Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
41#include <linux/pagewalk.h>
42#include <linux/pfn_t.h>
43#include <linux/memremap.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/balloon_compaction.h>
46#include <linux/mmu_notifier.h>
47#include <linux/page_idle.h>
48#include <linux/page_owner.h>
49#include <linux/sched/mm.h>
50#include <linux/ptrace.h>
51#include <linux/oom.h>
52#include <linux/memory.h>
53#include <linux/random.h>
54
55#include <asm/tlbflush.h>
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/migrate.h>
59
60#include "internal.h"
61
62int isolate_movable_page(struct page *page, isolate_mode_t mode)
63{
64 struct address_space *mapping;
65
66 /*
67 * Avoid burning cycles with pages that are yet under __free_pages(),
68 * or just got freed under us.
69 *
70 * In case we 'win' a race for a movable page being freed under us and
71 * raise its refcount preventing __free_pages() from doing its job
72 * the put_page() at the end of this block will take care of
73 * release this page, thus avoiding a nasty leakage.
74 */
75 if (unlikely(!get_page_unless_zero(page)))
76 goto out;
77
78 /*
79 * Check PageMovable before holding a PG_lock because page's owner
80 * assumes anybody doesn't touch PG_lock of newly allocated page
81 * so unconditionally grabbing the lock ruins page's owner side.
82 */
83 if (unlikely(!__PageMovable(page)))
84 goto out_putpage;
85 /*
86 * As movable pages are not isolated from LRU lists, concurrent
87 * compaction threads can race against page migration functions
88 * as well as race against the releasing a page.
89 *
90 * In order to avoid having an already isolated movable page
91 * being (wrongly) re-isolated while it is under migration,
92 * or to avoid attempting to isolate pages being released,
93 * lets be sure we have the page lock
94 * before proceeding with the movable page isolation steps.
95 */
96 if (unlikely(!trylock_page(page)))
97 goto out_putpage;
98
99 if (!PageMovable(page) || PageIsolated(page))
100 goto out_no_isolated;
101
102 mapping = page_mapping(page);
103 VM_BUG_ON_PAGE(!mapping, page);
104
105 if (!mapping->a_ops->isolate_page(page, mode))
106 goto out_no_isolated;
107
108 /* Driver shouldn't use PG_isolated bit of page->flags */
109 WARN_ON_ONCE(PageIsolated(page));
110 __SetPageIsolated(page);
111 unlock_page(page);
112
113 return 0;
114
115out_no_isolated:
116 unlock_page(page);
117out_putpage:
118 put_page(page);
119out:
120 return -EBUSY;
121}
122
123static void putback_movable_page(struct page *page)
124{
125 struct address_space *mapping;
126
127 mapping = page_mapping(page);
128 mapping->a_ops->putback_page(page);
129 __ClearPageIsolated(page);
130}
131
132/*
133 * Put previously isolated pages back onto the appropriate lists
134 * from where they were once taken off for compaction/migration.
135 *
136 * This function shall be used whenever the isolated pageset has been
137 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
138 * and isolate_huge_page().
139 */
140void putback_movable_pages(struct list_head *l)
141{
142 struct page *page;
143 struct page *page2;
144
145 list_for_each_entry_safe(page, page2, l, lru) {
146 if (unlikely(PageHuge(page))) {
147 putback_active_hugepage(page);
148 continue;
149 }
150 list_del(&page->lru);
151 /*
152 * We isolated non-lru movable page so here we can use
153 * __PageMovable because LRU page's mapping cannot have
154 * PAGE_MAPPING_MOVABLE.
155 */
156 if (unlikely(__PageMovable(page))) {
157 VM_BUG_ON_PAGE(!PageIsolated(page), page);
158 lock_page(page);
159 if (PageMovable(page))
160 putback_movable_page(page);
161 else
162 __ClearPageIsolated(page);
163 unlock_page(page);
164 put_page(page);
165 } else {
166 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
167 page_is_file_lru(page), -thp_nr_pages(page));
168 putback_lru_page(page);
169 }
170 }
171}
172
173/*
174 * Restore a potential migration pte to a working pte entry
175 */
176static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
177 unsigned long addr, void *old)
178{
179 struct page_vma_mapped_walk pvmw = {
180 .page = old,
181 .vma = vma,
182 .address = addr,
183 .flags = PVMW_SYNC | PVMW_MIGRATION,
184 };
185 struct page *new;
186 pte_t pte;
187 swp_entry_t entry;
188
189 VM_BUG_ON_PAGE(PageTail(page), page);
190 while (page_vma_mapped_walk(&pvmw)) {
191 if (PageKsm(page))
192 new = page;
193 else
194 new = page - pvmw.page->index +
195 linear_page_index(vma, pvmw.address);
196
197#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
198 /* PMD-mapped THP migration entry */
199 if (!pvmw.pte) {
200 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
201 remove_migration_pmd(&pvmw, new);
202 continue;
203 }
204#endif
205
206 get_page(new);
207 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
208 if (pte_swp_soft_dirty(*pvmw.pte))
209 pte = pte_mksoft_dirty(pte);
210
211 /*
212 * Recheck VMA as permissions can change since migration started
213 */
214 entry = pte_to_swp_entry(*pvmw.pte);
215 if (is_writable_migration_entry(entry))
216 pte = maybe_mkwrite(pte, vma);
217 else if (pte_swp_uffd_wp(*pvmw.pte))
218 pte = pte_mkuffd_wp(pte);
219
220 if (unlikely(is_device_private_page(new))) {
221 if (pte_write(pte))
222 entry = make_writable_device_private_entry(
223 page_to_pfn(new));
224 else
225 entry = make_readable_device_private_entry(
226 page_to_pfn(new));
227 pte = swp_entry_to_pte(entry);
228 if (pte_swp_soft_dirty(*pvmw.pte))
229 pte = pte_swp_mksoft_dirty(pte);
230 if (pte_swp_uffd_wp(*pvmw.pte))
231 pte = pte_swp_mkuffd_wp(pte);
232 }
233
234#ifdef CONFIG_HUGETLB_PAGE
235 if (PageHuge(new)) {
236 unsigned int shift = huge_page_shift(hstate_vma(vma));
237
238 pte = pte_mkhuge(pte);
239 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
240 if (PageAnon(new))
241 hugepage_add_anon_rmap(new, vma, pvmw.address);
242 else
243 page_dup_rmap(new, true);
244 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
245 } else
246#endif
247 {
248 if (PageAnon(new))
249 page_add_anon_rmap(new, vma, pvmw.address, false);
250 else
251 page_add_file_rmap(new, false);
252 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
253 }
254 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
255 mlock_vma_page(new);
256
257 if (PageTransHuge(page) && PageMlocked(page))
258 clear_page_mlock(page);
259
260 /* No need to invalidate - it was non-present before */
261 update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 }
263
264 return true;
265}
266
267/*
268 * Get rid of all migration entries and replace them by
269 * references to the indicated page.
270 */
271void remove_migration_ptes(struct page *old, struct page *new, bool locked)
272{
273 struct rmap_walk_control rwc = {
274 .rmap_one = remove_migration_pte,
275 .arg = old,
276 };
277
278 if (locked)
279 rmap_walk_locked(new, &rwc);
280 else
281 rmap_walk(new, &rwc);
282}
283
284/*
285 * Something used the pte of a page under migration. We need to
286 * get to the page and wait until migration is finished.
287 * When we return from this function the fault will be retried.
288 */
289void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 spinlock_t *ptl)
291{
292 pte_t pte;
293 swp_entry_t entry;
294
295 spin_lock(ptl);
296 pte = *ptep;
297 if (!is_swap_pte(pte))
298 goto out;
299
300 entry = pte_to_swp_entry(pte);
301 if (!is_migration_entry(entry))
302 goto out;
303
304 migration_entry_wait_on_locked(entry, ptep, ptl);
305 return;
306out:
307 pte_unmap_unlock(ptep, ptl);
308}
309
310void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
311 unsigned long address)
312{
313 spinlock_t *ptl = pte_lockptr(mm, pmd);
314 pte_t *ptep = pte_offset_map(pmd, address);
315 __migration_entry_wait(mm, ptep, ptl);
316}
317
318void migration_entry_wait_huge(struct vm_area_struct *vma,
319 struct mm_struct *mm, pte_t *pte)
320{
321 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
322 __migration_entry_wait(mm, pte, ptl);
323}
324
325#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
326void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
327{
328 spinlock_t *ptl;
329
330 ptl = pmd_lock(mm, pmd);
331 if (!is_pmd_migration_entry(*pmd))
332 goto unlock;
333 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
334 return;
335unlock:
336 spin_unlock(ptl);
337}
338#endif
339
340static int expected_page_refs(struct address_space *mapping, struct page *page)
341{
342 int expected_count = 1;
343
344 /*
345 * Device private pages have an extra refcount as they are
346 * ZONE_DEVICE pages.
347 */
348 expected_count += is_device_private_page(page);
349 if (mapping)
350 expected_count += compound_nr(page) + page_has_private(page);
351
352 return expected_count;
353}
354
355/*
356 * Replace the page in the mapping.
357 *
358 * The number of remaining references must be:
359 * 1 for anonymous pages without a mapping
360 * 2 for pages with a mapping
361 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
362 */
363int folio_migrate_mapping(struct address_space *mapping,
364 struct folio *newfolio, struct folio *folio, int extra_count)
365{
366 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
367 struct zone *oldzone, *newzone;
368 int dirty;
369 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
370 long nr = folio_nr_pages(folio);
371
372 if (!mapping) {
373 /* Anonymous page without mapping */
374 if (folio_ref_count(folio) != expected_count)
375 return -EAGAIN;
376
377 /* No turning back from here */
378 newfolio->index = folio->index;
379 newfolio->mapping = folio->mapping;
380 if (folio_test_swapbacked(folio))
381 __folio_set_swapbacked(newfolio);
382
383 return MIGRATEPAGE_SUCCESS;
384 }
385
386 oldzone = folio_zone(folio);
387 newzone = folio_zone(newfolio);
388
389 xas_lock_irq(&xas);
390 if (!folio_ref_freeze(folio, expected_count)) {
391 xas_unlock_irq(&xas);
392 return -EAGAIN;
393 }
394
395 /*
396 * Now we know that no one else is looking at the folio:
397 * no turning back from here.
398 */
399 newfolio->index = folio->index;
400 newfolio->mapping = folio->mapping;
401 folio_ref_add(newfolio, nr); /* add cache reference */
402 if (folio_test_swapbacked(folio)) {
403 __folio_set_swapbacked(newfolio);
404 if (folio_test_swapcache(folio)) {
405 folio_set_swapcache(newfolio);
406 newfolio->private = folio_get_private(folio);
407 }
408 } else {
409 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
410 }
411
412 /* Move dirty while page refs frozen and newpage not yet exposed */
413 dirty = folio_test_dirty(folio);
414 if (dirty) {
415 folio_clear_dirty(folio);
416 folio_set_dirty(newfolio);
417 }
418
419 xas_store(&xas, newfolio);
420
421 /*
422 * Drop cache reference from old page by unfreezing
423 * to one less reference.
424 * We know this isn't the last reference.
425 */
426 folio_ref_unfreeze(folio, expected_count - nr);
427
428 xas_unlock(&xas);
429 /* Leave irq disabled to prevent preemption while updating stats */
430
431 /*
432 * If moved to a different zone then also account
433 * the page for that zone. Other VM counters will be
434 * taken care of when we establish references to the
435 * new page and drop references to the old page.
436 *
437 * Note that anonymous pages are accounted for
438 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
439 * are mapped to swap space.
440 */
441 if (newzone != oldzone) {
442 struct lruvec *old_lruvec, *new_lruvec;
443 struct mem_cgroup *memcg;
444
445 memcg = folio_memcg(folio);
446 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
447 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
448
449 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
450 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
451 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
452 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
453 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
454 }
455#ifdef CONFIG_SWAP
456 if (folio_test_swapcache(folio)) {
457 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
458 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
459 }
460#endif
461 if (dirty && mapping_can_writeback(mapping)) {
462 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
463 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
464 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
465 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
466 }
467 }
468 local_irq_enable();
469
470 return MIGRATEPAGE_SUCCESS;
471}
472EXPORT_SYMBOL(folio_migrate_mapping);
473
474/*
475 * The expected number of remaining references is the same as that
476 * of folio_migrate_mapping().
