written, in native register size for device
2241 * @val_count: Number of registers to write
2242 *
2243 * This function is intended to be used for writing a large block of
2244 * data to the device either in single transfer or multiple transfer.
2245 *
2246 * A value of zero will be returned on success, a negative errno will
2247 * be returned in error cases.
2248 */
2249int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2250 size_t val_count)
2251{
2252 int ret = 0, i;
2253 size_t val_bytes = map->format.val_bytes;
2254
2255 if (!IS_ALIGNED(reg, map->reg_stride))
2256 return -EINVAL;
2257
2258 /*
2259 * Some devices don't support bulk write, for them we have a series of
2260 * single write operations.
2261 */
2262 if (!map->bus || !map->format.parse_inplace) {
2263 map->lock(map->lock_arg);
2264 for (i = 0; i < val_count; i++) {
2265 unsigned int ival;
2266
2267 switch (val_bytes) {
2268 case 1:
2269 ival = *(u8 *)(val + (i * val_bytes));
2270 break;
2271 case 2:
2272 ival = *(u16 *)(val + (i * val_bytes));
2273 break;
2274 case 4:
2275 ival = *(u32 *)(val + (i * val_bytes));
2276 break;
2277#ifdef CONFIG_64BIT
2278 case 8:
2279 ival = *(u64 *)(val + (i * val_bytes));
2280 break;
2281#endif
2282 default:
2283 ret = -EINVAL;
2284 goto out;
2285 }
2286
2287 ret = _regmap_write(map,
2288 reg + regmap_get_offset(map, i),
2289 ival);
2290 if (ret != 0)
2291 goto out;
2292 }
2293out:
2294 map->unlock(map->lock_arg);
2295 } else {
2296 void *wval;
2297
2298 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2299 if (!wval)
2300 return -ENOMEM;
2301
2302 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2303 map->format.parse_inplace(wval + i);
2304
2305 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2306
2307 kfree(wval);
2308 }
2309 return ret;
2310}
2311EXPORT_SYMBOL_GPL(regmap_bulk_write);
2312
2313/*
2314 * _regmap_raw_multi_reg_write()
2315 *
2316 * the (register,newvalue) pairs in regs have not been formatted, but
2317 * they are all in the same page and have been changed to being page
2318 * relative. The page register has been written if that was necessary.
2319 */
2320static int _regmap_raw_multi_reg_write(struct regmap *map,
2321 const struct reg_sequence *regs,
2322 size_t num_regs)
2323{
2324 int ret;
2325 void *buf;
2326 int i;
2327 u8 *u8;
2328 size_t val_bytes = map->format.val_bytes;
2329 size_t reg_bytes = map->format.reg_bytes;
2330 size_t pad_bytes = map->format.pad_bytes;
2331 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2332 size_t len = pair_size * num_regs;
2333
2334 if (!len)
2335 return -EINVAL;
2336
2337 buf = kzalloc(len, GFP_KERNEL);
2338 if (!buf)
2339 return -ENOMEM;
2340
2341 /* We have to linearise by hand. */
2342
2343 u8 = buf;
2344
2345 for (i = 0; i < num_regs; i++) {
2346 unsigned int reg = regs[i].reg;
2347 unsigned int val = regs[i].def;
2348 trace_regmap_hw_write_start(map, reg, 1);
2349 map->format.format_reg(u8, reg, map->reg_shift);
2350 u8 += reg_bytes + pad_bytes;
2351 map->format.format_val(u8, val, 0);
2352 u8 += val_bytes;
2353 }
2354 u8 = buf;
2355 *u8 |= map->write_flag_mask;
2356
2357 ret = map->bus->write(map->bus_context, buf, len);
2358
2359 kfree(buf);
2360
2361 for (i = 0; i < num_regs; i++) {
2362 int reg = regs[i].reg;
2363 trace_regmap_hw_write_done(map, reg, 1);
2364 }
2365 return ret;
2366}
2367
2368static unsigned int _regmap_register_page(struct regmap *map,
2369 unsigned int reg,
2370 struct regmap_range_node *range)
2371{
2372 unsigned int win_page = (reg - range->range_min) / range->window_len;
2373
2374 return win_page;
2375}
2376
2377static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2378 struct reg_sequence *regs,
2379 size_t num_regs)
2380{
2381 int ret;
2382 int i, n;
2383 struct reg_sequence *base;
2384 unsigned int this_page = 0;
2385 unsigned int page_change = 0;
2386 /*
2387 * the set of registers are not neccessarily in order, but
2388 * since the order of write must be preserved this algorithm
2389 * chops the set each time the page changes. This also applies
2390 * if there is a delay required at any point in the sequence.
