Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket __ro_after_init;
85
86/* Kernel memory accounting disabled? */
87static bool cgroup_memory_nokmem __ro_after_init;
88
89/* Whether the swap controller is active */
90#ifdef CONFIG_MEMCG_SWAP
91bool cgroup_memory_noswap __ro_after_init;
92#else
93#define cgroup_memory_noswap 1
94#endif
95
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104}
105
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
108
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118};
119
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
131
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
135struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170};
171
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175/* Stuffs for move charges at task migration. */
176/*
177 * Types of charges to be moved.
178 */
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
199
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207/* for encoding cft->private value on file */
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219/* Used for OOM notifier */
220#define OOM_CONTROL (0)
221
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237static inline bool task_is_dying(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252{
253 return container_of(vmpr, struct mem_cgroup, vmpressure);
254}
255
256#ifdef CONFIG_MEMCG_KMEM
257static DEFINE_SPINLOCK(objcg_lock);
258
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&objcg_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&objcg_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&objcg_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&objcg_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423}
424
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
454static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
455 struct mem_cgroup_tree_per_node *mctz,
456 unsigned long new_usage_in_excess)
457{
458 struct rb_node **p = &mctz->rb_root.rb_node;
459 struct rb_node *parent = NULL;
460 struct mem_cgroup_per_node *mz_node;
461 bool rightmost = true;
462
463 if (mz->on_tree)
464 return;
465
466 mz->usage_in_excess = new_usage_in_excess;
467 if (!mz->usage_in_excess)
468 return;
469 while (*p) {
470 parent = *p;
471 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
472 tree_node);
473 if (mz->usage_in_excess < mz_node->usage_in_excess) {
474 p = &(*p)->rb_left;
475 rightmost = false;
476 } else {
477 p = &(*p)->rb_right;
478 }
479 }
480
481 if (rightmost)
482 mctz->rb_rightmost = &mz->tree_node;
483
484 rb_link_node(&mz->tree_node, parent, p);
485 rb_insert_color(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = true;
487}
488
489static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
490 struct mem_cgroup_tree_per_node *mctz)
491{
492 if (!mz->on_tree)
493 return;
494
495 if (&mz->tree_node == mctz->rb_rightmost)
496 mctz->rb_rightmost = rb_prev(&mz->tree_node);
497
498 rb_erase(&mz->tree_node, &mctz->rb_root);
499 mz->on_tree = false;
500}
501
502static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
503 struct mem_cgroup_tree_per_node *mctz)
504{
505 unsigned long flags;
506
507 spin_lock_irqsave(&mctz->lock, flags);
508 __mem_cgroup_remove_exceeded(mz, mctz);
509 spin_unlock_irqrestore(&mctz->lock, flags);
510}
511
512static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
513{
514 unsigned long nr_pages = page_counter_read(&memcg->memory);
515 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
516 unsigned long excess = 0;
517
518 if (nr_pages > soft_limit)
519 excess = nr_pages - soft_limit;
520
521 return excess;
522}
523
524static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
525{
526 unsigned long excess;
527 struct mem_cgroup_per_node *mz;
528 struct mem_cgroup_tree_per_node *mctz;
529
530 mctz = soft_limit_tree.rb_tree_per_node[nid];
531 if (!mctz)
532 return;
533 /*
534 * Necessary to update all ancestors when hierarchy is used.
535 * because their event counter is not touched.
536 */
537 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
538 mz = memcg->nodeinfo[nid];
539 excess = soft_limit_excess(memcg);
540 /*
541 * We have to update the tree if mz is on RB-tree or
542 * mem is over its softlimit.
543 */
544 if (excess || mz->on_tree) {
545 unsigned long flags;
546
547 spin_lock_irqsave(&mctz->lock, flags);
548 /* if on-tree, remove it */
549 if (mz->on_tree)
550 __mem_cgroup_remove_exceeded(mz, mctz);
551 /*
552 * Insert again. mz->usage_in_excess will be updated.
553 * If excess is 0, no tree ops.
554 */
555 __mem_cgroup_insert_exceeded(mz, mctz, excess);
556 spin_unlock_irqrestore(&mctz->lock, flags);
557 }
558 }
559}
560
561static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
562{
563 struct mem_cgroup_tree_per_node *mctz;
564 struct mem_cgroup_per_node *mz;
565 int nid;
566
567 for_each_node(nid) {
568 mz = memcg->nodeinfo[nid];
569 mctz = soft_limit_tree.rb_tree_per_node[nid];
570 if (mctz)
571 mem_cgroup_remove_exceeded(mz, mctz);
572 }
573}
574
575static struct mem_cgroup_per_node *
576__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
577{
578 struct mem_cgroup_per_node *mz;
579
580retry:
581 mz = NULL;
582 if (!mctz->rb_rightmost)
583 goto done; /* Nothing to reclaim from */
584
585 mz = rb_entry(mctz->rb_rightmost,
586 struct mem_cgroup_per_node, tree_node);
587 /*
588 * Remove the node now but someone else can add it back,
589 * we will to add it back at the end of reclaim to its correct
590 * position in the tree.
591 */
592 __mem_cgroup_remove_exceeded(mz, mctz);
593 if (!soft_limit_excess(mz->memcg) ||
594 !css_tryget(&mz->memcg->css))
595 goto retry;
596done:
597 return mz;
598}
599
600static struct mem_cgroup_per_node *
601mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
602{
603 struct mem_cgroup_per_node *mz;
604
605 spin_lock_irq(&mctz->lock);
606 mz = __mem_cgroup_largest_soft_limit_node(mctz);
607 spin_unlock_irq(&mctz->lock);
608 return mz;
609}
610
611/*
612 * memcg and lruvec stats flushing
613 *
614 * Many codepaths leading to stats update or read are performance sensitive and
615 * adding stats flushing in such codepaths is not desirable. So, to optimize the
616 * flushing the kernel does:
617 *
618 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
619 * rstat update tree grow unbounded.
620 *
621 * 2) Flush the stats synchronously on reader side only when there are more than
622 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
623 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
624 * only for 2 seconds due to (1).
625 */
626static void flush_memcg_stats_dwork(struct work_struct *w);
627static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
628static DEFINE_SPINLOCK(stats_flush_lock);
629static DEFINE_PER_CPU(unsigned int, stats_updates);
630static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
631
632static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
633{
634 unsigned int x;
635
636 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
637
638 x = __this_cpu_add_return(stats_updates, abs(val));
639 if (x > MEMCG_CHARGE_BATCH) {
640 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
641 __this_cpu_write(stats_updates, 0);
642 }
643}
644
645static void __mem_cgroup_flush_stats(void)
646{
647 unsigned long flag;
648
649 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
650 return;
651
652 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
653 atomic_set(&stats_flush_threshold, 0);
654 spin_unlock_irqrestore(&stats_flush_lock, flag);
655}
656
657void mem_cgroup_flush_stats(void)
658{
659 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
660 __mem_cgroup_flush_stats();
661}
662
663static void flush_memcg_stats_dwork(struct work_struct *w)
664{
665 __mem_cgroup_flush_stats();
666 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
667}
668
669/**
670 * __mod_memcg_state - update cgroup memory statistics
671 * @memcg: the memory cgroup
672 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
673 * @val: delta to add to the counter, can be negative
674 */
675void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
676{
677 if (mem_cgroup_disabled())
678 return;
679
680 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
681 memcg_rstat_updated(memcg, val);
682}
683
684/* idx can be of type enum memcg_stat_item or node_stat_item. */
685static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
686{
687 long x = 0;
688 int cpu;
689
690 for_each_possible_cpu(cpu)
691 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
692#ifdef CONFIG_SMP
693 if (x < 0)
694 x = 0;
695#endif
696 return x;
697}
698
699void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
700 int val)
701{
702 struct mem_cgroup_per_node *pn;
703 struct mem_cgroup *memcg;
704
705 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
706 memcg = pn->memcg;
707
708 /* Update memcg */
709 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
710
711 /* Update lruvec */
712 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
713
714 memcg_rstat_updated(memcg, val);
715}
716
717/**
718 * __mod_lruvec_state - update lruvec memory statistics
719 * @lruvec: the lruvec
720 * @idx: the stat item
721 * @val: delta to add to the counter, can be negative
722 *
723 * The lruvec is the intersection of the NUMA node and a cgroup. This
724 * function updates the all three counters that are affected by a
725 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 */
727void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
728 int val)
729{
730 /* Update node */
731 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
732
733 /* Update memcg and lruvec */
734 if (!mem_cgroup_disabled())
735 __mod_memcg_lruvec_state(lruvec, idx, val);
736}
737
738void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
739 int val)
740{
741 struct page *head = compound_head(page); /* rmap on tail pages */
742 struct mem_cgroup *memcg;
743 pg_data_t *pgdat = page_pgdat(page);
744 struct lruvec *lruvec;
745
746 rcu_read_lock();
747 memcg = page_memcg(head);
748 /* Untracked pages have no memcg, no lruvec. Update only the node */
749 if (!memcg) {
750 rcu_read_unlock();
751 __mod_node_page_state(pgdat, idx, val);
752 return;
753 }
754
755 lruvec = mem_cgroup_lruvec(memcg, pgdat);
756 __mod_lruvec_state(lruvec, idx, val);
757 rcu_read_unlock();
758}
759EXPORT_SYMBOL(__mod_lruvec_page_state);
760
761void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
762{
763 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
766
767 rcu_read_lock();
768 memcg = mem_cgroup_from_obj(p);
769
770 /*
771 * Untracked pages have no memcg, no lruvec. Update only the
772 * node. If we reparent the slab objects to the root memcg,
773 * when we free the slab object, we need to update the per-memcg
774 * vmstats to keep it correct for the root memcg.
775 */
776 if (!memcg) {
777 __mod_node_page_state(pgdat, idx, val);
778 } else {
779 lruvec = mem_cgroup_lruvec(memcg, pgdat);
780 __mod_lruvec_state(lruvec, idx, val);
781 }
782 rcu_read_unlock();
783}
784
785/**
786 * __count_memcg_events - account VM events in a cgroup
787 * @memcg: the memory cgroup
788 * @idx: the event item
789 * @count: the number of events that occurred
790 */
791void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
792 unsigned long count)
793{
794 if (mem_cgroup_disabled())
795 return;
796
797 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
798 memcg_rstat_updated(memcg, count);
799}
800
801static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
802{
803 return READ_ONCE(memcg->vmstats.events[event]);
804}
805
806static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807{
808 long x = 0;
809 int cpu;
810
811 for_each_possible_cpu(cpu)
812 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
813 return x;
814}
815
816static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
817 int nr_pages)
818{
819 /* pagein of a big page is an event. So, ignore page size */
820 if (nr_pages > 0)
821 __count_memcg_events(memcg, PGPGIN, 1);
822 else {
823 __count_memcg_events(memcg, PGPGOUT, 1);
824 nr_pages = -nr_pages; /* for event */
825 }
826
827 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
828}
829
830static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
831 enum mem_cgroup_events_target target)
832{
833 unsigned long val, next;
834
835 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
836 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
837 /* from time_after() in jiffies.h */
838 if ((long)(next - val) < 0) {
839 switch (target) {
840 case MEM_CGROUP_TARGET_THRESH:
841 next = val + THRESHOLDS_EVENTS_TARGET;
842 break;
843 case MEM_CGROUP_TARGET_SOFTLIMIT:
844 next = val + SOFTLIMIT_EVENTS_TARGET;
845 break;
846 default:
847 break;
848 }
849 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
850 return true;
851 }
852 return false;
853}
854
855/*
856 * Check events in order.
857 *
858 */
859static void memcg_check_events(struct mem_cgroup *memcg, int nid)
860{
861 /* threshold event is triggered in finer grain than soft limit */
862 if (unlikely(mem_cgroup_event_ratelimit(memcg,
863 MEM_CGROUP_TARGET_THRESH))) {
864 bool do_softlimit;
865
866 do_softlimit = mem_cgroup_event_ratelimit(memcg,
867 MEM_CGROUP_TARGET_SOFTLIMIT);
868 mem_cgroup_threshold(memcg);
869 if (unlikely(do_softlimit))
870 mem_cgroup_update_tree(memcg, nid);
871 }
872}
873
874struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875{
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
884 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
885}
886EXPORT_SYMBOL(mem_cgroup_from_task);
887
888static __always_inline struct mem_cgroup *active_memcg(void)
889{
890 if (!in_task())
891 return this_cpu_read(int_active_memcg);
892 else
893 return current->active_memcg;
894}
895
896/**
897 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
898 * @mm: mm from which memcg should be extracted. It can be NULL.
899 *
900 * Obtain a reference on mm->memcg and returns it if successful. If mm
901 * is NULL, then the memcg is chosen as follows:
902 * 1) The active memcg, if set.
903 * 2) current->mm->memcg, if available
904 * 3) root memcg
905 * If mem_cgroup is disabled, NULL is returned.
906 */
907struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
908{
909 struct mem_cgroup *memcg;
910
911 if (mem_cgroup_disabled())
912 return NULL;
913
914 /*
915 * Page cache insertions can happen without an
916 * actual mm context, e.g. during disk probing
917 * on boot, loopback IO, acct() writes etc.
918 *
919 * No need to css_get on root memcg as the reference
920 * counting is disabled on the root level in the
921 * cgroup core. See CSS_NO_REF.
922 */
923 if (unlikely(!mm)) {
924 memcg = active_memcg();
925 if (unlikely(memcg)) {
926 /* remote memcg must hold a ref */
927 css_get(&memcg->css);
928 return memcg;
929 }
930 mm = current->mm;
931 if (unlikely(!mm))
932 return root_mem_cgroup;
933 }
934
935 rcu_read_lock();
936 do {
937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 if (unlikely(!memcg))
939 memcg = root_mem_cgroup;
940 } while (!css_tryget(&memcg->css));
941 rcu_read_unlock();
942 return memcg;
943}
944EXPORT_SYMBOL(get_mem_cgroup_from_mm);
945
946static __always_inline bool memcg_kmem_bypass(void)
947{
948 /* Allow remote memcg charging from any context. */
949 if (unlikely(active_memcg()))
950 return false;
951
952 /* Memcg to charge can't be determined. */
953 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
954 return true;
955
956 return false;
957}
958
959/**
960 * mem_cgroup_iter - iterate over memory cgroup hierarchy
961 * @root: hierarchy root
962 * @prev: previously returned memcg, NULL on first invocation
963 * @reclaim: cookie for shared reclaim walks, NULL for full walks
964 *
965 * Returns references to children of the hierarchy below @root, or
966 * @root itself, or %NULL after a full round-trip.
967 *
968 * Caller must pass the return value in @prev on subsequent
969 * invocations for reference counting, or use mem_cgroup_iter_break()
970 * to cancel a hierarchy walk before the round-trip is complete.
971 *
972 * Reclaimers can specify a node in @reclaim to divide up the memcgs
973 * in the hierarchy among all concurrent reclaimers operating on the
974 * same node.
975 */
976struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
977 struct mem_cgroup *prev,
978 struct mem_cgroup_reclaim_cookie *reclaim)
979{
980 struct mem_cgroup_reclaim_iter *iter;
981 struct cgroup_subsys_state *css = NULL;
982 struct mem_cgroup *memcg = NULL;
983 struct mem_cgroup *pos = NULL;
984
985 if (mem_cgroup_disabled())
986 return NULL;
987
988 if (!root)
989 root = root_mem_cgroup;
990
991 if (prev && !reclaim)
992 pos = prev;
993
994 rcu_read_lock();
995
996 if (reclaim) {
997 struct mem_cgroup_per_node *mz;
998
999 mz = root->nodeinfo[reclaim->pgdat->node_id];
1000 iter = &mz->iter;
1001
1002 if (prev && reclaim->generation != iter->generation)
1003 goto out_unlock;
1004
1005 while (1) {
1006 pos = READ_ONCE(iter->position);
1007 if (!pos || css_tryget(&pos->css))
1008 break;
1009 /*
1010 * css reference reached zero, so iter->position will
1011 * be cleared by ->css_released. However, we should not
1012 * rely on this happening soon, because ->css_released
1013 * is called from a work queue, and by busy-waiting we
1014 * might block it. So we clear iter->position right
1015 * away.
1016 */
1017 (void)cmpxchg(&iter->position, pos, NULL);
1018 }
1019 }
1020
1021 if (pos)
1022 css = &pos->css;
1023
1024 for (;;) {
1025 css = css_next_descendant_pre(css, &root->css);
1026 if (!css) {
1027 /*
1028 * Reclaimers share the hierarchy walk, and a
1029 * new one might jump in right at the end of
1030 * the hierarchy - make sure they see at least
1031 * one group and restart from the beginning.
1032 */
1033 if (!prev)
1034 continue;
1035 break;
1036 }
1037
1038 /*
1039 * Verify the css and acquire a reference. The root
1040 * is provided by the caller, so we know it's alive
1041 * and kicking, and don't take an extra reference.
1042 */
1043 memcg = mem_cgroup_from_css(css);
1044
1045 if (css == &root->css)
1046 break;
1047
1048 if (css_tryget(css))
1049 break;
1050
1051 memcg = NULL;
1052 }
1053
1054 if (reclaim) {
1055 /*
1056 * The position could have already been updated by a competing
1057 * thread, so check that the value hasn't changed since we read
1058 * it to avoid reclaiming from the same cgroup twice.
1059 */
1060 (void)cmpxchg(&iter->position, pos, memcg);
1061
1062 if (pos)
1063 css_put(&pos->css);
1064
1065 if (!memcg)
1066 iter->generation++;
1067 else if (!prev)
1068 reclaim->generation = iter->generation;
1069 }
1070
1071out_unlock:
1072 rcu_read_unlock();
1073 if (prev && prev != root)
1074 css_put(&prev->css);
1075
1076 return memcg;
1077}
1078
1079/**
1080 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1081 * @root: hierarchy root
1082 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1083 */
1084void mem_cgroup_iter_break(struct mem_cgroup *root,
1085 struct mem_cgroup *prev)
1086{
1087 if (!root)
1088 root = root_mem_cgroup;
1089 if (prev && prev != root)
1090 css_put(&prev->css);
1091}
1092
1093static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1094 struct mem_cgroup *dead_memcg)
1095{
1096 struct mem_cgroup_reclaim_iter *iter;
1097 struct mem_cgroup_per_node *mz;
1098 int nid;
1099
1100 for_each_node(nid) {
1101 mz = from->nodeinfo[nid];
1102 iter = &mz->iter;
1103 cmpxchg(&iter->position, dead_memcg, NULL);
1104 }
1105}
1106
1107static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1108{
1109 struct mem_cgroup *memcg = dead_memcg;
1110 struct mem_cgroup *last;
1111
1112 do {
1113 __invalidate_reclaim_iterators(memcg, dead_memcg);
1114 last = memcg;
1115 } while ((memcg = parent_mem_cgroup(memcg)));
1116
1117 /*
1118 * When cgruop1 non-hierarchy mode is used,
1119 * parent_mem_cgroup() does not walk all the way up to the
1120 * cgroup root (root_mem_cgroup). So we have to handle
1121 * dead_memcg from cgroup root separately.
1122 */
1123 if (last != root_mem_cgroup)
1124 __invalidate_reclaim_iterators(root_mem_cgroup,
1125 dead_memcg);
1126}
1127
1128/**
1129 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1130 * @memcg: hierarchy root
1131 * @fn: function to call for each task
1132 * @arg: argument passed to @fn
1133 *
1134 * This function iterates over tasks attached to @memcg or to any of its
1135 * descendants and calls @fn for each task. If @fn returns a non-zero
1136 * value, the function breaks the iteration loop and returns the value.
1137 * Otherwise, it will iterate over all tasks and return 0.
1138 *
1139 * This function must not be called for the root memory cgroup.
1140 */
1141int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1142 int (*fn)(struct task_struct *, void *), void *arg)
1143{
1144 struct mem_cgroup *iter;
1145 int ret = 0;
1146
1147 BUG_ON(memcg == root_mem_cgroup);
1148
1149 for_each_mem_cgroup_tree(iter, memcg) {
1150 struct css_task_iter it;
1151 struct task_struct *task;
1152
1153 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1154 while (!ret && (task = css_task_iter_next(&it)))
1155 ret = fn(task, arg);
1156 css_task_iter_end(&it);
1157 if (ret) {
1158 mem_cgroup_iter_break(memcg, iter);
1159 break;
1160 }
1161 }
1162 return ret;
1163}
1164
1165#ifdef CONFIG_DEBUG_VM
1166void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1167{
1168 struct mem_cgroup *memcg;
1169
1170 if (mem_cgroup_disabled())
1171 return;
1172
1173 memcg = folio_memcg(folio);
1174
1175 if (!memcg)
1176 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1177 else
1178 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1179}
1180#endif
1181
1182/**
1183 * folio_lruvec_lock - Lock the lruvec for a folio.
1184 * @folio: Pointer to the folio.
1185 *
1186 * These functions are safe to use under any of the following conditions:
1187 * - folio locked
1188 * - folio_test_lru false
1189 * - folio_memcg_lock()
1190 * - folio frozen (refcount of 0)
1191 *
1192 * Return: The lruvec this folio is on with its lock held.
1193 */
1194struct lruvec *folio_lruvec_lock(struct folio *folio)
1195{
1196 struct lruvec *lruvec = folio_lruvec(folio);
1197
1198 spin_lock(&lruvec->lru_lock);
1199 lruvec_memcg_debug(lruvec, folio);
1200
1201 return lruvec;
1202}
1203
1204/**
1205 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1206 * @folio: Pointer to the folio.
1207 *
1208 * These functions are safe to use under any of the following conditions:
1209 * - folio locked
1210 * - folio_test_lru false
1211 * - folio_memcg_lock()
1212 * - folio frozen (refcount of 0)
1213 *
1214 * Return: The lruvec this folio is on with its lock held and interrupts
1215 * disabled.
1216 */
1217struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1218{
1219 struct lruvec *lruvec = folio_lruvec(folio);
1220
1221 spin_lock_irq(&lruvec->lru_lock);
1222 lruvec_memcg_debug(lruvec, folio);
1223
1224 return lruvec;
1225}
1226
1227/**
1228 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1229 * @folio: Pointer to the folio.
1230 * @flags: Pointer to irqsave flags.
1231 *
1232 * These functions are safe to use under any of the following conditions:
1233 * - folio locked
1234 * - folio_test_lru false
1235 * - folio_memcg_lock()
1236 * - folio frozen (refcount of 0)
1237 *
1238 * Return: The lruvec this folio is on with its lock held and interrupts
1239 * disabled.
1240 */
1241struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1242 unsigned long *flags)
1243{
1244 struct lruvec *lruvec = folio_lruvec(folio);
1245
1246 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1247 lruvec_memcg_debug(lruvec, folio);
1248
1249 return lruvec;
1250}
1251
1252/**
1253 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1254 * @lruvec: mem_cgroup per zone lru vector
1255 * @lru: index of lru list the page is sitting on
1256 * @zid: zone id of the accounted pages
1257 * @nr_pages: positive when adding or negative when removing
1258 *
1259 * This function must be called under lru_lock, just before a page is added
1260 * to or just after a page is removed from an lru list (that ordering being
1261 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1262 */
1263void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1264 int zid, int nr_pages)
1265{
1266 struct mem_cgroup_per_node *mz;
1267 unsigned long *lru_size;
1268 long size;
1269
1270 if (mem_cgroup_disabled())
1271 return;
1272
1273 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1274 lru_size = &mz->lru_zone_size[zid][lru];
1275
1276 if (nr_pages < 0)
1277 *lru_size += nr_pages;
1278
1279 size = *lru_size;
1280 if (WARN_ONCE(size < 0,
1281 "%s(%p, %d, %d): lru_size %ld\n",
1282 __func__, lruvec, lru, nr_pages, size)) {
1283 VM_BUG_ON(1);
1284 *lru_size = 0;
1285 }
1286
1287 if (nr_pages > 0)
1288 *lru_size += nr_pages;
1289}
1290
1291/**
1292 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1293 * @memcg: the memory cgroup
1294 *
1295 * Returns the maximum amount of memory @mem can be charged with, in
1296 * pages.
1297 */
1298static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1299{
1300 unsigned long margin = 0;
1301 unsigned long count;
1302 unsigned long limit;
1303
1304 count = page_counter_read(&memcg->memory);
1305 limit = READ_ONCE(memcg->memory.max);
1306 if (count < limit)
1307 margin = limit - count;
1308
1309 if (do_memsw_account()) {
1310 count = page_counter_read(&memcg->memsw);
1311 limit = READ_ONCE(memcg->memsw.max);
1312 if (count < limit)
1313 margin = min(margin, limit - count);
1314 else
1315 margin = 0;
1316 }
1317
1318 return margin;
1319}
1320
1321/*
1322 * A routine for checking "mem" is under move_account() or not.
1323 *
1324 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1325 * moving cgroups. This is for waiting at high-memory pressure
1326 * caused by "move".
