Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28
29#include <linux/dma-fence-array.h>
30#include <linux/interval_tree_generic.h>
31#include <linux/idr.h>
32#include <linux/dma-buf.h>
33
34#include <drm/amdgpu_drm.h>
35#include <drm/drm_drv.h>
36#include "amdgpu.h"
37#include "amdgpu_trace.h"
38#include "amdgpu_amdkfd.h"
39#include "amdgpu_gmc.h"
40#include "amdgpu_xgmi.h"
41#include "amdgpu_dma_buf.h"
42#include "amdgpu_res_cursor.h"
43#include "kfd_svm.h"
44
45/**
46 * DOC: GPUVM
47 *
48 * GPUVM is similar to the legacy gart on older asics, however
49 * rather than there being a single global gart table
50 * for the entire GPU, there are multiple VM page tables active
51 * at any given time. The VM page tables can contain a mix
52 * vram pages and system memory pages and system memory pages
53 * can be mapped as snooped (cached system pages) or unsnooped
54 * (uncached system pages).
55 * Each VM has an ID associated with it and there is a page table
56 * associated with each VMID. When executing a command buffer,
57 * the kernel tells the the ring what VMID to use for that command
58 * buffer. VMIDs are allocated dynamically as commands are submitted.
59 * The userspace drivers maintain their own address space and the kernel
60 * sets up their pages tables accordingly when they submit their
61 * command buffers and a VMID is assigned.
62 * Cayman/Trinity support up to 8 active VMs at any given time;
63 * SI supports 16.
64 */
65
66#define START(node) ((node)->start)
67#define LAST(node) ((node)->last)
68
69INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 START, LAST, static, amdgpu_vm_it)
71
72#undef START
73#undef LAST
74
75/**
76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77 */
78struct amdgpu_prt_cb {
79
80 /**
81 * @adev: amdgpu device
82 */
83 struct amdgpu_device *adev;
84
85 /**
86 * @cb: callback
87 */
88 struct dma_fence_cb cb;
89};
90
91/**
92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93 *
94 * @adev: amdgpu_device pointer
95 * @vm: amdgpu_vm pointer
96 * @pasid: the pasid the VM is using on this GPU
97 *
98 * Set the pasid this VM is using on this GPU, can also be used to remove the
99 * pasid by passing in zero.
100 *
101 */
102int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 u32 pasid)
104{
105 int r;
106
107 if (vm->pasid == pasid)
108 return 0;
109
110 if (vm->pasid) {
111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 if (r < 0)
113 return r;
114
115 vm->pasid = 0;
116 }
117
118 if (pasid) {
119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 GFP_KERNEL));
121 if (r < 0)
122 return r;
123
124 vm->pasid = pasid;
125 }
126
127
128 return 0;
129}
130
131/*
132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133 * happens while holding this lock anywhere to prevent deadlocks when
134 * an MMU notifier runs in reclaim-FS context.
135 */
136static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137{
138 mutex_lock(&vm->eviction_lock);
139 vm->saved_flags = memalloc_noreclaim_save();
140}
141
142static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143{
144 if (mutex_trylock(&vm->eviction_lock)) {
145 vm->saved_flags = memalloc_noreclaim_save();
146 return 1;
147 }
148 return 0;
149}
150
151static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152{
153 memalloc_noreclaim_restore(vm->saved_flags);
154 mutex_unlock(&vm->eviction_lock);
155}
156
157/**
158 * amdgpu_vm_level_shift - return the addr shift for each level
159 *
160 * @adev: amdgpu_device pointer
161 * @level: VMPT level
162 *
163 * Returns:
164 * The number of bits the pfn needs to be right shifted for a level.
165 */
166static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 unsigned level)
168{
169 switch (level) {
170 case AMDGPU_VM_PDB2:
171 case AMDGPU_VM_PDB1:
172 case AMDGPU_VM_PDB0:
173 return 9 * (AMDGPU_VM_PDB0 - level) +
174 adev->vm_manager.block_size;
175 case AMDGPU_VM_PTB:
176 return 0;
177 default:
178 return ~0;
179 }
180}
181
182/**
183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184 *
185 * @adev: amdgpu_device pointer
186 * @level: VMPT level
187 *
188 * Returns:
189 * The number of entries in a page directory or page table.
190 */
191static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 unsigned level)
193{
194 unsigned shift = amdgpu_vm_level_shift(adev,
195 adev->vm_manager.root_level);
196
197 if (level == adev->vm_manager.root_level)
198 /* For the root directory */
199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 >> shift;
201 else if (level != AMDGPU_VM_PTB)
202 /* Everything in between */
203 return 512;
204 else
205 /* For the page tables on the leaves */
206 return AMDGPU_VM_PTE_COUNT(adev);
207}
208
209/**
210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211 *
212 * @adev: amdgpu_device pointer
213 *
214 * Returns:
215 * The number of entries in the root page directory which needs the ATS setting.
216 */
217static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218{
219 unsigned shift;
220
221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223}
224
225/**
226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227 *
228 * @adev: amdgpu_device pointer
229 * @level: VMPT level
230 *
231 * Returns:
232 * The mask to extract the entry number of a PD/PT from an address.
233 */
234static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 unsigned int level)
236{
237 if (level <= adev->vm_manager.root_level)
238 return 0xffffffff;
239 else if (level != AMDGPU_VM_PTB)
240 return 0x1ff;
241 else
242 return AMDGPU_VM_PTE_COUNT(adev) - 1;
243}
244
245/**
246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247 *
248 * @adev: amdgpu_device pointer
249 * @level: VMPT level
250 *
251 * Returns:
252 * The size of the BO for a page directory or page table in bytes.
253 */
254static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255{
256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257}
258
259/**
260 * amdgpu_vm_bo_evicted - vm_bo is evicted
261 *
262 * @vm_bo: vm_bo which is evicted
263 *
264 * State for PDs/PTs and per VM BOs which are not at the location they should
265 * be.
266 */
267static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268{
269 struct amdgpu_vm *vm = vm_bo->vm;
270 struct amdgpu_bo *bo = vm_bo->bo;
271
272 vm_bo->moved = true;
273 if (bo->tbo.type == ttm_bo_type_kernel)
274 list_move(&vm_bo->vm_status, &vm->evicted);
275 else
276 list_move_tail(&vm_bo->vm_status, &vm->evicted);
277}
278/**
279 * amdgpu_vm_bo_moved - vm_bo is moved
280 *
281 * @vm_bo: vm_bo which is moved
282 *
283 * State for per VM BOs which are moved, but that change is not yet reflected
284 * in the page tables.
285 */
286static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287{
288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289}
290
291/**
292 * amdgpu_vm_bo_idle - vm_bo is idle
293 *
294 * @vm_bo: vm_bo which is now idle
295 *
296 * State for PDs/PTs and per VM BOs which have gone through the state machine
297 * and are now idle.
298 */
299static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300{
301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 vm_bo->moved = false;
303}
304
305/**
306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307 *
308 * @vm_bo: vm_bo which is now invalidated
309 *
310 * State for normal BOs which are invalidated and that change not yet reflected
311 * in the PTs.
312 */
313static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314{
315 spin_lock(&vm_bo->vm->invalidated_lock);
316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 spin_unlock(&vm_bo->vm->invalidated_lock);
318}
319
320/**
321 * amdgpu_vm_bo_relocated - vm_bo is reloacted
322 *
323 * @vm_bo: vm_bo which is relocated
324 *
325 * State for PDs/PTs which needs to update their parent PD.
326 * For the root PD, just move to idle state.
327 */
328static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329{
330 if (vm_bo->bo->parent)
331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 else
333 amdgpu_vm_bo_idle(vm_bo);
334}
335
336/**
337 * amdgpu_vm_bo_done - vm_bo is done
338 *
339 * @vm_bo: vm_bo which is now done
340 *
341 * State for normal BOs which are invalidated and that change has been updated
342 * in the PTs.
343 */
344static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345{
346 spin_lock(&vm_bo->vm->invalidated_lock);
347 list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 spin_unlock(&vm_bo->vm->invalidated_lock);
349}
350
351/**
352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353 *
354 * @base: base structure for tracking BO usage in a VM
355 * @vm: vm to which bo is to be added
356 * @bo: amdgpu buffer object
357 *
358 * Initialize a bo_va_base structure and add it to the appropriate lists
359 *
360 */
361static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 struct amdgpu_vm *vm,
363 struct amdgpu_bo *bo)
364{
365 base->vm = vm;
366 base->bo = bo;
367 base->next = NULL;
368 INIT_LIST_HEAD(&base->vm_status);
369
370 if (!bo)
371 return;
372 base->next = bo->vm_bo;
373 bo->vm_bo = base;
374
375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 return;
377
378 vm->bulk_moveable = false;
379 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380 amdgpu_vm_bo_relocated(base);
381 else
382 amdgpu_vm_bo_idle(base);
383
384 if (bo->preferred_domains &
385 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386 return;
387
388 /*
389 * we checked all the prerequisites, but it looks like this per vm bo
390 * is currently evicted. add the bo to the evicted list to make sure it
391 * is validated on next vm use to avoid fault.
392 * */
393 amdgpu_vm_bo_evicted(base);
394}
395
396/**
397 * amdgpu_vm_pt_parent - get the parent page directory
398 *
399 * @pt: child page table
400 *
401 * Helper to get the parent entry for the child page table. NULL if we are at
402 * the root page directory.
403 */
404static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405{
406 struct amdgpu_bo *parent = pt->bo->parent;
407
408 if (!parent)
409 return NULL;
410
411 return parent->vm_bo;
412}
413
414/*
415 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416 */
417struct amdgpu_vm_pt_cursor {
418 uint64_t pfn;
419 struct amdgpu_vm_bo_base *parent;
420 struct amdgpu_vm_bo_base *entry;
421 unsigned level;
422};
423
424/**
425 * amdgpu_vm_pt_start - start PD/PT walk
426 *
427 * @adev: amdgpu_device pointer
428 * @vm: amdgpu_vm structure
429 * @start: start address of the walk
430 * @cursor: state to initialize
431 *
432 * Initialize a amdgpu_vm_pt_cursor to start a walk.
433 */
434static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435 struct amdgpu_vm *vm, uint64_t start,
436 struct amdgpu_vm_pt_cursor *cursor)
437{
438 cursor->pfn = start;
439 cursor->parent = NULL;
440 cursor->entry = &vm->root;
441 cursor->level = adev->vm_manager.root_level;
442}
443
444/**
445 * amdgpu_vm_pt_descendant - go to child node
446 *
447 * @adev: amdgpu_device pointer
448 * @cursor: current state
449 *
450 * Walk to the child node of the current node.
451 * Returns:
452 * True if the walk was possible, false otherwise.
453 */
454static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455 struct amdgpu_vm_pt_cursor *cursor)
456{
457 unsigned mask, shift, idx;
458
459 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460 !cursor->entry->bo)
461 return false;
462
463 mask = amdgpu_vm_entries_mask(adev, cursor->level);
464 shift = amdgpu_vm_level_shift(adev, cursor->level);
465
466 ++cursor->level;
467 idx = (cursor->pfn >> shift) & mask;
468 cursor->parent = cursor->entry;
469 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470 return true;
471}
472
473/**
474 * amdgpu_vm_pt_sibling - go to sibling node
475 *
476 * @adev: amdgpu_device pointer
477 * @cursor: current state
478 *
479 * Walk to the sibling node of the current node.