2391 */
2392 base = regs;
2393 for (i = 0, n = 0; i < num_regs; i++, n++) {
2394 unsigned int reg = regs[i].reg;
2395 struct regmap_range_node *range;
2396
2397 range = _regmap_range_lookup(map, reg);
2398 if (range) {
2399 unsigned int win_page = _regmap_register_page(map, reg,
2400 range);
2401
2402 if (i == 0)
2403 this_page = win_page;
2404 if (win_page != this_page) {
2405 this_page = win_page;
2406 page_change = 1;
2407 }
2408 }
2409
2410 /* If we have both a page change and a delay make sure to
2411 * write the regs and apply the delay before we change the
2412 * page.
2413 */
2414
2415 if (page_change || regs[i].delay_us) {
2416
2417 /* For situations where the first write requires
2418 * a delay we need to make sure we don't call
2419 * raw_multi_reg_write with n=0
2420 * This can't occur with page breaks as we
2421 * never write on the first iteration
2422 */
2423 if (regs[i].delay_us && i == 0)
2424 n = 1;
2425
2426 ret = _regmap_raw_multi_reg_write(map, base, n);
2427 if (ret != 0)
2428 return ret;
2429
2430 if (regs[i].delay_us) {
2431 if (map->can_sleep)
2432 fsleep(regs[i].delay_us);
2433 else
2434 udelay(regs[i].delay_us);
2435 }
2436
2437 base += n;
2438 n = 0;
2439
2440 if (page_change) {
2441 ret = _regmap_select_page(map,
2442 &base[n].reg,
2443 range, 1);
2444 if (ret != 0)
2445 return ret;
2446
2447 page_change = 0;
2448 }
2449
2450 }
2451
2452 }
2453 if (n > 0)
2454 return _regmap_raw_multi_reg_write(map, base, n);
2455 return 0;
2456}
2457
2458static int _regmap_multi_reg_write(struct regmap *map,
2459 const struct reg_sequence *regs,
2460 size_t num_regs)
2461{
2462 int i;
2463 int ret;
2464
2465 if (!map->can_multi_write) {
2466 for (i = 0; i < num_regs; i++) {
2467 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2468 if (ret != 0)
2469 return ret;
2470
2471 if (regs[i].delay_us) {
2472 if (map->can_sleep)
2473 fsleep(regs[i].delay_us);
2474 else
2475 udelay(regs[i].delay_us);
2476 }
2477 }
2478 return 0;
2479 }
2480
2481 if (!map->format.parse_inplace)
2482 return -EINVAL;
2483
2484 if (map->writeable_reg)
2485 for (i = 0; i < num_regs; i++) {
2486 int reg = regs[i].reg;
2487 if (!map->writeable_reg(map->dev, reg))
2488 return -EINVAL;
2489 if (!IS_ALIGNED(reg, map->reg_stride))
2490 return -EINVAL;
2491 }
2492
2493 if (!map->cache_bypass) {
2494 for (i = 0; i < num_regs; i++) {
2495 unsigned int val = regs[i].def;
2496 unsigned int reg = regs[i].reg;
2497 ret = regcache_write(map, reg, val);
2498 if (ret) {
2499 dev_err(map->dev,
2500 "Error in caching of register: %x ret: %d\n",
2501 reg, ret);
2502 return ret;
2503 }
2504 }
2505 if (map->cache_only) {
2506 map->cache_dirty = true;
2507 return 0;
2508 }
2509 }
2510
2511 WARN_ON(!map->bus);
2512
2513 for (i = 0; i < num_regs; i++) {
2514 unsigned int reg = regs[i].reg;
2515 struct regmap_range_node *range;
2516
2517 /* Coalesce all the writes between a page break or a delay
2518 * in a sequence
2519 */
2520 range = _regmap_range_lookup(map, reg);
2521 if (range || regs[i].delay_us) {
2522 size_t len = sizeof(struct reg_sequence)*num_regs;
2523 struct reg_sequence *base = kmemdup(regs, len,
2524 GFP_KERNEL);
2525 if (!base)
2526 return -ENOMEM;
2527 ret = _regmap_range_multi_paged_reg_write(map, base,
2528 num_regs);
2529 kfree(base);
2530
2531 return ret;
2532 }
2533 }
2534 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2535}
2536
2537/**