1327 */
1328static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1329{
1330 struct mem_cgroup *from;
1331 struct mem_cgroup *to;
1332 bool ret = false;
1333 /*
1334 * Unlike task_move routines, we access mc.to, mc.from not under
1335 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1336 */
1337 spin_lock(&mc.lock);
1338 from = mc.from;
1339 to = mc.to;
1340 if (!from)
1341 goto unlock;
1342
1343 ret = mem_cgroup_is_descendant(from, memcg) ||
1344 mem_cgroup_is_descendant(to, memcg);
1345unlock:
1346 spin_unlock(&mc.lock);
1347 return ret;
1348}
1349
1350static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1351{
1352 if (mc.moving_task && current != mc.moving_task) {
1353 if (mem_cgroup_under_move(memcg)) {
1354 DEFINE_WAIT(wait);
1355 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1356 /* moving charge context might have finished. */
1357 if (mc.moving_task)
1358 schedule();
1359 finish_wait(&mc.waitq, &wait);
1360 return true;
1361 }
1362 }
1363 return false;
1364}
1365
1366struct memory_stat {
1367 const char *name;
1368 unsigned int idx;
1369};
1370
1371static const struct memory_stat memory_stats[] = {
1372 { "anon", NR_ANON_MAPPED },
1373 { "file", NR_FILE_PAGES },
1374 { "kernel_stack", NR_KERNEL_STACK_KB },
1375 { "pagetables", NR_PAGETABLE },
1376 { "percpu", MEMCG_PERCPU_B },
1377 { "sock", MEMCG_SOCK },
1378 { "vmalloc", MEMCG_VMALLOC },
1379 { "shmem", NR_SHMEM },
1380 { "file_mapped", NR_FILE_MAPPED },
1381 { "file_dirty", NR_FILE_DIRTY },
1382 { "file_writeback", NR_WRITEBACK },
1383#ifdef CONFIG_SWAP
1384 { "swapcached", NR_SWAPCACHE },
1385#endif
1386#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1387 { "anon_thp", NR_ANON_THPS },
1388 { "file_thp", NR_FILE_THPS },
1389 { "shmem_thp", NR_SHMEM_THPS },
1390#endif
1391 { "inactive_anon", NR_INACTIVE_ANON },
1392 { "active_anon", NR_ACTIVE_ANON },
1393 { "inactive_file", NR_INACTIVE_FILE },
1394 { "active_file", NR_ACTIVE_FILE },
1395 { "unevictable", NR_UNEVICTABLE },
1396 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1397 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1398
1399 /* The memory events */
1400 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1401 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1402 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1403 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1404 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1405 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1406 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1407};
1408
1409/* Translate stat items to the correct unit for memory.stat output */
1410static int memcg_page_state_unit(int item)
1411{
1412 switch (item) {
1413 case MEMCG_PERCPU_B:
1414 case NR_SLAB_RECLAIMABLE_B:
1415 case NR_SLAB_UNRECLAIMABLE_B:
1416 case WORKINGSET_REFAULT_ANON:
1417 case WORKINGSET_REFAULT_FILE:
1418 case WORKINGSET_ACTIVATE_ANON:
1419 case WORKINGSET_ACTIVATE_FILE:
1420 case WORKINGSET_RESTORE_ANON:
1421 case WORKINGSET_RESTORE_FILE:
1422 case WORKINGSET_NODERECLAIM:
1423 return 1;
1424 case NR_KERNEL_STACK_KB:
1425 return SZ_1K;
1426 default:
1427 return PAGE_SIZE;
1428 }
1429}
1430
1431static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1432 int item)
1433{
1434 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1435}
1436
1437static char *memory_stat_format(struct mem_cgroup *memcg)
1438{
1439 struct seq_buf s;
1440 int i;
1441
1442 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1443 if (!s.buffer)
1444 return NULL;
1445
1446 /*
1447 * Provide statistics on the state of the memory subsystem as
1448 * well as cumulative event counters that show past behavior.
1449 *
1450 * This list is ordered following a combination of these gradients:
1451 * 1) generic big picture -> specifics and details
1452 * 2) reflecting userspace activity -> reflecting kernel heuristics
1453 *
1454 * Current memory state:
1455 */
1456 mem_cgroup_flush_stats();
1457
1458 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1459 u64 size;
1460
1461 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1462 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1463
1464 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1465 size += memcg_page_state_output(memcg,
1466 NR_SLAB_RECLAIMABLE_B);
1467 seq_buf_printf(&s, "slab %llu\n", size);
1468 }
1469 }
1470
1471 /* Accumulated memory events */
1472
1473 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1474 memcg_events(memcg, PGFAULT));
1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1476 memcg_events(memcg, PGMAJFAULT));
1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1478 memcg_events(memcg, PGREFILL));
1479 seq_buf_printf(&s, "pgscan %lu\n",
1480 memcg_events(memcg, PGSCAN_KSWAPD) +
1481 memcg_events(memcg, PGSCAN_DIRECT));
1482 seq_buf_printf(&s, "pgsteal %lu\n",
1483 memcg_events(memcg, PGSTEAL_KSWAPD) +
1484 memcg_events(memcg, PGSTEAL_DIRECT));
1485 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1486 memcg_events(memcg, PGACTIVATE));
1487 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1488 memcg_events(memcg, PGDEACTIVATE));
1489 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1490 memcg_events(memcg, PGLAZYFREE));
1491 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1492 memcg_events(memcg, PGLAZYFREED));
1493
1494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1496 memcg_events(memcg, THP_FAULT_ALLOC));
1497 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1498 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1499#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1500
1501 /* The above should easily fit into one page */
1502 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1503
1504 return s.buffer;
1505}
1506
1507#define K(x) ((x) << (PAGE_SHIFT-10))
1508/**
1509 * mem_cgroup_print_oom_context: Print OOM information relevant to
1510 * memory controller.
1511 * @memcg: The memory cgroup that went over limit
1512 * @p: Task that is going to be killed
1513 *
1514 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1515 * enabled
1516 */
1517void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1518{
1519 rcu_read_lock();
1520
1521 if (memcg) {
1522 pr_cont(",oom_memcg=");
1523 pr_cont_cgroup_path(memcg->css.cgroup);
1524 } else
1525 pr_cont(",global_oom");
1526 if (p) {
1527 pr_cont(",task_memcg=");
1528 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1529 }
1530 rcu_read_unlock();
1531}
1532
1533/**
1534 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1535 * memory controller.
1536 * @memcg: The memory cgroup that went over limit
1537 */
1538void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1539{
1540 char *buf;
1541
1542 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1543 K((u64)page_counter_read(&memcg->memory)),
1544 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1545 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1546 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->swap)),
1548 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1549 else {
1550 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1551 K((u64)page_counter_read(&memcg->memsw)),
1552 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1553 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1554 K((u64)page_counter_read(&memcg->kmem)),
1555 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1556 }
1557
1558 pr_info("Memory cgroup stats for ");
1559 pr_cont_cgroup_path(memcg->css.cgroup);
1560 pr_cont(":");
1561 buf = memory_stat_format(memcg);
1562 if (!buf)
1563 return;
1564 pr_info("%s", buf);
1565 kfree(buf);
1566}
1567
1568/*
1569 * Return the memory (and swap, if configured) limit for a memcg.
1570 */
1571unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1572{
1573 unsigned long max = READ_ONCE(memcg->memory.max);
1574
1575 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1576 if (mem_cgroup_swappiness(memcg))
1577 max += min(READ_ONCE(memcg->swap.max),
1578 (unsigned long)total_swap_pages);
1579 } else { /* v1 */
1580 if (mem_cgroup_swappiness(memcg)) {
1581 /* Calculate swap excess capacity from memsw limit */
1582 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1583
1584 max += min(swap, (unsigned long)total_swap_pages);
1585 }
1586 }
1587 return max;
1588}
1589
1590unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1591{
1592 return page_counter_read(&memcg->memory);
1593}
1594
1595static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1596 int order)
1597{
1598 struct oom_control oc = {
1599 .zonelist = NULL,
1600 .nodemask = NULL,
1601 .memcg = memcg,
1602 .gfp_mask = gfp_mask,
1603 .order = order,
1604 };
1605 bool ret = true;
1606
1607 if (mutex_lock_killable(&oom_lock))
1608 return true;
1609
1610 if (mem_cgroup_margin(memcg) >= (1 << order))
1611 goto unlock;
1612
1613 /*
1614 * A few threads which were not waiting at mutex_lock_killable() can
1615 * fail to bail out. Therefore, check again after holding oom_lock.
1616 */
1617 ret = task_is_dying() || out_of_memory(&oc);
1618
1619unlock:
1620 mutex_unlock(&oom_lock);
1621 return ret;
1622}
1623
1624static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1625 pg_data_t *pgdat,
1626 gfp_t gfp_mask,
1627 unsigned long *total_scanned)
1628{
1629 struct mem_cgroup *victim = NULL;
1630 int total = 0;
1631 int loop = 0;
1632 unsigned long excess;
1633 unsigned long nr_scanned;
1634 struct mem_cgroup_reclaim_cookie reclaim = {
1635 .pgdat = pgdat,
1636 };
1637
1638 excess = soft_limit_excess(root_memcg);
1639
1640 while (1) {
1641 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1642 if (!victim) {
1643 loop++;
1644 if (loop >= 2) {
1645 /*
1646 * If we have not been able to reclaim
1647 * anything, it might because there are
1648 * no reclaimable pages under this hierarchy
1649 */
1650 if (!total)
1651 break;
1652 /*
1653 * We want to do more targeted reclaim.
1654 * excess >> 2 is not to excessive so as to
1655 * reclaim too much, nor too less that we keep
1656 * coming back to reclaim from this cgroup
1657 */
1658 if (total >= (excess >> 2) ||
1659 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1660 break;
1661 }
1662 continue;
1663 }
1664 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1665 pgdat, &nr_scanned);
1666 *total_scanned += nr_scanned;
1667 if (!soft_limit_excess(root_memcg))
1668 break;
1669 }
1670 mem_cgroup_iter_break(root_memcg, victim);
1671 return total;
1672}
1673
1674#ifdef CONFIG_LOCKDEP
1675static struct lockdep_map memcg_oom_lock_dep_map = {
1676 .name = "memcg_oom_lock",
1677};
1678#endif
1679
1680static DEFINE_SPINLOCK(memcg_oom_lock);
1681
1682/*
1683 * Check OOM-Killer is already running under our hierarchy.
1684 * If someone is running, return false.
1685 */
1686static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1687{
1688 struct mem_cgroup *iter, *failed = NULL;
1689
1690 spin_lock(&memcg_oom_lock);
1691
1692 for_each_mem_cgroup_tree(iter, memcg) {
1693 if (iter->oom_lock) {
1694 /*
1695 * this subtree of our hierarchy is already locked
1696 * so we cannot give a lock.
1697 */
1698 failed = iter;
1699 mem_cgroup_iter_break(memcg, iter);
1700 break;
1701 } else
1702 iter->oom_lock = true;
1703 }
1704
1705 if (failed) {
1706 /*
1707 * OK, we failed to lock the whole subtree so we have
1708 * to clean up what we set up to the failing subtree
1709 */
1710 for_each_mem_cgroup_tree(iter, memcg) {
1711 if (iter == failed) {
1712 mem_cgroup_iter_break(memcg, iter);
1713 break;
1714 }
1715 iter->oom_lock = false;
1716 }
1717 } else
1718 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1719
1720 spin_unlock(&memcg_oom_lock);
1721
1722 return !failed;
1723}
1724
1725static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1726{
1727 struct mem_cgroup *iter;
1728
1729 spin_lock(&memcg_oom_lock);
1730 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1731 for_each_mem_cgroup_tree(iter, memcg)
1732 iter->oom_lock = false;
1733 spin_unlock(&memcg_oom_lock);
1734}
1735
1736static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1737{
1738 struct mem_cgroup *iter;
1739
1740 spin_lock(&memcg_oom_lock);
1741 for_each_mem_cgroup_tree(iter, memcg)
1742 iter->under_oom++;
1743 spin_unlock(&memcg_oom_lock);
1744}
1745
1746static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1747{
1748 struct mem_cgroup *iter;
1749
1750 /*
1751 * Be careful about under_oom underflows because a child memcg
1752 * could have been added after mem_cgroup_mark_under_oom.
1753 */
1754 spin_lock(&memcg_oom_lock);
1755 for_each_mem_cgroup_tree(iter, memcg)
1756 if (iter->under_oom > 0)
1757 iter->under_oom--;
1758 spin_unlock(&memcg_oom_lock);
1759}
1760
1761static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1762
1763struct oom_wait_info {
1764 struct mem_cgroup *memcg;
1765 wait_queue_entry_t wait;
1766};
1767
1768static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1769 unsigned mode, int sync, void *arg)
1770{
1771 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1772 struct mem_cgroup *oom_wait_memcg;
1773 struct oom_wait_info *oom_wait_info;
1774
1775 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1776 oom_wait_memcg = oom_wait_info->memcg;
1777
1778 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1779 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1780 return 0;
1781 return autoremove_wake_function(wait, mode, sync, arg);
1782}
1783
1784static void memcg_oom_recover(struct mem_cgroup *memcg)
1785{
1786 /*
1787 * For the following lockless ->under_oom test, the only required
1788 * guarantee is that it must see the state asserted by an OOM when
1789 * this function is called as a result of userland actions
1790 * triggered by the notification of the OOM. This is trivially
1791 * achieved by invoking mem_cgroup_mark_under_oom() before
1792 * triggering notification.
1793 */
1794 if (memcg && memcg->under_oom)
1795 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1796}
1797
1798enum oom_status {
1799 OOM_SUCCESS,
1800 OOM_FAILED,
1801 OOM_ASYNC,
1802 OOM_SKIPPED
1803};
1804
1805static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1806{
1807 enum oom_status ret;
1808 bool locked;
1809
1810 if (order > PAGE_ALLOC_COSTLY_ORDER)
1811 return OOM_SKIPPED;
1812
1813 memcg_memory_event(memcg, MEMCG_OOM);
1814
1815 /*
1816 * We are in the middle of the charge context here, so we
1817 * don't want to block when potentially sitting on a callstack
1818 * that holds all kinds of filesystem and mm locks.
1819 *
1820 * cgroup1 allows disabling the OOM killer and waiting for outside
1821 * handling until the charge can succeed; remember the context and put
1822 * the task to sleep at the end of the page fault when all locks are
1823 * released.
1824 *
1825 * On the other hand, in-kernel OOM killer allows for an async victim
1826 * memory reclaim (oom_reaper) and that means that we are not solely
1827 * relying on the oom victim to make a forward progress and we can
1828 * invoke the oom killer here.
1829 *
1830 * Please note that mem_cgroup_out_of_memory might fail to find a
1831 * victim and then we have to bail out from the charge path.
1832 */
1833 if (memcg->oom_kill_disable) {
1834 if (!current->in_user_fault)
1835 return OOM_SKIPPED;
1836 css_get(&memcg->css);
1837 current->memcg_in_oom = memcg;
1838 current->memcg_oom_gfp_mask = mask;
1839 current->memcg_oom_order = order;
1840
1841 return OOM_ASYNC;
1842 }
1843
1844 mem_cgroup_mark_under_oom(memcg);
1845
1846 locked = mem_cgroup_oom_trylock(memcg);
1847
1848 if (locked)
1849 mem_cgroup_oom_notify(memcg);
1850
1851 mem_cgroup_unmark_under_oom(memcg);
1852 if (mem_cgroup_out_of_memory(memcg, mask, order))
1853 ret = OOM_SUCCESS;
1854 else
1855 ret = OOM_FAILED;
1856
1857 if (locked)
1858 mem_cgroup_oom_unlock(memcg);
1859
1860 return ret;
1861}
1862
1863/**
1864 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1865 * @handle: actually kill/wait or just clean up the OOM state
1866 *
1867 * This has to be called at the end of a page fault if the memcg OOM
1868 * handler was enabled.
1869 *
1870 * Memcg supports userspace OOM handling where failed allocations must
1871 * sleep on a waitqueue until the userspace task resolves the
1872 * situation. Sleeping directly in the charge context with all kinds
1873 * of locks held is not a good idea, instead we remember an OOM state
1874 * in the task and mem_cgroup_oom_synchronize() has to be called at
1875 * the end of the page fault to complete the OOM handling.
1876 *
1877 * Returns %true if an ongoing memcg OOM situation was detected and
1878 * completed, %false otherwise.
1879 */
1880bool mem_cgroup_oom_synchronize(bool handle)
1881{
1882 struct mem_cgroup *memcg = current->memcg_in_oom;
1883 struct oom_wait_info owait;
1884 bool locked;
1885
1886 /* OOM is global, do not handle */
1887 if (!memcg)
1888 return false;
1889
1890 if (!handle)
1891 goto cleanup;
1892
1893 owait.memcg = memcg;
1894 owait.wait.flags = 0;
1895 owait.wait.func = memcg_oom_wake_function;
1896 owait.wait.private = current;
1897 INIT_LIST_HEAD(&owait.wait.entry);
1898
1899 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1900 mem_cgroup_mark_under_oom(memcg);
1901
1902 locked = mem_cgroup_oom_trylock(memcg);
1903
1904 if (locked)
1905 mem_cgroup_oom_notify(memcg);
1906
1907 if (locked && !memcg->oom_kill_disable) {
1908 mem_cgroup_unmark_under_oom(memcg);
1909 finish_wait(&memcg_oom_waitq, &owait.wait);
1910 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1911 current->memcg_oom_order);
1912 } else {
1913 schedule();
1914 mem_cgroup_unmark_under_oom(memcg);
1915 finish_wait(&memcg_oom_waitq, &owait.wait);
1916 }
1917
1918 if (locked) {
1919 mem_cgroup_oom_unlock(memcg);
1920 /*
1921 * There is no guarantee that an OOM-lock contender
1922 * sees the wakeups triggered by the OOM kill
1923 * uncharges. Wake any sleepers explicitly.
1924 */
1925 memcg_oom_recover(memcg);
1926 }
1927cleanup:
1928 current->memcg_in_oom = NULL;
1929 css_put(&memcg->css);
1930 return true;
1931}
1932
1933/**
1934 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1935 * @victim: task to be killed by the OOM killer
1936 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1937 *
1938 * Returns a pointer to a memory cgroup, which has to be cleaned up
1939 * by killing all belonging OOM-killable tasks.
1940 *
1941 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1942 */
1943struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1944 struct mem_cgroup *oom_domain)
1945{
1946 struct mem_cgroup *oom_group = NULL;
1947 struct mem_cgroup *memcg;
1948
1949 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1950 return NULL;
1951
1952 if (!oom_domain)
1953 oom_domain = root_mem_cgroup;
1954
1955 rcu_read_lock();
1956
1957 memcg = mem_cgroup_from_task(victim);
1958 if (memcg == root_mem_cgroup)
1959 goto out;
1960
1961 /*
1962 * If the victim task has been asynchronously moved to a different
1963 * memory cgroup, we might end up killing tasks outside oom_domain.
1964 * In this case it's better to ignore memory.group.oom.
1965 */
1966 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1967 goto out;
1968
1969 /*
1970 * Traverse the memory cgroup hierarchy from the victim task's
1971 * cgroup up to the OOMing cgroup (or root) to find the
1972 * highest-level memory cgroup with oom.group set.
1973 */
1974 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1975 if (memcg->oom_group)
1976 oom_group = memcg;
1977
1978 if (memcg == oom_domain)
1979 break;
1980 }
1981
1982 if (oom_group)
1983 css_get(&oom_group->css);
1984out:
1985 rcu_read_unlock();
1986
1987 return oom_group;
1988}
1989
1990void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1991{
1992 pr_info("Tasks in ");
1993 pr_cont_cgroup_path(memcg->css.cgroup);
1994 pr_cont(" are going to be killed due to memory.oom.group set\n");
1995}
1996
1997/**
1998 * folio_memcg_lock - Bind a folio to its memcg.
1999 * @folio: The folio.
2000 *
2001 * This function prevents unlocked LRU folios from being moved to
2002 * another cgroup.
2003 *
2004 * It ensures lifetime of the bound memcg. The caller is responsible
2005 * for the lifetime of the folio.
2006 */
2007void folio_memcg_lock(struct folio *folio)
2008{
2009 struct mem_cgroup *memcg;
2010 unsigned long flags;
2011
2012 /*
2013 * The RCU lock is held throughout the transaction. The fast
2014 * path can get away without acquiring the memcg->move_lock
2015 * because page moving starts with an RCU grace period.
2016 */
2017 rcu_read_lock();
2018
2019 if (mem_cgroup_disabled())
2020 return;
2021again:
2022 memcg = folio_memcg(folio);
2023 if (unlikely(!memcg))
2024 return;
2025
2026#ifdef CONFIG_PROVE_LOCKING
2027 local_irq_save(flags);
2028 might_lock(&memcg->move_lock);
2029 local_irq_restore(flags);
2030#endif
2031
2032 if (atomic_read(&memcg->moving_account) <= 0)
2033 return;
2034
2035 spin_lock_irqsave(&memcg->move_lock, flags);
2036 if (memcg != folio_memcg(folio)) {
2037 spin_unlock_irqrestore(&memcg->move_lock, flags);
2038 goto again;
2039 }
2040
2041 /*
2042 * When charge migration first begins, we can have multiple
2043 * critical sections holding the fast-path RCU lock and one
2044 * holding the slowpath move_lock. Track the task who has the
2045 * move_lock for unlock_page_memcg().
2046 */
2047 memcg->move_lock_task = current;
2048 memcg->move_lock_flags = flags;
2049}
2050
2051void lock_page_memcg(struct page *page)
2052{
2053 folio_memcg_lock(page_folio(page));
2054}
2055
2056static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2057{
2058 if (memcg && memcg->move_lock_task == current) {
2059 unsigned long flags = memcg->move_lock_flags;
2060
2061 memcg->move_lock_task = NULL;
2062 memcg->move_lock_flags = 0;
2063
2064 spin_unlock_irqrestore(&memcg->move_lock, flags);
2065 }
2066
2067 rcu_read_unlock();
2068}
2069
2070/**
2071 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2072 * @folio: The folio.
2073 *
2074 * This releases the binding created by folio_memcg_lock(). This does
2075 * not change the accounting of this folio to its memcg, but it does
2076 * permit others to change it.
2077 */
2078void folio_memcg_unlock(struct folio *folio)
2079{
2080 __folio_memcg_unlock(folio_memcg(folio));
2081}
2082
2083void unlock_page_memcg(struct page *page)
2084{
2085 folio_memcg_unlock(page_folio(page));
2086}
2087
2088struct obj_stock {
2089#ifdef CONFIG_MEMCG_KMEM
2090 struct obj_cgroup *cached_objcg;
2091 struct pglist_data *cached_pgdat;
2092 unsigned int nr_bytes;
2093 int nr_slab_reclaimable_b;
2094 int nr_slab_unreclaimable_b;
2095#else
2096 int dummy[0];
2097#endif
2098};
2099
2100struct memcg_stock_pcp {
2101 struct mem_cgroup *cached; /* this never be root cgroup */
2102 unsigned int nr_pages;
2103 struct obj_stock task_obj;
2104 struct obj_stock irq_obj;
2105
2106 struct work_struct work;
2107 unsigned long flags;
2108#define FLUSHING_CACHED_CHARGE 0
2109};
2110static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2111static DEFINE_MUTEX(percpu_charge_mutex);
2112
2113#ifdef CONFIG_MEMCG_KMEM
2114static void drain_obj_stock(struct obj_stock *stock);
2115static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2116 struct mem_cgroup *root_memcg);
2117
2118#else
2119static inline void drain_obj_stock(struct obj_stock *stock)
2120{
2121}
2122static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2123 struct mem_cgroup *root_memcg)
2124{
2125 return false;
2126}
2127#endif
2128
2129/**
2130 * consume_stock: Try to consume stocked charge on this cpu.
2131 * @memcg: memcg to consume from.
2132 * @nr_pages: how many pages to charge.
2133 *
2134 * The charges will only happen if @memcg matches the current cpu's memcg
2135 * stock, and at least @nr_pages are available in that stock. Failure to
2136 * service an allocation will refill the stock.
2137 *
2138 * returns true if successful, false otherwise.
2139 */
2140static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2141{
2142 struct memcg_stock_pcp *stock;
2143 unsigned long flags;
2144 bool ret = false;
2145
2146 if (nr_pages > MEMCG_CHARGE_BATCH)
2147 return ret;
2148
2149 local_irq_save(flags);
2150
2151 stock = this_cpu_ptr(&memcg_stock);
2152 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2153 stock->nr_pages -= nr_pages;
2154 ret = true;
2155 }
2156
2157 local_irq_restore(flags);
2158
2159 return ret;
2160}
2161
2162/*
2163 * Returns stocks cached in percpu and reset cached information.
2164 */
2165static void drain_stock(struct memcg_stock_pcp *stock)
2166{
2167 struct mem_cgroup *old = stock->cached;
2168
2169 if (!old)
2170 return;
2171
2172 if (stock->nr_pages) {
2173 page_counter_uncharge(&old->memory, stock->nr_pages);
2174 if (do_memsw_account())
2175 page_counter_uncharge(&old->memsw, stock->nr_pages);
2176 stock->nr_pages = 0;
2177 }
2178
2179 css_put(&old->css);
2180 stock->cached = NULL;
2181}
2182
2183static void drain_local_stock(struct work_struct *dummy)
2184{
2185 struct memcg_stock_pcp *stock;
2186 unsigned long flags;
2187
2188 /*
2189 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2190 * drain_stock races is that we always operate on local CPU stock
2191 * here with IRQ disabled
2192 */
2193 local_irq_save(flags);
2194
2195 stock = this_cpu_ptr(&memcg_stock);
2196 drain_obj_stock(&stock->irq_obj);
2197 if (in_task())
2198 drain_obj_stock(&stock->task_obj);
2199 drain_stock(stock);
2200 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2201
2202 local_irq_restore(flags);
2203}
2204
2205/*
2206 * Cache charges(val) to local per_cpu area.