480 * Returns:
481 * True if the walk was possible, false otherwise.
482 */
483static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484 struct amdgpu_vm_pt_cursor *cursor)
485{
486 unsigned shift, num_entries;
487
488 /* Root doesn't have a sibling */
489 if (!cursor->parent)
490 return false;
491
492 /* Go to our parents and see if we got a sibling */
493 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495
496 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497 return false;
498
499 cursor->pfn += 1ULL << shift;
500 cursor->pfn &= ~((1ULL << shift) - 1);
501 ++cursor->entry;
502 return true;
503}
504
505/**
506 * amdgpu_vm_pt_ancestor - go to parent node
507 *
508 * @cursor: current state
509 *
510 * Walk to the parent node of the current node.
511 * Returns:
512 * True if the walk was possible, false otherwise.
513 */
514static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515{
516 if (!cursor->parent)
517 return false;
518
519 --cursor->level;
520 cursor->entry = cursor->parent;
521 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522 return true;
523}
524
525/**
526 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527 *
528 * @adev: amdgpu_device pointer
529 * @cursor: current state
530 *
531 * Walk the PD/PT tree to the next node.
532 */
533static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534 struct amdgpu_vm_pt_cursor *cursor)
535{
536 /* First try a newborn child */
537 if (amdgpu_vm_pt_descendant(adev, cursor))
538 return;
539
540 /* If that didn't worked try to find a sibling */
541 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542 /* No sibling, go to our parents and grandparents */
543 if (!amdgpu_vm_pt_ancestor(cursor)) {
544 cursor->pfn = ~0ll;
545 return;
546 }
547 }
548}
549
550/**
551 * amdgpu_vm_pt_first_dfs - start a deep first search
552 *
553 * @adev: amdgpu_device structure
554 * @vm: amdgpu_vm structure
555 * @start: optional cursor to start with
556 * @cursor: state to initialize
557 *
558 * Starts a deep first traversal of the PD/PT tree.
559 */
560static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561 struct amdgpu_vm *vm,
562 struct amdgpu_vm_pt_cursor *start,
563 struct amdgpu_vm_pt_cursor *cursor)
564{
565 if (start)
566 *cursor = *start;
567 else
568 amdgpu_vm_pt_start(adev, vm, 0, cursor);
569 while (amdgpu_vm_pt_descendant(adev, cursor));
570}
571
572/**
573 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574 *
575 * @start: starting point for the search
576 * @entry: current entry
577 *
578 * Returns:
579 * True when the search should continue, false otherwise.
580 */
581static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582 struct amdgpu_vm_bo_base *entry)
583{
584 return entry && (!start || entry != start->entry);
585}
586
587/**
588 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589 *
590 * @adev: amdgpu_device structure
591 * @cursor: current state
592 *
593 * Move the cursor to the next node in a deep first search.
594 */
595static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596 struct amdgpu_vm_pt_cursor *cursor)
597{
598 if (!cursor->entry)
599 return;
600
601 if (!cursor->parent)
602 cursor->entry = NULL;
603 else if (amdgpu_vm_pt_sibling(adev, cursor))
604 while (amdgpu_vm_pt_descendant(adev, cursor));
605 else
606 amdgpu_vm_pt_ancestor(cursor);
607}
608
609/*
610 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611 */
612#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
613 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
614 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615 amdgpu_vm_pt_continue_dfs((start), (entry)); \
616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617
618/**
619 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620 *
621 * @vm: vm providing the BOs
622 * @validated: head of validation list
623 * @entry: entry to add
624 *
625 * Add the page directory to the list of BOs to
626 * validate for command submission.
627 */
628void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629 struct list_head *validated,
630 struct amdgpu_bo_list_entry *entry)
631{
632 entry->priority = 0;
633 entry->tv.bo = &vm->root.bo->tbo;
634 /* Two for VM updates, one for TTM and one for the CS job */
635 entry->tv.num_shared = 4;
636 entry->user_pages = NULL;
637 list_add(&entry->tv.head, validated);
638}
639
640/**
641 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
642 *
643 * @bo: BO which was removed from the LRU
644 *
645 * Make sure the bulk_moveable flag is updated when a BO is removed from the
646 * LRU.
647 */
648void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
649{
650 struct amdgpu_bo *abo;
651 struct amdgpu_vm_bo_base *bo_base;
652
653 if (!amdgpu_bo_is_amdgpu_bo(bo))
654 return;
655
656 if (bo->pin_count)
657 return;
658
659 abo = ttm_to_amdgpu_bo(bo);
660 if (!abo->parent)
661 return;
662 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
663 struct amdgpu_vm *vm = bo_base->vm;
664
665 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
666 vm->bulk_moveable = false;
667 }
668
669}
670/**
671 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
672 *
673 * @adev: amdgpu device pointer
674 * @vm: vm providing the BOs
675 *
676 * Move all BOs to the end of LRU and remember their positions to put them
677 * together.
678 */
679void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
680 struct amdgpu_vm *vm)
681{
682 struct amdgpu_vm_bo_base *bo_base;
683
684 if (vm->bulk_moveable) {
685 spin_lock(&adev->mman.bdev.lru_lock);
686 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
687 spin_unlock(&adev->mman.bdev.lru_lock);
688 return;
689 }
690
691 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
692
693 spin_lock(&adev->mman.bdev.lru_lock);
694 list_for_each_entry(bo_base, &vm->idle, vm_status) {
695 struct amdgpu_bo *bo = bo_base->bo;
696 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697
698 if (!bo->parent)
699 continue;
700
701 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
702 &vm->lru_bulk_move);
703 if (shadow)
704 ttm_bo_move_to_lru_tail(&shadow->tbo,
705 shadow->tbo.resource,
706 &vm->lru_bulk_move);
707 }
708 spin_unlock(&adev->mman.bdev.lru_lock);
709
710 vm->bulk_moveable = true;
711}
712
713/**
714 * amdgpu_vm_validate_pt_bos - validate the page table BOs
715 *
716 * @adev: amdgpu device pointer
717 * @vm: vm providing the BOs
718 * @validate: callback to do the validation
719 * @param: parameter for the validation callback
720 *
721 * Validate the page table BOs on command submission if neccessary.
722 *
723 * Returns:
724 * Validation result.
725 */
726int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
727 int (*validate)(void *p, struct amdgpu_bo *bo),
728 void *param)
729{
730 struct amdgpu_vm_bo_base *bo_base, *tmp;
731 int r;
732
733 vm->bulk_moveable &= list_empty(&vm->evicted);
734
735 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
736 struct amdgpu_bo *bo = bo_base->bo;
737 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
738
739 r = validate(param, bo);
740 if (r)
741 return r;
742 if (shadow) {
743 r = validate(param, shadow);
744 if (r)
745 return r;
746 }
747
748 if (bo->tbo.type != ttm_bo_type_kernel) {
749 amdgpu_vm_bo_moved(bo_base);
750 } else {
751 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
752 amdgpu_vm_bo_relocated(bo_base);
753 }
754 }
755
756 amdgpu_vm_eviction_lock(vm);
757 vm->evicting = false;
758 amdgpu_vm_eviction_unlock(vm);
759
760 return 0;
761}
762
763/**
764 * amdgpu_vm_ready - check VM is ready for updates
765 *
766 * @vm: VM to check
767 *
768 * Check if all VM PDs/PTs are ready for updates
769 *
770 * Returns:
771 * True if eviction list is empty.
772 */
773bool amdgpu_vm_ready(struct amdgpu_vm *vm)
774{
775 return list_empty(&vm->evicted);
776}
777
778/**
779 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
780 *
781 * @adev: amdgpu_device pointer
782 * @vm: VM to clear BO from
783 * @vmbo: BO to clear
784 * @immediate: use an immediate update
785 *
786 * Root PD needs to be reserved when calling this.
787 *
788 * Returns:
789 * 0 on success, errno otherwise.
790 */
791static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
792 struct amdgpu_vm *vm,
793 struct amdgpu_bo_vm *vmbo,
794 bool immediate)
795{
796 struct ttm_operation_ctx ctx = { true, false };
797 unsigned level = adev->vm_manager.root_level;
798 struct amdgpu_vm_update_params params;
799 struct amdgpu_bo *ancestor = &vmbo->bo;
800 struct amdgpu_bo *bo = &vmbo->bo;
801 unsigned entries, ats_entries;
802 uint64_t addr;
803 int r, idx;
804
805 /* Figure out our place in the hierarchy */
806 if (ancestor->parent) {
807 ++level;
808 while (ancestor->parent->parent) {
809 ++level;
810 ancestor = ancestor->parent;
811 }
812 }
813
814 entries = amdgpu_bo_size(bo) / 8;
815 if (!vm->pte_support_ats) {
816 ats_entries = 0;
817
818 } else if (!bo->parent) {
819 ats_entries = amdgpu_vm_num_ats_entries(adev);
820 ats_entries = min(ats_entries, entries);
821 entries -= ats_entries;
822
823 } else {
824 struct amdgpu_vm_bo_base *pt;
825
826 pt = ancestor->vm_bo;
827 ats_entries = amdgpu_vm_num_ats_entries(adev);
828 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
829 ats_entries = 0;
830 } else {
831 ats_entries = entries;
832 entries = 0;
833 }
834 }
835
836 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
837 if (r)
838 return r;
839
840 if (vmbo->shadow) {
841 struct amdgpu_bo *shadow = vmbo->shadow;
842
843 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
844 if (r)
845 return r;
846 }
847
848 if (!drm_dev_enter(adev_to_drm(adev), &idx))
849 return -ENODEV;
850
851 r = vm->update_funcs->map_table(vmbo);
852 if (r)
853 goto exit;
854
855 memset(¶ms, 0, sizeof(params));
856 params.adev = adev;
857 params.vm = vm;
858 params.immediate = immediate;
859
860 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT);
861 if (r)
862 goto exit;
863
864 addr = 0;
865 if (ats_entries) {
866 uint64_t value = 0, flags;
867
868 flags = AMDGPU_PTE_DEFAULT_ATC;
869 if (level != AMDGPU_VM_PTB) {
870 /* Handle leaf PDEs as PTEs */
871 flags |= AMDGPU_PDE_PTE;
872 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
873 }
874
875 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries,
876 value, flags);
877 if (r)
878 goto exit;
879
880 addr += ats_entries * 8;
881 }
882
883 if (entries) {
884 uint64_t value = 0, flags = 0;
885
886 if (adev->asic_type >= CHIP_VEGA10) {
887 if (level != AMDGPU_VM_PTB) {
888 /* Handle leaf PDEs as PTEs */
889 flags |= AMDGPU_PDE_PTE;
890 amdgpu_gmc_get_vm_pde(adev, level,
891 &value, &flags);
892 } else {
893 /* Workaround for fault priority problem on GMC9 */
894 flags = AMDGPU_PTE_EXECUTABLE;
895 }
896 }
897
898 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries,
899 value, flags);
900 if (r)
901 goto exit;
902 }
903
904 r = vm->update_funcs->commit(¶ms, NULL);
905exit:
906 drm_dev_exit(idx);
907 return r;
908}
909
910/**
911 * amdgpu_vm_pt_create - create bo for PD/PT
912 *
913 * @adev: amdgpu_device pointer
914 * @vm: requesting vm
915 * @level: the page table level
916 * @immediate: use a immediate update
917 * @vmbo: pointer to the buffer object pointer
918 */
919static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
920 struct amdgpu_vm *vm,
921 int level, bool immediate,
922 struct amdgpu_bo_vm **vmbo)
923{
924 struct amdgpu_bo_param bp;
925 struct amdgpu_bo *bo;
926 struct dma_resv *resv;
927 unsigned int num_entries;
928 int r;
929
930 memset(&bp, 0, sizeof(bp));
931
932 bp.size = amdgpu_vm_bo_size(adev, level);
933 bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
934 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
935 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
936 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
937 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
938
939 if (level < AMDGPU_VM_PTB)
940 num_entries = amdgpu_vm_num_entries(adev, level);
941 else
942 num_entries = 0;
943
944 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
945
946 if (vm->use_cpu_for_update)
947 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
948
949 bp.type = ttm_bo_type_kernel;
950 bp.no_wait_gpu = immediate;
951 if (vm->root.bo)
952 bp.resv = vm->root.bo->tbo.base.resv;
953
954 r = amdgpu_bo_create_vm(adev, &bp, vmbo);
955 if (r)
956 return r;
957
958 bo = &(*vmbo)->bo;
959 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
960 (*vmbo)->shadow = NULL;
961 return 0;
962 }
963
964 if (!bp.resv)
965 WARN_ON(dma_resv_lock(bo->tbo.base.resv,
966 NULL));
967 resv = bp.resv;
968 memset(&bp, 0, sizeof(bp));
969 bp.size = amdgpu_vm_bo_size(adev, level);
970 bp.domain = AMDGPU_GEM_DOMAIN_GTT;
971 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
972 bp.type = ttm_bo_type_kernel;
973 bp.resv = bo->tbo.base.resv;
974 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
975
976 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
977
978 if (!resv)
979 dma_resv_unlock(bo->tbo.base.resv);
980
981 if (r) {
982 amdgpu_bo_unref(&bo);
983 return r;
984 }
985
986 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
987 amdgpu_bo_add_to_shadow_list(*vmbo);
988
989 return 0;
990}
991
992/**
993 * amdgpu_vm_alloc_pts - Allocate a specific page table
994 *
995 * @adev: amdgpu_device pointer
996 * @vm: VM to allocate page tables for
997 * @cursor: Which page table to allocate
998 * @immediate: use an immediate update
999 *
1000 * Make sure a specific page table or directory is allocated.