477 */
478int migrate_huge_page_move_mapping(struct address_space *mapping,
479 struct page *newpage, struct page *page)
480{
481 XA_STATE(xas, &mapping->i_pages, page_index(page));
482 int expected_count;
483
484 xas_lock_irq(&xas);
485 expected_count = 2 + page_has_private(page);
486 if (page_count(page) != expected_count || xas_load(&xas) != page) {
487 xas_unlock_irq(&xas);
488 return -EAGAIN;
489 }
490
491 if (!page_ref_freeze(page, expected_count)) {
492 xas_unlock_irq(&xas);
493 return -EAGAIN;
494 }
495
496 newpage->index = page->index;
497 newpage->mapping = page->mapping;
498
499 get_page(newpage);
500
501 xas_store(&xas, newpage);
502
503 page_ref_unfreeze(page, expected_count - 1);
504
505 xas_unlock_irq(&xas);
506
507 return MIGRATEPAGE_SUCCESS;
508}
509
510/*
511 * Copy the flags and some other ancillary information
512 */
513void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
514{
515 int cpupid;
516
517 if (folio_test_error(folio))
518 folio_set_error(newfolio);
519 if (folio_test_referenced(folio))
520 folio_set_referenced(newfolio);
521 if (folio_test_uptodate(folio))
522 folio_mark_uptodate(newfolio);
523 if (folio_test_clear_active(folio)) {
524 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
525 folio_set_active(newfolio);
526 } else if (folio_test_clear_unevictable(folio))
527 folio_set_unevictable(newfolio);
528 if (folio_test_workingset(folio))
529 folio_set_workingset(newfolio);
530 if (folio_test_checked(folio))
531 folio_set_checked(newfolio);
532 if (folio_test_mappedtodisk(folio))
533 folio_set_mappedtodisk(newfolio);
534
535 /* Move dirty on pages not done by folio_migrate_mapping() */
536 if (folio_test_dirty(folio))
537 folio_set_dirty(newfolio);
538
539 if (folio_test_young(folio))
540 folio_set_young(newfolio);
541 if (folio_test_idle(folio))
542 folio_set_idle(newfolio);
543
544 /*
545 * Copy NUMA information to the new page, to prevent over-eager
546 * future migrations of this same page.
547 */
548 cpupid = page_cpupid_xchg_last(&folio->page, -1);
549 page_cpupid_xchg_last(&newfolio->page, cpupid);
550
551 folio_migrate_ksm(newfolio, folio);
552 /*
553 * Please do not reorder this without considering how mm/ksm.c's
554 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
555 */
556 if (folio_test_swapcache(folio))
557 folio_clear_swapcache(folio);
558 folio_clear_private(folio);
559
560 /* page->private contains hugetlb specific flags */
561 if (!folio_test_hugetlb(folio))
562 folio->private = NULL;
563
564 /*
565 * If any waiters have accumulated on the new page then
566 * wake them up.
567 */
568 if (folio_test_writeback(newfolio))
569 folio_end_writeback(newfolio);
570
571 /*
572 * PG_readahead shares the same bit with PG_reclaim. The above
573 * end_page_writeback() may clear PG_readahead mistakenly, so set the
574 * bit after that.
575 */
576 if (folio_test_readahead(folio))
577 folio_set_readahead(newfolio);
578
579 folio_copy_owner(newfolio, folio);
580
581 if (!folio_test_hugetlb(folio))
582 mem_cgroup_migrate(folio, newfolio);
583}
584EXPORT_SYMBOL(folio_migrate_flags);
585
586void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
587{
588 folio_copy(newfolio, folio);
589 folio_migrate_flags(newfolio, folio);
590}
591EXPORT_SYMBOL(folio_migrate_copy);
592
593/************************************************************
594 * Migration functions
595 ***********************************************************/
596
597/*
598 * Common logic to directly migrate a single LRU page suitable for
599 * pages that do not use PagePrivate/PagePrivate2.
600 *
601 * Pages are locked upon entry and exit.
602 */
603int migrate_page(struct address_space *mapping,
604 struct page *newpage, struct page *page,
605 enum migrate_mode mode)
606{
607 struct folio *newfolio = page_folio(newpage);
608 struct folio *folio = page_folio(page);
609 int rc;
610
611 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */
612
613 rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
614
615 if (rc != MIGRATEPAGE_SUCCESS)
616 return rc;
617
618 if (mode != MIGRATE_SYNC_NO_COPY)
619 folio_migrate_copy(newfolio, folio);
620 else
621 folio_migrate_flags(newfolio, folio);
622 return MIGRATEPAGE_SUCCESS;
623}
624EXPORT_SYMBOL(migrate_page);
625
626#ifdef CONFIG_BLOCK
627/* Returns true if all buffers are successfully locked */
628static bool buffer_migrate_lock_buffers(struct buffer_head *head,
629 enum migrate_mode mode)
630{
631 struct buffer_head *bh = head;
632
633 /* Simple case, sync compaction */
634 if (mode != MIGRATE_ASYNC) {
635 do {
636 lock_buffer(bh);
637 bh = bh->b_this_page;
638
639 } while (bh != head);
640
641 return true;
642 }
643
644 /* async case, we cannot block on lock_buffer so use trylock_buffer */
645 do {
646 if (!trylock_buffer(bh)) {
647 /*
648 * We failed to lock the buffer and cannot stall in
649 * async migration. Release the taken locks
650 */
651 struct buffer_head *failed_bh = bh;
652 bh = head;
653 while (bh != failed_bh) {
654 unlock_buffer(bh);
655 bh = bh->b_this_page;
656 }
657 return false;
658 }
659
660 bh = bh->b_this_page;
661 } while (bh != head);
662 return true;
663}
664
665static int __buffer_migrate_page(struct address_space *mapping,
666 struct page *newpage, struct page *page, enum migrate_mode mode,
667 bool check_refs)
668{
669 struct buffer_head *bh, *head;
670 int rc;
671 int expected_count;
672
673 if (!page_has_buffers(page))
674 return migrate_page(mapping, newpage, page, mode);
675
676 /* Check whether page does not have extra refs before we do more work */
677 expected_count = expected_page_refs(mapping, page);
678 if (page_count(page) != expected_count)
679 return -EAGAIN;
680
681 head = page_buffers(page);
682 if (!buffer_migrate_lock_buffers(head, mode))
683 return -EAGAIN;
684
685 if (check_refs) {
686 bool busy;
687 bool invalidated = false;
688
689recheck_buffers:
690 busy = false;
691 spin_lock(&mapping->private_lock);
692 bh = head;
693 do {
694 if (atomic_read(&bh->b_count)) {
695 busy = true;
696 break;
697 }
698 bh = bh->b_this_page;
699 } while (bh != head);
700 if (busy) {
701 if (invalidated) {
702 rc = -EAGAIN;
703 goto unlock_buffers;
704 }
705 spin_unlock(&mapping->private_lock);
706 invalidate_bh_lrus();
707 invalidated = true;
708 goto recheck_buffers;
709 }
710 }
711
712 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
713 if (rc != MIGRATEPAGE_SUCCESS)
714 goto unlock_buffers;
715
716 attach_page_private(newpage, detach_page_private(page));
717
718 bh = head;
719 do {
720 set_bh_page(bh, newpage, bh_offset(bh));
721 bh = bh->b_this_page;
722
723 } while (bh != head);
724
725 if (mode != MIGRATE_SYNC_NO_COPY)
726 migrate_page_copy(newpage, page);
727 else
728 migrate_page_states(newpage, page);
729
730 rc = MIGRATEPAGE_SUCCESS;
731unlock_buffers:
732 if (check_refs)
733 spin_unlock(&mapping->private_lock);
734 bh = head;
735 do {
736 unlock_buffer(bh);
737 bh = bh->b_this_page;
738
739 } while (bh != head);
740
741 return rc;
742}
743
744/*
745 * Migration function for pages with buffers. This function can only be used
746 * if the underlying filesystem guarantees that no other references to "page"
747 * exist. For example attached buffer heads are accessed only under page lock.
748 */
749int buffer_migrate_page(struct address_space *mapping,
750 struct page *newpage, struct page *page, enum migrate_mode mode)
751{
752 return __buffer_migrate_page(mapping, newpage, page, mode, false);
753}
754EXPORT_SYMBOL(buffer_migrate_page);
755
756/*
757 * Same as above except that this variant is more careful and checks that there
758 * are also no buffer head references. This function is the right one for
759 * mappings where buffer heads are directly looked up and referenced (such as
760 * block device mappings).
761 */
762int buffer_migrate_page_norefs(struct address_space *mapping,
763 struct page *newpage, struct page *page, enum migrate_mode mode)
764{
765 return __buffer_migrate_page(mapping, newpage, page, mode, true);
766}
767#endif
768
769/*
770 * Writeback a page to clean the dirty state
771 */
772static int writeout(struct address_space *mapping, struct page *page)
773{
774 struct writeback_control wbc = {
775 .sync_mode = WB_SYNC_NONE,
776 .nr_to_write = 1,
777 .range_start = 0,
778 .range_end = LLONG_MAX,
779 .for_reclaim = 1
780 };
781 int rc;
782
783 if (!mapping->a_ops->writepage)
784 /* No write method for the address space */
785 return -EINVAL;
786
787 if (!clear_page_dirty_for_io(page))
788 /* Someone else already triggered a write */
789 return -EAGAIN;
790
791 /*
792 * A dirty page may imply that the underlying filesystem has
793 * the page on some queue. So the page must be clean for
794 * migration. Writeout may mean we loose the lock and the
795 * page state is no longer what we checked for earlier.
796 * At this point we know that the migration attempt cannot
797 * be successful.
798 */
799 remove_migration_ptes(page, page, false);
800
801 rc = mapping->a_ops->writepage(page, &wbc);
802
803 if (rc != AOP_WRITEPAGE_ACTIVATE)
804 /* unlocked. Relock */
805 lock_page(page);
806
807 return (rc < 0) ? -EIO : -EAGAIN;
808}
809
810/*
811 * Default handling if a filesystem does not provide a migration function.
812 */
813static int fallback_migrate_page(struct address_space *mapping,
814 struct page *newpage, struct page *page, enum migrate_mode mode)
815{
816 if (PageDirty(page)) {
817 /* Only writeback pages in full synchronous migration */
818 switch (mode) {
819 case MIGRATE_SYNC:
820 case MIGRATE_SYNC_NO_COPY:
821 break;
822 default:
823 return -EBUSY;
824 }
825 return writeout(mapping, page);
826 }
827
828 /*
829 * Buffers may be managed in a filesystem specific way.
830 * We must have no buffers or drop them.
831 */
832 if (page_has_private(page) &&
833 !try_to_release_page(page, GFP_KERNEL))
834 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
835
836 return migrate_page(mapping, newpage, page, mode);
837}
838
839/*
840 * Move a page to a newly allocated page
841 * The page is locked and all ptes have been successfully removed.
842 *
843 * The new page will have replaced the old page if this function
844 * is successful.
845 *
846 * Return value:
847 * < 0 - error code
848 * MIGRATEPAGE_SUCCESS - success
849 */
850static int move_to_new_page(struct page *newpage, struct page *page,
851 enum migrate_mode mode)
852{
853 struct address_space *mapping;
854 int rc = -EAGAIN;
855 bool is_lru = !__PageMovable(page);
856
857 VM_BUG_ON_PAGE(!PageLocked(page), page);
858 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
859
860 mapping = page_mapping(page);
861
862 if (likely(is_lru)) {
863 if (!mapping)
864 rc = migrate_page(mapping, newpage, page, mode);
865 else if (mapping->a_ops->migratepage)
866 /*
867 * Most pages have a mapping and most filesystems
868 * provide a migratepage callback. Anonymous pages
869 * are part of swap space which also has its own
870 * migratepage callback. This is the most common path
871 * for page migration.
872 */
873 rc = mapping->a_ops->migratepage(mapping, newpage,
874 page, mode);
875 else
876 rc = fallback_migrate_page(mapping, newpage,
877 page, mode);
878 } else {
879 /*
880 * In case of non-lru page, it could be released after
881 * isolation step. In that case, we shouldn't try migration.
882 */
883 VM_BUG_ON_PAGE(!PageIsolated(page), page);
884 if (!PageMovable(page)) {
885 rc = MIGRATEPAGE_SUCCESS;
886 __ClearPageIsolated(page);
887 goto out;
888 }
889
890 rc = mapping->a_ops->migratepage(mapping, newpage,
891 page, mode);
892 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
893 !PageIsolated(page));
894 }
895
896 /*
897 * When successful, old pagecache page->mapping must be cleared before
898 * page is freed; but stats require that PageAnon be left as PageAnon.