2207 * This will be consumed by consume_stock() function, later.
2208 */
2209static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2210{
2211 struct memcg_stock_pcp *stock;
2212 unsigned long flags;
2213
2214 local_irq_save(flags);
2215
2216 stock = this_cpu_ptr(&memcg_stock);
2217 if (stock->cached != memcg) { /* reset if necessary */
2218 drain_stock(stock);
2219 css_get(&memcg->css);
2220 stock->cached = memcg;
2221 }
2222 stock->nr_pages += nr_pages;
2223
2224 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2225 drain_stock(stock);
2226
2227 local_irq_restore(flags);
2228}
2229
2230/*
2231 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2232 * of the hierarchy under it.
2233 */
2234static void drain_all_stock(struct mem_cgroup *root_memcg)
2235{
2236 int cpu, curcpu;
2237
2238 /* If someone's already draining, avoid adding running more workers. */
2239 if (!mutex_trylock(&percpu_charge_mutex))
2240 return;
2241 /*
2242 * Notify other cpus that system-wide "drain" is running
2243 * We do not care about races with the cpu hotplug because cpu down
2244 * as well as workers from this path always operate on the local
2245 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2246 */
2247 curcpu = get_cpu();
2248 for_each_online_cpu(cpu) {
2249 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2250 struct mem_cgroup *memcg;
2251 bool flush = false;
2252
2253 rcu_read_lock();
2254 memcg = stock->cached;
2255 if (memcg && stock->nr_pages &&
2256 mem_cgroup_is_descendant(memcg, root_memcg))
2257 flush = true;
2258 else if (obj_stock_flush_required(stock, root_memcg))
2259 flush = true;
2260 rcu_read_unlock();
2261
2262 if (flush &&
2263 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2264 if (cpu == curcpu)
2265 drain_local_stock(&stock->work);
2266 else
2267 schedule_work_on(cpu, &stock->work);
2268 }
2269 }
2270 put_cpu();
2271 mutex_unlock(&percpu_charge_mutex);
2272}
2273
2274static int memcg_hotplug_cpu_dead(unsigned int cpu)
2275{
2276 struct memcg_stock_pcp *stock;
2277
2278 stock = &per_cpu(memcg_stock, cpu);
2279 drain_stock(stock);
2280
2281 return 0;
2282}
2283
2284static unsigned long reclaim_high(struct mem_cgroup *memcg,
2285 unsigned int nr_pages,
2286 gfp_t gfp_mask)
2287{
2288 unsigned long nr_reclaimed = 0;
2289
2290 do {
2291 unsigned long pflags;
2292
2293 if (page_counter_read(&memcg->memory) <=
2294 READ_ONCE(memcg->memory.high))
2295 continue;
2296
2297 memcg_memory_event(memcg, MEMCG_HIGH);
2298
2299 psi_memstall_enter(&pflags);
2300 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2301 gfp_mask, true);
2302 psi_memstall_leave(&pflags);
2303 } while ((memcg = parent_mem_cgroup(memcg)) &&
2304 !mem_cgroup_is_root(memcg));
2305
2306 return nr_reclaimed;
2307}
2308
2309static void high_work_func(struct work_struct *work)
2310{
2311 struct mem_cgroup *memcg;
2312
2313 memcg = container_of(work, struct mem_cgroup, high_work);
2314 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2315}
2316
2317/*
2318 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2319 * enough to still cause a significant slowdown in most cases, while still
2320 * allowing diagnostics and tracing to proceed without becoming stuck.
2321 */
2322#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2323
2324/*
2325 * When calculating the delay, we use these either side of the exponentiation to
2326 * maintain precision and scale to a reasonable number of jiffies (see the table
2327 * below.
2328 *
2329 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2330 * overage ratio to a delay.
2331 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2332 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2333 * to produce a reasonable delay curve.
2334 *
2335 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2336 * reasonable delay curve compared to precision-adjusted overage, not
2337 * penalising heavily at first, but still making sure that growth beyond the
2338 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2339 * example, with a high of 100 megabytes:
2340 *
2341 * +-------+------------------------+
2342 * | usage | time to allocate in ms |
2343 * +-------+------------------------+
2344 * | 100M | 0 |
2345 * | 101M | 6 |
2346 * | 102M | 25 |
2347 * | 103M | 57 |
2348 * | 104M | 102 |
2349 * | 105M | 159 |
2350 * | 106M | 230 |
2351 * | 107M | 313 |
2352 * | 108M | 409 |
2353 * | 109M | 518 |
2354 * | 110M | 639 |
2355 * | 111M | 774 |
2356 * | 112M | 921 |
2357 * | 113M | 1081 |
2358 * | 114M | 1254 |
2359 * | 115M | 1439 |
2360 * | 116M | 1638 |
2361 * | 117M | 1849 |
2362 * | 118M | 2000 |
2363 * | 119M | 2000 |
2364 * | 120M | 2000 |
2365 * +-------+------------------------+
2366 */
2367 #define MEMCG_DELAY_PRECISION_SHIFT 20
2368 #define MEMCG_DELAY_SCALING_SHIFT 14
2369
2370static u64 calculate_overage(unsigned long usage, unsigned long high)
2371{
2372 u64 overage;
2373
2374 if (usage <= high)
2375 return 0;
2376
2377 /*
2378 * Prevent division by 0 in overage calculation by acting as if
2379 * it was a threshold of 1 page
2380 */
2381 high = max(high, 1UL);
2382
2383 overage = usage - high;
2384 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2385 return div64_u64(overage, high);
2386}
2387
2388static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2389{
2390 u64 overage, max_overage = 0;
2391
2392 do {
2393 overage = calculate_overage(page_counter_read(&memcg->memory),
2394 READ_ONCE(memcg->memory.high));
2395 max_overage = max(overage, max_overage);
2396 } while ((memcg = parent_mem_cgroup(memcg)) &&
2397 !mem_cgroup_is_root(memcg));
2398
2399 return max_overage;
2400}
2401
2402static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2403{
2404 u64 overage, max_overage = 0;
2405
2406 do {
2407 overage = calculate_overage(page_counter_read(&memcg->swap),
2408 READ_ONCE(memcg->swap.high));
2409 if (overage)
2410 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2411 max_overage = max(overage, max_overage);
2412 } while ((memcg = parent_mem_cgroup(memcg)) &&
2413 !mem_cgroup_is_root(memcg));
2414
2415 return max_overage;
2416}
2417
2418/*
2419 * Get the number of jiffies that we should penalise a mischievous cgroup which
2420 * is exceeding its memory.high by checking both it and its ancestors.
2421 */
2422static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2423 unsigned int nr_pages,
2424 u64 max_overage)
2425{
2426 unsigned long penalty_jiffies;
2427
2428 if (!max_overage)
2429 return 0;
2430
2431 /*
2432 * We use overage compared to memory.high to calculate the number of
2433 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2434 * fairly lenient on small overages, and increasingly harsh when the
2435 * memcg in question makes it clear that it has no intention of stopping
2436 * its crazy behaviour, so we exponentially increase the delay based on
2437 * overage amount.
2438 */
2439 penalty_jiffies = max_overage * max_overage * HZ;
2440 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2441 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2442
2443 /*
2444 * Factor in the task's own contribution to the overage, such that four
2445 * N-sized allocations are throttled approximately the same as one
2446 * 4N-sized allocation.
2447 *
2448 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2449 * larger the current charge patch is than that.
2450 */
2451 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2452}
2453
2454/*
2455 * Scheduled by try_charge() to be executed from the userland return path
2456 * and reclaims memory over the high limit.
2457 */
2458void mem_cgroup_handle_over_high(void)
2459{
2460 unsigned long penalty_jiffies;
2461 unsigned long pflags;
2462 unsigned long nr_reclaimed;
2463 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2464 int nr_retries = MAX_RECLAIM_RETRIES;
2465 struct mem_cgroup *memcg;
2466 bool in_retry = false;
2467
2468 if (likely(!nr_pages))
2469 return;
2470
2471 memcg = get_mem_cgroup_from_mm(current->mm);
2472 current->memcg_nr_pages_over_high = 0;
2473
2474retry_reclaim:
2475 /*
2476 * The allocating task should reclaim at least the batch size, but for
2477 * subsequent retries we only want to do what's necessary to prevent oom
2478 * or breaching resource isolation.
2479 *
2480 * This is distinct from memory.max or page allocator behaviour because
2481 * memory.high is currently batched, whereas memory.max and the page
2482 * allocator run every time an allocation is made.
2483 */
2484 nr_reclaimed = reclaim_high(memcg,
2485 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2486 GFP_KERNEL);
2487
2488 /*
2489 * memory.high is breached and reclaim is unable to keep up. Throttle
2490 * allocators proactively to slow down excessive growth.
2491 */
2492 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2493 mem_find_max_overage(memcg));
2494
2495 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2496 swap_find_max_overage(memcg));
2497
2498 /*
2499 * Clamp the max delay per usermode return so as to still keep the
2500 * application moving forwards and also permit diagnostics, albeit
2501 * extremely slowly.
2502 */
2503 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2504
2505 /*
2506 * Don't sleep if the amount of jiffies this memcg owes us is so low
2507 * that it's not even worth doing, in an attempt to be nice to those who
2508 * go only a small amount over their memory.high value and maybe haven't
2509 * been aggressively reclaimed enough yet.
2510 */
2511 if (penalty_jiffies <= HZ / 100)
2512 goto out;
2513
2514 /*
2515 * If reclaim is making forward progress but we're still over
2516 * memory.high, we want to encourage that rather than doing allocator
2517 * throttling.
2518 */
2519 if (nr_reclaimed || nr_retries--) {
2520 in_retry = true;
2521 goto retry_reclaim;
2522 }
2523
2524 /*
2525 * If we exit early, we're guaranteed to die (since
2526 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2527 * need to account for any ill-begotten jiffies to pay them off later.
2528 */
2529 psi_memstall_enter(&pflags);
2530 schedule_timeout_killable(penalty_jiffies);
2531 psi_memstall_leave(&pflags);
2532
2533out:
2534 css_put(&memcg->css);
2535}
2536
2537static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2538 unsigned int nr_pages)
2539{
2540 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2541 int nr_retries = MAX_RECLAIM_RETRIES;
2542 struct mem_cgroup *mem_over_limit;
2543 struct page_counter *counter;
2544 enum oom_status oom_status;
2545 unsigned long nr_reclaimed;
2546 bool passed_oom = false;
2547 bool may_swap = true;
2548 bool drained = false;
2549 unsigned long pflags;
2550
2551retry:
2552 if (consume_stock(memcg, nr_pages))
2553 return 0;
2554
2555 if (!do_memsw_account() ||
2556 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2557 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2558 goto done_restock;
2559 if (do_memsw_account())
2560 page_counter_uncharge(&memcg->memsw, batch);
2561 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2562 } else {
2563 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2564 may_swap = false;
2565 }
2566
2567 if (batch > nr_pages) {
2568 batch = nr_pages;
2569 goto retry;
2570 }
2571
2572 /*
2573 * Memcg doesn't have a dedicated reserve for atomic
2574 * allocations. But like the global atomic pool, we need to
2575 * put the burden of reclaim on regular allocation requests
2576 * and let these go through as privileged allocations.
2577 */
2578 if (gfp_mask & __GFP_ATOMIC)
2579 goto force;
2580
2581 /*
2582 * Prevent unbounded recursion when reclaim operations need to
2583 * allocate memory. This might exceed the limits temporarily,
2584 * but we prefer facilitating memory reclaim and getting back
2585 * under the limit over triggering OOM kills in these cases.
2586 */
2587 if (unlikely(current->flags & PF_MEMALLOC))
2588 goto force;
2589
2590 if (unlikely(task_in_memcg_oom(current)))
2591 goto nomem;
2592
2593 if (!gfpflags_allow_blocking(gfp_mask))
2594 goto nomem;
2595
2596 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2597
2598 psi_memstall_enter(&pflags);
2599 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2600 gfp_mask, may_swap);
2601 psi_memstall_leave(&pflags);
2602
2603 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2604 goto retry;
2605
2606 if (!drained) {
2607 drain_all_stock(mem_over_limit);
2608 drained = true;
2609 goto retry;
2610 }
2611
2612 if (gfp_mask & __GFP_NORETRY)
2613 goto nomem;
2614 /*
2615 * Even though the limit is exceeded at this point, reclaim
2616 * may have been able to free some pages. Retry the charge
2617 * before killing the task.
2618 *
2619 * Only for regular pages, though: huge pages are rather
2620 * unlikely to succeed so close to the limit, and we fall back
2621 * to regular pages anyway in case of failure.
2622 */
2623 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2624 goto retry;
2625 /*
2626 * At task move, charge accounts can be doubly counted. So, it's
2627 * better to wait until the end of task_move if something is going on.
2628 */
2629 if (mem_cgroup_wait_acct_move(mem_over_limit))
2630 goto retry;
2631
2632 if (nr_retries--)
2633 goto retry;
2634
2635 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2636 goto nomem;
2637
2638 /* Avoid endless loop for tasks bypassed by the oom killer */
2639 if (passed_oom && task_is_dying())
2640 goto nomem;
2641
2642 /*
2643 * keep retrying as long as the memcg oom killer is able to make
2644 * a forward progress or bypass the charge if the oom killer
2645 * couldn't make any progress.
2646 */
2647 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2648 get_order(nr_pages * PAGE_SIZE));
2649 if (oom_status == OOM_SUCCESS) {
2650 passed_oom = true;
2651 nr_retries = MAX_RECLAIM_RETRIES;
2652 goto retry;
2653 }
2654nomem:
2655 if (!(gfp_mask & __GFP_NOFAIL))
2656 return -ENOMEM;
2657force:
2658 /*
2659 * The allocation either can't fail or will lead to more memory
2660 * being freed very soon. Allow memory usage go over the limit
2661 * temporarily by force charging it.
2662 */
2663 page_counter_charge(&memcg->memory, nr_pages);
2664 if (do_memsw_account())
2665 page_counter_charge(&memcg->memsw, nr_pages);
2666
2667 return 0;
2668
2669done_restock:
2670 if (batch > nr_pages)
2671 refill_stock(memcg, batch - nr_pages);
2672
2673 /*
2674 * If the hierarchy is above the normal consumption range, schedule
2675 * reclaim on returning to userland. We can perform reclaim here
2676 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2677 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2678 * not recorded as it most likely matches current's and won't
2679 * change in the meantime. As high limit is checked again before
2680 * reclaim, the cost of mismatch is negligible.
2681 */
2682 do {
2683 bool mem_high, swap_high;
2684
2685 mem_high = page_counter_read(&memcg->memory) >
2686 READ_ONCE(memcg->memory.high);
2687 swap_high = page_counter_read(&memcg->swap) >
2688 READ_ONCE(memcg->swap.high);
2689
2690 /* Don't bother a random interrupted task */
2691 if (in_interrupt()) {
2692 if (mem_high) {
2693 schedule_work(&memcg->high_work);
2694 break;
2695 }
2696 continue;
2697 }
2698
2699 if (mem_high || swap_high) {
2700 /*
2701 * The allocating tasks in this cgroup will need to do
2702 * reclaim or be throttled to prevent further growth
2703 * of the memory or swap footprints.
2704 *
2705 * Target some best-effort fairness between the tasks,
2706 * and distribute reclaim work and delay penalties
2707 * based on how much each task is actually allocating.
2708 */
2709 current->memcg_nr_pages_over_high += batch;
2710 set_notify_resume(current);
2711 break;
2712 }
2713 } while ((memcg = parent_mem_cgroup(memcg)));
2714
2715 return 0;
2716}
2717
2718static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2719 unsigned int nr_pages)
2720{
2721 if (mem_cgroup_is_root(memcg))
2722 return 0;
2723
2724 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2725}
2726
2727static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2728{
2729 if (mem_cgroup_is_root(memcg))
2730 return;
2731
2732 page_counter_uncharge(&memcg->memory, nr_pages);
2733 if (do_memsw_account())
2734 page_counter_uncharge(&memcg->memsw, nr_pages);
2735}
2736
2737static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2738{
2739 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2740 /*
2741 * Any of the following ensures page's memcg stability:
2742 *
2743 * - the page lock
2744 * - LRU isolation
2745 * - lock_page_memcg()
2746 * - exclusive reference
2747 */
2748 folio->memcg_data = (unsigned long)memcg;
2749}
2750
2751static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2752{
2753 struct mem_cgroup *memcg;
2754
2755 rcu_read_lock();
2756retry:
2757 memcg = obj_cgroup_memcg(objcg);
2758 if (unlikely(!css_tryget(&memcg->css)))
2759 goto retry;
2760 rcu_read_unlock();
2761
2762 return memcg;
2763}
2764
2765#ifdef CONFIG_MEMCG_KMEM
2766/*
2767 * The allocated objcg pointers array is not accounted directly.
2768 * Moreover, it should not come from DMA buffer and is not readily
2769 * reclaimable. So those GFP bits should be masked off.
2770 */
2771#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2772
2773/*
2774 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2775 * sequence used in this case to access content from object stock is slow.
2776 * To optimize for user context access, there are now two object stocks for
2777 * task context and interrupt context access respectively.
2778 *
2779 * The task context object stock can be accessed by disabling preemption only
2780 * which is cheap in non-preempt kernel. The interrupt context object stock
2781 * can only be accessed after disabling interrupt. User context code can
2782 * access interrupt object stock, but not vice versa.
2783 */
2784static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2785{
2786 struct memcg_stock_pcp *stock;
2787
2788 if (likely(in_task())) {
2789 *pflags = 0UL;
2790 preempt_disable();
2791 stock = this_cpu_ptr(&memcg_stock);
2792 return &stock->task_obj;
2793 }
2794
2795 local_irq_save(*pflags);
2796 stock = this_cpu_ptr(&memcg_stock);
2797 return &stock->irq_obj;
2798}
2799
2800static inline void put_obj_stock(unsigned long flags)
2801{
2802 if (likely(in_task()))
2803 preempt_enable();
2804 else
2805 local_irq_restore(flags);
2806}
2807
2808/*
2809 * mod_objcg_mlstate() may be called with irq enabled, so
2810 * mod_memcg_lruvec_state() should be used.
2811 */
2812static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2813 struct pglist_data *pgdat,
2814 enum node_stat_item idx, int nr)
2815{
2816 struct mem_cgroup *memcg;
2817 struct lruvec *lruvec;
2818
2819 rcu_read_lock();
2820 memcg = obj_cgroup_memcg(objcg);
2821 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2822 mod_memcg_lruvec_state(lruvec, idx, nr);
2823 rcu_read_unlock();
2824}
2825
2826int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2827 gfp_t gfp, bool new_slab)
2828{
2829 unsigned int objects = objs_per_slab(s, slab);
2830 unsigned long memcg_data;
2831 void *vec;
2832
2833 gfp &= ~OBJCGS_CLEAR_MASK;
2834 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2835 slab_nid(slab));
2836 if (!vec)
2837 return -ENOMEM;
2838
2839 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2840 if (new_slab) {
2841 /*
2842 * If the slab is brand new and nobody can yet access its
2843 * memcg_data, no synchronization is required and memcg_data can
2844 * be simply assigned.
2845 */
2846 slab->memcg_data = memcg_data;
2847 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2848 /*
2849 * If the slab is already in use, somebody can allocate and
2850 * assign obj_cgroups in parallel. In this case the existing
2851 * objcg vector should be reused.
2852 */
2853 kfree(vec);
2854 return 0;
2855 }
2856
2857 kmemleak_not_leak(vec);
2858 return 0;
2859}
2860
2861/*
2862 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2863 *
2864 * A passed kernel object can be a slab object or a generic kernel page, so
2865 * different mechanisms for getting the memory cgroup pointer should be used.
2866 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2867 * can not know for sure how the kernel object is implemented.
2868 * mem_cgroup_from_obj() can be safely used in such cases.
2869 *
2870 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2871 * cgroup_mutex, etc.
2872 */
2873struct mem_cgroup *mem_cgroup_from_obj(void *p)
2874{
2875 struct folio *folio;
2876
2877 if (mem_cgroup_disabled())
2878 return NULL;
2879
2880 folio = virt_to_folio(p);
2881
2882 /*
2883 * Slab objects are accounted individually, not per-page.
2884 * Memcg membership data for each individual object is saved in
2885 * slab->memcg_data.
2886 */
2887 if (folio_test_slab(folio)) {
2888 struct obj_cgroup **objcgs;
2889 struct slab *slab;
2890 unsigned int off;
2891
2892 slab = folio_slab(folio);
2893 objcgs = slab_objcgs(slab);
2894 if (!objcgs)
2895 return NULL;
2896
2897 off = obj_to_index(slab->slab_cache, slab, p);
2898 if (objcgs[off])
2899 return obj_cgroup_memcg(objcgs[off]);
2900
2901 return NULL;
2902 }
2903
2904 /*
2905 * page_memcg_check() is used here, because in theory we can encounter
2906 * a folio where the slab flag has been cleared already, but
2907 * slab->memcg_data has not been freed yet
2908 * page_memcg_check(page) will guarantee that a proper memory
2909 * cgroup pointer or NULL will be returned.
2910 */
2911 return page_memcg_check(folio_page(folio, 0));
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916 struct obj_cgroup *objcg = NULL;
2917 struct mem_cgroup *memcg;
2918
2919 if (memcg_kmem_bypass())
2920 return NULL;
2921
2922 rcu_read_lock();
2923 if (unlikely(active_memcg()))
2924 memcg = active_memcg();
2925 else
2926 memcg = mem_cgroup_from_task(current);
2927
2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 objcg = rcu_dereference(memcg->objcg);
2930 if (objcg && obj_cgroup_tryget(objcg))
2931 break;
2932 objcg = NULL;
2933 }
2934 rcu_read_unlock();
2935
2936 return objcg;
2937}
2938
2939static int memcg_alloc_cache_id(void)
2940{
2941 int id, size;
2942 int err;
2943
2944 id = ida_simple_get(&memcg_cache_ida,
2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 if (id < 0)
2947 return id;
2948
2949 if (id < memcg_nr_cache_ids)
2950 return id;
2951
2952 /*
2953 * There's no space for the new id in memcg_caches arrays,
2954 * so we have to grow them.
2955 */
2956 down_write(&memcg_cache_ids_sem);
2957
2958 size = 2 * (id + 1);
2959 if (size < MEMCG_CACHES_MIN_SIZE)
2960 size = MEMCG_CACHES_MIN_SIZE;
2961 else if (size > MEMCG_CACHES_MAX_SIZE)
2962 size = MEMCG_CACHES_MAX_SIZE;
2963
2964 err = memcg_update_all_list_lrus(size);
2965 if (!err)
2966 memcg_nr_cache_ids = size;
2967
2968 up_write(&memcg_cache_ids_sem);
2969
2970 if (err) {
2971 ida_simple_remove(&memcg_cache_ida, id);
2972 return err;
2973 }
2974 return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979 ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 unsigned int nr_pages)
2989{
2990 struct mem_cgroup *memcg;
2991
2992 memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 page_counter_uncharge(&memcg->kmem, nr_pages);
2996 refill_stock(memcg, nr_pages);
2997
2998 css_put(&memcg->css);
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 unsigned int nr_pages)
3011{
3012 struct mem_cgroup *memcg;
3013 int ret;
3014
3015 memcg = get_mem_cgroup_from_objcg(objcg);
3016
3017 ret = try_charge_memcg(memcg, gfp, nr_pages);
3018 if (ret)
3019 goto out;
3020
3021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3022 page_counter_charge(&memcg->kmem, nr_pages);
3023out:
3024 css_put(&memcg->css);
3025
3026 return ret;
3027}
3028
3029/**
3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031 * @page: page to charge
3032 * @gfp: reclaim mode
3033 * @order: allocation order
3034 *
3035 * Returns 0 on success, an error code on failure.
3036 */
3037int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038{
3039 struct obj_cgroup *objcg;
3040 int ret = 0;
3041
3042 objcg = get_obj_cgroup_from_current();
3043 if (objcg) {
3044 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3045 if (!ret) {
3046 page->memcg_data = (unsigned long)objcg |
3047 MEMCG_DATA_KMEM;
3048 return 0;
3049 }
3050 obj_cgroup_put(objcg);
3051 }
3052 return ret;
3053}
3054
3055/**
3056 * __memcg_kmem_uncharge_page: uncharge a kmem page
3057 * @page: page to uncharge
3058 * @order: allocation order
3059 */
3060void __memcg_kmem_uncharge_page(struct page *page, int order)
3061{
3062 struct folio *folio = page_folio(page);
3063 struct obj_cgroup *objcg;
3064 unsigned int nr_pages = 1 << order;
3065
3066 if (!folio_memcg_kmem(folio))
3067 return;
3068
3069 objcg = __folio_objcg(folio);
3070 obj_cgroup_uncharge_pages(objcg, nr_pages);
3071 folio->memcg_data = 0;
3072 obj_cgroup_put(objcg);
3073}
3074
3075void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3076 enum node_stat_item idx, int nr)
3077{
3078 unsigned long flags;
3079 struct obj_stock *stock = get_obj_stock(&flags);
3080 int *bytes;
3081
3082 /*
3083 * Save vmstat data in stock and skip vmstat array update unless
3084 * accumulating over a page of vmstat data or when pgdat or idx
3085 * changes.