1001 *
1002 * Returns:
1003 * 1 if page table needed to be allocated, 0 if page table was already
1004 * allocated, negative errno if an error occurred.
1005 */
1006static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1007 struct amdgpu_vm *vm,
1008 struct amdgpu_vm_pt_cursor *cursor,
1009 bool immediate)
1010{
1011 struct amdgpu_vm_bo_base *entry = cursor->entry;
1012 struct amdgpu_bo *pt_bo;
1013 struct amdgpu_bo_vm *pt;
1014 int r;
1015
1016 if (entry->bo)
1017 return 0;
1018
1019 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1020 if (r)
1021 return r;
1022
1023 /* Keep a reference to the root directory to avoid
1024 * freeing them up in the wrong order.
1025 */
1026 pt_bo = &pt->bo;
1027 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1028 amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1029 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1030 if (r)
1031 goto error_free_pt;
1032
1033 return 0;
1034
1035error_free_pt:
1036 amdgpu_bo_unref(&pt->shadow);
1037 amdgpu_bo_unref(&pt_bo);
1038 return r;
1039}
1040
1041/**
1042 * amdgpu_vm_free_table - fre one PD/PT
1043 *
1044 * @entry: PDE to free
1045 */
1046static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1047{
1048 struct amdgpu_bo *shadow;
1049
1050 if (!entry->bo)
1051 return;
1052 shadow = amdgpu_bo_shadowed(entry->bo);
1053 entry->bo->vm_bo = NULL;
1054 list_del(&entry->vm_status);
1055 amdgpu_bo_unref(&shadow);
1056 amdgpu_bo_unref(&entry->bo);
1057}
1058
1059/**
1060 * amdgpu_vm_free_pts - free PD/PT levels
1061 *
1062 * @adev: amdgpu device structure
1063 * @vm: amdgpu vm structure
1064 * @start: optional cursor where to start freeing PDs/PTs
1065 *
1066 * Free the page directory or page table level and all sub levels.
1067 */
1068static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1069 struct amdgpu_vm *vm,
1070 struct amdgpu_vm_pt_cursor *start)
1071{
1072 struct amdgpu_vm_pt_cursor cursor;
1073 struct amdgpu_vm_bo_base *entry;
1074
1075 vm->bulk_moveable = false;
1076
1077 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1078 amdgpu_vm_free_table(entry);
1079
1080 if (start)
1081 amdgpu_vm_free_table(start->entry);
1082}
1083
1084/**
1085 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1086 *
1087 * @adev: amdgpu_device pointer
1088 */
1089void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1090{
1091 const struct amdgpu_ip_block *ip_block;
1092 bool has_compute_vm_bug;
1093 struct amdgpu_ring *ring;
1094 int i;
1095
1096 has_compute_vm_bug = false;
1097
1098 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1099 if (ip_block) {
1100 /* Compute has a VM bug for GFX version < 7.
1101 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1102 if (ip_block->version->major <= 7)
1103 has_compute_vm_bug = true;
1104 else if (ip_block->version->major == 8)
1105 if (adev->gfx.mec_fw_version < 673)
1106 has_compute_vm_bug = true;
1107 }
1108
1109 for (i = 0; i < adev->num_rings; i++) {
1110 ring = adev->rings[i];
1111 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1112 /* only compute rings */
1113 ring->has_compute_vm_bug = has_compute_vm_bug;
1114 else
1115 ring->has_compute_vm_bug = false;
1116 }
1117}
1118
1119/**
1120 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1121 *
1122 * @ring: ring on which the job will be submitted
1123 * @job: job to submit
1124 *
1125 * Returns:
1126 * True if sync is needed.
1127 */
1128bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1129 struct amdgpu_job *job)
1130{
1131 struct amdgpu_device *adev = ring->adev;
1132 unsigned vmhub = ring->funcs->vmhub;
1133 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1134 struct amdgpu_vmid *id;
1135 bool gds_switch_needed;
1136 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1137
1138 if (job->vmid == 0)
1139 return false;
1140 id = &id_mgr->ids[job->vmid];
1141 gds_switch_needed = ring->funcs->emit_gds_switch && (
1142 id->gds_base != job->gds_base ||
1143 id->gds_size != job->gds_size ||
1144 id->gws_base != job->gws_base ||
1145 id->gws_size != job->gws_size ||
1146 id->oa_base != job->oa_base ||
1147 id->oa_size != job->oa_size);
1148
1149 if (amdgpu_vmid_had_gpu_reset(adev, id))
1150 return true;
1151
1152 return vm_flush_needed || gds_switch_needed;
1153}
1154
1155/**
1156 * amdgpu_vm_flush - hardware flush the vm
1157 *
1158 * @ring: ring to use for flush
1159 * @job: related job
1160 * @need_pipe_sync: is pipe sync needed
1161 *
1162 * Emit a VM flush when it is necessary.
1163 *
1164 * Returns:
1165 * 0 on success, errno otherwise.
1166 */
1167int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1168 bool need_pipe_sync)
1169{
1170 struct amdgpu_device *adev = ring->adev;
1171 unsigned vmhub = ring->funcs->vmhub;
1172 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1173 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1174 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1175 id->gds_base != job->gds_base ||
1176 id->gds_size != job->gds_size ||
1177 id->gws_base != job->gws_base ||
1178 id->gws_size != job->gws_size ||
1179 id->oa_base != job->oa_base ||
1180 id->oa_size != job->oa_size);
1181 bool vm_flush_needed = job->vm_needs_flush;
1182 struct dma_fence *fence = NULL;
1183 bool pasid_mapping_needed = false;
1184 unsigned patch_offset = 0;
1185 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1186 int r;
1187
1188 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1189 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1190
1191 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1192 gds_switch_needed = true;
1193 vm_flush_needed = true;
1194 pasid_mapping_needed = true;
1195 }
1196
1197 mutex_lock(&id_mgr->lock);
1198 if (id->pasid != job->pasid || !id->pasid_mapping ||
1199 !dma_fence_is_signaled(id->pasid_mapping))
1200 pasid_mapping_needed = true;
1201 mutex_unlock(&id_mgr->lock);
1202
1203 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1204 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1205 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1206 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1207 ring->funcs->emit_wreg;
1208
1209 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1210 return 0;
1211
1212 if (ring->funcs->init_cond_exec)
1213 patch_offset = amdgpu_ring_init_cond_exec(ring);
1214
1215 if (need_pipe_sync)
1216 amdgpu_ring_emit_pipeline_sync(ring);
1217
1218 if (vm_flush_needed) {
1219 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1220 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1221 }
1222
1223 if (pasid_mapping_needed)
1224 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1225
1226 if (vm_flush_needed || pasid_mapping_needed) {
1227 r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1228 if (r)
1229 return r;
1230 }
1231
1232 if (vm_flush_needed) {
1233 mutex_lock(&id_mgr->lock);
1234 dma_fence_put(id->last_flush);
1235 id->last_flush = dma_fence_get(fence);
1236 id->current_gpu_reset_count =
1237 atomic_read(&adev->gpu_reset_counter);
1238 mutex_unlock(&id_mgr->lock);
1239 }
1240
1241 if (pasid_mapping_needed) {
1242 mutex_lock(&id_mgr->lock);
1243 id->pasid = job->pasid;
1244 dma_fence_put(id->pasid_mapping);
1245 id->pasid_mapping = dma_fence_get(fence);
1246 mutex_unlock(&id_mgr->lock);
1247 }
1248 dma_fence_put(fence);
1249
1250 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1251 id->gds_base = job->gds_base;
1252 id->gds_size = job->gds_size;
1253 id->gws_base = job->gws_base;
1254 id->gws_size = job->gws_size;
1255 id->oa_base = job->oa_base;
1256 id->oa_size = job->oa_size;
1257 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1258 job->gds_size, job->gws_base,
1259 job->gws_size, job->oa_base,
1260 job->oa_size);
1261 }
1262
1263 if (ring->funcs->patch_cond_exec)
1264 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1265
1266 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1267 if (ring->funcs->emit_switch_buffer) {
1268 amdgpu_ring_emit_switch_buffer(ring);
1269 amdgpu_ring_emit_switch_buffer(ring);
1270 }
1271 return 0;
1272}
1273
1274/**
1275 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1276 *
1277 * @vm: requested vm
1278 * @bo: requested buffer object
1279 *
1280 * Find @bo inside the requested vm.
1281 * Search inside the @bos vm list for the requested vm
1282 * Returns the found bo_va or NULL if none is found
1283 *
1284 * Object has to be reserved!
1285 *
1286 * Returns:
1287 * Found bo_va or NULL.
1288 */
1289struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1290 struct amdgpu_bo *bo)
1291{
1292 struct amdgpu_vm_bo_base *base;
1293
1294 for (base = bo->vm_bo; base; base = base->next) {
1295 if (base->vm != vm)
1296 continue;
1297
1298 return container_of(base, struct amdgpu_bo_va, base);
1299 }
1300 return NULL;
1301}
1302
1303/**
1304 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1305 *
1306 * @pages_addr: optional DMA address to use for lookup
1307 * @addr: the unmapped addr
1308 *
1309 * Look up the physical address of the page that the pte resolves
1310 * to.