2538 * regmap_multi_reg_write() - Write multiple registers to the device
2539 *
2540 * @map: Register map to write to
2541 * @regs: Array of structures containing register,value to be written
2542 * @num_regs: Number of registers to write
2543 *
2544 * Write multiple registers to the device where the set of register, value
2545 * pairs are supplied in any order, possibly not all in a single range.
2546 *
2547 * The 'normal' block write mode will send ultimately send data on the
2548 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2549 * addressed. However, this alternative block multi write mode will send
2550 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2551 * must of course support the mode.
2552 *
2553 * A value of zero will be returned on success, a negative errno will be
2554 * returned in error cases.
2555 */
2556int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2557 int num_regs)
2558{
2559 int ret;
2560
2561 map->lock(map->lock_arg);
2562
2563 ret = _regmap_multi_reg_write(map, regs, num_regs);
2564
2565 map->unlock(map->lock_arg);
2566
2567 return ret;
2568}
2569EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2570
2571/**
2572 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2573 * device but not the cache
2574 *
2575 * @map: Register map to write to
2576 * @regs: Array of structures containing register,value to be written
2577 * @num_regs: Number of registers to write
2578 *
2579 * Write multiple registers to the device but not the cache where the set
2580 * of register are supplied in any order.
2581 *
2582 * This function is intended to be used for writing a large block of data
2583 * atomically to the device in single transfer for those I2C client devices
2584 * that implement this alternative block write mode.
2585 *
2586 * A value of zero will be returned on success, a negative errno will
2587 * be returned in error cases.
2588 */
2589int regmap_multi_reg_write_bypassed(struct regmap *map,
2590 const struct reg_sequence *regs,
2591 int num_regs)
2592{
2593 int ret;
2594 bool bypass;
2595
2596 map->lock(map->lock_arg);
2597
2598 bypass = map->cache_bypass;
2599 map->cache_bypass = true;
2600
2601 ret = _regmap_multi_reg_write(map, regs, num_regs);
2602
2603 map->cache_bypass = bypass;
2604
2605 map->unlock(map->lock_arg);
2606
2607 return ret;
2608}
2609EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2610
2611/**
2612 * regmap_raw_write_async() - Write raw values to one or more registers
2613 * asynchronously
2614 *
2615 * @map: Register map to write to
2616 * @reg: Initial register to write to
2617 * @val: Block of data to be written, laid out for direct transmission to the
2618 * device. Must be valid until regmap_async_complete() is called.
2619 * @val_len: Length of data pointed to by val.
2620 *
2621 * This function is intended to be used for things like firmware
2622 * download where a large block of data needs to be transferred to the
2623 * device. No formatting will be done on the data provided.
2624 *
2625 * If supported by the underlying bus the write will be scheduled
2626 * asynchronously, helping maximise I/O speed on higher speed buses
2627 * like SPI. regmap_async_complete() can be called to ensure that all
2628 * asynchrnous writes have been completed.
2629 *
2630 * A value of zero will be returned on success, a negative errno will
2631 * be returned in error cases.