3086 */
3087 if (stock->cached_objcg != objcg) {
3088 drain_obj_stock(stock);
3089 obj_cgroup_get(objcg);
3090 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3091 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3092 stock->cached_objcg = objcg;
3093 stock->cached_pgdat = pgdat;
3094 } else if (stock->cached_pgdat != pgdat) {
3095 /* Flush the existing cached vmstat data */
3096 struct pglist_data *oldpg = stock->cached_pgdat;
3097
3098 if (stock->nr_slab_reclaimable_b) {
3099 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3100 stock->nr_slab_reclaimable_b);
3101 stock->nr_slab_reclaimable_b = 0;
3102 }
3103 if (stock->nr_slab_unreclaimable_b) {
3104 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3105 stock->nr_slab_unreclaimable_b);
3106 stock->nr_slab_unreclaimable_b = 0;
3107 }
3108 stock->cached_pgdat = pgdat;
3109 }
3110
3111 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3112 : &stock->nr_slab_unreclaimable_b;
3113 /*
3114 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3115 * cached locally at least once before pushing it out.
3116 */
3117 if (!*bytes) {
3118 *bytes = nr;
3119 nr = 0;
3120 } else {
3121 *bytes += nr;
3122 if (abs(*bytes) > PAGE_SIZE) {
3123 nr = *bytes;
3124 *bytes = 0;
3125 } else {
3126 nr = 0;
3127 }
3128 }
3129 if (nr)
3130 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3131
3132 put_obj_stock(flags);
3133}
3134
3135static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3136{
3137 unsigned long flags;
3138 struct obj_stock *stock = get_obj_stock(&flags);
3139 bool ret = false;
3140
3141 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3142 stock->nr_bytes -= nr_bytes;
3143 ret = true;
3144 }
3145
3146 put_obj_stock(flags);
3147
3148 return ret;
3149}
3150
3151static void drain_obj_stock(struct obj_stock *stock)
3152{
3153 struct obj_cgroup *old = stock->cached_objcg;
3154
3155 if (!old)
3156 return;
3157
3158 if (stock->nr_bytes) {
3159 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3160 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3161
3162 if (nr_pages)
3163 obj_cgroup_uncharge_pages(old, nr_pages);
3164
3165 /*
3166 * The leftover is flushed to the centralized per-memcg value.
3167 * On the next attempt to refill obj stock it will be moved
3168 * to a per-cpu stock (probably, on an other CPU), see
3169 * refill_obj_stock().
3170 *
3171 * How often it's flushed is a trade-off between the memory
3172 * limit enforcement accuracy and potential CPU contention,
3173 * so it might be changed in the future.
3174 */
3175 atomic_add(nr_bytes, &old->nr_charged_bytes);
3176 stock->nr_bytes = 0;
3177 }
3178
3179 /*
3180 * Flush the vmstat data in current stock
3181 */
3182 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3183 if (stock->nr_slab_reclaimable_b) {
3184 mod_objcg_mlstate(old, stock->cached_pgdat,
3185 NR_SLAB_RECLAIMABLE_B,
3186 stock->nr_slab_reclaimable_b);
3187 stock->nr_slab_reclaimable_b = 0;
3188 }
3189 if (stock->nr_slab_unreclaimable_b) {
3190 mod_objcg_mlstate(old, stock->cached_pgdat,
3191 NR_SLAB_UNRECLAIMABLE_B,
3192 stock->nr_slab_unreclaimable_b);
3193 stock->nr_slab_unreclaimable_b = 0;
3194 }
3195 stock->cached_pgdat = NULL;
3196 }
3197
3198 obj_cgroup_put(old);
3199 stock->cached_objcg = NULL;
3200}
3201
3202static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3203 struct mem_cgroup *root_memcg)
3204{
3205 struct mem_cgroup *memcg;
3206
3207 if (in_task() && stock->task_obj.cached_objcg) {
3208 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3209 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3210 return true;
3211 }
3212 if (stock->irq_obj.cached_objcg) {
3213 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3214 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3215 return true;
3216 }
3217
3218 return false;
3219}
3220
3221static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3222 bool allow_uncharge)
3223{
3224 unsigned long flags;
3225 struct obj_stock *stock = get_obj_stock(&flags);
3226 unsigned int nr_pages = 0;
3227
3228 if (stock->cached_objcg != objcg) { /* reset if necessary */
3229 drain_obj_stock(stock);
3230 obj_cgroup_get(objcg);
3231 stock->cached_objcg = objcg;
3232 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3233 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3234 allow_uncharge = true; /* Allow uncharge when objcg changes */
3235 }
3236 stock->nr_bytes += nr_bytes;
3237
3238 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3239 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3240 stock->nr_bytes &= (PAGE_SIZE - 1);
3241 }
3242
3243 put_obj_stock(flags);
3244
3245 if (nr_pages)
3246 obj_cgroup_uncharge_pages(objcg, nr_pages);
3247}
3248
3249int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3250{
3251 unsigned int nr_pages, nr_bytes;
3252 int ret;
3253
3254 if (consume_obj_stock(objcg, size))
3255 return 0;
3256
3257 /*
3258 * In theory, objcg->nr_charged_bytes can have enough
3259 * pre-charged bytes to satisfy the allocation. However,
3260 * flushing objcg->nr_charged_bytes requires two atomic
3261 * operations, and objcg->nr_charged_bytes can't be big.
3262 * The shared objcg->nr_charged_bytes can also become a
3263 * performance bottleneck if all tasks of the same memcg are
3264 * trying to update it. So it's better to ignore it and try
3265 * grab some new pages. The stock's nr_bytes will be flushed to
3266 * objcg->nr_charged_bytes later on when objcg changes.
3267 *
3268 * The stock's nr_bytes may contain enough pre-charged bytes
3269 * to allow one less page from being charged, but we can't rely
3270 * on the pre-charged bytes not being changed outside of
3271 * consume_obj_stock() or refill_obj_stock(). So ignore those
3272 * pre-charged bytes as well when charging pages. To avoid a
3273 * page uncharge right after a page charge, we set the
3274 * allow_uncharge flag to false when calling refill_obj_stock()
3275 * to temporarily allow the pre-charged bytes to exceed the page
3276 * size limit. The maximum reachable value of the pre-charged
3277 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3278 * race.
3279 */
3280 nr_pages = size >> PAGE_SHIFT;
3281 nr_bytes = size & (PAGE_SIZE - 1);
3282
3283 if (nr_bytes)
3284 nr_pages += 1;
3285
3286 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3287 if (!ret && nr_bytes)
3288 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3289
3290 return ret;
3291}
3292
3293void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3294{
3295 refill_obj_stock(objcg, size, true);
3296}
3297
3298#endif /* CONFIG_MEMCG_KMEM */
3299
3300/*
3301 * Because page_memcg(head) is not set on tails, set it now.
3302 */
3303void split_page_memcg(struct page *head, unsigned int nr)
3304{
3305 struct folio *folio = page_folio(head);
3306 struct mem_cgroup *memcg = folio_memcg(folio);
3307 int i;
3308
3309 if (mem_cgroup_disabled() || !memcg)
3310 return;
3311
3312 for (i = 1; i < nr; i++)
3313 folio_page(folio, i)->memcg_data = folio->memcg_data;
3314
3315 if (folio_memcg_kmem(folio))
3316 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3317 else
3318 css_get_many(&memcg->css, nr - 1);
3319}
3320
3321#ifdef CONFIG_MEMCG_SWAP
3322/**
3323 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3324 * @entry: swap entry to be moved
3325 * @from: mem_cgroup which the entry is moved from
3326 * @to: mem_cgroup which the entry is moved to
3327 *
3328 * It succeeds only when the swap_cgroup's record for this entry is the same
3329 * as the mem_cgroup's id of @from.
3330 *
3331 * Returns 0 on success, -EINVAL on failure.
3332 *
3333 * The caller must have charged to @to, IOW, called page_counter_charge() about
3334 * both res and memsw, and called css_get().
3335 */
3336static int mem_cgroup_move_swap_account(swp_entry_t entry,
3337 struct mem_cgroup *from, struct mem_cgroup *to)
3338{
3339 unsigned short old_id, new_id;
3340
3341 old_id = mem_cgroup_id(from);
3342 new_id = mem_cgroup_id(to);
3343
3344 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3345 mod_memcg_state(from, MEMCG_SWAP, -1);
3346 mod_memcg_state(to, MEMCG_SWAP, 1);
3347 return 0;
3348 }
3349 return -EINVAL;
3350}
3351#else
3352static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3353 struct mem_cgroup *from, struct mem_cgroup *to)
3354{
3355 return -EINVAL;
3356}
3357#endif
3358
3359static DEFINE_MUTEX(memcg_max_mutex);
3360
3361static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3362 unsigned long max, bool memsw)
3363{
3364 bool enlarge = false;
3365 bool drained = false;
3366 int ret;
3367 bool limits_invariant;
3368 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3369
3370 do {
3371 if (signal_pending(current)) {
3372 ret = -EINTR;
3373 break;
3374 }
3375
3376 mutex_lock(&memcg_max_mutex);
3377 /*
3378 * Make sure that the new limit (memsw or memory limit) doesn't
3379 * break our basic invariant rule memory.max <= memsw.max.
3380 */
3381 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3382 max <= memcg->memsw.max;
3383 if (!limits_invariant) {
3384 mutex_unlock(&memcg_max_mutex);
3385 ret = -EINVAL;
3386 break;
3387 }
3388 if (max > counter->max)
3389 enlarge = true;
3390 ret = page_counter_set_max(counter, max);
3391 mutex_unlock(&memcg_max_mutex);
3392
3393 if (!ret)
3394 break;
3395
3396 if (!drained) {
3397 drain_all_stock(memcg);
3398 drained = true;
3399 continue;
3400 }
3401
3402 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3403 GFP_KERNEL, !memsw)) {
3404 ret = -EBUSY;
3405 break;
3406 }
3407 } while (true);
3408
3409 if (!ret && enlarge)
3410 memcg_oom_recover(memcg);
3411
3412 return ret;
3413}
3414
3415unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3416 gfp_t gfp_mask,
3417 unsigned long *total_scanned)
3418{
3419 unsigned long nr_reclaimed = 0;
3420 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3421 unsigned long reclaimed;
3422 int loop = 0;
3423 struct mem_cgroup_tree_per_node *mctz;
3424 unsigned long excess;
3425 unsigned long nr_scanned;
3426
3427 if (order > 0)
3428 return 0;
3429
3430 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3431
3432 /*
3433 * Do not even bother to check the largest node if the root
3434 * is empty. Do it lockless to prevent lock bouncing. Races
3435 * are acceptable as soft limit is best effort anyway.
3436 */
3437 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3438 return 0;
3439
3440 /*
3441 * This loop can run a while, specially if mem_cgroup's continuously
3442 * keep exceeding their soft limit and putting the system under
3443 * pressure
3444 */
3445 do {
3446 if (next_mz)
3447 mz = next_mz;
3448 else
3449 mz = mem_cgroup_largest_soft_limit_node(mctz);
3450 if (!mz)
3451 break;
3452
3453 nr_scanned = 0;
3454 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3455 gfp_mask, &nr_scanned);
3456 nr_reclaimed += reclaimed;
3457 *total_scanned += nr_scanned;
3458 spin_lock_irq(&mctz->lock);
3459 __mem_cgroup_remove_exceeded(mz, mctz);
3460
3461 /*
3462 * If we failed to reclaim anything from this memory cgroup
3463 * it is time to move on to the next cgroup
3464 */
3465 next_mz = NULL;
3466 if (!reclaimed)
3467 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3468
3469 excess = soft_limit_excess(mz->memcg);
3470 /*
3471 * One school of thought says that we should not add
3472 * back the node to the tree if reclaim returns 0.
3473 * But our reclaim could return 0, simply because due
3474 * to priority we are exposing a smaller subset of
3475 * memory to reclaim from. Consider this as a longer
3476 * term TODO.
3477 */
3478 /* If excess == 0, no tree ops */
3479 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3480 spin_unlock_irq(&mctz->lock);
3481 css_put(&mz->memcg->css);
3482 loop++;
3483 /*
3484 * Could not reclaim anything and there are no more
3485 * mem cgroups to try or we seem to be looping without
3486 * reclaiming anything.
3487 */
3488 if (!nr_reclaimed &&
3489 (next_mz == NULL ||
3490 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3491 break;
3492 } while (!nr_reclaimed);
3493 if (next_mz)
3494 css_put(&next_mz->memcg->css);
3495 return nr_reclaimed;
3496}
3497
3498/*
3499 * Reclaims as many pages from the given memcg as possible.
3500 *
3501 * Caller is responsible for holding css reference for memcg.
3502 */
3503static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3504{
3505 int nr_retries = MAX_RECLAIM_RETRIES;
3506
3507 /* we call try-to-free pages for make this cgroup empty */
3508 lru_add_drain_all();
3509
3510 drain_all_stock(memcg);
3511
3512 /* try to free all pages in this cgroup */
3513 while (nr_retries && page_counter_read(&memcg->memory)) {
3514 if (signal_pending(current))
3515 return -EINTR;
3516
3517 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3518 nr_retries--;
3519 }
3520
3521 return 0;
3522}
3523
3524static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3525 char *buf, size_t nbytes,
3526 loff_t off)
3527{
3528 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3529
3530 if (mem_cgroup_is_root(memcg))
3531 return -EINVAL;
3532 return mem_cgroup_force_empty(memcg) ?: nbytes;
3533}
3534
3535static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3536 struct cftype *cft)
3537{
3538 return 1;
3539}
3540
3541static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3542 struct cftype *cft, u64 val)
3543{
3544 if (val == 1)
3545 return 0;
3546
3547 pr_warn_once("Non-hierarchical mode is deprecated. "
3548 "Please report your usecase to linux-mm@kvack.org if you "
3549 "depend on this functionality.\n");
3550
3551 return -EINVAL;
3552}
3553
3554static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3555{
3556 unsigned long val;
3557
3558 if (mem_cgroup_is_root(memcg)) {
3559 mem_cgroup_flush_stats();
3560 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3561 memcg_page_state(memcg, NR_ANON_MAPPED);
3562 if (swap)
3563 val += memcg_page_state(memcg, MEMCG_SWAP);
3564 } else {
3565 if (!swap)
3566 val = page_counter_read(&memcg->memory);
3567 else
3568 val = page_counter_read(&memcg->memsw);
3569 }
3570 return val;
3571}
3572
3573enum {
3574 RES_USAGE,
3575 RES_LIMIT,
3576 RES_MAX_USAGE,
3577 RES_FAILCNT,
3578 RES_SOFT_LIMIT,
3579};
3580
3581static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3582 struct cftype *cft)
3583{
3584 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3585 struct page_counter *counter;
3586
3587 switch (MEMFILE_TYPE(cft->private)) {
3588 case _MEM:
3589 counter = &memcg->memory;
3590 break;
3591 case _MEMSWAP:
3592 counter = &memcg->memsw;
3593 break;
3594 case _KMEM:
3595 counter = &memcg->kmem;
3596 break;
3597 case _TCP:
3598 counter = &memcg->tcpmem;
3599 break;
3600 default:
3601 BUG();
3602 }
3603
3604 switch (MEMFILE_ATTR(cft->private)) {
3605 case RES_USAGE:
3606 if (counter == &memcg->memory)
3607 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3608 if (counter == &memcg->memsw)
3609 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3610 return (u64)page_counter_read(counter) * PAGE_SIZE;
3611 case RES_LIMIT:
3612 return (u64)counter->max * PAGE_SIZE;
3613 case RES_MAX_USAGE:
3614 return (u64)counter->watermark * PAGE_SIZE;
3615 case RES_FAILCNT:
3616 return counter->failcnt;
3617 case RES_SOFT_LIMIT:
3618 return (u64)memcg->soft_limit * PAGE_SIZE;
3619 default:
3620 BUG();
3621 }
3622}
3623
3624#ifdef CONFIG_MEMCG_KMEM
3625static int memcg_online_kmem(struct mem_cgroup *memcg)
3626{
3627 struct obj_cgroup *objcg;
3628 int memcg_id;
3629
3630 if (cgroup_memory_nokmem)
3631 return 0;
3632
3633 BUG_ON(memcg->kmemcg_id >= 0);
3634
3635 memcg_id = memcg_alloc_cache_id();
3636 if (memcg_id < 0)
3637 return memcg_id;
3638
3639 objcg = obj_cgroup_alloc();
3640 if (!objcg) {
3641 memcg_free_cache_id(memcg_id);
3642 return -ENOMEM;
3643 }
3644 objcg->memcg = memcg;
3645 rcu_assign_pointer(memcg->objcg, objcg);
3646
3647 static_branch_enable(&memcg_kmem_enabled_key);
3648
3649 memcg->kmemcg_id = memcg_id;
3650
3651 return 0;
3652}
3653
3654static void memcg_offline_kmem(struct mem_cgroup *memcg)
3655{
3656 struct mem_cgroup *parent;
3657 int kmemcg_id;
3658
3659 if (memcg->kmemcg_id == -1)
3660 return;
3661
3662 parent = parent_mem_cgroup(memcg);
3663 if (!parent)
3664 parent = root_mem_cgroup;
3665
3666 memcg_reparent_objcgs(memcg, parent);
3667
3668 kmemcg_id = memcg->kmemcg_id;
3669 BUG_ON(kmemcg_id < 0);
3670
3671 /*
3672 * After we have finished memcg_reparent_objcgs(), all list_lrus
3673 * corresponding to this cgroup are guaranteed to remain empty.
3674 * The ordering is imposed by list_lru_node->lock taken by
3675 * memcg_drain_all_list_lrus().
3676 */
3677 memcg_drain_all_list_lrus(kmemcg_id, parent);
3678
3679 memcg_free_cache_id(kmemcg_id);
3680 memcg->kmemcg_id = -1;
3681}
3682#else
3683static int memcg_online_kmem(struct mem_cgroup *memcg)
3684{
3685 return 0;
3686}
3687static void memcg_offline_kmem(struct mem_cgroup *memcg)
3688{
3689}
3690#endif /* CONFIG_MEMCG_KMEM */
3691
3692static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3693{
3694 int ret;
3695
3696 mutex_lock(&memcg_max_mutex);
3697
3698 ret = page_counter_set_max(&memcg->tcpmem, max);
3699 if (ret)
3700 goto out;
3701
3702 if (!memcg->tcpmem_active) {
3703 /*
3704 * The active flag needs to be written after the static_key
3705 * update. This is what guarantees that the socket activation
3706 * function is the last one to run. See mem_cgroup_sk_alloc()
3707 * for details, and note that we don't mark any socket as
3708 * belonging to this memcg until that flag is up.
3709 *
3710 * We need to do this, because static_keys will span multiple
3711 * sites, but we can't control their order. If we mark a socket
3712 * as accounted, but the accounting functions are not patched in
3713 * yet, we'll lose accounting.
3714 *
3715 * We never race with the readers in mem_cgroup_sk_alloc(),
3716 * because when this value change, the code to process it is not
3717 * patched in yet.
3718 */
3719 static_branch_inc(&memcg_sockets_enabled_key);
3720 memcg->tcpmem_active = true;
3721 }
3722out:
3723 mutex_unlock(&memcg_max_mutex);
3724 return ret;
3725}
3726
3727/*
3728 * The user of this function is...
3729 * RES_LIMIT.
3730 */
3731static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3732 char *buf, size_t nbytes, loff_t off)
3733{
3734 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3735 unsigned long nr_pages;
3736 int ret;
3737
3738 buf = strstrip(buf);
3739 ret = page_counter_memparse(buf, "-1", &nr_pages);
3740 if (ret)
3741 return ret;
3742
3743 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3744 case RES_LIMIT:
3745 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3746 ret = -EINVAL;
3747 break;
3748 }
3749 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3750 case _MEM:
3751 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3752 break;
3753 case _MEMSWAP:
3754 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3755 break;
3756 case _KMEM:
3757 /* kmem.limit_in_bytes is deprecated. */
3758 ret = -EOPNOTSUPP;
3759 break;
3760 case _TCP:
3761 ret = memcg_update_tcp_max(memcg, nr_pages);
3762 break;
3763 }
3764 break;
3765 case RES_SOFT_LIMIT:
3766 memcg->soft_limit = nr_pages;
3767 ret = 0;
3768 break;
3769 }
3770 return ret ?: nbytes;
3771}
3772
3773static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3774 size_t nbytes, loff_t off)
3775{
3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777 struct page_counter *counter;
3778
3779 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3780 case _MEM:
3781 counter = &memcg->memory;
3782 break;
3783 case _MEMSWAP:
3784 counter = &memcg->memsw;
3785 break;
3786 case _KMEM:
3787 counter = &memcg->kmem;
3788 break;
3789 case _TCP:
3790 counter = &memcg->tcpmem;
3791 break;
3792 default:
3793 BUG();
3794 }
3795
3796 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797 case RES_MAX_USAGE:
3798 page_counter_reset_watermark(counter);
3799 break;
3800 case RES_FAILCNT:
3801 counter->failcnt = 0;
3802 break;
3803 default:
3804 BUG();
3805 }
3806
3807 return nbytes;
3808}
3809
3810static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3811 struct cftype *cft)
3812{
3813 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3814}
3815
3816#ifdef CONFIG_MMU
3817static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3818 struct cftype *cft, u64 val)
3819{
3820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3821
3822 if (val & ~MOVE_MASK)
3823 return -EINVAL;
3824
3825 /*
3826 * No kind of locking is needed in here, because ->can_attach() will
3827 * check this value once in the beginning of the process, and then carry
3828 * on with stale data. This means that changes to this value will only
3829 * affect task migrations starting after the change.
3830 */
3831 memcg->move_charge_at_immigrate = val;
3832 return 0;
3833}
3834#else
3835static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3836 struct cftype *cft, u64 val)
3837{
3838 return -ENOSYS;
3839}
3840#endif
3841
3842#ifdef CONFIG_NUMA
3843
3844#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3845#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3846#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3847
3848static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3849 int nid, unsigned int lru_mask, bool tree)
3850{
3851 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3852 unsigned long nr = 0;
3853 enum lru_list lru;
3854
3855 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3856
3857 for_each_lru(lru) {
3858 if (!(BIT(lru) & lru_mask))
3859 continue;
3860 if (tree)
3861 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3862 else
3863 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3864 }
3865 return nr;
3866}
3867
3868static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3869 unsigned int lru_mask,
3870 bool tree)
3871{
3872 unsigned long nr = 0;
3873 enum lru_list lru;
3874
3875 for_each_lru(lru) {
3876 if (!(BIT(lru) & lru_mask))
3877 continue;
3878 if (tree)
3879 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3880 else
3881 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3882 }
3883 return nr;
3884}
3885
3886static int memcg_numa_stat_show(struct seq_file *m, void *v)
3887{
3888 struct numa_stat {
3889 const char *name;
3890 unsigned int lru_mask;
3891 };
3892
3893 static const struct numa_stat stats[] = {
3894 { "total", LRU_ALL },
3895 { "file", LRU_ALL_FILE },
3896 { "anon", LRU_ALL_ANON },
3897 { "unevictable", BIT(LRU_UNEVICTABLE) },
3898 };
3899 const struct numa_stat *stat;
3900 int nid;
3901 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3902
3903 mem_cgroup_flush_stats();
3904
3905 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3906 seq_printf(m, "%s=%lu", stat->name,
3907 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3908 false));
3909 for_each_node_state(nid, N_MEMORY)
3910 seq_printf(m, " N%d=%lu", nid,
3911 mem_cgroup_node_nr_lru_pages(memcg, nid,
3912 stat->lru_mask, false));
3913 seq_putc(m, '\n');
3914 }
3915
3916 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3917
3918 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3919 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3920 true));
3921 for_each_node_state(nid, N_MEMORY)
3922 seq_printf(m, " N%d=%lu", nid,
3923 mem_cgroup_node_nr_lru_pages(memcg, nid,
3924 stat->lru_mask, true));
3925 seq_putc(m, '\n');
3926 }
3927
3928 return 0;
3929}
3930#endif /* CONFIG_NUMA */
3931
3932static const unsigned int memcg1_stats[] = {
3933 NR_FILE_PAGES,
3934 NR_ANON_MAPPED,
3935#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936 NR_ANON_THPS,
3937#endif
3938 NR_SHMEM,
3939 NR_FILE_MAPPED,
3940 NR_FILE_DIRTY,
3941 NR_WRITEBACK,
3942 MEMCG_SWAP,
3943};
3944
3945static const char *const memcg1_stat_names[] = {
3946 "cache",
3947 "rss",
3948#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3949 "rss_huge",
3950#endif
3951 "shmem",
3952 "mapped_file",
3953 "dirty",
3954 "writeback",
3955 "swap",
3956};
3957
3958/* Universal VM events cgroup1 shows, original sort order */
3959static const unsigned int memcg1_events[] = {
3960 PGPGIN,
3961 PGPGOUT,
3962 PGFAULT,
3963 PGMAJFAULT,
3964};
3965
3966static int memcg_stat_show(struct seq_file *m, void *v)
3967{
3968 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3969 unsigned long memory, memsw;
3970 struct mem_cgroup *mi;
3971 unsigned int i;
3972
3973 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3974
3975 mem_cgroup_flush_stats();
3976
3977 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3978 unsigned long nr;
3979
3980 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3981 continue;
3982 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3983 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3984 }
3985
3986 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3987 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3988 memcg_events_local(memcg, memcg1_events[i]));
3989
3990 for (i = 0; i < NR_LRU_LISTS; i++)
3991 seq_printf(m, "%s %lu\n", lru_list_name(i),
3992 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3993 PAGE_SIZE);
3994
3995 /* Hierarchical information */
3996 memory = memsw = PAGE_COUNTER_MAX;
3997 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3998 memory = min(memory, READ_ONCE(mi->memory.max));
3999 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4000 }
4001 seq_printf(m, "hierarchical_memory_limit %llu\n",
4002 (u64)memory * PAGE_SIZE);
4003 if (do_memsw_account())
4004 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4005 (u64)memsw * PAGE_SIZE);
4006
4007 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4008 unsigned long nr;
4009
4010 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4011 continue;
4012 nr = memcg_page_state(memcg, memcg1_stats[i]);
4013 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4014 (u64)nr * PAGE_SIZE);
4015 }
4016
4017 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4018 seq_printf(m, "total_%s %llu\n",
4019 vm_event_name(memcg1_events[i]),
4020 (u64)memcg_events(memcg, memcg1_events[i]));
4021
4022 for (i = 0; i < NR_LRU_LISTS; i++)
4023 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4024 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4025 PAGE_SIZE);
4026
4027#ifdef CONFIG_DEBUG_VM
4028 {
4029 pg_data_t *pgdat;
4030 struct mem_cgroup_per_node *mz;
4031 unsigned long anon_cost = 0;
4032 unsigned long file_cost = 0;
4033
4034 for_each_online_pgdat(pgdat) {
4035 mz = memcg->nodeinfo[pgdat->node_id];
4036
4037 anon_cost += mz->lruvec.anon_cost;
4038 file_cost += mz->lruvec.file_cost;
4039 }
4040 seq_printf(m, "anon_cost %lu\n", anon_cost);
4041 seq_printf(m, "file_cost %lu\n", file_cost);
4042 }
4043#endif
4044
4045 return 0;
4046}
4047
4048static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4049 struct cftype *cft)
4050{
4051 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4052
4053 return mem_cgroup_swappiness(memcg);
4054}
4055
4056static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4057 struct cftype *cft, u64 val)
4058{
4059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4060
4061 if (val > 200)
4062 return -EINVAL;
4063
4064 if (!mem_cgroup_is_root(memcg))
4065 memcg->swappiness = val;
4066 else
4067 vm_swappiness = val;
4068
4069 return 0;
4070}
4071
4072static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4073{
4074 struct mem_cgroup_threshold_ary *t;
4075 unsigned long usage;
4076 int i;
4077
4078 rcu_read_lock();
4079 if (!swap)
4080 t = rcu_dereference(memcg->thresholds.primary);
4081 else
4082 t = rcu_dereference(memcg->memsw_thresholds.primary);
4083
4084 if (!t)
4085 goto unlock;
4086
4087 usage = mem_cgroup_usage(memcg, swap);
4088
4089 /*
4090 * current_threshold points to threshold just below or equal to usage.