1311 *
1312 * Returns:
1313 * The pointer for the page table entry.
1314 */
1315uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1316{
1317 uint64_t result;
1318
1319 /* page table offset */
1320 result = pages_addr[addr >> PAGE_SHIFT];
1321
1322 /* in case cpu page size != gpu page size*/
1323 result |= addr & (~PAGE_MASK);
1324
1325 result &= 0xFFFFFFFFFFFFF000ULL;
1326
1327 return result;
1328}
1329
1330/**
1331 * amdgpu_vm_update_pde - update a single level in the hierarchy
1332 *
1333 * @params: parameters for the update
1334 * @vm: requested vm
1335 * @entry: entry to update
1336 *
1337 * Makes sure the requested entry in parent is up to date.
1338 */
1339static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1340 struct amdgpu_vm *vm,
1341 struct amdgpu_vm_bo_base *entry)
1342{
1343 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1344 struct amdgpu_bo *bo = parent->bo, *pbo;
1345 uint64_t pde, pt, flags;
1346 unsigned level;
1347
1348 for (level = 0, pbo = bo->parent; pbo; ++level)
1349 pbo = pbo->parent;
1350
1351 level += params->adev->vm_manager.root_level;
1352 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1353 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1354 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1355 1, 0, flags);
1356}
1357
1358/**
1359 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1360 *
1361 * @adev: amdgpu_device pointer
1362 * @vm: related vm
1363 *
1364 * Mark all PD level as invalid after an error.
1365 */
1366static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1367 struct amdgpu_vm *vm)
1368{
1369 struct amdgpu_vm_pt_cursor cursor;
1370 struct amdgpu_vm_bo_base *entry;
1371
1372 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1373 if (entry->bo && !entry->moved)
1374 amdgpu_vm_bo_relocated(entry);
1375}
1376
1377/**
1378 * amdgpu_vm_update_pdes - make sure that all directories are valid
1379 *
1380 * @adev: amdgpu_device pointer
1381 * @vm: requested vm
1382 * @immediate: submit immediately to the paging queue
1383 *
1384 * Makes sure all directories are up to date.
1385 *
1386 * Returns:
1387 * 0 for success, error for failure.
1388 */
1389int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1390 struct amdgpu_vm *vm, bool immediate)
1391{
1392 struct amdgpu_vm_update_params params;
1393 int r, idx;
1394
1395 if (list_empty(&vm->relocated))
1396 return 0;
1397
1398 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1399 return -ENODEV;
1400
1401 memset(¶ms, 0, sizeof(params));
1402 params.adev = adev;
1403 params.vm = vm;
1404 params.immediate = immediate;
1405
1406 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT);
1407 if (r)
1408 goto exit;
1409
1410 while (!list_empty(&vm->relocated)) {
1411 struct amdgpu_vm_bo_base *entry;
1412
1413 entry = list_first_entry(&vm->relocated,
1414 struct amdgpu_vm_bo_base,
1415 vm_status);
1416 amdgpu_vm_bo_idle(entry);
1417
1418 r = amdgpu_vm_update_pde(¶ms, vm, entry);
1419 if (r)
1420 goto error;
1421 }
1422
1423 r = vm->update_funcs->commit(¶ms, &vm->last_update);
1424 if (r)
1425 goto error;
1426 drm_dev_exit(idx);
1427 return 0;
1428
1429error:
1430 amdgpu_vm_invalidate_pds(adev, vm);
1431exit:
1432 drm_dev_exit(idx);
1433 return r;
1434}
1435
1436/*
1437 * amdgpu_vm_update_flags - figure out flags for PTE updates
1438 *
1439 * Make sure to set the right flags for the PTEs at the desired level.
1440 */
1441static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1442 struct amdgpu_bo_vm *pt, unsigned int level,
1443 uint64_t pe, uint64_t addr,
1444 unsigned int count, uint32_t incr,
1445 uint64_t flags)
1446
1447{
1448 if (level != AMDGPU_VM_PTB) {
1449 flags |= AMDGPU_PDE_PTE;
1450 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1451
1452 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1453 !(flags & AMDGPU_PTE_VALID) &&
1454 !(flags & AMDGPU_PTE_PRT)) {
1455
1456 /* Workaround for fault priority problem on GMC9 */
1457 flags |= AMDGPU_PTE_EXECUTABLE;
1458 }
1459
1460 params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1461 flags);
1462}
1463
1464/**
1465 * amdgpu_vm_fragment - get fragment for PTEs
1466 *
1467 * @params: see amdgpu_vm_update_params definition
1468 * @start: first PTE to handle
1469 * @end: last PTE to handle
1470 * @flags: hw mapping flags
1471 * @frag: resulting fragment size
1472 * @frag_end: end of this fragment
1473 *
1474 * Returns the first possible fragment for the start and end address.
1475 */
1476static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1477 uint64_t start, uint64_t end, uint64_t flags,
1478 unsigned int *frag, uint64_t *frag_end)
1479{
1480 /**
1481 * The MC L1 TLB supports variable sized pages, based on a fragment
1482 * field in the PTE. When this field is set to a non-zero value, page
1483 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1484 * flags are considered valid for all PTEs within the fragment range
1485 * and corresponding mappings are assumed to be physically contiguous.
1486 *
1487 * The L1 TLB can store a single PTE for the whole fragment,
1488 * significantly increasing the space available for translation
1489 * caching. This leads to large improvements in throughput when the
1490 * TLB is under pressure.
1491 *
1492 * The L2 TLB distributes small and large fragments into two
1493 * asymmetric partitions. The large fragment cache is significantly
1494 * larger. Thus, we try to use large fragments wherever possible.
1495 * Userspace can support this by aligning virtual base address and
1496 * allocation size to the fragment size.
1497 *
1498 * Starting with Vega10 the fragment size only controls the L1. The L2
1499 * is now directly feed with small/huge/giant pages from the walker.
1500 */
1501 unsigned max_frag;
1502
1503 if (params->adev->asic_type < CHIP_VEGA10)
1504 max_frag = params->adev->vm_manager.fragment_size;
1505 else
1506 max_frag = 31;
1507
1508 /* system pages are non continuously */
1509 if (params->pages_addr) {
1510 *frag = 0;
1511 *frag_end = end;
1512 return;
1513 }
1514
1515 /* This intentionally wraps around if no bit is set */
1516 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1517 if (*frag >= max_frag) {
1518 *frag = max_frag;
1519 *frag_end = end & ~((1ULL << max_frag) - 1);
1520 } else {
1521 *frag_end = start + (1 << *frag);
1522 }
1523}
1524
1525/**
1526 * amdgpu_vm_update_ptes - make sure that page tables are valid
1527 *
1528 * @params: see amdgpu_vm_update_params definition
1529 * @start: start of GPU address range
1530 * @end: end of GPU address range
1531 * @dst: destination address to map to, the next dst inside the function
1532 * @flags: mapping flags
1533 *
1534 * Update the page tables in the range @start - @end.
1535 *
1536 * Returns:
1537 * 0 for success, -EINVAL for failure.
1538 */
1539static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1540 uint64_t start, uint64_t end,
1541 uint64_t dst, uint64_t flags)
1542{
1543 struct amdgpu_device *adev = params->adev;
1544 struct amdgpu_vm_pt_cursor cursor;
1545 uint64_t frag_start = start, frag_end;
1546 unsigned int frag;
1547 int r;
1548
1549 /* figure out the initial fragment */
1550 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1551
1552 /* walk over the address space and update the PTs */
1553 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1554 while (cursor.pfn < end) {
1555 unsigned shift, parent_shift, mask;
1556 uint64_t incr, entry_end, pe_start;
1557 struct amdgpu_bo *pt;
1558
1559 if (!params->unlocked) {
1560 /* make sure that the page tables covering the
1561 * address range are actually allocated
1562 */
1563 r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1564 &cursor, params->immediate);
1565 if (r)
1566 return r;
1567 }
1568
1569 shift = amdgpu_vm_level_shift(adev, cursor.level);
1570 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1571 if (params->unlocked) {
1572 /* Unlocked updates are only allowed on the leaves */
1573 if (amdgpu_vm_pt_descendant(adev, &cursor))
1574 continue;
1575 } else if (adev->asic_type < CHIP_VEGA10 &&
1576 (flags & AMDGPU_PTE_VALID)) {
1577 /* No huge page support before GMC v9 */
1578 if (cursor.level != AMDGPU_VM_PTB) {
1579 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1580 return -ENOENT;
1581 continue;
1582 }
1583 } else if (frag < shift) {
1584 /* We can't use this level when the fragment size is
1585 * smaller than the address shift. Go to the next
1586 * child entry and try again.
1587 */
1588 if (amdgpu_vm_pt_descendant(adev, &cursor))
1589 continue;
1590 } else if (frag >= parent_shift) {
1591 /* If the fragment size is even larger than the parent
1592 * shift we should go up one level and check it again.
1593 */
1594 if (!amdgpu_vm_pt_ancestor(&cursor))
1595 return -EINVAL;
1596 continue;
1597 }
1598
1599 pt = cursor.entry->bo;
1600 if (!pt) {
1601 /* We need all PDs and PTs for mapping something, */
1602 if (flags & AMDGPU_PTE_VALID)
1603 return -ENOENT;
1604
1605 /* but unmapping something can happen at a higher
1606 * level.
1607 */
1608 if (!amdgpu_vm_pt_ancestor(&cursor))
1609 return -EINVAL;
1610
1611 pt = cursor.entry->bo;
1612 shift = parent_shift;
1613 frag_end = max(frag_end, ALIGN(frag_start + 1,
1614 1ULL << shift));
1615 }
1616
1617 /* Looks good so far, calculate parameters for the update */
1618 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1619 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1620 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1621 entry_end = ((uint64_t)mask + 1) << shift;
1622 entry_end += cursor.pfn & ~(entry_end - 1);
1623 entry_end = min(entry_end, end);
1624
1625 do {
1626 struct amdgpu_vm *vm = params->vm;
1627 uint64_t upd_end = min(entry_end, frag_end);
1628 unsigned nptes = (upd_end - frag_start) >> shift;
1629 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1630
1631 /* This can happen when we set higher level PDs to
1632 * silent to stop fault floods.
1633 */
1634 nptes = max(nptes, 1u);
1635
1636 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1637 nptes, dst, incr, upd_flags,
1638 vm->task_info.pid,
1639 vm->immediate.fence_context);
1640 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1641 cursor.level, pe_start, dst,
1642 nptes, incr, upd_flags);
1643
1644 pe_start += nptes * 8;
1645 dst += nptes * incr;
1646
1647 frag_start = upd_end;
1648 if (frag_start >= frag_end) {
1649 /* figure out the next fragment */
1650 amdgpu_vm_fragment(params, frag_start, end,
1651 flags, &frag, &frag_end);
1652 if (frag < shift)
1653 break;
1654 }
1655 } while (frag_start < entry_end);
1656
1657 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1658 /* Free all child entries.
1659 * Update the tables with the flags and addresses and free up subsequent
1660 * tables in the case of huge pages or freed up areas.
1661 * This is the maximum you can free, because all other page tables are not
1662 * completely covered by the range and so potentially still in use.