899 */
900 if (rc == MIGRATEPAGE_SUCCESS) {
901 if (__PageMovable(page)) {
902 VM_BUG_ON_PAGE(!PageIsolated(page), page);
903
904 /*
905 * We clear PG_movable under page_lock so any compactor
906 * cannot try to migrate this page.
907 */
908 __ClearPageIsolated(page);
909 }
910
911 /*
912 * Anonymous and movable page->mapping will be cleared by
913 * free_pages_prepare so don't reset it here for keeping
914 * the type to work PageAnon, for example.
915 */
916 if (!PageMappingFlags(page))
917 page->mapping = NULL;
918
919 if (likely(!is_zone_device_page(newpage)))
920 flush_dcache_page(newpage);
921
922 }
923out:
924 return rc;
925}
926
927static int __unmap_and_move(struct page *page, struct page *newpage,
928 int force, enum migrate_mode mode)
929{
930 int rc = -EAGAIN;
931 bool page_was_mapped = false;
932 struct anon_vma *anon_vma = NULL;
933 bool is_lru = !__PageMovable(page);
934
935 if (!trylock_page(page)) {
936 if (!force || mode == MIGRATE_ASYNC)
937 goto out;
938
939 /*
940 * It's not safe for direct compaction to call lock_page.
941 * For example, during page readahead pages are added locked
942 * to the LRU. Later, when the IO completes the pages are
943 * marked uptodate and unlocked. However, the queueing
944 * could be merging multiple pages for one bio (e.g.
945 * mpage_readahead). If an allocation happens for the
946 * second or third page, the process can end up locking
947 * the same page twice and deadlocking. Rather than
948 * trying to be clever about what pages can be locked,
949 * avoid the use of lock_page for direct compaction
950 * altogether.
951 */
952 if (current->flags & PF_MEMALLOC)
953 goto out;
954
955 lock_page(page);
956 }
957
958 if (PageWriteback(page)) {
959 /*
960 * Only in the case of a full synchronous migration is it
961 * necessary to wait for PageWriteback. In the async case,
962 * the retry loop is too short and in the sync-light case,
963 * the overhead of stalling is too much
964 */
965 switch (mode) {
966 case MIGRATE_SYNC:
967 case MIGRATE_SYNC_NO_COPY:
968 break;
969 default:
970 rc = -EBUSY;
971 goto out_unlock;
972 }
973 if (!force)
974 goto out_unlock;
975 wait_on_page_writeback(page);
976 }
977
978 /*
979 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
980 * we cannot notice that anon_vma is freed while we migrates a page.
981 * This get_anon_vma() delays freeing anon_vma pointer until the end
982 * of migration. File cache pages are no problem because of page_lock()
983 * File Caches may use write_page() or lock_page() in migration, then,
984 * just care Anon page here.
985 *
986 * Only page_get_anon_vma() understands the subtleties of
987 * getting a hold on an anon_vma from outside one of its mms.
988 * But if we cannot get anon_vma, then we won't need it anyway,
989 * because that implies that the anon page is no longer mapped
990 * (and cannot be remapped so long as we hold the page lock).
991 */
992 if (PageAnon(page) && !PageKsm(page))
993 anon_vma = page_get_anon_vma(page);
994
995 /*
996 * Block others from accessing the new page when we get around to
997 * establishing additional references. We are usually the only one
998 * holding a reference to newpage at this point. We used to have a BUG
999 * here if trylock_page(newpage) fails, but would like to allow for
1000 * cases where there might be a race with the previous use of newpage.
1001 * This is much like races on refcount of oldpage: just don't BUG().
1002 */
1003 if (unlikely(!trylock_page(newpage)))
1004 goto out_unlock;
1005
1006 if (unlikely(!is_lru)) {
1007 rc = move_to_new_page(newpage, page, mode);
1008 goto out_unlock_both;
1009 }
1010
1011 /*
1012 * Corner case handling:
1013 * 1. When a new swap-cache page is read into, it is added to the LRU
1014 * and treated as swapcache but it has no rmap yet.
1015 * Calling try_to_unmap() against a page->mapping==NULL page will
1016 * trigger a BUG. So handle it here.
1017 * 2. An orphaned page (see truncate_cleanup_page) might have
1018 * fs-private metadata. The page can be picked up due to memory
1019 * offlining. Everywhere else except page reclaim, the page is
1020 * invisible to the vm, so the page can not be migrated. So try to
1021 * free the metadata, so the page can be freed.
1022 */
1023 if (!page->mapping) {
1024 VM_BUG_ON_PAGE(PageAnon(page), page);
1025 if (page_has_private(page)) {
1026 try_to_free_buffers(page);
1027 goto out_unlock_both;
1028 }
1029 } else if (page_mapped(page)) {
1030 /* Establish migration ptes */
1031 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1032 page);
1033 try_to_migrate(page, 0);
1034 page_was_mapped = true;
1035 }
1036
1037 if (!page_mapped(page))
1038 rc = move_to_new_page(newpage, page, mode);
1039
1040 if (page_was_mapped)
1041 remove_migration_ptes(page,
1042 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1043
1044out_unlock_both:
1045 unlock_page(newpage);
1046out_unlock:
1047 /* Drop an anon_vma reference if we took one */
1048 if (anon_vma)
1049 put_anon_vma(anon_vma);
1050 unlock_page(page);
1051out:
1052 /*
1053 * If migration is successful, decrease refcount of the newpage
1054 * which will not free the page because new page owner increased
1055 * refcounter. As well, if it is LRU page, add the page to LRU
1056 * list in here. Use the old state of the isolated source page to
1057 * determine if we migrated a LRU page. newpage was already unlocked
1058 * and possibly modified by its owner - don't rely on the page
1059 * state.
1060 */
1061 if (rc == MIGRATEPAGE_SUCCESS) {
1062 if (unlikely(!is_lru))
1063 put_page(newpage);
1064 else
1065 putback_lru_page(newpage);
1066 }
1067
1068 return rc;
1069}
1070
1071/*
1072 * Obtain the lock on page, remove all ptes and migrate the page
1073 * to the newly allocated page in newpage.
1074 */
1075static int unmap_and_move(new_page_t get_new_page,
1076 free_page_t put_new_page,
1077 unsigned long private, struct page *page,
1078 int force, enum migrate_mode mode,
1079 enum migrate_reason reason,
1080 struct list_head *ret)
1081{
1082 int rc = MIGRATEPAGE_SUCCESS;
1083 struct page *newpage = NULL;
1084
1085 if (!thp_migration_supported() && PageTransHuge(page))
1086 return -ENOSYS;
1087
1088 if (page_count(page) == 1) {
1089 /* page was freed from under us. So we are done. */
1090 ClearPageActive(page);
1091 ClearPageUnevictable(page);
1092 if (unlikely(__PageMovable(page))) {
1093 lock_page(page);
1094 if (!PageMovable(page))
1095 __ClearPageIsolated(page);
1096 unlock_page(page);
1097 }
1098 goto out;
1099 }
1100
1101 newpage = get_new_page(page, private);
1102 if (!newpage)
1103 return -ENOMEM;
1104
1105 rc = __unmap_and_move(page, newpage, force, mode);
1106 if (rc == MIGRATEPAGE_SUCCESS)
1107 set_page_owner_migrate_reason(newpage, reason);
1108
1109out:
1110 if (rc != -EAGAIN) {
1111 /*
1112 * A page that has been migrated has all references
1113 * removed and will be freed. A page that has not been
1114 * migrated will have kept its references and be restored.
1115 */
1116 list_del(&page->lru);
1117 }
1118
1119 /*
1120 * If migration is successful, releases reference grabbed during
1121 * isolation. Otherwise, restore the page to right list unless
1122 * we want to retry.
1123 */
1124 if (rc == MIGRATEPAGE_SUCCESS) {
1125 /*
1126 * Compaction can migrate also non-LRU pages which are
1127 * not accounted to NR_ISOLATED_*. They can be recognized
1128 * as __PageMovable
1129 */
1130 if (likely(!__PageMovable(page)))
1131 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1132 page_is_file_lru(page), -thp_nr_pages(page));
1133
1134 if (reason != MR_MEMORY_FAILURE)
1135 /*
1136 * We release the page in page_handle_poison.
1137 */
1138 put_page(page);
1139 } else {
1140 if (rc != -EAGAIN)
1141 list_add_tail(&page->lru, ret);
1142
1143 if (put_new_page)
1144 put_new_page(newpage, private);
1145 else
1146 put_page(newpage);
1147 }
1148
1149 return rc;
1150}
1151
1152/*
1153 * Counterpart of unmap_and_move_page() for hugepage migration.
1154 *
1155 * This function doesn't wait the completion of hugepage I/O
1156 * because there is no race between I/O and migration for hugepage.
1157 * Note that currently hugepage I/O occurs only in direct I/O
1158 * where no lock is held and PG_writeback is irrelevant,
1159 * and writeback status of all subpages are counted in the reference
1160 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1161 * under direct I/O, the reference of the head page is 512 and a bit more.)
1162 * This means that when we try to migrate hugepage whose subpages are
1163 * doing direct I/O, some references remain after try_to_unmap() and
1164 * hugepage migration fails without data corruption.
1165 *
1166 * There is also no race when direct I/O is issued on the page under migration,
1167 * because then pte is replaced with migration swap entry and direct I/O code
1168 * will wait in the page fault for migration to complete.
1169 */
1170static int unmap_and_move_huge_page(new_page_t get_new_page,
1171 free_page_t put_new_page, unsigned long private,
1172 struct page *hpage, int force,
1173 enum migrate_mode mode, int reason,
1174 struct list_head *ret)
1175{
1176 int rc = -EAGAIN;
1177 int page_was_mapped = 0;
1178 struct page *new_hpage;
1179 struct anon_vma *anon_vma = NULL;
1180 struct address_space *mapping = NULL;
1181
1182 /*
1183 * Migratability of hugepages depends on architectures and their size.
1184 * This check is necessary because some callers of hugepage migration
1185 * like soft offline and memory hotremove don't walk through page
1186 * tables or check whether the hugepage is pmd-based or not before
1187 * kicking migration.
1188 */
1189 if (!hugepage_migration_supported(page_hstate(hpage))) {
1190 list_move_tail(&hpage->lru, ret);
1191 return -ENOSYS;
1192 }
1193
1194 if (page_count(hpage) == 1) {
1195 /* page was freed from under us. So we are done. */
1196 putback_active_hugepage(hpage);
1197 return MIGRATEPAGE_SUCCESS;
1198 }
1199
1200 new_hpage = get_new_page(hpage, private);
1201 if (!new_hpage)
1202 return -ENOMEM;
1203
1204 if (!trylock_page(hpage)) {
1205 if (!force)
1206 goto out;
1207 switch (mode) {
1208 case MIGRATE_SYNC:
1209 case MIGRATE_SYNC_NO_COPY:
1210 break;
1211 default:
1212 goto out;
1213 }
1214 lock_page(hpage);
1215 }
1216
1217 /*
1218 * Check for pages which are in the process of being freed. Without
1219 * page_mapping() set, hugetlbfs specific move page routine will not
1220 * be called and we could leak usage counts for subpools.
1221 */
1222 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1223 rc = -EBUSY;
1224 goto out_unlock;
1225 }
1226
1227 if (PageAnon(hpage))
1228 anon_vma = page_get_anon_vma(hpage);
1229
1230 if (unlikely(!trylock_page(new_hpage)))
1231 goto put_anon;
1232
1233 if (page_mapped(hpage)) {
1234 bool mapping_locked = false;
1235 enum ttu_flags ttu = 0;
1236
1237 if (!PageAnon(hpage)) {
1238 /*
1239 * In shared mappings, try_to_unmap could potentially
1240 * call huge_pmd_unshare. Because of this, take
1241 * semaphore in write mode here and set TTU_RMAP_LOCKED
1242 * to let lower levels know we have taken the lock.
1243 */
1244 mapping = hugetlb_page_mapping_lock_write(hpage);
1245 if (unlikely(!mapping))
1246 goto unlock_put_anon;
1247
1248 mapping_locked = true;
1249 ttu |= TTU_RMAP_LOCKED;
1250 }
1251
1252 try_to_migrate(hpage, ttu);
1253 page_was_mapped = 1;
1254
1255 if (mapping_locked)
1256 i_mmap_unlock_write(mapping);
1257 }
1258
1259 if (!page_mapped(hpage))
1260 rc = move_to_new_page(new_hpage, hpage, mode);
1261
1262 if (page_was_mapped)
1263 remove_migration_ptes(hpage,
1264 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1265
1266unlock_put_anon:
1267 unlock_page(new_hpage);
1268
1269put_anon:
1270 if (anon_vma)
1271 put_anon_vma(anon_vma);
1272
1273 if (rc == MIGRATEPAGE_SUCCESS) {
1274 move_hugetlb_state(hpage, new_hpage, reason);
1275 put_new_page = NULL;
1276 }
1277
1278out_unlock:
1279 unlock_page(hpage);
1280out:
1281 if (rc == MIGRATEPAGE_SUCCESS)
1282 putback_active_hugepage(hpage);
1283 else if (rc != -EAGAIN)
1284 list_move_tail(&hpage->lru, ret);
1285
1286 /*
1287 * If migration was not successful and there's a freeing callback, use
1288 * it. Otherwise, put_page() will drop the reference grabbed during
1289 * isolation.