4091 * If it's not true, a threshold was crossed after last
4092 * call of __mem_cgroup_threshold().
4093 */
4094 i = t->current_threshold;
4095
4096 /*
4097 * Iterate backward over array of thresholds starting from
4098 * current_threshold and check if a threshold is crossed.
4099 * If none of thresholds below usage is crossed, we read
4100 * only one element of the array here.
4101 */
4102 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4103 eventfd_signal(t->entries[i].eventfd, 1);
4104
4105 /* i = current_threshold + 1 */
4106 i++;
4107
4108 /*
4109 * Iterate forward over array of thresholds starting from
4110 * current_threshold+1 and check if a threshold is crossed.
4111 * If none of thresholds above usage is crossed, we read
4112 * only one element of the array here.
4113 */
4114 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4115 eventfd_signal(t->entries[i].eventfd, 1);
4116
4117 /* Update current_threshold */
4118 t->current_threshold = i - 1;
4119unlock:
4120 rcu_read_unlock();
4121}
4122
4123static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4124{
4125 while (memcg) {
4126 __mem_cgroup_threshold(memcg, false);
4127 if (do_memsw_account())
4128 __mem_cgroup_threshold(memcg, true);
4129
4130 memcg = parent_mem_cgroup(memcg);
4131 }
4132}
4133
4134static int compare_thresholds(const void *a, const void *b)
4135{
4136 const struct mem_cgroup_threshold *_a = a;
4137 const struct mem_cgroup_threshold *_b = b;
4138
4139 if (_a->threshold > _b->threshold)
4140 return 1;
4141
4142 if (_a->threshold < _b->threshold)
4143 return -1;
4144
4145 return 0;
4146}
4147
4148static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4149{
4150 struct mem_cgroup_eventfd_list *ev;
4151
4152 spin_lock(&memcg_oom_lock);
4153
4154 list_for_each_entry(ev, &memcg->oom_notify, list)
4155 eventfd_signal(ev->eventfd, 1);
4156
4157 spin_unlock(&memcg_oom_lock);
4158 return 0;
4159}
4160
4161static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4162{
4163 struct mem_cgroup *iter;
4164
4165 for_each_mem_cgroup_tree(iter, memcg)
4166 mem_cgroup_oom_notify_cb(iter);
4167}
4168
4169static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4170 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4171{
4172 struct mem_cgroup_thresholds *thresholds;
4173 struct mem_cgroup_threshold_ary *new;
4174 unsigned long threshold;
4175 unsigned long usage;
4176 int i, size, ret;
4177
4178 ret = page_counter_memparse(args, "-1", &threshold);
4179 if (ret)
4180 return ret;
4181
4182 mutex_lock(&memcg->thresholds_lock);
4183
4184 if (type == _MEM) {
4185 thresholds = &memcg->thresholds;
4186 usage = mem_cgroup_usage(memcg, false);
4187 } else if (type == _MEMSWAP) {
4188 thresholds = &memcg->memsw_thresholds;
4189 usage = mem_cgroup_usage(memcg, true);
4190 } else
4191 BUG();
4192
4193 /* Check if a threshold crossed before adding a new one */
4194 if (thresholds->primary)
4195 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4196
4197 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4198
4199 /* Allocate memory for new array of thresholds */
4200 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4201 if (!new) {
4202 ret = -ENOMEM;
4203 goto unlock;
4204 }
4205 new->size = size;
4206
4207 /* Copy thresholds (if any) to new array */
4208 if (thresholds->primary)
4209 memcpy(new->entries, thresholds->primary->entries,
4210 flex_array_size(new, entries, size - 1));
4211
4212 /* Add new threshold */
4213 new->entries[size - 1].eventfd = eventfd;
4214 new->entries[size - 1].threshold = threshold;
4215
4216 /* Sort thresholds. Registering of new threshold isn't time-critical */
4217 sort(new->entries, size, sizeof(*new->entries),
4218 compare_thresholds, NULL);
4219
4220 /* Find current threshold */
4221 new->current_threshold = -1;
4222 for (i = 0; i < size; i++) {
4223 if (new->entries[i].threshold <= usage) {
4224 /*
4225 * new->current_threshold will not be used until
4226 * rcu_assign_pointer(), so it's safe to increment
4227 * it here.
4228 */
4229 ++new->current_threshold;
4230 } else
4231 break;
4232 }
4233
4234 /* Free old spare buffer and save old primary buffer as spare */
4235 kfree(thresholds->spare);
4236 thresholds->spare = thresholds->primary;
4237
4238 rcu_assign_pointer(thresholds->primary, new);
4239
4240 /* To be sure that nobody uses thresholds */
4241 synchronize_rcu();
4242
4243unlock:
4244 mutex_unlock(&memcg->thresholds_lock);
4245
4246 return ret;
4247}
4248
4249static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4250 struct eventfd_ctx *eventfd, const char *args)
4251{
4252 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4253}
4254
4255static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4256 struct eventfd_ctx *eventfd, const char *args)
4257{
4258 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4259}
4260
4261static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4262 struct eventfd_ctx *eventfd, enum res_type type)
4263{
4264 struct mem_cgroup_thresholds *thresholds;
4265 struct mem_cgroup_threshold_ary *new;
4266 unsigned long usage;
4267 int i, j, size, entries;
4268
4269 mutex_lock(&memcg->thresholds_lock);
4270
4271 if (type == _MEM) {
4272 thresholds = &memcg->thresholds;
4273 usage = mem_cgroup_usage(memcg, false);
4274 } else if (type == _MEMSWAP) {
4275 thresholds = &memcg->memsw_thresholds;
4276 usage = mem_cgroup_usage(memcg, true);
4277 } else
4278 BUG();
4279
4280 if (!thresholds->primary)
4281 goto unlock;
4282
4283 /* Check if a threshold crossed before removing */
4284 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4285
4286 /* Calculate new number of threshold */
4287 size = entries = 0;
4288 for (i = 0; i < thresholds->primary->size; i++) {
4289 if (thresholds->primary->entries[i].eventfd != eventfd)
4290 size++;
4291 else
4292 entries++;
4293 }
4294
4295 new = thresholds->spare;
4296
4297 /* If no items related to eventfd have been cleared, nothing to do */
4298 if (!entries)
4299 goto unlock;
4300
4301 /* Set thresholds array to NULL if we don't have thresholds */
4302 if (!size) {
4303 kfree(new);
4304 new = NULL;
4305 goto swap_buffers;
4306 }
4307
4308 new->size = size;
4309
4310 /* Copy thresholds and find current threshold */
4311 new->current_threshold = -1;
4312 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4313 if (thresholds->primary->entries[i].eventfd == eventfd)
4314 continue;
4315
4316 new->entries[j] = thresholds->primary->entries[i];
4317 if (new->entries[j].threshold <= usage) {
4318 /*
4319 * new->current_threshold will not be used
4320 * until rcu_assign_pointer(), so it's safe to increment
4321 * it here.
4322 */
4323 ++new->current_threshold;
4324 }
4325 j++;
4326 }
4327
4328swap_buffers:
4329 /* Swap primary and spare array */
4330 thresholds->spare = thresholds->primary;
4331
4332 rcu_assign_pointer(thresholds->primary, new);
4333
4334 /* To be sure that nobody uses thresholds */
4335 synchronize_rcu();
4336
4337 /* If all events are unregistered, free the spare array */
4338 if (!new) {
4339 kfree(thresholds->spare);
4340 thresholds->spare = NULL;
4341 }
4342unlock:
4343 mutex_unlock(&memcg->thresholds_lock);
4344}
4345
4346static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4347 struct eventfd_ctx *eventfd)
4348{
4349 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4350}
4351
4352static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4353 struct eventfd_ctx *eventfd)
4354{
4355 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4356}
4357
4358static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4359 struct eventfd_ctx *eventfd, const char *args)
4360{
4361 struct mem_cgroup_eventfd_list *event;
4362
4363 event = kmalloc(sizeof(*event), GFP_KERNEL);
4364 if (!event)
4365 return -ENOMEM;
4366
4367 spin_lock(&memcg_oom_lock);
4368
4369 event->eventfd = eventfd;
4370 list_add(&event->list, &memcg->oom_notify);
4371
4372 /* already in OOM ? */
4373 if (memcg->under_oom)
4374 eventfd_signal(eventfd, 1);
4375 spin_unlock(&memcg_oom_lock);
4376
4377 return 0;
4378}
4379
4380static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4381 struct eventfd_ctx *eventfd)
4382{
4383 struct mem_cgroup_eventfd_list *ev, *tmp;
4384
4385 spin_lock(&memcg_oom_lock);
4386
4387 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4388 if (ev->eventfd == eventfd) {
4389 list_del(&ev->list);
4390 kfree(ev);
4391 }
4392 }
4393
4394 spin_unlock(&memcg_oom_lock);
4395}
4396
4397static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4398{
4399 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4400
4401 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4402 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4403 seq_printf(sf, "oom_kill %lu\n",
4404 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4405 return 0;
4406}
4407
4408static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4409 struct cftype *cft, u64 val)
4410{
4411 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4412
4413 /* cannot set to root cgroup and only 0 and 1 are allowed */
4414 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4415 return -EINVAL;
4416
4417 memcg->oom_kill_disable = val;
4418 if (!val)
4419 memcg_oom_recover(memcg);
4420
4421 return 0;
4422}
4423
4424#ifdef CONFIG_CGROUP_WRITEBACK
4425
4426#include <trace/events/writeback.h>
4427
4428static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4429{
4430 return wb_domain_init(&memcg->cgwb_domain, gfp);
4431}
4432
4433static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4434{
4435 wb_domain_exit(&memcg->cgwb_domain);
4436}
4437
4438static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4439{
4440 wb_domain_size_changed(&memcg->cgwb_domain);
4441}
4442
4443struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4444{
4445 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4446
4447 if (!memcg->css.parent)
4448 return NULL;
4449
4450 return &memcg->cgwb_domain;
4451}
4452
4453/**
4454 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4455 * @wb: bdi_writeback in question
4456 * @pfilepages: out parameter for number of file pages
4457 * @pheadroom: out parameter for number of allocatable pages according to memcg
4458 * @pdirty: out parameter for number of dirty pages
4459 * @pwriteback: out parameter for number of pages under writeback
4460 *
4461 * Determine the numbers of file, headroom, dirty, and writeback pages in
4462 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4463 * is a bit more involved.
4464 *
4465 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4466 * headroom is calculated as the lowest headroom of itself and the
4467 * ancestors. Note that this doesn't consider the actual amount of
4468 * available memory in the system. The caller should further cap
4469 * *@pheadroom accordingly.
4470 */
4471void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4472 unsigned long *pheadroom, unsigned long *pdirty,
4473 unsigned long *pwriteback)
4474{
4475 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4476 struct mem_cgroup *parent;
4477
4478 mem_cgroup_flush_stats();
4479
4480 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4481 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4482 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4483 memcg_page_state(memcg, NR_ACTIVE_FILE);
4484
4485 *pheadroom = PAGE_COUNTER_MAX;
4486 while ((parent = parent_mem_cgroup(memcg))) {
4487 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4488 READ_ONCE(memcg->memory.high));
4489 unsigned long used = page_counter_read(&memcg->memory);
4490
4491 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4492 memcg = parent;
4493 }
4494}
4495
4496/*
4497 * Foreign dirty flushing
4498 *
4499 * There's an inherent mismatch between memcg and writeback. The former
4500 * tracks ownership per-page while the latter per-inode. This was a
4501 * deliberate design decision because honoring per-page ownership in the
4502 * writeback path is complicated, may lead to higher CPU and IO overheads
4503 * and deemed unnecessary given that write-sharing an inode across
4504 * different cgroups isn't a common use-case.
4505 *
4506 * Combined with inode majority-writer ownership switching, this works well
4507 * enough in most cases but there are some pathological cases. For
4508 * example, let's say there are two cgroups A and B which keep writing to
4509 * different but confined parts of the same inode. B owns the inode and
4510 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4511 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4512 * triggering background writeback. A will be slowed down without a way to
4513 * make writeback of the dirty pages happen.
4514 *
4515 * Conditions like the above can lead to a cgroup getting repeatedly and
4516 * severely throttled after making some progress after each
4517 * dirty_expire_interval while the underlying IO device is almost
4518 * completely idle.
4519 *
4520 * Solving this problem completely requires matching the ownership tracking
4521 * granularities between memcg and writeback in either direction. However,
4522 * the more egregious behaviors can be avoided by simply remembering the
4523 * most recent foreign dirtying events and initiating remote flushes on
4524 * them when local writeback isn't enough to keep the memory clean enough.
4525 *
4526 * The following two functions implement such mechanism. When a foreign
4527 * page - a page whose memcg and writeback ownerships don't match - is
4528 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4529 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4530 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4531 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4532 * foreign bdi_writebacks which haven't expired. Both the numbers of
4533 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4534 * limited to MEMCG_CGWB_FRN_CNT.
4535 *
4536 * The mechanism only remembers IDs and doesn't hold any object references.
4537 * As being wrong occasionally doesn't matter, updates and accesses to the
4538 * records are lockless and racy.
4539 */
4540void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4541 struct bdi_writeback *wb)
4542{
4543 struct mem_cgroup *memcg = folio_memcg(folio);
4544 struct memcg_cgwb_frn *frn;
4545 u64 now = get_jiffies_64();
4546 u64 oldest_at = now;
4547 int oldest = -1;
4548 int i;
4549
4550 trace_track_foreign_dirty(folio, wb);
4551
4552 /*
4553 * Pick the slot to use. If there is already a slot for @wb, keep
4554 * using it. If not replace the oldest one which isn't being
4555 * written out.
4556 */
4557 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4558 frn = &memcg->cgwb_frn[i];
4559 if (frn->bdi_id == wb->bdi->id &&
4560 frn->memcg_id == wb->memcg_css->id)
4561 break;
4562 if (time_before64(frn->at, oldest_at) &&
4563 atomic_read(&frn->done.cnt) == 1) {
4564 oldest = i;
4565 oldest_at = frn->at;
4566 }
4567 }
4568
4569 if (i < MEMCG_CGWB_FRN_CNT) {
4570 /*
4571 * Re-using an existing one. Update timestamp lazily to
4572 * avoid making the cacheline hot. We want them to be
4573 * reasonably up-to-date and significantly shorter than
4574 * dirty_expire_interval as that's what expires the record.
4575 * Use the shorter of 1s and dirty_expire_interval / 8.
4576 */
4577 unsigned long update_intv =
4578 min_t(unsigned long, HZ,
4579 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4580
4581 if (time_before64(frn->at, now - update_intv))
4582 frn->at = now;
4583 } else if (oldest >= 0) {
4584 /* replace the oldest free one */
4585 frn = &memcg->cgwb_frn[oldest];
4586 frn->bdi_id = wb->bdi->id;
4587 frn->memcg_id = wb->memcg_css->id;
4588 frn->at = now;
4589 }
4590}
4591
4592/* issue foreign writeback flushes for recorded foreign dirtying events */
4593void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4594{
4595 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4596 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4597 u64 now = jiffies_64;
4598 int i;
4599
4600 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4601 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4602
4603 /*
4604 * If the record is older than dirty_expire_interval,
4605 * writeback on it has already started. No need to kick it
4606 * off again. Also, don't start a new one if there's
4607 * already one in flight.
4608 */
4609 if (time_after64(frn->at, now - intv) &&
4610 atomic_read(&frn->done.cnt) == 1) {
4611 frn->at = 0;
4612 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4613 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4614 WB_REASON_FOREIGN_FLUSH,
4615 &frn->done);
4616 }
4617 }
4618}
4619
4620#else /* CONFIG_CGROUP_WRITEBACK */
4621
4622static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4623{
4624 return 0;
4625}
4626
4627static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4628{
4629}
4630
4631static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4632{
4633}
4634
4635#endif /* CONFIG_CGROUP_WRITEBACK */
4636
4637/*
4638 * DO NOT USE IN NEW FILES.
4639 *
4640 * "cgroup.event_control" implementation.
4641 *
4642 * This is way over-engineered. It tries to support fully configurable
4643 * events for each user. Such level of flexibility is completely
4644 * unnecessary especially in the light of the planned unified hierarchy.
4645 *
4646 * Please deprecate this and replace with something simpler if at all
4647 * possible.
4648 */
4649
4650/*
4651 * Unregister event and free resources.
4652 *
4653 * Gets called from workqueue.
4654 */
4655static void memcg_event_remove(struct work_struct *work)
4656{
4657 struct mem_cgroup_event *event =
4658 container_of(work, struct mem_cgroup_event, remove);
4659 struct mem_cgroup *memcg = event->memcg;
4660
4661 remove_wait_queue(event->wqh, &event->wait);
4662
4663 event->unregister_event(memcg, event->eventfd);
4664
4665 /* Notify userspace the event is going away. */
4666 eventfd_signal(event->eventfd, 1);
4667
4668 eventfd_ctx_put(event->eventfd);
4669 kfree(event);
4670 css_put(&memcg->css);
4671}
4672
4673/*
4674 * Gets called on EPOLLHUP on eventfd when user closes it.
4675 *
4676 * Called with wqh->lock held and interrupts disabled.
4677 */
4678static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4679 int sync, void *key)
4680{
4681 struct mem_cgroup_event *event =
4682 container_of(wait, struct mem_cgroup_event, wait);
4683 struct mem_cgroup *memcg = event->memcg;
4684 __poll_t flags = key_to_poll(key);
4685
4686 if (flags & EPOLLHUP) {
4687 /*
4688 * If the event has been detached at cgroup removal, we
4689 * can simply return knowing the other side will cleanup
4690 * for us.
4691 *
4692 * We can't race against event freeing since the other
4693 * side will require wqh->lock via remove_wait_queue(),
4694 * which we hold.
4695 */
4696 spin_lock(&memcg->event_list_lock);
4697 if (!list_empty(&event->list)) {
4698 list_del_init(&event->list);
4699 /*
4700 * We are in atomic context, but cgroup_event_remove()
4701 * may sleep, so we have to call it in workqueue.
4702 */
4703 schedule_work(&event->remove);
4704 }
4705 spin_unlock(&memcg->event_list_lock);
4706 }
4707
4708 return 0;
4709}
4710
4711static void memcg_event_ptable_queue_proc(struct file *file,
4712 wait_queue_head_t *wqh, poll_table *pt)
4713{
4714 struct mem_cgroup_event *event =
4715 container_of(pt, struct mem_cgroup_event, pt);
4716
4717 event->wqh = wqh;
4718 add_wait_queue(wqh, &event->wait);
4719}
4720
4721/*
4722 * DO NOT USE IN NEW FILES.
4723 *
4724 * Parse input and register new cgroup event handler.
4725 *
4726 * Input must be in format '<event_fd> <control_fd> <args>'.
4727 * Interpretation of args is defined by control file implementation.
4728 */
4729static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4730 char *buf, size_t nbytes, loff_t off)
4731{
4732 struct cgroup_subsys_state *css = of_css(of);
4733 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4734 struct mem_cgroup_event *event;
4735 struct cgroup_subsys_state *cfile_css;
4736 unsigned int efd, cfd;
4737 struct fd efile;
4738 struct fd cfile;
4739 const char *name;
4740 char *endp;
4741 int ret;
4742
4743 buf = strstrip(buf);
4744
4745 efd = simple_strtoul(buf, &endp, 10);
4746 if (*endp != ' ')
4747 return -EINVAL;
4748 buf = endp + 1;
4749
4750 cfd = simple_strtoul(buf, &endp, 10);
4751 if ((*endp != ' ') && (*endp != '\0'))
4752 return -EINVAL;
4753 buf = endp + 1;
4754
4755 event = kzalloc(sizeof(*event), GFP_KERNEL);
4756 if (!event)
4757 return -ENOMEM;
4758
4759 event->memcg = memcg;
4760 INIT_LIST_HEAD(&event->list);
4761 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4762 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4763 INIT_WORK(&event->remove, memcg_event_remove);
4764
4765 efile = fdget(efd);
4766 if (!efile.file) {
4767 ret = -EBADF;
4768 goto out_kfree;
4769 }
4770
4771 event->eventfd = eventfd_ctx_fileget(efile.file);
4772 if (IS_ERR(event->eventfd)) {
4773 ret = PTR_ERR(event->eventfd);
4774 goto out_put_efile;
4775 }
4776
4777 cfile = fdget(cfd);
4778 if (!cfile.file) {
4779 ret = -EBADF;
4780 goto out_put_eventfd;
4781 }
4782
4783 /* the process need read permission on control file */
4784 /* AV: shouldn't we check that it's been opened for read instead? */
4785 ret = file_permission(cfile.file, MAY_READ);
4786 if (ret < 0)
4787 goto out_put_cfile;
4788
4789 /*
4790 * Determine the event callbacks and set them in @event. This used
4791 * to be done via struct cftype but cgroup core no longer knows
4792 * about these events. The following is crude but the whole thing
4793 * is for compatibility anyway.
4794 *
4795 * DO NOT ADD NEW FILES.
4796 */
4797 name = cfile.file->f_path.dentry->d_name.name;
4798
4799 if (!strcmp(name, "memory.usage_in_bytes")) {
4800 event->register_event = mem_cgroup_usage_register_event;
4801 event->unregister_event = mem_cgroup_usage_unregister_event;
4802 } else if (!strcmp(name, "memory.oom_control")) {
4803 event->register_event = mem_cgroup_oom_register_event;
4804 event->unregister_event = mem_cgroup_oom_unregister_event;
4805 } else if (!strcmp(name, "memory.pressure_level")) {
4806 event->register_event = vmpressure_register_event;
4807 event->unregister_event = vmpressure_unregister_event;
4808 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4809 event->register_event = memsw_cgroup_usage_register_event;
4810 event->unregister_event = memsw_cgroup_usage_unregister_event;
4811 } else {
4812 ret = -EINVAL;
4813 goto out_put_cfile;
4814 }
4815
4816 /*
4817 * Verify @cfile should belong to @css. Also, remaining events are
4818 * automatically removed on cgroup destruction but the removal is
4819 * asynchronous, so take an extra ref on @css.