1663 */
1664 while (cursor.pfn < frag_start) {
1665 /* Make sure previous mapping is freed */
1666 if (cursor.entry->bo) {
1667 params->table_freed = true;
1668 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1669 }
1670 amdgpu_vm_pt_next(adev, &cursor);
1671 }
1672
1673 } else if (frag >= shift) {
1674 /* or just move on to the next on the same level. */
1675 amdgpu_vm_pt_next(adev, &cursor);
1676 }
1677 }
1678
1679 return 0;
1680}
1681
1682/**
1683 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1684 *
1685 * @adev: amdgpu_device pointer of the VM
1686 * @bo_adev: amdgpu_device pointer of the mapped BO
1687 * @vm: requested vm
1688 * @immediate: immediate submission in a page fault
1689 * @unlocked: unlocked invalidation during MM callback
1690 * @resv: fences we need to sync to
1691 * @start: start of mapped range
1692 * @last: last mapped entry
1693 * @flags: flags for the entries
1694 * @offset: offset into nodes and pages_addr
1695 * @res: ttm_resource to map
1696 * @pages_addr: DMA addresses to use for mapping
1697 * @fence: optional resulting fence
1698 * @table_freed: return true if page table is freed
1699 *
1700 * Fill in the page table entries between @start and @last.
1701 *
1702 * Returns:
1703 * 0 for success, -EINVAL for failure.
1704 */
1705int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1706 struct amdgpu_device *bo_adev,
1707 struct amdgpu_vm *vm, bool immediate,
1708 bool unlocked, struct dma_resv *resv,
1709 uint64_t start, uint64_t last,
1710 uint64_t flags, uint64_t offset,
1711 struct ttm_resource *res,
1712 dma_addr_t *pages_addr,
1713 struct dma_fence **fence,
1714 bool *table_freed)
1715{
1716 struct amdgpu_vm_update_params params;
1717 struct amdgpu_res_cursor cursor;
1718 enum amdgpu_sync_mode sync_mode;
1719 int r, idx;
1720
1721 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1722 return -ENODEV;
1723
1724 memset(¶ms, 0, sizeof(params));
1725 params.adev = adev;
1726 params.vm = vm;
1727 params.immediate = immediate;
1728 params.pages_addr = pages_addr;
1729 params.unlocked = unlocked;
1730
1731 /* Implicitly sync to command submissions in the same VM before
1732 * unmapping. Sync to moving fences before mapping.
1733 */
1734 if (!(flags & AMDGPU_PTE_VALID))
1735 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1736 else
1737 sync_mode = AMDGPU_SYNC_EXPLICIT;
1738
1739 amdgpu_vm_eviction_lock(vm);
1740 if (vm->evicting) {
1741 r = -EBUSY;
1742 goto error_unlock;
1743 }
1744
1745 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1746 struct dma_fence *tmp = dma_fence_get_stub();
1747
1748 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1749 swap(vm->last_unlocked, tmp);
1750 dma_fence_put(tmp);
1751 }
1752
1753 r = vm->update_funcs->prepare(¶ms, resv, sync_mode);
1754 if (r)
1755 goto error_unlock;
1756
1757 amdgpu_res_first(pages_addr ? NULL : res, offset,
1758 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1759 while (cursor.remaining) {
1760 uint64_t tmp, num_entries, addr;
1761
1762 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1763 if (pages_addr) {
1764 bool contiguous = true;
1765
1766 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1767 uint64_t pfn = cursor.start >> PAGE_SHIFT;
1768 uint64_t count;
1769
1770 contiguous = pages_addr[pfn + 1] ==
1771 pages_addr[pfn] + PAGE_SIZE;
1772
1773 tmp = num_entries /
1774 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1775 for (count = 2; count < tmp; ++count) {
1776 uint64_t idx = pfn + count;
1777
1778 if (contiguous != (pages_addr[idx] ==
1779 pages_addr[idx - 1] + PAGE_SIZE))
1780 break;
1781 }
1782 num_entries = count *
1783 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1784 }
1785
1786 if (!contiguous) {
1787 addr = cursor.start;
1788 params.pages_addr = pages_addr;
1789 } else {
1790 addr = pages_addr[cursor.start >> PAGE_SHIFT];
1791 params.pages_addr = NULL;
1792 }
1793
1794 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1795 addr = bo_adev->vm_manager.vram_base_offset +
1796 cursor.start;
1797 } else {
1798 addr = 0;
1799 }
1800
1801 tmp = start + num_entries;
1802 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags);
1803 if (r)
1804 goto error_unlock;
1805
1806 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1807 start = tmp;
1808 }
1809
1810 r = vm->update_funcs->commit(¶ms, fence);
1811
1812 if (table_freed)
1813 *table_freed = *table_freed || params.table_freed;
1814
1815error_unlock:
1816 amdgpu_vm_eviction_unlock(vm);
1817 drm_dev_exit(idx);
1818 return r;
1819}
1820
1821void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1822 uint64_t *gtt_mem, uint64_t *cpu_mem)
1823{
1824 struct amdgpu_bo_va *bo_va, *tmp;
1825
1826 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1827 if (!bo_va->base.bo)
1828 continue;
1829 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1830 gtt_mem, cpu_mem);
1831 }
1832 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1833 if (!bo_va->base.bo)
1834 continue;
1835 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1836 gtt_mem, cpu_mem);
1837 }
1838 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1839 if (!bo_va->base.bo)
1840 continue;
1841 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1842 gtt_mem, cpu_mem);
1843 }
1844 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1845 if (!bo_va->base.bo)
1846 continue;
1847 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1848 gtt_mem, cpu_mem);
1849 }
1850 spin_lock(&vm->invalidated_lock);
1851 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1852 if (!bo_va->base.bo)
1853 continue;
1854 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1855 gtt_mem, cpu_mem);
1856 }
1857 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1858 if (!bo_va->base.bo)
1859 continue;
1860 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1861 gtt_mem, cpu_mem);
1862 }
1863 spin_unlock(&vm->invalidated_lock);
1864}
1865/**
1866 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1867 *
1868 * @adev: amdgpu_device pointer
1869 * @bo_va: requested BO and VM object
1870 * @clear: if true clear the entries
1871 * @table_freed: return true if page table is freed
1872 *
1873 * Fill in the page table entries for @bo_va.
1874 *
1875 * Returns:
1876 * 0 for success, -EINVAL for failure.
1877 */
1878int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1879 bool clear, bool *table_freed)
1880{
1881 struct amdgpu_bo *bo = bo_va->base.bo;
1882 struct amdgpu_vm *vm = bo_va->base.vm;
1883 struct amdgpu_bo_va_mapping *mapping;
1884 dma_addr_t *pages_addr = NULL;
1885 struct ttm_resource *mem;
1886 struct dma_fence **last_update;
1887 struct dma_resv *resv;
1888 uint64_t flags;
1889 struct amdgpu_device *bo_adev = adev;
1890 int r;
1891
1892 if (clear || !bo) {
1893 mem = NULL;
1894 resv = vm->root.bo->tbo.base.resv;
1895 } else {
1896 struct drm_gem_object *obj = &bo->tbo.base;
1897
1898 resv = bo->tbo.base.resv;
1899 if (obj->import_attach && bo_va->is_xgmi) {
1900 struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1901 struct drm_gem_object *gobj = dma_buf->priv;
1902 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1903
1904 if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1905 bo = gem_to_amdgpu_bo(gobj);
1906 }
1907 mem = bo->tbo.resource;
1908 if (mem->mem_type == TTM_PL_TT ||
1909 mem->mem_type == AMDGPU_PL_PREEMPT)
1910 pages_addr = bo->tbo.ttm->dma_address;
1911 }
1912
1913 if (bo) {
1914 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1915
1916 if (amdgpu_bo_encrypted(bo))
1917 flags |= AMDGPU_PTE_TMZ;
1918
1919 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1920 } else {
1921 flags = 0x0;
1922 }
1923
1924 if (clear || (bo && bo->tbo.base.resv ==
1925 vm->root.bo->tbo.base.resv))
1926 last_update = &vm->last_update;
1927 else
1928 last_update = &bo_va->last_pt_update;
1929
1930 if (!clear && bo_va->base.moved) {
1931 bo_va->base.moved = false;
1932 list_splice_init(&bo_va->valids, &bo_va->invalids);
1933
1934 } else if (bo_va->cleared != clear) {
1935 list_splice_init(&bo_va->valids, &bo_va->invalids);
1936 }
1937
1938 list_for_each_entry(mapping, &bo_va->invalids, list) {
1939 uint64_t update_flags = flags;
1940
1941 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1942 * but in case of something, we filter the flags in first place
1943 */
1944 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1945 update_flags &= ~AMDGPU_PTE_READABLE;
1946 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1947 update_flags &= ~AMDGPU_PTE_WRITEABLE;
1948
1949 /* Apply ASIC specific mapping flags */
1950 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1951
1952 trace_amdgpu_vm_bo_update(mapping);
1953
1954 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1955 resv, mapping->start,
1956 mapping->last, update_flags,
1957 mapping->offset, mem,
1958 pages_addr, last_update, table_freed);
1959 if (r)
1960 return r;
1961 }
1962
1963 /* If the BO is not in its preferred location add it back to
1964 * the evicted list so that it gets validated again on the
1965 * next command submission.
1966 */
1967 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1968 uint32_t mem_type = bo->tbo.resource->mem_type;
1969
1970 if (!(bo->preferred_domains &
1971 amdgpu_mem_type_to_domain(mem_type)))
1972 amdgpu_vm_bo_evicted(&bo_va->base);
1973 else
1974 amdgpu_vm_bo_idle(&bo_va->base);
1975 } else {
1976 amdgpu_vm_bo_done(&bo_va->base);
1977 }
1978
1979 list_splice_init(&bo_va->invalids, &bo_va->valids);
1980 bo_va->cleared = clear;
1981
1982 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1983 list_for_each_entry(mapping, &bo_va->valids, list)
1984 trace_amdgpu_vm_bo_mapping(mapping);
1985 }
1986
1987 return 0;
1988}
1989
1990/**
1991 * amdgpu_vm_update_prt_state - update the global PRT state
1992 *
1993 * @adev: amdgpu_device pointer
1994 */
1995static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1996{
1997 unsigned long flags;
1998 bool enable;
1999
2000 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2001 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2002 adev->gmc.gmc_funcs->set_prt(adev, enable);
2003 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2004}
2005
2006/**
2007 * amdgpu_vm_prt_get - add a PRT user
2008 *
2009 * @adev: amdgpu_device pointer
2010 */
2011static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2012{
2013 if (!adev->gmc.gmc_funcs->set_prt)
2014 return;
2015
2016 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2017 amdgpu_vm_update_prt_state(adev);
2018}
2019
2020/**
2021 * amdgpu_vm_prt_put - drop a PRT user
2022 *
2023 * @adev: amdgpu_device pointer
2024 */
2025static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2026{
2027 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2028 amdgpu_vm_update_prt_state(adev);
2029}
2030
2031/**
2032 * amdgpu_vm_prt_cb - callback for updating the PRT status
2033 *
2034 * @fence: fence for the callback
2035 * @_cb: the callback function
2036 */
2037static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2038{
2039 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2040
2041 amdgpu_vm_prt_put(cb->adev);
2042 kfree(cb);
2043}
2044
2045/**
2046 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2047 *
2048 * @adev: amdgpu_device pointer
2049 * @fence: fence for the callback
2050 */
2051static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2052 struct dma_fence *fence)
2053{
2054 struct amdgpu_prt_cb *cb;
2055
2056 if (!adev->gmc.gmc_funcs->set_prt)
2057 return;
2058
2059 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2060 if (!cb) {
2061 /* Last resort when we are OOM */
2062 if (fence)
2063 dma_fence_wait(fence, false);
2064
2065 amdgpu_vm_prt_put(adev);
2066 } else {
2067 cb->adev = adev;
2068 if (!fence || dma_fence_add_callback(fence, &cb->cb,
2069 amdgpu_vm_prt_cb))
2070 amdgpu_vm_prt_cb(fence, &cb->cb);
2071 }
2072}
2073
2074/**
2075 * amdgpu_vm_free_mapping - free a mapping
2076 *
2077 * @adev: amdgpu_device pointer
2078 * @vm: requested vm
2079 * @mapping: mapping to be freed
2080 * @fence: fence of the unmap operation
2081 *
2082 * Free a mapping and make sure we decrease the PRT usage count if applicable.