1290 */
1291 if (put_new_page)
1292 put_new_page(new_hpage, private);
1293 else
1294 putback_active_hugepage(new_hpage);
1295
1296 return rc;
1297}
1298
1299static inline int try_split_thp(struct page *page, struct page **page2,
1300 struct list_head *from)
1301{
1302 int rc = 0;
1303
1304 lock_page(page);
1305 rc = split_huge_page_to_list(page, from);
1306 unlock_page(page);
1307 if (!rc)
1308 list_safe_reset_next(page, *page2, lru);
1309
1310 return rc;
1311}
1312
1313/*
1314 * migrate_pages - migrate the pages specified in a list, to the free pages
1315 * supplied as the target for the page migration
1316 *
1317 * @from: The list of pages to be migrated.
1318 * @get_new_page: The function used to allocate free pages to be used
1319 * as the target of the page migration.
1320 * @put_new_page: The function used to free target pages if migration
1321 * fails, or NULL if no special handling is necessary.
1322 * @private: Private data to be passed on to get_new_page()
1323 * @mode: The migration mode that specifies the constraints for
1324 * page migration, if any.
1325 * @reason: The reason for page migration.
1326 * @ret_succeeded: Set to the number of normal pages migrated successfully if
1327 * the caller passes a non-NULL pointer.
1328 *
1329 * The function returns after 10 attempts or if no pages are movable any more
1330 * because the list has become empty or no retryable pages exist any more.
1331 * It is caller's responsibility to call putback_movable_pages() to return pages
1332 * to the LRU or free list only if ret != 0.
1333 *
1334 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1335 * an error code. The number of THP splits will be considered as the number of
1336 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1337 */
1338int migrate_pages(struct list_head *from, new_page_t get_new_page,
1339 free_page_t put_new_page, unsigned long private,
1340 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1341{
1342 int retry = 1;
1343 int thp_retry = 1;
1344 int nr_failed = 0;
1345 int nr_failed_pages = 0;
1346 int nr_succeeded = 0;
1347 int nr_thp_succeeded = 0;
1348 int nr_thp_failed = 0;
1349 int nr_thp_split = 0;
1350 int pass = 0;
1351 bool is_thp = false;
1352 struct page *page;
1353 struct page *page2;
1354 int swapwrite = current->flags & PF_SWAPWRITE;
1355 int rc, nr_subpages;
1356 LIST_HEAD(ret_pages);
1357 LIST_HEAD(thp_split_pages);
1358 bool nosplit = (reason == MR_NUMA_MISPLACED);
1359 bool no_subpage_counting = false;
1360
1361 trace_mm_migrate_pages_start(mode, reason);
1362
1363 if (!swapwrite)
1364 current->flags |= PF_SWAPWRITE;
1365
1366thp_subpage_migration:
1367 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1368 retry = 0;
1369 thp_retry = 0;
1370
1371 list_for_each_entry_safe(page, page2, from, lru) {
1372retry:
1373 /*
1374 * THP statistics is based on the source huge page.
1375 * Capture required information that might get lost
1376 * during migration.
1377 */
1378 is_thp = PageTransHuge(page) && !PageHuge(page);
1379 nr_subpages = compound_nr(page);
1380 cond_resched();
1381
1382 if (PageHuge(page))
1383 rc = unmap_and_move_huge_page(get_new_page,
1384 put_new_page, private, page,
1385 pass > 2, mode, reason,
1386 &ret_pages);
1387 else
1388 rc = unmap_and_move(get_new_page, put_new_page,
1389 private, page, pass > 2, mode,
1390 reason, &ret_pages);
1391 /*
1392 * The rules are:
1393 * Success: non hugetlb page will be freed, hugetlb
1394 * page will be put back
1395 * -EAGAIN: stay on the from list
1396 * -ENOMEM: stay on the from list
1397 * Other errno: put on ret_pages list then splice to
1398 * from list
1399 */
1400 switch(rc) {
1401 /*
1402 * THP migration might be unsupported or the
1403 * allocation could've failed so we should
1404 * retry on the same page with the THP split
1405 * to base pages.
1406 *
1407 * Head page is retried immediately and tail
1408 * pages are added to the tail of the list so
1409 * we encounter them after the rest of the list
1410 * is processed.
1411 */
1412 case -ENOSYS:
1413 /* THP migration is unsupported */
1414 if (is_thp) {
1415 nr_thp_failed++;
1416 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1417 nr_thp_split++;
1418 goto retry;
1419 }
1420
1421 nr_failed_pages += nr_subpages;
1422 break;
1423 }
1424
1425 /* Hugetlb migration is unsupported */
1426 if (!no_subpage_counting)
1427 nr_failed++;
1428 nr_failed_pages += nr_subpages;
1429 break;
1430 case -ENOMEM:
1431 /*
1432 * When memory is low, don't bother to try to migrate
1433 * other pages, just exit.
1434 * THP NUMA faulting doesn't split THP to retry.
1435 */
1436 if (is_thp && !nosplit) {
1437 nr_thp_failed++;
1438 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1439 nr_thp_split++;
1440 goto retry;
1441 }
1442
1443 nr_failed_pages += nr_subpages;
1444 goto out;
1445 }
1446
1447 if (!no_subpage_counting)
1448 nr_failed++;
1449 nr_failed_pages += nr_subpages;
1450 goto out;
1451 case -EAGAIN:
1452 if (is_thp) {
1453 thp_retry++;
1454 break;
1455 }
1456 retry++;
1457 break;
1458 case MIGRATEPAGE_SUCCESS:
1459 nr_succeeded += nr_subpages;
1460 if (is_thp) {
1461 nr_thp_succeeded++;
1462 break;
1463 }
1464 break;
1465 default:
1466 /*
1467 * Permanent failure (-EBUSY, etc.):
1468 * unlike -EAGAIN case, the failed page is
1469 * removed from migration page list and not
1470 * retried in the next outer loop.
1471 */
1472 if (is_thp) {
1473 nr_thp_failed++;
1474 nr_failed_pages += nr_subpages;
1475 break;
1476 }
1477
1478 if (!no_subpage_counting)
1479 nr_failed++;
1480 nr_failed_pages += nr_subpages;
1481 break;
1482 }
1483 }
1484 }
1485 nr_failed += retry;
1486 nr_thp_failed += thp_retry;
1487 /*
1488 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1489 * counting in this round, since all subpages of a THP is counted
1490 * as 1 failure in the first round.
1491 */
1492 if (!list_empty(&thp_split_pages)) {
1493 /*
1494 * Move non-migrated pages (after 10 retries) to ret_pages
1495 * to avoid migrating them again.
1496 */
1497 list_splice_init(from, &ret_pages);
1498 list_splice_init(&thp_split_pages, from);
1499 no_subpage_counting = true;
1500 retry = 1;
1501 goto thp_subpage_migration;
1502 }
1503
1504 rc = nr_failed + nr_thp_failed;
1505out:
1506 /*
1507 * Put the permanent failure page back to migration list, they
1508 * will be put back to the right list by the caller.
1509 */
1510 list_splice(&ret_pages, from);
1511
1512 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1513 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1514 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1515 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1516 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1517 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1518 nr_thp_failed, nr_thp_split, mode, reason);
1519
1520 if (!swapwrite)
1521 current->flags &= ~PF_SWAPWRITE;
1522
1523 if (ret_succeeded)
1524 *ret_succeeded = nr_succeeded;
1525
1526 return rc;
1527}
1528
1529struct page *alloc_migration_target(struct page *page, unsigned long private)
1530{
1531 struct migration_target_control *mtc;
1532 gfp_t gfp_mask;
1533 unsigned int order = 0;
1534 struct page *new_page = NULL;
1535 int nid;
1536 int zidx;
1537
1538 mtc = (struct migration_target_control *)private;
1539 gfp_mask = mtc->gfp_mask;
1540 nid = mtc->nid;
1541 if (nid == NUMA_NO_NODE)
1542 nid = page_to_nid(page);
1543
1544 if (PageHuge(page)) {
1545 struct hstate *h = page_hstate(compound_head(page));
1546
1547 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1548 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1549 }
1550
1551 if (PageTransHuge(page)) {
1552 /*
1553 * clear __GFP_RECLAIM to make the migration callback
1554 * consistent with regular THP allocations.
1555 */
1556 gfp_mask &= ~__GFP_RECLAIM;
1557 gfp_mask |= GFP_TRANSHUGE;
1558 order = HPAGE_PMD_ORDER;
1559 }
1560 zidx = zone_idx(page_zone(page));
1561 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1562 gfp_mask |= __GFP_HIGHMEM;
1563
1564 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1565
1566 if (new_page && PageTransHuge(new_page))
1567 prep_transhuge_page(new_page);
1568
1569 return new_page;
1570}
1571
1572#ifdef CONFIG_NUMA
1573
1574static int store_status(int __user *status, int start, int value, int nr)
1575{
1576 while (nr-- > 0) {
1577 if (put_user(value, status + start))
1578 return -EFAULT;
1579 start++;
1580 }
1581
1582 return 0;
1583}
1584
1585static int do_move_pages_to_node(struct mm_struct *mm,
1586 struct list_head *pagelist, int node)
1587{
1588 int err;
1589 struct migration_target_control mtc = {
1590 .nid = node,
1591 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1592 };
1593
1594 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1595 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1596 if (err)
1597 putback_movable_pages(pagelist);
1598 return err;
1599}
1600
1601/*
1602 * Resolves the given address to a struct page, isolates it from the LRU and
1603 * puts it to the given pagelist.
1604 * Returns:
1605 * errno - if the page cannot be found/isolated
1606 * 0 - when it doesn't have to be migrated because it is already on the
1607 * target node
1608 * 1 - when it has been queued
1609 */
1610static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1611 int node, struct list_head *pagelist, bool migrate_all)
1612{
1613 struct vm_area_struct *vma;
1614 struct page *page;
1615 unsigned int follflags;
1616 int err;
1617
1618 mmap_read_lock(mm);
1619 err = -EFAULT;
1620 vma = find_vma(mm, addr);
1621 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1622 goto out;
1623
1624 /* FOLL_DUMP to ignore special (like zero) pages */
1625 follflags = FOLL_GET | FOLL_DUMP;
1626 page = follow_page(vma, addr, follflags);
1627
1628 err = PTR_ERR(page);
1629 if (IS_ERR(page))
1630 goto out;
1631
1632 err = -ENOENT;
1633 if (!page)
1634 goto out;
1635
1636 err = 0;
1637 if (page_to_nid(page) == node)
1638 goto out_putpage;
1639
1640 err = -EACCES;
1641 if (page_mapcount(page) > 1 && !migrate_all)
1642 goto out_putpage;
1643
1644 if (PageHuge(page)) {
1645 if (PageHead(page)) {
1646 isolate_huge_page(page, pagelist);
1647 err = 1;
1648 }
1649 } else {
1650 struct page *head;
1651
1652 head = compound_head(page);
1653 err = isolate_lru_page(head);
1654 if (err)
1655 goto out_putpage;
1656
1657 err = 1;
1658 list_add_tail(&head->lru, pagelist);
1659 mod_node_page_state(page_pgdat(head),
1660 NR_ISOLATED_ANON + page_is_file_lru(head),
1661 thp_nr_pages(head));
1662 }
1663out_putpage:
1664 /*
1665 * Either remove the duplicate refcount from
1666 * isolate_lru_page() or drop the page ref if it was
1667 * not isolated.
1668 */
1669 put_page(page);
1670out:
1671 mmap_read_unlock(mm);
1672 return err;
1673}
1674
1675static int move_pages_and_store_status(struct mm_struct *mm, int node,
1676 struct list_head *pagelist, int __user *status,
1677 int start, int i, unsigned long nr_pages)
1678{
1679 int err;
1680
1681 if (list_empty(pagelist))
1682 return 0;
1683
1684 err = do_move_pages_to_node(mm, pagelist, node);
1685 if (err) {
1686 /*
1687 * Positive err means the number of failed
1688 * pages to migrate. Since we are going to
1689 * abort and return the number of non-migrated
1690 * pages, so need to include the rest of the
1691 * nr_pages that have not been attempted as
1692 * well.