4820 */
4821 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4822 &memory_cgrp_subsys);
4823 ret = -EINVAL;
4824 if (IS_ERR(cfile_css))
4825 goto out_put_cfile;
4826 if (cfile_css != css) {
4827 css_put(cfile_css);
4828 goto out_put_cfile;
4829 }
4830
4831 ret = event->register_event(memcg, event->eventfd, buf);
4832 if (ret)
4833 goto out_put_css;
4834
4835 vfs_poll(efile.file, &event->pt);
4836
4837 spin_lock_irq(&memcg->event_list_lock);
4838 list_add(&event->list, &memcg->event_list);
4839 spin_unlock_irq(&memcg->event_list_lock);
4840
4841 fdput(cfile);
4842 fdput(efile);
4843
4844 return nbytes;
4845
4846out_put_css:
4847 css_put(css);
4848out_put_cfile:
4849 fdput(cfile);
4850out_put_eventfd:
4851 eventfd_ctx_put(event->eventfd);
4852out_put_efile:
4853 fdput(efile);
4854out_kfree:
4855 kfree(event);
4856
4857 return ret;
4858}
4859
4860#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4861static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4862{
4863 /*
4864 * Deprecated.
4865 * Please, take a look at tools/cgroup/slabinfo.py .
4866 */
4867 return 0;
4868}
4869#endif
4870
4871static struct cftype mem_cgroup_legacy_files[] = {
4872 {
4873 .name = "usage_in_bytes",
4874 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4875 .read_u64 = mem_cgroup_read_u64,
4876 },
4877 {
4878 .name = "max_usage_in_bytes",
4879 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4880 .write = mem_cgroup_reset,
4881 .read_u64 = mem_cgroup_read_u64,
4882 },
4883 {
4884 .name = "limit_in_bytes",
4885 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4886 .write = mem_cgroup_write,
4887 .read_u64 = mem_cgroup_read_u64,
4888 },
4889 {
4890 .name = "soft_limit_in_bytes",
4891 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4892 .write = mem_cgroup_write,
4893 .read_u64 = mem_cgroup_read_u64,
4894 },
4895 {
4896 .name = "failcnt",
4897 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4898 .write = mem_cgroup_reset,
4899 .read_u64 = mem_cgroup_read_u64,
4900 },
4901 {
4902 .name = "stat",
4903 .seq_show = memcg_stat_show,
4904 },
4905 {
4906 .name = "force_empty",
4907 .write = mem_cgroup_force_empty_write,
4908 },
4909 {
4910 .name = "use_hierarchy",
4911 .write_u64 = mem_cgroup_hierarchy_write,
4912 .read_u64 = mem_cgroup_hierarchy_read,
4913 },
4914 {
4915 .name = "cgroup.event_control", /* XXX: for compat */
4916 .write = memcg_write_event_control,
4917 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4918 },
4919 {
4920 .name = "swappiness",
4921 .read_u64 = mem_cgroup_swappiness_read,
4922 .write_u64 = mem_cgroup_swappiness_write,
4923 },
4924 {
4925 .name = "move_charge_at_immigrate",
4926 .read_u64 = mem_cgroup_move_charge_read,
4927 .write_u64 = mem_cgroup_move_charge_write,
4928 },
4929 {
4930 .name = "oom_control",
4931 .seq_show = mem_cgroup_oom_control_read,
4932 .write_u64 = mem_cgroup_oom_control_write,
4933 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4934 },
4935 {
4936 .name = "pressure_level",
4937 },
4938#ifdef CONFIG_NUMA
4939 {
4940 .name = "numa_stat",
4941 .seq_show = memcg_numa_stat_show,
4942 },
4943#endif
4944 {
4945 .name = "kmem.limit_in_bytes",
4946 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4947 .write = mem_cgroup_write,
4948 .read_u64 = mem_cgroup_read_u64,
4949 },
4950 {
4951 .name = "kmem.usage_in_bytes",
4952 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4953 .read_u64 = mem_cgroup_read_u64,
4954 },
4955 {
4956 .name = "kmem.failcnt",
4957 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4958 .write = mem_cgroup_reset,
4959 .read_u64 = mem_cgroup_read_u64,
4960 },
4961 {
4962 .name = "kmem.max_usage_in_bytes",
4963 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4964 .write = mem_cgroup_reset,
4965 .read_u64 = mem_cgroup_read_u64,
4966 },
4967#if defined(CONFIG_MEMCG_KMEM) && \
4968 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4969 {
4970 .name = "kmem.slabinfo",
4971 .seq_show = mem_cgroup_slab_show,
4972 },
4973#endif
4974 {
4975 .name = "kmem.tcp.limit_in_bytes",
4976 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4977 .write = mem_cgroup_write,
4978 .read_u64 = mem_cgroup_read_u64,
4979 },
4980 {
4981 .name = "kmem.tcp.usage_in_bytes",
4982 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4983 .read_u64 = mem_cgroup_read_u64,
4984 },
4985 {
4986 .name = "kmem.tcp.failcnt",
4987 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4988 .write = mem_cgroup_reset,
4989 .read_u64 = mem_cgroup_read_u64,
4990 },
4991 {
4992 .name = "kmem.tcp.max_usage_in_bytes",
4993 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4994 .write = mem_cgroup_reset,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 { }, /* terminate */
4998};
4999
5000/*
5001 * Private memory cgroup IDR
5002 *
5003 * Swap-out records and page cache shadow entries need to store memcg
5004 * references in constrained space, so we maintain an ID space that is
5005 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5006 * memory-controlled cgroups to 64k.
5007 *
5008 * However, there usually are many references to the offline CSS after
5009 * the cgroup has been destroyed, such as page cache or reclaimable
5010 * slab objects, that don't need to hang on to the ID. We want to keep
5011 * those dead CSS from occupying IDs, or we might quickly exhaust the
5012 * relatively small ID space and prevent the creation of new cgroups
5013 * even when there are much fewer than 64k cgroups - possibly none.
5014 *
5015 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5016 * be freed and recycled when it's no longer needed, which is usually
5017 * when the CSS is offlined.
5018 *
5019 * The only exception to that are records of swapped out tmpfs/shmem
5020 * pages that need to be attributed to live ancestors on swapin. But
5021 * those references are manageable from userspace.
5022 */
5023
5024static DEFINE_IDR(mem_cgroup_idr);
5025
5026static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5027{
5028 if (memcg->id.id > 0) {
5029 idr_remove(&mem_cgroup_idr, memcg->id.id);
5030 memcg->id.id = 0;
5031 }
5032}
5033
5034static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5035 unsigned int n)
5036{
5037 refcount_add(n, &memcg->id.ref);
5038}
5039
5040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5041{
5042 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5043 mem_cgroup_id_remove(memcg);
5044
5045 /* Memcg ID pins CSS */
5046 css_put(&memcg->css);
5047 }
5048}
5049
5050static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5051{
5052 mem_cgroup_id_put_many(memcg, 1);
5053}
5054
5055/**
5056 * mem_cgroup_from_id - look up a memcg from a memcg id
5057 * @id: the memcg id to look up
5058 *
5059 * Caller must hold rcu_read_lock().
5060 */
5061struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5062{
5063 WARN_ON_ONCE(!rcu_read_lock_held());
5064 return idr_find(&mem_cgroup_idr, id);
5065}
5066
5067static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5068{
5069 struct mem_cgroup_per_node *pn;
5070 int tmp = node;
5071 /*
5072 * This routine is called against possible nodes.
5073 * But it's BUG to call kmalloc() against offline node.
5074 *
5075 * TODO: this routine can waste much memory for nodes which will
5076 * never be onlined. It's better to use memory hotplug callback
5077 * function.
5078 */
5079 if (!node_state(node, N_NORMAL_MEMORY))
5080 tmp = -1;
5081 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5082 if (!pn)
5083 return 1;
5084
5085 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5086 GFP_KERNEL_ACCOUNT);
5087 if (!pn->lruvec_stats_percpu) {
5088 kfree(pn);
5089 return 1;
5090 }
5091
5092 lruvec_init(&pn->lruvec);
5093 pn->usage_in_excess = 0;
5094 pn->on_tree = false;
5095 pn->memcg = memcg;
5096
5097 memcg->nodeinfo[node] = pn;
5098 return 0;
5099}
5100
5101static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5102{
5103 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5104
5105 if (!pn)
5106 return;
5107
5108 free_percpu(pn->lruvec_stats_percpu);
5109 kfree(pn);
5110}
5111
5112static void __mem_cgroup_free(struct mem_cgroup *memcg)
5113{
5114 int node;
5115
5116 for_each_node(node)
5117 free_mem_cgroup_per_node_info(memcg, node);
5118 free_percpu(memcg->vmstats_percpu);
5119 kfree(memcg);
5120}
5121
5122static void mem_cgroup_free(struct mem_cgroup *memcg)
5123{
5124 memcg_wb_domain_exit(memcg);
5125 __mem_cgroup_free(memcg);
5126}
5127
5128static struct mem_cgroup *mem_cgroup_alloc(void)
5129{
5130 struct mem_cgroup *memcg;
5131 int node;
5132 int __maybe_unused i;
5133 long error = -ENOMEM;
5134
5135 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5136 if (!memcg)
5137 return ERR_PTR(error);
5138
5139 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5140 1, MEM_CGROUP_ID_MAX,
5141 GFP_KERNEL);
5142 if (memcg->id.id < 0) {
5143 error = memcg->id.id;
5144 goto fail;
5145 }
5146
5147 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5148 GFP_KERNEL_ACCOUNT);
5149 if (!memcg->vmstats_percpu)
5150 goto fail;
5151
5152 for_each_node(node)
5153 if (alloc_mem_cgroup_per_node_info(memcg, node))
5154 goto fail;
5155
5156 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5157 goto fail;
5158
5159 INIT_WORK(&memcg->high_work, high_work_func);
5160 INIT_LIST_HEAD(&memcg->oom_notify);
5161 mutex_init(&memcg->thresholds_lock);
5162 spin_lock_init(&memcg->move_lock);
5163 vmpressure_init(&memcg->vmpressure);
5164 INIT_LIST_HEAD(&memcg->event_list);
5165 spin_lock_init(&memcg->event_list_lock);
5166 memcg->socket_pressure = jiffies;
5167#ifdef CONFIG_MEMCG_KMEM
5168 memcg->kmemcg_id = -1;
5169 INIT_LIST_HEAD(&memcg->objcg_list);
5170#endif
5171#ifdef CONFIG_CGROUP_WRITEBACK
5172 INIT_LIST_HEAD(&memcg->cgwb_list);
5173 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5174 memcg->cgwb_frn[i].done =
5175 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5176#endif
5177#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5178 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5179 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5180 memcg->deferred_split_queue.split_queue_len = 0;
5181#endif
5182 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5183 return memcg;
5184fail:
5185 mem_cgroup_id_remove(memcg);
5186 __mem_cgroup_free(memcg);
5187 return ERR_PTR(error);
5188}
5189
5190static struct cgroup_subsys_state * __ref
5191mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5192{
5193 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5194 struct mem_cgroup *memcg, *old_memcg;
5195 long error = -ENOMEM;
5196
5197 old_memcg = set_active_memcg(parent);
5198 memcg = mem_cgroup_alloc();
5199 set_active_memcg(old_memcg);
5200 if (IS_ERR(memcg))
5201 return ERR_CAST(memcg);
5202
5203 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5204 memcg->soft_limit = PAGE_COUNTER_MAX;
5205 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5206 if (parent) {
5207 memcg->swappiness = mem_cgroup_swappiness(parent);
5208 memcg->oom_kill_disable = parent->oom_kill_disable;
5209
5210 page_counter_init(&memcg->memory, &parent->memory);
5211 page_counter_init(&memcg->swap, &parent->swap);
5212 page_counter_init(&memcg->kmem, &parent->kmem);
5213 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5214 } else {
5215 page_counter_init(&memcg->memory, NULL);
5216 page_counter_init(&memcg->swap, NULL);
5217 page_counter_init(&memcg->kmem, NULL);
5218 page_counter_init(&memcg->tcpmem, NULL);
5219
5220 root_mem_cgroup = memcg;
5221 return &memcg->css;
5222 }
5223
5224 /* The following stuff does not apply to the root */
5225 error = memcg_online_kmem(memcg);
5226 if (error)
5227 goto fail;
5228
5229 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5230 static_branch_inc(&memcg_sockets_enabled_key);
5231
5232 return &memcg->css;
5233fail:
5234 mem_cgroup_id_remove(memcg);
5235 mem_cgroup_free(memcg);
5236 return ERR_PTR(error);
5237}
5238
5239static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5240{
5241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5242
5243 /*
5244 * A memcg must be visible for expand_shrinker_info()
5245 * by the time the maps are allocated. So, we allocate maps
5246 * here, when for_each_mem_cgroup() can't skip it.
5247 */
5248 if (alloc_shrinker_info(memcg)) {
5249 mem_cgroup_id_remove(memcg);
5250 return -ENOMEM;
5251 }
5252
5253 /* Online state pins memcg ID, memcg ID pins CSS */
5254 refcount_set(&memcg->id.ref, 1);
5255 css_get(css);
5256
5257 if (unlikely(mem_cgroup_is_root(memcg)))
5258 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5259 2UL*HZ);
5260 return 0;
5261}
5262
5263static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5264{
5265 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5266 struct mem_cgroup_event *event, *tmp;
5267
5268 /*
5269 * Unregister events and notify userspace.
5270 * Notify userspace about cgroup removing only after rmdir of cgroup
5271 * directory to avoid race between userspace and kernelspace.
5272 */
5273 spin_lock_irq(&memcg->event_list_lock);
5274 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5275 list_del_init(&event->list);
5276 schedule_work(&event->remove);
5277 }
5278 spin_unlock_irq(&memcg->event_list_lock);
5279
5280 page_counter_set_min(&memcg->memory, 0);
5281 page_counter_set_low(&memcg->memory, 0);
5282
5283 memcg_offline_kmem(memcg);
5284 reparent_shrinker_deferred(memcg);
5285 wb_memcg_offline(memcg);
5286
5287 drain_all_stock(memcg);
5288
5289 mem_cgroup_id_put(memcg);
5290}
5291
5292static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5293{
5294 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5295
5296 invalidate_reclaim_iterators(memcg);
5297}
5298
5299static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5300{
5301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5302 int __maybe_unused i;
5303
5304#ifdef CONFIG_CGROUP_WRITEBACK
5305 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5306 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5307#endif
5308 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5309 static_branch_dec(&memcg_sockets_enabled_key);
5310
5311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5312 static_branch_dec(&memcg_sockets_enabled_key);
5313
5314 vmpressure_cleanup(&memcg->vmpressure);
5315 cancel_work_sync(&memcg->high_work);
5316 mem_cgroup_remove_from_trees(memcg);
5317 free_shrinker_info(memcg);
5318
5319 /* Need to offline kmem if online_css() fails */
5320 memcg_offline_kmem(memcg);
5321 mem_cgroup_free(memcg);
5322}
5323
5324/**
5325 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5326 * @css: the target css
5327 *
5328 * Reset the states of the mem_cgroup associated with @css. This is
5329 * invoked when the userland requests disabling on the default hierarchy
5330 * but the memcg is pinned through dependency. The memcg should stop
5331 * applying policies and should revert to the vanilla state as it may be
5332 * made visible again.
5333 *
5334 * The current implementation only resets the essential configurations.
5335 * This needs to be expanded to cover all the visible parts.
5336 */
5337static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5338{
5339 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5340
5341 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5342 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5343 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5344 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5345 page_counter_set_min(&memcg->memory, 0);
5346 page_counter_set_low(&memcg->memory, 0);
5347 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5348 memcg->soft_limit = PAGE_COUNTER_MAX;
5349 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5350 memcg_wb_domain_size_changed(memcg);
5351}
5352
5353static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5354{
5355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5356 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5357 struct memcg_vmstats_percpu *statc;
5358 long delta, v;
5359 int i, nid;
5360
5361 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5362
5363 for (i = 0; i < MEMCG_NR_STAT; i++) {
5364 /*
5365 * Collect the aggregated propagation counts of groups
5366 * below us. We're in a per-cpu loop here and this is
5367 * a global counter, so the first cycle will get them.
5368 */
5369 delta = memcg->vmstats.state_pending[i];
5370 if (delta)
5371 memcg->vmstats.state_pending[i] = 0;
5372
5373 /* Add CPU changes on this level since the last flush */
5374 v = READ_ONCE(statc->state[i]);
5375 if (v != statc->state_prev[i]) {
5376 delta += v - statc->state_prev[i];
5377 statc->state_prev[i] = v;
5378 }
5379
5380 if (!delta)
5381 continue;
5382
5383 /* Aggregate counts on this level and propagate upwards */
5384 memcg->vmstats.state[i] += delta;
5385 if (parent)
5386 parent->vmstats.state_pending[i] += delta;
5387 }
5388
5389 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5390 delta = memcg->vmstats.events_pending[i];
5391 if (delta)
5392 memcg->vmstats.events_pending[i] = 0;
5393
5394 v = READ_ONCE(statc->events[i]);
5395 if (v != statc->events_prev[i]) {
5396 delta += v - statc->events_prev[i];
5397 statc->events_prev[i] = v;
5398 }
5399
5400 if (!delta)
5401 continue;
5402
5403 memcg->vmstats.events[i] += delta;
5404 if (parent)
5405 parent->vmstats.events_pending[i] += delta;
5406 }
5407
5408 for_each_node_state(nid, N_MEMORY) {
5409 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5410 struct mem_cgroup_per_node *ppn = NULL;
5411 struct lruvec_stats_percpu *lstatc;
5412
5413 if (parent)
5414 ppn = parent->nodeinfo[nid];
5415
5416 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5417
5418 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5419 delta = pn->lruvec_stats.state_pending[i];
5420 if (delta)
5421 pn->lruvec_stats.state_pending[i] = 0;
5422
5423 v = READ_ONCE(lstatc->state[i]);
5424 if (v != lstatc->state_prev[i]) {
5425 delta += v - lstatc->state_prev[i];
5426 lstatc->state_prev[i] = v;
5427 }
5428
5429 if (!delta)
5430 continue;
5431
5432 pn->lruvec_stats.state[i] += delta;
5433 if (ppn)
5434 ppn->lruvec_stats.state_pending[i] += delta;
5435 }
5436 }
5437}
5438
5439#ifdef CONFIG_MMU
5440/* Handlers for move charge at task migration. */
5441static int mem_cgroup_do_precharge(unsigned long count)
5442{
5443 int ret;
5444
5445 /* Try a single bulk charge without reclaim first, kswapd may wake */
5446 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5447 if (!ret) {
5448 mc.precharge += count;
5449 return ret;
5450 }
5451
5452 /* Try charges one by one with reclaim, but do not retry */
5453 while (count--) {
5454 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5455 if (ret)
5456 return ret;
5457 mc.precharge++;
5458 cond_resched();
5459 }
5460 return 0;
5461}
5462
5463union mc_target {
5464 struct page *page;
5465 swp_entry_t ent;
5466};
5467
5468enum mc_target_type {
5469 MC_TARGET_NONE = 0,
5470 MC_TARGET_PAGE,
5471 MC_TARGET_SWAP,
5472 MC_TARGET_DEVICE,
5473};
5474
5475static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5476 unsigned long addr, pte_t ptent)
5477{
5478 struct page *page = vm_normal_page(vma, addr, ptent);
5479
5480 if (!page || !page_mapped(page))
5481 return NULL;
5482 if (PageAnon(page)) {
5483 if (!(mc.flags & MOVE_ANON))
5484 return NULL;
5485 } else {
5486 if (!(mc.flags & MOVE_FILE))
5487 return NULL;
5488 }
5489 if (!get_page_unless_zero(page))
5490 return NULL;
5491
5492 return page;
5493}
5494
5495#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5496static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5497 pte_t ptent, swp_entry_t *entry)
5498{
5499 struct page *page = NULL;
5500 swp_entry_t ent = pte_to_swp_entry(ptent);
5501
5502 if (!(mc.flags & MOVE_ANON))
5503 return NULL;
5504
5505 /*
5506 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5507 * a device and because they are not accessible by CPU they are store
5508 * as special swap entry in the CPU page table.
5509 */
5510 if (is_device_private_entry(ent)) {
5511 page = pfn_swap_entry_to_page(ent);
5512 /*
5513 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5514 * a refcount of 1 when free (unlike normal page)
5515 */
5516 if (!page_ref_add_unless(page, 1, 1))
5517 return NULL;
5518 return page;
5519 }
5520
5521 if (non_swap_entry(ent))
5522 return NULL;
5523
5524 /*
5525 * Because lookup_swap_cache() updates some statistics counter,
5526 * we call find_get_page() with swapper_space directly.
5527 */
5528 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5529 entry->val = ent.val;
5530
5531 return page;
5532}
5533#else
5534static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5535 pte_t ptent, swp_entry_t *entry)
5536{
5537 return NULL;
5538}
5539#endif
5540
5541static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5542 unsigned long addr, pte_t ptent)
5543{
5544 if (!vma->vm_file) /* anonymous vma */
5545 return NULL;
5546 if (!(mc.flags & MOVE_FILE))
5547 return NULL;
5548
5549 /* page is moved even if it's not RSS of this task(page-faulted). */
5550 /* shmem/tmpfs may report page out on swap: account for that too. */
5551 return find_get_incore_page(vma->vm_file->f_mapping,
5552 linear_page_index(vma, addr));
5553}
5554
5555/**
5556 * mem_cgroup_move_account - move account of the page
5557 * @page: the page
5558 * @compound: charge the page as compound or small page
5559 * @from: mem_cgroup which the page is moved from.
5560 * @to: mem_cgroup which the page is moved to. @from != @to.
5561 *
5562 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5563 *
5564 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5565 * from old cgroup.
5566 */
5567static int mem_cgroup_move_account(struct page *page,
5568 bool compound,
5569 struct mem_cgroup *from,
5570 struct mem_cgroup *to)
5571{
5572 struct folio *folio = page_folio(page);
5573 struct lruvec *from_vec, *to_vec;
5574 struct pglist_data *pgdat;
5575 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5576 int nid, ret;
5577
5578 VM_BUG_ON(from == to);
5579 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5580 VM_BUG_ON(compound && !folio_test_large(folio));
5581
5582 /*
5583 * Prevent mem_cgroup_migrate() from looking at
5584 * page's memory cgroup of its source page while we change it.
5585 */
5586 ret = -EBUSY;
5587 if (!folio_trylock(folio))
5588 goto out;
5589
5590 ret = -EINVAL;
5591 if (folio_memcg(folio) != from)
5592 goto out_unlock;
5593
5594 pgdat = folio_pgdat(folio);
5595 from_vec = mem_cgroup_lruvec(from, pgdat);
5596 to_vec = mem_cgroup_lruvec(to, pgdat);
5597
5598 folio_memcg_lock(folio);
5599
5600 if (folio_test_anon(folio)) {
5601 if (folio_mapped(folio)) {
5602 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5603 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5604 if (folio_test_transhuge(folio)) {
5605 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5606 -nr_pages);
5607 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5608 nr_pages);
5609 }
5610 }
5611 } else {
5612 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5613 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5614
5615 if (folio_test_swapbacked(folio)) {
5616 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5617 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5618 }
5619
5620 if (folio_mapped(folio)) {
5621 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5622 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5623 }
5624
5625 if (folio_test_dirty(folio)) {
5626 struct address_space *mapping = folio_mapping(folio);
5627
5628 if (mapping_can_writeback(mapping)) {
5629 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5630 -nr_pages);
5631 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5632 nr_pages);
5633 }
5634 }
5635 }
5636
5637 if (folio_test_writeback(folio)) {
5638 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5639 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5640 }
5641
5642 /*
5643 * All state has been migrated, let's switch to the new memcg.
5644 *
5645 * It is safe to change page's memcg here because the page
5646 * is referenced, charged, isolated, and locked: we can't race
5647 * with (un)charging, migration, LRU putback, or anything else
5648 * that would rely on a stable page's memory cgroup.
5649 *
5650 * Note that lock_page_memcg is a memcg lock, not a page lock,
5651 * to save space. As soon as we switch page's memory cgroup to a
5652 * new memcg that isn't locked, the above state can change
5653 * concurrently again. Make sure we're truly done with it.
5654 */
5655 smp_mb();
5656
5657 css_get(&to->css);
5658 css_put(&from->css);
5659
5660 folio->memcg_data = (unsigned long)to;
5661
5662 __folio_memcg_unlock(from);
5663
5664 ret = 0;
5665 nid = folio_nid(folio);
5666
5667 local_irq_disable();
5668 mem_cgroup_charge_statistics(to, nr_pages);
5669 memcg_check_events(to, nid);
5670 mem_cgroup_charge_statistics(from, -nr_pages);
5671 memcg_check_events(from, nid);
5672 local_irq_enable();
5673out_unlock:
5674 folio_unlock(folio);
5675out:
5676 return ret;
5677}
5678
5679/**
5680 * get_mctgt_type - get target type of moving charge
5681 * @vma: the vma the pte to be checked belongs
5682 * @addr: the address corresponding to the pte to be checked
5683 * @ptent: the pte to be checked
5684 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5685 *
5686 * Returns
5687 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5688 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5689 * move charge. if @target is not NULL, the page is stored in target->page
5690 * with extra refcnt got(Callers should handle it).