2083 */
2084static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2085 struct amdgpu_vm *vm,
2086 struct amdgpu_bo_va_mapping *mapping,
2087 struct dma_fence *fence)
2088{
2089 if (mapping->flags & AMDGPU_PTE_PRT)
2090 amdgpu_vm_add_prt_cb(adev, fence);
2091 kfree(mapping);
2092}
2093
2094/**
2095 * amdgpu_vm_prt_fini - finish all prt mappings
2096 *
2097 * @adev: amdgpu_device pointer
2098 * @vm: requested vm
2099 *
2100 * Register a cleanup callback to disable PRT support after VM dies.
2101 */
2102static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2103{
2104 struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2105 struct dma_resv_iter cursor;
2106 struct dma_fence *fence;
2107
2108 dma_resv_for_each_fence(&cursor, resv, true, fence) {
2109 /* Add a callback for each fence in the reservation object */
2110 amdgpu_vm_prt_get(adev);
2111 amdgpu_vm_add_prt_cb(adev, fence);
2112 }
2113}
2114
2115/**
2116 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2117 *
2118 * @adev: amdgpu_device pointer
2119 * @vm: requested vm
2120 * @fence: optional resulting fence (unchanged if no work needed to be done
2121 * or if an error occurred)
2122 *
2123 * Make sure all freed BOs are cleared in the PT.
2124 * PTs have to be reserved and mutex must be locked!
2125 *
2126 * Returns:
2127 * 0 for success.
2128 *
2129 */
2130int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2131 struct amdgpu_vm *vm,
2132 struct dma_fence **fence)
2133{
2134 struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2135 struct amdgpu_bo_va_mapping *mapping;
2136 uint64_t init_pte_value = 0;
2137 struct dma_fence *f = NULL;
2138 int r;
2139
2140 while (!list_empty(&vm->freed)) {
2141 mapping = list_first_entry(&vm->freed,
2142 struct amdgpu_bo_va_mapping, list);
2143 list_del(&mapping->list);
2144
2145 if (vm->pte_support_ats &&
2146 mapping->start < AMDGPU_GMC_HOLE_START)
2147 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2148
2149 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2150 resv, mapping->start,
2151 mapping->last, init_pte_value,
2152 0, NULL, NULL, &f, NULL);
2153 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2154 if (r) {
2155 dma_fence_put(f);
2156 return r;
2157 }
2158 }
2159
2160 if (fence && f) {
2161 dma_fence_put(*fence);
2162 *fence = f;
2163 } else {
2164 dma_fence_put(f);
2165 }
2166
2167 return 0;
2168
2169}
2170
2171/**
2172 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2173 *
2174 * @adev: amdgpu_device pointer
2175 * @vm: requested vm
2176 *
2177 * Make sure all BOs which are moved are updated in the PTs.
2178 *
2179 * Returns:
2180 * 0 for success.
2181 *
2182 * PTs have to be reserved!
2183 */
2184int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2185 struct amdgpu_vm *vm)
2186{
2187 struct amdgpu_bo_va *bo_va, *tmp;
2188 struct dma_resv *resv;
2189 bool clear;
2190 int r;
2191
2192 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2193 /* Per VM BOs never need to bo cleared in the page tables */
2194 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2195 if (r)
2196 return r;
2197 }
2198
2199 spin_lock(&vm->invalidated_lock);
2200 while (!list_empty(&vm->invalidated)) {
2201 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2202 base.vm_status);
2203 resv = bo_va->base.bo->tbo.base.resv;
2204 spin_unlock(&vm->invalidated_lock);
2205
2206 /* Try to reserve the BO to avoid clearing its ptes */
2207 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2208 clear = false;
2209 /* Somebody else is using the BO right now */
2210 else
2211 clear = true;
2212
2213 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2214 if (r)
2215 return r;
2216
2217 if (!clear)
2218 dma_resv_unlock(resv);
2219 spin_lock(&vm->invalidated_lock);
2220 }
2221 spin_unlock(&vm->invalidated_lock);
2222
2223 return 0;
2224}
2225
2226/**
2227 * amdgpu_vm_bo_add - add a bo to a specific vm
2228 *
2229 * @adev: amdgpu_device pointer
2230 * @vm: requested vm
2231 * @bo: amdgpu buffer object
2232 *
2233 * Add @bo into the requested vm.
2234 * Add @bo to the list of bos associated with the vm
2235 *
2236 * Returns:
2237 * Newly added bo_va or NULL for failure
2238 *
2239 * Object has to be reserved!
2240 */
2241struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2242 struct amdgpu_vm *vm,
2243 struct amdgpu_bo *bo)
2244{
2245 struct amdgpu_bo_va *bo_va;
2246
2247 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2248 if (bo_va == NULL) {
2249 return NULL;
2250 }
2251 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2252
2253 bo_va->ref_count = 1;
2254 INIT_LIST_HEAD(&bo_va->valids);
2255 INIT_LIST_HEAD(&bo_va->invalids);
2256
2257 if (!bo)
2258 return bo_va;
2259
2260 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2261 bo_va->is_xgmi = true;
2262 /* Power up XGMI if it can be potentially used */
2263 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2264 }
2265
2266 return bo_va;
2267}
2268
2269
2270/**
2271 * amdgpu_vm_bo_insert_map - insert a new mapping
2272 *
2273 * @adev: amdgpu_device pointer
2274 * @bo_va: bo_va to store the address
2275 * @mapping: the mapping to insert
2276 *
2277 * Insert a new mapping into all structures.
2278 */
2279static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2280 struct amdgpu_bo_va *bo_va,
2281 struct amdgpu_bo_va_mapping *mapping)
2282{
2283 struct amdgpu_vm *vm = bo_va->base.vm;
2284 struct amdgpu_bo *bo = bo_va->base.bo;
2285
2286 mapping->bo_va = bo_va;
2287 list_add(&mapping->list, &bo_va->invalids);
2288 amdgpu_vm_it_insert(mapping, &vm->va);
2289
2290 if (mapping->flags & AMDGPU_PTE_PRT)
2291 amdgpu_vm_prt_get(adev);
2292
2293 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2294 !bo_va->base.moved) {
2295 list_move(&bo_va->base.vm_status, &vm->moved);
2296 }
2297 trace_amdgpu_vm_bo_map(bo_va, mapping);
2298}
2299
2300/**
2301 * amdgpu_vm_bo_map - map bo inside a vm
2302 *
2303 * @adev: amdgpu_device pointer
2304 * @bo_va: bo_va to store the address
2305 * @saddr: where to map the BO
2306 * @offset: requested offset in the BO
2307 * @size: BO size in bytes
2308 * @flags: attributes of pages (read/write/valid/etc.)
2309 *
2310 * Add a mapping of the BO at the specefied addr into the VM.
2311 *
2312 * Returns:
2313 * 0 for success, error for failure.
2314 *
2315 * Object has to be reserved and unreserved outside!
2316 */
2317int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2318 struct amdgpu_bo_va *bo_va,
2319 uint64_t saddr, uint64_t offset,
2320 uint64_t size, uint64_t flags)
2321{
2322 struct amdgpu_bo_va_mapping *mapping, *tmp;
2323 struct amdgpu_bo *bo = bo_va->base.bo;
2324 struct amdgpu_vm *vm = bo_va->base.vm;
2325 uint64_t eaddr;
2326
2327 /* validate the parameters */
2328 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2329 size == 0 || size & ~PAGE_MASK)
2330 return -EINVAL;
2331
2332 /* make sure object fit at this offset */
2333 eaddr = saddr + size - 1;
2334 if (saddr >= eaddr ||
2335 (bo && offset + size > amdgpu_bo_size(bo)) ||
2336 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2337 return -EINVAL;
2338
2339 saddr /= AMDGPU_GPU_PAGE_SIZE;
2340 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2341
2342 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2343 if (tmp) {
2344 /* bo and tmp overlap, invalid addr */
2345 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2346 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2347 tmp->start, tmp->last + 1);
2348 return -EINVAL;
2349 }
2350
2351 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2352 if (!mapping)
2353 return -ENOMEM;
2354
2355 mapping->start = saddr;
2356 mapping->last = eaddr;
2357 mapping->offset = offset;
2358 mapping->flags = flags;
2359
2360 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2361
2362 return 0;
2363}
2364
2365/**
2366 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2367 *
2368 * @adev: amdgpu_device pointer
2369 * @bo_va: bo_va to store the address
2370 * @saddr: where to map the BO
2371 * @offset: requested offset in the BO
2372 * @size: BO size in bytes
2373 * @flags: attributes of pages (read/write/valid/etc.)
2374 *
2375 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2376 * mappings as we do so.
2377 *
2378 * Returns:
2379 * 0 for success, error for failure.
2380 *
2381 * Object has to be reserved and unreserved outside!
2382 */
2383int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2384 struct amdgpu_bo_va *bo_va,
2385 uint64_t saddr, uint64_t offset,
2386 uint64_t size, uint64_t flags)
2387{
2388 struct amdgpu_bo_va_mapping *mapping;
2389 struct amdgpu_bo *bo = bo_va->base.bo;
2390 uint64_t eaddr;
2391 int r;
2392
2393 /* validate the parameters */
2394 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2395 size == 0 || size & ~PAGE_MASK)
2396 return -EINVAL;
2397
2398 /* make sure object fit at this offset */
2399 eaddr = saddr + size - 1;
2400 if (saddr >= eaddr ||
2401 (bo && offset + size > amdgpu_bo_size(bo)) ||
2402 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2403 return -EINVAL;
2404
2405 /* Allocate all the needed memory */
2406 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2407 if (!mapping)
2408 return -ENOMEM;
2409
2410 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2411 if (r) {
2412 kfree(mapping);
2413 return r;
2414 }
2415
2416 saddr /= AMDGPU_GPU_PAGE_SIZE;
2417 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2418
2419 mapping->start = saddr;
2420 mapping->last = eaddr;
2421 mapping->offset = offset;
2422 mapping->flags = flags;
2423
2424 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2425
2426 return 0;
2427}
2428
2429/**
2430 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2431 *
2432 * @adev: amdgpu_device pointer
2433 * @bo_va: bo_va to remove the address from
2434 * @saddr: where to the BO is mapped
2435 *
2436 * Remove a mapping of the BO at the specefied addr from the VM.