2632 */
2633int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2634 const void *val, size_t val_len)
2635{
2636 int ret;
2637
2638 if (val_len % map->format.val_bytes)
2639 return -EINVAL;
2640 if (!IS_ALIGNED(reg, map->reg_stride))
2641 return -EINVAL;
2642
2643 map->lock(map->lock_arg);
2644
2645 map->async = true;
2646
2647 ret = _regmap_raw_write(map, reg, val, val_len, false);
2648
2649 map->async = false;
2650
2651 map->unlock(map->lock_arg);
2652
2653 return ret;
2654}
2655EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2656
2657static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2658 unsigned int val_len, bool noinc)
2659{
2660 struct regmap_range_node *range;
2661 int ret;
2662
2663 WARN_ON(!map->bus);
2664
2665 if (!map->bus || !map->bus->read)
2666 return -EINVAL;
2667
2668 range = _regmap_range_lookup(map, reg);
2669 if (range) {
2670 ret = _regmap_select_page(map, ®, range,
2671 noinc ? 1 : val_len / map->format.val_bytes);
2672 if (ret != 0)
2673 return ret;
2674 }
2675
2676 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2677 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2678 map->read_flag_mask);
2679 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2680
2681 ret = map->bus->read(map->bus_context, map->work_buf,
2682 map->format.reg_bytes + map->format.pad_bytes,
2683 val, val_len);
2684
2685 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2686
2687 return ret;
2688}
2689
2690static int _regmap_bus_reg_read(void *context, unsigned int reg,
2691 unsigned int *val)
2692{
2693 struct regmap *map = context;
2694
2695 return map->bus->reg_read(map->bus_context, reg, val);
2696}
2697
2698static int _regmap_bus_read(void *context, unsigned int reg,
2699 unsigned int *val)
2700{
2701 int ret;
2702 struct regmap *map = context;
2703 void *work_val = map->work_buf + map->format.reg_bytes +
2704 map->format.pad_bytes;
2705
2706 if (!map->format.parse_val)
2707 return -EINVAL;
2708
2709 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2710 if (ret == 0)
2711 *val = map->format.parse_val(work_val);
2712
2713 return ret;
2714}
2715
2716static int _regmap_read(struct regmap *map, unsigned int reg,
2717 unsigned int *val)
2718{
2719 int ret;
2720 void *context = _regmap_map_get_context(map);
2721
2722 if (!map->cache_bypass) {
2723 ret = regcache_read(map, reg, val);
2724 if (ret == 0)
2725 return 0;
2726 }
2727
2728 if (map->cache_only)
2729 return -EBUSY;
2730
2731 if (!regmap_readable(map, reg))
2732 return -EIO;
2733
2734 ret = map->reg_read(context, reg, val);
2735 if (ret == 0) {
2736 if (regmap_should_log(map))
2737 dev_info(map->dev, "%x => %x\n", reg, *val);
2738
2739 trace_regmap_reg_read(map, reg, *val);
2740
2741 if (!map->cache_bypass)
2742 regcache_write(map, reg, *val);
2743 }
2744
2745 return ret;
2746}
2747
2748/**
2749 * regmap_read() - Read a value from a single register
2750 *
2751 * @map: Register map to read from
2752 * @reg: Register to be read from
2753 * @val: Pointer to store read value
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2759{
2760 int ret;
2761
2762 if (!IS_ALIGNED(reg, map->reg_stride))
2763 return -EINVAL;
2764
2765 map->lock(map->lock_arg);
2766
2767 ret = _regmap_read(map, reg, val);
2768
2769 map->unlock(map->lock_arg);
2770
2771 return ret;
2772}
2773EXPORT_SYMBOL_GPL(regmap_read);
2774
2775/**
2776 * regmap_raw_read() - Read raw data from the device
2777 *
2778 * @map: Register map to read from
2779 * @reg: First register to be read from
2780 * @val: Pointer to store read value
2781 * @val_len: Size of data to read
2782 *
2783 * A value of zero will be returned on success, a negative errno will
2784 * be returned in error cases.