5691 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5692 * target for charge migration. if @target is not NULL, the entry is stored
5693 * in target->ent.
5694 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5695 * (so ZONE_DEVICE page and thus not on the lru).
5696 * For now we such page is charge like a regular page would be as for all
5697 * intent and purposes it is just special memory taking the place of a
5698 * regular page.
5699 *
5700 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5701 *
5702 * Called with pte lock held.
5703 */
5704
5705static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5706 unsigned long addr, pte_t ptent, union mc_target *target)
5707{
5708 struct page *page = NULL;
5709 enum mc_target_type ret = MC_TARGET_NONE;
5710 swp_entry_t ent = { .val = 0 };
5711
5712 if (pte_present(ptent))
5713 page = mc_handle_present_pte(vma, addr, ptent);
5714 else if (is_swap_pte(ptent))
5715 page = mc_handle_swap_pte(vma, ptent, &ent);
5716 else if (pte_none(ptent))
5717 page = mc_handle_file_pte(vma, addr, ptent);
5718
5719 if (!page && !ent.val)
5720 return ret;
5721 if (page) {
5722 /*
5723 * Do only loose check w/o serialization.
5724 * mem_cgroup_move_account() checks the page is valid or
5725 * not under LRU exclusion.
5726 */
5727 if (page_memcg(page) == mc.from) {
5728 ret = MC_TARGET_PAGE;
5729 if (is_device_private_page(page))
5730 ret = MC_TARGET_DEVICE;
5731 if (target)
5732 target->page = page;
5733 }
5734 if (!ret || !target)
5735 put_page(page);
5736 }
5737 /*
5738 * There is a swap entry and a page doesn't exist or isn't charged.
5739 * But we cannot move a tail-page in a THP.
5740 */
5741 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5742 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5743 ret = MC_TARGET_SWAP;
5744 if (target)
5745 target->ent = ent;
5746 }
5747 return ret;
5748}
5749
5750#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5751/*
5752 * We don't consider PMD mapped swapping or file mapped pages because THP does
5753 * not support them for now.
5754 * Caller should make sure that pmd_trans_huge(pmd) is true.
5755 */
5756static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5757 unsigned long addr, pmd_t pmd, union mc_target *target)
5758{
5759 struct page *page = NULL;
5760 enum mc_target_type ret = MC_TARGET_NONE;
5761
5762 if (unlikely(is_swap_pmd(pmd))) {
5763 VM_BUG_ON(thp_migration_supported() &&
5764 !is_pmd_migration_entry(pmd));
5765 return ret;
5766 }
5767 page = pmd_page(pmd);
5768 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5769 if (!(mc.flags & MOVE_ANON))
5770 return ret;
5771 if (page_memcg(page) == mc.from) {
5772 ret = MC_TARGET_PAGE;
5773 if (target) {
5774 get_page(page);
5775 target->page = page;
5776 }
5777 }
5778 return ret;
5779}
5780#else
5781static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5782 unsigned long addr, pmd_t pmd, union mc_target *target)
5783{
5784 return MC_TARGET_NONE;
5785}
5786#endif
5787
5788static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5789 unsigned long addr, unsigned long end,
5790 struct mm_walk *walk)
5791{
5792 struct vm_area_struct *vma = walk->vma;
5793 pte_t *pte;
5794 spinlock_t *ptl;
5795
5796 ptl = pmd_trans_huge_lock(pmd, vma);
5797 if (ptl) {
5798 /*
5799 * Note their can not be MC_TARGET_DEVICE for now as we do not
5800 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5801 * this might change.
5802 */
5803 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5804 mc.precharge += HPAGE_PMD_NR;
5805 spin_unlock(ptl);
5806 return 0;
5807 }
5808
5809 if (pmd_trans_unstable(pmd))
5810 return 0;
5811 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5812 for (; addr != end; pte++, addr += PAGE_SIZE)
5813 if (get_mctgt_type(vma, addr, *pte, NULL))
5814 mc.precharge++; /* increment precharge temporarily */
5815 pte_unmap_unlock(pte - 1, ptl);
5816 cond_resched();
5817
5818 return 0;
5819}
5820
5821static const struct mm_walk_ops precharge_walk_ops = {
5822 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5823};
5824
5825static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5826{
5827 unsigned long precharge;
5828
5829 mmap_read_lock(mm);
5830 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5831 mmap_read_unlock(mm);
5832
5833 precharge = mc.precharge;
5834 mc.precharge = 0;
5835
5836 return precharge;
5837}
5838
5839static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5840{
5841 unsigned long precharge = mem_cgroup_count_precharge(mm);
5842
5843 VM_BUG_ON(mc.moving_task);
5844 mc.moving_task = current;
5845 return mem_cgroup_do_precharge(precharge);
5846}
5847
5848/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5849static void __mem_cgroup_clear_mc(void)
5850{
5851 struct mem_cgroup *from = mc.from;
5852 struct mem_cgroup *to = mc.to;
5853
5854 /* we must uncharge all the leftover precharges from mc.to */
5855 if (mc.precharge) {
5856 cancel_charge(mc.to, mc.precharge);
5857 mc.precharge = 0;
5858 }
5859 /*
5860 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5861 * we must uncharge here.
5862 */
5863 if (mc.moved_charge) {
5864 cancel_charge(mc.from, mc.moved_charge);
5865 mc.moved_charge = 0;
5866 }
5867 /* we must fixup refcnts and charges */
5868 if (mc.moved_swap) {
5869 /* uncharge swap account from the old cgroup */
5870 if (!mem_cgroup_is_root(mc.from))
5871 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5872
5873 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5874
5875 /*
5876 * we charged both to->memory and to->memsw, so we
5877 * should uncharge to->memory.
5878 */
5879 if (!mem_cgroup_is_root(mc.to))
5880 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5881
5882 mc.moved_swap = 0;
5883 }
5884 memcg_oom_recover(from);
5885 memcg_oom_recover(to);
5886 wake_up_all(&mc.waitq);
5887}
5888
5889static void mem_cgroup_clear_mc(void)
5890{
5891 struct mm_struct *mm = mc.mm;
5892
5893 /*
5894 * we must clear moving_task before waking up waiters at the end of
5895 * task migration.
5896 */
5897 mc.moving_task = NULL;
5898 __mem_cgroup_clear_mc();
5899 spin_lock(&mc.lock);
5900 mc.from = NULL;
5901 mc.to = NULL;
5902 mc.mm = NULL;
5903 spin_unlock(&mc.lock);
5904
5905 mmput(mm);
5906}
5907
5908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5909{
5910 struct cgroup_subsys_state *css;
5911 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5912 struct mem_cgroup *from;
5913 struct task_struct *leader, *p;
5914 struct mm_struct *mm;
5915 unsigned long move_flags;
5916 int ret = 0;
5917
5918 /* charge immigration isn't supported on the default hierarchy */
5919 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5920 return 0;
5921
5922 /*
5923 * Multi-process migrations only happen on the default hierarchy
5924 * where charge immigration is not used. Perform charge
5925 * immigration if @tset contains a leader and whine if there are
5926 * multiple.
5927 */
5928 p = NULL;
5929 cgroup_taskset_for_each_leader(leader, css, tset) {
5930 WARN_ON_ONCE(p);
5931 p = leader;
5932 memcg = mem_cgroup_from_css(css);
5933 }
5934 if (!p)
5935 return 0;
5936
5937 /*
5938 * We are now committed to this value whatever it is. Changes in this
5939 * tunable will only affect upcoming migrations, not the current one.
5940 * So we need to save it, and keep it going.
5941 */
5942 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5943 if (!move_flags)
5944 return 0;
5945
5946 from = mem_cgroup_from_task(p);
5947
5948 VM_BUG_ON(from == memcg);
5949
5950 mm = get_task_mm(p);
5951 if (!mm)
5952 return 0;
5953 /* We move charges only when we move a owner of the mm */
5954 if (mm->owner == p) {
5955 VM_BUG_ON(mc.from);
5956 VM_BUG_ON(mc.to);
5957 VM_BUG_ON(mc.precharge);
5958 VM_BUG_ON(mc.moved_charge);
5959 VM_BUG_ON(mc.moved_swap);
5960
5961 spin_lock(&mc.lock);
5962 mc.mm = mm;
5963 mc.from = from;
5964 mc.to = memcg;
5965 mc.flags = move_flags;
5966 spin_unlock(&mc.lock);
5967 /* We set mc.moving_task later */
5968
5969 ret = mem_cgroup_precharge_mc(mm);
5970 if (ret)
5971 mem_cgroup_clear_mc();
5972 } else {
5973 mmput(mm);
5974 }
5975 return ret;
5976}
5977
5978static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5979{
5980 if (mc.to)
5981 mem_cgroup_clear_mc();
5982}
5983
5984static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5985 unsigned long addr, unsigned long end,
5986 struct mm_walk *walk)
5987{
5988 int ret = 0;
5989 struct vm_area_struct *vma = walk->vma;
5990 pte_t *pte;
5991 spinlock_t *ptl;
5992 enum mc_target_type target_type;
5993 union mc_target target;
5994 struct page *page;
5995
5996 ptl = pmd_trans_huge_lock(pmd, vma);
5997 if (ptl) {
5998 if (mc.precharge < HPAGE_PMD_NR) {
5999 spin_unlock(ptl);
6000 return 0;
6001 }
6002 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6003 if (target_type == MC_TARGET_PAGE) {
6004 page = target.page;
6005 if (!isolate_lru_page(page)) {
6006 if (!mem_cgroup_move_account(page, true,
6007 mc.from, mc.to)) {
6008 mc.precharge -= HPAGE_PMD_NR;
6009 mc.moved_charge += HPAGE_PMD_NR;
6010 }
6011 putback_lru_page(page);
6012 }
6013 put_page(page);
6014 } else if (target_type == MC_TARGET_DEVICE) {
6015 page = target.page;
6016 if (!mem_cgroup_move_account(page, true,
6017 mc.from, mc.to)) {
6018 mc.precharge -= HPAGE_PMD_NR;
6019 mc.moved_charge += HPAGE_PMD_NR;
6020 }
6021 put_page(page);
6022 }
6023 spin_unlock(ptl);
6024 return 0;
6025 }
6026
6027 if (pmd_trans_unstable(pmd))
6028 return 0;
6029retry:
6030 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6031 for (; addr != end; addr += PAGE_SIZE) {
6032 pte_t ptent = *(pte++);
6033 bool device = false;
6034 swp_entry_t ent;
6035
6036 if (!mc.precharge)
6037 break;
6038
6039 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6040 case MC_TARGET_DEVICE:
6041 device = true;
6042 fallthrough;
6043 case MC_TARGET_PAGE:
6044 page = target.page;
6045 /*
6046 * We can have a part of the split pmd here. Moving it
6047 * can be done but it would be too convoluted so simply
6048 * ignore such a partial THP and keep it in original
6049 * memcg. There should be somebody mapping the head.
6050 */
6051 if (PageTransCompound(page))
6052 goto put;
6053 if (!device && isolate_lru_page(page))
6054 goto put;
6055 if (!mem_cgroup_move_account(page, false,
6056 mc.from, mc.to)) {
6057 mc.precharge--;
6058 /* we uncharge from mc.from later. */
6059 mc.moved_charge++;
6060 }
6061 if (!device)
6062 putback_lru_page(page);
6063put: /* get_mctgt_type() gets the page */
6064 put_page(page);
6065 break;
6066 case MC_TARGET_SWAP:
6067 ent = target.ent;
6068 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6069 mc.precharge--;
6070 mem_cgroup_id_get_many(mc.to, 1);
6071 /* we fixup other refcnts and charges later. */
6072 mc.moved_swap++;
6073 }
6074 break;
6075 default:
6076 break;
6077 }
6078 }
6079 pte_unmap_unlock(pte - 1, ptl);
6080 cond_resched();
6081
6082 if (addr != end) {
6083 /*
6084 * We have consumed all precharges we got in can_attach().
6085 * We try charge one by one, but don't do any additional
6086 * charges to mc.to if we have failed in charge once in attach()
6087 * phase.
6088 */
6089 ret = mem_cgroup_do_precharge(1);
6090 if (!ret)
6091 goto retry;
6092 }
6093
6094 return ret;
6095}
6096
6097static const struct mm_walk_ops charge_walk_ops = {
6098 .pmd_entry = mem_cgroup_move_charge_pte_range,
6099};
6100
6101static void mem_cgroup_move_charge(void)
6102{
6103 lru_add_drain_all();
6104 /*
6105 * Signal lock_page_memcg() to take the memcg's move_lock
6106 * while we're moving its pages to another memcg. Then wait
6107 * for already started RCU-only updates to finish.
6108 */
6109 atomic_inc(&mc.from->moving_account);
6110 synchronize_rcu();
6111retry:
6112 if (unlikely(!mmap_read_trylock(mc.mm))) {
6113 /*
6114 * Someone who are holding the mmap_lock might be waiting in
6115 * waitq. So we cancel all extra charges, wake up all waiters,
6116 * and retry. Because we cancel precharges, we might not be able
6117 * to move enough charges, but moving charge is a best-effort
6118 * feature anyway, so it wouldn't be a big problem.
6119 */
6120 __mem_cgroup_clear_mc();
6121 cond_resched();
6122 goto retry;
6123 }
6124 /*
6125 * When we have consumed all precharges and failed in doing
6126 * additional charge, the page walk just aborts.
6127 */
6128 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6129 NULL);
6130
6131 mmap_read_unlock(mc.mm);
6132 atomic_dec(&mc.from->moving_account);
6133}
6134
6135static void mem_cgroup_move_task(void)
6136{
6137 if (mc.to) {
6138 mem_cgroup_move_charge();
6139 mem_cgroup_clear_mc();
6140 }
6141}
6142#else /* !CONFIG_MMU */
6143static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6144{
6145 return 0;
6146}
6147static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6148{
6149}
6150static void mem_cgroup_move_task(void)
6151{
6152}
6153#endif
6154
6155static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6156{
6157 if (value == PAGE_COUNTER_MAX)
6158 seq_puts(m, "max\n");
6159 else
6160 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6161
6162 return 0;
6163}
6164
6165static u64 memory_current_read(struct cgroup_subsys_state *css,
6166 struct cftype *cft)
6167{
6168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6169
6170 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6171}
6172
6173static int memory_min_show(struct seq_file *m, void *v)
6174{
6175 return seq_puts_memcg_tunable(m,
6176 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6177}
6178
6179static ssize_t memory_min_write(struct kernfs_open_file *of,
6180 char *buf, size_t nbytes, loff_t off)
6181{
6182 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6183 unsigned long min;
6184 int err;
6185
6186 buf = strstrip(buf);
6187 err = page_counter_memparse(buf, "max", &min);
6188 if (err)
6189 return err;
6190
6191 page_counter_set_min(&memcg->memory, min);
6192
6193 return nbytes;
6194}
6195
6196static int memory_low_show(struct seq_file *m, void *v)
6197{
6198 return seq_puts_memcg_tunable(m,
6199 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6200}
6201
6202static ssize_t memory_low_write(struct kernfs_open_file *of,
6203 char *buf, size_t nbytes, loff_t off)
6204{
6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 unsigned long low;
6207 int err;
6208
6209 buf = strstrip(buf);
6210 err = page_counter_memparse(buf, "max", &low);
6211 if (err)
6212 return err;
6213
6214 page_counter_set_low(&memcg->memory, low);
6215
6216 return nbytes;
6217}
6218
6219static int memory_high_show(struct seq_file *m, void *v)
6220{
6221 return seq_puts_memcg_tunable(m,
6222 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6223}
6224
6225static ssize_t memory_high_write(struct kernfs_open_file *of,
6226 char *buf, size_t nbytes, loff_t off)
6227{
6228 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6229 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6230 bool drained = false;
6231 unsigned long high;
6232 int err;
6233
6234 buf = strstrip(buf);
6235 err = page_counter_memparse(buf, "max", &high);
6236 if (err)
6237 return err;
6238
6239 page_counter_set_high(&memcg->memory, high);
6240
6241 for (;;) {
6242 unsigned long nr_pages = page_counter_read(&memcg->memory);
6243 unsigned long reclaimed;
6244
6245 if (nr_pages <= high)
6246 break;
6247
6248 if (signal_pending(current))
6249 break;
6250
6251 if (!drained) {
6252 drain_all_stock(memcg);
6253 drained = true;
6254 continue;
6255 }
6256
6257 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6258 GFP_KERNEL, true);
6259
6260 if (!reclaimed && !nr_retries--)
6261 break;
6262 }
6263
6264 memcg_wb_domain_size_changed(memcg);
6265 return nbytes;
6266}
6267
6268static int memory_max_show(struct seq_file *m, void *v)
6269{
6270 return seq_puts_memcg_tunable(m,
6271 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6272}
6273
6274static ssize_t memory_max_write(struct kernfs_open_file *of,
6275 char *buf, size_t nbytes, loff_t off)
6276{
6277 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6278 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6279 bool drained = false;
6280 unsigned long max;
6281 int err;
6282
6283 buf = strstrip(buf);
6284 err = page_counter_memparse(buf, "max", &max);
6285 if (err)
6286 return err;
6287
6288 xchg(&memcg->memory.max, max);
6289
6290 for (;;) {
6291 unsigned long nr_pages = page_counter_read(&memcg->memory);
6292
6293 if (nr_pages <= max)
6294 break;
6295
6296 if (signal_pending(current))
6297 break;
6298
6299 if (!drained) {
6300 drain_all_stock(memcg);
6301 drained = true;
6302 continue;
6303 }
6304
6305 if (nr_reclaims) {
6306 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6307 GFP_KERNEL, true))
6308 nr_reclaims--;
6309 continue;
6310 }
6311
6312 memcg_memory_event(memcg, MEMCG_OOM);
6313 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6314 break;
6315 }
6316
6317 memcg_wb_domain_size_changed(memcg);
6318 return nbytes;
6319}
6320
6321static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6322{
6323 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6324 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6325 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6326 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6327 seq_printf(m, "oom_kill %lu\n",
6328 atomic_long_read(&events[MEMCG_OOM_KILL]));
6329 seq_printf(m, "oom_group_kill %lu\n",
6330 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6331}
6332
6333static int memory_events_show(struct seq_file *m, void *v)
6334{
6335 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6336
6337 __memory_events_show(m, memcg->memory_events);
6338 return 0;
6339}
6340
6341static int memory_events_local_show(struct seq_file *m, void *v)
6342{
6343 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6344
6345 __memory_events_show(m, memcg->memory_events_local);
6346 return 0;
6347}
6348
6349static int memory_stat_show(struct seq_file *m, void *v)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352 char *buf;
6353
6354 buf = memory_stat_format(memcg);
6355 if (!buf)
6356 return -ENOMEM;
6357 seq_puts(m, buf);
6358 kfree(buf);
6359 return 0;
6360}
6361
6362#ifdef CONFIG_NUMA
6363static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6364 int item)
6365{
6366 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6367}
6368
6369static int memory_numa_stat_show(struct seq_file *m, void *v)
6370{
6371 int i;
6372 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6373
6374 mem_cgroup_flush_stats();
6375
6376 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6377 int nid;
6378
6379 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6380 continue;
6381
6382 seq_printf(m, "%s", memory_stats[i].name);
6383 for_each_node_state(nid, N_MEMORY) {
6384 u64 size;
6385 struct lruvec *lruvec;
6386
6387 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6388 size = lruvec_page_state_output(lruvec,
6389 memory_stats[i].idx);
6390 seq_printf(m, " N%d=%llu", nid, size);
6391 }
6392 seq_putc(m, '\n');
6393 }
6394
6395 return 0;
6396}
6397#endif
6398
6399static int memory_oom_group_show(struct seq_file *m, void *v)
6400{
6401 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6402
6403 seq_printf(m, "%d\n", memcg->oom_group);
6404
6405 return 0;
6406}
6407
6408static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6409 char *buf, size_t nbytes, loff_t off)
6410{
6411 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6412 int ret, oom_group;
6413
6414 buf = strstrip(buf);
6415 if (!buf)
6416 return -EINVAL;
6417
6418 ret = kstrtoint(buf, 0, &oom_group);
6419 if (ret)
6420 return ret;
6421
6422 if (oom_group != 0 && oom_group != 1)
6423 return -EINVAL;
6424
6425 memcg->oom_group = oom_group;
6426
6427 return nbytes;
6428}
6429
6430static struct cftype memory_files[] = {
6431 {
6432 .name = "current",
6433 .flags = CFTYPE_NOT_ON_ROOT,
6434 .read_u64 = memory_current_read,
6435 },
6436 {
6437 .name = "min",
6438 .flags = CFTYPE_NOT_ON_ROOT,
6439 .seq_show = memory_min_show,
6440 .write = memory_min_write,
6441 },
6442 {
6443 .name = "low",
6444 .flags = CFTYPE_NOT_ON_ROOT,
6445 .seq_show = memory_low_show,
6446 .write = memory_low_write,
6447 },
6448 {
6449 .name = "high",
6450 .flags = CFTYPE_NOT_ON_ROOT,
6451 .seq_show = memory_high_show,
6452 .write = memory_high_write,
6453 },
6454 {
6455 .name = "max",
6456 .flags = CFTYPE_NOT_ON_ROOT,
6457 .seq_show = memory_max_show,
6458 .write = memory_max_write,
6459 },
6460 {
6461 .name = "events",
6462 .flags = CFTYPE_NOT_ON_ROOT,
6463 .file_offset = offsetof(struct mem_cgroup, events_file),
6464 .seq_show = memory_events_show,
6465 },
6466 {
6467 .name = "events.local",
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6470 .seq_show = memory_events_local_show,
6471 },
6472 {
6473 .name = "stat",
6474 .seq_show = memory_stat_show,
6475 },
6476#ifdef CONFIG_NUMA
6477 {
6478 .name = "numa_stat",
6479 .seq_show = memory_numa_stat_show,
6480 },
6481#endif
6482 {
6483 .name = "oom.group",
6484 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6485 .seq_show = memory_oom_group_show,
6486 .write = memory_oom_group_write,
6487 },
6488 { } /* terminate */
6489};
6490
6491struct cgroup_subsys memory_cgrp_subsys = {
6492 .css_alloc = mem_cgroup_css_alloc,
6493 .css_online = mem_cgroup_css_online,
6494 .css_offline = mem_cgroup_css_offline,
6495 .css_released = mem_cgroup_css_released,
6496 .css_free = mem_cgroup_css_free,
6497 .css_reset = mem_cgroup_css_reset,
6498 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6499 .can_attach = mem_cgroup_can_attach,
6500 .cancel_attach = mem_cgroup_cancel_attach,
6501 .post_attach = mem_cgroup_move_task,
6502 .dfl_cftypes = memory_files,
6503 .legacy_cftypes = mem_cgroup_legacy_files,
6504 .early_init = 0,
6505};
6506
6507/*
6508 * This function calculates an individual cgroup's effective
6509 * protection which is derived from its own memory.min/low, its
6510 * parent's and siblings' settings, as well as the actual memory
6511 * distribution in the tree.
6512 *
6513 * The following rules apply to the effective protection values:
6514 *
6515 * 1. At the first level of reclaim, effective protection is equal to
6516 * the declared protection in memory.min and memory.low.
6517 *
6518 * 2. To enable safe delegation of the protection configuration, at
6519 * subsequent levels the effective protection is capped to the
6520 * parent's effective protection.
6521 *
6522 * 3. To make complex and dynamic subtrees easier to configure, the
6523 * user is allowed to overcommit the declared protection at a given
6524 * level. If that is the case, the parent's effective protection is
6525 * distributed to the children in proportion to how much protection
6526 * they have declared and how much of it they are utilizing.
6527 *
6528 * This makes distribution proportional, but also work-conserving:
6529 * if one cgroup claims much more protection than it uses memory,
6530 * the unused remainder is available to its siblings.
6531 *
6532 * 4. Conversely, when the declared protection is undercommitted at a
6533 * given level, the distribution of the larger parental protection
6534 * budget is NOT proportional. A cgroup's protection from a sibling
6535 * is capped to its own memory.min/low setting.
6536 *
6537 * 5. However, to allow protecting recursive subtrees from each other
6538 * without having to declare each individual cgroup's fixed share
6539 * of the ancestor's claim to protection, any unutilized -
6540 * "floating" - protection from up the tree is distributed in
6541 * proportion to each cgroup's *usage*. This makes the protection
6542 * neutral wrt sibling cgroups and lets them compete freely over
6543 * the shared parental protection budget, but it protects the
6544 * subtree as a whole from neighboring subtrees.
6545 *
6546 * Note that 4. and 5. are not in conflict: 4. is about protecting
6547 * against immediate siblings whereas 5. is about protecting against
6548 * neighboring subtrees.
6549 */
6550static unsigned long effective_protection(unsigned long usage,
6551 unsigned long parent_usage,
6552 unsigned long setting,
6553 unsigned long parent_effective,
6554 unsigned long siblings_protected)
6555{
6556 unsigned long protected;
6557 unsigned long ep;
6558
6559 protected = min(usage, setting);
6560 /*
6561 * If all cgroups at this level combined claim and use more
6562 * protection then what the parent affords them, distribute
6563 * shares in proportion to utilization.
6564 *
6565 * We are using actual utilization rather than the statically
6566 * claimed protection in order to be work-conserving: claimed
6567 * but unused protection is available to siblings that would
6568 * otherwise get a smaller chunk than what they claimed.