2437 *
2438 * Returns:
2439 * 0 for success, error for failure.
2440 *
2441 * Object has to be reserved and unreserved outside!
2442 */
2443int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2444 struct amdgpu_bo_va *bo_va,
2445 uint64_t saddr)
2446{
2447 struct amdgpu_bo_va_mapping *mapping;
2448 struct amdgpu_vm *vm = bo_va->base.vm;
2449 bool valid = true;
2450
2451 saddr /= AMDGPU_GPU_PAGE_SIZE;
2452
2453 list_for_each_entry(mapping, &bo_va->valids, list) {
2454 if (mapping->start == saddr)
2455 break;
2456 }
2457
2458 if (&mapping->list == &bo_va->valids) {
2459 valid = false;
2460
2461 list_for_each_entry(mapping, &bo_va->invalids, list) {
2462 if (mapping->start == saddr)
2463 break;
2464 }
2465
2466 if (&mapping->list == &bo_va->invalids)
2467 return -ENOENT;
2468 }
2469
2470 list_del(&mapping->list);
2471 amdgpu_vm_it_remove(mapping, &vm->va);
2472 mapping->bo_va = NULL;
2473 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2474
2475 if (valid)
2476 list_add(&mapping->list, &vm->freed);
2477 else
2478 amdgpu_vm_free_mapping(adev, vm, mapping,
2479 bo_va->last_pt_update);
2480
2481 return 0;
2482}
2483
2484/**
2485 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2486 *
2487 * @adev: amdgpu_device pointer
2488 * @vm: VM structure to use
2489 * @saddr: start of the range
2490 * @size: size of the range
2491 *
2492 * Remove all mappings in a range, split them as appropriate.
2493 *
2494 * Returns:
2495 * 0 for success, error for failure.
2496 */
2497int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2498 struct amdgpu_vm *vm,
2499 uint64_t saddr, uint64_t size)
2500{
2501 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2502 LIST_HEAD(removed);
2503 uint64_t eaddr;
2504
2505 eaddr = saddr + size - 1;
2506 saddr /= AMDGPU_GPU_PAGE_SIZE;
2507 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2508
2509 /* Allocate all the needed memory */
2510 before = kzalloc(sizeof(*before), GFP_KERNEL);
2511 if (!before)
2512 return -ENOMEM;
2513 INIT_LIST_HEAD(&before->list);
2514
2515 after = kzalloc(sizeof(*after), GFP_KERNEL);
2516 if (!after) {
2517 kfree(before);
2518 return -ENOMEM;
2519 }
2520 INIT_LIST_HEAD(&after->list);
2521
2522 /* Now gather all removed mappings */
2523 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2524 while (tmp) {
2525 /* Remember mapping split at the start */
2526 if (tmp->start < saddr) {
2527 before->start = tmp->start;
2528 before->last = saddr - 1;
2529 before->offset = tmp->offset;
2530 before->flags = tmp->flags;
2531 before->bo_va = tmp->bo_va;
2532 list_add(&before->list, &tmp->bo_va->invalids);
2533 }
2534
2535 /* Remember mapping split at the end */
2536 if (tmp->last > eaddr) {
2537 after->start = eaddr + 1;
2538 after->last = tmp->last;
2539 after->offset = tmp->offset;
2540 after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2541 after->flags = tmp->flags;
2542 after->bo_va = tmp->bo_va;
2543 list_add(&after->list, &tmp->bo_va->invalids);
2544 }
2545
2546 list_del(&tmp->list);
2547 list_add(&tmp->list, &removed);
2548
2549 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2550 }
2551
2552 /* And free them up */
2553 list_for_each_entry_safe(tmp, next, &removed, list) {
2554 amdgpu_vm_it_remove(tmp, &vm->va);
2555 list_del(&tmp->list);
2556
2557 if (tmp->start < saddr)
2558 tmp->start = saddr;
2559 if (tmp->last > eaddr)
2560 tmp->last = eaddr;
2561
2562 tmp->bo_va = NULL;
2563 list_add(&tmp->list, &vm->freed);
2564 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2565 }
2566
2567 /* Insert partial mapping before the range */
2568 if (!list_empty(&before->list)) {
2569 amdgpu_vm_it_insert(before, &vm->va);
2570 if (before->flags & AMDGPU_PTE_PRT)
2571 amdgpu_vm_prt_get(adev);
2572 } else {
2573 kfree(before);
2574 }
2575
2576 /* Insert partial mapping after the range */
2577 if (!list_empty(&after->list)) {
2578 amdgpu_vm_it_insert(after, &vm->va);
2579 if (after->flags & AMDGPU_PTE_PRT)
2580 amdgpu_vm_prt_get(adev);
2581 } else {
2582 kfree(after);
2583 }
2584
2585 return 0;
2586}
2587
2588/**
2589 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2590 *
2591 * @vm: the requested VM
2592 * @addr: the address
2593 *
2594 * Find a mapping by it's address.
2595 *
2596 * Returns:
2597 * The amdgpu_bo_va_mapping matching for addr or NULL
2598 *
2599 */
2600struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2601 uint64_t addr)
2602{
2603 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2604}
2605
2606/**
2607 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2608 *
2609 * @vm: the requested vm
2610 * @ticket: CS ticket
2611 *
2612 * Trace all mappings of BOs reserved during a command submission.
2613 */
2614void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2615{
2616 struct amdgpu_bo_va_mapping *mapping;
2617
2618 if (!trace_amdgpu_vm_bo_cs_enabled())
2619 return;
2620
2621 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2622 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2623 if (mapping->bo_va && mapping->bo_va->base.bo) {
2624 struct amdgpu_bo *bo;
2625
2626 bo = mapping->bo_va->base.bo;
2627 if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2628 ticket)
2629 continue;
2630 }
2631
2632 trace_amdgpu_vm_bo_cs(mapping);
2633 }
2634}
2635
2636/**
2637 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2638 *
2639 * @adev: amdgpu_device pointer
2640 * @bo_va: requested bo_va
2641 *
2642 * Remove @bo_va->bo from the requested vm.
2643 *
2644 * Object have to be reserved!
2645 */
2646void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2647 struct amdgpu_bo_va *bo_va)
2648{
2649 struct amdgpu_bo_va_mapping *mapping, *next;
2650 struct amdgpu_bo *bo = bo_va->base.bo;
2651 struct amdgpu_vm *vm = bo_va->base.vm;
2652 struct amdgpu_vm_bo_base **base;
2653
2654 if (bo) {
2655 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2656 vm->bulk_moveable = false;
2657
2658 for (base = &bo_va->base.bo->vm_bo; *base;
2659 base = &(*base)->next) {
2660 if (*base != &bo_va->base)
2661 continue;
2662
2663 *base = bo_va->base.next;
2664 break;
2665 }
2666 }
2667
2668 spin_lock(&vm->invalidated_lock);
2669 list_del(&bo_va->base.vm_status);
2670 spin_unlock(&vm->invalidated_lock);
2671
2672 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2673 list_del(&mapping->list);
2674 amdgpu_vm_it_remove(mapping, &vm->va);
2675 mapping->bo_va = NULL;
2676 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2677 list_add(&mapping->list, &vm->freed);
2678 }
2679 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2680 list_del(&mapping->list);
2681 amdgpu_vm_it_remove(mapping, &vm->va);
2682 amdgpu_vm_free_mapping(adev, vm, mapping,
2683 bo_va->last_pt_update);
2684 }
2685
2686 dma_fence_put(bo_va->last_pt_update);
2687
2688 if (bo && bo_va->is_xgmi)
2689 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2690
2691 kfree(bo_va);
2692}
2693
2694/**
2695 * amdgpu_vm_evictable - check if we can evict a VM
2696 *
2697 * @bo: A page table of the VM.
2698 *
2699 * Check if it is possible to evict a VM.
2700 */
2701bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2702{
2703 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2704
2705 /* Page tables of a destroyed VM can go away immediately */
2706 if (!bo_base || !bo_base->vm)
2707 return true;
2708
2709 /* Don't evict VM page tables while they are busy */
2710 if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2711 return false;
2712
2713 /* Try to block ongoing updates */
2714 if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2715 return false;
2716
2717 /* Don't evict VM page tables while they are updated */
2718 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2719 amdgpu_vm_eviction_unlock(bo_base->vm);
2720 return false;
2721 }
2722
2723 bo_base->vm->evicting = true;
2724 amdgpu_vm_eviction_unlock(bo_base->vm);
2725 return true;
2726}
2727
2728/**
2729 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2730 *
2731 * @adev: amdgpu_device pointer
2732 * @bo: amdgpu buffer object
2733 * @evicted: is the BO evicted
2734 *
2735 * Mark @bo as invalid.
2736 */
2737void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2738 struct amdgpu_bo *bo, bool evicted)
2739{
2740 struct amdgpu_vm_bo_base *bo_base;
2741
2742 /* shadow bo doesn't have bo base, its validation needs its parent */
2743 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2744 bo = bo->parent;
2745
2746 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2747 struct amdgpu_vm *vm = bo_base->vm;
2748
2749 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2750 amdgpu_vm_bo_evicted(bo_base);
2751 continue;
2752 }
2753
2754 if (bo_base->moved)
2755 continue;
2756 bo_base->moved = true;
2757
2758 if (bo->tbo.type == ttm_bo_type_kernel)
2759 amdgpu_vm_bo_relocated(bo_base);
2760 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2761 amdgpu_vm_bo_moved(bo_base);
2762 else
2763 amdgpu_vm_bo_invalidated(bo_base);
2764 }
2765}
2766
2767/**
2768 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2769 *
2770 * @vm_size: VM size
2771 *
2772 * Returns:
2773 * VM page table as power of two
2774 */
2775static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2776{
2777 /* Total bits covered by PD + PTs */
2778 unsigned bits = ilog2(vm_size) + 18;
2779
2780 /* Make sure the PD is 4K in size up to 8GB address space.
2781 Above that split equal between PD and PTs */
2782 if (vm_size <= 8)
2783 return (bits - 9);
2784 else
2785 return ((bits + 3) / 2);
2786}
2787
2788/**
2789 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2790 *
2791 * @adev: amdgpu_device pointer
2792 * @min_vm_size: the minimum vm size in GB if it's set auto
2793 * @fragment_size_default: Default PTE fragment size
2794 * @max_level: max VMPT level
2795 * @max_bits: max address space size in bits
2796 *
2797 */
2798void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2799 uint32_t fragment_size_default, unsigned max_level,
2800 unsigned max_bits)
2801{
2802 unsigned int max_size = 1 << (max_bits - 30);
2803 unsigned int vm_size;
2804 uint64_t tmp;
2805
2806 /* adjust vm size first */
2807 if (amdgpu_vm_size != -1) {
2808 vm_size = amdgpu_vm_size;
2809 if (vm_size > max_size) {
2810 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2811 amdgpu_vm_size, max_size);
2812 vm_size = max_size;
2813 }
2814 } else {
2815 struct sysinfo si;
2816 unsigned int phys_ram_gb;
2817
2818 /* Optimal VM size depends on the amount of physical
2819 * RAM available. Underlying requirements and
2820 * assumptions:
2821 *
2822 * - Need to map system memory and VRAM from all GPUs
2823 * - VRAM from other GPUs not known here
2824 * - Assume VRAM <= system memory
2825 * - On GFX8 and older, VM space can be segmented for
2826 * different MTYPEs
2827 * - Need to allow room for fragmentation, guard pages etc.