2785 */
2786int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2787 size_t val_len)
2788{
2789 size_t val_bytes = map->format.val_bytes;
2790 size_t val_count = val_len / val_bytes;
2791 unsigned int v;
2792 int ret, i;
2793
2794 if (!map->bus)
2795 return -EINVAL;
2796 if (val_len % map->format.val_bytes)
2797 return -EINVAL;
2798 if (!IS_ALIGNED(reg, map->reg_stride))
2799 return -EINVAL;
2800 if (val_count == 0)
2801 return -EINVAL;
2802
2803 map->lock(map->lock_arg);
2804
2805 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2806 map->cache_type == REGCACHE_NONE) {
2807 size_t chunk_count, chunk_bytes;
2808 size_t chunk_regs = val_count;
2809
2810 if (!map->bus->read) {
2811 ret = -ENOTSUPP;
2812 goto out;
2813 }
2814
2815 if (map->use_single_read)
2816 chunk_regs = 1;
2817 else if (map->max_raw_read && val_len > map->max_raw_read)
2818 chunk_regs = map->max_raw_read / val_bytes;
2819
2820 chunk_count = val_count / chunk_regs;
2821 chunk_bytes = chunk_regs * val_bytes;
2822
2823 /* Read bytes that fit into whole chunks */
2824 for (i = 0; i < chunk_count; i++) {
2825 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2826 if (ret != 0)
2827 goto out;
2828
2829 reg += regmap_get_offset(map, chunk_regs);
2830 val += chunk_bytes;
2831 val_len -= chunk_bytes;
2832 }
2833
2834 /* Read remaining bytes */
2835 if (val_len) {
2836 ret = _regmap_raw_read(map, reg, val, val_len, false);
2837 if (ret != 0)
2838 goto out;
2839 }
2840 } else {
2841 /* Otherwise go word by word for the cache; should be low
2842 * cost as we expect to hit the cache.
2843 */
2844 for (i = 0; i < val_count; i++) {
2845 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2846 &v);
2847 if (ret != 0)
2848 goto out;
2849
2850 map->format.format_val(val + (i * val_bytes), v, 0);
2851 }
2852 }
2853
2854 out:
2855 map->unlock(map->lock_arg);
2856
2857 return ret;
2858}
2859EXPORT_SYMBOL_GPL(regmap_raw_read);
2860
2861/**
2862 * regmap_noinc_read(): Read data from a register without incrementing the
2863 * register number
2864 *
2865 * @map: Register map to read from
2866 * @reg: Register to read from
2867 * @val: Pointer to data buffer
2868 * @val_len: Length of output buffer in bytes.
2869 *
2870 * The regmap API usually assumes that bulk bus read operations will read a
2871 * range of registers. Some devices have certain registers for which a read
2872 * operation read will read from an internal FIFO.
2873 *
2874 * The target register must be volatile but registers after it can be
2875 * completely unrelated cacheable registers.
2876 *
2877 * This will attempt multiple reads as required to read val_len bytes.
2878 *
2879 * A value of zero will be returned on success, a negative errno will be
2880 * returned in error cases.
2881 */
2882int regmap_noinc_read(struct regmap *map, unsigned int reg,
2883 void *val, size_t val_len)
2884{
2885 size_t read_len;
2886 int ret;
2887
2888 if (!map->bus)
2889 return -EINVAL;
2890 if (!map->bus->read)
2891 return -ENOTSUPP;
2892 if (val_len % map->format.val_bytes)
2893 return -EINVAL;
2894 if (!IS_ALIGNED(reg, map->reg_stride))
2895 return -EINVAL;
2896 if (val_len == 0)
2897 return -EINVAL;
2898
2899 map->lock(map->lock_arg);
2900
2901 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2902 ret = -EINVAL;
2903 goto out_unlock;
2904 }
2905
2906 while (val_len) {
2907 if (map->max_raw_read && map->max_raw_read < val_len)
2908 read_len = map->max_raw_read;
2909 else
2910 read_len = val_len;
2911 ret = _regmap_raw_read(map, reg, val, read_len, true);
2912 if (ret)
2913 goto out_unlock;
2914 val = ((u8 *)val) + read_len;
2915 val_len -= read_len;
2916 }
2917
2918out_unlock:
2919 map->unlock(map->lock_arg);
2920 return ret;
2921}
2922EXPORT_SYMBOL_GPL(regmap_noinc_read);
2923
2924/**
2925 * regmap_field_read(): Read a value to a single register field
2926 *
2927 * @field: Register field to read from
2928 * @val: Pointer to store read value
2929 *
2930 * A value of zero will be returned on success, a negative errno will
2931 * be returned in error cases.