1693 */
1694 if (err > 0)
1695 err += nr_pages - i - 1;
1696 return err;
1697 }
1698 return store_status(status, start, node, i - start);
1699}
1700
1701/*
1702 * Migrate an array of page address onto an array of nodes and fill
1703 * the corresponding array of status.
1704 */
1705static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1706 unsigned long nr_pages,
1707 const void __user * __user *pages,
1708 const int __user *nodes,
1709 int __user *status, int flags)
1710{
1711 int current_node = NUMA_NO_NODE;
1712 LIST_HEAD(pagelist);
1713 int start, i;
1714 int err = 0, err1;
1715
1716 lru_cache_disable();
1717
1718 for (i = start = 0; i < nr_pages; i++) {
1719 const void __user *p;
1720 unsigned long addr;
1721 int node;
1722
1723 err = -EFAULT;
1724 if (get_user(p, pages + i))
1725 goto out_flush;
1726 if (get_user(node, nodes + i))
1727 goto out_flush;
1728 addr = (unsigned long)untagged_addr(p);
1729
1730 err = -ENODEV;
1731 if (node < 0 || node >= MAX_NUMNODES)
1732 goto out_flush;
1733 if (!node_state(node, N_MEMORY))
1734 goto out_flush;
1735
1736 err = -EACCES;
1737 if (!node_isset(node, task_nodes))
1738 goto out_flush;
1739
1740 if (current_node == NUMA_NO_NODE) {
1741 current_node = node;
1742 start = i;
1743 } else if (node != current_node) {
1744 err = move_pages_and_store_status(mm, current_node,
1745 &pagelist, status, start, i, nr_pages);
1746 if (err)
1747 goto out;
1748 start = i;
1749 current_node = node;
1750 }
1751
1752 /*
1753 * Errors in the page lookup or isolation are not fatal and we simply
1754 * report them via status
1755 */
1756 err = add_page_for_migration(mm, addr, current_node,
1757 &pagelist, flags & MPOL_MF_MOVE_ALL);
1758
1759 if (err > 0) {
1760 /* The page is successfully queued for migration */
1761 continue;
1762 }
1763
1764 /*
1765 * If the page is already on the target node (!err), store the
1766 * node, otherwise, store the err.
1767 */
1768 err = store_status(status, i, err ? : current_node, 1);
1769 if (err)
1770 goto out_flush;
1771
1772 err = move_pages_and_store_status(mm, current_node, &pagelist,
1773 status, start, i, nr_pages);
1774 if (err)
1775 goto out;
1776 current_node = NUMA_NO_NODE;
1777 }
1778out_flush:
1779 /* Make sure we do not overwrite the existing error */
1780 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1781 status, start, i, nr_pages);
1782 if (err >= 0)
1783 err = err1;
1784out:
1785 lru_cache_enable();
1786 return err;
1787}
1788
1789/*
1790 * Determine the nodes of an array of pages and store it in an array of status.
1791 */
1792static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1793 const void __user **pages, int *status)
1794{
1795 unsigned long i;
1796
1797 mmap_read_lock(mm);
1798
1799 for (i = 0; i < nr_pages; i++) {
1800 unsigned long addr = (unsigned long)(*pages);
1801 struct vm_area_struct *vma;
1802 struct page *page;
1803 int err = -EFAULT;
1804
1805 vma = vma_lookup(mm, addr);
1806 if (!vma)
1807 goto set_status;
1808
1809 /* FOLL_DUMP to ignore special (like zero) pages */
1810 page = follow_page(vma, addr, FOLL_DUMP);
1811
1812 err = PTR_ERR(page);
1813 if (IS_ERR(page))
1814 goto set_status;
1815
1816 err = page ? page_to_nid(page) : -ENOENT;
1817set_status:
1818 *status = err;
1819
1820 pages++;
1821 status++;
1822 }
1823
1824 mmap_read_unlock(mm);
1825}
1826
1827static int get_compat_pages_array(const void __user *chunk_pages[],
1828 const void __user * __user *pages,
1829 unsigned long chunk_nr)
1830{
1831 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1832 compat_uptr_t p;
1833 int i;
1834
1835 for (i = 0; i < chunk_nr; i++) {
1836 if (get_user(p, pages32 + i))
1837 return -EFAULT;
1838 chunk_pages[i] = compat_ptr(p);
1839 }
1840
1841 return 0;
1842}
1843
1844/*
1845 * Determine the nodes of a user array of pages and store it in
1846 * a user array of status.
1847 */
1848static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1849 const void __user * __user *pages,
1850 int __user *status)
1851{
1852#define DO_PAGES_STAT_CHUNK_NR 16
1853 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1854 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1855
1856 while (nr_pages) {
1857 unsigned long chunk_nr;
1858
1859 chunk_nr = nr_pages;
1860 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1861 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1862
1863 if (in_compat_syscall()) {
1864 if (get_compat_pages_array(chunk_pages, pages,
1865 chunk_nr))
1866 break;
1867 } else {
1868 if (copy_from_user(chunk_pages, pages,
1869 chunk_nr * sizeof(*chunk_pages)))
1870 break;
1871 }
1872
1873 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1874
1875 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1876 break;
1877
1878 pages += chunk_nr;
1879 status += chunk_nr;
1880 nr_pages -= chunk_nr;
1881 }
1882 return nr_pages ? -EFAULT : 0;
1883}
1884
1885static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1886{
1887 struct task_struct *task;
1888 struct mm_struct *mm;
1889
1890 /*
1891 * There is no need to check if current process has the right to modify
1892 * the specified process when they are same.
1893 */
1894 if (!pid) {
1895 mmget(current->mm);
1896 *mem_nodes = cpuset_mems_allowed(current);
1897 return current->mm;
1898 }
1899
1900 /* Find the mm_struct */
1901 rcu_read_lock();
1902 task = find_task_by_vpid(pid);
1903 if (!task) {
1904 rcu_read_unlock();
1905 return ERR_PTR(-ESRCH);
1906 }
1907 get_task_struct(task);
1908
1909 /*
1910 * Check if this process has the right to modify the specified
1911 * process. Use the regular "ptrace_may_access()" checks.
1912 */
1913 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1914 rcu_read_unlock();
1915 mm = ERR_PTR(-EPERM);
1916 goto out;
1917 }
1918 rcu_read_unlock();
1919
1920 mm = ERR_PTR(security_task_movememory(task));
1921 if (IS_ERR(mm))
1922 goto out;
1923 *mem_nodes = cpuset_mems_allowed(task);
1924 mm = get_task_mm(task);
1925out:
1926 put_task_struct(task);
1927 if (!mm)
1928 mm = ERR_PTR(-EINVAL);
1929 return mm;
1930}
1931
1932/*
1933 * Move a list of pages in the address space of the currently executing
1934 * process.
1935 */
1936static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1937 const void __user * __user *pages,
1938 const int __user *nodes,
1939 int __user *status, int flags)
1940{
1941 struct mm_struct *mm;
1942 int err;
1943 nodemask_t task_nodes;
1944
1945 /* Check flags */
1946 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1947 return -EINVAL;
1948
1949 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1950 return -EPERM;
1951
1952 mm = find_mm_struct(pid, &task_nodes);
1953 if (IS_ERR(mm))
1954 return PTR_ERR(mm);
1955
1956 if (nodes)
1957 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1958 nodes, status, flags);
1959 else
1960 err = do_pages_stat(mm, nr_pages, pages, status);
1961
1962 mmput(mm);
1963 return err;
1964}
1965
1966SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1967 const void __user * __user *, pages,
1968 const int __user *, nodes,
1969 int __user *, status, int, flags)
1970{
1971 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1972}
1973
1974#ifdef CONFIG_NUMA_BALANCING
1975/*
1976 * Returns true if this is a safe migration target node for misplaced NUMA
1977 * pages. Currently it only checks the watermarks which crude
1978 */
1979static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1980 unsigned long nr_migrate_pages)
1981{
1982 int z;
1983
1984 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1985 struct zone *zone = pgdat->node_zones + z;
1986
1987 if (!populated_zone(zone))
1988 continue;
1989
1990 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1991 if (!zone_watermark_ok(zone, 0,
1992 high_wmark_pages(zone) +
1993 nr_migrate_pages,
1994 ZONE_MOVABLE, 0))
1995 continue;
1996 return true;
1997 }
1998 return false;
1999}
2000
2001static struct page *alloc_misplaced_dst_page(struct page *page,
2002 unsigned long data)
2003{
2004 int nid = (int) data;
2005 struct page *newpage;
2006
2007 newpage = __alloc_pages_node(nid,
2008 (GFP_HIGHUSER_MOVABLE |
2009 __GFP_THISNODE | __GFP_NOMEMALLOC |
2010 __GFP_NORETRY | __GFP_NOWARN) &
2011 ~__GFP_RECLAIM, 0);
2012
2013 return newpage;
2014}
2015
2016static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2017 unsigned long data)
2018{
2019 int nid = (int) data;
2020 struct page *newpage;
2021
2022 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2023 HPAGE_PMD_ORDER);
2024 if (!newpage)
2025 goto out;
2026
2027 prep_transhuge_page(newpage);
2028
2029out:
2030 return newpage;
2031}
2032
2033static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2034{
2035 int page_lru;
2036 int nr_pages = thp_nr_pages(page);
2037
2038 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2039
2040 /* Do not migrate THP mapped by multiple processes */
2041 if (PageTransHuge(page) && total_mapcount(page) > 1)
2042 return 0;
2043
2044 /* Avoid migrating to a node that is nearly full */
2045 if (!migrate_balanced_pgdat(pgdat, nr_pages))
2046 return 0;
2047
2048 if (isolate_lru_page(page))
2049 return 0;
2050
2051 page_lru = page_is_file_lru(page);
2052 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2053 nr_pages);
2054
2055 /*
2056 * Isolating the page has taken another reference, so the
2057 * caller's reference can be safely dropped without the page
2058 * disappearing underneath us during migration.
2059 */
2060 put_page(page);
2061 return 1;
2062}
2063
2064/*
2065 * Attempt to migrate a misplaced page to the specified destination
2066 * node. Caller is expected to have an elevated reference count on
2067 * the page that will be dropped by this function before returning.
2068 */
2069int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2070 int node)
2071{
2072 pg_data_t *pgdat = NODE_DATA(node);
2073 int isolated;
2074 int nr_remaining;
2075 LIST_HEAD(migratepages);
2076 new_page_t *new;
2077 bool compound;
2078 int nr_pages = thp_nr_pages(page);
2079
2080 /*
2081 * PTE mapped THP or HugeTLB page can't reach here so the page could
2082 * be either base page or THP. And it must be head page if it is
2083 * THP.
2084 */
2085 compound = PageTransHuge(page);
2086
2087 if (compound)
2088 new = alloc_misplaced_dst_page_thp;
2089 else
2090 new = alloc_misplaced_dst_page;
2091
2092 /*
2093 * Don't migrate file pages that are mapped in multiple processes
2094 * with execute permissions as they are probably shared libraries.
