Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3/*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13#ifndef _GNU_SOURCE
14#define _GNU_SOURCE
15#endif
16#include <stdlib.h>
17#include <stdio.h>
18#include <stdarg.h>
19#include <libgen.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <string.h>
23#include <unistd.h>
24#include <endian.h>
25#include <fcntl.h>
26#include <errno.h>
27#include <ctype.h>
28#include <asm/unistd.h>
29#include <linux/err.h>
30#include <linux/kernel.h>
31#include <linux/bpf.h>
32#include <linux/btf.h>
33#include <linux/filter.h>
34#include <linux/list.h>
35#include <linux/limits.h>
36#include <linux/perf_event.h>
37#include <linux/ring_buffer.h>
38#include <linux/version.h>
39#include <sys/epoll.h>
40#include <sys/ioctl.h>
41#include <sys/mman.h>
42#include <sys/stat.h>
43#include <sys/types.h>
44#include <sys/vfs.h>
45#include <sys/utsname.h>
46#include <sys/resource.h>
47#include <libelf.h>
48#include <gelf.h>
49#include <zlib.h>
50
51#include "libbpf.h"
52#include "bpf.h"
53#include "btf.h"
54#include "str_error.h"
55#include "libbpf_internal.h"
56#include "hashmap.h"
57#include "bpf_gen_internal.h"
58
59#ifndef BPF_FS_MAGIC
60#define BPF_FS_MAGIC 0xcafe4a11
61#endif
62
63#define BPF_INSN_SZ (sizeof(struct bpf_insn))
64
65/* vsprintf() in __base_pr() uses nonliteral format string. It may break
66 * compilation if user enables corresponding warning. Disable it explicitly.
67 */
68#pragma GCC diagnostic ignored "-Wformat-nonliteral"
69
70#define __printf(a, b) __attribute__((format(printf, a, b)))
71
72static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
73static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74
75static int __base_pr(enum libbpf_print_level level, const char *format,
76 va_list args)
77{
78 if (level == LIBBPF_DEBUG)
79 return 0;
80
81 return vfprintf(stderr, format, args);
82}
83
84static libbpf_print_fn_t __libbpf_pr = __base_pr;
85
86libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
87{
88 libbpf_print_fn_t old_print_fn = __libbpf_pr;
89
90 __libbpf_pr = fn;
91 return old_print_fn;
92}
93
94__printf(2, 3)
95void libbpf_print(enum libbpf_print_level level, const char *format, ...)
96{
97 va_list args;
98
99 if (!__libbpf_pr)
100 return;
101
102 va_start(args, format);
103 __libbpf_pr(level, format, args);
104 va_end(args);
105}
106
107static void pr_perm_msg(int err)
108{
109 struct rlimit limit;
110 char buf[100];
111
112 if (err != -EPERM || geteuid() != 0)
113 return;
114
115 err = getrlimit(RLIMIT_MEMLOCK, &limit);
116 if (err)
117 return;
118
119 if (limit.rlim_cur == RLIM_INFINITY)
120 return;
121
122 if (limit.rlim_cur < 1024)
123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
124 else if (limit.rlim_cur < 1024*1024)
125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
126 else
127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
128
129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
130 buf);
131}
132
133#define STRERR_BUFSIZE 128
134
135/* Copied from tools/perf/util/util.h */
136#ifndef zfree
137# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
138#endif
139
140#ifndef zclose
141# define zclose(fd) ({ \
142 int ___err = 0; \
143 if ((fd) >= 0) \
144 ___err = close((fd)); \
145 fd = -1; \
146 ___err; })
147#endif
148
149static inline __u64 ptr_to_u64(const void *ptr)
150{
151 return (__u64) (unsigned long) ptr;
152}
153
154/* this goes away in libbpf 1.0 */
155enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
156
157int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
158{
159 /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to
160 * get all possible values we compensate last +1, and then (2*x - 1)
161 * to get the bit mask
162 */
163 if (mode != LIBBPF_STRICT_ALL
164 && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1)))
165 return errno = EINVAL, -EINVAL;
166
167 libbpf_mode = mode;
168 return 0;
169}
170
171__u32 libbpf_major_version(void)
172{
173 return LIBBPF_MAJOR_VERSION;
174}
175
176__u32 libbpf_minor_version(void)
177{
178 return LIBBPF_MINOR_VERSION;
179}
180
181const char *libbpf_version_string(void)
182{
183#define __S(X) #X
184#define _S(X) __S(X)
185 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
186#undef _S
187#undef __S
188}
189
190enum reloc_type {
191 RELO_LD64,
192 RELO_CALL,
193 RELO_DATA,
194 RELO_EXTERN_VAR,
195 RELO_EXTERN_FUNC,
196 RELO_SUBPROG_ADDR,
197 RELO_CORE,
198};
199
200struct reloc_desc {
201 enum reloc_type type;
202 int insn_idx;
203 union {
204 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
205 struct {
206 int map_idx;
207 int sym_off;
208 };
209 };
210};
211
212struct bpf_sec_def;
213
214typedef int (*init_fn_t)(struct bpf_program *prog, long cookie);
215typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_opts *opts, long cookie);
216typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie);
217
218/* stored as sec_def->cookie for all libbpf-supported SEC()s */
219enum sec_def_flags {
220 SEC_NONE = 0,
221 /* expected_attach_type is optional, if kernel doesn't support that */
222 SEC_EXP_ATTACH_OPT = 1,
223 /* legacy, only used by libbpf_get_type_names() and
224 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
225 * This used to be associated with cgroup (and few other) BPF programs
226 * that were attachable through BPF_PROG_ATTACH command. Pretty
227 * meaningless nowadays, though.
228 */
229 SEC_ATTACHABLE = 2,
230 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
231 /* attachment target is specified through BTF ID in either kernel or
232 * other BPF program's BTF object */
233 SEC_ATTACH_BTF = 4,
234 /* BPF program type allows sleeping/blocking in kernel */
235 SEC_SLEEPABLE = 8,
236 /* allow non-strict prefix matching */
237 SEC_SLOPPY_PFX = 16,
238};
239
240struct bpf_sec_def {
241 const char *sec;
242 enum bpf_prog_type prog_type;
243 enum bpf_attach_type expected_attach_type;
244 long cookie;
245
246 init_fn_t init_fn;
247 preload_fn_t preload_fn;
248 attach_fn_t attach_fn;
249};
250
251/*
252 * bpf_prog should be a better name but it has been used in
253 * linux/filter.h.
254 */
255struct bpf_program {
256 const struct bpf_sec_def *sec_def;
257 char *sec_name;
258 size_t sec_idx;
259 /* this program's instruction offset (in number of instructions)
260 * within its containing ELF section
261 */
262 size_t sec_insn_off;
263 /* number of original instructions in ELF section belonging to this
264 * program, not taking into account subprogram instructions possible
265 * appended later during relocation
266 */
267 size_t sec_insn_cnt;
268 /* Offset (in number of instructions) of the start of instruction
269 * belonging to this BPF program within its containing main BPF
270 * program. For the entry-point (main) BPF program, this is always
271 * zero. For a sub-program, this gets reset before each of main BPF
272 * programs are processed and relocated and is used to determined
273 * whether sub-program was already appended to the main program, and
274 * if yes, at which instruction offset.
275 */
276 size_t sub_insn_off;
277
278 char *name;
279 /* name with / replaced by _; makes recursive pinning
280 * in bpf_object__pin_programs easier
281 */
282 char *pin_name;
283
284 /* instructions that belong to BPF program; insns[0] is located at
285 * sec_insn_off instruction within its ELF section in ELF file, so
286 * when mapping ELF file instruction index to the local instruction,
287 * one needs to subtract sec_insn_off; and vice versa.
288 */
289 struct bpf_insn *insns;
290 /* actual number of instruction in this BPF program's image; for
291 * entry-point BPF programs this includes the size of main program
292 * itself plus all the used sub-programs, appended at the end
293 */
294 size_t insns_cnt;
295
296 struct reloc_desc *reloc_desc;
297 int nr_reloc;
298
299 /* BPF verifier log settings */
300 char *log_buf;
301 size_t log_size;
302 __u32 log_level;
303
304 struct {
305 int nr;
306 int *fds;
307 } instances;
308 bpf_program_prep_t preprocessor;
309
310 struct bpf_object *obj;
311 void *priv;
312 bpf_program_clear_priv_t clear_priv;
313
314 bool load;
315 bool mark_btf_static;
316 enum bpf_prog_type type;
317 enum bpf_attach_type expected_attach_type;
318 int prog_ifindex;
319 __u32 attach_btf_obj_fd;
320 __u32 attach_btf_id;
321 __u32 attach_prog_fd;
322 void *func_info;
323 __u32 func_info_rec_size;
324 __u32 func_info_cnt;
325
326 void *line_info;
327 __u32 line_info_rec_size;
328 __u32 line_info_cnt;
329 __u32 prog_flags;
330};
331
332struct bpf_struct_ops {
333 const char *tname;
334 const struct btf_type *type;
335 struct bpf_program **progs;
336 __u32 *kern_func_off;
337 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
338 void *data;
339 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
340 * btf_vmlinux's format.
341 * struct bpf_struct_ops_tcp_congestion_ops {
342 * [... some other kernel fields ...]
343 * struct tcp_congestion_ops data;
344 * }
345 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
346 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
347 * from "data".
348 */
349 void *kern_vdata;
350 __u32 type_id;
351};
352
353#define DATA_SEC ".data"
354#define BSS_SEC ".bss"
355#define RODATA_SEC ".rodata"
356#define KCONFIG_SEC ".kconfig"
357#define KSYMS_SEC ".ksyms"
358#define STRUCT_OPS_SEC ".struct_ops"
359
360enum libbpf_map_type {
361 LIBBPF_MAP_UNSPEC,
362 LIBBPF_MAP_DATA,
363 LIBBPF_MAP_BSS,
364 LIBBPF_MAP_RODATA,
365 LIBBPF_MAP_KCONFIG,
366};
367
368struct bpf_map {
369 char *name;
370 /* real_name is defined for special internal maps (.rodata*,
371 * .data*, .bss, .kconfig) and preserves their original ELF section
372 * name. This is important to be be able to find corresponding BTF
373 * DATASEC information.
374 */
375 char *real_name;
376 int fd;
377 int sec_idx;
378 size_t sec_offset;
379 int map_ifindex;
380 int inner_map_fd;
381 struct bpf_map_def def;
382 __u32 numa_node;
383 __u32 btf_var_idx;
384 __u32 btf_key_type_id;
385 __u32 btf_value_type_id;
386 __u32 btf_vmlinux_value_type_id;
387 void *priv;
388 bpf_map_clear_priv_t clear_priv;
389 enum libbpf_map_type libbpf_type;
390 void *mmaped;
391 struct bpf_struct_ops *st_ops;
392 struct bpf_map *inner_map;
393 void **init_slots;
394 int init_slots_sz;
395 char *pin_path;
396 bool pinned;
397 bool reused;
398 bool skipped;
399 __u64 map_extra;
400};
401
402enum extern_type {
403 EXT_UNKNOWN,
404 EXT_KCFG,
405 EXT_KSYM,
406};
407
408enum kcfg_type {
409 KCFG_UNKNOWN,
410 KCFG_CHAR,
411 KCFG_BOOL,
412 KCFG_INT,
413 KCFG_TRISTATE,
414 KCFG_CHAR_ARR,
415};
416
417struct extern_desc {
418 enum extern_type type;
419 int sym_idx;
420 int btf_id;
421 int sec_btf_id;
422 const char *name;
423 bool is_set;
424 bool is_weak;
425 union {
426 struct {
427 enum kcfg_type type;
428 int sz;
429 int align;
430 int data_off;
431 bool is_signed;
432 } kcfg;
433 struct {
434 unsigned long long addr;
435
436 /* target btf_id of the corresponding kernel var. */
437 int kernel_btf_obj_fd;
438 int kernel_btf_id;
439
440 /* local btf_id of the ksym extern's type. */
441 __u32 type_id;
442 /* BTF fd index to be patched in for insn->off, this is
443 * 0 for vmlinux BTF, index in obj->fd_array for module
444 * BTF
445 */
446 __s16 btf_fd_idx;
447 } ksym;
448 };
449};
450
451static LIST_HEAD(bpf_objects_list);
452
453struct module_btf {
454 struct btf *btf;
455 char *name;
456 __u32 id;
457 int fd;
458 int fd_array_idx;
459};
460
461enum sec_type {
462 SEC_UNUSED = 0,
463 SEC_RELO,
464 SEC_BSS,
465 SEC_DATA,
466 SEC_RODATA,
467};
468
469struct elf_sec_desc {
470 enum sec_type sec_type;
471 Elf64_Shdr *shdr;
472 Elf_Data *data;
473};
474
475struct elf_state {
476 int fd;
477 const void *obj_buf;
478 size_t obj_buf_sz;
479 Elf *elf;
480 Elf64_Ehdr *ehdr;
481 Elf_Data *symbols;
482 Elf_Data *st_ops_data;
483 size_t shstrndx; /* section index for section name strings */
484 size_t strtabidx;
485 struct elf_sec_desc *secs;
486 int sec_cnt;
487 int maps_shndx;
488 int btf_maps_shndx;
489 __u32 btf_maps_sec_btf_id;
490 int text_shndx;
491 int symbols_shndx;
492 int st_ops_shndx;
493};
494
495struct bpf_object {
496 char name[BPF_OBJ_NAME_LEN];
497 char license[64];
498 __u32 kern_version;
499
500 struct bpf_program *programs;
501 size_t nr_programs;
502 struct bpf_map *maps;
503 size_t nr_maps;
504 size_t maps_cap;
505
506 char *kconfig;
507 struct extern_desc *externs;
508 int nr_extern;
509 int kconfig_map_idx;
510
511 bool loaded;
512 bool has_subcalls;
513 bool has_rodata;
514
515 struct bpf_gen *gen_loader;
516
517 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
518 struct elf_state efile;
519 /*
520 * All loaded bpf_object are linked in a list, which is
521 * hidden to caller. bpf_objects__<func> handlers deal with
522 * all objects.
523 */
524 struct list_head list;
525
526 struct btf *btf;
527 struct btf_ext *btf_ext;
528
529 /* Parse and load BTF vmlinux if any of the programs in the object need
530 * it at load time.
531 */
532 struct btf *btf_vmlinux;
533 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
534 * override for vmlinux BTF.
535 */
536 char *btf_custom_path;
537 /* vmlinux BTF override for CO-RE relocations */
538 struct btf *btf_vmlinux_override;
539 /* Lazily initialized kernel module BTFs */
540 struct module_btf *btf_modules;
541 bool btf_modules_loaded;
542 size_t btf_module_cnt;
543 size_t btf_module_cap;
544
545 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
546 char *log_buf;
547 size_t log_size;
548 __u32 log_level;
549
550 void *priv;
551 bpf_object_clear_priv_t clear_priv;
552
553 int *fd_array;
554 size_t fd_array_cap;
555 size_t fd_array_cnt;
556
557 char path[];
558};
559
560static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
561static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
562static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
563static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
564static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
565static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
566static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
567static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
568static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
569
570void bpf_program__unload(struct bpf_program *prog)
571{
572 int i;
573
574 if (!prog)
575 return;
576
577 /*
578 * If the object is opened but the program was never loaded,
579 * it is possible that prog->instances.nr == -1.
580 */
581 if (prog->instances.nr > 0) {
582 for (i = 0; i < prog->instances.nr; i++)
583 zclose(prog->instances.fds[i]);
584 } else if (prog->instances.nr != -1) {
585 pr_warn("Internal error: instances.nr is %d\n",
586 prog->instances.nr);
587 }
588
589 prog->instances.nr = -1;
590 zfree(&prog->instances.fds);
591
592 zfree(&prog->func_info);
593 zfree(&prog->line_info);
594}
595
596static void bpf_program__exit(struct bpf_program *prog)
597{
598 if (!prog)
599 return;
600
601 if (prog->clear_priv)
602 prog->clear_priv(prog, prog->priv);
603
604 prog->priv = NULL;
605 prog->clear_priv = NULL;
606
607 bpf_program__unload(prog);
608 zfree(&prog->name);
609 zfree(&prog->sec_name);
610 zfree(&prog->pin_name);
611 zfree(&prog->insns);
612 zfree(&prog->reloc_desc);
613
614 prog->nr_reloc = 0;
615 prog->insns_cnt = 0;
616 prog->sec_idx = -1;
617}
618
619static char *__bpf_program__pin_name(struct bpf_program *prog)
620{
621 char *name, *p;
622
623 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
624 name = strdup(prog->name);
625 else
626 name = strdup(prog->sec_name);
627
628 if (!name)
629 return NULL;
630
631 p = name;
632
633 while ((p = strchr(p, '/')))
634 *p = '_';
635
636 return name;
637}
638
639static bool insn_is_subprog_call(const struct bpf_insn *insn)
640{
641 return BPF_CLASS(insn->code) == BPF_JMP &&
642 BPF_OP(insn->code) == BPF_CALL &&
643 BPF_SRC(insn->code) == BPF_K &&
644 insn->src_reg == BPF_PSEUDO_CALL &&
645 insn->dst_reg == 0 &&
646 insn->off == 0;
647}
648
649static bool is_call_insn(const struct bpf_insn *insn)
650{
651 return insn->code == (BPF_JMP | BPF_CALL);
652}
653
654static bool insn_is_pseudo_func(struct bpf_insn *insn)
655{
656 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
657}
658
659static int
660bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
661 const char *name, size_t sec_idx, const char *sec_name,
662 size_t sec_off, void *insn_data, size_t insn_data_sz)
663{
664 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
665 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
666 sec_name, name, sec_off, insn_data_sz);
667 return -EINVAL;
668 }
669
670 memset(prog, 0, sizeof(*prog));
671 prog->obj = obj;
672
673 prog->sec_idx = sec_idx;
674 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
675 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
676 /* insns_cnt can later be increased by appending used subprograms */
677 prog->insns_cnt = prog->sec_insn_cnt;
678
679 prog->type = BPF_PROG_TYPE_UNSPEC;
680 prog->load = true;
681
682 prog->instances.fds = NULL;
683 prog->instances.nr = -1;
684
685 /* inherit object's log_level */
686 prog->log_level = obj->log_level;
687
688 prog->sec_name = strdup(sec_name);
689 if (!prog->sec_name)
690 goto errout;
691
692 prog->name = strdup(name);
693 if (!prog->name)
694 goto errout;
695
696 prog->pin_name = __bpf_program__pin_name(prog);
697 if (!prog->pin_name)
698 goto errout;
699
700 prog->insns = malloc(insn_data_sz);
701 if (!prog->insns)
702 goto errout;
703 memcpy(prog->insns, insn_data, insn_data_sz);
704
705 return 0;
706errout:
707 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
708 bpf_program__exit(prog);
709 return -ENOMEM;
710}
711
712static int
713bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
714 const char *sec_name, int sec_idx)
715{
716 Elf_Data *symbols = obj->efile.symbols;
717 struct bpf_program *prog, *progs;
718 void *data = sec_data->d_buf;
719 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
720 int nr_progs, err, i;
721 const char *name;
722 Elf64_Sym *sym;
723
724 progs = obj->programs;
725 nr_progs = obj->nr_programs;
726 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
727 sec_off = 0;
728
729 for (i = 0; i < nr_syms; i++) {
730 sym = elf_sym_by_idx(obj, i);
731
732 if (sym->st_shndx != sec_idx)
733 continue;
734 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
735 continue;
736
737 prog_sz = sym->st_size;
738 sec_off = sym->st_value;
739
740 name = elf_sym_str(obj, sym->st_name);
741 if (!name) {
742 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
743 sec_name, sec_off);
744 return -LIBBPF_ERRNO__FORMAT;
745 }
746
747 if (sec_off + prog_sz > sec_sz) {
748 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
749 sec_name, sec_off);
750 return -LIBBPF_ERRNO__FORMAT;
751 }
752
753 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
754 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
755 return -ENOTSUP;
756 }
757
758 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
759 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
760
761 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
762 if (!progs) {
763 /*
764 * In this case the original obj->programs
765 * is still valid, so don't need special treat for
766 * bpf_close_object().
767 */
768 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
769 sec_name, name);
770 return -ENOMEM;
771 }
772 obj->programs = progs;
773
774 prog = &progs[nr_progs];
775
776 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
777 sec_off, data + sec_off, prog_sz);
778 if (err)
779 return err;
780
781 /* if function is a global/weak symbol, but has restricted
782 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
783 * as static to enable more permissive BPF verification mode
784 * with more outside context available to BPF verifier
785 */
786 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
787 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
788 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
789 prog->mark_btf_static = true;
790
791 nr_progs++;
792 obj->nr_programs = nr_progs;
793 }
794
795 return 0;
796}
797
798__u32 get_kernel_version(void)
799{
800 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
801 * but Ubuntu provides /proc/version_signature file, as described at
802 * https://ubuntu.com/kernel, with an example contents below, which we
803 * can use to get a proper LINUX_VERSION_CODE.
804 *
805 * Ubuntu 5.4.0-12.15-generic 5.4.8
806 *
807 * In the above, 5.4.8 is what kernel is actually expecting, while
808 * uname() call will return 5.4.0 in info.release.
809 */
810 const char *ubuntu_kver_file = "/proc/version_signature";
811 __u32 major, minor, patch;
812 struct utsname info;
813
814 if (access(ubuntu_kver_file, R_OK) == 0) {
815 FILE *f;
816
817 f = fopen(ubuntu_kver_file, "r");
818 if (f) {
819 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
820 fclose(f);
821 return KERNEL_VERSION(major, minor, patch);
822 }
823 fclose(f);
824 }
825 /* something went wrong, fall back to uname() approach */
826 }
827
828 uname(&info);
829 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
830 return 0;
831 return KERNEL_VERSION(major, minor, patch);
832}
833
834static const struct btf_member *
835find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
836{
837 struct btf_member *m;
838 int i;
839
840 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
841 if (btf_member_bit_offset(t, i) == bit_offset)
842 return m;
843 }
844
845 return NULL;
846}
847
848static const struct btf_member *
849find_member_by_name(const struct btf *btf, const struct btf_type *t,
850 const char *name)
851{
852 struct btf_member *m;
853 int i;
854
855 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
856 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
857 return m;
858 }
859
860 return NULL;
861}
862
863#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
864static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
865 const char *name, __u32 kind);
866
867static int
868find_struct_ops_kern_types(const struct btf *btf, const char *tname,
869 const struct btf_type **type, __u32 *type_id,
870 const struct btf_type **vtype, __u32 *vtype_id,
871 const struct btf_member **data_member)
872{
873 const struct btf_type *kern_type, *kern_vtype;
874 const struct btf_member *kern_data_member;
875 __s32 kern_vtype_id, kern_type_id;
876 __u32 i;
877
878 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
879 if (kern_type_id < 0) {
880 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
881 tname);
882 return kern_type_id;
883 }
884 kern_type = btf__type_by_id(btf, kern_type_id);
885
886 /* Find the corresponding "map_value" type that will be used
887 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
888 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
889 * btf_vmlinux.
890 */
891 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
892 tname, BTF_KIND_STRUCT);
893 if (kern_vtype_id < 0) {
894 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
895 STRUCT_OPS_VALUE_PREFIX, tname);
896 return kern_vtype_id;
897 }
898 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
899
900 /* Find "struct tcp_congestion_ops" from
901 * struct bpf_struct_ops_tcp_congestion_ops {
902 * [ ... ]
903 * struct tcp_congestion_ops data;
904 * }
905 */
906 kern_data_member = btf_members(kern_vtype);
907 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
908 if (kern_data_member->type == kern_type_id)
909 break;
910 }
911 if (i == btf_vlen(kern_vtype)) {
912 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
913 tname, STRUCT_OPS_VALUE_PREFIX, tname);
914 return -EINVAL;
915 }
916
917 *type = kern_type;
918 *type_id = kern_type_id;
919 *vtype = kern_vtype;
920 *vtype_id = kern_vtype_id;
921 *data_member = kern_data_member;
922
923 return 0;
924}
925
926static bool bpf_map__is_struct_ops(const struct bpf_map *map)
927{
928 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
929}
930
931/* Init the map's fields that depend on kern_btf */
932static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
933 const struct btf *btf,
934 const struct btf *kern_btf)
935{
936 const struct btf_member *member, *kern_member, *kern_data_member;
937 const struct btf_type *type, *kern_type, *kern_vtype;
938 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
939 struct bpf_struct_ops *st_ops;
940 void *data, *kern_data;
941 const char *tname;
942 int err;
943
944 st_ops = map->st_ops;
945 type = st_ops->type;
946 tname = st_ops->tname;
947 err = find_struct_ops_kern_types(kern_btf, tname,
948 &kern_type, &kern_type_id,
949 &kern_vtype, &kern_vtype_id,
950 &kern_data_member);
951 if (err)
952 return err;
953
954 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
955 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
956
957 map->def.value_size = kern_vtype->size;
958 map->btf_vmlinux_value_type_id = kern_vtype_id;
959
960 st_ops->kern_vdata = calloc(1, kern_vtype->size);
961 if (!st_ops->kern_vdata)
962 return -ENOMEM;
963
964 data = st_ops->data;
965 kern_data_off = kern_data_member->offset / 8;
966 kern_data = st_ops->kern_vdata + kern_data_off;
967
968 member = btf_members(type);
969 for (i = 0; i < btf_vlen(type); i++, member++) {
970 const struct btf_type *mtype, *kern_mtype;
971 __u32 mtype_id, kern_mtype_id;
972 void *mdata, *kern_mdata;
973 __s64 msize, kern_msize;
974 __u32 moff, kern_moff;
975 __u32 kern_member_idx;
976 const char *mname;
977
978 mname = btf__name_by_offset(btf, member->name_off);
979 kern_member = find_member_by_name(kern_btf, kern_type, mname);
980 if (!kern_member) {
981 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
982 map->name, mname);
983 return -ENOTSUP;
984 }
985
986 kern_member_idx = kern_member - btf_members(kern_type);
987 if (btf_member_bitfield_size(type, i) ||
988 btf_member_bitfield_size(kern_type, kern_member_idx)) {
989 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
990 map->name, mname);
991 return -ENOTSUP;
992 }
993
994 moff = member->offset / 8;
995 kern_moff = kern_member->offset / 8;
996
997 mdata = data + moff;
998 kern_mdata = kern_data + kern_moff;
999
1000 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1001 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1002 &kern_mtype_id);
1003 if (BTF_INFO_KIND(mtype->info) !=
1004 BTF_INFO_KIND(kern_mtype->info)) {
1005 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1006 map->name, mname, BTF_INFO_KIND(mtype->info),
1007 BTF_INFO_KIND(kern_mtype->info));
1008 return -ENOTSUP;
1009 }
1010
1011 if (btf_is_ptr(mtype)) {
1012 struct bpf_program *prog;
1013
1014 prog = st_ops->progs[i];
1015 if (!prog)
1016 continue;
1017
1018 kern_mtype = skip_mods_and_typedefs(kern_btf,
1019 kern_mtype->type,
1020 &kern_mtype_id);
1021
1022 /* mtype->type must be a func_proto which was
1023 * guaranteed in bpf_object__collect_st_ops_relos(),
1024 * so only check kern_mtype for func_proto here.
1025 */
1026 if (!btf_is_func_proto(kern_mtype)) {
1027 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1028 map->name, mname);
1029 return -ENOTSUP;
1030 }
1031
1032 prog->attach_btf_id = kern_type_id;
1033 prog->expected_attach_type = kern_member_idx;
1034
1035 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1036
1037 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1038 map->name, mname, prog->name, moff,
1039 kern_moff);
1040
1041 continue;
1042 }
1043
1044 msize = btf__resolve_size(btf, mtype_id);
1045 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1046 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1047 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1048 map->name, mname, (ssize_t)msize,
1049 (ssize_t)kern_msize);
1050 return -ENOTSUP;
1051 }
1052
1053 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1054 map->name, mname, (unsigned int)msize,
1055 moff, kern_moff);
1056 memcpy(kern_mdata, mdata, msize);
1057 }
1058
1059 return 0;
1060}
1061
1062static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1063{
1064 struct bpf_map *map;
1065 size_t i;
1066 int err;
1067
1068 for (i = 0; i < obj->nr_maps; i++) {
1069 map = &obj->maps[i];
1070
1071 if (!bpf_map__is_struct_ops(map))
1072 continue;
1073
1074 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1075 obj->btf_vmlinux);
1076 if (err)
1077 return err;
1078 }
1079
1080 return 0;
1081}
1082
1083static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1084{
1085 const struct btf_type *type, *datasec;
1086 const struct btf_var_secinfo *vsi;
1087 struct bpf_struct_ops *st_ops;
1088 const char *tname, *var_name;
1089 __s32 type_id, datasec_id;
1090 const struct btf *btf;
1091 struct bpf_map *map;
1092 __u32 i;
1093
1094 if (obj->efile.st_ops_shndx == -1)
1095 return 0;
1096
1097 btf = obj->btf;
1098 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1099 BTF_KIND_DATASEC);
1100 if (datasec_id < 0) {
1101 pr_warn("struct_ops init: DATASEC %s not found\n",
1102 STRUCT_OPS_SEC);
1103 return -EINVAL;
1104 }
1105
1106 datasec = btf__type_by_id(btf, datasec_id);
1107 vsi = btf_var_secinfos(datasec);
1108 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1109 type = btf__type_by_id(obj->btf, vsi->type);
1110 var_name = btf__name_by_offset(obj->btf, type->name_off);
1111
1112 type_id = btf__resolve_type(obj->btf, vsi->type);
1113 if (type_id < 0) {
1114 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1115 vsi->type, STRUCT_OPS_SEC);
1116 return -EINVAL;
1117 }
1118
1119 type = btf__type_by_id(obj->btf, type_id);
1120 tname = btf__name_by_offset(obj->btf, type->name_off);
1121 if (!tname[0]) {
1122 pr_warn("struct_ops init: anonymous type is not supported\n");
1123 return -ENOTSUP;
1124 }
1125 if (!btf_is_struct(type)) {
1126 pr_warn("struct_ops init: %s is not a struct\n", tname);
1127 return -EINVAL;
1128 }
1129
1130 map = bpf_object__add_map(obj);
1131 if (IS_ERR(map))
1132 return PTR_ERR(map);
1133
1134 map->sec_idx = obj->efile.st_ops_shndx;
1135 map->sec_offset = vsi->offset;
1136 map->name = strdup(var_name);
1137 if (!map->name)
1138 return -ENOMEM;
1139
1140 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1141 map->def.key_size = sizeof(int);
1142 map->def.value_size = type->size;
1143 map->def.max_entries = 1;
1144
1145 map->st_ops = calloc(1, sizeof(*map->st_ops));
1146 if (!map->st_ops)
1147 return -ENOMEM;
1148 st_ops = map->st_ops;
1149 st_ops->data = malloc(type->size);
1150 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1151 st_ops->kern_func_off = malloc(btf_vlen(type) *
1152 sizeof(*st_ops->kern_func_off));
1153 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1154 return -ENOMEM;
1155
1156 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1157 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1158 var_name, STRUCT_OPS_SEC);
1159 return -EINVAL;
1160 }
1161
1162 memcpy(st_ops->data,
1163 obj->efile.st_ops_data->d_buf + vsi->offset,
1164 type->size);
1165 st_ops->tname = tname;
1166 st_ops->type = type;
1167 st_ops->type_id = type_id;
1168
1169 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1170 tname, type_id, var_name, vsi->offset);
1171 }
1172
1173 return 0;
1174}
1175
1176static struct bpf_object *bpf_object__new(const char *path,
1177 const void *obj_buf,
1178 size_t obj_buf_sz,
1179 const char *obj_name)
1180{
1181 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
1182 struct bpf_object *obj;
1183 char *end;
1184
1185 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1186 if (!obj) {
1187 pr_warn("alloc memory failed for %s\n", path);
1188 return ERR_PTR(-ENOMEM);
1189 }
1190
1191 strcpy(obj->path, path);
1192 if (obj_name) {
1193 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1194 } else {
1195 /* Using basename() GNU version which doesn't modify arg. */
1196 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1197 end = strchr(obj->name, '.');
1198 if (end)
1199 *end = 0;
1200 }
1201
1202 obj->efile.fd = -1;
1203 /*
1204 * Caller of this function should also call
1205 * bpf_object__elf_finish() after data collection to return
1206 * obj_buf to user. If not, we should duplicate the buffer to
1207 * avoid user freeing them before elf finish.
1208 */
1209 obj->efile.obj_buf = obj_buf;
1210 obj->efile.obj_buf_sz = obj_buf_sz;
1211 obj->efile.maps_shndx = -1;
1212 obj->efile.btf_maps_shndx = -1;
1213 obj->efile.st_ops_shndx = -1;
1214 obj->kconfig_map_idx = -1;
1215
1216 obj->kern_version = get_kernel_version();
1217 obj->loaded = false;
1218
1219 INIT_LIST_HEAD(&obj->list);
1220 if (!strict)
1221 list_add(&obj->list, &bpf_objects_list);
1222 return obj;
1223}
1224
1225static void bpf_object__elf_finish(struct bpf_object *obj)
1226{
1227 if (!obj->efile.elf)
1228 return;
1229
1230 if (obj->efile.elf) {
1231 elf_end(obj->efile.elf);
1232 obj->efile.elf = NULL;
1233 }
1234 obj->efile.symbols = NULL;
1235 obj->efile.st_ops_data = NULL;
1236
1237 zfree(&obj->efile.secs);
1238 obj->efile.sec_cnt = 0;
1239 zclose(obj->efile.fd);
1240 obj->efile.obj_buf = NULL;
1241 obj->efile.obj_buf_sz = 0;
1242}
1243
1244static int bpf_object__elf_init(struct bpf_object *obj)
1245{
1246 Elf64_Ehdr *ehdr;
1247 int err = 0;
1248 Elf *elf;
1249
1250 if (obj->efile.elf) {
1251 pr_warn("elf: init internal error\n");
1252 return -LIBBPF_ERRNO__LIBELF;
1253 }
1254
1255 if (obj->efile.obj_buf_sz > 0) {
1256 /*
1257 * obj_buf should have been validated by
1258 * bpf_object__open_buffer().
1259 */
1260 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1261 } else {
1262 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1263 if (obj->efile.fd < 0) {
1264 char errmsg[STRERR_BUFSIZE], *cp;
1265
1266 err = -errno;
1267 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1268 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1269 return err;
1270 }
1271
1272 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1273 }
1274
1275 if (!elf) {
1276 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1277 err = -LIBBPF_ERRNO__LIBELF;
1278 goto errout;
1279 }
1280
1281 obj->efile.elf = elf;
1282
1283 if (elf_kind(elf) != ELF_K_ELF) {
1284 err = -LIBBPF_ERRNO__FORMAT;
1285 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1286 goto errout;
1287 }
1288
1289 if (gelf_getclass(elf) != ELFCLASS64) {
1290 err = -LIBBPF_ERRNO__FORMAT;
1291 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1292 goto errout;
1293 }
1294
1295 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1296 if (!obj->efile.ehdr) {
1297 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1298 err = -LIBBPF_ERRNO__FORMAT;
1299 goto errout;
1300 }
1301
1302 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1303 pr_warn("elf: failed to get section names section index for %s: %s\n",
1304 obj->path, elf_errmsg(-1));
1305 err = -LIBBPF_ERRNO__FORMAT;
1306 goto errout;
1307 }
1308
1309 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1310 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1311 pr_warn("elf: failed to get section names strings from %s: %s\n",
1312 obj->path, elf_errmsg(-1));
1313 err = -LIBBPF_ERRNO__FORMAT;
1314 goto errout;
1315 }
1316
1317 /* Old LLVM set e_machine to EM_NONE */
1318 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1319 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1320 err = -LIBBPF_ERRNO__FORMAT;
1321 goto errout;
1322 }
1323
1324 return 0;
1325errout:
1326 bpf_object__elf_finish(obj);
1327 return err;
1328}
1329
1330static int bpf_object__check_endianness(struct bpf_object *obj)
1331{
1332#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1333 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1334 return 0;
1335#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1336 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1337 return 0;
1338#else
1339# error "Unrecognized __BYTE_ORDER__"
1340#endif
1341 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1342 return -LIBBPF_ERRNO__ENDIAN;
1343}
1344
1345static int
1346bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1347{
1348 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1349 * go over allowed ELF data section buffer
1350 */
1351 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1352 pr_debug("license of %s is %s\n", obj->path, obj->license);
1353 return 0;
1354}
1355
1356static int
1357bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1358{
1359 __u32 kver;
1360
1361 if (size != sizeof(kver)) {
1362 pr_warn("invalid kver section in %s\n", obj->path);
1363 return -LIBBPF_ERRNO__FORMAT;
1364 }
1365 memcpy(&kver, data, sizeof(kver));
1366 obj->kern_version = kver;
1367 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1368 return 0;
1369}
1370
1371static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1372{
1373 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1374 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1375 return true;
1376 return false;
1377}
1378
1379static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1380{
1381 int ret = -ENOENT;
1382 Elf_Data *data;
1383 Elf_Scn *scn;
1384
1385 *size = 0;
1386 if (!name)
1387 return -EINVAL;
1388
1389 scn = elf_sec_by_name(obj, name);
1390 data = elf_sec_data(obj, scn);
1391 if (data) {
1392 ret = 0; /* found it */
1393 *size = data->d_size;
1394 }
1395
1396 return *size ? 0 : ret;
1397}
1398
1399static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1400{
1401 Elf_Data *symbols = obj->efile.symbols;
1402 const char *sname;
1403 size_t si;
1404
1405 if (!name || !off)
1406 return -EINVAL;
1407
1408 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1409 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1410
1411 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL ||
1412 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1413 continue;
1414
1415 sname = elf_sym_str(obj, sym->st_name);
1416 if (!sname) {
1417 pr_warn("failed to get sym name string for var %s\n", name);
1418 return -EIO;
1419 }
1420 if (strcmp(name, sname) == 0) {
1421 *off = sym->st_value;
1422 return 0;
1423 }
1424 }
1425
1426 return -ENOENT;
1427}
1428
1429static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1430{
1431 struct bpf_map *new_maps;
1432 size_t new_cap;
1433 int i;
1434
1435 if (obj->nr_maps < obj->maps_cap)
1436 return &obj->maps[obj->nr_maps++];
1437
1438 new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1439 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1440 if (!new_maps) {
1441 pr_warn("alloc maps for object failed\n");
1442 return ERR_PTR(-ENOMEM);
1443 }
1444
1445 obj->maps_cap = new_cap;
1446 obj->maps = new_maps;
1447
1448 /* zero out new maps */
1449 memset(obj->maps + obj->nr_maps, 0,
1450 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1451 /*
1452 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1453 * when failure (zclose won't close negative fd)).
1454 */
1455 for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1456 obj->maps[i].fd = -1;
1457 obj->maps[i].inner_map_fd = -1;
1458 }
1459
1460 return &obj->maps[obj->nr_maps++];
1461}
1462
1463static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1464{
1465 long page_sz = sysconf(_SC_PAGE_SIZE);
1466 size_t map_sz;
1467
1468 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1469 map_sz = roundup(map_sz, page_sz);
1470 return map_sz;
1471}
1472
1473static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1474{
1475 char map_name[BPF_OBJ_NAME_LEN], *p;
1476 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1477
1478 /* This is one of the more confusing parts of libbpf for various
1479 * reasons, some of which are historical. The original idea for naming
1480 * internal names was to include as much of BPF object name prefix as
1481 * possible, so that it can be distinguished from similar internal
1482 * maps of a different BPF object.
1483 * As an example, let's say we have bpf_object named 'my_object_name'
1484 * and internal map corresponding to '.rodata' ELF section. The final
1485 * map name advertised to user and to the kernel will be
1486 * 'my_objec.rodata', taking first 8 characters of object name and
1487 * entire 7 characters of '.rodata'.
1488 * Somewhat confusingly, if internal map ELF section name is shorter
1489 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1490 * for the suffix, even though we only have 4 actual characters, and
1491 * resulting map will be called 'my_objec.bss', not even using all 15
1492 * characters allowed by the kernel. Oh well, at least the truncated
1493 * object name is somewhat consistent in this case. But if the map
1494 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1495 * (8 chars) and thus will be left with only first 7 characters of the
1496 * object name ('my_obje'). Happy guessing, user, that the final map
1497 * name will be "my_obje.kconfig".
1498 * Now, with libbpf starting to support arbitrarily named .rodata.*
1499 * and .data.* data sections, it's possible that ELF section name is
1500 * longer than allowed 15 chars, so we now need to be careful to take
1501 * only up to 15 first characters of ELF name, taking no BPF object
1502 * name characters at all. So '.rodata.abracadabra' will result in
1503 * '.rodata.abracad' kernel and user-visible name.
1504 * We need to keep this convoluted logic intact for .data, .bss and
1505 * .rodata maps, but for new custom .data.custom and .rodata.custom
1506 * maps we use their ELF names as is, not prepending bpf_object name
1507 * in front. We still need to truncate them to 15 characters for the
1508 * kernel. Full name can be recovered for such maps by using DATASEC
1509 * BTF type associated with such map's value type, though.
1510 */
1511 if (sfx_len >= BPF_OBJ_NAME_LEN)
1512 sfx_len = BPF_OBJ_NAME_LEN - 1;
1513
1514 /* if there are two or more dots in map name, it's a custom dot map */
1515 if (strchr(real_name + 1, '.') != NULL)
1516 pfx_len = 0;
1517 else
1518 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1519
1520 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1521 sfx_len, real_name);
1522
1523 /* sanitise map name to characters allowed by kernel */
1524 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1525 if (!isalnum(*p) && *p != '_' && *p != '.')