6569 */
6570 if (siblings_protected > parent_effective)
6571 return protected * parent_effective / siblings_protected;
6572
6573 /*
6574 * Ok, utilized protection of all children is within what the
6575 * parent affords them, so we know whatever this child claims
6576 * and utilizes is effectively protected.
6577 *
6578 * If there is unprotected usage beyond this value, reclaim
6579 * will apply pressure in proportion to that amount.
6580 *
6581 * If there is unutilized protection, the cgroup will be fully
6582 * shielded from reclaim, but we do return a smaller value for
6583 * protection than what the group could enjoy in theory. This
6584 * is okay. With the overcommit distribution above, effective
6585 * protection is always dependent on how memory is actually
6586 * consumed among the siblings anyway.
6587 */
6588 ep = protected;
6589
6590 /*
6591 * If the children aren't claiming (all of) the protection
6592 * afforded to them by the parent, distribute the remainder in
6593 * proportion to the (unprotected) memory of each cgroup. That
6594 * way, cgroups that aren't explicitly prioritized wrt each
6595 * other compete freely over the allowance, but they are
6596 * collectively protected from neighboring trees.
6597 *
6598 * We're using unprotected memory for the weight so that if
6599 * some cgroups DO claim explicit protection, we don't protect
6600 * the same bytes twice.
6601 *
6602 * Check both usage and parent_usage against the respective
6603 * protected values. One should imply the other, but they
6604 * aren't read atomically - make sure the division is sane.
6605 */
6606 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6607 return ep;
6608 if (parent_effective > siblings_protected &&
6609 parent_usage > siblings_protected &&
6610 usage > protected) {
6611 unsigned long unclaimed;
6612
6613 unclaimed = parent_effective - siblings_protected;
6614 unclaimed *= usage - protected;
6615 unclaimed /= parent_usage - siblings_protected;
6616
6617 ep += unclaimed;
6618 }
6619
6620 return ep;
6621}
6622
6623/**
6624 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6625 * @root: the top ancestor of the sub-tree being checked
6626 * @memcg: the memory cgroup to check
6627 *
6628 * WARNING: This function is not stateless! It can only be used as part
6629 * of a top-down tree iteration, not for isolated queries.
6630 */
6631void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6632 struct mem_cgroup *memcg)
6633{
6634 unsigned long usage, parent_usage;
6635 struct mem_cgroup *parent;
6636
6637 if (mem_cgroup_disabled())
6638 return;
6639
6640 if (!root)
6641 root = root_mem_cgroup;
6642
6643 /*
6644 * Effective values of the reclaim targets are ignored so they
6645 * can be stale. Have a look at mem_cgroup_protection for more
6646 * details.
6647 * TODO: calculation should be more robust so that we do not need
6648 * that special casing.
6649 */
6650 if (memcg == root)
6651 return;
6652
6653 usage = page_counter_read(&memcg->memory);
6654 if (!usage)
6655 return;
6656
6657 parent = parent_mem_cgroup(memcg);
6658 /* No parent means a non-hierarchical mode on v1 memcg */
6659 if (!parent)
6660 return;
6661
6662 if (parent == root) {
6663 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6664 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6665 return;
6666 }
6667
6668 parent_usage = page_counter_read(&parent->memory);
6669
6670 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6671 READ_ONCE(memcg->memory.min),
6672 READ_ONCE(parent->memory.emin),
6673 atomic_long_read(&parent->memory.children_min_usage)));
6674
6675 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6676 READ_ONCE(memcg->memory.low),
6677 READ_ONCE(parent->memory.elow),
6678 atomic_long_read(&parent->memory.children_low_usage)));
6679}
6680
6681static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6682 gfp_t gfp)
6683{
6684 long nr_pages = folio_nr_pages(folio);
6685 int ret;
6686
6687 ret = try_charge(memcg, gfp, nr_pages);
6688 if (ret)
6689 goto out;
6690
6691 css_get(&memcg->css);
6692 commit_charge(folio, memcg);
6693
6694 local_irq_disable();
6695 mem_cgroup_charge_statistics(memcg, nr_pages);
6696 memcg_check_events(memcg, folio_nid(folio));
6697 local_irq_enable();
6698out:
6699 return ret;
6700}
6701
6702int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6703{
6704 struct mem_cgroup *memcg;
6705 int ret;
6706
6707 memcg = get_mem_cgroup_from_mm(mm);
6708 ret = charge_memcg(folio, memcg, gfp);
6709 css_put(&memcg->css);
6710
6711 return ret;
6712}
6713
6714/**
6715 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6716 * @page: page to charge
6717 * @mm: mm context of the victim
6718 * @gfp: reclaim mode
6719 * @entry: swap entry for which the page is allocated
6720 *
6721 * This function charges a page allocated for swapin. Please call this before
6722 * adding the page to the swapcache.
6723 *
6724 * Returns 0 on success. Otherwise, an error code is returned.
6725 */
6726int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6727 gfp_t gfp, swp_entry_t entry)
6728{
6729 struct folio *folio = page_folio(page);
6730 struct mem_cgroup *memcg;
6731 unsigned short id;
6732 int ret;
6733
6734 if (mem_cgroup_disabled())
6735 return 0;
6736
6737 id = lookup_swap_cgroup_id(entry);
6738 rcu_read_lock();
6739 memcg = mem_cgroup_from_id(id);
6740 if (!memcg || !css_tryget_online(&memcg->css))
6741 memcg = get_mem_cgroup_from_mm(mm);
6742 rcu_read_unlock();
6743
6744 ret = charge_memcg(folio, memcg, gfp);
6745
6746 css_put(&memcg->css);
6747 return ret;
6748}
6749
6750/*
6751 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6752 * @entry: swap entry for which the page is charged
6753 *
6754 * Call this function after successfully adding the charged page to swapcache.
6755 *
6756 * Note: This function assumes the page for which swap slot is being uncharged
6757 * is order 0 page.
6758 */
6759void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6760{
6761 /*
6762 * Cgroup1's unified memory+swap counter has been charged with the
6763 * new swapcache page, finish the transfer by uncharging the swap
6764 * slot. The swap slot would also get uncharged when it dies, but
6765 * it can stick around indefinitely and we'd count the page twice
6766 * the entire time.
6767 *
6768 * Cgroup2 has separate resource counters for memory and swap,
6769 * so this is a non-issue here. Memory and swap charge lifetimes
6770 * correspond 1:1 to page and swap slot lifetimes: we charge the
6771 * page to memory here, and uncharge swap when the slot is freed.
6772 */
6773 if (!mem_cgroup_disabled() && do_memsw_account()) {
6774 /*
6775 * The swap entry might not get freed for a long time,
6776 * let's not wait for it. The page already received a
6777 * memory+swap charge, drop the swap entry duplicate.
6778 */
6779 mem_cgroup_uncharge_swap(entry, 1);
6780 }
6781}
6782
6783struct uncharge_gather {
6784 struct mem_cgroup *memcg;
6785 unsigned long nr_memory;
6786 unsigned long pgpgout;
6787 unsigned long nr_kmem;
6788 int nid;
6789};
6790
6791static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6792{
6793 memset(ug, 0, sizeof(*ug));
6794}
6795
6796static void uncharge_batch(const struct uncharge_gather *ug)
6797{
6798 unsigned long flags;
6799
6800 if (ug->nr_memory) {
6801 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6802 if (do_memsw_account())
6803 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6804 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6805 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6806 memcg_oom_recover(ug->memcg);
6807 }
6808
6809 local_irq_save(flags);
6810 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6811 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6812 memcg_check_events(ug->memcg, ug->nid);
6813 local_irq_restore(flags);
6814
6815 /* drop reference from uncharge_folio */
6816 css_put(&ug->memcg->css);
6817}
6818
6819static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6820{
6821 long nr_pages;
6822 struct mem_cgroup *memcg;
6823 struct obj_cgroup *objcg;
6824 bool use_objcg = folio_memcg_kmem(folio);
6825
6826 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6827
6828 /*
6829 * Nobody should be changing or seriously looking at
6830 * folio memcg or objcg at this point, we have fully
6831 * exclusive access to the folio.
6832 */
6833 if (use_objcg) {
6834 objcg = __folio_objcg(folio);
6835 /*
6836 * This get matches the put at the end of the function and
6837 * kmem pages do not hold memcg references anymore.
6838 */
6839 memcg = get_mem_cgroup_from_objcg(objcg);
6840 } else {
6841 memcg = __folio_memcg(folio);
6842 }
6843
6844 if (!memcg)
6845 return;
6846
6847 if (ug->memcg != memcg) {
6848 if (ug->memcg) {
6849 uncharge_batch(ug);
6850 uncharge_gather_clear(ug);
6851 }
6852 ug->memcg = memcg;
6853 ug->nid = folio_nid(folio);
6854
6855 /* pairs with css_put in uncharge_batch */
6856 css_get(&memcg->css);
6857 }
6858
6859 nr_pages = folio_nr_pages(folio);
6860
6861 if (use_objcg) {
6862 ug->nr_memory += nr_pages;
6863 ug->nr_kmem += nr_pages;
6864
6865 folio->memcg_data = 0;
6866 obj_cgroup_put(objcg);
6867 } else {
6868 /* LRU pages aren't accounted at the root level */
6869 if (!mem_cgroup_is_root(memcg))
6870 ug->nr_memory += nr_pages;
6871 ug->pgpgout++;
6872
6873 folio->memcg_data = 0;
6874 }
6875
6876 css_put(&memcg->css);
6877}
6878
6879void __mem_cgroup_uncharge(struct folio *folio)
6880{
6881 struct uncharge_gather ug;
6882
6883 /* Don't touch folio->lru of any random page, pre-check: */
6884 if (!folio_memcg(folio))
6885 return;
6886
6887 uncharge_gather_clear(&ug);
6888 uncharge_folio(folio, &ug);
6889 uncharge_batch(&ug);
6890}
6891
6892/**
6893 * __mem_cgroup_uncharge_list - uncharge a list of page
6894 * @page_list: list of pages to uncharge
6895 *
6896 * Uncharge a list of pages previously charged with
6897 * __mem_cgroup_charge().
6898 */
6899void __mem_cgroup_uncharge_list(struct list_head *page_list)
6900{
6901 struct uncharge_gather ug;
6902 struct folio *folio;
6903
6904 uncharge_gather_clear(&ug);
6905 list_for_each_entry(folio, page_list, lru)
6906 uncharge_folio(folio, &ug);
6907 if (ug.memcg)
6908 uncharge_batch(&ug);
6909}
6910
6911/**
6912 * mem_cgroup_migrate - Charge a folio's replacement.
6913 * @old: Currently circulating folio.
6914 * @new: Replacement folio.
6915 *
6916 * Charge @new as a replacement folio for @old. @old will
6917 * be uncharged upon free.
6918 *
6919 * Both folios must be locked, @new->mapping must be set up.
6920 */
6921void mem_cgroup_migrate(struct folio *old, struct folio *new)
6922{
6923 struct mem_cgroup *memcg;
6924 long nr_pages = folio_nr_pages(new);
6925 unsigned long flags;
6926
6927 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6928 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6929 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6930 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6931
6932 if (mem_cgroup_disabled())
6933 return;
6934
6935 /* Page cache replacement: new folio already charged? */
6936 if (folio_memcg(new))
6937 return;
6938
6939 memcg = folio_memcg(old);
6940 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6941 if (!memcg)
6942 return;
6943
6944 /* Force-charge the new page. The old one will be freed soon */
6945 if (!mem_cgroup_is_root(memcg)) {
6946 page_counter_charge(&memcg->memory, nr_pages);
6947 if (do_memsw_account())
6948 page_counter_charge(&memcg->memsw, nr_pages);
6949 }
6950
6951 css_get(&memcg->css);
6952 commit_charge(new, memcg);
6953
6954 local_irq_save(flags);
6955 mem_cgroup_charge_statistics(memcg, nr_pages);
6956 memcg_check_events(memcg, folio_nid(new));
6957 local_irq_restore(flags);
6958}
6959
6960DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6961EXPORT_SYMBOL(memcg_sockets_enabled_key);
6962
6963void mem_cgroup_sk_alloc(struct sock *sk)
6964{
6965 struct mem_cgroup *memcg;
6966
6967 if (!mem_cgroup_sockets_enabled)
6968 return;
6969
6970 /* Do not associate the sock with unrelated interrupted task's memcg. */
6971 if (in_interrupt())
6972 return;
6973
6974 rcu_read_lock();
6975 memcg = mem_cgroup_from_task(current);
6976 if (memcg == root_mem_cgroup)
6977 goto out;
6978 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6979 goto out;
6980 if (css_tryget(&memcg->css))
6981 sk->sk_memcg = memcg;
6982out:
6983 rcu_read_unlock();
6984}
6985
6986void mem_cgroup_sk_free(struct sock *sk)
6987{
6988 if (sk->sk_memcg)
6989 css_put(&sk->sk_memcg->css);
6990}
6991
6992/**
6993 * mem_cgroup_charge_skmem - charge socket memory
6994 * @memcg: memcg to charge
6995 * @nr_pages: number of pages to charge
6996 * @gfp_mask: reclaim mode
6997 *
6998 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6999 * @memcg's configured limit, %false if it doesn't.
7000 */
7001bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7002 gfp_t gfp_mask)
7003{
7004 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7005 struct page_counter *fail;
7006
7007 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7008 memcg->tcpmem_pressure = 0;
7009 return true;
7010 }
7011 memcg->tcpmem_pressure = 1;
7012 if (gfp_mask & __GFP_NOFAIL) {
7013 page_counter_charge(&memcg->tcpmem, nr_pages);
7014 return true;
7015 }
7016 return false;
7017 }
7018
7019 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7020 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7021 return true;
7022 }
7023
7024 return false;
7025}
7026
7027/**
7028 * mem_cgroup_uncharge_skmem - uncharge socket memory
7029 * @memcg: memcg to uncharge
7030 * @nr_pages: number of pages to uncharge
7031 */
7032void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7033{
7034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7035 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7036 return;
7037 }
7038
7039 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7040
7041 refill_stock(memcg, nr_pages);
7042}
7043
7044static int __init cgroup_memory(char *s)
7045{
7046 char *token;
7047
7048 while ((token = strsep(&s, ",")) != NULL) {
7049 if (!*token)
7050 continue;
7051 if (!strcmp(token, "nosocket"))
7052 cgroup_memory_nosocket = true;
7053 if (!strcmp(token, "nokmem"))
7054 cgroup_memory_nokmem = true;
7055 }
7056 return 0;
7057}
7058__setup("cgroup.memory=", cgroup_memory);
7059
7060/*
7061 * subsys_initcall() for memory controller.
7062 *
7063 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7064 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7065 * basically everything that doesn't depend on a specific mem_cgroup structure
7066 * should be initialized from here.
7067 */
7068static int __init mem_cgroup_init(void)
7069{
7070 int cpu, node;
7071
7072 /*
7073 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7074 * used for per-memcg-per-cpu caching of per-node statistics. In order
7075 * to work fine, we should make sure that the overfill threshold can't
7076 * exceed S32_MAX / PAGE_SIZE.
7077 */
7078 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7079
7080 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7081 memcg_hotplug_cpu_dead);
7082
7083 for_each_possible_cpu(cpu)
7084 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7085 drain_local_stock);
7086
7087 for_each_node(node) {
7088 struct mem_cgroup_tree_per_node *rtpn;
7089
7090 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7091 node_online(node) ? node : NUMA_NO_NODE);
7092
7093 rtpn->rb_root = RB_ROOT;
7094 rtpn->rb_rightmost = NULL;
7095 spin_lock_init(&rtpn->lock);
7096 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7097 }
7098
7099 return 0;
7100}
7101subsys_initcall(mem_cgroup_init);
7102
7103#ifdef CONFIG_MEMCG_SWAP
7104static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7105{
7106 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7107 /*
7108 * The root cgroup cannot be destroyed, so it's refcount must
7109 * always be >= 1.
7110 */
7111 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7112 VM_BUG_ON(1);
7113 break;
7114 }
7115 memcg = parent_mem_cgroup(memcg);
7116 if (!memcg)
7117 memcg = root_mem_cgroup;
7118 }
7119 return memcg;
7120}
7121
7122/**
7123 * mem_cgroup_swapout - transfer a memsw charge to swap
7124 * @page: page whose memsw charge to transfer
7125 * @entry: swap entry to move the charge to
7126 *
7127 * Transfer the memsw charge of @page to @entry.
7128 */
7129void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7130{
7131 struct mem_cgroup *memcg, *swap_memcg;
7132 unsigned int nr_entries;
7133 unsigned short oldid;
7134
7135 VM_BUG_ON_PAGE(PageLRU(page), page);
7136 VM_BUG_ON_PAGE(page_count(page), page);
7137
7138 if (mem_cgroup_disabled())
7139 return;
7140
7141 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7142 return;
7143
7144 memcg = page_memcg(page);
7145
7146 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7147 if (!memcg)
7148 return;
7149
7150 /*
7151 * In case the memcg owning these pages has been offlined and doesn't
7152 * have an ID allocated to it anymore, charge the closest online
7153 * ancestor for the swap instead and transfer the memory+swap charge.
7154 */
7155 swap_memcg = mem_cgroup_id_get_online(memcg);
7156 nr_entries = thp_nr_pages(page);
7157 /* Get references for the tail pages, too */
7158 if (nr_entries > 1)
7159 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7160 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7161 nr_entries);
7162 VM_BUG_ON_PAGE(oldid, page);
7163 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7164
7165 page->memcg_data = 0;
7166
7167 if (!mem_cgroup_is_root(memcg))
7168 page_counter_uncharge(&memcg->memory, nr_entries);
7169
7170 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7171 if (!mem_cgroup_is_root(swap_memcg))
7172 page_counter_charge(&swap_memcg->memsw, nr_entries);
7173 page_counter_uncharge(&memcg->memsw, nr_entries);
7174 }
7175
7176 /*
7177 * Interrupts should be disabled here because the caller holds the
7178 * i_pages lock which is taken with interrupts-off. It is
7179 * important here to have the interrupts disabled because it is the
7180 * only synchronisation we have for updating the per-CPU variables.
7181 */
7182 VM_BUG_ON(!irqs_disabled());
7183 mem_cgroup_charge_statistics(memcg, -nr_entries);
7184 memcg_check_events(memcg, page_to_nid(page));
7185
7186 css_put(&memcg->css);
7187}
7188
7189/**
7190 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7191 * @page: page being added to swap
7192 * @entry: swap entry to charge
7193 *
7194 * Try to charge @page's memcg for the swap space at @entry.
7195 *
7196 * Returns 0 on success, -ENOMEM on failure.
7197 */
7198int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7199{
7200 unsigned int nr_pages = thp_nr_pages(page);
7201 struct page_counter *counter;
7202 struct mem_cgroup *memcg;
7203 unsigned short oldid;
7204
7205 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7206 return 0;
7207
7208 memcg = page_memcg(page);
7209
7210 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7211 if (!memcg)
7212 return 0;
7213
7214 if (!entry.val) {
7215 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7216 return 0;
7217 }
7218
7219 memcg = mem_cgroup_id_get_online(memcg);
7220
7221 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7222 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7223 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7224 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7225 mem_cgroup_id_put(memcg);
7226 return -ENOMEM;
7227 }
7228
7229 /* Get references for the tail pages, too */
7230 if (nr_pages > 1)
7231 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7232 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7233 VM_BUG_ON_PAGE(oldid, page);
7234 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7235
7236 return 0;
7237}
7238
7239/**
7240 * __mem_cgroup_uncharge_swap - uncharge swap space
7241 * @entry: swap entry to uncharge
7242 * @nr_pages: the amount of swap space to uncharge
7243 */
7244void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7245{
7246 struct mem_cgroup *memcg;
7247 unsigned short id;
7248
7249 id = swap_cgroup_record(entry, 0, nr_pages);
7250 rcu_read_lock();
7251 memcg = mem_cgroup_from_id(id);
7252 if (memcg) {
7253 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7254 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7255 page_counter_uncharge(&memcg->swap, nr_pages);
7256 else
7257 page_counter_uncharge(&memcg->memsw, nr_pages);
7258 }
7259 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7260 mem_cgroup_id_put_many(memcg, nr_pages);
7261 }
7262 rcu_read_unlock();
7263}
7264
7265long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7266{
7267 long nr_swap_pages = get_nr_swap_pages();
7268
7269 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7270 return nr_swap_pages;
7271 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7272 nr_swap_pages = min_t(long, nr_swap_pages,
7273 READ_ONCE(memcg->swap.max) -
7274 page_counter_read(&memcg->swap));
7275 return nr_swap_pages;
7276}
7277
7278bool mem_cgroup_swap_full(struct page *page)
7279{
7280 struct mem_cgroup *memcg;
7281
7282 VM_BUG_ON_PAGE(!PageLocked(page), page);
7283
7284 if (vm_swap_full())
7285 return true;
7286 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7287 return false;
7288
7289 memcg = page_memcg(page);
7290 if (!memcg)
7291 return false;
7292
7293 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7294 unsigned long usage = page_counter_read(&memcg->swap);
7295
7296 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7297 usage * 2 >= READ_ONCE(memcg->swap.max))
7298 return true;
7299 }
7300
7301 return false;
7302}
7303
7304static int __init setup_swap_account(char *s)
7305{
7306 if (!strcmp(s, "1"))
7307 cgroup_memory_noswap = false;
7308 else if (!strcmp(s, "0"))
7309 cgroup_memory_noswap = true;
7310 return 1;
7311}
7312__setup("swapaccount=", setup_swap_account);
7313
7314static u64 swap_current_read(struct cgroup_subsys_state *css,
7315 struct cftype *cft)
7316{
7317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7318
7319 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7320}
7321
7322static int swap_high_show(struct seq_file *m, void *v)
7323{
7324 return seq_puts_memcg_tunable(m,
7325 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7326}
7327
7328static ssize_t swap_high_write(struct kernfs_open_file *of,
7329 char *buf, size_t nbytes, loff_t off)
7330{
7331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7332 unsigned long high;
7333 int err;
7334
7335 buf = strstrip(buf);
7336 err = page_counter_memparse(buf, "max", &high);
7337 if (err)
7338 return err;
7339
7340 page_counter_set_high(&memcg->swap, high);
7341
7342 return nbytes;
7343}
7344
7345static int swap_max_show(struct seq_file *m, void *v)
7346{
7347 return seq_puts_memcg_tunable(m,
7348 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7349}
7350
7351static ssize_t swap_max_write(struct kernfs_open_file *of,
7352 char *buf, size_t nbytes, loff_t off)
7353{
7354 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7355 unsigned long max;
7356 int err;
7357
7358 buf = strstrip(buf);
7359 err = page_counter_memparse(buf, "max", &max);
7360 if (err)
7361 return err;
7362
7363 xchg(&memcg->swap.max, max);
7364
7365 return nbytes;
7366}
7367
7368static int swap_events_show(struct seq_file *m, void *v)
7369{
7370 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7371
7372 seq_printf(m, "high %lu\n",
7373 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7374 seq_printf(m, "max %lu\n",
7375 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7376 seq_printf(m, "fail %lu\n",
7377 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7378
7379 return 0;
7380}
7381
7382static struct cftype swap_files[] = {
7383 {
7384 .name = "swap.current",
7385 .flags = CFTYPE_NOT_ON_ROOT,
7386 .read_u64 = swap_current_read,
7387 },
7388 {
7389 .name = "swap.high",
7390 .flags = CFTYPE_NOT_ON_ROOT,
7391 .seq_show = swap_high_show,
7392 .write = swap_high_write,
7393 },
7394 {
7395 .name = "swap.max",
7396 .flags = CFTYPE_NOT_ON_ROOT,
7397 .seq_show = swap_max_show,
7398 .write = swap_max_write,
7399 },
7400 {
7401 .name = "swap.events",
7402 .flags = CFTYPE_NOT_ON_ROOT,
7403 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7404 .seq_show = swap_events_show,
7405 },
7406 { } /* terminate */
7407};
7408
7409static struct cftype memsw_files[] = {
7410 {
7411 .name = "memsw.usage_in_bytes",
7412 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7413 .read_u64 = mem_cgroup_read_u64,
7414 },
7415 {
7416 .name = "memsw.max_usage_in_bytes",
7417 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7418 .write = mem_cgroup_reset,
7419 .read_u64 = mem_cgroup_read_u64,
7420 },
7421 {
7422 .name = "memsw.limit_in_bytes",
7423 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7424 .write = mem_cgroup_write,
7425 .read_u64 = mem_cgroup_read_u64,
7426 },
7427 {
7428 .name = "memsw.failcnt",
7429 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7430 .write = mem_cgroup_reset,
7431 .read_u64 = mem_cgroup_read_u64,
7432 },
7433 { }, /* terminate */
7434};
7435
7436/*
7437 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7438 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7439 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7440 * boot parameter. This may result in premature OOPS inside
7441 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7442 */
7443static int __init mem_cgroup_swap_init(void)
7444{
7445 /* No memory control -> no swap control */
7446 if (mem_cgroup_disabled())
7447 cgroup_memory_noswap = true;
7448
7449 if (cgroup_memory_noswap)
7450 return 0;
7451
7452 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7453 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7454
7455 return 0;
7456}
7457core_initcall(mem_cgroup_swap_init);
7458
7459#endif /* CONFIG_MEMCG_SWAP */