2932 */
2933int regmap_field_read(struct regmap_field *field, unsigned int *val)
2934{
2935 int ret;
2936 unsigned int reg_val;
2937 ret = regmap_read(field->regmap, field->reg, ®_val);
2938 if (ret != 0)
2939 return ret;
2940
2941 reg_val &= field->mask;
2942 reg_val >>= field->shift;
2943 *val = reg_val;
2944
2945 return ret;
2946}
2947EXPORT_SYMBOL_GPL(regmap_field_read);
2948
2949/**
2950 * regmap_fields_read() - Read a value to a single register field with port ID
2951 *
2952 * @field: Register field to read from
2953 * @id: port ID
2954 * @val: Pointer to store read value
2955 *
2956 * A value of zero will be returned on success, a negative errno will
2957 * be returned in error cases.
2958 */
2959int regmap_fields_read(struct regmap_field *field, unsigned int id,
2960 unsigned int *val)
2961{
2962 int ret;
2963 unsigned int reg_val;
2964
2965 if (id >= field->id_size)
2966 return -EINVAL;
2967
2968 ret = regmap_read(field->regmap,
2969 field->reg + (field->id_offset * id),
2970 ®_val);
2971 if (ret != 0)
2972 return ret;
2973
2974 reg_val &= field->mask;
2975 reg_val >>= field->shift;
2976 *val = reg_val;
2977
2978 return ret;
2979}
2980EXPORT_SYMBOL_GPL(regmap_fields_read);
2981
2982/**
2983 * regmap_bulk_read() - Read multiple registers from the device
2984 *
2985 * @map: Register map to read from
2986 * @reg: First register to be read from
2987 * @val: Pointer to store read value, in native register size for device
2988 * @val_count: Number of registers to read
2989 *
2990 * A value of zero will be returned on success, a negative errno will
2991 * be returned in error cases.
2992 */
2993int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2994 size_t val_count)
2995{
2996 int ret, i;
2997 size_t val_bytes = map->format.val_bytes;
2998 bool vol = regmap_volatile_range(map, reg, val_count);
2999
3000 if (!IS_ALIGNED(reg, map->reg_stride))
3001 return -EINVAL;
3002 if (val_count == 0)
3003 return -EINVAL;
3004
3005 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3006 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3007 if (ret != 0)
3008 return ret;
3009
3010 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3011 map->format.parse_inplace(val + i);
3012 } else {
3013#ifdef CONFIG_64BIT
3014 u64 *u64 = val;
3015#endif
3016 u32 *u32 = val;
3017 u16 *u16 = val;
3018 u8 *u8 = val;
3019
3020 map->lock(map->lock_arg);
3021
3022 for (i = 0; i < val_count; i++) {
3023 unsigned int ival;
3024
3025 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3026 &ival);
3027 if (ret != 0)
3028 goto out;
3029
3030 switch (map->format.val_bytes) {
3031#ifdef CONFIG_64BIT
3032 case 8:
3033 u64[i] = ival;
3034 break;
3035#endif
3036 case 4:
3037 u32[i] = ival;
3038 break;
3039 case 2:
3040 u16[i] = ival;
3041 break;
3042 case 1:
3043 u8[i] = ival;
3044 break;
3045 default:
3046 ret = -EINVAL;
3047 goto out;
3048 }
3049 }
3050
3051out:
3052 map->unlock(map->lock_arg);
3053 }
3054
3055 return ret;
3056}
3057EXPORT_SYMBOL_GPL(regmap_bulk_read);
3058
3059static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3060 unsigned int mask, unsigned int val,
3061 bool *change, bool force_write)
3062{
3063 int ret;
3064 unsigned int tmp, orig;
3065
3066 if (change)
3067 *change = false;
3068
3069 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3070 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3071 if (ret == 0 && change)