1526 *p = '_';
1527
1528 return strdup(map_name);
1529}
1530
1531static int
1532bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1533 const char *real_name, int sec_idx, void *data, size_t data_sz)
1534{
1535 struct bpf_map_def *def;
1536 struct bpf_map *map;
1537 int err;
1538
1539 map = bpf_object__add_map(obj);
1540 if (IS_ERR(map))
1541 return PTR_ERR(map);
1542
1543 map->libbpf_type = type;
1544 map->sec_idx = sec_idx;
1545 map->sec_offset = 0;
1546 map->real_name = strdup(real_name);
1547 map->name = internal_map_name(obj, real_name);
1548 if (!map->real_name || !map->name) {
1549 zfree(&map->real_name);
1550 zfree(&map->name);
1551 return -ENOMEM;
1552 }
1553
1554 def = &map->def;
1555 def->type = BPF_MAP_TYPE_ARRAY;
1556 def->key_size = sizeof(int);
1557 def->value_size = data_sz;
1558 def->max_entries = 1;
1559 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1560 ? BPF_F_RDONLY_PROG : 0;
1561 def->map_flags |= BPF_F_MMAPABLE;
1562
1563 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1564 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1565
1566 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1567 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1568 if (map->mmaped == MAP_FAILED) {
1569 err = -errno;
1570 map->mmaped = NULL;
1571 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1572 map->name, err);
1573 zfree(&map->real_name);
1574 zfree(&map->name);
1575 return err;
1576 }
1577
1578 if (data)
1579 memcpy(map->mmaped, data, data_sz);
1580
1581 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1582 return 0;
1583}
1584
1585static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1586{
1587 struct elf_sec_desc *sec_desc;
1588 const char *sec_name;
1589 int err = 0, sec_idx;
1590
1591 /*
1592 * Populate obj->maps with libbpf internal maps.
1593 */
1594 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1595 sec_desc = &obj->efile.secs[sec_idx];
1596
1597 switch (sec_desc->sec_type) {
1598 case SEC_DATA:
1599 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1600 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1601 sec_name, sec_idx,
1602 sec_desc->data->d_buf,
1603 sec_desc->data->d_size);
1604 break;
1605 case SEC_RODATA:
1606 obj->has_rodata = true;
1607 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1608 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1609 sec_name, sec_idx,
1610 sec_desc->data->d_buf,
1611 sec_desc->data->d_size);
1612 break;
1613 case SEC_BSS:
1614 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1615 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1616 sec_name, sec_idx,
1617 NULL,
1618 sec_desc->data->d_size);
1619 break;
1620 default:
1621 /* skip */
1622 break;
1623 }
1624 if (err)
1625 return err;
1626 }
1627 return 0;
1628}
1629
1630
1631static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1632 const void *name)
1633{
1634 int i;
1635
1636 for (i = 0; i < obj->nr_extern; i++) {
1637 if (strcmp(obj->externs[i].name, name) == 0)
1638 return &obj->externs[i];
1639 }
1640 return NULL;
1641}
1642
1643static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1644 char value)
1645{
1646 switch (ext->kcfg.type) {
1647 case KCFG_BOOL:
1648 if (value == 'm') {
1649 pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1650 ext->name, value);
1651 return -EINVAL;
1652 }
1653 *(bool *)ext_val = value == 'y' ? true : false;
1654 break;
1655 case KCFG_TRISTATE:
1656 if (value == 'y')
1657 *(enum libbpf_tristate *)ext_val = TRI_YES;
1658 else if (value == 'm')
1659 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1660 else /* value == 'n' */
1661 *(enum libbpf_tristate *)ext_val = TRI_NO;
1662 break;
1663 case KCFG_CHAR:
1664 *(char *)ext_val = value;
1665 break;
1666 case KCFG_UNKNOWN:
1667 case KCFG_INT:
1668 case KCFG_CHAR_ARR:
1669 default:
1670 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1671 ext->name, value);
1672 return -EINVAL;
1673 }
1674 ext->is_set = true;
1675 return 0;
1676}
1677
1678static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1679 const char *value)
1680{
1681 size_t len;
1682
1683 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1684 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1685 return -EINVAL;
1686 }
1687
1688 len = strlen(value);
1689 if (value[len - 1] != '"') {
1690 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1691 ext->name, value);
1692 return -EINVAL;
1693 }
1694
1695 /* strip quotes */
1696 len -= 2;
1697 if (len >= ext->kcfg.sz) {
1698 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1699 ext->name, value, len, ext->kcfg.sz - 1);
1700 len = ext->kcfg.sz - 1;
1701 }
1702 memcpy(ext_val, value + 1, len);
1703 ext_val[len] = '\0';
1704 ext->is_set = true;
1705 return 0;
1706}
1707
1708static int parse_u64(const char *value, __u64 *res)
1709{
1710 char *value_end;
1711 int err;
1712
1713 errno = 0;
1714 *res = strtoull(value, &value_end, 0);
1715 if (errno) {
1716 err = -errno;
1717 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1718 return err;
1719 }
1720 if (*value_end) {
1721 pr_warn("failed to parse '%s' as integer completely\n", value);
1722 return -EINVAL;
1723 }
1724 return 0;
1725}
1726
1727static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1728{
1729 int bit_sz = ext->kcfg.sz * 8;
1730
1731 if (ext->kcfg.sz == 8)
1732 return true;
1733
1734 /* Validate that value stored in u64 fits in integer of `ext->sz`
1735 * bytes size without any loss of information. If the target integer
1736 * is signed, we rely on the following limits of integer type of
1737 * Y bits and subsequent transformation:
1738 *
1739 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1740 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1741 * 0 <= X + 2^(Y-1) < 2^Y
1742 *
1743 * For unsigned target integer, check that all the (64 - Y) bits are
1744 * zero.
1745 */
1746 if (ext->kcfg.is_signed)
1747 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1748 else
1749 return (v >> bit_sz) == 0;
1750}
1751
1752static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1753 __u64 value)
1754{
1755 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1756 pr_warn("extern (kcfg) %s=%llu should be integer\n",
1757 ext->name, (unsigned long long)value);
1758 return -EINVAL;
1759 }
1760 if (!is_kcfg_value_in_range(ext, value)) {
1761 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1762 ext->name, (unsigned long long)value, ext->kcfg.sz);
1763 return -ERANGE;
1764 }
1765 switch (ext->kcfg.sz) {
1766 case 1: *(__u8 *)ext_val = value; break;
1767 case 2: *(__u16 *)ext_val = value; break;
1768 case 4: *(__u32 *)ext_val = value; break;
1769 case 8: *(__u64 *)ext_val = value; break;
1770 default:
1771 return -EINVAL;
1772 }
1773 ext->is_set = true;
1774 return 0;
1775}
1776
1777static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1778 char *buf, void *data)
1779{
1780 struct extern_desc *ext;
1781 char *sep, *value;
1782 int len, err = 0;
1783 void *ext_val;
1784 __u64 num;
1785
1786 if (!str_has_pfx(buf, "CONFIG_"))
1787 return 0;
1788
1789 sep = strchr(buf, '=');
1790 if (!sep) {
1791 pr_warn("failed to parse '%s': no separator\n", buf);
1792 return -EINVAL;
1793 }
1794
1795 /* Trim ending '\n' */
1796 len = strlen(buf);
1797 if (buf[len - 1] == '\n')
1798 buf[len - 1] = '\0';
1799 /* Split on '=' and ensure that a value is present. */
1800 *sep = '\0';
1801 if (!sep[1]) {
1802 *sep = '=';
1803 pr_warn("failed to parse '%s': no value\n", buf);
1804 return -EINVAL;
1805 }
1806
1807 ext = find_extern_by_name(obj, buf);
1808 if (!ext || ext->is_set)
1809 return 0;
1810
1811 ext_val = data + ext->kcfg.data_off;
1812 value = sep + 1;
1813
1814 switch (*value) {
1815 case 'y': case 'n': case 'm':
1816 err = set_kcfg_value_tri(ext, ext_val, *value);
1817 break;
1818 case '"':
1819 err = set_kcfg_value_str(ext, ext_val, value);
1820 break;
1821 default:
1822 /* assume integer */
1823 err = parse_u64(value, &num);
1824 if (err) {
1825 pr_warn("extern (kcfg) %s=%s should be integer\n",
1826 ext->name, value);
1827 return err;
1828 }
1829 err = set_kcfg_value_num(ext, ext_val, num);
1830 break;
1831 }
1832 if (err)
1833 return err;
1834 pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1835 return 0;
1836}
1837
1838static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1839{
1840 char buf[PATH_MAX];
1841 struct utsname uts;
1842 int len, err = 0;
1843 gzFile file;
1844
1845 uname(&uts);
1846 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1847 if (len < 0)
1848 return -EINVAL;
1849 else if (len >= PATH_MAX)
1850 return -ENAMETOOLONG;
1851
1852 /* gzopen also accepts uncompressed files. */
1853 file = gzopen(buf, "r");
1854 if (!file)
1855 file = gzopen("/proc/config.gz", "r");
1856
1857 if (!file) {
1858 pr_warn("failed to open system Kconfig\n");
1859 return -ENOENT;
1860 }
1861
1862 while (gzgets(file, buf, sizeof(buf))) {
1863 err = bpf_object__process_kconfig_line(obj, buf, data);
1864 if (err) {
1865 pr_warn("error parsing system Kconfig line '%s': %d\n",
1866 buf, err);
1867 goto out;
1868 }
1869 }
1870
1871out:
1872 gzclose(file);
1873 return err;
1874}
1875
1876static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1877 const char *config, void *data)
1878{
1879 char buf[PATH_MAX];
1880 int err = 0;
1881 FILE *file;
1882
1883 file = fmemopen((void *)config, strlen(config), "r");
1884 if (!file) {
1885 err = -errno;
1886 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1887 return err;
1888 }
1889
1890 while (fgets(buf, sizeof(buf), file)) {
1891 err = bpf_object__process_kconfig_line(obj, buf, data);
1892 if (err) {
1893 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1894 buf, err);
1895 break;
1896 }
1897 }
1898
1899 fclose(file);
1900 return err;
1901}
1902
1903static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1904{
1905 struct extern_desc *last_ext = NULL, *ext;
1906 size_t map_sz;
1907 int i, err;
1908
1909 for (i = 0; i < obj->nr_extern; i++) {
1910 ext = &obj->externs[i];
1911 if (ext->type == EXT_KCFG)
1912 last_ext = ext;
1913 }
1914
1915 if (!last_ext)
1916 return 0;
1917
1918 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1919 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1920 ".kconfig", obj->efile.symbols_shndx,
1921 NULL, map_sz);
1922 if (err)
1923 return err;
1924
1925 obj->kconfig_map_idx = obj->nr_maps - 1;
1926
1927 return 0;
1928}
1929
1930static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1931{
1932 Elf_Data *symbols = obj->efile.symbols;
1933 int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1934 Elf_Data *data = NULL;
1935 Elf_Scn *scn;
1936
1937 if (obj->efile.maps_shndx < 0)
1938 return 0;
1939
1940 if (!symbols)
1941 return -EINVAL;
1942
1943 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1944 data = elf_sec_data(obj, scn);
1945 if (!scn || !data) {
1946 pr_warn("elf: failed to get legacy map definitions for %s\n",
1947 obj->path);
1948 return -EINVAL;
1949 }
1950
1951 /*
1952 * Count number of maps. Each map has a name.
1953 * Array of maps is not supported: only the first element is
1954 * considered.
1955 *
1956 * TODO: Detect array of map and report error.
1957 */
1958 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
1959 for (i = 0; i < nr_syms; i++) {
1960 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1961
1962 if (sym->st_shndx != obj->efile.maps_shndx)
1963 continue;
1964 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1965 continue;
1966 nr_maps++;
1967 }
1968 /* Assume equally sized map definitions */
1969 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1970 nr_maps, data->d_size, obj->path);
1971
1972 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1973 pr_warn("elf: unable to determine legacy map definition size in %s\n",
1974 obj->path);
1975 return -EINVAL;
1976 }
1977 map_def_sz = data->d_size / nr_maps;
1978
1979 /* Fill obj->maps using data in "maps" section. */
1980 for (i = 0; i < nr_syms; i++) {
1981 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1982 const char *map_name;
1983 struct bpf_map_def *def;
1984 struct bpf_map *map;
1985
1986 if (sym->st_shndx != obj->efile.maps_shndx)
1987 continue;
1988 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1989 continue;
1990
1991 map = bpf_object__add_map(obj);
1992 if (IS_ERR(map))
1993 return PTR_ERR(map);
1994
1995 map_name = elf_sym_str(obj, sym->st_name);
1996 if (!map_name) {
1997 pr_warn("failed to get map #%d name sym string for obj %s\n",
1998 i, obj->path);
1999 return -LIBBPF_ERRNO__FORMAT;
2000 }
2001
2002 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
2003 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
2004 return -ENOTSUP;
2005 }
2006
2007 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2008 map->sec_idx = sym->st_shndx;
2009 map->sec_offset = sym->st_value;
2010 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
2011 map_name, map->sec_idx, map->sec_offset);
2012 if (sym->st_value + map_def_sz > data->d_size) {
2013 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
2014 obj->path, map_name);
2015 return -EINVAL;
2016 }
2017
2018 map->name = strdup(map_name);
2019 if (!map->name) {
2020 pr_warn("map '%s': failed to alloc map name\n", map_name);
2021 return -ENOMEM;
2022 }
2023 pr_debug("map %d is \"%s\"\n", i, map->name);
2024 def = (struct bpf_map_def *)(data->d_buf + sym->st_value);
2025 /*
2026 * If the definition of the map in the object file fits in
2027 * bpf_map_def, copy it. Any extra fields in our version
2028 * of bpf_map_def will default to zero as a result of the
2029 * calloc above.
2030 */
2031 if (map_def_sz <= sizeof(struct bpf_map_def)) {
2032 memcpy(&map->def, def, map_def_sz);
2033 } else {
2034 /*
2035 * Here the map structure being read is bigger than what
2036 * we expect, truncate if the excess bits are all zero.
2037 * If they are not zero, reject this map as
2038 * incompatible.
2039 */
2040 char *b;
2041
2042 for (b = ((char *)def) + sizeof(struct bpf_map_def);
2043 b < ((char *)def) + map_def_sz; b++) {
2044 if (*b != 0) {
2045 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
2046 obj->path, map_name);
2047 if (strict)
2048 return -EINVAL;
2049 }
2050 }
2051 memcpy(&map->def, def, sizeof(struct bpf_map_def));
2052 }
2053 }
2054 return 0;
2055}
2056
2057const struct btf_type *
2058skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2059{
2060 const struct btf_type *t = btf__type_by_id(btf, id);
2061
2062 if (res_id)
2063 *res_id = id;
2064
2065 while (btf_is_mod(t) || btf_is_typedef(t)) {
2066 if (res_id)
2067 *res_id = t->type;
2068 t = btf__type_by_id(btf, t->type);
2069 }
2070
2071 return t;
2072}
2073
2074static const struct btf_type *
2075resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2076{
2077 const struct btf_type *t;
2078
2079 t = skip_mods_and_typedefs(btf, id, NULL);
2080 if (!btf_is_ptr(t))
2081 return NULL;
2082
2083 t = skip_mods_and_typedefs(btf, t->type, res_id);
2084
2085 return btf_is_func_proto(t) ? t : NULL;
2086}
2087
2088static const char *__btf_kind_str(__u16 kind)
2089{
2090 switch (kind) {
2091 case BTF_KIND_UNKN: return "void";
2092 case BTF_KIND_INT: return "int";
2093 case BTF_KIND_PTR: return "ptr";
2094 case BTF_KIND_ARRAY: return "array";
2095 case BTF_KIND_STRUCT: return "struct";
2096 case BTF_KIND_UNION: return "union";
2097 case BTF_KIND_ENUM: return "enum";
2098 case BTF_KIND_FWD: return "fwd";
2099 case BTF_KIND_TYPEDEF: return "typedef";
2100 case BTF_KIND_VOLATILE: return "volatile";
2101 case BTF_KIND_CONST: return "const";
2102 case BTF_KIND_RESTRICT: return "restrict";
2103 case BTF_KIND_FUNC: return "func";
2104 case BTF_KIND_FUNC_PROTO: return "func_proto";
2105 case BTF_KIND_VAR: return "var";
2106 case BTF_KIND_DATASEC: return "datasec";
2107 case BTF_KIND_FLOAT: return "float";
2108 case BTF_KIND_DECL_TAG: return "decl_tag";
2109 case BTF_KIND_TYPE_TAG: return "type_tag";
2110 default: return "unknown";
2111 }
2112}
2113
2114const char *btf_kind_str(const struct btf_type *t)
2115{
2116 return __btf_kind_str(btf_kind(t));
2117}
2118
2119/*
2120 * Fetch integer attribute of BTF map definition. Such attributes are
2121 * represented using a pointer to an array, in which dimensionality of array
2122 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2123 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2124 * type definition, while using only sizeof(void *) space in ELF data section.
2125 */
2126static bool get_map_field_int(const char *map_name, const struct btf *btf,
2127 const struct btf_member *m, __u32 *res)
2128{
2129 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2130 const char *name = btf__name_by_offset(btf, m->name_off);
2131 const struct btf_array *arr_info;
2132 const struct btf_type *arr_t;
2133
2134 if (!btf_is_ptr(t)) {
2135 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2136 map_name, name, btf_kind_str(t));
2137 return false;
2138 }
2139
2140 arr_t = btf__type_by_id(btf, t->type);
2141 if (!arr_t) {
2142 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2143 map_name, name, t->type);
2144 return false;
2145 }
2146 if (!btf_is_array(arr_t)) {
2147 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2148 map_name, name, btf_kind_str(arr_t));
2149 return false;
2150 }
2151 arr_info = btf_array(arr_t);
2152 *res = arr_info->nelems;
2153 return true;
2154}
2155
2156static int build_map_pin_path(struct bpf_map *map, const char *path)
2157{
2158 char buf[PATH_MAX];
2159 int len;
2160
2161 if (!path)
2162 path = "/sys/fs/bpf";
2163
2164 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2165 if (len < 0)
2166 return -EINVAL;
2167 else if (len >= PATH_MAX)
2168 return -ENAMETOOLONG;
2169
2170 return bpf_map__set_pin_path(map, buf);
2171}
2172
2173int parse_btf_map_def(const char *map_name, struct btf *btf,
2174 const struct btf_type *def_t, bool strict,
2175 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2176{
2177 const struct btf_type *t;
2178 const struct btf_member *m;
2179 bool is_inner = inner_def == NULL;
2180 int vlen, i;
2181
2182 vlen = btf_vlen(def_t);
2183 m = btf_members(def_t);
2184 for (i = 0; i < vlen; i++, m++) {
2185 const char *name = btf__name_by_offset(btf, m->name_off);
2186
2187 if (!name) {
2188 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2189 return -EINVAL;
2190 }
2191 if (strcmp(name, "type") == 0) {
2192 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2193 return -EINVAL;
2194 map_def->parts |= MAP_DEF_MAP_TYPE;
2195 } else if (strcmp(name, "max_entries") == 0) {
2196 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2197 return -EINVAL;
2198 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2199 } else if (strcmp(name, "map_flags") == 0) {
2200 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2201 return -EINVAL;
2202 map_def->parts |= MAP_DEF_MAP_FLAGS;
2203 } else if (strcmp(name, "numa_node") == 0) {
2204 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2205 return -EINVAL;
2206 map_def->parts |= MAP_DEF_NUMA_NODE;
2207 } else if (strcmp(name, "key_size") == 0) {
2208 __u32 sz;
2209
2210 if (!get_map_field_int(map_name, btf, m, &sz))
2211 return -EINVAL;
2212 if (map_def->key_size && map_def->key_size != sz) {
2213 pr_warn("map '%s': conflicting key size %u != %u.\n",
2214 map_name, map_def->key_size, sz);
2215 return -EINVAL;
2216 }
2217 map_def->key_size = sz;
2218 map_def->parts |= MAP_DEF_KEY_SIZE;
2219 } else if (strcmp(name, "key") == 0) {
2220 __s64 sz;
2221
2222 t = btf__type_by_id(btf, m->type);
2223 if (!t) {
2224 pr_warn("map '%s': key type [%d] not found.\n",
2225 map_name, m->type);
2226 return -EINVAL;
2227 }
2228 if (!btf_is_ptr(t)) {
2229 pr_warn("map '%s': key spec is not PTR: %s.\n",
2230 map_name, btf_kind_str(t));
2231 return -EINVAL;
2232 }
2233 sz = btf__resolve_size(btf, t->type);
2234 if (sz < 0) {
2235 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2236 map_name, t->type, (ssize_t)sz);
2237 return sz;
2238 }
2239 if (map_def->key_size && map_def->key_size != sz) {
2240 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2241 map_name, map_def->key_size, (ssize_t)sz);
2242 return -EINVAL;
2243 }
2244 map_def->key_size = sz;
2245 map_def->key_type_id = t->type;
2246 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2247 } else if (strcmp(name, "value_size") == 0) {
2248 __u32 sz;
2249
2250 if (!get_map_field_int(map_name, btf, m, &sz))
2251 return -EINVAL;
2252 if (map_def->value_size && map_def->value_size != sz) {
2253 pr_warn("map '%s': conflicting value size %u != %u.\n",
2254 map_name, map_def->value_size, sz);
2255 return -EINVAL;
2256 }
2257 map_def->value_size = sz;
2258 map_def->parts |= MAP_DEF_VALUE_SIZE;
2259 } else if (strcmp(name, "value") == 0) {
2260 __s64 sz;
2261
2262 t = btf__type_by_id(btf, m->type);
2263 if (!t) {
2264 pr_warn("map '%s': value type [%d] not found.\n",
2265 map_name, m->type);
2266 return -EINVAL;
2267 }
2268 if (!btf_is_ptr(t)) {
2269 pr_warn("map '%s': value spec is not PTR: %s.\n",
2270 map_name, btf_kind_str(t));
2271 return -EINVAL;
2272 }
2273 sz = btf__resolve_size(btf, t->type);
2274 if (sz < 0) {
2275 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2276 map_name, t->type, (ssize_t)sz);
2277 return sz;
2278 }
2279 if (map_def->value_size && map_def->value_size != sz) {
2280 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2281 map_name, map_def->value_size, (ssize_t)sz);
2282 return -EINVAL;
2283 }
2284 map_def->value_size = sz;
2285 map_def->value_type_id = t->type;
2286 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2287 }
2288 else if (strcmp(name, "values") == 0) {
2289 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2290 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2291 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2292 char inner_map_name[128];
2293 int err;
2294
2295 if (is_inner) {
2296 pr_warn("map '%s': multi-level inner maps not supported.\n",
2297 map_name);
2298 return -ENOTSUP;
2299 }
2300 if (i != vlen - 1) {
2301 pr_warn("map '%s': '%s' member should be last.\n",
2302 map_name, name);
2303 return -EINVAL;
2304 }
2305 if (!is_map_in_map && !is_prog_array) {
2306 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2307 map_name);
2308 return -ENOTSUP;
2309 }
2310 if (map_def->value_size && map_def->value_size != 4) {
2311 pr_warn("map '%s': conflicting value size %u != 4.\n",
2312 map_name, map_def->value_size);
2313 return -EINVAL;
2314 }
2315 map_def->value_size = 4;
2316 t = btf__type_by_id(btf, m->type);
2317 if (!t) {
2318 pr_warn("map '%s': %s type [%d] not found.\n",
2319 map_name, desc, m->type);
2320 return -EINVAL;
2321 }
2322 if (!btf_is_array(t) || btf_array(t)->nelems) {
2323 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2324 map_name, desc);
2325 return -EINVAL;
2326 }
2327 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2328 if (!btf_is_ptr(t)) {
2329 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2330 map_name, desc, btf_kind_str(t));
2331 return -EINVAL;
2332 }
2333 t = skip_mods_and_typedefs(btf, t->type, NULL);
2334 if (is_prog_array) {
2335 if (!btf_is_func_proto(t)) {
2336 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2337 map_name, btf_kind_str(t));
2338 return -EINVAL;
2339 }
2340 continue;
2341 }
2342 if (!btf_is_struct(t)) {
2343 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2344 map_name, btf_kind_str(t));
2345 return -EINVAL;
2346 }
2347
2348 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2349 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2350 if (err)
2351 return err;
2352
2353 map_def->parts |= MAP_DEF_INNER_MAP;
2354 } else if (strcmp(name, "pinning") == 0) {
2355 __u32 val;
2356
2357 if (is_inner) {
2358 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2359 return -EINVAL;
2360 }
2361 if (!get_map_field_int(map_name, btf, m, &val))
2362 return -EINVAL;
2363 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2364 pr_warn("map '%s': invalid pinning value %u.\n",
2365 map_name, val);
2366 return -EINVAL;
2367 }
2368 map_def->pinning = val;
2369 map_def->parts |= MAP_DEF_PINNING;
2370 } else if (strcmp(name, "map_extra") == 0) {
2371 __u32 map_extra;
2372
2373 if (!get_map_field_int(map_name, btf, m, &map_extra))
2374 return -EINVAL;
2375 map_def->map_extra = map_extra;
2376 map_def->parts |= MAP_DEF_MAP_EXTRA;
2377 } else {
2378 if (strict) {
2379 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2380 return -ENOTSUP;
2381 }
2382 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2383 }
2384 }
2385
2386 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2387 pr_warn("map '%s': map type isn't specified.\n", map_name);
2388 return -EINVAL;
2389 }
2390
2391 return 0;
2392}
2393
2394static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2395{
2396 map->def.type = def->map_type;
2397 map->def.key_size = def->key_size;
2398 map->def.value_size = def->value_size;
2399 map->def.max_entries = def->max_entries;
2400 map->def.map_flags = def->map_flags;
2401 map->map_extra = def->map_extra;
2402
2403 map->numa_node = def->numa_node;
2404 map->btf_key_type_id = def->key_type_id;
2405 map->btf_value_type_id = def->value_type_id;
2406
2407 if (def->parts & MAP_DEF_MAP_TYPE)
2408 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2409
2410 if (def->parts & MAP_DEF_KEY_TYPE)
2411 pr_debug("map '%s': found key [%u], sz = %u.\n",
2412 map->name, def->key_type_id, def->key_size);
2413 else if (def->parts & MAP_DEF_KEY_SIZE)
2414 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2415
2416 if (def->parts & MAP_DEF_VALUE_TYPE)
2417 pr_debug("map '%s': found value [%u], sz = %u.\n",
2418 map->name, def->value_type_id, def->value_size);
2419 else if (def->parts & MAP_DEF_VALUE_SIZE)
2420 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2421
2422 if (def->parts & MAP_DEF_MAX_ENTRIES)
2423 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2424 if (def->parts & MAP_DEF_MAP_FLAGS)
2425 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2426 if (def->parts & MAP_DEF_MAP_EXTRA)
2427 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2428 (unsigned long long)def->map_extra);
2429 if (def->parts & MAP_DEF_PINNING)
2430 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2431 if (def->parts & MAP_DEF_NUMA_NODE)
2432 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2433
2434 if (def->parts & MAP_DEF_INNER_MAP)
2435 pr_debug("map '%s': found inner map definition.\n", map->name);
2436}
2437
2438static const char *btf_var_linkage_str(__u32 linkage)
2439{
2440 switch (linkage) {
2441 case BTF_VAR_STATIC: return "static";
2442 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2443 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2444 default: return "unknown";
2445 }
2446}
2447
2448static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2449 const struct btf_type *sec,
2450 int var_idx, int sec_idx,
2451 const Elf_Data *data, bool strict,
2452 const char *pin_root_path)
2453{
2454 struct btf_map_def map_def = {}, inner_def = {};
2455 const struct btf_type *var, *def;
2456 const struct btf_var_secinfo *vi;
2457 const struct btf_var *var_extra;
2458 const char *map_name;
2459 struct bpf_map *map;
2460 int err;
2461
2462 vi = btf_var_secinfos(sec) + var_idx;
2463 var = btf__type_by_id(obj->btf, vi->type);
2464 var_extra = btf_var(var);
2465 map_name = btf__name_by_offset(obj->btf, var->name_off);
2466
2467 if (map_name == NULL || map_name[0] == '\0') {
2468 pr_warn("map #%d: empty name.\n", var_idx);
2469 return -EINVAL;
2470 }
2471 if ((__u64)vi->offset + vi->size > data->d_size) {
2472 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2473 return -EINVAL;
2474 }
2475 if (!btf_is_var(var)) {
2476 pr_warn("map '%s': unexpected var kind %s.\n",
2477 map_name, btf_kind_str(var));
2478 return -EINVAL;
2479 }
2480 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2481 pr_warn("map '%s': unsupported map linkage %s.\n",
2482 map_name, btf_var_linkage_str(var_extra->linkage));
2483 return -EOPNOTSUPP;
2484 }
2485
2486 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2487 if (!btf_is_struct(def)) {
2488 pr_warn("map '%s': unexpected def kind %s.\n",
2489 map_name, btf_kind_str(var));
2490 return -EINVAL;
2491 }
2492 if (def->size > vi->size) {
2493 pr_warn("map '%s': invalid def size.\n", map_name);
2494 return -EINVAL;
2495 }
2496
2497 map = bpf_object__add_map(obj);
2498 if (IS_ERR(map))
2499 return PTR_ERR(map);
2500 map->name = strdup(map_name);
2501 if (!map->name) {
2502 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2503 return -ENOMEM;
2504 }
2505 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2506 map->def.type = BPF_MAP_TYPE_UNSPEC;
2507 map->sec_idx = sec_idx;
2508 map->sec_offset = vi->offset;
2509 map->btf_var_idx = var_idx;
2510 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2511 map_name, map->sec_idx, map->sec_offset);
2512
2513 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2514 if (err)
2515 return err;
2516
2517 fill_map_from_def(map, &map_def);
2518
2519 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2520 err = build_map_pin_path(map, pin_root_path);
2521 if (err) {
2522 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2523 return err;
2524 }
2525 }
2526
2527 if (map_def.parts & MAP_DEF_INNER_MAP) {
2528 map->inner_map = calloc(1, sizeof(*map->inner_map));
2529 if (!map->inner_map)
2530 return -ENOMEM;
2531 map->inner_map->fd = -1;
2532 map->inner_map->sec_idx = sec_idx;
2533 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2534 if (!map->inner_map->name)
2535 return -ENOMEM;
2536 sprintf(map->inner_map->name, "%s.inner", map_name);
2537
2538 fill_map_from_def(map->inner_map, &inner_def);
2539 }
2540
2541 return 0;
2542}
2543
2544static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2545 const char *pin_root_path)
2546{
2547 const struct btf_type *sec = NULL;
2548 int nr_types, i, vlen, err;
2549 const struct btf_type *t;
2550 const char *name;
2551 Elf_Data *data;
2552 Elf_Scn *scn;
2553
2554 if (obj->efile.btf_maps_shndx < 0)
2555 return 0;
2556
2557 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2558 data = elf_sec_data(obj, scn);
2559 if (!scn || !data) {
2560 pr_warn("elf: failed to get %s map definitions for %s\n",
2561 MAPS_ELF_SEC, obj->path);
2562 return -EINVAL;
2563 }
2564
2565 nr_types = btf__type_cnt(obj->btf);
2566 for (i = 1; i < nr_types; i++) {
2567 t = btf__type_by_id(obj->btf, i);
2568 if (!btf_is_datasec(t))
2569 continue;
2570 name = btf__name_by_offset(obj->btf, t->name_off);
2571 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2572 sec = t;
2573 obj->efile.btf_maps_sec_btf_id = i;
2574 break;
2575 }
2576 }
2577
2578 if (!sec) {
2579 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2580 return -ENOENT;
2581 }
2582
2583 vlen = btf_vlen(sec);
2584 for (i = 0; i < vlen; i++) {
2585 err = bpf_object__init_user_btf_map(obj, sec, i,
2586 obj->efile.btf_maps_shndx,
2587 data, strict,
2588 pin_root_path);
2589 if (err)
2590 return err;
2591 }
2592
2593 return 0;
2594}
2595
2596static int bpf_object__init_maps(struct bpf_object *obj,
2597 const struct bpf_object_open_opts *opts)
2598{
2599 const char *pin_root_path;
2600 bool strict;
2601 int err;
2602
2603 strict = !OPTS_GET(opts, relaxed_maps, false);
2604 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2605
2606 err = bpf_object__init_user_maps(obj, strict);
2607 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2608 err = err ?: bpf_object__init_global_data_maps(obj);
2609 err = err ?: bpf_object__init_kconfig_map(obj);
2610 err = err ?: bpf_object__init_struct_ops_maps(obj);
2611
2612 return err;
2613}
2614
2615static bool section_have_execinstr(struct bpf_object *obj, int idx)
2616{
2617 Elf64_Shdr *sh;
2618
2619 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2620 if (!sh)
2621 return false;
2622
2623 return sh->sh_flags & SHF_EXECINSTR;
2624}
2625
2626static bool btf_needs_sanitization(struct bpf_object *obj)
2627{
2628 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2629 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2630 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2631 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2632 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2633 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2634
2635 return !has_func || !has_datasec || !has_func_global || !has_float ||
2636 !has_decl_tag || !has_type_tag;
2637}
2638
2639static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2640{
2641 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2642 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2643 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2644 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2645 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2646 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2647 struct btf_type *t;
2648 int i, j, vlen;
2649
2650 for (i = 1; i < btf__type_cnt(btf); i++) {
2651 t = (struct btf_type *)btf__type_by_id(btf, i);
2652
2653 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2654 /* replace VAR/DECL_TAG with INT */
2655 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2656 /*
2657 * using size = 1 is the safest choice, 4 will be too
2658 * big and cause kernel BTF validation failure if
2659 * original variable took less than 4 bytes
2660 */
2661 t->size = 1;
2662 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2663 } else if (!has_datasec && btf_is_datasec(t)) {
2664 /* replace DATASEC with STRUCT */
2665 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2666 struct btf_member *m = btf_members(t);
2667 struct btf_type *vt;
2668 char *name;
2669
2670 name = (char *)btf__name_by_offset(btf, t->name_off);
2671 while (*name) {
2672 if (*name == '.')
2673 *name = '_';
2674 name++;
2675 }
2676
2677 vlen = btf_vlen(t);
2678 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2679 for (j = 0; j < vlen; j++, v++, m++) {
2680 /* order of field assignments is important */
2681 m->offset = v->offset * 8;
2682 m->type = v->type;
2683 /* preserve variable name as member name */
2684 vt = (void *)btf__type_by_id(btf, v->type);
2685 m->name_off = vt->name_off;
2686 }
2687 } else if (!has_func && btf_is_func_proto(t)) {
2688 /* replace FUNC_PROTO with ENUM */
2689 vlen = btf_vlen(t);
2690 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2691 t->size = sizeof(__u32); /* kernel enforced */
2692 } else if (!has_func && btf_is_func(t)) {
2693 /* replace FUNC with TYPEDEF */
2694 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2695 } else if (!has_func_global && btf_is_func(t)) {
2696 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2697 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2698 } else if (!has_float && btf_is_float(t)) {
2699 /* replace FLOAT with an equally-sized empty STRUCT;
2700 * since C compilers do not accept e.g. "float" as a
2701 * valid struct name, make it anonymous
2702 */
2703 t->name_off = 0;
2704 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2705 } else if (!has_type_tag && btf_is_type_tag(t)) {
2706 /* replace TYPE_TAG with a CONST */
2707 t->name_off = 0;
2708 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2709 }
2710 }
2711}
2712
2713static bool libbpf_needs_btf(const struct bpf_object *obj)
2714{
2715 return obj->efile.btf_maps_shndx >= 0 ||
2716 obj->efile.st_ops_shndx >= 0 ||
2717 obj->nr_extern > 0;
2718}
2719
2720static bool kernel_needs_btf(const struct bpf_object *obj)
2721{
2722 return obj->efile.st_ops_shndx >= 0;
2723}
2724
2725static int bpf_object__init_btf(struct bpf_object *obj,
2726 Elf_Data *btf_data,
2727 Elf_Data *btf_ext_data)
2728{
2729 int err = -ENOENT;
2730
2731 if (btf_data) {
2732 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2733 err = libbpf_get_error(obj->btf);
2734 if (err) {
2735 obj->btf = NULL;
2736 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2737 goto out;
2738 }
2739 /* enforce 8-byte pointers for BPF-targeted BTFs */
2740 btf__set_pointer_size(obj->btf, 8);
2741 }
2742 if (btf_ext_data) {
2743 if (!obj->btf) {
2744 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2745 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2746 goto out;
2747 }
2748 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2749 err = libbpf_get_error(obj->btf_ext);
2750 if (err) {
2751 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2752 BTF_EXT_ELF_SEC, err);
2753 obj->btf_ext = NULL;
2754 goto out;
2755 }
2756 }
2757out:
2758 if (err && libbpf_needs_btf(obj)) {
2759 pr_warn("BTF is required, but is missing or corrupted.\n");
2760 return err;
2761 }
2762 return 0;
2763}
2764
2765static int compare_vsi_off(const void *_a, const void *_b)
2766{
2767 const struct btf_var_secinfo *a = _a;
2768 const struct btf_var_secinfo *b = _b;
2769
2770 return a->offset - b->offset;
2771}
2772
2773static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2774 struct btf_type *t)
2775{
2776 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
2777 const char *name = btf__name_by_offset(btf, t->name_off);
2778 const struct btf_type *t_var;
2779 struct btf_var_secinfo *vsi;
2780 const struct btf_var *var;
2781 int ret;
2782
2783 if (!name) {
2784 pr_debug("No name found in string section for DATASEC kind.\n");
2785 return -ENOENT;
2786 }
2787
2788 /* .extern datasec size and var offsets were set correctly during
2789 * extern collection step, so just skip straight to sorting variables
2790 */
2791 if (t->size)
2792 goto sort_vars;
2793
2794 ret = find_elf_sec_sz(obj, name, &size);
2795 if (ret || !size || (t->size && t->size != size)) {
2796 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2797 return -ENOENT;
2798 }
2799
2800 t->size = size;
2801
2802 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2803 t_var = btf__type_by_id(btf, vsi->type);
2804 if (!t_var || !btf_is_var(t_var)) {
2805 pr_debug("Non-VAR type seen in section %s\n", name);
2806 return -EINVAL;
2807 }
2808
2809 var = btf_var(t_var);
2810 if (var->linkage == BTF_VAR_STATIC)
2811 continue;
2812
2813 name = btf__name_by_offset(btf, t_var->name_off);
2814 if (!name) {
2815 pr_debug("No name found in string section for VAR kind\n");
2816 return -ENOENT;
2817 }
2818
2819 ret = find_elf_var_offset(obj, name, &off);
2820 if (ret) {
2821 pr_debug("No offset found in symbol table for VAR %s\n",
2822 name);
2823 return -ENOENT;
2824 }
2825
2826 vsi->offset = off;
2827 }
2828
2829sort_vars:
2830 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2831 return 0;
2832}
2833
2834static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2835{
2836 int err = 0;
2837 __u32 i, n = btf__type_cnt(btf);
2838
2839 for (i = 1; i < n; i++) {
2840 struct btf_type *t = btf_type_by_id(btf, i);
2841
2842 /* Loader needs to fix up some of the things compiler
2843 * couldn't get its hands on while emitting BTF. This
2844 * is section size and global variable offset. We use
2845 * the info from the ELF itself for this purpose.
2846 */
2847 if (btf_is_datasec(t)) {
2848 err = btf_fixup_datasec(obj, btf, t);
2849 if (err)
2850 break;
2851 }
2852 }
2853
2854 return libbpf_err(err);
2855}
2856
2857int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
2858{
2859 return btf_finalize_data(obj, btf);
2860}
2861
2862static int bpf_object__finalize_btf(struct bpf_object *obj)
2863{
2864 int err;
2865
2866 if (!obj->btf)
2867 return 0;
2868
2869 err = btf_finalize_data(obj, obj->btf);
2870 if (err) {
2871 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2872 return err;
2873 }
2874
2875 return 0;
2876}
2877
2878static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2879{
2880 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2881 prog->type == BPF_PROG_TYPE_LSM)
2882 return true;
2883
2884 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2885 * also need vmlinux BTF
2886 */
2887 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2888 return true;
2889
2890 return false;
2891}
2892
2893static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2894{
2895 struct bpf_program *prog;
2896 int i;
2897
2898 /* CO-RE relocations need kernel BTF, only when btf_custom_path
2899 * is not specified
2900 */
2901 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2902 return true;
2903
2904 /* Support for typed ksyms needs kernel BTF */
2905 for (i = 0; i < obj->nr_extern; i++) {
2906 const struct extern_desc *ext;
2907
2908 ext = &obj->externs[i];
2909 if (ext->type == EXT_KSYM && ext->ksym.type_id)
2910 return true;
2911 }
2912
2913 bpf_object__for_each_program(prog, obj) {
2914 if (!prog->load)
2915 continue;
2916 if (prog_needs_vmlinux_btf(prog))
2917 return true;
2918 }
2919
2920 return false;
2921}
2922
2923static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2924{
2925 int err;
2926
2927 /* btf_vmlinux could be loaded earlier */
2928 if (obj->btf_vmlinux || obj->gen_loader)
2929 return 0;
2930
2931 if (!force && !obj_needs_vmlinux_btf(obj))
2932 return 0;
2933
2934 obj->btf_vmlinux = btf__load_vmlinux_btf();
2935 err = libbpf_get_error(obj->btf_vmlinux);
2936 if (err) {
2937 pr_warn("Error loading vmlinux BTF: %d\n", err);
2938 obj->btf_vmlinux = NULL;
2939 return err;
2940 }
2941 return 0;
2942}
2943
2944static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2945{
2946 struct btf *kern_btf = obj->btf;
2947 bool btf_mandatory, sanitize;
2948 int i, err = 0;
2949
2950 if (!obj->btf)
2951 return 0;
2952
2953 if (!kernel_supports(obj, FEAT_BTF)) {
2954 if (kernel_needs_btf(obj)) {
2955 err = -EOPNOTSUPP;
2956 goto report;
2957 }
2958 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2959 return 0;
2960 }
2961
2962 /* Even though some subprogs are global/weak, user might prefer more
2963 * permissive BPF verification process that BPF verifier performs for
2964 * static functions, taking into account more context from the caller
2965 * functions. In such case, they need to mark such subprogs with
2966 * __attribute__((visibility("hidden"))) and libbpf will adjust
2967 * corresponding FUNC BTF type to be marked as static and trigger more
2968 * involved BPF verification process.