2095 */
2096 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2097 (vma->vm_flags & VM_EXEC))
2098 goto out;
2099
2100 /*
2101 * Also do not migrate dirty pages as not all filesystems can move
2102 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2103 */
2104 if (page_is_file_lru(page) && PageDirty(page))
2105 goto out;
2106
2107 isolated = numamigrate_isolate_page(pgdat, page);
2108 if (!isolated)
2109 goto out;
2110
2111 list_add(&page->lru, &migratepages);
2112 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2113 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2114 if (nr_remaining) {
2115 if (!list_empty(&migratepages)) {
2116 list_del(&page->lru);
2117 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2118 page_is_file_lru(page), -nr_pages);
2119 putback_lru_page(page);
2120 }
2121 isolated = 0;
2122 } else
2123 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2124 BUG_ON(!list_empty(&migratepages));
2125 return isolated;
2126
2127out:
2128 put_page(page);
2129 return 0;
2130}
2131#endif /* CONFIG_NUMA_BALANCING */
2132#endif /* CONFIG_NUMA */
2133
2134#ifdef CONFIG_DEVICE_PRIVATE
2135static int migrate_vma_collect_skip(unsigned long start,
2136 unsigned long end,
2137 struct mm_walk *walk)
2138{
2139 struct migrate_vma *migrate = walk->private;
2140 unsigned long addr;
2141
2142 for (addr = start; addr < end; addr += PAGE_SIZE) {
2143 migrate->dst[migrate->npages] = 0;
2144 migrate->src[migrate->npages++] = 0;
2145 }
2146
2147 return 0;
2148}
2149
2150static int migrate_vma_collect_hole(unsigned long start,
2151 unsigned long end,
2152 __always_unused int depth,
2153 struct mm_walk *walk)
2154{
2155 struct migrate_vma *migrate = walk->private;
2156 unsigned long addr;
2157
2158 /* Only allow populating anonymous memory. */
2159 if (!vma_is_anonymous(walk->vma))
2160 return migrate_vma_collect_skip(start, end, walk);
2161
2162 for (addr = start; addr < end; addr += PAGE_SIZE) {
2163 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2164 migrate->dst[migrate->npages] = 0;
2165 migrate->npages++;
2166 migrate->cpages++;
2167 }
2168
2169 return 0;
2170}
2171
2172static int migrate_vma_collect_pmd(pmd_t *pmdp,
2173 unsigned long start,
2174 unsigned long end,
2175 struct mm_walk *walk)
2176{
2177 struct migrate_vma *migrate = walk->private;
2178 struct vm_area_struct *vma = walk->vma;
2179 struct mm_struct *mm = vma->vm_mm;
2180 unsigned long addr = start, unmapped = 0;
2181 spinlock_t *ptl;
2182 pte_t *ptep;
2183
2184again:
2185 if (pmd_none(*pmdp))
2186 return migrate_vma_collect_hole(start, end, -1, walk);
2187
2188 if (pmd_trans_huge(*pmdp)) {
2189 struct page *page;
2190
2191 ptl = pmd_lock(mm, pmdp);
2192 if (unlikely(!pmd_trans_huge(*pmdp))) {
2193 spin_unlock(ptl);
2194 goto again;
2195 }
2196
2197 page = pmd_page(*pmdp);
2198 if (is_huge_zero_page(page)) {
2199 spin_unlock(ptl);
2200 split_huge_pmd(vma, pmdp, addr);
2201 if (pmd_trans_unstable(pmdp))
2202 return migrate_vma_collect_skip(start, end,
2203 walk);
2204 } else {
2205 int ret;
2206
2207 get_page(page);
2208 spin_unlock(ptl);
2209 if (unlikely(!trylock_page(page)))
2210 return migrate_vma_collect_skip(start, end,
2211 walk);
2212 ret = split_huge_page(page);
2213 unlock_page(page);
2214 put_page(page);
2215 if (ret)
2216 return migrate_vma_collect_skip(start, end,
2217 walk);
2218 if (pmd_none(*pmdp))
2219 return migrate_vma_collect_hole(start, end, -1,
2220 walk);
2221 }
2222 }
2223
2224 if (unlikely(pmd_bad(*pmdp)))
2225 return migrate_vma_collect_skip(start, end, walk);
2226
2227 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2228 arch_enter_lazy_mmu_mode();
2229
2230 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2231 unsigned long mpfn = 0, pfn;
2232 struct page *page;
2233 swp_entry_t entry;
2234 pte_t pte;
2235
2236 pte = *ptep;
2237
2238 if (pte_none(pte)) {
2239 if (vma_is_anonymous(vma)) {
2240 mpfn = MIGRATE_PFN_MIGRATE;
2241 migrate->cpages++;
2242 }
2243 goto next;
2244 }
2245
2246 if (!pte_present(pte)) {
2247 /*
2248 * Only care about unaddressable device page special
2249 * page table entry. Other special swap entries are not
2250 * migratable, and we ignore regular swapped page.
2251 */
2252 entry = pte_to_swp_entry(pte);
2253 if (!is_device_private_entry(entry))
2254 goto next;
2255
2256 page = pfn_swap_entry_to_page(entry);
2257 if (!(migrate->flags &
2258 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2259 page->pgmap->owner != migrate->pgmap_owner)
2260 goto next;
2261
2262 mpfn = migrate_pfn(page_to_pfn(page)) |
2263 MIGRATE_PFN_MIGRATE;
2264 if (is_writable_device_private_entry(entry))
2265 mpfn |= MIGRATE_PFN_WRITE;
2266 } else {
2267 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2268 goto next;
2269 pfn = pte_pfn(pte);
2270 if (is_zero_pfn(pfn)) {
2271 mpfn = MIGRATE_PFN_MIGRATE;
2272 migrate->cpages++;
2273 goto next;
2274 }
2275 page = vm_normal_page(migrate->vma, addr, pte);
2276 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2277 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2278 }
2279
2280 /* FIXME support THP */
2281 if (!page || !page->mapping || PageTransCompound(page)) {
2282 mpfn = 0;
2283 goto next;
2284 }
2285
2286 /*
2287 * By getting a reference on the page we pin it and that blocks
2288 * any kind of migration. Side effect is that it "freezes" the
2289 * pte.
2290 *
2291 * We drop this reference after isolating the page from the lru
2292 * for non device page (device page are not on the lru and thus
2293 * can't be dropped from it).
2294 */
2295 get_page(page);
2296
2297 /*
2298 * Optimize for the common case where page is only mapped once
2299 * in one process. If we can lock the page, then we can safely
2300 * set up a special migration page table entry now.
2301 */
2302 if (trylock_page(page)) {
2303 pte_t swp_pte;
2304
2305 migrate->cpages++;
2306 ptep_get_and_clear(mm, addr, ptep);
2307
2308 /* Setup special migration page table entry */
2309 if (mpfn & MIGRATE_PFN_WRITE)
2310 entry = make_writable_migration_entry(
2311 page_to_pfn(page));
2312 else
2313 entry = make_readable_migration_entry(
2314 page_to_pfn(page));
2315 swp_pte = swp_entry_to_pte(entry);
2316 if (pte_present(pte)) {
2317 if (pte_soft_dirty(pte))
2318 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2319 if (pte_uffd_wp(pte))
2320 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2321 } else {
2322 if (pte_swp_soft_dirty(pte))
2323 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2324 if (pte_swp_uffd_wp(pte))
2325 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2326 }
2327 set_pte_at(mm, addr, ptep, swp_pte);
2328
2329 /*
2330 * This is like regular unmap: we remove the rmap and
2331 * drop page refcount. Page won't be freed, as we took
2332 * a reference just above.
2333 */
2334 page_remove_rmap(page, false);
2335 put_page(page);
2336
2337 if (pte_present(pte))
2338 unmapped++;
2339 } else {
2340 put_page(page);
2341 mpfn = 0;
2342 }
2343
2344next:
2345 migrate->dst[migrate->npages] = 0;
2346 migrate->src[migrate->npages++] = mpfn;
2347 }
2348 arch_leave_lazy_mmu_mode();
2349 pte_unmap_unlock(ptep - 1, ptl);
2350
2351 /* Only flush the TLB if we actually modified any entries */
2352 if (unmapped)
2353 flush_tlb_range(walk->vma, start, end);
2354
2355 return 0;
2356}
2357
2358static const struct mm_walk_ops migrate_vma_walk_ops = {
2359 .pmd_entry = migrate_vma_collect_pmd,
2360 .pte_hole = migrate_vma_collect_hole,
2361};
2362
2363/*
2364 * migrate_vma_collect() - collect pages over a range of virtual addresses
2365 * @migrate: migrate struct containing all migration information
2366 *
2367 * This will walk the CPU page table. For each virtual address backed by a
2368 * valid page, it updates the src array and takes a reference on the page, in
2369 * order to pin the page until we lock it and unmap it.
2370 */
2371static void migrate_vma_collect(struct migrate_vma *migrate)
2372{
2373 struct mmu_notifier_range range;
2374
2375 /*
2376 * Note that the pgmap_owner is passed to the mmu notifier callback so
2377 * that the registered device driver can skip invalidating device
2378 * private page mappings that won't be migrated.
2379 */
2380 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2381 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2382 migrate->pgmap_owner);
2383 mmu_notifier_invalidate_range_start(&range);
2384
2385 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2386 &migrate_vma_walk_ops, migrate);
2387
2388 mmu_notifier_invalidate_range_end(&range);
2389 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2390}
2391
2392/*
2393 * migrate_vma_check_page() - check if page is pinned or not
2394 * @page: struct page to check
2395 *
2396 * Pinned pages cannot be migrated. This is the same test as in
2397 * folio_migrate_mapping(), except that here we allow migration of a
2398 * ZONE_DEVICE page.
2399 */
2400static bool migrate_vma_check_page(struct page *page)
2401{
2402 /*
2403 * One extra ref because caller holds an extra reference, either from
2404 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2405 * a device page.
2406 */
2407 int extra = 1;
2408
2409 /*
2410 * FIXME support THP (transparent huge page), it is bit more complex to
2411 * check them than regular pages, because they can be mapped with a pmd
2412 * or with a pte (split pte mapping).
2413 */
2414 if (PageCompound(page))
2415 return false;
2416
2417 /* Page from ZONE_DEVICE have one extra reference */
2418 if (is_zone_device_page(page))
2419 extra++;
2420
2421 /* For file back page */
2422 if (page_mapping(page))
2423 extra += 1 + page_has_private(page);
2424
2425 if ((page_count(page) - extra) > page_mapcount(page))
2426 return false;
2427
2428 return true;
2429}
2430
2431/*
2432 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2433 * @migrate: migrate struct containing all migration information
2434 *
2435 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
2436 * special migration pte entry and check if it has been pinned. Pinned pages are
2437 * restored because we cannot migrate them.
2438 *
2439 * This is the last step before we call the device driver callback to allocate
2440 * destination memory and copy contents of original page over to new page.
2441 */
2442static void migrate_vma_unmap(struct migrate_vma *migrate)
2443{
2444 const unsigned long npages = migrate->npages;
2445 unsigned long i, restore = 0;
2446 bool allow_drain = true;
2447
2448 lru_add_drain();
2449
2450 for (i = 0; i < npages; i++) {
2451 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2452
2453 if (!page)
2454 continue;
2455
2456 /* ZONE_DEVICE pages are not on LRU */
2457 if (!is_zone_device_page(page)) {
2458 if (!PageLRU(page) && allow_drain) {
2459 /* Drain CPU's pagevec */
2460 lru_add_drain_all();
2461 allow_drain = false;
2462 }
2463
2464 if (isolate_lru_page(page)) {
2465 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2466 migrate->cpages--;
2467 restore++;
2468 continue;
2469 }
2470
2471 /* Drop the reference we took in collect */
2472 put_page(page);
2473 }
2474
2475 if (page_mapped(page))
2476 try_to_migrate(page, 0);
2477
2478 if (page_mapped(page) || !migrate_vma_check_page(page)) {
2479 if (!is_zone_device_page(page)) {
2480 get_page(page);
2481 putback_lru_page(page);
2482 }
2483
2484 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2485 migrate->cpages--;
2486 restore++;
2487 continue;
2488 }
2489 }
2490
2491 for (i = 0; i < npages && restore; i++) {
2492 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2493
2494 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2495 continue;
2496
2497 remove_migration_ptes(page, page, false);
2498
2499 migrate->src[i] = 0;
2500 unlock_page(page);
2501 put_page(page);
2502 restore--;
2503 }
2504}
2505
2506/**
2507 * migrate_vma_setup() - prepare to migrate a range of memory
2508 * @args: contains the vma, start, and pfns arrays for the migration
2509 *
2510 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2511 * without an error.
2512 *
2513 * Prepare to migrate a range of memory virtual address range by collecting all
2514 * the pages backing each virtual address in the range, saving them inside the
2515 * src array. Then lock those pages and unmap them. Once the pages are locked
2516 * and unmapped, check whether each page is pinned or not. Pages that aren't
2517 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2518 * corresponding src array entry. Then restores any pages that are pinned, by
2519 * remapping and unlocking those pages.
2520 *
2521 * The caller should then allocate destination memory and copy source memory to
2522 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2523 * flag set). Once these are allocated and copied, the caller must update each
2524 * corresponding entry in the dst array with the pfn value of the destination
2525 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
2526 * lock_page().
2527 *
2528 * Note that the caller does not have to migrate all the pages that are marked
2529 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2530 * device memory to system memory. If the caller cannot migrate a device page
2531 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2532 * consequences for the userspace process, so it must be avoided if at all
2533 * possible.
2534 *
2535 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2536 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2537 * allowing the caller to allocate device memory for those unbacked virtual
2538 * addresses. For this the caller simply has to allocate device memory and
2539 * properly set the destination entry like for regular migration. Note that
2540 * this can still fail, and thus inside the device driver you must check if the
2541 * migration was successful for those entries after calling migrate_vma_pages(),
2542 * just like for regular migration.