3072 *change = true;
3073 } else {
3074 ret = _regmap_read(map, reg, &orig);
3075 if (ret != 0)
3076 return ret;
3077
3078 tmp = orig & ~mask;
3079 tmp |= val & mask;
3080
3081 if (force_write || (tmp != orig)) {
3082 ret = _regmap_write(map, reg, tmp);
3083 if (ret == 0 && change)
3084 *change = true;
3085 }
3086 }
3087
3088 return ret;
3089}
3090
3091/**
3092 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3093 *
3094 * @map: Register map to update
3095 * @reg: Register to update
3096 * @mask: Bitmask to change
3097 * @val: New value for bitmask
3098 * @change: Boolean indicating if a write was done
3099 * @async: Boolean indicating asynchronously
3100 * @force: Boolean indicating use force update
3101 *
3102 * Perform a read/modify/write cycle on a register map with change, async, force
3103 * options.
3104 *
3105 * If async is true:
3106 *
3107 * With most buses the read must be done synchronously so this is most useful
3108 * for devices with a cache which do not need to interact with the hardware to
3109 * determine the current register value.
3110 *
3111 * Returns zero for success, a negative number on error.
3112 */
3113int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3114 unsigned int mask, unsigned int val,
3115 bool *change, bool async, bool force)
3116{
3117 int ret;
3118
3119 map->lock(map->lock_arg);
3120
3121 map->async = async;
3122
3123 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3124
3125 map->async = false;
3126
3127 map->unlock(map->lock_arg);
3128
3129 return ret;
3130}
3131EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3132
3133/**
3134 * regmap_test_bits() - Check if all specified bits are set in a register.
3135 *
3136 * @map: Register map to operate on
3137 * @reg: Register to read from
3138 * @bits: Bits to test
3139 *
3140 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3141 * bits are set and a negative error number if the underlying regmap_read()
3142 * fails.
3143 */
3144int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3145{
3146 unsigned int val, ret;
3147
3148 ret = regmap_read(map, reg, &val);
3149 if (ret)
3150 return ret;
3151
3152 return (val & bits) == bits;
3153}
3154EXPORT_SYMBOL_GPL(regmap_test_bits);
3155
3156void regmap_async_complete_cb(struct regmap_async *async, int ret)
3157{
3158 struct regmap *map = async->map;
3159 bool wake;
3160
3161 trace_regmap_async_io_complete(map);
3162
3163 spin_lock(&map->async_lock);
3164 list_move(&async->list, &map->async_free);
3165 wake = list_empty(&map->async_list);
3166
3167 if (ret != 0)
3168 map->async_ret = ret;
3169
3170 spin_unlock(&map->async_lock);
3171
3172 if (wake)
3173 wake_up(&map->async_waitq);
3174}
3175EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3176
3177static int regmap_async_is_done(struct regmap *map)
3178{
3179 unsigned long flags;
3180 int ret;
3181
3182 spin_lock_irqsave(&map->async_lock, flags);
3183 ret = list_empty(&map->async_list);
3184 spin_unlock_irqrestore(&map->async_lock, flags);
3185
3186 return ret;
3187}
3188
3189/**
3190 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3191 *
3192 * @map: Map to operate on.
3193 *
3194 * Blocks until any pending asynchronous I/O has completed. Returns
3195 * an error code for any failed I/O operations.