2969 */
2970 for (i = 0; i < obj->nr_programs; i++) {
2971 struct bpf_program *prog = &obj->programs[i];
2972 struct btf_type *t;
2973 const char *name;
2974 int j, n;
2975
2976 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2977 continue;
2978
2979 n = btf__type_cnt(obj->btf);
2980 for (j = 1; j < n; j++) {
2981 t = btf_type_by_id(obj->btf, j);
2982 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2983 continue;
2984
2985 name = btf__str_by_offset(obj->btf, t->name_off);
2986 if (strcmp(name, prog->name) != 0)
2987 continue;
2988
2989 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2990 break;
2991 }
2992 }
2993
2994 sanitize = btf_needs_sanitization(obj);
2995 if (sanitize) {
2996 const void *raw_data;
2997 __u32 sz;
2998
2999 /* clone BTF to sanitize a copy and leave the original intact */
3000 raw_data = btf__raw_data(obj->btf, &sz);
3001 kern_btf = btf__new(raw_data, sz);
3002 err = libbpf_get_error(kern_btf);
3003 if (err)
3004 return err;
3005
3006 /* enforce 8-byte pointers for BPF-targeted BTFs */
3007 btf__set_pointer_size(obj->btf, 8);
3008 bpf_object__sanitize_btf(obj, kern_btf);
3009 }
3010
3011 if (obj->gen_loader) {
3012 __u32 raw_size = 0;
3013 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3014
3015 if (!raw_data)
3016 return -ENOMEM;
3017 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3018 /* Pretend to have valid FD to pass various fd >= 0 checks.
3019 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3020 */
3021 btf__set_fd(kern_btf, 0);
3022 } else {
3023 /* currently BPF_BTF_LOAD only supports log_level 1 */
3024 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3025 obj->log_level ? 1 : 0);
3026 }
3027 if (sanitize) {
3028 if (!err) {
3029 /* move fd to libbpf's BTF */
3030 btf__set_fd(obj->btf, btf__fd(kern_btf));
3031 btf__set_fd(kern_btf, -1);
3032 }
3033 btf__free(kern_btf);
3034 }
3035report:
3036 if (err) {
3037 btf_mandatory = kernel_needs_btf(obj);
3038 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3039 btf_mandatory ? "BTF is mandatory, can't proceed."
3040 : "BTF is optional, ignoring.");
3041 if (!btf_mandatory)
3042 err = 0;
3043 }
3044 return err;
3045}
3046
3047static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3048{
3049 const char *name;
3050
3051 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3052 if (!name) {
3053 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3054 off, obj->path, elf_errmsg(-1));
3055 return NULL;
3056 }
3057
3058 return name;
3059}
3060
3061static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3062{
3063 const char *name;
3064
3065 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3066 if (!name) {
3067 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3068 off, obj->path, elf_errmsg(-1));
3069 return NULL;
3070 }
3071
3072 return name;
3073}
3074
3075static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3076{
3077 Elf_Scn *scn;
3078
3079 scn = elf_getscn(obj->efile.elf, idx);
3080 if (!scn) {
3081 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3082 idx, obj->path, elf_errmsg(-1));
3083 return NULL;
3084 }
3085 return scn;
3086}
3087
3088static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3089{
3090 Elf_Scn *scn = NULL;
3091 Elf *elf = obj->efile.elf;
3092 const char *sec_name;
3093
3094 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3095 sec_name = elf_sec_name(obj, scn);
3096 if (!sec_name)
3097 return NULL;
3098
3099 if (strcmp(sec_name, name) != 0)
3100 continue;
3101
3102 return scn;
3103 }
3104 return NULL;
3105}
3106
3107static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3108{
3109 Elf64_Shdr *shdr;
3110
3111 if (!scn)
3112 return NULL;
3113
3114 shdr = elf64_getshdr(scn);
3115 if (!shdr) {
3116 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3117 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3118 return NULL;
3119 }
3120
3121 return shdr;
3122}
3123
3124static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3125{
3126 const char *name;
3127 Elf64_Shdr *sh;
3128
3129 if (!scn)
3130 return NULL;
3131
3132 sh = elf_sec_hdr(obj, scn);
3133 if (!sh)
3134 return NULL;
3135
3136 name = elf_sec_str(obj, sh->sh_name);
3137 if (!name) {
3138 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3139 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3140 return NULL;
3141 }
3142
3143 return name;
3144}
3145
3146static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3147{
3148 Elf_Data *data;
3149
3150 if (!scn)
3151 return NULL;
3152
3153 data = elf_getdata(scn, 0);
3154 if (!data) {
3155 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3156 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3157 obj->path, elf_errmsg(-1));
3158 return NULL;
3159 }
3160
3161 return data;
3162}
3163
3164static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3165{
3166 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3167 return NULL;
3168
3169 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3170}
3171
3172static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3173{
3174 if (idx >= data->d_size / sizeof(Elf64_Rel))
3175 return NULL;
3176
3177 return (Elf64_Rel *)data->d_buf + idx;
3178}
3179
3180static bool is_sec_name_dwarf(const char *name)
3181{
3182 /* approximation, but the actual list is too long */
3183 return str_has_pfx(name, ".debug_");
3184}
3185
3186static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3187{
3188 /* no special handling of .strtab */
3189 if (hdr->sh_type == SHT_STRTAB)
3190 return true;
3191
3192 /* ignore .llvm_addrsig section as well */
3193 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3194 return true;
3195
3196 /* no subprograms will lead to an empty .text section, ignore it */
3197 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3198 strcmp(name, ".text") == 0)
3199 return true;
3200
3201 /* DWARF sections */
3202 if (is_sec_name_dwarf(name))
3203 return true;
3204
3205 if (str_has_pfx(name, ".rel")) {
3206 name += sizeof(".rel") - 1;
3207 /* DWARF section relocations */
3208 if (is_sec_name_dwarf(name))
3209 return true;
3210
3211 /* .BTF and .BTF.ext don't need relocations */
3212 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3213 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3214 return true;
3215 }
3216
3217 return false;
3218}
3219
3220static int cmp_progs(const void *_a, const void *_b)
3221{
3222 const struct bpf_program *a = _a;
3223 const struct bpf_program *b = _b;
3224
3225 if (a->sec_idx != b->sec_idx)
3226 return a->sec_idx < b->sec_idx ? -1 : 1;
3227
3228 /* sec_insn_off can't be the same within the section */
3229 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3230}
3231
3232static int bpf_object__elf_collect(struct bpf_object *obj)
3233{
3234 struct elf_sec_desc *sec_desc;
3235 Elf *elf = obj->efile.elf;
3236 Elf_Data *btf_ext_data = NULL;
3237 Elf_Data *btf_data = NULL;
3238 int idx = 0, err = 0;
3239 const char *name;
3240 Elf_Data *data;
3241 Elf_Scn *scn;
3242 Elf64_Shdr *sh;
3243
3244 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3245 * section. e_shnum does include sec #0, so e_shnum is the necessary
3246 * size of an array to keep all the sections.
3247 */
3248 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3249 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3250 if (!obj->efile.secs)
3251 return -ENOMEM;
3252
3253 /* a bunch of ELF parsing functionality depends on processing symbols,
3254 * so do the first pass and find the symbol table
3255 */
3256 scn = NULL;
3257 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3258 sh = elf_sec_hdr(obj, scn);
3259 if (!sh)
3260 return -LIBBPF_ERRNO__FORMAT;
3261
3262 if (sh->sh_type == SHT_SYMTAB) {
3263 if (obj->efile.symbols) {
3264 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3265 return -LIBBPF_ERRNO__FORMAT;
3266 }
3267
3268 data = elf_sec_data(obj, scn);
3269 if (!data)
3270 return -LIBBPF_ERRNO__FORMAT;
3271
3272 idx = elf_ndxscn(scn);
3273
3274 obj->efile.symbols = data;
3275 obj->efile.symbols_shndx = idx;
3276 obj->efile.strtabidx = sh->sh_link;
3277 }
3278 }
3279
3280 if (!obj->efile.symbols) {
3281 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3282 obj->path);
3283 return -ENOENT;
3284 }
3285
3286 scn = NULL;
3287 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3288 idx = elf_ndxscn(scn);
3289 sec_desc = &obj->efile.secs[idx];
3290
3291 sh = elf_sec_hdr(obj, scn);
3292 if (!sh)
3293 return -LIBBPF_ERRNO__FORMAT;
3294
3295 name = elf_sec_str(obj, sh->sh_name);
3296 if (!name)
3297 return -LIBBPF_ERRNO__FORMAT;
3298
3299 if (ignore_elf_section(sh, name))
3300 continue;
3301
3302 data = elf_sec_data(obj, scn);
3303 if (!data)
3304 return -LIBBPF_ERRNO__FORMAT;
3305
3306 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3307 idx, name, (unsigned long)data->d_size,
3308 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3309 (int)sh->sh_type);
3310
3311 if (strcmp(name, "license") == 0) {
3312 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3313 if (err)
3314 return err;
3315 } else if (strcmp(name, "version") == 0) {
3316 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3317 if (err)
3318 return err;
3319 } else if (strcmp(name, "maps") == 0) {
3320 obj->efile.maps_shndx = idx;
3321 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3322 obj->efile.btf_maps_shndx = idx;
3323 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3324 if (sh->sh_type != SHT_PROGBITS)
3325 return -LIBBPF_ERRNO__FORMAT;
3326 btf_data = data;
3327 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3328 if (sh->sh_type != SHT_PROGBITS)
3329 return -LIBBPF_ERRNO__FORMAT;
3330 btf_ext_data = data;
3331 } else if (sh->sh_type == SHT_SYMTAB) {
3332 /* already processed during the first pass above */
3333 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3334 if (sh->sh_flags & SHF_EXECINSTR) {
3335 if (strcmp(name, ".text") == 0)
3336 obj->efile.text_shndx = idx;
3337 err = bpf_object__add_programs(obj, data, name, idx);
3338 if (err)
3339 return err;
3340 } else if (strcmp(name, DATA_SEC) == 0 ||
3341 str_has_pfx(name, DATA_SEC ".")) {
3342 sec_desc->sec_type = SEC_DATA;
3343 sec_desc->shdr = sh;
3344 sec_desc->data = data;
3345 } else if (strcmp(name, RODATA_SEC) == 0 ||
3346 str_has_pfx(name, RODATA_SEC ".")) {
3347 sec_desc->sec_type = SEC_RODATA;
3348 sec_desc->shdr = sh;
3349 sec_desc->data = data;
3350 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3351 obj->efile.st_ops_data = data;
3352 obj->efile.st_ops_shndx = idx;
3353 } else {
3354 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3355 idx, name);
3356 }
3357 } else if (sh->sh_type == SHT_REL) {
3358 int targ_sec_idx = sh->sh_info; /* points to other section */
3359
3360 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3361 targ_sec_idx >= obj->efile.sec_cnt)
3362 return -LIBBPF_ERRNO__FORMAT;
3363
3364 /* Only do relo for section with exec instructions */
3365 if (!section_have_execinstr(obj, targ_sec_idx) &&
3366 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3367 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3368 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3369 idx, name, targ_sec_idx,
3370 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3371 continue;
3372 }
3373
3374 sec_desc->sec_type = SEC_RELO;
3375 sec_desc->shdr = sh;
3376 sec_desc->data = data;
3377 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3378 sec_desc->sec_type = SEC_BSS;
3379 sec_desc->shdr = sh;
3380 sec_desc->data = data;
3381 } else {
3382 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3383 (size_t)sh->sh_size);
3384 }
3385 }
3386
3387 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3388 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3389 return -LIBBPF_ERRNO__FORMAT;
3390 }
3391
3392 /* sort BPF programs by section name and in-section instruction offset
3393 * for faster search */
3394 if (obj->nr_programs)
3395 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3396
3397 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3398}
3399
3400static bool sym_is_extern(const Elf64_Sym *sym)
3401{
3402 int bind = ELF64_ST_BIND(sym->st_info);
3403 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3404 return sym->st_shndx == SHN_UNDEF &&
3405 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3406 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3407}
3408
3409static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3410{
3411 int bind = ELF64_ST_BIND(sym->st_info);
3412 int type = ELF64_ST_TYPE(sym->st_info);
3413
3414 /* in .text section */
3415 if (sym->st_shndx != text_shndx)
3416 return false;
3417
3418 /* local function */
3419 if (bind == STB_LOCAL && type == STT_SECTION)
3420 return true;
3421
3422 /* global function */
3423 return bind == STB_GLOBAL && type == STT_FUNC;
3424}
3425
3426static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3427{
3428 const struct btf_type *t;
3429 const char *tname;
3430 int i, n;
3431
3432 if (!btf)
3433 return -ESRCH;
3434
3435 n = btf__type_cnt(btf);
3436 for (i = 1; i < n; i++) {
3437 t = btf__type_by_id(btf, i);
3438
3439 if (!btf_is_var(t) && !btf_is_func(t))
3440 continue;
3441
3442 tname = btf__name_by_offset(btf, t->name_off);
3443 if (strcmp(tname, ext_name))
3444 continue;
3445
3446 if (btf_is_var(t) &&
3447 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3448 return -EINVAL;
3449
3450 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3451 return -EINVAL;
3452
3453 return i;
3454 }
3455
3456 return -ENOENT;
3457}
3458
3459static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3460 const struct btf_var_secinfo *vs;
3461 const struct btf_type *t;
3462 int i, j, n;
3463
3464 if (!btf)
3465 return -ESRCH;
3466
3467 n = btf__type_cnt(btf);
3468 for (i = 1; i < n; i++) {
3469 t = btf__type_by_id(btf, i);
3470
3471 if (!btf_is_datasec(t))
3472 continue;
3473
3474 vs = btf_var_secinfos(t);
3475 for (j = 0; j < btf_vlen(t); j++, vs++) {
3476 if (vs->type == ext_btf_id)
3477 return i;
3478 }
3479 }
3480
3481 return -ENOENT;
3482}
3483
3484static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3485 bool *is_signed)
3486{
3487 const struct btf_type *t;
3488 const char *name;
3489
3490 t = skip_mods_and_typedefs(btf, id, NULL);
3491 name = btf__name_by_offset(btf, t->name_off);
3492
3493 if (is_signed)
3494 *is_signed = false;
3495 switch (btf_kind(t)) {
3496 case BTF_KIND_INT: {
3497 int enc = btf_int_encoding(t);
3498
3499 if (enc & BTF_INT_BOOL)
3500 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3501 if (is_signed)
3502 *is_signed = enc & BTF_INT_SIGNED;
3503 if (t->size == 1)
3504 return KCFG_CHAR;
3505 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3506 return KCFG_UNKNOWN;
3507 return KCFG_INT;
3508 }
3509 case BTF_KIND_ENUM:
3510 if (t->size != 4)
3511 return KCFG_UNKNOWN;
3512 if (strcmp(name, "libbpf_tristate"))
3513 return KCFG_UNKNOWN;
3514 return KCFG_TRISTATE;
3515 case BTF_KIND_ARRAY:
3516 if (btf_array(t)->nelems == 0)
3517 return KCFG_UNKNOWN;
3518 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3519 return KCFG_UNKNOWN;
3520 return KCFG_CHAR_ARR;
3521 default:
3522 return KCFG_UNKNOWN;
3523 }
3524}
3525
3526static int cmp_externs(const void *_a, const void *_b)
3527{
3528 const struct extern_desc *a = _a;
3529 const struct extern_desc *b = _b;
3530
3531 if (a->type != b->type)
3532 return a->type < b->type ? -1 : 1;
3533
3534 if (a->type == EXT_KCFG) {
3535 /* descending order by alignment requirements */
3536 if (a->kcfg.align != b->kcfg.align)
3537 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3538 /* ascending order by size, within same alignment class */
3539 if (a->kcfg.sz != b->kcfg.sz)
3540 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3541 }
3542
3543 /* resolve ties by name */
3544 return strcmp(a->name, b->name);
3545}
3546
3547static int find_int_btf_id(const struct btf *btf)
3548{
3549 const struct btf_type *t;
3550 int i, n;
3551
3552 n = btf__type_cnt(btf);
3553 for (i = 1; i < n; i++) {
3554 t = btf__type_by_id(btf, i);
3555
3556 if (btf_is_int(t) && btf_int_bits(t) == 32)
3557 return i;
3558 }
3559
3560 return 0;
3561}
3562
3563static int add_dummy_ksym_var(struct btf *btf)
3564{
3565 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3566 const struct btf_var_secinfo *vs;
3567 const struct btf_type *sec;
3568
3569 if (!btf)
3570 return 0;
3571
3572 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3573 BTF_KIND_DATASEC);
3574 if (sec_btf_id < 0)
3575 return 0;
3576
3577 sec = btf__type_by_id(btf, sec_btf_id);
3578 vs = btf_var_secinfos(sec);
3579 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3580 const struct btf_type *vt;
3581
3582 vt = btf__type_by_id(btf, vs->type);
3583 if (btf_is_func(vt))
3584 break;
3585 }
3586
3587 /* No func in ksyms sec. No need to add dummy var. */
3588 if (i == btf_vlen(sec))
3589 return 0;
3590
3591 int_btf_id = find_int_btf_id(btf);
3592 dummy_var_btf_id = btf__add_var(btf,
3593 "dummy_ksym",
3594 BTF_VAR_GLOBAL_ALLOCATED,
3595 int_btf_id);
3596 if (dummy_var_btf_id < 0)
3597 pr_warn("cannot create a dummy_ksym var\n");
3598
3599 return dummy_var_btf_id;
3600}
3601
3602static int bpf_object__collect_externs(struct bpf_object *obj)
3603{
3604 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3605 const struct btf_type *t;
3606 struct extern_desc *ext;
3607 int i, n, off, dummy_var_btf_id;
3608 const char *ext_name, *sec_name;
3609 Elf_Scn *scn;
3610 Elf64_Shdr *sh;
3611
3612 if (!obj->efile.symbols)
3613 return 0;
3614
3615 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3616 sh = elf_sec_hdr(obj, scn);
3617 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3618 return -LIBBPF_ERRNO__FORMAT;
3619
3620 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3621 if (dummy_var_btf_id < 0)
3622 return dummy_var_btf_id;
3623
3624 n = sh->sh_size / sh->sh_entsize;
3625 pr_debug("looking for externs among %d symbols...\n", n);
3626
3627 for (i = 0; i < n; i++) {
3628 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3629
3630 if (!sym)
3631 return -LIBBPF_ERRNO__FORMAT;
3632 if (!sym_is_extern(sym))
3633 continue;
3634 ext_name = elf_sym_str(obj, sym->st_name);
3635 if (!ext_name || !ext_name[0])
3636 continue;
3637
3638 ext = obj->externs;
3639 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3640 if (!ext)
3641 return -ENOMEM;
3642 obj->externs = ext;
3643 ext = &ext[obj->nr_extern];
3644 memset(ext, 0, sizeof(*ext));
3645 obj->nr_extern++;
3646
3647 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3648 if (ext->btf_id <= 0) {
3649 pr_warn("failed to find BTF for extern '%s': %d\n",
3650 ext_name, ext->btf_id);
3651 return ext->btf_id;
3652 }
3653 t = btf__type_by_id(obj->btf, ext->btf_id);
3654 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3655 ext->sym_idx = i;
3656 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3657
3658 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3659 if (ext->sec_btf_id <= 0) {
3660 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3661 ext_name, ext->btf_id, ext->sec_btf_id);
3662 return ext->sec_btf_id;
3663 }
3664 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3665 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3666
3667 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3668 if (btf_is_func(t)) {
3669 pr_warn("extern function %s is unsupported under %s section\n",
3670 ext->name, KCONFIG_SEC);
3671 return -ENOTSUP;
3672 }
3673 kcfg_sec = sec;
3674 ext->type = EXT_KCFG;
3675 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3676 if (ext->kcfg.sz <= 0) {
3677 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3678 ext_name, ext->kcfg.sz);
3679 return ext->kcfg.sz;
3680 }
3681 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3682 if (ext->kcfg.align <= 0) {
3683 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3684 ext_name, ext->kcfg.align);
3685 return -EINVAL;
3686 }
3687 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3688 &ext->kcfg.is_signed);
3689 if (ext->kcfg.type == KCFG_UNKNOWN) {
3690 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3691 return -ENOTSUP;
3692 }
3693 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3694 ksym_sec = sec;
3695 ext->type = EXT_KSYM;
3696 skip_mods_and_typedefs(obj->btf, t->type,
3697 &ext->ksym.type_id);
3698 } else {
3699 pr_warn("unrecognized extern section '%s'\n", sec_name);
3700 return -ENOTSUP;
3701 }
3702 }
3703 pr_debug("collected %d externs total\n", obj->nr_extern);
3704
3705 if (!obj->nr_extern)
3706 return 0;
3707
3708 /* sort externs by type, for kcfg ones also by (align, size, name) */
3709 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3710
3711 /* for .ksyms section, we need to turn all externs into allocated
3712 * variables in BTF to pass kernel verification; we do this by
3713 * pretending that each extern is a 8-byte variable
3714 */
3715 if (ksym_sec) {
3716 /* find existing 4-byte integer type in BTF to use for fake
3717 * extern variables in DATASEC
3718 */
3719 int int_btf_id = find_int_btf_id(obj->btf);
3720 /* For extern function, a dummy_var added earlier
3721 * will be used to replace the vs->type and
3722 * its name string will be used to refill
3723 * the missing param's name.
3724 */
3725 const struct btf_type *dummy_var;
3726
3727 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3728 for (i = 0; i < obj->nr_extern; i++) {
3729 ext = &obj->externs[i];
3730 if (ext->type != EXT_KSYM)
3731 continue;
3732 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3733 i, ext->sym_idx, ext->name);
3734 }
3735
3736 sec = ksym_sec;
3737 n = btf_vlen(sec);
3738 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3739 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3740 struct btf_type *vt;
3741
3742 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3743 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3744 ext = find_extern_by_name(obj, ext_name);
3745 if (!ext) {
3746 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3747 btf_kind_str(vt), ext_name);
3748 return -ESRCH;
3749 }
3750 if (btf_is_func(vt)) {
3751 const struct btf_type *func_proto;
3752 struct btf_param *param;
3753 int j;
3754
3755 func_proto = btf__type_by_id(obj->btf,
3756 vt->type);
3757 param = btf_params(func_proto);
3758 /* Reuse the dummy_var string if the
3759 * func proto does not have param name.
3760 */
3761 for (j = 0; j < btf_vlen(func_proto); j++)
3762 if (param[j].type && !param[j].name_off)
3763 param[j].name_off =
3764 dummy_var->name_off;
3765 vs->type = dummy_var_btf_id;
3766 vt->info &= ~0xffff;
3767 vt->info |= BTF_FUNC_GLOBAL;
3768 } else {
3769 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3770 vt->type = int_btf_id;
3771 }
3772 vs->offset = off;
3773 vs->size = sizeof(int);
3774 }
3775 sec->size = off;
3776 }
3777
3778 if (kcfg_sec) {
3779 sec = kcfg_sec;
3780 /* for kcfg externs calculate their offsets within a .kconfig map */
3781 off = 0;
3782 for (i = 0; i < obj->nr_extern; i++) {
3783 ext = &obj->externs[i];
3784 if (ext->type != EXT_KCFG)
3785 continue;
3786
3787 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3788 off = ext->kcfg.data_off + ext->kcfg.sz;
3789 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3790 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3791 }
3792 sec->size = off;
3793 n = btf_vlen(sec);
3794 for (i = 0; i < n; i++) {
3795 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3796
3797 t = btf__type_by_id(obj->btf, vs->type);
3798 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3799 ext = find_extern_by_name(obj, ext_name);
3800 if (!ext) {
3801 pr_warn("failed to find extern definition for BTF var '%s'\n",
3802 ext_name);
3803 return -ESRCH;
3804 }
3805 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3806 vs->offset = ext->kcfg.data_off;
3807 }
3808 }
3809 return 0;
3810}
3811
3812struct bpf_program *
3813bpf_object__find_program_by_title(const struct bpf_object *obj,
3814 const char *title)
3815{
3816 struct bpf_program *pos;
3817
3818 bpf_object__for_each_program(pos, obj) {
3819 if (pos->sec_name && !strcmp(pos->sec_name, title))
3820 return pos;
3821 }
3822 return errno = ENOENT, NULL;
3823}
3824
3825static bool prog_is_subprog(const struct bpf_object *obj,
3826 const struct bpf_program *prog)
3827{
3828 /* For legacy reasons, libbpf supports an entry-point BPF programs
3829 * without SEC() attribute, i.e., those in the .text section. But if
3830 * there are 2 or more such programs in the .text section, they all
3831 * must be subprograms called from entry-point BPF programs in
3832 * designated SEC()'tions, otherwise there is no way to distinguish
3833 * which of those programs should be loaded vs which are a subprogram.
3834 * Similarly, if there is a function/program in .text and at least one
3835 * other BPF program with custom SEC() attribute, then we just assume
3836 * .text programs are subprograms (even if they are not called from
3837 * other programs), because libbpf never explicitly supported mixing
3838 * SEC()-designated BPF programs and .text entry-point BPF programs.
3839 */
3840 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3841}
3842
3843struct bpf_program *
3844bpf_object__find_program_by_name(const struct bpf_object *obj,
3845 const char *name)
3846{
3847 struct bpf_program *prog;
3848
3849 bpf_object__for_each_program(prog, obj) {
3850 if (prog_is_subprog(obj, prog))
3851 continue;
3852 if (!strcmp(prog->name, name))
3853 return prog;
3854 }
3855 return errno = ENOENT, NULL;
3856}
3857
3858static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3859 int shndx)
3860{
3861 switch (obj->efile.secs[shndx].sec_type) {
3862 case SEC_BSS:
3863 case SEC_DATA:
3864 case SEC_RODATA:
3865 return true;
3866 default:
3867 return false;
3868 }
3869}
3870
3871static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3872 int shndx)
3873{
3874 return shndx == obj->efile.maps_shndx ||
3875 shndx == obj->efile.btf_maps_shndx;
3876}
3877
3878static enum libbpf_map_type
3879bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3880{
3881 if (shndx == obj->efile.symbols_shndx)
3882 return LIBBPF_MAP_KCONFIG;
3883
3884 switch (obj->efile.secs[shndx].sec_type) {
3885 case SEC_BSS:
3886 return LIBBPF_MAP_BSS;
3887 case SEC_DATA:
3888 return LIBBPF_MAP_DATA;
3889 case SEC_RODATA:
3890 return LIBBPF_MAP_RODATA;
3891 default:
3892 return LIBBPF_MAP_UNSPEC;
3893 }
3894}
3895
3896static int bpf_program__record_reloc(struct bpf_program *prog,
3897 struct reloc_desc *reloc_desc,
3898 __u32 insn_idx, const char *sym_name,
3899 const Elf64_Sym *sym, const Elf64_Rel *rel)
3900{
3901 struct bpf_insn *insn = &prog->insns[insn_idx];
3902 size_t map_idx, nr_maps = prog->obj->nr_maps;
3903 struct bpf_object *obj = prog->obj;
3904 __u32 shdr_idx = sym->st_shndx;
3905 enum libbpf_map_type type;
3906 const char *sym_sec_name;
3907 struct bpf_map *map;
3908
3909 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3910 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3911 prog->name, sym_name, insn_idx, insn->code);
3912 return -LIBBPF_ERRNO__RELOC;
3913 }
3914
3915 if (sym_is_extern(sym)) {
3916 int sym_idx = ELF64_R_SYM(rel->r_info);
3917 int i, n = obj->nr_extern;
3918 struct extern_desc *ext;
3919
3920 for (i = 0; i < n; i++) {
3921 ext = &obj->externs[i];
3922 if (ext->sym_idx == sym_idx)
3923 break;
3924 }
3925 if (i >= n) {
3926 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3927 prog->name, sym_name, sym_idx);
3928 return -LIBBPF_ERRNO__RELOC;
3929 }
3930 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3931 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3932 if (insn->code == (BPF_JMP | BPF_CALL))
3933 reloc_desc->type = RELO_EXTERN_FUNC;
3934 else
3935 reloc_desc->type = RELO_EXTERN_VAR;
3936 reloc_desc->insn_idx = insn_idx;
3937 reloc_desc->sym_off = i; /* sym_off stores extern index */
3938 return 0;
3939 }
3940
3941 /* sub-program call relocation */
3942 if (is_call_insn(insn)) {
3943 if (insn->src_reg != BPF_PSEUDO_CALL) {
3944 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3945 return -LIBBPF_ERRNO__RELOC;
3946 }
3947 /* text_shndx can be 0, if no default "main" program exists */
3948 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3949 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3950 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3951 prog->name, sym_name, sym_sec_name);
3952 return -LIBBPF_ERRNO__RELOC;
3953 }
3954 if (sym->st_value % BPF_INSN_SZ) {
3955 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3956 prog->name, sym_name, (size_t)sym->st_value);
3957 return -LIBBPF_ERRNO__RELOC;
3958 }
3959 reloc_desc->type = RELO_CALL;
3960 reloc_desc->insn_idx = insn_idx;
3961 reloc_desc->sym_off = sym->st_value;
3962 return 0;
3963 }
3964
3965 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3966 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3967 prog->name, sym_name, shdr_idx);
3968 return -LIBBPF_ERRNO__RELOC;
3969 }
3970
3971 /* loading subprog addresses */
3972 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3973 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
3974 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3975 */
3976 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3977 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3978 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3979 return -LIBBPF_ERRNO__RELOC;
3980 }
3981
3982 reloc_desc->type = RELO_SUBPROG_ADDR;
3983 reloc_desc->insn_idx = insn_idx;
3984 reloc_desc->sym_off = sym->st_value;
3985 return 0;
3986 }
3987
3988 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3989 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3990
3991 /* generic map reference relocation */
3992 if (type == LIBBPF_MAP_UNSPEC) {
3993 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3994 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3995 prog->name, sym_name, sym_sec_name);
3996 return -LIBBPF_ERRNO__RELOC;
3997 }
3998 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3999 map = &obj->maps[map_idx];
4000 if (map->libbpf_type != type ||
4001 map->sec_idx != sym->st_shndx ||
4002 map->sec_offset != sym->st_value)
4003 continue;
4004 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4005 prog->name, map_idx, map->name, map->sec_idx,
4006 map->sec_offset, insn_idx);
4007 break;
4008 }
4009 if (map_idx >= nr_maps) {
4010 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4011 prog->name, sym_sec_name, (size_t)sym->st_value);
4012 return -LIBBPF_ERRNO__RELOC;
4013 }
4014 reloc_desc->type = RELO_LD64;
4015 reloc_desc->insn_idx = insn_idx;
4016 reloc_desc->map_idx = map_idx;
4017 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4018 return 0;
4019 }
4020
4021 /* global data map relocation */
4022 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4023 pr_warn("prog '%s': bad data relo against section '%s'\n",
4024 prog->name, sym_sec_name);
4025 return -LIBBPF_ERRNO__RELOC;
4026 }
4027 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4028 map = &obj->maps[map_idx];
4029 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4030 continue;
4031 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4032 prog->name, map_idx, map->name, map->sec_idx,
4033 map->sec_offset, insn_idx);
4034 break;
4035 }
4036 if (map_idx >= nr_maps) {
4037 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4038 prog->name, sym_sec_name);
4039 return -LIBBPF_ERRNO__RELOC;
4040 }
4041
4042 reloc_desc->type = RELO_DATA;
4043 reloc_desc->insn_idx = insn_idx;
4044 reloc_desc->map_idx = map_idx;
4045 reloc_desc->sym_off = sym->st_value;
4046 return 0;
4047}
4048
4049static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4050{
4051 return insn_idx >= prog->sec_insn_off &&
4052 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4053}
4054
4055static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4056 size_t sec_idx, size_t insn_idx)
4057{
4058 int l = 0, r = obj->nr_programs - 1, m;
4059 struct bpf_program *prog;
4060
4061 while (l < r) {
4062 m = l + (r - l + 1) / 2;
4063 prog = &obj->programs[m];
4064
4065 if (prog->sec_idx < sec_idx ||
4066 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4067 l = m;
4068 else
4069 r = m - 1;
4070 }
4071 /* matching program could be at index l, but it still might be the
4072 * wrong one, so we need to double check conditions for the last time
4073 */
4074 prog = &obj->programs[l];
4075 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4076 return prog;
4077 return NULL;
4078}
4079
4080static int
4081bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4082{
4083 const char *relo_sec_name, *sec_name;
4084 size_t sec_idx = shdr->sh_info, sym_idx;
4085 struct bpf_program *prog;
4086 struct reloc_desc *relos;
4087 int err, i, nrels;
4088 const char *sym_name;
4089 __u32 insn_idx;
4090 Elf_Scn *scn;
4091 Elf_Data *scn_data;
4092 Elf64_Sym *sym;
4093 Elf64_Rel *rel;
4094
4095 if (sec_idx >= obj->efile.sec_cnt)
4096 return -EINVAL;
4097
4098 scn = elf_sec_by_idx(obj, sec_idx);
4099 scn_data = elf_sec_data(obj, scn);
4100
4101 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4102 sec_name = elf_sec_name(obj, scn);
4103 if (!relo_sec_name || !sec_name)
4104 return -EINVAL;
4105
4106 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4107 relo_sec_name, sec_idx, sec_name);
4108 nrels = shdr->sh_size / shdr->sh_entsize;
4109
4110 for (i = 0; i < nrels; i++) {
4111 rel = elf_rel_by_idx(data, i);
4112 if (!rel) {
4113 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4114 return -LIBBPF_ERRNO__FORMAT;
4115 }
4116
4117 sym_idx = ELF64_R_SYM(rel->r_info);
4118 sym = elf_sym_by_idx(obj, sym_idx);
4119 if (!sym) {
4120 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4121 relo_sec_name, sym_idx, i);
4122 return -LIBBPF_ERRNO__FORMAT;
4123 }
4124
4125 if (sym->st_shndx >= obj->efile.sec_cnt) {
4126 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4127 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4128 return -LIBBPF_ERRNO__FORMAT;
4129 }
4130
4131 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4132 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4133 relo_sec_name, (size_t)rel->r_offset, i);
4134 return -LIBBPF_ERRNO__FORMAT;
4135 }
4136
4137 insn_idx = rel->r_offset / BPF_INSN_SZ;
4138 /* relocations against static functions are recorded as
4139 * relocations against the section that contains a function;
4140 * in such case, symbol will be STT_SECTION and sym.st_name
4141 * will point to empty string (0), so fetch section name
4142 * instead
4143 */
4144 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4145 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4146 else
4147 sym_name = elf_sym_str(obj, sym->st_name);
4148 sym_name = sym_name ?: "<?";
4149
4150 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4151 relo_sec_name, i, insn_idx, sym_name);
4152
4153 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4154 if (!prog) {
4155 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4156 relo_sec_name, i, sec_name, insn_idx);
4157 continue;
4158 }
4159
4160 relos = libbpf_reallocarray(prog->reloc_desc,
4161 prog->nr_reloc + 1, sizeof(*relos));
4162 if (!relos)
4163 return -ENOMEM;
4164 prog->reloc_desc = relos;
4165
4166 /* adjust insn_idx to local BPF program frame of reference */
4167 insn_idx -= prog->sec_insn_off;
4168 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4169 insn_idx, sym_name, sym, rel);
4170 if (err)
4171 return err;
4172
4173 prog->nr_reloc++;
4174 }
4175 return 0;
4176}
4177
4178static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4179{
4180 struct bpf_map_def *def = &map->def;
4181 __u32 key_type_id = 0, value_type_id = 0;
4182 int ret;
4183
4184 /* if it's BTF-defined map, we don't need to search for type IDs.
4185 * For struct_ops map, it does not need btf_key_type_id and
4186 * btf_value_type_id.
4187 */
4188 if (map->sec_idx == obj->efile.btf_maps_shndx ||
4189 bpf_map__is_struct_ops(map))
4190 return 0;
4191
4192 if (!bpf_map__is_internal(map)) {
4193 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
4194 def->value_size, &key_type_id,
4195 &value_type_id);
4196 } else {
4197 /*
4198 * LLVM annotates global data differently in BTF, that is,
4199 * only as '.data', '.bss' or '.rodata'.
4200 */
4201 ret = btf__find_by_name(obj->btf, map->real_name);
4202 }
4203 if (ret < 0)
4204 return ret;
4205
4206 map->btf_key_type_id = key_type_id;
4207 map->btf_value_type_id = bpf_map__is_internal(map) ?