2543 *
2544 * After that, the callers must call migrate_vma_pages() to go over each entry
2545 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2546 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2547 * then migrate_vma_pages() to migrate struct page information from the source
2548 * struct page to the destination struct page. If it fails to migrate the
2549 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2550 * src array.
2551 *
2552 * At this point all successfully migrated pages have an entry in the src
2553 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2554 * array entry with MIGRATE_PFN_VALID flag set.
2555 *
2556 * Once migrate_vma_pages() returns the caller may inspect which pages were
2557 * successfully migrated, and which were not. Successfully migrated pages will
2558 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2559 *
2560 * It is safe to update device page table after migrate_vma_pages() because
2561 * both destination and source page are still locked, and the mmap_lock is held
2562 * in read mode (hence no one can unmap the range being migrated).
2563 *
2564 * Once the caller is done cleaning up things and updating its page table (if it
2565 * chose to do so, this is not an obligation) it finally calls
2566 * migrate_vma_finalize() to update the CPU page table to point to new pages
2567 * for successfully migrated pages or otherwise restore the CPU page table to
2568 * point to the original source pages.
2569 */
2570int migrate_vma_setup(struct migrate_vma *args)
2571{
2572 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2573
2574 args->start &= PAGE_MASK;
2575 args->end &= PAGE_MASK;
2576 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2577 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2578 return -EINVAL;
2579 if (nr_pages <= 0)
2580 return -EINVAL;
2581 if (args->start < args->vma->vm_start ||
2582 args->start >= args->vma->vm_end)
2583 return -EINVAL;
2584 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2585 return -EINVAL;
2586 if (!args->src || !args->dst)
2587 return -EINVAL;
2588
2589 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2590 args->cpages = 0;
2591 args->npages = 0;
2592
2593 migrate_vma_collect(args);
2594
2595 if (args->cpages)
2596 migrate_vma_unmap(args);
2597
2598 /*
2599 * At this point pages are locked and unmapped, and thus they have
2600 * stable content and can safely be copied to destination memory that
2601 * is allocated by the drivers.
2602 */
2603 return 0;
2604
2605}
2606EXPORT_SYMBOL(migrate_vma_setup);
2607
2608/*
2609 * This code closely matches the code in:
2610 * __handle_mm_fault()
2611 * handle_pte_fault()
2612 * do_anonymous_page()
2613 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2614 * private page.
2615 */
2616static void migrate_vma_insert_page(struct migrate_vma *migrate,
2617 unsigned long addr,
2618 struct page *page,
2619 unsigned long *src)
2620{
2621 struct vm_area_struct *vma = migrate->vma;
2622 struct mm_struct *mm = vma->vm_mm;
2623 bool flush = false;
2624 spinlock_t *ptl;
2625 pte_t entry;
2626 pgd_t *pgdp;
2627 p4d_t *p4dp;
2628 pud_t *pudp;
2629 pmd_t *pmdp;
2630 pte_t *ptep;
2631
2632 /* Only allow populating anonymous memory */
2633 if (!vma_is_anonymous(vma))
2634 goto abort;
2635
2636 pgdp = pgd_offset(mm, addr);
2637 p4dp = p4d_alloc(mm, pgdp, addr);
2638 if (!p4dp)
2639 goto abort;
2640 pudp = pud_alloc(mm, p4dp, addr);
2641 if (!pudp)
2642 goto abort;
2643 pmdp = pmd_alloc(mm, pudp, addr);
2644 if (!pmdp)
2645 goto abort;
2646
2647 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2648 goto abort;
2649
2650 /*
2651 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2652 * pte_offset_map() on pmds where a huge pmd might be created
2653 * from a different thread.
2654 *
2655 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2656 * parallel threads are excluded by other means.
2657 *
2658 * Here we only have mmap_read_lock(mm).
2659 */
2660 if (pte_alloc(mm, pmdp))
2661 goto abort;
2662
2663 /* See the comment in pte_alloc_one_map() */
2664 if (unlikely(pmd_trans_unstable(pmdp)))
2665 goto abort;
2666
2667 if (unlikely(anon_vma_prepare(vma)))
2668 goto abort;
2669 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
2670 goto abort;
2671
2672 /*
2673 * The memory barrier inside __SetPageUptodate makes sure that
2674 * preceding stores to the page contents become visible before
2675 * the set_pte_at() write.
2676 */
2677 __SetPageUptodate(page);
2678
2679 if (is_zone_device_page(page)) {
2680 if (is_device_private_page(page)) {
2681 swp_entry_t swp_entry;
2682
2683 if (vma->vm_flags & VM_WRITE)
2684 swp_entry = make_writable_device_private_entry(
2685 page_to_pfn(page));
2686 else
2687 swp_entry = make_readable_device_private_entry(
2688 page_to_pfn(page));
2689 entry = swp_entry_to_pte(swp_entry);
2690 } else {
2691 /*
2692 * For now we only support migrating to un-addressable
2693 * device memory.
2694 */
2695 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2696 goto abort;
2697 }
2698 } else {
2699 entry = mk_pte(page, vma->vm_page_prot);
2700 if (vma->vm_flags & VM_WRITE)
2701 entry = pte_mkwrite(pte_mkdirty(entry));
2702 }
2703
2704 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2705
2706 if (check_stable_address_space(mm))
2707 goto unlock_abort;
2708
2709 if (pte_present(*ptep)) {
2710 unsigned long pfn = pte_pfn(*ptep);
2711
2712 if (!is_zero_pfn(pfn))
2713 goto unlock_abort;
2714 flush = true;
2715 } else if (!pte_none(*ptep))
2716 goto unlock_abort;
2717
2718 /*
2719 * Check for userfaultfd but do not deliver the fault. Instead,
2720 * just back off.
2721 */
2722 if (userfaultfd_missing(vma))
2723 goto unlock_abort;
2724
2725 inc_mm_counter(mm, MM_ANONPAGES);
2726 page_add_new_anon_rmap(page, vma, addr, false);
2727 if (!is_zone_device_page(page))
2728 lru_cache_add_inactive_or_unevictable(page, vma);
2729 get_page(page);
2730
2731 if (flush) {
2732 flush_cache_page(vma, addr, pte_pfn(*ptep));
2733 ptep_clear_flush_notify(vma, addr, ptep);
2734 set_pte_at_notify(mm, addr, ptep, entry);
2735 update_mmu_cache(vma, addr, ptep);
2736 } else {
2737 /* No need to invalidate - it was non-present before */
2738 set_pte_at(mm, addr, ptep, entry);
2739 update_mmu_cache(vma, addr, ptep);
2740 }
2741
2742 pte_unmap_unlock(ptep, ptl);
2743 *src = MIGRATE_PFN_MIGRATE;
2744 return;
2745
2746unlock_abort:
2747 pte_unmap_unlock(ptep, ptl);
2748abort:
2749 *src &= ~MIGRATE_PFN_MIGRATE;
2750}
2751
2752/**
2753 * migrate_vma_pages() - migrate meta-data from src page to dst page
2754 * @migrate: migrate struct containing all migration information
2755 *
2756 * This migrates struct page meta-data from source struct page to destination
2757 * struct page. This effectively finishes the migration from source page to the
2758 * destination page.
2759 */
2760void migrate_vma_pages(struct migrate_vma *migrate)
2761{
2762 const unsigned long npages = migrate->npages;
2763 const unsigned long start = migrate->start;
2764 struct mmu_notifier_range range;
2765 unsigned long addr, i;
2766 bool notified = false;
2767
2768 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2769 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2770 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2771 struct address_space *mapping;
2772 int r;
2773
2774 if (!newpage) {
2775 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2776 continue;
2777 }
2778
2779 if (!page) {
2780 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2781 continue;
2782 if (!notified) {
2783 notified = true;
2784
2785 mmu_notifier_range_init_owner(&range,
2786 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2787 migrate->vma->vm_mm, addr, migrate->end,
2788 migrate->pgmap_owner);
2789 mmu_notifier_invalidate_range_start(&range);
2790 }
2791 migrate_vma_insert_page(migrate, addr, newpage,
2792 &migrate->src[i]);
2793 continue;
2794 }
2795
2796 mapping = page_mapping(page);
2797
2798 if (is_zone_device_page(newpage)) {
2799 if (is_device_private_page(newpage)) {
2800 /*
2801 * For now only support private anonymous when
2802 * migrating to un-addressable device memory.
2803 */
2804 if (mapping) {
2805 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2806 continue;
2807 }
2808 } else {
2809 /*
2810 * Other types of ZONE_DEVICE page are not
2811 * supported.
2812 */
2813 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2814 continue;
2815 }
2816 }
2817
2818 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2819 if (r != MIGRATEPAGE_SUCCESS)
2820 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2821 }
2822
2823 /*
2824 * No need to double call mmu_notifier->invalidate_range() callback as
2825 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2826 * did already call it.
2827 */
2828 if (notified)
2829 mmu_notifier_invalidate_range_only_end(&range);
2830}
2831EXPORT_SYMBOL(migrate_vma_pages);
2832
2833/**
2834 * migrate_vma_finalize() - restore CPU page table entry
2835 * @migrate: migrate struct containing all migration information
2836 *
2837 * This replaces the special migration pte entry with either a mapping to the
2838 * new page if migration was successful for that page, or to the original page
2839 * otherwise.
2840 *
2841 * This also unlocks the pages and puts them back on the lru, or drops the extra
2842 * refcount, for device pages.
2843 */
2844void migrate_vma_finalize(struct migrate_vma *migrate)
2845{
2846 const unsigned long npages = migrate->npages;
2847 unsigned long i;
2848
2849 for (i = 0; i < npages; i++) {
2850 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2851 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2852
2853 if (!page) {
2854 if (newpage) {
2855 unlock_page(newpage);
2856 put_page(newpage);
2857 }
2858 continue;
2859 }
2860
2861 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2862 if (newpage) {
2863 unlock_page(newpage);
2864 put_page(newpage);
2865 }
2866 newpage = page;
2867 }
2868
2869 remove_migration_ptes(page, newpage, false);
2870 unlock_page(page);
2871
2872 if (is_zone_device_page(page))
2873 put_page(page);
2874 else
2875 putback_lru_page(page);
2876
2877 if (newpage != page) {
2878 unlock_page(newpage);
2879 if (is_zone_device_page(newpage))
2880 put_page(newpage);
2881 else
2882 putback_lru_page(newpage);
2883 }
2884 }
2885}
2886EXPORT_SYMBOL(migrate_vma_finalize);
2887#endif /* CONFIG_DEVICE_PRIVATE */
2888
2889/*
2890 * node_demotion[] example:
2891 *
2892 * Consider a system with two sockets. Each socket has
2893 * three classes of memory attached: fast, medium and slow.
2894 * Each memory class is placed in its own NUMA node. The
2895 * CPUs are placed in the node with the "fast" memory. The
2896 * 6 NUMA nodes (0-5) might be split among the sockets like
2897 * this:
2898 *
2899 * Socket A: 0, 1, 2
2900 * Socket B: 3, 4, 5
2901 *
2902 * When Node 0 fills up, its memory should be migrated to
2903 * Node 1. When Node 1 fills up, it should be migrated to
2904 * Node 2. The migration path start on the nodes with the
2905 * processors (since allocations default to this node) and
2906 * fast memory, progress through medium and end with the
2907 * slow memory:
2908 *
2909 * 0 -> 1 -> 2 -> stop
2910 * 3 -> 4 -> 5 -> stop
2911 *
2912 * This is represented in the node_demotion[] like this:
2913 *
2914 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2915 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2916 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2917 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2918 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2919 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2920 *
2921 * Moreover some systems may have multiple slow memory nodes.
2922 * Suppose a system has one socket with 3 memory nodes, node 0
2923 * is fast memory type, and node 1/2 both are slow memory
2924 * type, and the distance between fast memory node and slow
2925 * memory node is same. So the migration path should be:
2926 *
2927 * 0 -> 1/2 -> stop
2928 *
2929 * This is represented in the node_demotion[] like this:
2930 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2931 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2932 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2933 */
2934
2935/*
2936 * Writes to this array occur without locking. Cycles are
2937 * not allowed: Node X demotes to Y which demotes to X...
2938 *
2939 * If multiple reads are performed, a single rcu_read_lock()
2940 * must be held over all reads to ensure that no cycles are
2941 * observed.