3196 */
3197int regmap_async_complete(struct regmap *map)
3198{
3199 unsigned long flags;
3200 int ret;
3201
3202 /* Nothing to do with no async support */
3203 if (!map->bus || !map->bus->async_write)
3204 return 0;
3205
3206 trace_regmap_async_complete_start(map);
3207
3208 wait_event(map->async_waitq, regmap_async_is_done(map));
3209
3210 spin_lock_irqsave(&map->async_lock, flags);
3211 ret = map->async_ret;
3212 map->async_ret = 0;
3213 spin_unlock_irqrestore(&map->async_lock, flags);
3214
3215 trace_regmap_async_complete_done(map);
3216
3217 return ret;
3218}
3219EXPORT_SYMBOL_GPL(regmap_async_complete);
3220
3221/**
3222 * regmap_register_patch - Register and apply register updates to be applied
3223 * on device initialistion
3224 *
3225 * @map: Register map to apply updates to.
3226 * @regs: Values to update.
3227 * @num_regs: Number of entries in regs.
3228 *
3229 * Register a set of register updates to be applied to the device
3230 * whenever the device registers are synchronised with the cache and
3231 * apply them immediately. Typically this is used to apply
3232 * corrections to be applied to the device defaults on startup, such
3233 * as the updates some vendors provide to undocumented registers.
3234 *
3235 * The caller must ensure that this function cannot be called
3236 * concurrently with either itself or regcache_sync().
3237 */
3238int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3239 int num_regs)
3240{
3241 struct reg_sequence *p;
3242 int ret;
3243 bool bypass;
3244
3245 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3246 num_regs))
3247 return 0;
3248
3249 p = krealloc(map->patch,
3250 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3251 GFP_KERNEL);
3252 if (p) {
3253 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3254 map->patch = p;
3255 map->patch_regs += num_regs;
3256 } else {
3257 return -ENOMEM;
3258 }
3259
3260 map->lock(map->lock_arg);
3261
3262 bypass = map->cache_bypass;
3263
3264 map->cache_bypass = true;
3265 map->async = true;
3266
3267 ret = _regmap_multi_reg_write(map, regs, num_regs);
3268
3269 map->async = false;
3270 map->cache_bypass = bypass;
3271
3272 map->unlock(map->lock_arg);
3273
3274 regmap_async_complete(map);
3275
3276 return ret;
3277}
3278EXPORT_SYMBOL_GPL(regmap_register_patch);
3279
3280/**
3281 * regmap_get_val_bytes() - Report the size of a register value
3282 *
3283 * @map: Register map to operate on.
3284 *
3285 * Report the size of a register value, mainly intended to for use by
3286 * generic infrastructure built on top of regmap.
3287 */
3288int regmap_get_val_bytes(struct regmap *map)
3289{
3290 if (map->format.format_write)
3291 return -EINVAL;
3292
3293 return map->format.val_bytes;
3294}
3295EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3296
3297/**
3298 * regmap_get_max_register() - Report the max register value
3299 *
3300 * @map: Register map to operate on.
3301 *
3302 * Report the max register value, mainly intended to for use by
3303 * generic infrastructure built on top of regmap.
3304 */
3305int regmap_get_max_register(struct regmap *map)
3306{
3307 return map->max_register ? map->max_register : -EINVAL;
3308}
3309EXPORT_SYMBOL_GPL(regmap_get_max_register);
3310
3311/**
3312 * regmap_get_reg_stride() - Report the register address stride
3313 *
3314 * @map: Register map to operate on.
3315 *
3316 * Report the register address stride, mainly intended to for use by
3317 * generic infrastructure built on top of regmap.
3318 */
3319int regmap_get_reg_stride(struct regmap *map)
3320{
3321 return map->reg_stride;
3322}
3323EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3324
3325int regmap_parse_val(struct regmap *map, const void *buf,
3326 unsigned int *val)
3327{
3328 if (!map->format.parse_val)
3329 return -EINVAL;
3330
3331 *val = map->format.parse_val(buf);
3332
3333 return 0;
3334}
3335EXPORT_SYMBOL_GPL(regmap_parse_val);
3336
3337static int __init regmap_initcall(void)
3338{
3339 regmap_debugfs_initcall();
3340
3341 return 0;
3342}
3343postcore_initcall(regmap_initcall);