4208 ret : value_type_id;
4209 return 0;
4210}
4211
4212static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4213{
4214 char file[PATH_MAX], buff[4096];
4215 FILE *fp;
4216 __u32 val;
4217 int err;
4218
4219 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4220 memset(info, 0, sizeof(*info));
4221
4222 fp = fopen(file, "r");
4223 if (!fp) {
4224 err = -errno;
4225 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4226 err);
4227 return err;
4228 }
4229
4230 while (fgets(buff, sizeof(buff), fp)) {
4231 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4232 info->type = val;
4233 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4234 info->key_size = val;
4235 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4236 info->value_size = val;
4237 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4238 info->max_entries = val;
4239 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4240 info->map_flags = val;
4241 }
4242
4243 fclose(fp);
4244
4245 return 0;
4246}
4247
4248int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4249{
4250 struct bpf_map_info info = {};
4251 __u32 len = sizeof(info);
4252 int new_fd, err;
4253 char *new_name;
4254
4255 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4256 if (err && errno == EINVAL)
4257 err = bpf_get_map_info_from_fdinfo(fd, &info);
4258 if (err)
4259 return libbpf_err(err);
4260
4261 new_name = strdup(info.name);
4262 if (!new_name)
4263 return libbpf_err(-errno);
4264
4265 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4266 if (new_fd < 0) {
4267 err = -errno;
4268 goto err_free_new_name;
4269 }
4270
4271 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4272 if (new_fd < 0) {
4273 err = -errno;
4274 goto err_close_new_fd;
4275 }
4276
4277 err = zclose(map->fd);
4278 if (err) {
4279 err = -errno;
4280 goto err_close_new_fd;
4281 }
4282 free(map->name);
4283
4284 map->fd = new_fd;
4285 map->name = new_name;
4286 map->def.type = info.type;
4287 map->def.key_size = info.key_size;
4288 map->def.value_size = info.value_size;
4289 map->def.max_entries = info.max_entries;
4290 map->def.map_flags = info.map_flags;
4291 map->btf_key_type_id = info.btf_key_type_id;
4292 map->btf_value_type_id = info.btf_value_type_id;
4293 map->reused = true;
4294 map->map_extra = info.map_extra;
4295
4296 return 0;
4297
4298err_close_new_fd:
4299 close(new_fd);
4300err_free_new_name:
4301 free(new_name);
4302 return libbpf_err(err);
4303}
4304
4305__u32 bpf_map__max_entries(const struct bpf_map *map)
4306{
4307 return map->def.max_entries;
4308}
4309
4310struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4311{
4312 if (!bpf_map_type__is_map_in_map(map->def.type))
4313 return errno = EINVAL, NULL;
4314
4315 return map->inner_map;
4316}
4317
4318int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4319{
4320 if (map->fd >= 0)
4321 return libbpf_err(-EBUSY);
4322 map->def.max_entries = max_entries;
4323 return 0;
4324}
4325
4326int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
4327{
4328 if (!map || !max_entries)
4329 return libbpf_err(-EINVAL);
4330
4331 return bpf_map__set_max_entries(map, max_entries);
4332}
4333
4334static int
4335bpf_object__probe_loading(struct bpf_object *obj)
4336{
4337 char *cp, errmsg[STRERR_BUFSIZE];
4338 struct bpf_insn insns[] = {
4339 BPF_MOV64_IMM(BPF_REG_0, 0),
4340 BPF_EXIT_INSN(),
4341 };
4342 int ret, insn_cnt = ARRAY_SIZE(insns);
4343
4344 if (obj->gen_loader)
4345 return 0;
4346
4347 ret = bump_rlimit_memlock();
4348 if (ret)
4349 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4350
4351 /* make sure basic loading works */
4352 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4353 if (ret < 0)
4354 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4355 if (ret < 0) {
4356 ret = errno;
4357 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4358 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4359 "program. Make sure your kernel supports BPF "
4360 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4361 "set to big enough value.\n", __func__, cp, ret);
4362 return -ret;
4363 }
4364 close(ret);
4365
4366 return 0;
4367}
4368
4369static int probe_fd(int fd)
4370{
4371 if (fd >= 0)
4372 close(fd);
4373 return fd >= 0;
4374}
4375
4376static int probe_kern_prog_name(void)
4377{
4378 struct bpf_insn insns[] = {
4379 BPF_MOV64_IMM(BPF_REG_0, 0),
4380 BPF_EXIT_INSN(),
4381 };
4382 int ret, insn_cnt = ARRAY_SIZE(insns);
4383
4384 /* make sure loading with name works */
4385 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4386 return probe_fd(ret);
4387}
4388
4389static int probe_kern_global_data(void)
4390{
4391 char *cp, errmsg[STRERR_BUFSIZE];
4392 struct bpf_insn insns[] = {
4393 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4394 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4395 BPF_MOV64_IMM(BPF_REG_0, 0),
4396 BPF_EXIT_INSN(),
4397 };
4398 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4399
4400 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4401 if (map < 0) {
4402 ret = -errno;
4403 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4404 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4405 __func__, cp, -ret);
4406 return ret;
4407 }
4408
4409 insns[0].imm = map;
4410
4411 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4412 close(map);
4413 return probe_fd(ret);
4414}
4415
4416static int probe_kern_btf(void)
4417{
4418 static const char strs[] = "\0int";
4419 __u32 types[] = {
4420 /* int */
4421 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4422 };
4423
4424 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4425 strs, sizeof(strs)));
4426}
4427
4428static int probe_kern_btf_func(void)
4429{
4430 static const char strs[] = "\0int\0x\0a";
4431 /* void x(int a) {} */
4432 __u32 types[] = {
4433 /* int */
4434 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4435 /* FUNC_PROTO */ /* [2] */
4436 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4437 BTF_PARAM_ENC(7, 1),
4438 /* FUNC x */ /* [3] */
4439 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4440 };
4441
4442 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4443 strs, sizeof(strs)));
4444}
4445
4446static int probe_kern_btf_func_global(void)
4447{
4448 static const char strs[] = "\0int\0x\0a";
4449 /* static void x(int a) {} */
4450 __u32 types[] = {
4451 /* int */
4452 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4453 /* FUNC_PROTO */ /* [2] */
4454 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4455 BTF_PARAM_ENC(7, 1),
4456 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4457 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4458 };
4459
4460 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4461 strs, sizeof(strs)));
4462}
4463
4464static int probe_kern_btf_datasec(void)
4465{
4466 static const char strs[] = "\0x\0.data";
4467 /* static int a; */
4468 __u32 types[] = {
4469 /* int */
4470 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4471 /* VAR x */ /* [2] */
4472 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4473 BTF_VAR_STATIC,
4474 /* DATASEC val */ /* [3] */
4475 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4476 BTF_VAR_SECINFO_ENC(2, 0, 4),
4477 };
4478
4479 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4480 strs, sizeof(strs)));
4481}
4482
4483static int probe_kern_btf_float(void)
4484{
4485 static const char strs[] = "\0float";
4486 __u32 types[] = {
4487 /* float */
4488 BTF_TYPE_FLOAT_ENC(1, 4),
4489 };
4490
4491 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4492 strs, sizeof(strs)));
4493}
4494
4495static int probe_kern_btf_decl_tag(void)
4496{
4497 static const char strs[] = "\0tag";
4498 __u32 types[] = {
4499 /* int */
4500 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4501 /* VAR x */ /* [2] */
4502 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4503 BTF_VAR_STATIC,
4504 /* attr */
4505 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4506 };
4507
4508 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4509 strs, sizeof(strs)));
4510}
4511
4512static int probe_kern_btf_type_tag(void)
4513{
4514 static const char strs[] = "\0tag";
4515 __u32 types[] = {
4516 /* int */
4517 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4518 /* attr */
4519 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4520 /* ptr */
4521 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4522 };
4523
4524 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4525 strs, sizeof(strs)));
4526}
4527
4528static int probe_kern_array_mmap(void)
4529{
4530 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4531 int fd;
4532
4533 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4534 return probe_fd(fd);
4535}
4536
4537static int probe_kern_exp_attach_type(void)
4538{
4539 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4540 struct bpf_insn insns[] = {
4541 BPF_MOV64_IMM(BPF_REG_0, 0),
4542 BPF_EXIT_INSN(),
4543 };
4544 int fd, insn_cnt = ARRAY_SIZE(insns);
4545
4546 /* use any valid combination of program type and (optional)
4547 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4548 * to see if kernel supports expected_attach_type field for
4549 * BPF_PROG_LOAD command
4550 */
4551 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4552 return probe_fd(fd);
4553}
4554
4555static int probe_kern_probe_read_kernel(void)
4556{
4557 struct bpf_insn insns[] = {
4558 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4559 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4560 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4561 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4562 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4563 BPF_EXIT_INSN(),
4564 };
4565 int fd, insn_cnt = ARRAY_SIZE(insns);
4566
4567 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4568 return probe_fd(fd);
4569}
4570
4571static int probe_prog_bind_map(void)
4572{
4573 char *cp, errmsg[STRERR_BUFSIZE];
4574 struct bpf_insn insns[] = {
4575 BPF_MOV64_IMM(BPF_REG_0, 0),
4576 BPF_EXIT_INSN(),
4577 };
4578 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4579
4580 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4581 if (map < 0) {
4582 ret = -errno;
4583 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4584 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4585 __func__, cp, -ret);
4586 return ret;
4587 }
4588
4589 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4590 if (prog < 0) {
4591 close(map);
4592 return 0;
4593 }
4594
4595 ret = bpf_prog_bind_map(prog, map, NULL);
4596
4597 close(map);
4598 close(prog);
4599
4600 return ret >= 0;
4601}
4602
4603static int probe_module_btf(void)
4604{
4605 static const char strs[] = "\0int";
4606 __u32 types[] = {
4607 /* int */
4608 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4609 };
4610 struct bpf_btf_info info;
4611 __u32 len = sizeof(info);
4612 char name[16];
4613 int fd, err;
4614
4615 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4616 if (fd < 0)
4617 return 0; /* BTF not supported at all */
4618
4619 memset(&info, 0, sizeof(info));
4620 info.name = ptr_to_u64(name);
4621 info.name_len = sizeof(name);
4622
4623 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4624 * kernel's module BTF support coincides with support for
4625 * name/name_len fields in struct bpf_btf_info.
4626 */
4627 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4628 close(fd);
4629 return !err;
4630}
4631
4632static int probe_perf_link(void)
4633{
4634 struct bpf_insn insns[] = {
4635 BPF_MOV64_IMM(BPF_REG_0, 0),
4636 BPF_EXIT_INSN(),
4637 };
4638 int prog_fd, link_fd, err;
4639
4640 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4641 insns, ARRAY_SIZE(insns), NULL);
4642 if (prog_fd < 0)
4643 return -errno;
4644
4645 /* use invalid perf_event FD to get EBADF, if link is supported;
4646 * otherwise EINVAL should be returned
4647 */
4648 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4649 err = -errno; /* close() can clobber errno */
4650
4651 if (link_fd >= 0)
4652 close(link_fd);
4653 close(prog_fd);
4654
4655 return link_fd < 0 && err == -EBADF;
4656}
4657
4658enum kern_feature_result {
4659 FEAT_UNKNOWN = 0,
4660 FEAT_SUPPORTED = 1,
4661 FEAT_MISSING = 2,
4662};
4663
4664typedef int (*feature_probe_fn)(void);
4665
4666static struct kern_feature_desc {
4667 const char *desc;
4668 feature_probe_fn probe;
4669 enum kern_feature_result res;
4670} feature_probes[__FEAT_CNT] = {
4671 [FEAT_PROG_NAME] = {
4672 "BPF program name", probe_kern_prog_name,
4673 },
4674 [FEAT_GLOBAL_DATA] = {
4675 "global variables", probe_kern_global_data,
4676 },
4677 [FEAT_BTF] = {
4678 "minimal BTF", probe_kern_btf,
4679 },
4680 [FEAT_BTF_FUNC] = {
4681 "BTF functions", probe_kern_btf_func,
4682 },
4683 [FEAT_BTF_GLOBAL_FUNC] = {
4684 "BTF global function", probe_kern_btf_func_global,
4685 },
4686 [FEAT_BTF_DATASEC] = {
4687 "BTF data section and variable", probe_kern_btf_datasec,
4688 },
4689 [FEAT_ARRAY_MMAP] = {
4690 "ARRAY map mmap()", probe_kern_array_mmap,
4691 },
4692 [FEAT_EXP_ATTACH_TYPE] = {
4693 "BPF_PROG_LOAD expected_attach_type attribute",
4694 probe_kern_exp_attach_type,
4695 },
4696 [FEAT_PROBE_READ_KERN] = {
4697 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4698 },
4699 [FEAT_PROG_BIND_MAP] = {
4700 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4701 },
4702 [FEAT_MODULE_BTF] = {
4703 "module BTF support", probe_module_btf,
4704 },
4705 [FEAT_BTF_FLOAT] = {
4706 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4707 },
4708 [FEAT_PERF_LINK] = {
4709 "BPF perf link support", probe_perf_link,
4710 },
4711 [FEAT_BTF_DECL_TAG] = {
4712 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4713 },
4714 [FEAT_BTF_TYPE_TAG] = {
4715 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4716 },
4717 [FEAT_MEMCG_ACCOUNT] = {
4718 "memcg-based memory accounting", probe_memcg_account,
4719 },
4720};
4721
4722bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4723{
4724 struct kern_feature_desc *feat = &feature_probes[feat_id];
4725 int ret;
4726
4727 if (obj && obj->gen_loader)
4728 /* To generate loader program assume the latest kernel
4729 * to avoid doing extra prog_load, map_create syscalls.
4730 */
4731 return true;
4732
4733 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4734 ret = feat->probe();
4735 if (ret > 0) {
4736 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4737 } else if (ret == 0) {
4738 WRITE_ONCE(feat->res, FEAT_MISSING);
4739 } else {
4740 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4741 WRITE_ONCE(feat->res, FEAT_MISSING);
4742 }
4743 }
4744
4745 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4746}
4747
4748static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4749{
4750 struct bpf_map_info map_info = {};
4751 char msg[STRERR_BUFSIZE];
4752 __u32 map_info_len;
4753 int err;
4754
4755 map_info_len = sizeof(map_info);
4756
4757 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4758 if (err && errno == EINVAL)
4759 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4760 if (err) {
4761 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4762 libbpf_strerror_r(errno, msg, sizeof(msg)));
4763 return false;
4764 }
4765
4766 return (map_info.type == map->def.type &&
4767 map_info.key_size == map->def.key_size &&
4768 map_info.value_size == map->def.value_size &&
4769 map_info.max_entries == map->def.max_entries &&
4770 map_info.map_flags == map->def.map_flags &&
4771 map_info.map_extra == map->map_extra);
4772}
4773
4774static int
4775bpf_object__reuse_map(struct bpf_map *map)
4776{
4777 char *cp, errmsg[STRERR_BUFSIZE];
4778 int err, pin_fd;
4779
4780 pin_fd = bpf_obj_get(map->pin_path);
4781 if (pin_fd < 0) {
4782 err = -errno;
4783 if (err == -ENOENT) {
4784 pr_debug("found no pinned map to reuse at '%s'\n",
4785 map->pin_path);
4786 return 0;
4787 }
4788
4789 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4790 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4791 map->pin_path, cp);
4792 return err;
4793 }
4794
4795 if (!map_is_reuse_compat(map, pin_fd)) {
4796 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4797 map->pin_path);
4798 close(pin_fd);
4799 return -EINVAL;
4800 }
4801
4802 err = bpf_map__reuse_fd(map, pin_fd);
4803 if (err) {
4804 close(pin_fd);
4805 return err;
4806 }
4807 map->pinned = true;
4808 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4809
4810 return 0;
4811}
4812
4813static int
4814bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4815{
4816 enum libbpf_map_type map_type = map->libbpf_type;
4817 char *cp, errmsg[STRERR_BUFSIZE];
4818 int err, zero = 0;
4819
4820 if (obj->gen_loader) {
4821 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4822 map->mmaped, map->def.value_size);
4823 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4824 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4825 return 0;
4826 }
4827 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4828 if (err) {
4829 err = -errno;
4830 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4831 pr_warn("Error setting initial map(%s) contents: %s\n",
4832 map->name, cp);
4833 return err;
4834 }
4835
4836 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4837 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4838 err = bpf_map_freeze(map->fd);
4839 if (err) {
4840 err = -errno;
4841 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4842 pr_warn("Error freezing map(%s) as read-only: %s\n",
4843 map->name, cp);
4844 return err;
4845 }
4846 }
4847 return 0;
4848}
4849
4850static void bpf_map__destroy(struct bpf_map *map);
4851
4852static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4853{
4854 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4855 struct bpf_map_def *def = &map->def;
4856 const char *map_name = NULL;
4857 __u32 max_entries;
4858 int err = 0;
4859
4860 if (kernel_supports(obj, FEAT_PROG_NAME))
4861 map_name = map->name;
4862 create_attr.map_ifindex = map->map_ifindex;
4863 create_attr.map_flags = def->map_flags;
4864 create_attr.numa_node = map->numa_node;
4865 create_attr.map_extra = map->map_extra;
4866
4867 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4868 int nr_cpus;
4869
4870 nr_cpus = libbpf_num_possible_cpus();
4871 if (nr_cpus < 0) {
4872 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4873 map->name, nr_cpus);
4874 return nr_cpus;
4875 }
4876 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4877 max_entries = nr_cpus;
4878 } else {
4879 max_entries = def->max_entries;
4880 }
4881
4882 if (bpf_map__is_struct_ops(map))
4883 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4884
4885 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4886 create_attr.btf_fd = btf__fd(obj->btf);
4887 create_attr.btf_key_type_id = map->btf_key_type_id;
4888 create_attr.btf_value_type_id = map->btf_value_type_id;
4889 }
4890
4891 if (bpf_map_type__is_map_in_map(def->type)) {
4892 if (map->inner_map) {
4893 err = bpf_object__create_map(obj, map->inner_map, true);
4894 if (err) {
4895 pr_warn("map '%s': failed to create inner map: %d\n",
4896 map->name, err);
4897 return err;
4898 }
4899 map->inner_map_fd = bpf_map__fd(map->inner_map);
4900 }
4901 if (map->inner_map_fd >= 0)
4902 create_attr.inner_map_fd = map->inner_map_fd;
4903 }
4904
4905 switch (def->type) {
4906 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4907 case BPF_MAP_TYPE_CGROUP_ARRAY:
4908 case BPF_MAP_TYPE_STACK_TRACE:
4909 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4910 case BPF_MAP_TYPE_HASH_OF_MAPS:
4911 case BPF_MAP_TYPE_DEVMAP:
4912 case BPF_MAP_TYPE_DEVMAP_HASH:
4913 case BPF_MAP_TYPE_CPUMAP:
4914 case BPF_MAP_TYPE_XSKMAP:
4915 case BPF_MAP_TYPE_SOCKMAP:
4916 case BPF_MAP_TYPE_SOCKHASH:
4917 case BPF_MAP_TYPE_QUEUE:
4918 case BPF_MAP_TYPE_STACK:
4919 case BPF_MAP_TYPE_RINGBUF:
4920 create_attr.btf_fd = 0;
4921 create_attr.btf_key_type_id = 0;
4922 create_attr.btf_value_type_id = 0;
4923 map->btf_key_type_id = 0;
4924 map->btf_value_type_id = 0;
4925 default:
4926 break;
4927 }
4928
4929 if (obj->gen_loader) {
4930 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
4931 def->key_size, def->value_size, max_entries,
4932 &create_attr, is_inner ? -1 : map - obj->maps);
4933 /* Pretend to have valid FD to pass various fd >= 0 checks.
4934 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4935 */
4936 map->fd = 0;
4937 } else {
4938 map->fd = bpf_map_create(def->type, map_name,
4939 def->key_size, def->value_size,
4940 max_entries, &create_attr);
4941 }
4942 if (map->fd < 0 && (create_attr.btf_key_type_id ||
4943 create_attr.btf_value_type_id)) {
4944 char *cp, errmsg[STRERR_BUFSIZE];
4945
4946 err = -errno;
4947 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4948 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4949 map->name, cp, err);
4950 create_attr.btf_fd = 0;
4951 create_attr.btf_key_type_id = 0;
4952 create_attr.btf_value_type_id = 0;
4953 map->btf_key_type_id = 0;
4954 map->btf_value_type_id = 0;
4955 map->fd = bpf_map_create(def->type, map_name,
4956 def->key_size, def->value_size,
4957 max_entries, &create_attr);
4958 }
4959
4960 err = map->fd < 0 ? -errno : 0;
4961
4962 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4963 if (obj->gen_loader)
4964 map->inner_map->fd = -1;
4965 bpf_map__destroy(map->inner_map);
4966 zfree(&map->inner_map);
4967 }
4968
4969 return err;
4970}
4971
4972static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
4973{
4974 const struct bpf_map *targ_map;
4975 unsigned int i;
4976 int fd, err = 0;
4977
4978 for (i = 0; i < map->init_slots_sz; i++) {
4979 if (!map->init_slots[i])
4980 continue;
4981
4982 targ_map = map->init_slots[i];
4983 fd = bpf_map__fd(targ_map);
4984
4985 if (obj->gen_loader) {
4986 bpf_gen__populate_outer_map(obj->gen_loader,
4987 map - obj->maps, i,
4988 targ_map - obj->maps);
4989 } else {
4990 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4991 }
4992 if (err) {
4993 err = -errno;
4994 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4995 map->name, i, targ_map->name, fd, err);
4996 return err;
4997 }
4998 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4999 map->name, i, targ_map->name, fd);
5000 }
5001
5002 zfree(&map->init_slots);
5003 map->init_slots_sz = 0;
5004
5005 return 0;
5006}
5007
5008static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5009{
5010 const struct bpf_program *targ_prog;
5011 unsigned int i;
5012 int fd, err;
5013
5014 if (obj->gen_loader)
5015 return -ENOTSUP;
5016
5017 for (i = 0; i < map->init_slots_sz; i++) {
5018 if (!map->init_slots[i])
5019 continue;
5020
5021 targ_prog = map->init_slots[i];
5022 fd = bpf_program__fd(targ_prog);
5023
5024 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5025 if (err) {
5026 err = -errno;
5027 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5028 map->name, i, targ_prog->name, fd, err);
5029 return err;
5030 }
5031 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5032 map->name, i, targ_prog->name, fd);
5033 }
5034
5035 zfree(&map->init_slots);
5036 map->init_slots_sz = 0;
5037
5038 return 0;
5039}
5040
5041static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5042{
5043 struct bpf_map *map;
5044 int i, err;
5045
5046 for (i = 0; i < obj->nr_maps; i++) {
5047 map = &obj->maps[i];
5048
5049 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5050 continue;
5051
5052 err = init_prog_array_slots(obj, map);
5053 if (err < 0) {
5054 zclose(map->fd);
5055 return err;
5056 }
5057 }
5058 return 0;
5059}
5060
5061static int
5062bpf_object__create_maps(struct bpf_object *obj)
5063{
5064 struct bpf_map *map;
5065 char *cp, errmsg[STRERR_BUFSIZE];
5066 unsigned int i, j;
5067 int err;
5068 bool retried;
5069
5070 for (i = 0; i < obj->nr_maps; i++) {
5071 map = &obj->maps[i];
5072
5073 /* To support old kernels, we skip creating global data maps
5074 * (.rodata, .data, .kconfig, etc); later on, during program
5075 * loading, if we detect that at least one of the to-be-loaded
5076 * programs is referencing any global data map, we'll error
5077 * out with program name and relocation index logged.
5078 * This approach allows to accommodate Clang emitting
5079 * unnecessary .rodata.str1.1 sections for string literals,
5080 * but also it allows to have CO-RE applications that use
5081 * global variables in some of BPF programs, but not others.
5082 * If those global variable-using programs are not loaded at
5083 * runtime due to bpf_program__set_autoload(prog, false),
5084 * bpf_object loading will succeed just fine even on old
5085 * kernels.
5086 */
5087 if (bpf_map__is_internal(map) &&
5088 !kernel_supports(obj, FEAT_GLOBAL_DATA)) {
5089 map->skipped = true;
5090 continue;
5091 }
5092
5093 retried = false;
5094retry:
5095 if (map->pin_path) {
5096 err = bpf_object__reuse_map(map);
5097 if (err) {
5098 pr_warn("map '%s': error reusing pinned map\n",
5099 map->name);
5100 goto err_out;
5101 }
5102 if (retried && map->fd < 0) {
5103 pr_warn("map '%s': cannot find pinned map\n",
5104 map->name);
5105 err = -ENOENT;
5106 goto err_out;
5107 }
5108 }
5109
5110 if (map->fd >= 0) {
5111 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5112 map->name, map->fd);
5113 } else {
5114 err = bpf_object__create_map(obj, map, false);
5115 if (err)
5116 goto err_out;
5117
5118 pr_debug("map '%s': created successfully, fd=%d\n",
5119 map->name, map->fd);
5120
5121 if (bpf_map__is_internal(map)) {
5122 err = bpf_object__populate_internal_map(obj, map);
5123 if (err < 0) {
5124 zclose(map->fd);
5125 goto err_out;
5126 }
5127 }
5128
5129 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5130 err = init_map_in_map_slots(obj, map);
5131 if (err < 0) {
5132 zclose(map->fd);
5133 goto err_out;
5134 }
5135 }
5136 }
5137
5138 if (map->pin_path && !map->pinned) {
5139 err = bpf_map__pin(map, NULL);
5140 if (err) {
5141 zclose(map->fd);
5142 if (!retried && err == -EEXIST) {
5143 retried = true;
5144 goto retry;
5145 }
5146 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5147 map->name, map->pin_path, err);
5148 goto err_out;
5149 }
5150 }
5151 }
5152
5153 return 0;
5154
5155err_out:
5156 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5157 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5158 pr_perm_msg(err);
5159 for (j = 0; j < i; j++)
5160 zclose(obj->maps[j].fd);
5161 return err;
5162}
5163
5164static bool bpf_core_is_flavor_sep(const char *s)
5165{
5166 /* check X___Y name pattern, where X and Y are not underscores */
5167 return s[0] != '_' && /* X */
5168 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5169 s[4] != '_'; /* Y */
5170}
5171
5172/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5173 * before last triple underscore. Struct name part after last triple
5174 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5175 */
5176size_t bpf_core_essential_name_len(const char *name)
5177{
5178 size_t n = strlen(name);
5179 int i;
5180
5181 for (i = n - 5; i >= 0; i--) {
5182 if (bpf_core_is_flavor_sep(name + i))
5183 return i + 1;
5184 }
5185 return n;
5186}
5187
5188static void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5189{
5190 free(cands->cands);
5191 free(cands);
5192}
5193
5194static int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5195 size_t local_essent_len,
5196 const struct btf *targ_btf,
5197 const char *targ_btf_name,
5198 int targ_start_id,
5199 struct bpf_core_cand_list *cands)
5200{
5201 struct bpf_core_cand *new_cands, *cand;
5202 const struct btf_type *t, *local_t;
5203 const char *targ_name, *local_name;
5204 size_t targ_essent_len;
5205 int n, i;
5206
5207 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5208 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5209
5210 n = btf__type_cnt(targ_btf);
5211 for (i = targ_start_id; i < n; i++) {
5212 t = btf__type_by_id(targ_btf, i);
5213 if (btf_kind(t) != btf_kind(local_t))
5214 continue;
5215
5216 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5217 if (str_is_empty(targ_name))
5218 continue;
5219
5220 targ_essent_len = bpf_core_essential_name_len(targ_name);
5221 if (targ_essent_len != local_essent_len)
5222 continue;
5223
5224 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5225 continue;
5226
5227 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5228 local_cand->id, btf_kind_str(local_t),
5229 local_name, i, btf_kind_str(t), targ_name,
5230 targ_btf_name);
5231 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5232 sizeof(*cands->cands));
5233 if (!new_cands)
5234 return -ENOMEM;
5235
5236 cand = &new_cands[cands->len];
5237 cand->btf = targ_btf;
5238 cand->id = i;
5239
5240 cands->cands = new_cands;
5241 cands->len++;
5242 }
5243 return 0;
5244}
5245
5246static int load_module_btfs(struct bpf_object *obj)
5247{
5248 struct bpf_btf_info info;
5249 struct module_btf *mod_btf;
5250 struct btf *btf;
5251 char name[64];
5252 __u32 id = 0, len;
5253 int err, fd;
5254
5255 if (obj->btf_modules_loaded)
5256 return 0;
5257
5258 if (obj->gen_loader)
5259 return 0;
5260
5261 /* don't do this again, even if we find no module BTFs */
5262 obj->btf_modules_loaded = true;
5263
5264 /* kernel too old to support module BTFs */
5265 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5266 return 0;
5267
5268 while (true) {
5269 err = bpf_btf_get_next_id(id, &id);
5270 if (err && errno == ENOENT)
5271 return 0;
5272 if (err) {
5273 err = -errno;
5274 pr_warn("failed to iterate BTF objects: %d\n", err);
5275 return err;
5276 }
5277
5278 fd = bpf_btf_get_fd_by_id(id);
5279 if (fd < 0) {
5280 if (errno == ENOENT)
5281 continue; /* expected race: BTF was unloaded */
5282 err = -errno;
5283 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5284 return err;
5285 }
5286
5287 len = sizeof(info);
5288 memset(&info, 0, sizeof(info));
5289 info.name = ptr_to_u64(name);
5290 info.name_len = sizeof(name);
5291
5292 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5293 if (err) {
5294 err = -errno;
5295 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5296 goto err_out;
5297 }
5298
5299 /* ignore non-module BTFs */
5300 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5301 close(fd);
5302 continue;
5303 }
5304
5305 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5306 err = libbpf_get_error(btf);
5307 if (err) {
5308 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5309 name, id, err);
5310 goto err_out;
5311 }
5312
5313 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5314 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5315 if (err)
5316 goto err_out;
5317
5318 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5319
5320 mod_btf->btf = btf;
5321 mod_btf->id = id;
5322 mod_btf->fd = fd;
5323 mod_btf->name = strdup(name);
5324 if (!mod_btf->name) {
5325 err = -ENOMEM;
5326 goto err_out;
5327 }
5328 continue;
5329
5330err_out:
5331 close(fd);
5332 return err;
5333 }
5334
5335 return 0;
5336}
5337
5338static struct bpf_core_cand_list *
5339bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5340{
5341 struct bpf_core_cand local_cand = {};
5342 struct bpf_core_cand_list *cands;
5343 const struct btf *main_btf;
5344 const struct btf_type *local_t;
5345 const char *local_name;
5346 size_t local_essent_len;
5347 int err, i;
5348
5349 local_cand.btf = local_btf;
5350 local_cand.id = local_type_id;
5351 local_t = btf__type_by_id(local_btf, local_type_id);
5352 if (!local_t)
5353 return ERR_PTR(-EINVAL);
5354
5355 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5356 if (str_is_empty(local_name))
5357 return ERR_PTR(-EINVAL);
5358 local_essent_len = bpf_core_essential_name_len(local_name);
5359
5360 cands = calloc(1, sizeof(*cands));
5361 if (!cands)
5362 return ERR_PTR(-ENOMEM);
5363
5364 /* Attempt to find target candidates in vmlinux BTF first */
5365 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5366 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5367 if (err)
5368 goto err_out;
5369
5370 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5371 if (cands->len)
5372 return cands;
5373
5374 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5375 if (obj->btf_vmlinux_override)
5376 return cands;
5377
5378 /* now look through module BTFs, trying to still find candidates */
5379 err = load_module_btfs(obj);
5380 if (err)
5381 goto err_out;
5382
5383 for (i = 0; i < obj->btf_module_cnt; i++) {
5384 err = bpf_core_add_cands(&local_cand, local_essent_len,
5385 obj->btf_modules[i].btf,
5386 obj->btf_modules[i].name,
5387 btf__type_cnt(obj->btf_vmlinux),
5388 cands);
5389 if (err)
5390 goto err_out;
5391 }
5392
5393 return cands;
5394err_out:
5395 bpf_core_free_cands(cands);
5396 return ERR_PTR(err);
5397}
5398
5399/* Check local and target types for compatibility. This check is used for
5400 * type-based CO-RE relocations and follow slightly different rules than
5401 * field-based relocations. This function assumes that root types were already
5402 * checked for name match. Beyond that initial root-level name check, names
5403 * are completely ignored. Compatibility rules are as follows:
5404 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5405 * kind should match for local and target types (i.e., STRUCT is not
5406 * compatible with UNION);
5407 * - for ENUMs, the size is ignored;
5408 * - for INT, size and signedness are ignored;
5409 * - for ARRAY, dimensionality is ignored, element types are checked for
5410 * compatibility recursively;
5411 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5412 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5413 * - FUNC_PROTOs are compatible if they have compatible signature: same
5414 * number of input args and compatible return and argument types.
5415 * These rules are not set in stone and probably will be adjusted as we get
5416 * more experience with using BPF CO-RE relocations.
5417 */
5418int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5419 const struct btf *targ_btf, __u32 targ_id)
5420{
5421 const struct btf_type *local_type, *targ_type;
5422 int depth = 32; /* max recursion depth */
5423
5424 /* caller made sure that names match (ignoring flavor suffix) */
5425 local_type = btf__type_by_id(local_btf, local_id);
5426 targ_type = btf__type_by_id(targ_btf, targ_id);
5427 if (btf_kind(local_type) != btf_kind(targ_type))
5428 return 0;
5429
5430recur:
5431 depth--;
5432 if (depth < 0)
5433 return -EINVAL;
5434
5435 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5436 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5437 if (!local_type || !targ_type)
5438 return -EINVAL;
5439
5440 if (btf_kind(local_type) != btf_kind(targ_type))
5441 return 0;
5442
5443 switch (btf_kind(local_type)) {
5444 case BTF_KIND_UNKN:
5445 case BTF_KIND_STRUCT:
5446 case BTF_KIND_UNION:
5447 case BTF_KIND_ENUM:
5448 case BTF_KIND_FWD:
5449 return 1;
5450 case BTF_KIND_INT:
5451 /* just reject deprecated bitfield-like integers; all other
5452 * integers are by default compatible between each other
5453 */
5454 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5455 case BTF_KIND_PTR:
5456 local_id = local_type->type;
5457 targ_id = targ_type->type;
5458 goto recur;
5459 case BTF_KIND_ARRAY:
5460 local_id = btf_array(local_type)->type;
5461 targ_id = btf_array(targ_type)->type;
5462 goto recur;
5463 case BTF_KIND_FUNC_PROTO: {
5464 struct btf_param *local_p = btf_params(local_type);
5465 struct btf_param *targ_p = btf_params(targ_type);
5466 __u16 local_vlen = btf_vlen(local_type);
5467 __u16 targ_vlen = btf_vlen(targ_type);
5468 int i, err;
5469
5470 if (local_vlen != targ_vlen)
5471 return 0;
5472
5473 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5474 skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5475 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5476 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5477 if (err <= 0)
5478 return err;
5479 }
5480
5481 /* tail recurse for return type check */
5482 skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5483 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5484 goto recur;
5485 }
5486 default:
5487 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5488 btf_kind_str(local_type), local_id, targ_id);
5489 return 0;
5490 }
5491}
5492
5493static size_t bpf_core_hash_fn(const void *key, void *ctx)
5494{
5495 return (size_t)key;
5496}
5497
5498static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5499{
5500 return k1 == k2;
5501}
5502
5503static void *u32_as_hash_key(__u32 x)
5504{
5505 return (void *)(uintptr_t)x;
5506}
5507
5508static int record_relo_core(struct bpf_program *prog,
5509 const struct bpf_core_relo *core_relo, int insn_idx)
5510{
5511 struct reloc_desc *relos, *relo;
5512
5513 relos = libbpf_reallocarray(prog->reloc_desc,
5514 prog->nr_reloc + 1, sizeof(*relos));
5515 if (!relos)
5516 return -ENOMEM;
5517 relo = &relos[prog->nr_reloc];
5518 relo->type = RELO_CORE;
5519 relo->insn_idx = insn_idx;
5520 relo->core_relo = core_relo;
5521 prog->reloc_desc = relos;
5522 prog->nr_reloc++;
5523 return 0;
5524}
5525
5526static int bpf_core_apply_relo(struct bpf_program *prog,
5527 const struct bpf_core_relo *relo,
5528 int relo_idx,
5529 const struct btf *local_btf,
5530 struct hashmap *cand_cache)
5531{
5532 struct bpf_core_spec specs_scratch[3] = {};
5533 const void *type_key = u32_as_hash_key(relo->type_id);
5534 struct bpf_core_cand_list *cands = NULL;
5535 const char *prog_name = prog->name;
5536 const struct btf_type *local_type;
5537 const char *local_name;
5538 __u32 local_id = relo->type_id;
5539 struct bpf_insn *insn;
5540 int insn_idx, err;
5541
5542 if (relo->insn_off % BPF_INSN_SZ)
5543 return -EINVAL;
5544 insn_idx = relo->insn_off / BPF_INSN_SZ;
5545 /* adjust insn_idx from section frame of reference to the local
5546 * program's frame of reference; (sub-)program code is not yet
5547 * relocated, so it's enough to just subtract in-section offset
5548 */
5549 insn_idx = insn_idx - prog->sec_insn_off;
5550 if (insn_idx >= prog->insns_cnt)
5551 return -EINVAL;
5552 insn = &prog->insns[insn_idx];
5553
5554 local_type = btf__type_by_id(local_btf, local_id);
5555 if (!local_type)
5556 return -EINVAL;
5557
5558 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5559 if (!local_name)
5560 return -EINVAL;
5561
5562 if (prog->obj->gen_loader) {
5563 const char *spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5564
5565 pr_debug("record_relo_core: prog %td insn[%d] %s %s %s final insn_idx %d\n",
5566 prog - prog->obj->programs, relo->insn_off / 8,
5567 btf_kind_str(local_type), local_name, spec_str, insn_idx);
5568 return record_relo_core(prog, relo, insn_idx);
5569 }
5570
5571 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5572 !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5573 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5574 if (IS_ERR(cands)) {
5575 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5576 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5577 local_name, PTR_ERR(cands));
5578 return PTR_ERR(cands);
5579 }
5580 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5581 if (err) {
5582 bpf_core_free_cands(cands);
5583 return err;
5584 }
5585 }
5586
5587 return bpf_core_apply_relo_insn(prog_name, insn, insn_idx, relo,
5588 relo_idx, local_btf, cands, specs_scratch);
5589}
5590
5591static int
5592bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5593{
5594 const struct btf_ext_info_sec *sec;
5595 const struct bpf_core_relo *rec;
5596 const struct btf_ext_info *seg;
5597 struct hashmap_entry *entry;
5598 struct hashmap *cand_cache = NULL;
5599 struct bpf_program *prog;
5600 const char *sec_name;
5601 int i, err = 0, insn_idx, sec_idx;
5602
5603 if (obj->btf_ext->core_relo_info.len == 0)
5604 return 0;
5605
5606 if (targ_btf_path) {
5607 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5608 err = libbpf_get_error(obj->btf_vmlinux_override);
5609 if (err) {
5610 pr_warn("failed to parse target BTF: %d\n", err);
5611 return err;
5612 }
5613 }
5614
5615 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5616 if (IS_ERR(cand_cache)) {
5617 err = PTR_ERR(cand_cache);
5618 goto out;
5619 }
5620
5621 seg = &obj->btf_ext->core_relo_info;
5622 for_each_btf_ext_sec(seg, sec) {
5623 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5624 if (str_is_empty(sec_name)) {
5625 err = -EINVAL;
5626 goto out;
5627 }
5628 /* bpf_object's ELF is gone by now so it's not easy to find
5629 * section index by section name, but we can find *any*
5630 * bpf_program within desired section name and use it's
5631 * prog->sec_idx to do a proper search by section index and
5632 * instruction offset
5633 */
5634 prog = NULL;
5635 for (i = 0; i < obj->nr_programs; i++) {
5636 prog = &obj->programs[i];
5637 if (strcmp(prog->sec_name, sec_name) == 0)
5638 break;
5639 }
5640 if (!prog) {
5641 pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5642 return -ENOENT;
5643 }
5644 sec_idx = prog->sec_idx;
5645
5646 pr_debug("sec '%s': found %d CO-RE relocations\n",
5647 sec_name, sec->num_info);
5648
5649 for_each_btf_ext_rec(seg, sec, i, rec) {
5650 insn_idx = rec->insn_off / BPF_INSN_SZ;
5651 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5652 if (!prog) {
5653 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5654 sec_name, insn_idx, i);
5655 err = -EINVAL;
5656 goto out;
5657 }
5658 /* no need to apply CO-RE relocation if the program is
5659 * not going to be loaded
5660 */
5661 if (!prog->load)
5662 continue;
5663
5664 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
5665 if (err) {
5666 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5667 prog->name, i, err);
5668 goto out;
5669 }
5670 }
5671 }
5672
5673out:
5674 /* obj->btf_vmlinux and module BTFs are freed after object load */
5675 btf__free(obj->btf_vmlinux_override);
5676 obj->btf_vmlinux_override = NULL;
5677
5678 if (!IS_ERR_OR_NULL(cand_cache)) {
5679 hashmap__for_each_entry(cand_cache, entry, i) {
5680 bpf_core_free_cands(entry->value);
5681 }
5682 hashmap__free(cand_cache);
5683 }
5684 return err;
5685}
5686
5687/* Relocate data references within program code:
5688 * - map references;
5689 * - global variable references;
5690 * - extern references.
5691 */
5692static int
5693bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5694{
5695 int i;
5696
5697 for (i = 0; i < prog->nr_reloc; i++) {
5698 struct reloc_desc *relo = &prog->reloc_desc[i];
5699 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5700 struct extern_desc *ext;
5701
5702 switch (relo->type) {
5703 case RELO_LD64:
5704 if (obj->gen_loader) {
5705 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5706 insn[0].imm = relo->map_idx;
5707 } else {
5708 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5709 insn[0].imm = obj->maps[relo->map_idx].fd;
5710 }
5711 break;
5712 case RELO_DATA:
5713 insn[1].imm = insn[0].imm + relo->sym_off;
5714 if (obj->gen_loader) {
5715 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5716 insn[0].imm = relo->map_idx;
5717 } else {
5718 const struct bpf_map *map = &obj->maps[relo->map_idx];
5719
5720 if (map->skipped) {
5721 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n",
5722 prog->name, i);
5723 return -ENOTSUP;
5724 }
5725 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5726 insn[0].imm = obj->maps[relo->map_idx].fd;
5727 }
5728 break;
5729 case RELO_EXTERN_VAR:
5730 ext = &obj->externs[relo->sym_off];
5731 if (ext->type == EXT_KCFG) {
5732 if (obj->gen_loader) {
5733 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5734 insn[0].imm = obj->kconfig_map_idx;
5735 } else {
5736 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5737 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5738 }
5739 insn[1].imm = ext->kcfg.data_off;
5740 } else /* EXT_KSYM */ {
5741 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5742 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5743 insn[0].imm = ext->ksym.kernel_btf_id;
5744 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5745 } else { /* typeless ksyms or unresolved typed ksyms */
5746 insn[0].imm = (__u32)ext->ksym.addr;
5747 insn[1].imm = ext->ksym.addr >> 32;
5748 }
5749 }
5750 break;
5751 case RELO_EXTERN_FUNC:
5752 ext = &obj->externs[relo->sym_off];
5753 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5754 if (ext->is_set) {
5755 insn[0].imm = ext->ksym.kernel_btf_id;
5756 insn[0].off = ext->ksym.btf_fd_idx;
5757 } else { /* unresolved weak kfunc */
5758 insn[0].imm = 0;
5759 insn[0].off = 0;
5760 }
5761 break;
5762 case RELO_SUBPROG_ADDR:
5763 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5764 pr_warn("prog '%s': relo #%d: bad insn\n",
5765 prog->name, i);
5766 return -EINVAL;
5767 }
5768 /* handled already */
5769 break;
5770 case RELO_CALL:
5771 /* handled already */
5772 break;
5773 case RELO_CORE:
5774 /* will be handled by bpf_program_record_relos() */
5775 break;
5776 default:
5777 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5778 prog->name, i, relo->type);
5779 return -EINVAL;
5780 }
5781 }
5782
5783 return 0;
5784}
5785
5786static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5787 const struct bpf_program *prog,
5788 const struct btf_ext_info *ext_info,
5789 void **prog_info, __u32 *prog_rec_cnt,
5790 __u32 *prog_rec_sz)
5791{
5792 void *copy_start = NULL, *copy_end = NULL;
5793 void *rec, *rec_end, *new_prog_info;
5794 const struct btf_ext_info_sec *sec;
5795 size_t old_sz, new_sz;
5796 const char *sec_name;
5797 int i, off_adj;
5798
5799 for_each_btf_ext_sec(ext_info, sec) {
5800 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5801 if (!sec_name)
5802 return -EINVAL;
5803 if (strcmp(sec_name, prog->sec_name) != 0)
5804 continue;
5805
5806 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5807 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5808
5809 if (insn_off < prog->sec_insn_off)
5810 continue;
5811 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5812 break;
5813
5814 if (!copy_start)
5815 copy_start = rec;
5816 copy_end = rec + ext_info->rec_size;
5817 }
5818
5819 if (!copy_start)
5820 return -ENOENT;
5821
5822 /* append func/line info of a given (sub-)program to the main
5823 * program func/line info
5824 */
5825 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5826 new_sz = old_sz + (copy_end - copy_start);
5827 new_prog_info = realloc(*prog_info, new_sz);
5828 if (!new_prog_info)
5829 return -ENOMEM;
5830 *prog_info = new_prog_info;
5831 *prog_rec_cnt = new_sz / ext_info->rec_size;
5832 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5833
5834 /* Kernel instruction offsets are in units of 8-byte
5835 * instructions, while .BTF.ext instruction offsets generated
5836 * by Clang are in units of bytes. So convert Clang offsets
5837 * into kernel offsets and adjust offset according to program
5838 * relocated position.