2942 */
2943#define DEFAULT_DEMOTION_TARGET_NODES 15
2944
2945#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2946#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
2947#else
2948#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
2949#endif
2950
2951struct demotion_nodes {
2952 unsigned short nr;
2953 short nodes[DEMOTION_TARGET_NODES];
2954};
2955
2956static struct demotion_nodes *node_demotion __read_mostly;
2957
2958/**
2959 * next_demotion_node() - Get the next node in the demotion path
2960 * @node: The starting node to lookup the next node
2961 *
2962 * Return: node id for next memory node in the demotion path hierarchy
2963 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
2964 * @node online or guarantee that it *continues* to be the next demotion
2965 * target.
2966 */
2967int next_demotion_node(int node)
2968{
2969 struct demotion_nodes *nd;
2970 unsigned short target_nr, index;
2971 int target;
2972
2973 if (!node_demotion)
2974 return NUMA_NO_NODE;
2975
2976 nd = &node_demotion[node];
2977
2978 /*
2979 * node_demotion[] is updated without excluding this
2980 * function from running. RCU doesn't provide any
2981 * compiler barriers, so the READ_ONCE() is required
2982 * to avoid compiler reordering or read merging.
2983 *
2984 * Make sure to use RCU over entire code blocks if
2985 * node_demotion[] reads need to be consistent.
2986 */
2987 rcu_read_lock();
2988 target_nr = READ_ONCE(nd->nr);
2989
2990 switch (target_nr) {
2991 case 0:
2992 target = NUMA_NO_NODE;
2993 goto out;
2994 case 1:
2995 index = 0;
2996 break;
2997 default:
2998 /*
2999 * If there are multiple target nodes, just select one
3000 * target node randomly.
3001 *
3002 * In addition, we can also use round-robin to select
3003 * target node, but we should introduce another variable
3004 * for node_demotion[] to record last selected target node,
3005 * that may cause cache ping-pong due to the changing of
3006 * last target node. Or introducing per-cpu data to avoid
3007 * caching issue, which seems more complicated. So selecting
3008 * target node randomly seems better until now.
3009 */
3010 index = get_random_int() % target_nr;
3011 break;
3012 }
3013
3014 target = READ_ONCE(nd->nodes[index]);
3015
3016out:
3017 rcu_read_unlock();
3018 return target;
3019}
3020
3021#if defined(CONFIG_HOTPLUG_CPU)
3022/* Disable reclaim-based migration. */
3023static void __disable_all_migrate_targets(void)
3024{
3025 int node, i;
3026
3027 if (!node_demotion)
3028 return;
3029
3030 for_each_online_node(node) {
3031 node_demotion[node].nr = 0;
3032 for (i = 0; i < DEMOTION_TARGET_NODES; i++)
3033 node_demotion[node].nodes[i] = NUMA_NO_NODE;
3034 }
3035}
3036
3037static void disable_all_migrate_targets(void)
3038{
3039 __disable_all_migrate_targets();
3040
3041 /*
3042 * Ensure that the "disable" is visible across the system.
3043 * Readers will see either a combination of before+disable
3044 * state or disable+after. They will never see before and
3045 * after state together.
3046 *
3047 * The before+after state together might have cycles and
3048 * could cause readers to do things like loop until this
3049 * function finishes. This ensures they can only see a
3050 * single "bad" read and would, for instance, only loop
3051 * once.
3052 */
3053 synchronize_rcu();
3054}
3055
3056/*
3057 * Find an automatic demotion target for 'node'.
3058 * Failing here is OK. It might just indicate
3059 * being at the end of a chain.
3060 */
3061static int establish_migrate_target(int node, nodemask_t *used,
3062 int best_distance)
3063{
3064 int migration_target, index, val;
3065 struct demotion_nodes *nd;
3066
3067 if (!node_demotion)
3068 return NUMA_NO_NODE;
3069
3070 nd = &node_demotion[node];
3071
3072 migration_target = find_next_best_node(node, used);
3073 if (migration_target == NUMA_NO_NODE)
3074 return NUMA_NO_NODE;
3075
3076 /*
3077 * If the node has been set a migration target node before,
3078 * which means it's the best distance between them. Still
3079 * check if this node can be demoted to other target nodes
3080 * if they have a same best distance.
3081 */
3082 if (best_distance != -1) {
3083 val = node_distance(node, migration_target);
3084 if (val > best_distance)
3085 return NUMA_NO_NODE;
3086 }
3087
3088 index = nd->nr;
3089 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
3090 "Exceeds maximum demotion target nodes\n"))
3091 return NUMA_NO_NODE;
3092
3093 nd->nodes[index] = migration_target;
3094 nd->nr++;
3095
3096 return migration_target;
3097}
3098
3099/*
3100 * When memory fills up on a node, memory contents can be
3101 * automatically migrated to another node instead of
3102 * discarded at reclaim.
3103 *
3104 * Establish a "migration path" which will start at nodes
3105 * with CPUs and will follow the priorities used to build the
3106 * page allocator zonelists.
3107 *
3108 * The difference here is that cycles must be avoided. If
3109 * node0 migrates to node1, then neither node1, nor anything
3110 * node1 migrates to can migrate to node0. Also one node can
3111 * be migrated to multiple nodes if the target nodes all have
3112 * a same best-distance against the source node.
3113 *
3114 * This function can run simultaneously with readers of
3115 * node_demotion[]. However, it can not run simultaneously
3116 * with itself. Exclusion is provided by memory hotplug events
3117 * being single-threaded.
3118 */
3119static void __set_migration_target_nodes(void)
3120{
3121 nodemask_t next_pass = NODE_MASK_NONE;
3122 nodemask_t this_pass = NODE_MASK_NONE;
3123 nodemask_t used_targets = NODE_MASK_NONE;
3124 int node, best_distance;
3125
3126 /*
3127 * Avoid any oddities like cycles that could occur
3128 * from changes in the topology. This will leave
3129 * a momentary gap when migration is disabled.
3130 */
3131 disable_all_migrate_targets();
3132
3133 /*
3134 * Allocations go close to CPUs, first. Assume that
3135 * the migration path starts at the nodes with CPUs.
3136 */
3137 next_pass = node_states[N_CPU];
3138again:
3139 this_pass = next_pass;
3140 next_pass = NODE_MASK_NONE;
3141 /*
3142 * To avoid cycles in the migration "graph", ensure
3143 * that migration sources are not future targets by
3144 * setting them in 'used_targets'. Do this only
3145 * once per pass so that multiple source nodes can
3146 * share a target node.
3147 *
3148 * 'used_targets' will become unavailable in future
3149 * passes. This limits some opportunities for
3150 * multiple source nodes to share a destination.
3151 */
3152 nodes_or(used_targets, used_targets, this_pass);
3153
3154 for_each_node_mask(node, this_pass) {
3155 best_distance = -1;
3156
3157 /*
3158 * Try to set up the migration path for the node, and the target
3159 * migration nodes can be multiple, so doing a loop to find all
3160 * the target nodes if they all have a best node distance.
3161 */
3162 do {
3163 int target_node =
3164 establish_migrate_target(node, &used_targets,
3165 best_distance);
3166
3167 if (target_node == NUMA_NO_NODE)
3168 break;
3169
3170 if (best_distance == -1)
3171 best_distance = node_distance(node, target_node);
3172
3173 /*
3174 * Visit targets from this pass in the next pass.
3175 * Eventually, every node will have been part of
3176 * a pass, and will become set in 'used_targets'.
3177 */
3178 node_set(target_node, next_pass);
3179 } while (1);
3180 }
3181 /*
3182 * 'next_pass' contains nodes which became migration
3183 * targets in this pass. Make additional passes until
3184 * no more migrations targets are available.
3185 */
3186 if (!nodes_empty(next_pass))
3187 goto again;
3188}
3189
3190/*
3191 * For callers that do not hold get_online_mems() already.
3192 */
3193static void set_migration_target_nodes(void)
3194{
3195 get_online_mems();
3196 __set_migration_target_nodes();
3197 put_online_mems();
3198}
3199
3200/*
3201 * This leaves migrate-on-reclaim transiently disabled between
3202 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
3203 * whether reclaim-based migration is enabled or not, which
3204 * ensures that the user can turn reclaim-based migration at
3205 * any time without needing to recalculate migration targets.
3206 *
3207 * These callbacks already hold get_online_mems(). That is why
3208 * __set_migration_target_nodes() can be used as opposed to
3209 * set_migration_target_nodes().
3210 */
3211static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3212 unsigned long action, void *_arg)
3213{
3214 struct memory_notify *arg = _arg;
3215
3216 /*
3217 * Only update the node migration order when a node is
3218 * changing status, like online->offline. This avoids
3219 * the overhead of synchronize_rcu() in most cases.
3220 */
3221 if (arg->status_change_nid < 0)
3222 return notifier_from_errno(0);
3223
3224 switch (action) {
3225 case MEM_GOING_OFFLINE:
3226 /*
3227 * Make sure there are not transient states where
3228 * an offline node is a migration target. This
3229 * will leave migration disabled until the offline
3230 * completes and the MEM_OFFLINE case below runs.
3231 */
3232 disable_all_migrate_targets();
3233 break;
3234 case MEM_OFFLINE:
3235 case MEM_ONLINE:
3236 /*
3237 * Recalculate the target nodes once the node
3238 * reaches its final state (online or offline).
3239 */
3240 __set_migration_target_nodes();
3241 break;
3242 case MEM_CANCEL_OFFLINE:
3243 /*
3244 * MEM_GOING_OFFLINE disabled all the migration
3245 * targets. Reenable them.
3246 */
3247 __set_migration_target_nodes();
3248 break;
3249 case MEM_GOING_ONLINE:
3250 case MEM_CANCEL_ONLINE:
3251 break;
3252 }
3253
3254 return notifier_from_errno(0);
3255}
3256
3257/*
3258 * React to hotplug events that might affect the migration targets
3259 * like events that online or offline NUMA nodes.
3260 *
3261 * The ordering is also currently dependent on which nodes have
3262 * CPUs. That means we need CPU on/offline notification too.
3263 */
3264static int migration_online_cpu(unsigned int cpu)
3265{
3266 set_migration_target_nodes();
3267 return 0;
3268}
3269
3270static int migration_offline_cpu(unsigned int cpu)
3271{
3272 set_migration_target_nodes();
3273 return 0;
3274}
3275
3276static int __init migrate_on_reclaim_init(void)
3277{
3278 int ret;
3279
3280 node_demotion = kmalloc_array(nr_node_ids,
3281 sizeof(struct demotion_nodes),
3282 GFP_KERNEL);
3283 WARN_ON(!node_demotion);
3284
3285 ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3286 NULL, migration_offline_cpu);
3287 /*
3288 * In the unlikely case that this fails, the automatic
3289 * migration targets may become suboptimal for nodes
3290 * where N_CPU changes. With such a small impact in a
3291 * rare case, do not bother trying to do anything special.
3292 */
3293 WARN_ON(ret < 0);
3294 ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3295 migration_online_cpu, NULL);
3296 WARN_ON(ret < 0);
3297
3298 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3299 return 0;
3300}
3301late_initcall(migrate_on_reclaim_init);
3302#endif /* CONFIG_HOTPLUG_CPU */
3303
3304bool numa_demotion_enabled = false;
3305
3306#ifdef CONFIG_SYSFS
3307static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
3308 struct kobj_attribute *attr, char *buf)
3309{
3310 return sysfs_emit(buf, "%s\n",
3311 numa_demotion_enabled ? "true" : "false");
3312}
3313
3314static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
3315 struct kobj_attribute *attr,
3316 const char *buf, size_t count)
3317{
3318 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3319 numa_demotion_enabled = true;
3320 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3321 numa_demotion_enabled = false;
3322 else
3323 return -EINVAL;
3324
3325 return count;
3326}
3327
3328static struct kobj_attribute numa_demotion_enabled_attr =
3329 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3330 numa_demotion_enabled_store);
3331
3332static struct attribute *numa_attrs[] = {
3333 &numa_demotion_enabled_attr.attr,
3334 NULL,
3335};
3336
3337static const struct attribute_group numa_attr_group = {
3338 .attrs = numa_attrs,
3339};
3340
3341static int __init numa_init_sysfs(void)
3342{
3343 int err;
3344 struct kobject *numa_kobj;
3345
3346 numa_kobj = kobject_create_and_add("numa", mm_kobj);
3347 if (!numa_kobj) {
3348 pr_err("failed to create numa kobject\n");
3349 return -ENOMEM;
3350 }
3351 err = sysfs_create_group(numa_kobj, &numa_attr_group);
3352 if (err) {
3353 pr_err("failed to register numa group\n");
3354 goto delete_obj;
3355 }
3356 return 0;
3357
3358delete_obj:
3359 kobject_put(numa_kobj);
3360 return err;
3361}
3362subsys_initcall(numa_init_sysfs);
3363#endif