5839 */
5840 off_adj = prog->sub_insn_off - prog->sec_insn_off;
5841 rec = new_prog_info + old_sz;
5842 rec_end = new_prog_info + new_sz;
5843 for (; rec < rec_end; rec += ext_info->rec_size) {
5844 __u32 *insn_off = rec;
5845
5846 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5847 }
5848 *prog_rec_sz = ext_info->rec_size;
5849 return 0;
5850 }
5851
5852 return -ENOENT;
5853}
5854
5855static int
5856reloc_prog_func_and_line_info(const struct bpf_object *obj,
5857 struct bpf_program *main_prog,
5858 const struct bpf_program *prog)
5859{
5860 int err;
5861
5862 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5863 * supprot func/line info
5864 */
5865 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5866 return 0;
5867
5868 /* only attempt func info relocation if main program's func_info
5869 * relocation was successful
5870 */
5871 if (main_prog != prog && !main_prog->func_info)
5872 goto line_info;
5873
5874 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5875 &main_prog->func_info,
5876 &main_prog->func_info_cnt,
5877 &main_prog->func_info_rec_size);
5878 if (err) {
5879 if (err != -ENOENT) {
5880 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5881 prog->name, err);
5882 return err;
5883 }
5884 if (main_prog->func_info) {
5885 /*
5886 * Some info has already been found but has problem
5887 * in the last btf_ext reloc. Must have to error out.
5888 */
5889 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5890 return err;
5891 }
5892 /* Have problem loading the very first info. Ignore the rest. */
5893 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5894 prog->name);
5895 }
5896
5897line_info:
5898 /* don't relocate line info if main program's relocation failed */
5899 if (main_prog != prog && !main_prog->line_info)
5900 return 0;
5901
5902 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5903 &main_prog->line_info,
5904 &main_prog->line_info_cnt,
5905 &main_prog->line_info_rec_size);
5906 if (err) {
5907 if (err != -ENOENT) {
5908 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5909 prog->name, err);
5910 return err;
5911 }
5912 if (main_prog->line_info) {
5913 /*
5914 * Some info has already been found but has problem
5915 * in the last btf_ext reloc. Must have to error out.
5916 */
5917 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5918 return err;
5919 }
5920 /* Have problem loading the very first info. Ignore the rest. */
5921 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5922 prog->name);
5923 }
5924 return 0;
5925}
5926
5927static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5928{
5929 size_t insn_idx = *(const size_t *)key;
5930 const struct reloc_desc *relo = elem;
5931
5932 if (insn_idx == relo->insn_idx)
5933 return 0;
5934 return insn_idx < relo->insn_idx ? -1 : 1;
5935}
5936
5937static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
5938{
5939 if (!prog->nr_reloc)
5940 return NULL;
5941 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
5942 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
5943}
5944
5945static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
5946{
5947 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
5948 struct reloc_desc *relos;
5949 int i;
5950
5951 if (main_prog == subprog)
5952 return 0;
5953 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
5954 if (!relos)
5955 return -ENOMEM;
5956 if (subprog->nr_reloc)
5957 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
5958 sizeof(*relos) * subprog->nr_reloc);
5959
5960 for (i = main_prog->nr_reloc; i < new_cnt; i++)
5961 relos[i].insn_idx += subprog->sub_insn_off;
5962 /* After insn_idx adjustment the 'relos' array is still sorted
5963 * by insn_idx and doesn't break bsearch.
5964 */
5965 main_prog->reloc_desc = relos;
5966 main_prog->nr_reloc = new_cnt;
5967 return 0;
5968}
5969
5970static int
5971bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
5972 struct bpf_program *prog)
5973{
5974 size_t sub_insn_idx, insn_idx, new_cnt;
5975 struct bpf_program *subprog;
5976 struct bpf_insn *insns, *insn;
5977 struct reloc_desc *relo;
5978 int err;
5979
5980 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
5981 if (err)
5982 return err;
5983
5984 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
5985 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
5986 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
5987 continue;
5988
5989 relo = find_prog_insn_relo(prog, insn_idx);
5990 if (relo && relo->type == RELO_EXTERN_FUNC)
5991 /* kfunc relocations will be handled later
5992 * in bpf_object__relocate_data()
5993 */
5994 continue;
5995 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
5996 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
5997 prog->name, insn_idx, relo->type);
5998 return -LIBBPF_ERRNO__RELOC;
5999 }
6000 if (relo) {
6001 /* sub-program instruction index is a combination of
6002 * an offset of a symbol pointed to by relocation and
6003 * call instruction's imm field; for global functions,
6004 * call always has imm = -1, but for static functions
6005 * relocation is against STT_SECTION and insn->imm
6006 * points to a start of a static function
6007 *
6008 * for subprog addr relocation, the relo->sym_off + insn->imm is
6009 * the byte offset in the corresponding section.
6010 */
6011 if (relo->type == RELO_CALL)
6012 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6013 else
6014 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6015 } else if (insn_is_pseudo_func(insn)) {
6016 /*
6017 * RELO_SUBPROG_ADDR relo is always emitted even if both
6018 * functions are in the same section, so it shouldn't reach here.
6019 */
6020 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6021 prog->name, insn_idx);
6022 return -LIBBPF_ERRNO__RELOC;
6023 } else {
6024 /* if subprogram call is to a static function within
6025 * the same ELF section, there won't be any relocation
6026 * emitted, but it also means there is no additional
6027 * offset necessary, insns->imm is relative to
6028 * instruction's original position within the section
6029 */
6030 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6031 }
6032
6033 /* we enforce that sub-programs should be in .text section */
6034 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6035 if (!subprog) {
6036 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6037 prog->name);
6038 return -LIBBPF_ERRNO__RELOC;
6039 }
6040
6041 /* if it's the first call instruction calling into this
6042 * subprogram (meaning this subprog hasn't been processed
6043 * yet) within the context of current main program:
6044 * - append it at the end of main program's instructions blog;
6045 * - process is recursively, while current program is put on hold;
6046 * - if that subprogram calls some other not yet processes
6047 * subprogram, same thing will happen recursively until
6048 * there are no more unprocesses subprograms left to append
6049 * and relocate.
6050 */
6051 if (subprog->sub_insn_off == 0) {
6052 subprog->sub_insn_off = main_prog->insns_cnt;
6053
6054 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6055 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6056 if (!insns) {
6057 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6058 return -ENOMEM;
6059 }
6060 main_prog->insns = insns;
6061 main_prog->insns_cnt = new_cnt;
6062
6063 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6064 subprog->insns_cnt * sizeof(*insns));
6065
6066 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6067 main_prog->name, subprog->insns_cnt, subprog->name);
6068
6069 /* The subprog insns are now appended. Append its relos too. */
6070 err = append_subprog_relos(main_prog, subprog);
6071 if (err)
6072 return err;
6073 err = bpf_object__reloc_code(obj, main_prog, subprog);
6074 if (err)
6075 return err;
6076 }
6077
6078 /* main_prog->insns memory could have been re-allocated, so
6079 * calculate pointer again
6080 */
6081 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6082 /* calculate correct instruction position within current main
6083 * prog; each main prog can have a different set of
6084 * subprograms appended (potentially in different order as
6085 * well), so position of any subprog can be different for
6086 * different main programs */
6087 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6088
6089 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6090 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6091 }
6092
6093 return 0;
6094}
6095
6096/*
6097 * Relocate sub-program calls.
6098 *
6099 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6100 * main prog) is processed separately. For each subprog (non-entry functions,
6101 * that can be called from either entry progs or other subprogs) gets their
6102 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6103 * hasn't been yet appended and relocated within current main prog. Once its
6104 * relocated, sub_insn_off will point at the position within current main prog
6105 * where given subprog was appended. This will further be used to relocate all
6106 * the call instructions jumping into this subprog.
6107 *
6108 * We start with main program and process all call instructions. If the call
6109 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6110 * is zero), subprog instructions are appended at the end of main program's
6111 * instruction array. Then main program is "put on hold" while we recursively
6112 * process newly appended subprogram. If that subprogram calls into another
6113 * subprogram that hasn't been appended, new subprogram is appended again to
6114 * the *main* prog's instructions (subprog's instructions are always left
6115 * untouched, as they need to be in unmodified state for subsequent main progs
6116 * and subprog instructions are always sent only as part of a main prog) and
6117 * the process continues recursively. Once all the subprogs called from a main
6118 * prog or any of its subprogs are appended (and relocated), all their
6119 * positions within finalized instructions array are known, so it's easy to
6120 * rewrite call instructions with correct relative offsets, corresponding to
6121 * desired target subprog.
6122 *
6123 * Its important to realize that some subprogs might not be called from some
6124 * main prog and any of its called/used subprogs. Those will keep their
6125 * subprog->sub_insn_off as zero at all times and won't be appended to current
6126 * main prog and won't be relocated within the context of current main prog.
6127 * They might still be used from other main progs later.
6128 *
6129 * Visually this process can be shown as below. Suppose we have two main
6130 * programs mainA and mainB and BPF object contains three subprogs: subA,
6131 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6132 * subC both call subB:
6133 *
6134 * +--------+ +-------+
6135 * | v v |
6136 * +--+---+ +--+-+-+ +---+--+
6137 * | subA | | subB | | subC |
6138 * +--+---+ +------+ +---+--+
6139 * ^ ^
6140 * | |
6141 * +---+-------+ +------+----+
6142 * | mainA | | mainB |
6143 * +-----------+ +-----------+
6144 *
6145 * We'll start relocating mainA, will find subA, append it and start
6146 * processing sub A recursively:
6147 *
6148 * +-----------+------+
6149 * | mainA | subA |
6150 * +-----------+------+
6151 *
6152 * At this point we notice that subB is used from subA, so we append it and
6153 * relocate (there are no further subcalls from subB):
6154 *
6155 * +-----------+------+------+
6156 * | mainA | subA | subB |
6157 * +-----------+------+------+
6158 *
6159 * At this point, we relocate subA calls, then go one level up and finish with
6160 * relocatin mainA calls. mainA is done.
6161 *
6162 * For mainB process is similar but results in different order. We start with
6163 * mainB and skip subA and subB, as mainB never calls them (at least
6164 * directly), but we see subC is needed, so we append and start processing it:
6165 *
6166 * +-----------+------+
6167 * | mainB | subC |
6168 * +-----------+------+
6169 * Now we see subC needs subB, so we go back to it, append and relocate it:
6170 *
6171 * +-----------+------+------+
6172 * | mainB | subC | subB |
6173 * +-----------+------+------+
6174 *
6175 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6176 */
6177static int
6178bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6179{
6180 struct bpf_program *subprog;
6181 int i, err;
6182
6183 /* mark all subprogs as not relocated (yet) within the context of
6184 * current main program
6185 */
6186 for (i = 0; i < obj->nr_programs; i++) {
6187 subprog = &obj->programs[i];
6188 if (!prog_is_subprog(obj, subprog))
6189 continue;
6190
6191 subprog->sub_insn_off = 0;
6192 }
6193
6194 err = bpf_object__reloc_code(obj, prog, prog);
6195 if (err)
6196 return err;
6197
6198
6199 return 0;
6200}
6201
6202static void
6203bpf_object__free_relocs(struct bpf_object *obj)
6204{
6205 struct bpf_program *prog;
6206 int i;
6207
6208 /* free up relocation descriptors */
6209 for (i = 0; i < obj->nr_programs; i++) {
6210 prog = &obj->programs[i];
6211 zfree(&prog->reloc_desc);
6212 prog->nr_reloc = 0;
6213 }
6214}
6215
6216static int cmp_relocs(const void *_a, const void *_b)
6217{
6218 const struct reloc_desc *a = _a;
6219 const struct reloc_desc *b = _b;
6220
6221 if (a->insn_idx != b->insn_idx)
6222 return a->insn_idx < b->insn_idx ? -1 : 1;
6223
6224 /* no two relocations should have the same insn_idx, but ... */
6225 if (a->type != b->type)
6226 return a->type < b->type ? -1 : 1;
6227
6228 return 0;
6229}
6230
6231static void bpf_object__sort_relos(struct bpf_object *obj)
6232{
6233 int i;
6234
6235 for (i = 0; i < obj->nr_programs; i++) {
6236 struct bpf_program *p = &obj->programs[i];
6237
6238 if (!p->nr_reloc)
6239 continue;
6240
6241 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6242 }
6243}
6244
6245static int
6246bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6247{
6248 struct bpf_program *prog;
6249 size_t i, j;
6250 int err;
6251
6252 if (obj->btf_ext) {
6253 err = bpf_object__relocate_core(obj, targ_btf_path);
6254 if (err) {
6255 pr_warn("failed to perform CO-RE relocations: %d\n",
6256 err);
6257 return err;
6258 }
6259 if (obj->gen_loader)
6260 bpf_object__sort_relos(obj);
6261 }
6262
6263 /* Before relocating calls pre-process relocations and mark
6264 * few ld_imm64 instructions that points to subprogs.
6265 * Otherwise bpf_object__reloc_code() later would have to consider
6266 * all ld_imm64 insns as relocation candidates. That would
6267 * reduce relocation speed, since amount of find_prog_insn_relo()
6268 * would increase and most of them will fail to find a relo.
6269 */
6270 for (i = 0; i < obj->nr_programs; i++) {
6271 prog = &obj->programs[i];
6272 for (j = 0; j < prog->nr_reloc; j++) {
6273 struct reloc_desc *relo = &prog->reloc_desc[j];
6274 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6275
6276 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6277 if (relo->type == RELO_SUBPROG_ADDR)
6278 insn[0].src_reg = BPF_PSEUDO_FUNC;
6279 }
6280 }
6281
6282 /* relocate subprogram calls and append used subprograms to main
6283 * programs; each copy of subprogram code needs to be relocated
6284 * differently for each main program, because its code location might
6285 * have changed.
6286 * Append subprog relos to main programs to allow data relos to be
6287 * processed after text is completely relocated.
6288 */
6289 for (i = 0; i < obj->nr_programs; i++) {
6290 prog = &obj->programs[i];
6291 /* sub-program's sub-calls are relocated within the context of
6292 * its main program only
6293 */
6294 if (prog_is_subprog(obj, prog))
6295 continue;
6296 if (!prog->load)
6297 continue;
6298
6299 err = bpf_object__relocate_calls(obj, prog);
6300 if (err) {
6301 pr_warn("prog '%s': failed to relocate calls: %d\n",
6302 prog->name, err);
6303 return err;
6304 }
6305 }
6306 /* Process data relos for main programs */
6307 for (i = 0; i < obj->nr_programs; i++) {
6308 prog = &obj->programs[i];
6309 if (prog_is_subprog(obj, prog))
6310 continue;
6311 if (!prog->load)
6312 continue;
6313 err = bpf_object__relocate_data(obj, prog);
6314 if (err) {
6315 pr_warn("prog '%s': failed to relocate data references: %d\n",
6316 prog->name, err);
6317 return err;
6318 }
6319 }
6320 if (!obj->gen_loader)
6321 bpf_object__free_relocs(obj);
6322 return 0;
6323}
6324
6325static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6326 Elf64_Shdr *shdr, Elf_Data *data);
6327
6328static int bpf_object__collect_map_relos(struct bpf_object *obj,
6329 Elf64_Shdr *shdr, Elf_Data *data)
6330{
6331 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6332 int i, j, nrels, new_sz;
6333 const struct btf_var_secinfo *vi = NULL;
6334 const struct btf_type *sec, *var, *def;
6335 struct bpf_map *map = NULL, *targ_map = NULL;
6336 struct bpf_program *targ_prog = NULL;
6337 bool is_prog_array, is_map_in_map;
6338 const struct btf_member *member;
6339 const char *name, *mname, *type;
6340 unsigned int moff;
6341 Elf64_Sym *sym;
6342 Elf64_Rel *rel;
6343 void *tmp;
6344
6345 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6346 return -EINVAL;
6347 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6348 if (!sec)
6349 return -EINVAL;
6350
6351 nrels = shdr->sh_size / shdr->sh_entsize;
6352 for (i = 0; i < nrels; i++) {
6353 rel = elf_rel_by_idx(data, i);
6354 if (!rel) {
6355 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6356 return -LIBBPF_ERRNO__FORMAT;
6357 }
6358
6359 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6360 if (!sym) {
6361 pr_warn(".maps relo #%d: symbol %zx not found\n",
6362 i, (size_t)ELF64_R_SYM(rel->r_info));
6363 return -LIBBPF_ERRNO__FORMAT;
6364 }
6365 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6366
6367 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6368 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6369 (size_t)rel->r_offset, sym->st_name, name);
6370
6371 for (j = 0; j < obj->nr_maps; j++) {
6372 map = &obj->maps[j];
6373 if (map->sec_idx != obj->efile.btf_maps_shndx)
6374 continue;
6375
6376 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6377 if (vi->offset <= rel->r_offset &&
6378 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6379 break;
6380 }
6381 if (j == obj->nr_maps) {
6382 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6383 i, name, (size_t)rel->r_offset);
6384 return -EINVAL;
6385 }
6386
6387 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6388 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6389 type = is_map_in_map ? "map" : "prog";
6390 if (is_map_in_map) {
6391 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6392 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6393 i, name);
6394 return -LIBBPF_ERRNO__RELOC;
6395 }
6396 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6397 map->def.key_size != sizeof(int)) {
6398 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6399 i, map->name, sizeof(int));
6400 return -EINVAL;
6401 }
6402 targ_map = bpf_object__find_map_by_name(obj, name);
6403 if (!targ_map) {
6404 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6405 i, name);
6406 return -ESRCH;
6407 }
6408 } else if (is_prog_array) {
6409 targ_prog = bpf_object__find_program_by_name(obj, name);
6410 if (!targ_prog) {
6411 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6412 i, name);
6413 return -ESRCH;
6414 }
6415 if (targ_prog->sec_idx != sym->st_shndx ||
6416 targ_prog->sec_insn_off * 8 != sym->st_value ||
6417 prog_is_subprog(obj, targ_prog)) {
6418 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6419 i, name);
6420 return -LIBBPF_ERRNO__RELOC;
6421 }
6422 } else {
6423 return -EINVAL;
6424 }
6425
6426 var = btf__type_by_id(obj->btf, vi->type);
6427 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6428 if (btf_vlen(def) == 0)
6429 return -EINVAL;
6430 member = btf_members(def) + btf_vlen(def) - 1;
6431 mname = btf__name_by_offset(obj->btf, member->name_off);
6432 if (strcmp(mname, "values"))
6433 return -EINVAL;
6434
6435 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6436 if (rel->r_offset - vi->offset < moff)
6437 return -EINVAL;
6438
6439 moff = rel->r_offset - vi->offset - moff;
6440 /* here we use BPF pointer size, which is always 64 bit, as we
6441 * are parsing ELF that was built for BPF target
6442 */
6443 if (moff % bpf_ptr_sz)
6444 return -EINVAL;
6445 moff /= bpf_ptr_sz;
6446 if (moff >= map->init_slots_sz) {
6447 new_sz = moff + 1;
6448 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6449 if (!tmp)
6450 return -ENOMEM;
6451 map->init_slots = tmp;
6452 memset(map->init_slots + map->init_slots_sz, 0,
6453 (new_sz - map->init_slots_sz) * host_ptr_sz);
6454 map->init_slots_sz = new_sz;
6455 }
6456 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6457
6458 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6459 i, map->name, moff, type, name);
6460 }
6461
6462 return 0;
6463}
6464
6465static int bpf_object__collect_relos(struct bpf_object *obj)
6466{
6467 int i, err;
6468
6469 for (i = 0; i < obj->efile.sec_cnt; i++) {
6470 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6471 Elf64_Shdr *shdr;
6472 Elf_Data *data;
6473 int idx;
6474
6475 if (sec_desc->sec_type != SEC_RELO)
6476 continue;
6477
6478 shdr = sec_desc->shdr;
6479 data = sec_desc->data;
6480 idx = shdr->sh_info;
6481
6482 if (shdr->sh_type != SHT_REL) {
6483 pr_warn("internal error at %d\n", __LINE__);
6484 return -LIBBPF_ERRNO__INTERNAL;
6485 }
6486
6487 if (idx == obj->efile.st_ops_shndx)
6488 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6489 else if (idx == obj->efile.btf_maps_shndx)
6490 err = bpf_object__collect_map_relos(obj, shdr, data);
6491 else
6492 err = bpf_object__collect_prog_relos(obj, shdr, data);
6493 if (err)
6494 return err;
6495 }
6496
6497 bpf_object__sort_relos(obj);
6498 return 0;
6499}
6500
6501static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6502{
6503 if (BPF_CLASS(insn->code) == BPF_JMP &&
6504 BPF_OP(insn->code) == BPF_CALL &&
6505 BPF_SRC(insn->code) == BPF_K &&
6506 insn->src_reg == 0 &&
6507 insn->dst_reg == 0) {
6508 *func_id = insn->imm;
6509 return true;
6510 }
6511 return false;
6512}
6513
6514static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6515{
6516 struct bpf_insn *insn = prog->insns;
6517 enum bpf_func_id func_id;
6518 int i;
6519
6520 if (obj->gen_loader)
6521 return 0;
6522
6523 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6524 if (!insn_is_helper_call(insn, &func_id))
6525 continue;
6526
6527 /* on kernels that don't yet support
6528 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6529 * to bpf_probe_read() which works well for old kernels
6530 */
6531 switch (func_id) {
6532 case BPF_FUNC_probe_read_kernel:
6533 case BPF_FUNC_probe_read_user:
6534 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6535 insn->imm = BPF_FUNC_probe_read;
6536 break;
6537 case BPF_FUNC_probe_read_kernel_str:
6538 case BPF_FUNC_probe_read_user_str:
6539 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6540 insn->imm = BPF_FUNC_probe_read_str;
6541 break;
6542 default:
6543 break;
6544 }
6545 }
6546 return 0;
6547}
6548
6549static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6550 int *btf_obj_fd, int *btf_type_id);
6551
6552/* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */
6553static int libbpf_preload_prog(struct bpf_program *prog,
6554 struct bpf_prog_load_opts *opts, long cookie)
6555{
6556 enum sec_def_flags def = cookie;
6557
6558 /* old kernels might not support specifying expected_attach_type */
6559 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6560 opts->expected_attach_type = 0;
6561
6562 if (def & SEC_SLEEPABLE)
6563 opts->prog_flags |= BPF_F_SLEEPABLE;
6564
6565 if ((prog->type == BPF_PROG_TYPE_TRACING ||
6566 prog->type == BPF_PROG_TYPE_LSM ||
6567 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6568 int btf_obj_fd = 0, btf_type_id = 0, err;
6569 const char *attach_name;
6570
6571 attach_name = strchr(prog->sec_name, '/') + 1;
6572 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6573 if (err)
6574 return err;
6575
6576 /* cache resolved BTF FD and BTF type ID in the prog */
6577 prog->attach_btf_obj_fd = btf_obj_fd;
6578 prog->attach_btf_id = btf_type_id;
6579
6580 /* but by now libbpf common logic is not utilizing
6581 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6582 * this callback is called after opts were populated by
6583 * libbpf, so this callback has to update opts explicitly here
6584 */
6585 opts->attach_btf_obj_fd = btf_obj_fd;
6586 opts->attach_btf_id = btf_type_id;
6587 }
6588 return 0;
6589}
6590
6591static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog,
6592 struct bpf_insn *insns, int insns_cnt,
6593 const char *license, __u32 kern_version,
6594 int *prog_fd)
6595{
6596 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6597 const char *prog_name = NULL;
6598 char *cp, errmsg[STRERR_BUFSIZE];
6599 size_t log_buf_size = 0;
6600 char *log_buf = NULL, *tmp;
6601 int btf_fd, ret, err;
6602 bool own_log_buf = true;
6603 __u32 log_level = prog->log_level;
6604
6605 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6606 /*
6607 * The program type must be set. Most likely we couldn't find a proper
6608 * section definition at load time, and thus we didn't infer the type.
6609 */
6610 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6611 prog->name, prog->sec_name);
6612 return -EINVAL;
6613 }
6614
6615 if (!insns || !insns_cnt)
6616 return -EINVAL;
6617
6618 load_attr.expected_attach_type = prog->expected_attach_type;
6619 if (kernel_supports(obj, FEAT_PROG_NAME))
6620 prog_name = prog->name;
6621 load_attr.attach_prog_fd = prog->attach_prog_fd;
6622 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6623 load_attr.attach_btf_id = prog->attach_btf_id;
6624 load_attr.kern_version = kern_version;
6625 load_attr.prog_ifindex = prog->prog_ifindex;
6626
6627 /* specify func_info/line_info only if kernel supports them */
6628 btf_fd = bpf_object__btf_fd(obj);
6629 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6630 load_attr.prog_btf_fd = btf_fd;
6631 load_attr.func_info = prog->func_info;
6632 load_attr.func_info_rec_size = prog->func_info_rec_size;
6633 load_attr.func_info_cnt = prog->func_info_cnt;
6634 load_attr.line_info = prog->line_info;
6635 load_attr.line_info_rec_size = prog->line_info_rec_size;
6636 load_attr.line_info_cnt = prog->line_info_cnt;
6637 }
6638 load_attr.log_level = log_level;
6639 load_attr.prog_flags = prog->prog_flags;
6640 load_attr.fd_array = obj->fd_array;
6641
6642 /* adjust load_attr if sec_def provides custom preload callback */
6643 if (prog->sec_def && prog->sec_def->preload_fn) {
6644 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie);
6645 if (err < 0) {
6646 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6647 prog->name, err);
6648 return err;
6649 }
6650 }
6651
6652 if (obj->gen_loader) {
6653 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6654 license, insns, insns_cnt, &load_attr,
6655 prog - obj->programs);
6656 *prog_fd = -1;
6657 return 0;
6658 }
6659
6660retry_load:
6661 /* if log_level is zero, we don't request logs initiallly even if
6662 * custom log_buf is specified; if the program load fails, then we'll
6663 * bump log_level to 1 and use either custom log_buf or we'll allocate
6664 * our own and retry the load to get details on what failed
6665 */
6666 if (log_level) {
6667 if (prog->log_buf) {
6668 log_buf = prog->log_buf;
6669 log_buf_size = prog->log_size;
6670 own_log_buf = false;
6671 } else if (obj->log_buf) {
6672 log_buf = obj->log_buf;
6673 log_buf_size = obj->log_size;
6674 own_log_buf = false;
6675 } else {
6676 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6677 tmp = realloc(log_buf, log_buf_size);
6678 if (!tmp) {
6679 ret = -ENOMEM;
6680 goto out;
6681 }
6682 log_buf = tmp;
6683 log_buf[0] = '\0';
6684 own_log_buf = true;
6685 }
6686 }
6687
6688 load_attr.log_buf = log_buf;
6689 load_attr.log_size = log_buf_size;
6690 load_attr.log_level = log_level;
6691
6692 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6693 if (ret >= 0) {
6694 if (log_level && own_log_buf) {
6695 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6696 prog->name, log_buf);
6697 }
6698
6699 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6700 struct bpf_map *map;
6701 int i;
6702
6703 for (i = 0; i < obj->nr_maps; i++) {
6704 map = &prog->obj->maps[i];
6705 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6706 continue;
6707
6708 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6709 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6710 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6711 prog->name, map->real_name, cp);
6712 /* Don't fail hard if can't bind rodata. */
6713 }
6714 }
6715 }
6716
6717 *prog_fd = ret;
6718 ret = 0;
6719 goto out;
6720 }
6721
6722 if (log_level == 0) {
6723 log_level = 1;
6724 goto retry_load;
6725 }
6726 /* On ENOSPC, increase log buffer size and retry, unless custom
6727 * log_buf is specified.
6728 * Be careful to not overflow u32, though. Kernel's log buf size limit
6729 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6730 * multiply by 2 unless we are sure we'll fit within 32 bits.
6731 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6732 */
6733 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6734 goto retry_load;
6735
6736 ret = -errno;
6737 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6738 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6739 pr_perm_msg(ret);
6740
6741 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6742 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6743 prog->name, log_buf);
6744 }
6745 if (insns_cnt >= BPF_MAXINSNS) {
6746 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n",
6747 prog->name, insns_cnt, BPF_MAXINSNS);
6748 }
6749
6750out:
6751 if (own_log_buf)
6752 free(log_buf);
6753 return ret;
6754}
6755
6756static int bpf_program_record_relos(struct bpf_program *prog)
6757{
6758 struct bpf_object *obj = prog->obj;
6759 int i;
6760
6761 for (i = 0; i < prog->nr_reloc; i++) {
6762 struct reloc_desc *relo = &prog->reloc_desc[i];
6763 struct extern_desc *ext = &obj->externs[relo->sym_off];
6764
6765 switch (relo->type) {
6766 case RELO_EXTERN_VAR:
6767 if (ext->type != EXT_KSYM)
6768 continue;
6769 bpf_gen__record_extern(obj->gen_loader, ext->name,
6770 ext->is_weak, !ext->ksym.type_id,
6771 BTF_KIND_VAR, relo->insn_idx);
6772 break;
6773 case RELO_EXTERN_FUNC:
6774 bpf_gen__record_extern(obj->gen_loader, ext->name,
6775 ext->is_weak, false, BTF_KIND_FUNC,
6776 relo->insn_idx);
6777 break;
6778 case RELO_CORE: {
6779 struct bpf_core_relo cr = {
6780 .insn_off = relo->insn_idx * 8,
6781 .type_id = relo->core_relo->type_id,
6782 .access_str_off = relo->core_relo->access_str_off,
6783 .kind = relo->core_relo->kind,
6784 };
6785
6786 bpf_gen__record_relo_core(obj->gen_loader, &cr);
6787 break;
6788 }
6789 default:
6790 continue;
6791 }
6792 }
6793 return 0;
6794}
6795
6796static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6797 const char *license, __u32 kern_ver)
6798{
6799 int err = 0, fd, i;
6800
6801 if (obj->loaded) {
6802 pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6803 return libbpf_err(-EINVAL);
6804 }
6805
6806 if (prog->instances.nr < 0 || !prog->instances.fds) {
6807 if (prog->preprocessor) {
6808 pr_warn("Internal error: can't load program '%s'\n",
6809 prog->name);
6810 return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
6811 }
6812
6813 prog->instances.fds = malloc(sizeof(int));
6814 if (!prog->instances.fds) {
6815 pr_warn("Not enough memory for BPF fds\n");
6816 return libbpf_err(-ENOMEM);
6817 }
6818 prog->instances.nr = 1;
6819 prog->instances.fds[0] = -1;
6820 }
6821
6822 if (!prog->preprocessor) {
6823 if (prog->instances.nr != 1) {
6824 pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6825 prog->name, prog->instances.nr);
6826 }
6827 if (obj->gen_loader)
6828 bpf_program_record_relos(prog);
6829 err = bpf_object_load_prog_instance(obj, prog,
6830 prog->insns, prog->insns_cnt,
6831 license, kern_ver, &fd);
6832 if (!err)
6833 prog->instances.fds[0] = fd;
6834 goto out;
6835 }
6836
6837 for (i = 0; i < prog->instances.nr; i++) {
6838 struct bpf_prog_prep_result result;
6839 bpf_program_prep_t preprocessor = prog->preprocessor;
6840
6841 memset(&result, 0, sizeof(result));
6842 err = preprocessor(prog, i, prog->insns,
6843 prog->insns_cnt, &result);
6844 if (err) {
6845 pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6846 i, prog->name);
6847 goto out;
6848 }
6849
6850 if (!result.new_insn_ptr || !result.new_insn_cnt) {
6851 pr_debug("Skip loading the %dth instance of program '%s'\n",
6852 i, prog->name);
6853 prog->instances.fds[i] = -1;
6854 if (result.pfd)
6855 *result.pfd = -1;
6856 continue;
6857 }
6858
6859 err = bpf_object_load_prog_instance(obj, prog,
6860 result.new_insn_ptr, result.new_insn_cnt,
6861 license, kern_ver, &fd);
6862 if (err) {
6863 pr_warn("Loading the %dth instance of program '%s' failed\n",
6864 i, prog->name);
6865 goto out;
6866 }
6867
6868 if (result.pfd)
6869 *result.pfd = fd;
6870 prog->instances.fds[i] = fd;
6871 }
6872out:
6873 if (err)
6874 pr_warn("failed to load program '%s'\n", prog->name);
6875 return libbpf_err(err);
6876}
6877
6878int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver)
6879{
6880 return bpf_object_load_prog(prog->obj, prog, license, kern_ver);
6881}
6882
6883static int
6884bpf_object__load_progs(struct bpf_object *obj, int log_level)
6885{
6886 struct bpf_program *prog;
6887 size_t i;
6888 int err;
6889
6890 for (i = 0; i < obj->nr_programs; i++) {
6891 prog = &obj->programs[i];
6892 err = bpf_object__sanitize_prog(obj, prog);
6893 if (err)
6894 return err;
6895 }
6896
6897 for (i = 0; i < obj->nr_programs; i++) {
6898 prog = &obj->programs[i];
6899 if (prog_is_subprog(obj, prog))
6900 continue;
6901 if (!prog->load) {
6902 pr_debug("prog '%s': skipped loading\n", prog->name);
6903 continue;
6904 }
6905 prog->log_level |= log_level;
6906 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version);
6907 if (err)
6908 return err;
6909 }
6910 if (obj->gen_loader)
6911 bpf_object__free_relocs(obj);
6912 return 0;
6913}
6914
6915static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6916
6917static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
6918{
6919 struct bpf_program *prog;
6920 int err;
6921
6922 bpf_object__for_each_program(prog, obj) {
6923 prog->sec_def = find_sec_def(prog->sec_name);
6924 if (!prog->sec_def) {
6925 /* couldn't guess, but user might manually specify */
6926 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
6927 prog->name, prog->sec_name);
6928 continue;
6929 }
6930
6931 bpf_program__set_type(prog, prog->sec_def->prog_type);
6932 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type);
6933
6934#pragma GCC diagnostic push
6935#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
6936 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6937 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6938 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6939#pragma GCC diagnostic pop
6940
6941 /* sec_def can have custom callback which should be called
6942 * after bpf_program is initialized to adjust its properties
6943 */
6944 if (prog->sec_def->init_fn) {
6945 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie);
6946 if (err < 0) {
6947 pr_warn("prog '%s': failed to initialize: %d\n",
6948 prog->name, err);
6949 return err;
6950 }
6951 }
6952 }
6953
6954 return 0;
6955}
6956
6957static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6958 const struct bpf_object_open_opts *opts)
6959{
6960 const char *obj_name, *kconfig, *btf_tmp_path;
6961 struct bpf_object *obj;
6962 char tmp_name[64];
6963 int err;
6964 char *log_buf;
6965 size_t log_size;
6966 __u32 log_level;
6967
6968 if (elf_version(EV_CURRENT) == EV_NONE) {
6969 pr_warn("failed to init libelf for %s\n",
6970 path ? : "(mem buf)");
6971 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6972 }
6973
6974 if (!OPTS_VALID(opts, bpf_object_open_opts))
6975 return ERR_PTR(-EINVAL);
6976
6977 obj_name = OPTS_GET(opts, object_name, NULL);
6978 if (obj_buf) {
6979 if (!obj_name) {
6980 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6981 (unsigned long)obj_buf,
6982 (unsigned long)obj_buf_sz);
6983 obj_name = tmp_name;
6984 }
6985 path = obj_name;
6986 pr_debug("loading object '%s' from buffer\n", obj_name);
6987 }
6988
6989 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
6990 log_size = OPTS_GET(opts, kernel_log_size, 0);
6991 log_level = OPTS_GET(opts, kernel_log_level, 0);
6992 if (log_size > UINT_MAX)
6993 return ERR_PTR(-EINVAL);
6994 if (log_size && !log_buf)
6995 return ERR_PTR(-EINVAL);
6996
6997 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6998 if (IS_ERR(obj))
6999 return obj;
7000
7001 obj->log_buf = log_buf;
7002 obj->log_size = log_size;
7003 obj->log_level = log_level;
7004
7005 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7006 if (btf_tmp_path) {
7007 if (strlen(btf_tmp_path) >= PATH_MAX) {
7008 err = -ENAMETOOLONG;
7009 goto out;
7010 }
7011 obj->btf_custom_path = strdup(btf_tmp_path);
7012 if (!obj->btf_custom_path) {
7013 err = -ENOMEM;
7014 goto out;
7015 }
7016 }
7017
7018 kconfig = OPTS_GET(opts, kconfig, NULL);
7019 if (kconfig) {
7020 obj->kconfig = strdup(kconfig);
7021 if (!obj->kconfig) {
7022 err = -ENOMEM;
7023 goto out;
7024 }
7025 }
7026
7027 err = bpf_object__elf_init(obj);
7028 err = err ? : bpf_object__check_endianness(obj);
7029 err = err ? : bpf_object__elf_collect(obj);
7030 err = err ? : bpf_object__collect_externs(obj);
7031 err = err ? : bpf_object__finalize_btf(obj);
7032 err = err ? : bpf_object__init_maps(obj, opts);
7033 err = err ? : bpf_object_init_progs(obj, opts);
7034 err = err ? : bpf_object__collect_relos(obj);
7035 if (err)
7036 goto out;
7037
7038 bpf_object__elf_finish(obj);
7039
7040 return obj;
7041out:
7042 bpf_object__close(obj);
7043 return ERR_PTR(err);
7044}
7045
7046static struct bpf_object *
7047__bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7048{
7049 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7050 .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7051 );
7052
7053 /* param validation */
7054 if (!attr->file)
7055 return NULL;
7056
7057 pr_debug("loading %s\n", attr->file);
7058 return bpf_object_open(attr->file, NULL, 0, &opts);
7059}
7060
7061struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7062{
7063 return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
7064}
7065
7066struct bpf_object *bpf_object__open(const char *path)
7067{
7068 struct bpf_object_open_attr attr = {
7069 .file = path,
7070 .prog_type = BPF_PROG_TYPE_UNSPEC,
7071 };
7072
7073 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
7074}
7075
7076struct bpf_object *
7077bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7078{
7079 if (!path)
7080 return libbpf_err_ptr(-EINVAL);
7081
7082 pr_debug("loading %s\n", path);
7083
7084 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7085}
7086
7087struct bpf_object *
7088bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7089 const struct bpf_object_open_opts *opts)
7090{
7091 if (!obj_buf || obj_buf_sz == 0)
7092 return libbpf_err_ptr(-EINVAL);
7093
7094 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7095}
7096
7097struct bpf_object *
7098bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7099 const char *name)
7100{
7101 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7102 .object_name = name,
7103 /* wrong default, but backwards-compatible */
7104 .relaxed_maps = true,
7105 );
7106
7107 /* returning NULL is wrong, but backwards-compatible */
7108 if (!obj_buf || obj_buf_sz == 0)
7109 return errno = EINVAL, NULL;
7110
7111 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts));
7112}
7113
7114static int bpf_object_unload(struct bpf_object *obj)
7115{
7116 size_t i;
7117
7118 if (!obj)
7119 return libbpf_err(-EINVAL);
7120
7121 for (i = 0; i < obj->nr_maps; i++) {
7122 zclose(obj->maps[i].fd);
7123 if (obj->maps[i].st_ops)
7124 zfree(&obj->maps[i].st_ops->kern_vdata);
7125 }
7126
7127 for (i = 0; i < obj->nr_programs; i++)
7128 bpf_program__unload(&obj->programs[i]);
7129
7130 return 0;
7131}
7132
7133int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7134
7135static int bpf_object__sanitize_maps(struct bpf_object *obj)
7136{
7137 struct bpf_map *m;
7138
7139 bpf_object__for_each_map(m, obj) {
7140 if (!bpf_map__is_internal(m))
7141 continue;
7142 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7143 m->def.map_flags ^= BPF_F_MMAPABLE;
7144 }
7145
7146 return 0;
7147}
7148
7149static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7150{
7151 char sym_type, sym_name[500];
7152 unsigned long long sym_addr;
7153 const struct btf_type *t;
7154 struct extern_desc *ext;
7155 int ret, err = 0;
7156 FILE *f;
7157
7158 f = fopen("/proc/kallsyms", "r");
7159 if (!f) {
7160 err = -errno;
7161 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7162 return err;
7163 }
7164
7165 while (true) {
7166 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7167 &sym_addr, &sym_type, sym_name);
7168 if (ret == EOF && feof(f))
7169 break;
7170 if (ret != 3) {
7171 pr_warn("failed to read kallsyms entry: %d\n", ret);
7172 err = -EINVAL;
7173 goto out;
7174 }
7175
7176 ext = find_extern_by_name(obj, sym_name);
7177 if (!ext || ext->type != EXT_KSYM)
7178 continue;
7179
7180 t = btf__type_by_id(obj->btf, ext->btf_id);
7181 if (!btf_is_var(t))
7182 continue;
7183
7184 if (ext->is_set && ext->ksym.addr != sym_addr) {
7185 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7186 sym_name, ext->ksym.addr, sym_addr);
7187 err = -EINVAL;
7188 goto out;
7189 }
7190 if (!ext->is_set) {
7191 ext->is_set = true;
7192 ext->ksym.addr = sym_addr;
7193 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7194 }
7195 }
7196
7197out:
7198 fclose(f);
7199 return err;
7200}
7201
7202static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7203 __u16 kind, struct btf **res_btf,
7204 struct module_btf **res_mod_btf)
7205{
7206 struct module_btf *mod_btf;
7207 struct btf *btf;
7208 int i, id, err;
7209
7210 btf = obj->btf_vmlinux;
7211 mod_btf = NULL;
7212 id = btf__find_by_name_kind(btf, ksym_name, kind);
7213
7214 if (id == -ENOENT) {
7215 err = load_module_btfs(obj);
7216 if (err)
7217 return err;
7218
7219 for (i = 0; i < obj->btf_module_cnt; i++) {
7220 /* we assume module_btf's BTF FD is always >0 */
7221 mod_btf = &obj->btf_modules[i];
7222 btf = mod_btf->btf;
7223 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7224 if (id != -ENOENT)
7225 break;
7226 }
7227 }
7228 if (id <= 0)
7229 return -ESRCH;
7230
7231 *res_btf = btf;
7232 *res_mod_btf = mod_btf;
7233 return id;
7234}
7235
7236static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7237 struct extern_desc *ext)
7238{
7239 const struct btf_type *targ_var, *targ_type;
7240 __u32 targ_type_id, local_type_id;
7241 struct module_btf *mod_btf = NULL;
7242 const char *targ_var_name;
7243 struct btf *btf = NULL;
7244 int id, err;
7245
7246 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7247 if (id < 0) {
7248 if (id == -ESRCH && ext->is_weak)
7249 return 0;
7250 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7251 ext->name);
7252 return id;
7253 }
7254
7255 /* find local type_id */
7256 local_type_id = ext->ksym.type_id;
7257
7258 /* find target type_id */
7259 targ_var = btf__type_by_id(btf, id);
7260 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7261 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7262
7263 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7264 btf, targ_type_id);
7265 if (err <= 0) {
7266 const struct btf_type *local_type;
7267 const char *targ_name, *local_name;
7268
7269 local_type = btf__type_by_id(obj->btf, local_type_id);
7270 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7271 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7272
7273 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7274 ext->name, local_type_id,
7275 btf_kind_str(local_type), local_name, targ_type_id,
7276 btf_kind_str(targ_type), targ_name);
7277 return -EINVAL;
7278 }
7279
7280 ext->is_set = true;
7281 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7282 ext->ksym.kernel_btf_id = id;
7283 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7284 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7285
7286 return 0;
7287}
7288
7289static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7290 struct extern_desc *ext)
7291{
7292 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7293 struct module_btf *mod_btf = NULL;
7294 const struct btf_type *kern_func;
7295 struct btf *kern_btf = NULL;
7296 int ret;
7297
7298 local_func_proto_id = ext->ksym.type_id;
7299
7300 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7301 if (kfunc_id < 0) {
7302 if (kfunc_id == -ESRCH && ext->is_weak)
7303 return 0;
7304 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7305 ext->name);
7306 return kfunc_id;
7307 }
7308
7309 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7310 kfunc_proto_id = kern_func->type;
7311
7312 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7313 kern_btf, kfunc_proto_id);
7314 if (ret <= 0) {
7315 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7316 ext->name, local_func_proto_id, kfunc_proto_id);
7317 return -EINVAL;
7318 }
7319
7320 /* set index for module BTF fd in fd_array, if unset */
7321 if (mod_btf && !mod_btf->fd_array_idx) {
7322 /* insn->off is s16 */
7323 if (obj->fd_array_cnt == INT16_MAX) {
7324 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7325 ext->name, mod_btf->fd_array_idx);
7326 return -E2BIG;
7327 }
7328 /* Cannot use index 0 for module BTF fd */
7329 if (!obj->fd_array_cnt)
7330 obj->fd_array_cnt = 1;
7331
7332 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7333 obj->fd_array_cnt + 1);
7334 if (ret)
7335 return ret;
7336 mod_btf->fd_array_idx = obj->fd_array_cnt;
7337 /* we assume module BTF FD is always >0 */
7338 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7339 }
7340
7341 ext->is_set = true;
7342 ext->ksym.kernel_btf_id = kfunc_id;
7343 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7344 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7345 ext->name, kfunc_id);
7346
7347 return 0;
7348}
7349
7350static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7351{
7352 const struct btf_type *t;
7353 struct extern_desc *ext;
7354 int i, err;
7355
7356 for (i = 0; i < obj->nr_extern; i++) {
7357 ext = &obj->externs[i];
7358 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7359 continue;
7360
7361 if (obj->gen_loader) {
7362 ext->is_set = true;
7363 ext->ksym.kernel_btf_obj_fd = 0;
7364 ext->ksym.kernel_btf_id = 0;
7365 continue;
7366 }
7367 t = btf__type_by_id(obj->btf, ext->btf_id);
7368 if (btf_is_var(t))
7369 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7370 else
7371 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7372 if (err)
7373 return err;
7374 }
7375 return 0;
7376}
7377
7378static int bpf_object__resolve_externs(struct bpf_object *obj,
7379 const char *extra_kconfig)
7380{
7381 bool need_config = false, need_kallsyms = false;
7382 bool need_vmlinux_btf = false;
7383 struct extern_desc *ext;
7384 void *kcfg_data = NULL;
7385 int err, i;
7386
7387 if (obj->nr_extern == 0)
7388 return 0;
7389
7390 if (obj->kconfig_map_idx >= 0)
7391 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7392
7393 for (i = 0; i < obj->nr_extern; i++) {
7394 ext = &obj->externs[i];
7395
7396 if (ext->type == EXT_KCFG &&
7397 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7398 void *ext_val = kcfg_data + ext->kcfg.data_off;
7399 __u32 kver = get_kernel_version();
7400
7401 if (!kver) {
7402 pr_warn("failed to get kernel version\n");
7403 return -EINVAL;
7404 }
7405 err = set_kcfg_value_num(ext, ext_val, kver);
7406 if (err)
7407 return err;
7408 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7409 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) {
7410 need_config = true;
7411 } else if (ext->type == EXT_KSYM) {
7412 if (ext->ksym.type_id)
7413 need_vmlinux_btf = true;
7414 else
7415 need_kallsyms = true;
7416 } else {
7417 pr_warn("unrecognized extern '%s'\n", ext->name);
7418 return -EINVAL;
7419 }
7420 }
7421 if (need_config && extra_kconfig) {
7422 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7423 if (err)
7424 return -EINVAL;
7425 need_config = false;
7426 for (i = 0; i < obj->nr_extern; i++) {
7427 ext = &obj->externs[i];
7428 if (ext->type == EXT_KCFG && !ext->is_set) {
7429 need_config = true;
7430 break;
7431 }
7432 }
7433 }
7434 if (need_config) {
7435 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7436 if (err)
7437 return -EINVAL;
7438 }
7439 if (need_kallsyms) {
7440 err = bpf_object__read_kallsyms_file(obj);
7441 if (err)
7442 return -EINVAL;
7443 }
7444 if (need_vmlinux_btf) {
7445 err = bpf_object__resolve_ksyms_btf_id(obj);
7446 if (err)
7447 return -EINVAL;
7448 }
7449 for (i = 0; i < obj->nr_extern; i++) {
7450 ext = &obj->externs[i];
7451
7452 if (!ext->is_set && !ext->is_weak) {
7453 pr_warn("extern %s (strong) not resolved\n", ext->name);
7454 return -ESRCH;
7455 } else if (!ext->is_set) {
7456 pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7457 ext->name);
7458 }
7459 }
7460
7461 return 0;
7462}
7463
7464static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7465{
7466 int err, i;
7467
7468 if (!obj)
7469 return libbpf_err(-EINVAL);
7470
7471 if (obj->loaded) {
7472 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7473 return libbpf_err(-EINVAL);
7474 }
7475
7476 if (obj->gen_loader)
7477 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7478
7479 err = bpf_object__probe_loading(obj);
7480 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7481 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7482 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7483 err = err ? : bpf_object__sanitize_maps(obj);
7484 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7485 err = err ? : bpf_object__create_maps(obj);
7486 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7487 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7488 err = err ? : bpf_object_init_prog_arrays(obj);
7489
7490 if (obj->gen_loader) {
7491 /* reset FDs */
7492 if (obj->btf)
7493 btf__set_fd(obj->btf, -1);
7494 for (i = 0; i < obj->nr_maps; i++)
7495 obj->maps[i].fd = -1;
7496 if (!err)
7497 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7498 }
7499
7500 /* clean up fd_array */
7501 zfree(&obj->fd_array);
7502
7503 /* clean up module BTFs */
7504 for (i = 0; i < obj->btf_module_cnt; i++) {
7505 close(obj->btf_modules[i].fd);
7506 btf__free(obj->btf_modules[i].btf);
7507 free(obj->btf_modules[i].name);
7508 }
7509 free(obj->btf_modules);
7510
7511 /* clean up vmlinux BTF */
7512 btf__free(obj->btf_vmlinux);
7513 obj->btf_vmlinux = NULL;
7514
7515 obj->loaded = true; /* doesn't matter if successfully or not */
7516
7517 if (err)
7518 goto out;
7519
7520 return 0;
7521out:
7522 /* unpin any maps that were auto-pinned during load */
7523 for (i = 0; i < obj->nr_maps; i++)
7524 if (obj->maps[i].pinned && !obj->maps[i].reused)
7525 bpf_map__unpin(&obj->maps[i], NULL);
7526
7527 bpf_object_unload(obj);
7528 pr_warn("failed to load object '%s'\n", obj->path);
7529 return libbpf_err(err);
7530}
7531
7532int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7533{
7534 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path);
7535}
7536
7537int bpf_object__load(struct bpf_object *obj)
7538{
7539 return bpf_object_load(obj, 0, NULL);
7540}
7541
7542static int make_parent_dir(const char *path)
7543{
7544 char *cp, errmsg[STRERR_BUFSIZE];
7545 char *dname, *dir;
7546 int err = 0;
7547
7548 dname = strdup(path);
7549 if (dname == NULL)
7550 return -ENOMEM;
7551
7552 dir = dirname(dname);
7553 if (mkdir(dir, 0700) && errno != EEXIST)
7554 err = -errno;
7555
7556 free(dname);
7557 if (err) {
7558 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7559 pr_warn("failed to mkdir %s: %s\n", path, cp);
7560 }
7561 return err;
7562}
7563
7564static int check_path(const char *path)
7565{
7566 char *cp, errmsg[STRERR_BUFSIZE];
7567 struct statfs st_fs;
7568 char *dname, *dir;
7569 int err = 0;
7570
7571 if (path == NULL)
7572 return -EINVAL;
7573
7574 dname = strdup(path);
7575 if (dname == NULL)
7576 return -ENOMEM;
7577
7578 dir = dirname(dname);
7579 if (statfs(dir, &st_fs)) {
7580 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7581 pr_warn("failed to statfs %s: %s\n", dir, cp);
7582 err = -errno;
7583 }
7584 free(dname);
7585
7586 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7587 pr_warn("specified path %s is not on BPF FS\n", path);
7588 err = -EINVAL;
7589 }
7590
7591 return err;
7592}
7593
7594static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance)
7595{
7596 char *cp, errmsg[STRERR_BUFSIZE];
7597 int err;
7598
7599 err = make_parent_dir(path);
7600 if (err)
7601 return libbpf_err(err);
7602
7603 err = check_path(path);
7604 if (err)
7605 return libbpf_err(err);
7606
7607 if (prog == NULL) {
7608 pr_warn("invalid program pointer\n");
7609 return libbpf_err(-EINVAL);
7610 }
7611
7612 if (instance < 0 || instance >= prog->instances.nr) {
7613 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7614 instance, prog->name, prog->instances.nr);
7615 return libbpf_err(-EINVAL);
7616 }
7617
7618 if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7619 err = -errno;
7620 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7621 pr_warn("failed to pin program: %s\n", cp);
7622 return libbpf_err(err);
7623 }
7624 pr_debug("pinned program '%s'\n", path);
7625
7626 return 0;
7627}
7628
7629static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance)
7630{
7631 int err;
7632
7633 err = check_path(path);
7634 if (err)
7635 return libbpf_err(err);
7636
7637 if (prog == NULL) {
7638 pr_warn("invalid program pointer\n");
7639 return libbpf_err(-EINVAL);
7640 }
7641
7642 if (instance < 0 || instance >= prog->instances.nr) {
7643 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7644 instance, prog->name, prog->instances.nr);
7645 return libbpf_err(-EINVAL);
7646 }
7647
7648 err = unlink(path);
7649 if (err != 0)
7650 return libbpf_err(-errno);
7651
7652 pr_debug("unpinned program '%s'\n", path);
7653
7654 return 0;
7655}
7656
7657__attribute__((alias("bpf_program_pin_instance")))
7658int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance);
7659
7660__attribute__((alias("bpf_program_unpin_instance")))
7661int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance);
7662
7663int bpf_program__pin(struct bpf_program *prog, const char *path)
7664{
7665 int i, err;
7666
7667 err = make_parent_dir(path);
7668 if (err)
7669 return libbpf_err(err);
7670
7671 err = check_path(path);
7672 if (err)
7673 return libbpf_err(err);
7674
7675 if (prog == NULL) {
7676 pr_warn("invalid program pointer\n");
7677 return libbpf_err(-EINVAL);
7678 }
7679
7680 if (prog->instances.nr <= 0) {
7681 pr_warn("no instances of prog %s to pin\n", prog->name);
7682 return libbpf_err(-EINVAL);
7683 }
7684
7685 if (prog->instances.nr == 1) {
7686 /* don't create subdirs when pinning single instance */
7687 return bpf_program_pin_instance(prog, path, 0);
7688 }
7689
7690 for (i = 0; i < prog->instances.nr; i++) {
7691 char buf[PATH_MAX];
7692 int len;
7693
7694 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7695 if (len < 0) {
7696 err = -EINVAL;
7697 goto err_unpin;
7698 } else if (len >= PATH_MAX) {
7699 err = -ENAMETOOLONG;
7700 goto err_unpin;
7701 }
7702
7703 err = bpf_program_pin_instance(prog, buf, i);
7704 if (err)
7705 goto err_unpin;
7706 }
7707
7708 return 0;
7709
7710err_unpin:
7711 for (i = i - 1; i >= 0; i--) {
7712 char buf[PATH_MAX];
7713 int len;
7714
7715 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7716 if (len < 0)
7717 continue;
7718 else if (len >= PATH_MAX)
7719 continue;
7720
7721 bpf_program_unpin_instance(prog, buf, i);
7722 }
7723
7724 rmdir(path);
7725
7726 return libbpf_err(err);
7727}
7728
7729int bpf_program__unpin(struct bpf_program *prog, const char *path)
7730{
7731 int i, err;
7732
7733 err = check_path(path);
7734 if (err)
7735 return libbpf_err(err);
7736
7737 if (prog == NULL) {
7738 pr_warn("invalid program pointer\n");
7739 return libbpf_err(-EINVAL);
7740 }
7741
7742 if (prog->instances.nr <= 0) {
7743 pr_warn("no instances of prog %s to pin\n", prog->name);
7744 return libbpf_err(-EINVAL);
7745 }
7746
7747 if (prog->instances.nr == 1) {
7748 /* don't create subdirs when pinning single instance */
7749 return bpf_program_unpin_instance(prog, path, 0);
7750 }
7751
7752 for (i = 0; i < prog->instances.nr; i++) {
7753 char buf[PATH_MAX];
7754 int len;
7755
7756 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7757 if (len < 0)
7758 return libbpf_err(-EINVAL);
7759 else if (len >= PATH_MAX)
7760 return libbpf_err(-ENAMETOOLONG);
7761
7762 err = bpf_program_unpin_instance(prog, buf, i);
7763 if (err)
7764 return err;
7765 }
7766
7767 err = rmdir(path);
7768 if (err)
7769 return libbpf_err(-errno);
7770
7771 return 0;
7772}
7773
7774int bpf_map__pin(struct bpf_map *map, const char *path)
7775{
7776 char *cp, errmsg[STRERR_BUFSIZE];
7777 int err;
7778
7779 if (map == NULL) {
7780 pr_warn("invalid map pointer\n");
7781 return libbpf_err(-EINVAL);
7782 }
7783
7784 if (map->pin_path) {
7785 if (path && strcmp(path, map->pin_path)) {
7786 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7787 bpf_map__name(map), map->pin_path, path);
7788 return libbpf_err(-EINVAL);
7789 } else if (map->pinned) {
7790 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7791 bpf_map__name(map), map->pin_path);
7792 return 0;
7793 }
7794 } else {
7795 if (!path) {
7796 pr_warn("missing a path to pin map '%s' at\n",
7797 bpf_map__name(map));
7798 return libbpf_err(-EINVAL);
7799 } else if (map->pinned) {
7800 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7801 return libbpf_err(-EEXIST);
7802 }
7803
7804 map->pin_path = strdup(path);
7805 if (!map->pin_path) {
7806 err = -errno;
7807 goto out_err;
7808 }
7809 }
7810
7811 err = make_parent_dir(map->pin_path);
7812 if (err)
7813 return libbpf_err(err);
7814
7815 err = check_path(map->pin_path);
7816 if (err)
7817 return libbpf_err(err);
7818
7819 if (bpf_obj_pin(map->fd, map->pin_path)) {
7820 err = -errno;
7821 goto out_err;
7822 }
7823
7824 map->pinned = true;
7825 pr_debug("pinned map '%s'\n", map->pin_path);
7826
7827 return 0;
7828
7829out_err:
7830 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7831 pr_warn("failed to pin map: %s\n", cp);
7832 return libbpf_err(err);
7833}
7834
7835int bpf_map__unpin(struct bpf_map *map, const char *path)
7836{
7837 int err;
7838
7839 if (map == NULL) {
7840 pr_warn("invalid map pointer\n");
7841 return libbpf_err(-EINVAL);
7842 }
7843
7844 if (map->pin_path) {
7845 if (path && strcmp(path, map->pin_path)) {
7846 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7847 bpf_map__name(map), map->pin_path, path);
7848 return libbpf_err(-EINVAL);
7849 }
7850 path = map->pin_path;
7851 } else if (!path) {
7852 pr_warn("no path to unpin map '%s' from\n",
7853 bpf_map__name(map));
7854 return libbpf_err(-EINVAL);
7855 }
7856
7857 err = check_path(path);
7858 if (err)
7859 return libbpf_err(err);
7860
7861 err = unlink(path);
7862 if (err != 0)
7863 return libbpf_err(-errno);
7864
7865 map->pinned = false;
7866 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7867
7868 return 0;
7869}
7870
7871int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7872{
7873 char *new = NULL;
7874
7875 if (path) {
7876 new = strdup(path);
7877 if (!new)
7878 return libbpf_err(-errno);
7879 }
7880
7881 free(map->pin_path);
7882 map->pin_path = new;
7883 return 0;
7884}
7885
7886const char *bpf_map__get_pin_path(const struct bpf_map *map)
7887{
7888 return map->pin_path;
7889}
7890
7891const char *bpf_map__pin_path(const struct bpf_map *map)
7892{
7893 return map->pin_path;
7894}
7895
7896bool bpf_map__is_pinned(const struct bpf_map *map)
7897{
7898 return map->pinned;
7899}
7900
7901static void sanitize_pin_path(char *s)
7902{
7903 /* bpffs disallows periods in path names */
7904 while (*s) {
7905 if (*s == '.')
7906 *s = '_';
7907 s++;
7908 }
7909}
7910
7911int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7912{
7913 struct bpf_map *map;
7914 int err;
7915
7916 if (!obj)
7917 return libbpf_err(-ENOENT);
7918
7919 if (!obj->loaded) {
7920 pr_warn("object not yet loaded; load it first\n");
7921 return libbpf_err(-ENOENT);
7922 }
7923
7924 bpf_object__for_each_map(map, obj) {
7925 char *pin_path = NULL;
7926 char buf[PATH_MAX];
7927
7928 if (map->skipped)
7929 continue;
7930
7931 if (path) {
7932 int len;
7933
7934 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7935 bpf_map__name(map));
7936 if (len < 0) {
7937 err = -EINVAL;
7938 goto err_unpin_maps;
7939 } else if (len >= PATH_MAX) {
7940 err = -ENAMETOOLONG;
7941 goto err_unpin_maps;
7942 }
7943 sanitize_pin_path(buf);
7944 pin_path = buf;
7945 } else if (!map->pin_path) {
7946 continue;
7947 }
7948
7949 err = bpf_map__pin(map, pin_path);
7950 if (err)
7951 goto err_unpin_maps;
7952 }
7953
7954 return 0;
7955
7956err_unpin_maps:
7957 while ((map = bpf_object__prev_map(obj, map))) {
7958 if (!map->pin_path)
7959 continue;
7960
7961 bpf_map__unpin(map, NULL);
7962 }
7963
7964 return libbpf_err(err);
7965}
7966
7967int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7968{
7969 struct bpf_map *map;
7970 int err;
7971
7972 if (!obj)
7973 return libbpf_err(-ENOENT);
7974
7975 bpf_object__for_each_map(map, obj) {
7976 char *pin_path = NULL;
7977 char buf[PATH_MAX];
7978
7979 if (path) {
7980 int len;
7981
7982 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7983 bpf_map__name(map));
7984 if (len < 0)
7985 return libbpf_err(-EINVAL);
7986 else if (len >= PATH_MAX)
7987 return libbpf_err(-ENAMETOOLONG);
7988 sanitize_pin_path(buf);
7989 pin_path = buf;
7990 } else if (!map->pin_path) {
7991 continue;
7992 }
7993
7994 err = bpf_map__unpin(map, pin_path);
7995 if (err)
7996 return libbpf_err(err);
7997 }
7998
7999 return 0;
8000}
8001
8002int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8003{
8004 struct bpf_program *prog;
8005 int err;
8006
8007 if (!obj)
8008 return libbpf_err(-ENOENT);
8009
8010 if (!obj->loaded) {
8011 pr_warn("object not yet loaded; load it first\n");
8012 return libbpf_err(-ENOENT);
8013 }
8014
8015 bpf_object__for_each_program(prog, obj) {
8016 char buf[PATH_MAX];
8017 int len;
8018
8019 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8020 prog->pin_name);
8021 if (len < 0) {
8022 err = -EINVAL;
8023 goto err_unpin_programs;
8024 } else if (len >= PATH_MAX) {
8025 err = -ENAMETOOLONG;
8026 goto err_unpin_programs;
8027 }
8028
8029 err = bpf_program__pin(prog, buf);
8030 if (err)
8031 goto err_unpin_programs;
8032 }
8033
8034 return 0;
8035
8036err_unpin_programs:
8037 while ((prog = bpf_object__prev_program(obj, prog))) {
8038 char buf[PATH_MAX];
8039 int len;
8040
8041 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8042 prog->pin_name);
8043 if (len < 0)
8044 continue;
8045 else if (len >= PATH_MAX)
8046 continue;
8047
8048 bpf_program__unpin(prog, buf);
8049 }
8050
8051 return libbpf_err(err);
8052}
8053
8054int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8055{
8056 struct bpf_program *prog;
8057 int err;
8058
8059 if (!obj)
8060 return libbpf_err(-ENOENT);
8061
8062 bpf_object__for_each_program(prog, obj) {
8063 char buf[PATH_MAX];
8064 int len;
8065
8066 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8067 prog->pin_name);
8068 if (len < 0)
8069 return libbpf_err(-EINVAL);
8070 else if (len >= PATH_MAX)
8071 return libbpf_err(-ENAMETOOLONG);
8072
8073 err = bpf_program__unpin(prog, buf);
8074 if (err)
8075 return libbpf_err(err);
8076 }
8077
8078 return 0;
8079}
8080
8081int bpf_object__pin(struct bpf_object *obj, const char *path)
8082{
8083 int err;
8084
8085 err = bpf_object__pin_maps(obj, path);
8086 if (err)
8087 return libbpf_err(err);
8088
8089 err = bpf_object__pin_programs(obj, path);
8090 if (err) {
8091 bpf_object__unpin_maps(obj, path);
8092 return libbpf_err(err);
8093 }
8094
8095 return 0;
8096}
8097
8098static void bpf_map__destroy(struct bpf_map *map)
8099{
8100 if (map->clear_priv)
8101 map->clear_priv(map, map->priv);
8102 map->priv = NULL;
8103 map->clear_priv = NULL;
8104
8105 if (map->inner_map) {
8106 bpf_map__destroy(map->inner_map);
8107 zfree(&map->inner_map);
8108 }
8109
8110 zfree(&map->init_slots);
8111 map->init_slots_sz = 0;
8112
8113 if (map->mmaped) {
8114 munmap(map->mmaped, bpf_map_mmap_sz(map));
8115 map->mmaped = NULL;
8116 }
8117
8118 if (map->st_ops) {
8119 zfree(&map->st_ops->data);
8120 zfree(&map->st_ops->progs);
8121 zfree(&map->st_ops->kern_func_off);
8122 zfree(&map->st_ops);
8123 }
8124
8125 zfree(&map->name);
8126 zfree(&map->real_name);
8127 zfree(&map->pin_path);
8128
8129 if (map->fd >= 0)
8130 zclose(map->fd);
8131}
8132
8133void bpf_object__close(struct bpf_object *obj)
8134{
8135 size_t i;
8136
8137 if (IS_ERR_OR_NULL(obj))
8138 return;
8139
8140 if (obj->clear_priv)
8141 obj->clear_priv(obj, obj->priv);
8142
8143 bpf_gen__free(obj->gen_loader);
8144 bpf_object__elf_finish(obj);
8145 bpf_object_unload(obj);
8146 btf__free(obj->btf);
8147 btf_ext__free(obj->btf_ext);
8148
8149 for (i = 0; i < obj->nr_maps; i++)
8150 bpf_map__destroy(&obj->maps[i]);
8151
8152 zfree(&obj->btf_custom_path);
8153 zfree(&obj->kconfig);
8154 zfree(&obj->externs);
8155 obj->nr_extern = 0;
8156
8157 zfree(&obj->maps);
8158 obj->nr_maps = 0;
8159
8160 if (obj->programs && obj->nr_programs) {
8161 for (i = 0; i < obj->nr_programs; i++)
8162 bpf_program__exit(&obj->programs[i]);
8163 }
8164 zfree(&obj->programs);
8165
8166 list_del(&obj->list);
8167 free(obj);
8168}
8169
8170struct bpf_object *
8171bpf_object__next(struct bpf_object *prev)
8172{
8173 struct bpf_object *next;
8174 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
8175
8176 if (strict)
8177 return NULL;
8178
8179 if (!prev)
8180 next = list_first_entry(&bpf_objects_list,
8181 struct bpf_object,
8182 list);
8183 else
8184 next = list_next_entry(prev, list);
8185
8186 /* Empty list is noticed here so don't need checking on entry. */
8187 if (&next->list == &bpf_objects_list)
8188 return NULL;
8189
8190 return next;
8191}
8192
8193const char *bpf_object__name(const struct bpf_object *obj)
8194{
8195 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8196}
8197
8198unsigned int bpf_object__kversion(const struct bpf_object *obj)
8199{
8200 return obj ? obj->kern_version : 0;
8201}
8202
8203struct btf *bpf_object__btf(const struct bpf_object *obj)
8204{
8205 return obj ? obj->btf : NULL;
8206}
8207
8208int bpf_object__btf_fd(const struct bpf_object *obj)
8209{
8210 return obj->btf ? btf__fd(obj->btf) : -1;
8211}
8212
8213int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8214{
8215 if (obj->loaded)
8216 return libbpf_err(-EINVAL);
8217
8218 obj->kern_version = kern_version;
8219
8220 return 0;
8221}
8222
8223int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8224 bpf_object_clear_priv_t clear_priv)
8225{
8226 if (obj->priv && obj->clear_priv)
8227 obj->clear_priv(obj, obj->priv);
8228
8229 obj->priv = priv;
8230 obj->clear_priv = clear_priv;
8231 return 0;
8232}
8233
8234void *bpf_object__priv(const struct bpf_object *obj)
8235{
8236 return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8237}
8238
8239int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8240{
8241 struct bpf_gen *gen;
8242
8243 if (!opts)
8244 return -EFAULT;
8245 if (!OPTS_VALID(opts, gen_loader_opts))
8246 return -EINVAL;
8247 gen = calloc(sizeof(*gen), 1);
8248 if (!gen)
8249 return -ENOMEM;
8250 gen->opts = opts;
8251 obj->gen_loader = gen;
8252 return 0;
8253}
8254
8255static struct bpf_program *
8256__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8257 bool forward)
8258{
8259 size_t nr_programs = obj->nr_programs;
8260 ssize_t idx;
8261
8262 if (!nr_programs)
8263 return NULL;
8264
8265 if (!p)
8266 /* Iter from the beginning */
8267 return forward ? &obj->programs[0] :
8268 &obj->programs[nr_programs - 1];
8269
8270 if (p->obj != obj) {
8271 pr_warn("error: program handler doesn't match object\n");
8272 return errno = EINVAL, NULL;
8273 }
8274
8275 idx = (p - obj->programs) + (forward ? 1 : -1);
8276 if (idx >= obj->nr_programs || idx < 0)
8277 return NULL;
8278 return &obj->programs[idx];
8279}
8280
8281struct bpf_program *
8282bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8283{
8284 return bpf_object__next_program(obj, prev);
8285}
8286
8287struct bpf_program *
8288bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8289{
8290 struct bpf_program *prog = prev;
8291
8292 do {
8293 prog = __bpf_program__iter(prog, obj, true);
8294 } while (prog && prog_is_subprog(obj, prog));
8295
8296 return prog;
8297}
8298
8299struct bpf_program *
8300bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8301{
8302 return bpf_object__prev_program(obj, next);
8303}
8304
8305struct bpf_program *
8306bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8307{
8308 struct bpf_program *prog = next;
8309
8310 do {
8311 prog = __bpf_program__iter(prog, obj, false);
8312 } while (prog && prog_is_subprog(obj, prog));
8313
8314 return prog;
8315}
8316
8317int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8318 bpf_program_clear_priv_t clear_priv)
8319{
8320 if (prog->priv && prog->clear_priv)
8321 prog->clear_priv(prog, prog->priv);
8322
8323 prog->priv = priv;
8324 prog->clear_priv = clear_priv;
8325 return 0;
8326}
8327
8328void *bpf_program__priv(const struct bpf_program *prog)
8329{
8330 return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8331}
8332
8333void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8334{
8335 prog->prog_ifindex = ifindex;
8336}
8337
8338const char *bpf_program__name(const struct bpf_program *prog)
8339{
8340 return prog->name;
8341}
8342
8343const char *bpf_program__section_name(const struct bpf_program *prog)
8344{
8345 return prog->sec_name;
8346}
8347
8348const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8349{
8350 const char *title;
8351
8352 title = prog->sec_name;
8353 if (needs_copy) {
8354 title = strdup(title);
8355 if (!title) {
8356 pr_warn("failed to strdup program title\n");
8357 return libbpf_err_ptr(-ENOMEM);
8358 }
8359 }
8360
8361 return title;
8362}
8363
8364bool bpf_program__autoload(const struct bpf_program *prog)
8365{
8366 return prog->load;
8367}
8368
8369int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8370{
8371 if (prog->obj->loaded)
8372 return libbpf_err(-EINVAL);
8373
8374 prog->load = autoload;
8375 return 0;
8376}
8377
8378static int bpf_program_nth_fd(const struct bpf_program *prog, int n);
8379
8380int bpf_program__fd(const struct bpf_program *prog)
8381{
8382 return bpf_program_nth_fd(prog, 0);
8383}
8384
8385size_t bpf_program__size(const struct bpf_program *prog)
8386{
8387 return prog->insns_cnt * BPF_INSN_SZ;
8388}
8389
8390const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8391{
8392 return prog->insns;
8393}
8394
8395size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8396{
8397 return prog->insns_cnt;
8398}
8399
8400int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8401 bpf_program_prep_t prep)
8402{
8403 int *instances_fds;
8404
8405 if (nr_instances <= 0 || !prep)
8406 return libbpf_err(-EINVAL);
8407
8408 if (prog->instances.nr > 0 || prog->instances.fds) {
8409 pr_warn("Can't set pre-processor after loading\n");
8410 return libbpf_err(-EINVAL);
8411 }
8412
8413 instances_fds = malloc(sizeof(int) * nr_instances);
8414 if (!instances_fds) {
8415 pr_warn("alloc memory failed for fds\n");
8416 return libbpf_err(-ENOMEM);
8417 }
8418
8419 /* fill all fd with -1 */
8420 memset(instances_fds, -1, sizeof(int) * nr_instances);
8421
8422 prog->instances.nr = nr_instances;
8423 prog->instances.fds = instances_fds;
8424 prog->preprocessor = prep;
8425 return 0;
8426}
8427
8428__attribute__((alias("bpf_program_nth_fd")))
8429int bpf_program__nth_fd(const struct bpf_program *prog, int n);
8430
8431static int bpf_program_nth_fd(const struct bpf_program *prog, int n)
8432{
8433 int fd;
8434
8435 if (!prog)
8436 return libbpf_err(-EINVAL);
8437
8438 if (n >= prog->instances.nr || n < 0) {
8439 pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8440 n, prog->name, prog->instances.nr);
8441 return libbpf_err(-EINVAL);
8442 }
8443
8444 fd = prog->instances.fds[n];
8445 if (fd < 0) {
8446 pr_warn("%dth instance of program '%s' is invalid\n",
8447 n, prog->name);
8448 return libbpf_err(-ENOENT);
8449 }
8450
8451 return fd;
8452}
8453
8454enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog)
8455{
8456 return prog->type;
8457}
8458
8459void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8460{
8461 prog->type = type;
8462}
8463
8464static bool bpf_program__is_type(const struct bpf_program *prog,
8465 enum bpf_prog_type type)
8466{
8467 return prog ? (prog->type == type) : false;
8468}
8469
8470#define BPF_PROG_TYPE_FNS(NAME, TYPE) \
8471int bpf_program__set_##NAME(struct bpf_program *prog) \
8472{ \
8473 if (!prog) \
8474 return libbpf_err(-EINVAL); \
8475 bpf_program__set_type(prog, TYPE); \
8476 return 0; \
8477} \
8478 \
8479bool bpf_program__is_##NAME(const struct bpf_program *prog) \
8480{ \
8481 return bpf_program__is_type(prog, TYPE); \
8482} \
8483
8484BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8485BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8486BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8487BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8488BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8489BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8490BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8491BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8492BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8493BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8494BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8495BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8496BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8497
8498enum bpf_attach_type
8499bpf_program__get_expected_attach_type(const struct bpf_program *prog)
8500{
8501 return prog->expected_attach_type;
8502}
8503
8504void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8505 enum bpf_attach_type type)
8506{
8507 prog->expected_attach_type = type;
8508}
8509
8510__u32 bpf_program__flags(const struct bpf_program *prog)
8511{
8512 return prog->prog_flags;
8513}
8514
8515int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8516{
8517 if (prog->obj->loaded)
8518 return libbpf_err(-EBUSY);
8519
8520 prog->prog_flags = flags;
8521 return 0;
8522}
8523
8524__u32 bpf_program__log_level(const struct bpf_program *prog)
8525{
8526 return prog->log_level;
8527}
8528
8529int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8530{
8531 if (prog->obj->loaded)
8532 return libbpf_err(-EBUSY);
8533
8534 prog->log_level = log_level;
8535 return 0;
8536}
8537
8538const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8539{
8540 *log_size = prog->log_size;
8541 return prog->log_buf;
8542}
8543
8544int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8545{
8546 if (log_size && !log_buf)
8547 return -EINVAL;
8548 if (prog->log_size > UINT_MAX)
8549 return -EINVAL;
8550 if (prog->obj->loaded)
8551 return -EBUSY;
8552
8553 prog->log_buf = log_buf;
8554 prog->log_size = log_size;
8555 return 0;
8556}
8557
8558#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8559 .sec = sec_pfx, \
8560 .prog_type = BPF_PROG_TYPE_##ptype, \
8561 .expected_attach_type = atype, \
8562 .cookie = (long)(flags), \
8563 .preload_fn = libbpf_preload_prog, \
8564 __VA_ARGS__ \
8565}
8566
8567static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie);
8568static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie);
8569static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie);
8570static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie);
8571static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie);
8572static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie);
8573
8574static const struct bpf_sec_def section_defs[] = {
8575 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX),
8576 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8577 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8578 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe),
8579 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE),
8580 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe),
8581 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE),
8582 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8583 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX),
8584 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8585 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp),
8586 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp),
8587 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8588 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8589 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8590 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8591 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8592 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8593 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8594 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8595 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8596 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8597 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8598 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8599 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8600 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8601 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8602 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8603 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8604 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8605 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8606 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8607 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX),
8608 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8609 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8610 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX),
8611 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8612 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8613 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8614 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8615 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8616 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8617 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8618 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8619 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8620 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8621 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8622 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8623 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8624 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8625 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8626 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8627 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8628 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8629 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8630 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8631 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8632 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8633 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8634 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8635 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8636 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8637 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8638 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8639 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8640 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8641 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8642 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8643 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8644};
8645
8646#define MAX_TYPE_NAME_SIZE 32
8647
8648static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8649{
8650 const struct bpf_sec_def *sec_def;
8651 enum sec_def_flags sec_flags;
8652 int i, n = ARRAY_SIZE(section_defs), len;
8653 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME;
8654
8655 for (i = 0; i < n; i++) {
8656 sec_def = §ion_defs[i];
8657 sec_flags = sec_def->cookie;
8658 len = strlen(sec_def->sec);
8659
8660 /* "type/" always has to have proper SEC("type/extras") form */
8661 if (sec_def->sec[len - 1] == '/') {
8662 if (str_has_pfx(sec_name, sec_def->sec))
8663 return sec_def;
8664 continue;
8665 }
8666
8667 /* "type+" means it can be either exact SEC("type") or
8668 * well-formed SEC("type/extras") with proper '/' separator
8669 */
8670 if (sec_def->sec[len - 1] == '+') {
8671 len--;
8672 /* not even a prefix */
8673 if (strncmp(sec_name, sec_def->sec, len) != 0)
8674 continue;
8675 /* exact match or has '/' separator */
8676 if (sec_name[len] == '\0' || sec_name[len] == '/')
8677 return sec_def;
8678 continue;
8679 }
8680
8681 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix
8682 * matches, unless strict section name mode
8683 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the
8684 * match has to be exact.
8685 */
8686 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) {
8687 if (str_has_pfx(sec_name, sec_def->sec))
8688 return sec_def;
8689 continue;
8690 }
8691
8692 /* Definitions not marked SEC_SLOPPY_PFX (e.g.,
8693 * SEC("syscall")) are exact matches in both modes.
8694 */
8695 if (strcmp(sec_name, sec_def->sec) == 0)
8696 return sec_def;
8697 }
8698 return NULL;
8699}
8700
8701static char *libbpf_get_type_names(bool attach_type)
8702{
8703 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8704 char *buf;
8705
8706 buf = malloc(len);
8707 if (!buf)
8708 return NULL;
8709
8710 buf[0] = '\0';
8711 /* Forge string buf with all available names */
8712 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8713 const struct bpf_sec_def *sec_def = §ion_defs[i];
8714
8715 if (attach_type) {
8716 if (sec_def->preload_fn != libbpf_preload_prog)
8717 continue;
8718
8719 if (!(sec_def->cookie & SEC_ATTACHABLE))
8720 continue;
8721 }
8722
8723 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8724 free(buf);
8725 return NULL;
8726 }
8727 strcat(buf, " ");
8728 strcat(buf, section_defs[i].sec);
8729 }
8730
8731 return buf;
8732}
8733
8734int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8735 enum bpf_attach_type *expected_attach_type)
8736{
8737 const struct bpf_sec_def *sec_def;
8738 char *type_names;
8739
8740 if (!name)
8741 return libbpf_err(-EINVAL);
8742
8743 sec_def = find_sec_def(name);
8744 if (sec_def) {
8745 *prog_type = sec_def->prog_type;
8746 *expected_attach_type = sec_def->expected_attach_type;
8747 return 0;
8748 }
8749
8750 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8751 type_names = libbpf_get_type_names(false);
8752 if (type_names != NULL) {
8753 pr_debug("supported section(type) names are:%s\n", type_names);
8754 free(type_names);
8755 }
8756
8757 return libbpf_err(-ESRCH);
8758}
8759
8760static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8761 size_t offset)
8762{
8763 struct bpf_map *map;
8764 size_t i;
8765
8766 for (i = 0; i < obj->nr_maps; i++) {
8767 map = &obj->maps[i];
8768 if (!bpf_map__is_struct_ops(map))
8769 continue;
8770 if (map->sec_offset <= offset &&
8771 offset - map->sec_offset < map->def.value_size)
8772 return map;
8773 }
8774
8775 return NULL;
8776}
8777
8778/* Collect the reloc from ELF and populate the st_ops->progs[] */
8779static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8780 Elf64_Shdr *shdr, Elf_Data *data)
8781{
8782 const struct btf_member *member;
8783 struct bpf_struct_ops *st_ops;
8784 struct bpf_program *prog;
8785 unsigned int shdr_idx;
8786 const struct btf *btf;
8787 struct bpf_map *map;
8788 unsigned int moff, insn_idx;
8789 const char *name;
8790 __u32 member_idx;
8791 Elf64_Sym *sym;
8792 Elf64_Rel *rel;
8793 int i, nrels;
8794
8795 btf = obj->btf;
8796 nrels = shdr->sh_size / shdr->sh_entsize;
8797 for (i = 0; i < nrels; i++) {
8798 rel = elf_rel_by_idx(data, i);
8799 if (!rel) {
8800 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8801 return -LIBBPF_ERRNO__FORMAT;
8802 }
8803
8804 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8805 if (!sym) {
8806 pr_warn("struct_ops reloc: symbol %zx not found\n",
8807 (size_t)ELF64_R_SYM(rel->r_info));
8808 return -LIBBPF_ERRNO__FORMAT;
8809 }
8810
8811 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8812 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8813 if (!map) {
8814 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8815 (size_t)rel->r_offset);
8816 return -EINVAL;
8817 }
8818
8819 moff = rel->r_offset - map->sec_offset;
8820 shdr_idx = sym->st_shndx;
8821 st_ops = map->st_ops;
8822 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8823 map->name,
8824 (long long)(rel->r_info >> 32),
8825 (long long)sym->st_value,
8826 shdr_idx, (size_t)rel->r_offset,
8827 map->sec_offset, sym->st_name, name);
8828
8829 if (shdr_idx >= SHN_LORESERVE) {
8830 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8831 map->name, (size_t)rel->r_offset, shdr_idx);
8832 return -LIBBPF_ERRNO__RELOC;
8833 }
8834 if (sym->st_value % BPF_INSN_SZ) {
8835 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8836 map->name, (unsigned long long)sym->st_value);
8837 return -LIBBPF_ERRNO__FORMAT;
8838 }
8839 insn_idx = sym->st_value / BPF_INSN_SZ;
8840
8841 member = find_member_by_offset(st_ops->type, moff * 8);
8842 if (!member) {
8843 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8844 map->name, moff);
8845 return -EINVAL;
8846 }
8847 member_idx = member - btf_members(st_ops->type);
8848 name = btf__name_by_offset(btf, member->name_off);
8849
8850 if (!resolve_func_ptr(btf, member->type, NULL)) {
8851 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8852 map->name, name);
8853 return -EINVAL;
8854 }
8855
8856 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8857 if (!prog) {
8858 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8859 map->name, shdr_idx, name);
8860 return -EINVAL;
8861 }
8862
8863 /* prevent the use of BPF prog with invalid type */
8864 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8865 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8866 map->name, prog->name);
8867 return -EINVAL;
8868 }
8869
8870 /* if we haven't yet processed this BPF program, record proper
8871 * attach_btf_id and member_idx
8872 */
8873 if (!prog->attach_btf_id) {
8874 prog->attach_btf_id = st_ops->type_id;
8875 prog->expected_attach_type = member_idx;
8876 }
8877
8878 /* struct_ops BPF prog can be re-used between multiple
8879 * .struct_ops as long as it's the same struct_ops struct
8880 * definition and the same function pointer field
8881 */
8882 if (prog->attach_btf_id != st_ops->type_id ||
8883 prog->expected_attach_type != member_idx) {
8884 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8885 map->name, prog->name, prog->sec_name, prog->type,
8886 prog->attach_btf_id, prog->expected_attach_type, name);
8887 return -EINVAL;
8888 }
8889
8890 st_ops->progs[member_idx] = prog;
8891 }
8892
8893 return 0;
8894}
8895
8896#define BTF_TRACE_PREFIX "btf_trace_"
8897#define BTF_LSM_PREFIX "bpf_lsm_"
8898#define BTF_ITER_PREFIX "bpf_iter_"
8899#define BTF_MAX_NAME_SIZE 128
8900
8901void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8902 const char **prefix, int *kind)
8903{
8904 switch (attach_type) {
8905 case BPF_TRACE_RAW_TP:
8906 *prefix = BTF_TRACE_PREFIX;
8907 *kind = BTF_KIND_TYPEDEF;
8908 break;
8909 case BPF_LSM_MAC:
8910 *prefix = BTF_LSM_PREFIX;
8911 *kind = BTF_KIND_FUNC;
8912 break;
8913 case BPF_TRACE_ITER:
8914 *prefix = BTF_ITER_PREFIX;
8915 *kind = BTF_KIND_FUNC;
8916 break;
8917 default:
8918 *prefix = "";
8919 *kind = BTF_KIND_FUNC;
8920 }
8921}
8922
8923static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8924 const char *name, __u32 kind)
8925{
8926 char btf_type_name[BTF_MAX_NAME_SIZE];
8927 int ret;
8928
8929 ret = snprintf(btf_type_name, sizeof(btf_type_name),
8930 "%s%s", prefix, name);
8931 /* snprintf returns the number of characters written excluding the
8932 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8933 * indicates truncation.
8934 */
8935 if (ret < 0 || ret >= sizeof(btf_type_name))
8936 return -ENAMETOOLONG;
8937 return btf__find_by_name_kind(btf, btf_type_name, kind);
8938}
8939
8940static inline int find_attach_btf_id(struct btf *btf, const char *name,
8941 enum bpf_attach_type attach_type)
8942{
8943 const char *prefix;
8944 int kind;
8945
8946 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8947 return find_btf_by_prefix_kind(btf, prefix, name, kind);
8948}
8949
8950int libbpf_find_vmlinux_btf_id(const char *name,
8951 enum bpf_attach_type attach_type)
8952{
8953 struct btf *btf;
8954 int err;
8955
8956 btf = btf__load_vmlinux_btf();
8957 err = libbpf_get_error(btf);
8958 if (err) {
8959 pr_warn("vmlinux BTF is not found\n");
8960 return libbpf_err(err);
8961 }
8962
8963 err = find_attach_btf_id(btf, name, attach_type);
8964 if (err <= 0)
8965 pr_warn("%s is not found in vmlinux BTF\n", name);
8966
8967 btf__free(btf);
8968 return libbpf_err(err);
8969}
8970
8971static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8972{
8973 struct bpf_prog_info info = {};
8974 __u32 info_len = sizeof(info);
8975 struct btf *btf;
8976 int err;
8977
8978 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
8979 if (err) {
8980 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
8981 attach_prog_fd, err);
8982 return err;
8983 }
8984
8985 err = -EINVAL;
8986 if (!info.btf_id) {
8987 pr_warn("The target program doesn't have BTF\n");
8988 goto out;
8989 }
8990 btf = btf__load_from_kernel_by_id(info.btf_id);
8991 err = libbpf_get_error(btf);
8992 if (err) {
8993 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
8994 goto out;
8995 }
8996 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8997 btf__free(btf);
8998 if (err <= 0) {
8999 pr_warn("%s is not found in prog's BTF\n", name);
9000 goto out;
9001 }
9002out:
9003 return err;
9004}
9005
9006static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9007 enum bpf_attach_type attach_type,
9008 int *btf_obj_fd, int *btf_type_id)
9009{
9010 int ret, i;
9011
9012 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9013 if (ret > 0) {
9014 *btf_obj_fd = 0; /* vmlinux BTF */
9015 *btf_type_id = ret;
9016 return 0;
9017 }
9018 if (ret != -ENOENT)
9019 return ret;
9020
9021 ret = load_module_btfs(obj);
9022 if (ret)
9023 return ret;
9024
9025 for (i = 0; i < obj->btf_module_cnt; i++) {
9026 const struct module_btf *mod = &obj->btf_modules[i];
9027
9028 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9029 if (ret > 0) {
9030 *btf_obj_fd = mod->fd;
9031 *btf_type_id = ret;
9032 return 0;
9033 }
9034 if (ret == -ENOENT)
9035 continue;
9036
9037 return ret;
9038 }
9039
9040 return -ESRCH;
9041}
9042
9043static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9044 int *btf_obj_fd, int *btf_type_id)
9045{
9046 enum bpf_attach_type attach_type = prog->expected_attach_type;
9047 __u32 attach_prog_fd = prog->attach_prog_fd;
9048 int err = 0;
9049
9050 /* BPF program's BTF ID */
9051 if (attach_prog_fd) {
9052 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9053 if (err < 0) {
9054 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9055 attach_prog_fd, attach_name, err);
9056 return err;
9057 }
9058 *btf_obj_fd = 0;
9059 *btf_type_id = err;
9060 return 0;
9061 }
9062
9063 /* kernel/module BTF ID */
9064 if (prog->obj->gen_loader) {
9065 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9066 *btf_obj_fd = 0;
9067 *btf_type_id = 1;
9068 } else {
9069 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9070 }
9071 if (err) {
9072 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9073 return err;
9074 }
9075 return 0;
9076}
9077
9078int libbpf_attach_type_by_name(const char *name,
9079 enum bpf_attach_type *attach_type)
9080{
9081 char *type_names;
9082 const struct bpf_sec_def *sec_def;
9083
9084 if (!name)
9085 return libbpf_err(-EINVAL);
9086
9087 sec_def = find_sec_def(name);
9088 if (!sec_def) {
9089 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9090 type_names = libbpf_get_type_names(true);
9091 if (type_names != NULL) {
9092 pr_debug("attachable section(type) names are:%s\n", type_names);
9093 free(type_names);
9094 }
9095
9096 return libbpf_err(-EINVAL);
9097 }
9098
9099 if (sec_def->preload_fn != libbpf_preload_prog)
9100 return libbpf_err(-EINVAL);
9101 if (!(sec_def->cookie & SEC_ATTACHABLE))
9102 return libbpf_err(-EINVAL);
9103
9104 *attach_type = sec_def->expected_attach_type;
9105 return 0;
9106}
9107
9108int bpf_map__fd(const struct bpf_map *map)
9109{
9110 return map ? map->fd : libbpf_err(-EINVAL);
9111}
9112
9113const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9114{
9115 return map ? &map->def : libbpf_err_ptr(-EINVAL);
9116}
9117
9118static bool map_uses_real_name(const struct bpf_map *map)
9119{
9120 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9121 * their user-visible name differs from kernel-visible name. Users see
9122 * such map's corresponding ELF section name as a map name.
9123 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9124 * maps to know which name has to be returned to the user.
9125 */
9126 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9127 return true;
9128 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9129 return true;
9130 return false;
9131}
9132
9133const char *bpf_map__name(const struct bpf_map *map)
9134{
9135 if (!map)
9136 return NULL;
9137
9138 if (map_uses_real_name(map))
9139 return map->real_name;
9140
9141 return map->name;
9142}
9143
9144enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9145{
9146 return map->def.type;
9147}
9148
9149int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9150{
9151 if (map->fd >= 0)
9152 return libbpf_err(-EBUSY);
9153 map->def.type = type;
9154 return 0;
9155}
9156
9157__u32 bpf_map__map_flags(const struct bpf_map *map)
9158{
9159 return map->def.map_flags;
9160}
9161
9162int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9163{
9164 if (map->fd >= 0)
9165 return libbpf_err(-EBUSY);
9166 map->def.map_flags = flags;
9167 return 0;
9168}
9169
9170__u64 bpf_map__map_extra(const struct bpf_map *map)
9171{
9172 return map->map_extra;
9173}
9174
9175int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9176{
9177 if (map->fd >= 0)
9178 return libbpf_err(-EBUSY);
9179 map->map_extra = map_extra;
9180 return 0;
9181}
9182
9183__u32 bpf_map__numa_node(const struct bpf_map *map)
9184{
9185 return map->numa_node;
9186}
9187
9188int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9189{
9190 if (map->fd >= 0)
9191 return libbpf_err(-EBUSY);
9192 map->numa_node = numa_node;
9193 return 0;
9194}
9195
9196__u32 bpf_map__key_size(const struct bpf_map *map)
9197{
9198 return map->def.key_size;
9199}
9200
9201int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9202{
9203 if (map->fd >= 0)
9204 return libbpf_err(-EBUSY);
9205 map->def.key_size = size;
9206 return 0;
9207}
9208
9209__u32 bpf_map__value_size(const struct bpf_map *map)
9210{
9211 return map->def.value_size;
9212}
9213
9214int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9215{
9216 if (map->fd >= 0)
9217 return libbpf_err(-EBUSY);
9218 map->def.value_size = size;
9219 return 0;
9220}
9221
9222__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9223{
9224 return map ? map->btf_key_type_id : 0;
9225}
9226
9227__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9228{
9229 return map ? map->btf_value_type_id : 0;
9230}
9231
9232int bpf_map__set_priv(struct bpf_map *map, void *priv,
9233 bpf_map_clear_priv_t clear_priv)
9234{
9235 if (!map)
9236 return libbpf_err(-EINVAL);
9237
9238 if (map->priv) {
9239 if (map->clear_priv)
9240 map->clear_priv(map, map->priv);
9241 }
9242
9243 map->priv = priv;
9244 map->clear_priv = clear_priv;
9245 return 0;
9246}
9247
9248void *bpf_map__priv(const struct bpf_map *map)
9249{
9250 return map ? map->priv : libbpf_err_ptr(-EINVAL);
9251}
9252
9253int bpf_map__set_initial_value(struct bpf_map *map,
9254 const void *data, size_t size)
9255{
9256 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9257 size != map->def.value_size || map->fd >= 0)
9258 return libbpf_err(-EINVAL);
9259
9260 memcpy(map->mmaped, data, size);
9261 return 0;
9262}
9263
9264const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9265{
9266 if (!map->mmaped)
9267 return NULL;
9268 *psize = map->def.value_size;
9269 return map->mmaped;
9270}
9271
9272bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9273{
9274 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9275}
9276
9277bool bpf_map__is_internal(const struct bpf_map *map)
9278{
9279 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9280}
9281
9282__u32 bpf_map__ifindex(const struct bpf_map *map)
9283{
9284 return map->map_ifindex;
9285}
9286
9287int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9288{
9289 if (map->fd >= 0)
9290 return libbpf_err(-EBUSY);
9291 map->map_ifindex = ifindex;
9292 return 0;
9293}
9294
9295int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9296{
9297 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9298 pr_warn("error: unsupported map type\n");
9299 return libbpf_err(-EINVAL);
9300 }
9301 if (map->inner_map_fd != -1) {
9302 pr_warn("error: inner_map_fd already specified\n");
9303 return libbpf_err(-EINVAL);
9304 }
9305 if (map->inner_map) {
9306 bpf_map__destroy(map->inner_map);
9307 zfree(&map->inner_map);
9308 }
9309 map->inner_map_fd = fd;
9310 return 0;
9311}
9312
9313static struct bpf_map *
9314__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9315{
9316 ssize_t idx;
9317 struct bpf_map *s, *e;
9318
9319 if (!obj || !obj->maps)
9320 return errno = EINVAL, NULL;
9321
9322 s = obj->maps;
9323 e = obj->maps + obj->nr_maps;
9324
9325 if ((m < s) || (m >= e)) {
9326 pr_warn("error in %s: map handler doesn't belong to object\n",
9327 __func__);
9328 return errno = EINVAL, NULL;
9329 }
9330
9331 idx = (m - obj->maps) + i;
9332 if (idx >= obj->nr_maps || idx < 0)
9333 return NULL;
9334 return &obj->maps[idx];
9335}
9336
9337struct bpf_map *
9338bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9339{
9340 return bpf_object__next_map(obj, prev);
9341}
9342
9343struct bpf_map *
9344bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9345{
9346 if (prev == NULL)
9347 return obj->maps;
9348
9349 return __bpf_map__iter(prev, obj, 1);
9350}
9351
9352struct bpf_map *
9353bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9354{
9355 return bpf_object__prev_map(obj, next);
9356}
9357
9358struct bpf_map *
9359bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9360{
9361 if (next == NULL) {
9362 if (!obj->nr_maps)
9363 return NULL;
9364 return obj->maps + obj->nr_maps - 1;
9365 }
9366
9367 return __bpf_map__iter(next, obj, -1);
9368}
9369
9370struct bpf_map *
9371bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9372{
9373 struct bpf_map *pos;
9374
9375 bpf_object__for_each_map(pos, obj) {
9376 /* if it's a special internal map name (which always starts
9377 * with dot) then check if that special name matches the
9378 * real map name (ELF section name)
9379 */
9380 if (name[0] == '.') {
9381 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9382 return pos;
9383 continue;
9384 }
9385 /* otherwise map name has to be an exact match */
9386 if (map_uses_real_name(pos)) {
9387 if (strcmp(pos->real_name, name) == 0)
9388 return pos;
9389 continue;
9390 }
9391 if (strcmp(pos->name, name) == 0)
9392 return pos;
9393 }
9394 return errno = ENOENT, NULL;
9395}
9396
9397int
9398bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9399{
9400 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9401}
9402
9403struct bpf_map *
9404bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9405{
9406 return libbpf_err_ptr(-ENOTSUP);
9407}
9408
9409long libbpf_get_error(const void *ptr)
9410{
9411 if (!IS_ERR_OR_NULL(ptr))
9412 return 0;
9413
9414 if (IS_ERR(ptr))
9415 errno = -PTR_ERR(ptr);
9416
9417 /* If ptr == NULL, then errno should be already set by the failing
9418 * API, because libbpf never returns NULL on success and it now always
9419 * sets errno on error. So no extra errno handling for ptr == NULL
9420 * case.
9421 */
9422 return -errno;
9423}
9424
9425__attribute__((alias("bpf_prog_load_xattr2")))
9426int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9427 struct bpf_object **pobj, int *prog_fd);
9428
9429static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr,
9430 struct bpf_object **pobj, int *prog_fd)
9431{
9432 struct bpf_object_open_attr open_attr = {};
9433 struct bpf_program *prog, *first_prog = NULL;
9434 struct bpf_object *obj;
9435 struct bpf_map *map;
9436 int err;
9437
9438 if (!attr)
9439 return libbpf_err(-EINVAL);
9440 if (!attr->file)
9441 return libbpf_err(-EINVAL);
9442
9443 open_attr.file = attr->file;
9444 open_attr.prog_type = attr->prog_type;
9445
9446 obj = bpf_object__open_xattr(&open_attr);
9447 err = libbpf_get_error(obj);
9448 if (err)
9449 return libbpf_err(-ENOENT);
9450
9451 bpf_object__for_each_program(prog, obj) {
9452 enum bpf_attach_type attach_type = attr->expected_attach_type;
9453 /*
9454 * to preserve backwards compatibility, bpf_prog_load treats
9455 * attr->prog_type, if specified, as an override to whatever
9456 * bpf_object__open guessed
9457 */
9458 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9459 bpf_program__set_type(prog, attr->prog_type);
9460 bpf_program__set_expected_attach_type(prog,
9461 attach_type);
9462 }
9463 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9464 /*
9465 * we haven't guessed from section name and user
9466 * didn't provide a fallback type, too bad...
9467 */
9468 bpf_object__close(obj);
9469 return libbpf_err(-EINVAL);
9470 }
9471
9472 prog->prog_ifindex = attr->ifindex;
9473 prog->log_level = attr->log_level;
9474 prog->prog_flags |= attr->prog_flags;
9475 if (!first_prog)
9476 first_prog = prog;
9477 }
9478
9479 bpf_object__for_each_map(map, obj) {
9480 if (!bpf_map__is_offload_neutral(map))
9481 map->map_ifindex = attr->ifindex;
9482 }
9483
9484 if (!first_prog) {
9485 pr_warn("object file doesn't contain bpf program\n");
9486 bpf_object__close(obj);
9487 return libbpf_err(-ENOENT);
9488 }
9489
9490 err = bpf_object__load(obj);
9491 if (err) {
9492 bpf_object__close(obj);
9493 return libbpf_err(err);
9494 }
9495
9496 *pobj = obj;
9497 *prog_fd = bpf_program__fd(first_prog);
9498 return 0;
9499}
9500
9501COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1)
9502int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type,
9503 struct bpf_object **pobj, int *prog_fd)
9504{
9505 struct bpf_prog_load_attr attr;
9506
9507 memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9508 attr.file = file;
9509 attr.prog_type = type;
9510 attr.expected_attach_type = 0;
9511
9512 return bpf_prog_load_xattr2(&attr, pobj, prog_fd);
9513}
9514
9515struct bpf_link {
9516 int (*detach)(struct bpf_link *link);
9517 void (*dealloc)(struct bpf_link *link);
9518 char *pin_path; /* NULL, if not pinned */
9519 int fd; /* hook FD, -1 if not applicable */
9520 bool disconnected;
9521};
9522
9523/* Replace link's underlying BPF program with the new one */
9524int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9525{
9526 int ret;
9527
9528 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9529 return libbpf_err_errno(ret);
9530}
9531
9532/* Release "ownership" of underlying BPF resource (typically, BPF program
9533 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9534 * link, when destructed through bpf_link__destroy() call won't attempt to
9535 * detach/unregisted that BPF resource. This is useful in situations where,
9536 * say, attached BPF program has to outlive userspace program that attached it
9537 * in the system. Depending on type of BPF program, though, there might be
9538 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9539 * exit of userspace program doesn't trigger automatic detachment and clean up
9540 * inside the kernel.
9541 */
9542void bpf_link__disconnect(struct bpf_link *link)
9543{
9544 link->disconnected = true;
9545}
9546
9547int bpf_link__destroy(struct bpf_link *link)
9548{
9549 int err = 0;
9550
9551 if (IS_ERR_OR_NULL(link))
9552 return 0;
9553
9554 if (!link->disconnected && link->detach)
9555 err = link->detach(link);
9556 if (link->pin_path)
9557 free(link->pin_path);
9558 if (link->dealloc)
9559 link->dealloc(link);
9560 else
9561 free(link);
9562
9563 return libbpf_err(err);
9564}
9565
9566int bpf_link__fd(const struct bpf_link *link)
9567{
9568 return link->fd;
9569}
9570
9571const char *bpf_link__pin_path(const struct bpf_link *link)
9572{
9573 return link->pin_path;
9574}
9575
9576static int bpf_link__detach_fd(struct bpf_link *link)
9577{
9578 return libbpf_err_errno(close(link->fd));
9579}
9580
9581struct bpf_link *bpf_link__open(const char *path)
9582{
9583 struct bpf_link *link;
9584 int fd;
9585
9586 fd = bpf_obj_get(path);
9587 if (fd < 0) {
9588 fd = -errno;
9589 pr_warn("failed to open link at %s: %d\n", path, fd);
9590 return libbpf_err_ptr(fd);
9591 }
9592
9593 link = calloc(1, sizeof(*link));
9594 if (!link) {
9595 close(fd);
9596 return libbpf_err_ptr(-ENOMEM);
9597 }
9598 link->detach = &bpf_link__detach_fd;
9599 link->fd = fd;
9600
9601 link->pin_path = strdup(path);
9602 if (!link->pin_path) {
9603 bpf_link__destroy(link);
9604 return libbpf_err_ptr(-ENOMEM);
9605 }
9606
9607 return link;
9608}
9609
9610int bpf_link__detach(struct bpf_link *link)
9611{
9612 return bpf_link_detach(link->fd) ? -errno : 0;
9613}
9614
9615int bpf_link__pin(struct bpf_link *link, const char *path)
9616{
9617 int err;
9618
9619 if (link->pin_path)
9620 return libbpf_err(-EBUSY);
9621 err = make_parent_dir(path);
9622 if (err)
9623 return libbpf_err(err);
9624 err = check_path(path);
9625 if (err)
9626 return libbpf_err(err);
9627
9628 link->pin_path = strdup(path);
9629 if (!link->pin_path)
9630 return libbpf_err(-ENOMEM);
9631
9632 if (bpf_obj_pin(link->fd, link->pin_path)) {
9633 err = -errno;
9634 zfree(&link->pin_path);
9635 return libbpf_err(err);
9636 }
9637
9638 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9639 return 0;
9640}
9641
9642int bpf_link__unpin(struct bpf_link *link)
9643{
9644 int err;
9645
9646 if (!link->pin_path)
9647 return libbpf_err(-EINVAL);
9648
9649 err = unlink(link->pin_path);
9650 if (err != 0)
9651 return -errno;
9652
9653 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9654 zfree(&link->pin_path);
9655 return 0;
9656}
9657
9658struct bpf_link_perf {
9659 struct bpf_link link;
9660 int perf_event_fd;
9661 /* legacy kprobe support: keep track of probe identifier and type */
9662 char *legacy_probe_name;
9663 bool legacy_is_kprobe;
9664 bool legacy_is_retprobe;
9665};
9666
9667static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9668static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9669
9670static int bpf_link_perf_detach(struct bpf_link *link)
9671{
9672 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9673 int err = 0;
9674
9675 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9676 err = -errno;
9677
9678 if (perf_link->perf_event_fd != link->fd)
9679 close(perf_link->perf_event_fd);
9680 close(link->fd);
9681
9682 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9683 if (perf_link->legacy_probe_name) {
9684 if (perf_link->legacy_is_kprobe) {
9685 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9686 perf_link->legacy_is_retprobe);
9687 } else {
9688 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9689 perf_link->legacy_is_retprobe);
9690 }
9691 }
9692
9693 return err;
9694}
9695
9696static void bpf_link_perf_dealloc(struct bpf_link *link)
9697{
9698 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9699
9700 free(perf_link->legacy_probe_name);
9701 free(perf_link);
9702}
9703
9704struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9705 const struct bpf_perf_event_opts *opts)
9706{
9707 char errmsg[STRERR_BUFSIZE];
9708 struct bpf_link_perf *link;
9709 int prog_fd, link_fd = -1, err;
9710
9711 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9712 return libbpf_err_ptr(-EINVAL);
9713
9714 if (pfd < 0) {
9715 pr_warn("prog '%s': invalid perf event FD %d\n",
9716 prog->name, pfd);
9717 return libbpf_err_ptr(-EINVAL);
9718 }
9719 prog_fd = bpf_program__fd(prog);
9720 if (prog_fd < 0) {
9721 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9722 prog->name);
9723 return libbpf_err_ptr(-EINVAL);
9724 }
9725
9726 link = calloc(1, sizeof(*link));
9727 if (!link)
9728 return libbpf_err_ptr(-ENOMEM);
9729 link->link.detach = &bpf_link_perf_detach;
9730 link->link.dealloc = &bpf_link_perf_dealloc;
9731 link->perf_event_fd = pfd;
9732
9733 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9734 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9735 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9736
9737 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9738 if (link_fd < 0) {
9739 err = -errno;
9740 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9741 prog->name, pfd,
9742 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9743 goto err_out;
9744 }
9745 link->link.fd = link_fd;
9746 } else {
9747 if (OPTS_GET(opts, bpf_cookie, 0)) {
9748 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9749 err = -EOPNOTSUPP;
9750 goto err_out;
9751 }
9752
9753 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9754 err = -errno;
9755 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9756 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9757 if (err == -EPROTO)
9758 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9759 prog->name, pfd);
9760 goto err_out;
9761 }
9762 link->link.fd = pfd;
9763 }
9764 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9765 err = -errno;
9766 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9767 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9768 goto err_out;
9769 }
9770
9771 return &link->link;
9772err_out:
9773 if (link_fd >= 0)
9774 close(link_fd);
9775 free(link);
9776 return libbpf_err_ptr(err);
9777}
9778
9779struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9780{
9781 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9782}
9783
9784/*
9785 * this function is expected to parse integer in the range of [0, 2^31-1] from
9786 * given file using scanf format string fmt. If actual parsed value is
9787 * negative, the result might be indistinguishable from error
9788 */
9789static int parse_uint_from_file(const char *file, const char *fmt)
9790{
9791 char buf[STRERR_BUFSIZE];
9792 int err, ret;
9793 FILE *f;
9794
9795 f = fopen(file, "r");
9796 if (!f) {
9797 err = -errno;
9798 pr_debug("failed to open '%s': %s\n", file,
9799 libbpf_strerror_r(err, buf, sizeof(buf)));
9800 return err;
9801 }
9802 err = fscanf(f, fmt, &ret);
9803 if (err != 1) {
9804 err = err == EOF ? -EIO : -errno;
9805 pr_debug("failed to parse '%s': %s\n", file,
9806 libbpf_strerror_r(err, buf, sizeof(buf)));
9807 fclose(f);
9808 return err;
9809 }
9810 fclose(f);
9811 return ret;
9812}
9813
9814static int determine_kprobe_perf_type(void)
9815{
9816 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9817
9818 return parse_uint_from_file(file, "%d\n");
9819}
9820
9821static int determine_uprobe_perf_type(void)
9822{
9823 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9824
9825 return parse_uint_from_file(file, "%d\n");
9826}
9827
9828static int determine_kprobe_retprobe_bit(void)
9829{
9830 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9831
9832 return parse_uint_from_file(file, "config:%d\n");
9833}
9834
9835static int determine_uprobe_retprobe_bit(void)
9836{
9837 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9838
9839 return parse_uint_from_file(file, "config:%d\n");
9840}
9841
9842#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9843#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9844
9845static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9846 uint64_t offset, int pid, size_t ref_ctr_off)
9847{
9848 struct perf_event_attr attr = {};
9849 char errmsg[STRERR_BUFSIZE];
9850 int type, pfd, err;
9851
9852 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9853 return -EINVAL;
9854
9855 type = uprobe ? determine_uprobe_perf_type()
9856 : determine_kprobe_perf_type();
9857 if (type < 0) {
9858 pr_warn("failed to determine %s perf type: %s\n",
9859 uprobe ? "uprobe" : "kprobe",
9860 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9861 return type;
9862 }
9863 if (retprobe) {
9864 int bit = uprobe ? determine_uprobe_retprobe_bit()
9865 : determine_kprobe_retprobe_bit();
9866
9867 if (bit < 0) {
9868 pr_warn("failed to determine %s retprobe bit: %s\n",
9869 uprobe ? "uprobe" : "kprobe",
9870 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9871 return bit;
9872 }
9873 attr.config |= 1 << bit;
9874 }
9875 attr.size = sizeof(attr);
9876 attr.type = type;
9877 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9878 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9879 attr.config2 = offset; /* kprobe_addr or probe_offset */
9880
9881 /* pid filter is meaningful only for uprobes */
9882 pfd = syscall(__NR_perf_event_open, &attr,
9883 pid < 0 ? -1 : pid /* pid */,
9884 pid == -1 ? 0 : -1 /* cpu */,
9885 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9886 if (pfd < 0) {
9887 err = -errno;
9888 pr_warn("%s perf_event_open() failed: %s\n",
9889 uprobe ? "uprobe" : "kprobe",
9890 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9891 return err;
9892 }
9893 return pfd;
9894}
9895
9896static int append_to_file(const char *file, const char *fmt, ...)
9897{
9898 int fd, n, err = 0;
9899 va_list ap;
9900
9901 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9902 if (fd < 0)
9903 return -errno;
9904
9905 va_start(ap, fmt);
9906 n = vdprintf(fd, fmt, ap);
9907 va_end(ap);
9908
9909 if (n < 0)
9910 err = -errno;
9911
9912 close(fd);
9913 return err;
9914}
9915
9916static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9917 const char *kfunc_name, size_t offset)
9918{
9919 static int index = 0;
9920
9921 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9922 __sync_fetch_and_add(&index, 1));
9923}
9924
9925static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9926 const char *kfunc_name, size_t offset)
9927{
9928 const char *file = "/sys/kernel/debug/tracing/kprobe_events";
9929
9930 return append_to_file(file, "%c:%s/%s %s+0x%zx",
9931 retprobe ? 'r' : 'p',
9932 retprobe ? "kretprobes" : "kprobes",
9933 probe_name, kfunc_name, offset);
9934}
9935
9936static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9937{
9938 const char *file = "/sys/kernel/debug/tracing/kprobe_events";
9939
9940 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name);
9941}
9942
9943static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9944{
9945 char file[256];
9946
9947 snprintf(file, sizeof(file),
9948 "/sys/kernel/debug/tracing/events/%s/%s/id",
9949 retprobe ? "kretprobes" : "kprobes", probe_name);
9950
9951 return parse_uint_from_file(file, "%d\n");
9952}
9953
9954static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9955 const char *kfunc_name, size_t offset, int pid)
9956{
9957 struct perf_event_attr attr = {};
9958 char errmsg[STRERR_BUFSIZE];
9959 int type, pfd, err;
9960
9961 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9962 if (err < 0) {
9963 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9964 kfunc_name, offset,
9965 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9966 return err;
9967 }
9968 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9969 if (type < 0) {
9970 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9971 kfunc_name, offset,
9972 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9973 return type;
9974 }
9975 attr.size = sizeof(attr);
9976 attr.config = type;
9977 attr.type = PERF_TYPE_TRACEPOINT;
9978
9979 pfd = syscall(__NR_perf_event_open, &attr,
9980 pid < 0 ? -1 : pid, /* pid */
9981 pid == -1 ? 0 : -1, /* cpu */
9982 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9983 if (pfd < 0) {
9984 err = -errno;
9985 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
9986 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9987 return err;
9988 }
9989 return pfd;
9990}
9991
9992struct bpf_link *
9993bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
9994 const char *func_name,
9995 const struct bpf_kprobe_opts *opts)
9996{
9997 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
9998 char errmsg[STRERR_BUFSIZE];
9999 char *legacy_probe = NULL;
10000 struct bpf_link *link;
10001 size_t offset;
10002 bool retprobe, legacy;
10003 int pfd, err;
10004
10005 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10006 return libbpf_err_ptr(-EINVAL);
10007
10008 retprobe = OPTS_GET(opts, retprobe, false);
10009 offset = OPTS_GET(opts, offset, 0);
10010 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10011
10012 legacy = determine_kprobe_perf_type() < 0;
10013 if (!legacy) {
10014 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10015 func_name, offset,
10016 -1 /* pid */, 0 /* ref_ctr_off */);
10017 } else {
10018 char probe_name[256];
10019
10020 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10021 func_name, offset);
10022
10023 legacy_probe = strdup(probe_name);
10024 if (!legacy_probe)
10025 return libbpf_err_ptr(-ENOMEM);
10026
10027 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10028 offset, -1 /* pid */);
10029 }
10030 if (pfd < 0) {
10031 err = -errno;
10032 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10033 prog->name, retprobe ? "kretprobe" : "kprobe",
10034 func_name, offset,
10035 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10036 goto err_out;
10037 }
10038 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10039 err = libbpf_get_error(link);
10040 if (err) {
10041 close(pfd);
10042 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10043 prog->name, retprobe ? "kretprobe" : "kprobe",
10044 func_name, offset,
10045 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10046 goto err_out;
10047 }
10048 if (legacy) {
10049 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10050
10051 perf_link->legacy_probe_name = legacy_probe;
10052 perf_link->legacy_is_kprobe = true;
10053 perf_link->legacy_is_retprobe = retprobe;
10054 }
10055
10056 return link;
10057err_out:
10058 free(legacy_probe);
10059 return libbpf_err_ptr(err);
10060}
10061
10062struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10063 bool retprobe,
10064 const char *func_name)
10065{
10066 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10067 .retprobe = retprobe,
10068 );
10069
10070 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10071}
10072
10073static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie)
10074{
10075 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10076 unsigned long offset = 0;
10077 struct bpf_link *link;
10078 const char *func_name;
10079 char *func;
10080 int n, err;
10081
10082 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10083 if (opts.retprobe)
10084 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10085 else
10086 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10087
10088 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10089 if (n < 1) {
10090 err = -EINVAL;
10091 pr_warn("kprobe name is invalid: %s\n", func_name);
10092 return libbpf_err_ptr(err);
10093 }
10094 if (opts.retprobe && offset != 0) {
10095 free(func);
10096 err = -EINVAL;
10097 pr_warn("kretprobes do not support offset specification\n");
10098 return libbpf_err_ptr(err);
10099 }
10100
10101 opts.offset = offset;
10102 link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10103 free(func);
10104 return link;
10105}
10106
10107static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10108 const char *binary_path, uint64_t offset)
10109{
10110 int i;
10111
10112 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10113
10114 /* sanitize binary_path in the probe name */
10115 for (i = 0; buf[i]; i++) {
10116 if (!isalnum(buf[i]))
10117 buf[i] = '_';
10118 }
10119}
10120
10121static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10122 const char *binary_path, size_t offset)
10123{
10124 const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10125
10126 return append_to_file(file, "%c:%s/%s %s:0x%zx",
10127 retprobe ? 'r' : 'p',
10128 retprobe ? "uretprobes" : "uprobes",
10129 probe_name, binary_path, offset);
10130}
10131
10132static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10133{
10134 const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10135
10136 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name);
10137}
10138
10139static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10140{
10141 char file[512];
10142
10143 snprintf(file, sizeof(file),
10144 "/sys/kernel/debug/tracing/events/%s/%s/id",
10145 retprobe ? "uretprobes" : "uprobes", probe_name);
10146
10147 return parse_uint_from_file(file, "%d\n");
10148}
10149
10150static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10151 const char *binary_path, size_t offset, int pid)
10152{
10153 struct perf_event_attr attr;
10154 int type, pfd, err;
10155
10156 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10157 if (err < 0) {
10158 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10159 binary_path, (size_t)offset, err);
10160 return err;
10161 }
10162 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10163 if (type < 0) {
10164 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10165 binary_path, offset, err);
10166 return type;
10167 }
10168
10169 memset(&attr, 0, sizeof(attr));
10170 attr.size = sizeof(attr);
10171 attr.config = type;
10172 attr.type = PERF_TYPE_TRACEPOINT;
10173
10174 pfd = syscall(__NR_perf_event_open, &attr,
10175 pid < 0 ? -1 : pid, /* pid */
10176 pid == -1 ? 0 : -1, /* cpu */
10177 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10178 if (pfd < 0) {
10179 err = -errno;
10180 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10181 return err;
10182 }
10183 return pfd;
10184}
10185
10186LIBBPF_API struct bpf_link *
10187bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10188 const char *binary_path, size_t func_offset,
10189 const struct bpf_uprobe_opts *opts)
10190{
10191 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10192 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10193 struct bpf_link *link;
10194 size_t ref_ctr_off;
10195 int pfd, err;
10196 bool retprobe, legacy;
10197
10198 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10199 return libbpf_err_ptr(-EINVAL);
10200
10201 retprobe = OPTS_GET(opts, retprobe, false);
10202 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10203 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10204
10205 legacy = determine_uprobe_perf_type() < 0;
10206 if (!legacy) {
10207 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10208 func_offset, pid, ref_ctr_off);
10209 } else {
10210 char probe_name[512];
10211
10212 if (ref_ctr_off)
10213 return libbpf_err_ptr(-EINVAL);
10214
10215 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10216 binary_path, func_offset);
10217
10218 legacy_probe = strdup(probe_name);
10219 if (!legacy_probe)
10220 return libbpf_err_ptr(-ENOMEM);
10221
10222 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10223 binary_path, func_offset, pid);
10224 }
10225 if (pfd < 0) {
10226 err = -errno;
10227 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10228 prog->name, retprobe ? "uretprobe" : "uprobe",
10229 binary_path, func_offset,
10230 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10231 goto err_out;
10232 }
10233
10234 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10235 err = libbpf_get_error(link);
10236 if (err) {
10237 close(pfd);
10238 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10239 prog->name, retprobe ? "uretprobe" : "uprobe",
10240 binary_path, func_offset,
10241 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10242 goto err_out;
10243 }
10244 if (legacy) {
10245 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10246
10247 perf_link->legacy_probe_name = legacy_probe;
10248 perf_link->legacy_is_kprobe = false;
10249 perf_link->legacy_is_retprobe = retprobe;
10250 }
10251 return link;
10252err_out:
10253 free(legacy_probe);
10254 return libbpf_err_ptr(err);
10255
10256}
10257
10258struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10259 bool retprobe, pid_t pid,
10260 const char *binary_path,
10261 size_t func_offset)
10262{
10263 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10264
10265 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10266}
10267
10268static int determine_tracepoint_id(const char *tp_category,
10269 const char *tp_name)
10270{
10271 char file[PATH_MAX];
10272 int ret;
10273
10274 ret = snprintf(file, sizeof(file),
10275 "/sys/kernel/debug/tracing/events/%s/%s/id",
10276 tp_category, tp_name);
10277 if (ret < 0)
10278 return -errno;
10279 if (ret >= sizeof(file)) {
10280 pr_debug("tracepoint %s/%s path is too long\n",
10281 tp_category, tp_name);
10282 return -E2BIG;
10283 }
10284 return parse_uint_from_file(file, "%d\n");
10285}
10286
10287static int perf_event_open_tracepoint(const char *tp_category,
10288 const char *tp_name)
10289{
10290 struct perf_event_attr attr = {};
10291 char errmsg[STRERR_BUFSIZE];
10292 int tp_id, pfd, err;
10293
10294 tp_id = determine_tracepoint_id(tp_category, tp_name);
10295 if (tp_id < 0) {
10296 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10297 tp_category, tp_name,
10298 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10299 return tp_id;
10300 }
10301
10302 attr.type = PERF_TYPE_TRACEPOINT;
10303 attr.size = sizeof(attr);
10304 attr.config = tp_id;
10305
10306 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10307 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10308 if (pfd < 0) {
10309 err = -errno;
10310 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10311 tp_category, tp_name,
10312 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10313 return err;
10314 }
10315 return pfd;
10316}
10317
10318struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
10319 const char *tp_category,
10320 const char *tp_name,
10321 const struct bpf_tracepoint_opts *opts)
10322{
10323 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10324 char errmsg[STRERR_BUFSIZE];
10325 struct bpf_link *link;
10326 int pfd, err;
10327
10328 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
10329 return libbpf_err_ptr(-EINVAL);
10330
10331 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10332
10333 pfd = perf_event_open_tracepoint(tp_category, tp_name);
10334 if (pfd < 0) {
10335 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10336 prog->name, tp_category, tp_name,
10337 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10338 return libbpf_err_ptr(pfd);
10339 }
10340 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10341 err = libbpf_get_error(link);
10342 if (err) {
10343 close(pfd);
10344 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10345 prog->name, tp_category, tp_name,
10346 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10347 return libbpf_err_ptr(err);
10348 }
10349 return link;
10350}
10351
10352struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
10353 const char *tp_category,
10354 const char *tp_name)
10355{
10356 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
10357}
10358
10359static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie)
10360{
10361 char *sec_name, *tp_cat, *tp_name;
10362 struct bpf_link *link;
10363
10364 sec_name = strdup(prog->sec_name);
10365 if (!sec_name)
10366 return libbpf_err_ptr(-ENOMEM);
10367
10368 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
10369 if (str_has_pfx(prog->sec_name, "tp/"))
10370 tp_cat = sec_name + sizeof("tp/") - 1;
10371 else
10372 tp_cat = sec_name + sizeof("tracepoint/") - 1;
10373 tp_name = strchr(tp_cat, '/');
10374 if (!tp_name) {
10375 free(sec_name);
10376 return libbpf_err_ptr(-EINVAL);
10377 }
10378 *tp_name = '\0';
10379 tp_name++;
10380
10381 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10382 free(sec_name);
10383 return link;
10384}
10385
10386struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
10387 const char *tp_name)
10388{
10389 char errmsg[STRERR_BUFSIZE];
10390 struct bpf_link *link;
10391 int prog_fd, pfd;
10392
10393 prog_fd = bpf_program__fd(prog);
10394 if (prog_fd < 0) {
10395 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10396 return libbpf_err_ptr(-EINVAL);
10397 }
10398
10399 link = calloc(1, sizeof(*link));
10400 if (!link)
10401 return libbpf_err_ptr(-ENOMEM);
10402 link->detach = &bpf_link__detach_fd;
10403
10404 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10405 if (pfd < 0) {
10406 pfd = -errno;
10407 free(link);
10408 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10409 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10410 return libbpf_err_ptr(pfd);
10411 }
10412 link->fd = pfd;
10413 return link;
10414}
10415
10416static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie)
10417{
10418 static const char *const prefixes[] = {
10419 "raw_tp/",
10420 "raw_tracepoint/",
10421 "raw_tp.w/",
10422 "raw_tracepoint.w/",
10423 };
10424 size_t i;
10425 const char *tp_name = NULL;
10426
10427 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
10428 if (str_has_pfx(prog->sec_name, prefixes[i])) {
10429 tp_name = prog->sec_name + strlen(prefixes[i]);
10430 break;
10431 }
10432 }
10433 if (!tp_name) {
10434 pr_warn("prog '%s': invalid section name '%s'\n",
10435 prog->name, prog->sec_name);
10436 return libbpf_err_ptr(-EINVAL);
10437 }
10438
10439 return bpf_program__attach_raw_tracepoint(prog, tp_name);
10440}
10441
10442/* Common logic for all BPF program types that attach to a btf_id */
10443static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog)
10444{
10445 char errmsg[STRERR_BUFSIZE];
10446 struct bpf_link *link;
10447 int prog_fd, pfd;
10448
10449 prog_fd = bpf_program__fd(prog);
10450 if (prog_fd < 0) {
10451 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10452 return libbpf_err_ptr(-EINVAL);
10453 }
10454
10455 link = calloc(1, sizeof(*link));
10456 if (!link)
10457 return libbpf_err_ptr(-ENOMEM);
10458 link->detach = &bpf_link__detach_fd;
10459
10460 pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
10461 if (pfd < 0) {
10462 pfd = -errno;
10463 free(link);
10464 pr_warn("prog '%s': failed to attach: %s\n",
10465 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10466 return libbpf_err_ptr(pfd);
10467 }
10468 link->fd = pfd;
10469 return (struct bpf_link *)link;
10470}
10471
10472struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
10473{
10474 return bpf_program__attach_btf_id(prog);
10475}
10476
10477struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
10478{
10479 return bpf_program__attach_btf_id(prog);
10480}
10481
10482static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie)
10483{
10484 return bpf_program__attach_trace(prog);
10485}
10486
10487static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie)
10488{
10489 return bpf_program__attach_lsm(prog);
10490}
10491
10492static struct bpf_link *
10493bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
10494 const char *target_name)
10495{
10496 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10497 .target_btf_id = btf_id);
10498 enum bpf_attach_type attach_type;
10499 char errmsg[STRERR_BUFSIZE];
10500 struct bpf_link *link;
10501 int prog_fd, link_fd;
10502
10503 prog_fd = bpf_program__fd(prog);
10504 if (prog_fd < 0) {
10505 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10506 return libbpf_err_ptr(-EINVAL);
10507 }
10508
10509 link = calloc(1, sizeof(*link));
10510 if (!link)
10511 return libbpf_err_ptr(-ENOMEM);
10512 link->detach = &bpf_link__detach_fd;
10513
10514 attach_type = bpf_program__get_expected_attach_type(prog);
10515 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10516 if (link_fd < 0) {
10517 link_fd = -errno;
10518 free(link);
10519 pr_warn("prog '%s': failed to attach to %s: %s\n",
10520 prog->name, target_name,
10521 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10522 return libbpf_err_ptr(link_fd);
10523 }
10524 link->fd = link_fd;
10525 return link;
10526}
10527
10528struct bpf_link *
10529bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
10530{
10531 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10532}
10533
10534struct bpf_link *
10535bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
10536{
10537 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10538}
10539
10540struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
10541{
10542 /* target_fd/target_ifindex use the same field in LINK_CREATE */
10543 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10544}
10545
10546struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
10547 int target_fd,
10548 const char *attach_func_name)
10549{
10550 int btf_id;
10551
10552 if (!!target_fd != !!attach_func_name) {
10553 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10554 prog->name);
10555 return libbpf_err_ptr(-EINVAL);
10556 }
10557
10558 if (prog->type != BPF_PROG_TYPE_EXT) {
10559 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10560 prog->name);
10561 return libbpf_err_ptr(-EINVAL);
10562 }
10563
10564 if (target_fd) {
10565 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10566 if (btf_id < 0)
10567 return libbpf_err_ptr(btf_id);
10568
10569 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10570 } else {
10571 /* no target, so use raw_tracepoint_open for compatibility
10572 * with old kernels
10573 */
10574 return bpf_program__attach_trace(prog);
10575 }
10576}
10577
10578struct bpf_link *
10579bpf_program__attach_iter(const struct bpf_program *prog,
10580 const struct bpf_iter_attach_opts *opts)
10581{
10582 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10583 char errmsg[STRERR_BUFSIZE];
10584 struct bpf_link *link;
10585 int prog_fd, link_fd;
10586 __u32 target_fd = 0;
10587
10588 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10589 return libbpf_err_ptr(-EINVAL);
10590
10591 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10592 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10593
10594 prog_fd = bpf_program__fd(prog);
10595 if (prog_fd < 0) {
10596 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10597 return libbpf_err_ptr(-EINVAL);
10598 }
10599
10600 link = calloc(1, sizeof(*link));
10601 if (!link)
10602 return libbpf_err_ptr(-ENOMEM);
10603 link->detach = &bpf_link__detach_fd;
10604
10605 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10606 &link_create_opts);
10607 if (link_fd < 0) {
10608 link_fd = -errno;
10609 free(link);
10610 pr_warn("prog '%s': failed to attach to iterator: %s\n",
10611 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10612 return libbpf_err_ptr(link_fd);
10613 }
10614 link->fd = link_fd;
10615 return link;
10616}
10617
10618static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie)
10619{
10620 return bpf_program__attach_iter(prog, NULL);
10621}
10622
10623struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
10624{
10625 if (!prog->sec_def || !prog->sec_def->attach_fn)
10626 return libbpf_err_ptr(-ESRCH);
10627
10628 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie);
10629}
10630
10631static int bpf_link__detach_struct_ops(struct bpf_link *link)
10632{
10633 __u32 zero = 0;
10634
10635 if (bpf_map_delete_elem(link->fd, &zero))
10636 return -errno;
10637
10638 return 0;
10639}
10640
10641struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
10642{
10643 struct bpf_struct_ops *st_ops;
10644 struct bpf_link *link;
10645 __u32 i, zero = 0;
10646 int err;
10647
10648 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10649 return libbpf_err_ptr(-EINVAL);
10650
10651 link = calloc(1, sizeof(*link));
10652 if (!link)
10653 return libbpf_err_ptr(-EINVAL);
10654
10655 st_ops = map->st_ops;
10656 for (i = 0; i < btf_vlen(st_ops->type); i++) {
10657 struct bpf_program *prog = st_ops->progs[i];
10658 void *kern_data;
10659 int prog_fd;
10660
10661 if (!prog)
10662 continue;
10663
10664 prog_fd = bpf_program__fd(prog);
10665 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10666 *(unsigned long *)kern_data = prog_fd;
10667 }
10668
10669 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10670 if (err) {
10671 err = -errno;
10672 free(link);
10673 return libbpf_err_ptr(err);
10674 }
10675
10676 link->detach = bpf_link__detach_struct_ops;
10677 link->fd = map->fd;
10678
10679 return link;
10680}
10681
10682static enum bpf_perf_event_ret
10683perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10684 void **copy_mem, size_t *copy_size,
10685 bpf_perf_event_print_t fn, void *private_data)
10686{
10687 struct perf_event_mmap_page *header = mmap_mem;
10688 __u64 data_head = ring_buffer_read_head(header);
10689 __u64 data_tail = header->data_tail;
10690 void *base = ((__u8 *)header) + page_size;
10691 int ret = LIBBPF_PERF_EVENT_CONT;
10692 struct perf_event_header *ehdr;
10693 size_t ehdr_size;
10694
10695 while (data_head != data_tail) {
10696 ehdr = base + (data_tail & (mmap_size - 1));
10697 ehdr_size = ehdr->size;
10698
10699 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10700 void *copy_start = ehdr;
10701 size_t len_first = base + mmap_size - copy_start;
10702 size_t len_secnd = ehdr_size - len_first;
10703
10704 if (*copy_size < ehdr_size) {
10705 free(*copy_mem);
10706 *copy_mem = malloc(ehdr_size);
10707 if (!*copy_mem) {
10708 *copy_size = 0;
10709 ret = LIBBPF_PERF_EVENT_ERROR;
10710 break;
10711 }
10712 *copy_size = ehdr_size;
10713 }
10714
10715 memcpy(*copy_mem, copy_start, len_first);
10716 memcpy(*copy_mem + len_first, base, len_secnd);
10717 ehdr = *copy_mem;
10718 }
10719
10720 ret = fn(ehdr, private_data);
10721 data_tail += ehdr_size;
10722 if (ret != LIBBPF_PERF_EVENT_CONT)
10723 break;
10724 }
10725
10726 ring_buffer_write_tail(header, data_tail);
10727 return libbpf_err(ret);
10728}
10729
10730__attribute__((alias("perf_event_read_simple")))
10731enum bpf_perf_event_ret
10732bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10733 void **copy_mem, size_t *copy_size,
10734 bpf_perf_event_print_t fn, void *private_data);
10735
10736struct perf_buffer;
10737
10738struct perf_buffer_params {
10739 struct perf_event_attr *attr;
10740 /* if event_cb is specified, it takes precendence */
10741 perf_buffer_event_fn event_cb;
10742 /* sample_cb and lost_cb are higher-level common-case callbacks */
10743 perf_buffer_sample_fn sample_cb;
10744 perf_buffer_lost_fn lost_cb;
10745 void *ctx;
10746 int cpu_cnt;
10747 int *cpus;
10748 int *map_keys;
10749};
10750
10751struct perf_cpu_buf {
10752 struct perf_buffer *pb;
10753 void *base; /* mmap()'ed memory */
10754 void *buf; /* for reconstructing segmented data */
10755 size_t buf_size;
10756 int fd;
10757 int cpu;
10758 int map_key;
10759};
10760
10761struct perf_buffer {
10762 perf_buffer_event_fn event_cb;
10763 perf_buffer_sample_fn sample_cb;
10764 perf_buffer_lost_fn lost_cb;
10765 void *ctx; /* passed into callbacks */
10766
10767 size_t page_size;
10768 size_t mmap_size;
10769 struct perf_cpu_buf **cpu_bufs;
10770 struct epoll_event *events;
10771 int cpu_cnt; /* number of allocated CPU buffers */
10772 int epoll_fd; /* perf event FD */
10773 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10774};
10775
10776static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10777 struct perf_cpu_buf *cpu_buf)
10778{
10779 if (!cpu_buf)
10780 return;
10781 if (cpu_buf->base &&
10782 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10783 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10784 if (cpu_buf->fd >= 0) {
10785 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10786 close(cpu_buf->fd);
10787 }
10788 free(cpu_buf->buf);
10789 free(cpu_buf);
10790}
10791
10792void perf_buffer__free(struct perf_buffer *pb)
10793{
10794 int i;
10795
10796 if (IS_ERR_OR_NULL(pb))
10797 return;
10798 if (pb->cpu_bufs) {
10799 for (i = 0; i < pb->cpu_cnt; i++) {
10800 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10801
10802 if (!cpu_buf)
10803 continue;
10804
10805 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10806 perf_buffer__free_cpu_buf(pb, cpu_buf);
10807 }
10808 free(pb->cpu_bufs);
10809 }
10810 if (pb->epoll_fd >= 0)
10811 close(pb->epoll_fd);
10812 free(pb->events);
10813 free(pb);
10814}
10815
10816static struct perf_cpu_buf *
10817perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10818 int cpu, int map_key)
10819{
10820 struct perf_cpu_buf *cpu_buf;
10821 char msg[STRERR_BUFSIZE];
10822 int err;
10823
10824 cpu_buf = calloc(1, sizeof(*cpu_buf));
10825 if (!cpu_buf)
10826 return ERR_PTR(-ENOMEM);
10827
10828 cpu_buf->pb = pb;
10829 cpu_buf->cpu = cpu;
10830 cpu_buf->map_key = map_key;
10831
10832 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10833 -1, PERF_FLAG_FD_CLOEXEC);
10834 if (cpu_buf->fd < 0) {
10835 err = -errno;
10836 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10837 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10838 goto error;
10839 }
10840
10841 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10842 PROT_READ | PROT_WRITE, MAP_SHARED,
10843 cpu_buf->fd, 0);
10844 if (cpu_buf->base == MAP_FAILED) {
10845 cpu_buf->base = NULL;
10846 err = -errno;
10847 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10848 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10849 goto error;
10850 }
10851
10852 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10853 err = -errno;
10854 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10855 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10856 goto error;
10857 }
10858
10859 return cpu_buf;
10860
10861error:
10862 perf_buffer__free_cpu_buf(pb, cpu_buf);
10863 return (struct perf_cpu_buf *)ERR_PTR(err);
10864}
10865
10866static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10867 struct perf_buffer_params *p);
10868
10869DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0)
10870struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt,
10871 perf_buffer_sample_fn sample_cb,
10872 perf_buffer_lost_fn lost_cb,
10873 void *ctx,
10874 const struct perf_buffer_opts *opts)
10875{
10876 struct perf_buffer_params p = {};
10877 struct perf_event_attr attr = {};
10878
10879 if (!OPTS_VALID(opts, perf_buffer_opts))
10880 return libbpf_err_ptr(-EINVAL);
10881
10882 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10883 attr.type = PERF_TYPE_SOFTWARE;
10884 attr.sample_type = PERF_SAMPLE_RAW;
10885 attr.sample_period = 1;
10886 attr.wakeup_events = 1;
10887
10888 p.attr = &attr;
10889 p.sample_cb = sample_cb;
10890 p.lost_cb = lost_cb;
10891 p.ctx = ctx;
10892
10893 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10894}
10895
10896COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4)
10897struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt,
10898 const struct perf_buffer_opts *opts)
10899{
10900 return perf_buffer__new_v0_6_0(map_fd, page_cnt,
10901 opts ? opts->sample_cb : NULL,
10902 opts ? opts->lost_cb : NULL,
10903 opts ? opts->ctx : NULL,
10904 NULL);
10905}
10906
10907DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0)
10908struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt,
10909 struct perf_event_attr *attr,
10910 perf_buffer_event_fn event_cb, void *ctx,
10911 const struct perf_buffer_raw_opts *opts)
10912{
10913 struct perf_buffer_params p = {};
10914
10915 if (page_cnt == 0 || !attr)
10916 return libbpf_err_ptr(-EINVAL);
10917
10918 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
10919 return libbpf_err_ptr(-EINVAL);
10920
10921 p.attr = attr;
10922 p.event_cb = event_cb;
10923 p.ctx = ctx;
10924 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
10925 p.cpus = OPTS_GET(opts, cpus, NULL);
10926 p.map_keys = OPTS_GET(opts, map_keys, NULL);
10927
10928 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10929}
10930
10931COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4)
10932struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt,
10933 const struct perf_buffer_raw_opts *opts)
10934{
10935 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts,
10936 .cpu_cnt = opts->cpu_cnt,
10937 .cpus = opts->cpus,
10938 .map_keys = opts->map_keys,
10939 );
10940
10941 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr,
10942 opts->event_cb, opts->ctx, &inner_opts);
10943}
10944
10945static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10946 struct perf_buffer_params *p)
10947{
10948 const char *online_cpus_file = "/sys/devices/system/cpu/online";
10949 struct bpf_map_info map;
10950 char msg[STRERR_BUFSIZE];
10951 struct perf_buffer *pb;
10952 bool *online = NULL;
10953 __u32 map_info_len;
10954 int err, i, j, n;
10955
10956 if (page_cnt & (page_cnt - 1)) {
10957 pr_warn("page count should be power of two, but is %zu\n",
10958 page_cnt);
10959 return ERR_PTR(-EINVAL);
10960 }
10961
10962 /* best-effort sanity checks */
10963 memset(&map, 0, sizeof(map));
10964 map_info_len = sizeof(map);
10965 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10966 if (err) {
10967 err = -errno;
10968 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10969 * -EBADFD, -EFAULT, or -E2BIG on real error
10970 */
10971 if (err != -EINVAL) {
10972 pr_warn("failed to get map info for map FD %d: %s\n",
10973 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10974 return ERR_PTR(err);
10975 }
10976 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10977 map_fd);
10978 } else {
10979 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10980 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10981 map.name);
10982 return ERR_PTR(-EINVAL);
10983 }
10984 }
10985
10986 pb = calloc(1, sizeof(*pb));
10987 if (!pb)
10988 return ERR_PTR(-ENOMEM);
10989
10990 pb->event_cb = p->event_cb;
10991 pb->sample_cb = p->sample_cb;
10992 pb->lost_cb = p->lost_cb;
10993 pb->ctx = p->ctx;
10994
10995 pb->page_size = getpagesize();
10996 pb->mmap_size = pb->page_size * page_cnt;
10997 pb->map_fd = map_fd;
10998
10999 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11000 if (pb->epoll_fd < 0) {
11001 err = -errno;
11002 pr_warn("failed to create epoll instance: %s\n",
11003 libbpf_strerror_r(err, msg, sizeof(msg)));
11004 goto error;
11005 }
11006
11007 if (p->cpu_cnt > 0) {
11008 pb->cpu_cnt = p->cpu_cnt;
11009 } else {
11010 pb->cpu_cnt = libbpf_num_possible_cpus();
11011 if (pb->cpu_cnt < 0) {
11012 err = pb->cpu_cnt;
11013 goto error;
11014 }
11015 if (map.max_entries && map.max_entries < pb->cpu_cnt)
11016 pb->cpu_cnt = map.max_entries;
11017 }
11018
11019 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11020 if (!pb->events) {
11021 err = -ENOMEM;
11022 pr_warn("failed to allocate events: out of memory\n");
11023 goto error;
11024 }
11025 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11026 if (!pb->cpu_bufs) {
11027 err = -ENOMEM;
11028 pr_warn("failed to allocate buffers: out of memory\n");
11029 goto error;
11030 }
11031
11032 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11033 if (err) {
11034 pr_warn("failed to get online CPU mask: %d\n", err);
11035 goto error;
11036 }
11037
11038 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11039 struct perf_cpu_buf *cpu_buf;
11040 int cpu, map_key;
11041
11042 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11043 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11044
11045 /* in case user didn't explicitly requested particular CPUs to
11046 * be attached to, skip offline/not present CPUs
11047 */
11048 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11049 continue;
11050
11051 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11052 if (IS_ERR(cpu_buf)) {
11053 err = PTR_ERR(cpu_buf);
11054 goto error;
11055 }
11056
11057 pb->cpu_bufs[j] = cpu_buf;
11058
11059 err = bpf_map_update_elem(pb->map_fd, &map_key,
11060 &cpu_buf->fd, 0);
11061 if (err) {
11062 err = -errno;
11063 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11064 cpu, map_key, cpu_buf->fd,
11065 libbpf_strerror_r(err, msg, sizeof(msg)));
11066 goto error;
11067 }
11068
11069 pb->events[j].events = EPOLLIN;
11070 pb->events[j].data.ptr = cpu_buf;
11071 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11072 &pb->events[j]) < 0) {
11073 err = -errno;
11074 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11075 cpu, cpu_buf->fd,
11076 libbpf_strerror_r(err, msg, sizeof(msg)));
11077 goto error;
11078 }
11079 j++;
11080 }
11081 pb->cpu_cnt = j;
11082 free(online);
11083
11084 return pb;
11085
11086error:
11087 free(online);
11088 if (pb)
11089 perf_buffer__free(pb);
11090 return ERR_PTR(err);
11091}
11092
11093struct perf_sample_raw {
11094 struct perf_event_header header;
11095 uint32_t size;
11096 char data[];
11097};
11098
11099struct perf_sample_lost {
11100 struct perf_event_header header;
11101 uint64_t id;
11102 uint64_t lost;
11103 uint64_t sample_id;
11104};
11105
11106static enum bpf_perf_event_ret
11107perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11108{
11109 struct perf_cpu_buf *cpu_buf = ctx;
11110 struct perf_buffer *pb = cpu_buf->pb;
11111 void *data = e;
11112
11113 /* user wants full control over parsing perf event */
11114 if (pb->event_cb)
11115 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11116
11117 switch (e->type) {
11118 case PERF_RECORD_SAMPLE: {
11119 struct perf_sample_raw *s = data;
11120
11121 if (pb->sample_cb)
11122 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11123 break;
11124 }
11125 case PERF_RECORD_LOST: {
11126 struct perf_sample_lost *s = data;
11127
11128 if (pb->lost_cb)
11129 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11130 break;
11131 }
11132 default:
11133 pr_warn("unknown perf sample type %d\n", e->type);
11134 return LIBBPF_PERF_EVENT_ERROR;
11135 }
11136 return LIBBPF_PERF_EVENT_CONT;
11137}
11138
11139static int perf_buffer__process_records(struct perf_buffer *pb,
11140 struct perf_cpu_buf *cpu_buf)
11141{
11142 enum bpf_perf_event_ret ret;
11143
11144 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11145 pb->page_size, &cpu_buf->buf,
11146 &cpu_buf->buf_size,
11147 perf_buffer__process_record, cpu_buf);
11148 if (ret != LIBBPF_PERF_EVENT_CONT)
11149 return ret;
11150 return 0;
11151}
11152
11153int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11154{
11155 return pb->epoll_fd;
11156}
11157
11158int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11159{
11160 int i, cnt, err;
11161
11162 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11163 if (cnt < 0)
11164 return -errno;
11165
11166 for (i = 0; i < cnt; i++) {
11167 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11168
11169 err = perf_buffer__process_records(pb, cpu_buf);
11170 if (err) {
11171 pr_warn("error while processing records: %d\n", err);
11172 return libbpf_err(err);
11173 }
11174 }
11175 return cnt;
11176}
11177
11178/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11179 * manager.
11180 */
11181size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11182{
11183 return pb->cpu_cnt;
11184}
11185
11186/*
11187 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11188 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11189 * select()/poll()/epoll() Linux syscalls.
11190 */
11191int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11192{
11193 struct perf_cpu_buf *cpu_buf;
11194
11195 if (buf_idx >= pb->cpu_cnt)
11196 return libbpf_err(-EINVAL);
11197
11198 cpu_buf = pb->cpu_bufs[buf_idx];
11199 if (!cpu_buf)
11200 return libbpf_err(-ENOENT);
11201
11202 return cpu_buf->fd;
11203}
11204
11205/*
11206 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11207 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11208 * consume, do nothing and return success.
11209 * Returns:
11210 * - 0 on success;
11211 * - <0 on failure.
11212 */
11213int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11214{
11215 struct perf_cpu_buf *cpu_buf;
11216
11217 if (buf_idx >= pb->cpu_cnt)
11218 return libbpf_err(-EINVAL);
11219
11220 cpu_buf = pb->cpu_bufs[buf_idx];
11221 if (!cpu_buf)
11222 return libbpf_err(-ENOENT);
11223
11224 return perf_buffer__process_records(pb, cpu_buf);
11225}
11226
11227int perf_buffer__consume(struct perf_buffer *pb)
11228{
11229 int i, err;
11230
11231 for (i = 0; i < pb->cpu_cnt; i++) {
11232 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11233
11234 if (!cpu_buf)
11235 continue;
11236
11237 err = perf_buffer__process_records(pb, cpu_buf);
11238 if (err) {
11239 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11240 return libbpf_err(err);
11241 }
11242 }
11243 return 0;
11244}
11245
11246struct bpf_prog_info_array_desc {
11247 int array_offset; /* e.g. offset of jited_prog_insns */
11248 int count_offset; /* e.g. offset of jited_prog_len */
11249 int size_offset; /* > 0: offset of rec size,
11250 * < 0: fix size of -size_offset
11251 */
11252};
11253
11254static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
11255 [BPF_PROG_INFO_JITED_INSNS] = {
11256 offsetof(struct bpf_prog_info, jited_prog_insns),
11257 offsetof(struct bpf_prog_info, jited_prog_len),
11258 -1,
11259 },
11260 [BPF_PROG_INFO_XLATED_INSNS] = {
11261 offsetof(struct bpf_prog_info, xlated_prog_insns),
11262 offsetof(struct bpf_prog_info, xlated_prog_len),
11263 -1,
11264 },
11265 [BPF_PROG_INFO_MAP_IDS] = {
11266 offsetof(struct bpf_prog_info, map_ids),
11267 offsetof(struct bpf_prog_info, nr_map_ids),
11268 -(int)sizeof(__u32),
11269 },
11270 [BPF_PROG_INFO_JITED_KSYMS] = {
11271 offsetof(struct bpf_prog_info, jited_ksyms),
11272 offsetof(struct bpf_prog_info, nr_jited_ksyms),
11273 -(int)sizeof(__u64),
11274 },
11275 [BPF_PROG_INFO_JITED_FUNC_LENS] = {
11276 offsetof(struct bpf_prog_info, jited_func_lens),
11277 offsetof(struct bpf_prog_info, nr_jited_func_lens),
11278 -(int)sizeof(__u32),
11279 },
11280 [BPF_PROG_INFO_FUNC_INFO] = {
11281 offsetof(struct bpf_prog_info, func_info),
11282 offsetof(struct bpf_prog_info, nr_func_info),
11283 offsetof(struct bpf_prog_info, func_info_rec_size),
11284 },
11285 [BPF_PROG_INFO_LINE_INFO] = {
11286 offsetof(struct bpf_prog_info, line_info),
11287 offsetof(struct bpf_prog_info, nr_line_info),
11288 offsetof(struct bpf_prog_info, line_info_rec_size),
11289 },
11290 [BPF_PROG_INFO_JITED_LINE_INFO] = {
11291 offsetof(struct bpf_prog_info, jited_line_info),
11292 offsetof(struct bpf_prog_info, nr_jited_line_info),
11293 offsetof(struct bpf_prog_info, jited_line_info_rec_size),
11294 },
11295 [BPF_PROG_INFO_PROG_TAGS] = {
11296 offsetof(struct bpf_prog_info, prog_tags),
11297 offsetof(struct bpf_prog_info, nr_prog_tags),
11298 -(int)sizeof(__u8) * BPF_TAG_SIZE,
11299 },
11300
11301};
11302
11303static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
11304 int offset)
11305{
11306 __u32 *array = (__u32 *)info;
11307
11308 if (offset >= 0)
11309 return array[offset / sizeof(__u32)];
11310 return -(int)offset;
11311}
11312
11313static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
11314 int offset)
11315{
11316 __u64 *array = (__u64 *)info;
11317
11318 if (offset >= 0)
11319 return array[offset / sizeof(__u64)];
11320 return -(int)offset;
11321}
11322
11323static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
11324 __u32 val)
11325{
11326 __u32 *array = (__u32 *)info;
11327
11328 if (offset >= 0)
11329 array[offset / sizeof(__u32)] = val;
11330}
11331
11332static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
11333 __u64 val)
11334{
11335 __u64 *array = (__u64 *)info;
11336
11337 if (offset >= 0)
11338 array[offset / sizeof(__u64)] = val;
11339}
11340
11341struct bpf_prog_info_linear *
11342bpf_program__get_prog_info_linear(int fd, __u64 arrays)
11343{
11344 struct bpf_prog_info_linear *info_linear;
11345 struct bpf_prog_info info = {};
11346 __u32 info_len = sizeof(info);
11347 __u32 data_len = 0;
11348 int i, err;
11349 void *ptr;
11350
11351 if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
11352 return libbpf_err_ptr(-EINVAL);
11353
11354 /* step 1: get array dimensions */
11355 err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
11356 if (err) {
11357 pr_debug("can't get prog info: %s", strerror(errno));
11358 return libbpf_err_ptr(-EFAULT);
11359 }
11360
11361 /* step 2: calculate total size of all arrays */
11362 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11363 bool include_array = (arrays & (1UL << i)) > 0;
11364 struct bpf_prog_info_array_desc *desc;
11365 __u32 count, size;
11366
11367 desc = bpf_prog_info_array_desc + i;
11368
11369 /* kernel is too old to support this field */
11370 if (info_len < desc->array_offset + sizeof(__u32) ||
11371 info_len < desc->count_offset + sizeof(__u32) ||
11372 (desc->size_offset > 0 && info_len < desc->size_offset))
11373 include_array = false;
11374
11375 if (!include_array) {
11376 arrays &= ~(1UL << i); /* clear the bit */
11377 continue;
11378 }
11379
11380 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11381 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11382
11383 data_len += count * size;
11384 }
11385
11386 /* step 3: allocate continuous memory */
11387 data_len = roundup(data_len, sizeof(__u64));
11388 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
11389 if (!info_linear)
11390 return libbpf_err_ptr(-ENOMEM);
11391
11392 /* step 4: fill data to info_linear->info */
11393 info_linear->arrays = arrays;
11394 memset(&info_linear->info, 0, sizeof(info));
11395 ptr = info_linear->data;
11396
11397 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11398 struct bpf_prog_info_array_desc *desc;
11399 __u32 count, size;
11400
11401 if ((arrays & (1UL << i)) == 0)
11402 continue;
11403
11404 desc = bpf_prog_info_array_desc + i;
11405 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11406 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11407 bpf_prog_info_set_offset_u32(&info_linear->info,
11408 desc->count_offset, count);
11409 bpf_prog_info_set_offset_u32(&info_linear->info,
11410 desc->size_offset, size);
11411 bpf_prog_info_set_offset_u64(&info_linear->info,
11412 desc->array_offset,
11413 ptr_to_u64(ptr));
11414 ptr += count * size;
11415 }
11416
11417 /* step 5: call syscall again to get required arrays */
11418 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
11419 if (err) {
11420 pr_debug("can't get prog info: %s", strerror(errno));
11421 free(info_linear);
11422 return libbpf_err_ptr(-EFAULT);
11423 }
11424
11425 /* step 6: verify the data */
11426 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11427 struct bpf_prog_info_array_desc *desc;
11428 __u32 v1, v2;
11429
11430 if ((arrays & (1UL << i)) == 0)
11431 continue;
11432
11433 desc = bpf_prog_info_array_desc + i;
11434 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11435 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11436 desc->count_offset);
11437 if (v1 != v2)
11438 pr_warn("%s: mismatch in element count\n", __func__);
11439
11440 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11441 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11442 desc->size_offset);
11443 if (v1 != v2)
11444 pr_warn("%s: mismatch in rec size\n", __func__);
11445 }
11446
11447 /* step 7: update info_len and data_len */
11448 info_linear->info_len = sizeof(struct bpf_prog_info);
11449 info_linear->data_len = data_len;
11450
11451 return info_linear;
11452}
11453
11454void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
11455{
11456 int i;
11457
11458 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11459 struct bpf_prog_info_array_desc *desc;
11460 __u64 addr, offs;
11461
11462 if ((info_linear->arrays & (1UL << i)) == 0)
11463 continue;
11464
11465 desc = bpf_prog_info_array_desc + i;
11466 addr = bpf_prog_info_read_offset_u64(&info_linear->info,
11467 desc->array_offset);
11468 offs = addr - ptr_to_u64(info_linear->data);
11469 bpf_prog_info_set_offset_u64(&info_linear->info,
11470 desc->array_offset, offs);
11471 }
11472}
11473
11474void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
11475{
11476 int i;
11477
11478 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11479 struct bpf_prog_info_array_desc *desc;
11480 __u64 addr, offs;
11481
11482 if ((info_linear->arrays & (1UL << i)) == 0)
11483 continue;
11484
11485 desc = bpf_prog_info_array_desc + i;
11486 offs = bpf_prog_info_read_offset_u64(&info_linear->info,
11487 desc->array_offset);
11488 addr = offs + ptr_to_u64(info_linear->data);
11489 bpf_prog_info_set_offset_u64(&info_linear->info,
11490 desc->array_offset, addr);
11491 }
11492}
11493
11494int bpf_program__set_attach_target(struct bpf_program *prog,
11495 int attach_prog_fd,
11496 const char *attach_func_name)
11497{
11498 int btf_obj_fd = 0, btf_id = 0, err;
11499
11500 if (!prog || attach_prog_fd < 0)
11501 return libbpf_err(-EINVAL);
11502
11503 if (prog->obj->loaded)
11504 return libbpf_err(-EINVAL);
11505
11506 if (attach_prog_fd && !attach_func_name) {
11507 /* remember attach_prog_fd and let bpf_program__load() find
11508 * BTF ID during the program load
11509 */
11510 prog->attach_prog_fd = attach_prog_fd;
11511 return 0;
11512 }
11513
11514 if (attach_prog_fd) {
11515 btf_id = libbpf_find_prog_btf_id(attach_func_name,
11516 attach_prog_fd);
11517 if (btf_id < 0)
11518 return libbpf_err(btf_id);
11519 } else {
11520 if (!attach_func_name)
11521 return libbpf_err(-EINVAL);
11522
11523 /* load btf_vmlinux, if not yet */
11524 err = bpf_object__load_vmlinux_btf(prog->obj, true);
11525 if (err)
11526 return libbpf_err(err);
11527 err = find_kernel_btf_id(prog->obj, attach_func_name,
11528 prog->expected_attach_type,
11529 &btf_obj_fd, &btf_id);
11530 if (err)
11531 return libbpf_err(err);
11532 }
11533
11534 prog->attach_btf_id = btf_id;
11535 prog->attach_btf_obj_fd = btf_obj_fd;
11536 prog->attach_prog_fd = attach_prog_fd;
11537 return 0;
11538}
11539
11540int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11541{
11542 int err = 0, n, len, start, end = -1;
11543 bool *tmp;
11544
11545 *mask = NULL;
11546 *mask_sz = 0;
11547
11548 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11549 while (*s) {
11550 if (*s == ',' || *s == '\n') {
11551 s++;
11552 continue;
11553 }
11554 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11555 if (n <= 0 || n > 2) {
11556 pr_warn("Failed to get CPU range %s: %d\n", s, n);
11557 err = -EINVAL;
11558 goto cleanup;
11559 } else if (n == 1) {
11560 end = start;
11561 }
11562 if (start < 0 || start > end) {
11563 pr_warn("Invalid CPU range [%d,%d] in %s\n",
11564 start, end, s);
11565 err = -EINVAL;
11566 goto cleanup;
11567 }
11568 tmp = realloc(*mask, end + 1);
11569 if (!tmp) {
11570 err = -ENOMEM;
11571 goto cleanup;
11572 }
11573 *mask = tmp;
11574 memset(tmp + *mask_sz, 0, start - *mask_sz);
11575 memset(tmp + start, 1, end - start + 1);
11576 *mask_sz = end + 1;
11577 s += len;
11578 }
11579 if (!*mask_sz) {
11580 pr_warn("Empty CPU range\n");
11581 return -EINVAL;
11582 }
11583 return 0;
11584cleanup:
11585 free(*mask);
11586 *mask = NULL;
11587 return err;
11588}
11589
11590int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11591{
11592 int fd, err = 0, len;
11593 char buf[128];
11594
11595 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
11596 if (fd < 0) {
11597 err = -errno;
11598 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11599 return err;
11600 }
11601 len = read(fd, buf, sizeof(buf));
11602 close(fd);
11603 if (len <= 0) {
11604 err = len ? -errno : -EINVAL;
11605 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11606 return err;
11607 }
11608 if (len >= sizeof(buf)) {
11609 pr_warn("CPU mask is too big in file %s\n", fcpu);
11610 return -E2BIG;
11611 }
11612 buf[len] = '\0';
11613
11614 return parse_cpu_mask_str(buf, mask, mask_sz);
11615}
11616
11617int libbpf_num_possible_cpus(void)
11618{
11619 static const char *fcpu = "/sys/devices/system/cpu/possible";
11620 static int cpus;
11621 int err, n, i, tmp_cpus;
11622 bool *mask;
11623
11624 tmp_cpus = READ_ONCE(cpus);
11625 if (tmp_cpus > 0)
11626 return tmp_cpus;
11627
11628 err = parse_cpu_mask_file(fcpu, &mask, &n);
11629 if (err)
11630 return libbpf_err(err);
11631
11632 tmp_cpus = 0;
11633 for (i = 0; i < n; i++) {
11634 if (mask[i])
11635 tmp_cpus++;
11636 }
11637 free(mask);
11638
11639 WRITE_ONCE(cpus, tmp_cpus);
11640 return tmp_cpus;
11641}
11642
11643int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11644 const struct bpf_object_open_opts *opts)
11645{
11646 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11647 .object_name = s->name,
11648 );
11649 struct bpf_object *obj;
11650 int i, err;
11651
11652 /* Attempt to preserve opts->object_name, unless overriden by user
11653 * explicitly. Overwriting object name for skeletons is discouraged,
11654 * as it breaks global data maps, because they contain object name
11655 * prefix as their own map name prefix. When skeleton is generated,
11656 * bpftool is making an assumption that this name will stay the same.
11657 */
11658 if (opts) {
11659 memcpy(&skel_opts, opts, sizeof(*opts));
11660 if (!opts->object_name)
11661 skel_opts.object_name = s->name;
11662 }
11663
11664 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11665 err = libbpf_get_error(obj);
11666 if (err) {
11667 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
11668 s->name, err);
11669 return libbpf_err(err);
11670 }
11671
11672 *s->obj = obj;
11673
11674 for (i = 0; i < s->map_cnt; i++) {
11675 struct bpf_map **map = s->maps[i].map;
11676 const char *name = s->maps[i].name;
11677 void **mmaped = s->maps[i].mmaped;
11678
11679 *map = bpf_object__find_map_by_name(obj, name);
11680 if (!*map) {
11681 pr_warn("failed to find skeleton map '%s'\n", name);
11682 return libbpf_err(-ESRCH);
11683 }
11684
11685 /* externs shouldn't be pre-setup from user code */
11686 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11687 *mmaped = (*map)->mmaped;
11688 }
11689
11690 for (i = 0; i < s->prog_cnt; i++) {
11691 struct bpf_program **prog = s->progs[i].prog;
11692 const char *name = s->progs[i].name;
11693
11694 *prog = bpf_object__find_program_by_name(obj, name);
11695 if (!*prog) {
11696 pr_warn("failed to find skeleton program '%s'\n", name);
11697 return libbpf_err(-ESRCH);
11698 }
11699 }
11700
11701 return 0;
11702}
11703
11704int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11705{
11706 int i, err;
11707
11708 err = bpf_object__load(*s->obj);
11709 if (err) {
11710 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11711 return libbpf_err(err);
11712 }
11713
11714 for (i = 0; i < s->map_cnt; i++) {
11715 struct bpf_map *map = *s->maps[i].map;
11716 size_t mmap_sz = bpf_map_mmap_sz(map);
11717 int prot, map_fd = bpf_map__fd(map);
11718 void **mmaped = s->maps[i].mmaped;
11719
11720 if (!mmaped)
11721 continue;
11722
11723 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11724 *mmaped = NULL;
11725 continue;
11726 }
11727
11728 if (map->def.map_flags & BPF_F_RDONLY_PROG)
11729 prot = PROT_READ;
11730 else
11731 prot = PROT_READ | PROT_WRITE;
11732
11733 /* Remap anonymous mmap()-ed "map initialization image" as
11734 * a BPF map-backed mmap()-ed memory, but preserving the same
11735 * memory address. This will cause kernel to change process'
11736 * page table to point to a different piece of kernel memory,
11737 * but from userspace point of view memory address (and its
11738 * contents, being identical at this point) will stay the
11739 * same. This mapping will be released by bpf_object__close()
11740 * as per normal clean up procedure, so we don't need to worry
11741 * about it from skeleton's clean up perspective.
11742 */
11743 *mmaped = mmap(map->mmaped, mmap_sz, prot,
11744 MAP_SHARED | MAP_FIXED, map_fd, 0);
11745 if (*mmaped == MAP_FAILED) {
11746 err = -errno;
11747 *mmaped = NULL;
11748 pr_warn("failed to re-mmap() map '%s': %d\n",
11749 bpf_map__name(map), err);
11750 return libbpf_err(err);
11751 }
11752 }
11753
11754 return 0;
11755}
11756
11757int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11758{
11759 int i, err;
11760
11761 for (i = 0; i < s->prog_cnt; i++) {
11762 struct bpf_program *prog = *s->progs[i].prog;
11763 struct bpf_link **link = s->progs[i].link;
11764
11765 if (!prog->load)
11766 continue;
11767
11768 /* auto-attaching not supported for this program */
11769 if (!prog->sec_def || !prog->sec_def->attach_fn)
11770 continue;
11771
11772 *link = bpf_program__attach(prog);
11773 err = libbpf_get_error(*link);
11774 if (err) {
11775 pr_warn("failed to auto-attach program '%s': %d\n",
11776 bpf_program__name(prog), err);
11777 return libbpf_err(err);
11778 }
11779 }
11780
11781 return 0;
11782}
11783
11784void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11785{
11786 int i;
11787
11788 for (i = 0; i < s->prog_cnt; i++) {
11789 struct bpf_link **link = s->progs[i].link;
11790
11791 bpf_link__destroy(*link);
11792 *link = NULL;
11793 }
11794}
11795
11796void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11797{
11798 if (s->progs)
11799 bpf_object__detach_skeleton(s);
11800 if (s->obj)
11801 bpf_object__close(*s->obj);
11802 free(s->maps);
11803 free(s->progs);
11804 free(s);
11805}