2828 *
2829 * This adds up to a rough guess of system memory x3.
2830 * Round up to power of two to maximize the available
2831 * VM size with the given page table size.
2832 */
2833 si_meminfo(&si);
2834 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2835 (1 << 30) - 1) >> 30;
2836 vm_size = roundup_pow_of_two(
2837 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2838 }
2839
2840 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2841
2842 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2843 if (amdgpu_vm_block_size != -1)
2844 tmp >>= amdgpu_vm_block_size - 9;
2845 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2846 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2847 switch (adev->vm_manager.num_level) {
2848 case 3:
2849 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2850 break;
2851 case 2:
2852 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2853 break;
2854 case 1:
2855 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2856 break;
2857 default:
2858 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2859 }
2860 /* block size depends on vm size and hw setup*/
2861 if (amdgpu_vm_block_size != -1)
2862 adev->vm_manager.block_size =
2863 min((unsigned)amdgpu_vm_block_size, max_bits
2864 - AMDGPU_GPU_PAGE_SHIFT
2865 - 9 * adev->vm_manager.num_level);
2866 else if (adev->vm_manager.num_level > 1)
2867 adev->vm_manager.block_size = 9;
2868 else
2869 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2870
2871 if (amdgpu_vm_fragment_size == -1)
2872 adev->vm_manager.fragment_size = fragment_size_default;
2873 else
2874 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2875
2876 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2877 vm_size, adev->vm_manager.num_level + 1,
2878 adev->vm_manager.block_size,
2879 adev->vm_manager.fragment_size);
2880}
2881
2882/**
2883 * amdgpu_vm_wait_idle - wait for the VM to become idle
2884 *
2885 * @vm: VM object to wait for
2886 * @timeout: timeout to wait for VM to become idle
2887 */
2888long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2889{
2890 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2891 true, timeout);
2892 if (timeout <= 0)
2893 return timeout;
2894
2895 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2896}
2897
2898/**
2899 * amdgpu_vm_init - initialize a vm instance
2900 *
2901 * @adev: amdgpu_device pointer
2902 * @vm: requested vm
2903 *
2904 * Init @vm fields.
2905 *
2906 * Returns:
2907 * 0 for success, error for failure.
2908 */
2909int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2910{
2911 struct amdgpu_bo *root_bo;
2912 struct amdgpu_bo_vm *root;
2913 int r, i;
2914
2915 vm->va = RB_ROOT_CACHED;
2916 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2917 vm->reserved_vmid[i] = NULL;
2918 INIT_LIST_HEAD(&vm->evicted);
2919 INIT_LIST_HEAD(&vm->relocated);
2920 INIT_LIST_HEAD(&vm->moved);
2921 INIT_LIST_HEAD(&vm->idle);
2922 INIT_LIST_HEAD(&vm->invalidated);
2923 spin_lock_init(&vm->invalidated_lock);
2924 INIT_LIST_HEAD(&vm->freed);
2925 INIT_LIST_HEAD(&vm->done);
2926
2927 /* create scheduler entities for page table updates */
2928 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2929 adev->vm_manager.vm_pte_scheds,
2930 adev->vm_manager.vm_pte_num_scheds, NULL);
2931 if (r)
2932 return r;
2933
2934 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2935 adev->vm_manager.vm_pte_scheds,
2936 adev->vm_manager.vm_pte_num_scheds, NULL);
2937 if (r)
2938 goto error_free_immediate;
2939
2940 vm->pte_support_ats = false;
2941 vm->is_compute_context = false;
2942
2943 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2944 AMDGPU_VM_USE_CPU_FOR_GFX);
2945
2946 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2947 vm->use_cpu_for_update ? "CPU" : "SDMA");
2948 WARN_ONCE((vm->use_cpu_for_update &&
2949 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2950 "CPU update of VM recommended only for large BAR system\n");
2951
2952 if (vm->use_cpu_for_update)
2953 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2954 else
2955 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2956 vm->last_update = NULL;
2957 vm->last_unlocked = dma_fence_get_stub();
2958
2959 mutex_init(&vm->eviction_lock);
2960 vm->evicting = false;
2961
2962 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2963 false, &root);
2964 if (r)
2965 goto error_free_delayed;
2966 root_bo = &root->bo;
2967 r = amdgpu_bo_reserve(root_bo, true);
2968 if (r)
2969 goto error_free_root;
2970
2971 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2972 if (r)
2973 goto error_unreserve;
2974
2975 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2976
2977 r = amdgpu_vm_clear_bo(adev, vm, root, false);
2978 if (r)
2979 goto error_unreserve;
2980
2981 amdgpu_bo_unreserve(vm->root.bo);
2982
2983 INIT_KFIFO(vm->faults);
2984
2985 return 0;
2986
2987error_unreserve:
2988 amdgpu_bo_unreserve(vm->root.bo);
2989
2990error_free_root:
2991 amdgpu_bo_unref(&root->shadow);
2992 amdgpu_bo_unref(&root_bo);
2993 vm->root.bo = NULL;
2994
2995error_free_delayed:
2996 dma_fence_put(vm->last_unlocked);
2997 drm_sched_entity_destroy(&vm->delayed);
2998
2999error_free_immediate:
3000 drm_sched_entity_destroy(&vm->immediate);
3001
3002 return r;
3003}
3004
3005/**
3006 * amdgpu_vm_check_clean_reserved - check if a VM is clean
3007 *
3008 * @adev: amdgpu_device pointer
3009 * @vm: the VM to check
3010 *
3011 * check all entries of the root PD, if any subsequent PDs are allocated,
3012 * it means there are page table creating and filling, and is no a clean
3013 * VM
3014 *
3015 * Returns:
3016 * 0 if this VM is clean
3017 */
3018static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3019 struct amdgpu_vm *vm)
3020{
3021 enum amdgpu_vm_level root = adev->vm_manager.root_level;
3022 unsigned int entries = amdgpu_vm_num_entries(adev, root);
3023 unsigned int i = 0;
3024
3025 for (i = 0; i < entries; i++) {
3026 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3027 return -EINVAL;
3028 }
3029
3030 return 0;
3031}
3032
3033/**
3034 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3035 *
3036 * @adev: amdgpu_device pointer
3037 * @vm: requested vm
3038 *
3039 * This only works on GFX VMs that don't have any BOs added and no
3040 * page tables allocated yet.
3041 *
3042 * Changes the following VM parameters:
3043 * - use_cpu_for_update
3044 * - pte_supports_ats
3045 *
3046 * Reinitializes the page directory to reflect the changed ATS
3047 * setting.
3048 *
3049 * Returns:
3050 * 0 for success, -errno for errors.
3051 */
3052int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3053{
3054 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3055 int r;
3056
3057 r = amdgpu_bo_reserve(vm->root.bo, true);
3058 if (r)
3059 return r;
3060
3061 /* Sanity checks */
3062 r = amdgpu_vm_check_clean_reserved(adev, vm);
3063 if (r)
3064 goto unreserve_bo;
3065
3066 /* Check if PD needs to be reinitialized and do it before
3067 * changing any other state, in case it fails.
3068 */
3069 if (pte_support_ats != vm->pte_support_ats) {
3070 vm->pte_support_ats = pte_support_ats;
3071 r = amdgpu_vm_clear_bo(adev, vm,
3072 to_amdgpu_bo_vm(vm->root.bo),
3073 false);
3074 if (r)
3075 goto unreserve_bo;
3076 }
3077
3078 /* Update VM state */
3079 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3080 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3081 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3082 vm->use_cpu_for_update ? "CPU" : "SDMA");
3083 WARN_ONCE((vm->use_cpu_for_update &&
3084 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3085 "CPU update of VM recommended only for large BAR system\n");
3086
3087 if (vm->use_cpu_for_update) {
3088 /* Sync with last SDMA update/clear before switching to CPU */
3089 r = amdgpu_bo_sync_wait(vm->root.bo,
3090 AMDGPU_FENCE_OWNER_UNDEFINED, true);
3091 if (r)
3092 goto unreserve_bo;
3093
3094 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3095 } else {
3096 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3097 }
3098 dma_fence_put(vm->last_update);
3099 vm->last_update = NULL;
3100 vm->is_compute_context = true;
3101
3102 /* Free the shadow bo for compute VM */
3103 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3104
3105 goto unreserve_bo;
3106
3107unreserve_bo:
3108 amdgpu_bo_unreserve(vm->root.bo);
3109 return r;
3110}
3111
3112/**
3113 * amdgpu_vm_release_compute - release a compute vm
3114 * @adev: amdgpu_device pointer
3115 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3116 *
3117 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3118 * pasid from vm. Compute should stop use of vm after this call.
3119 */
3120void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3121{
3122 amdgpu_vm_set_pasid(adev, vm, 0);
3123 vm->is_compute_context = false;
3124}
3125
3126/**
3127 * amdgpu_vm_fini - tear down a vm instance
3128 *
3129 * @adev: amdgpu_device pointer
3130 * @vm: requested vm
3131 *
3132 * Tear down @vm.
3133 * Unbind the VM and remove all bos from the vm bo list
3134 */
3135void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3136{
3137 struct amdgpu_bo_va_mapping *mapping, *tmp;
3138 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3139 struct amdgpu_bo *root;
3140 int i;
3141
3142 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3143
3144 root = amdgpu_bo_ref(vm->root.bo);
3145 amdgpu_bo_reserve(root, true);
3146 amdgpu_vm_set_pasid(adev, vm, 0);
3147 dma_fence_wait(vm->last_unlocked, false);
3148 dma_fence_put(vm->last_unlocked);
3149
3150 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3151 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3152 amdgpu_vm_prt_fini(adev, vm);
3153 prt_fini_needed = false;
3154 }
3155
3156 list_del(&mapping->list);
3157 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3158 }
3159
3160 amdgpu_vm_free_pts(adev, vm, NULL);
3161 amdgpu_bo_unreserve(root);
3162 amdgpu_bo_unref(&root);
3163 WARN_ON(vm->root.bo);
3164
3165 drm_sched_entity_destroy(&vm->immediate);
3166 drm_sched_entity_destroy(&vm->delayed);
3167
3168 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3169 dev_err(adev->dev, "still active bo inside vm\n");
3170 }
3171 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3172 &vm->va.rb_root, rb) {
3173 /* Don't remove the mapping here, we don't want to trigger a
3174 * rebalance and the tree is about to be destroyed anyway.
3175 */
3176 list_del(&mapping->list);
3177 kfree(mapping);
3178 }
3179
3180 dma_fence_put(vm->last_update);
3181 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3182 amdgpu_vmid_free_reserved(adev, vm, i);
3183}
3184
3185/**
3186 * amdgpu_vm_manager_init - init the VM manager
3187 *
3188 * @adev: amdgpu_device pointer
3189 *
3190 * Initialize the VM manager structures
3191 */
3192void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3193{
3194 unsigned i;
3195
3196 /* Concurrent flushes are only possible starting with Vega10 and
3197 * are broken on Navi10 and Navi14.
3198 */
3199 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3200 adev->asic_type == CHIP_NAVI10 ||
3201 adev->asic_type == CHIP_NAVI14);
3202 amdgpu_vmid_mgr_init(adev);
3203
3204 adev->vm_manager.fence_context =
3205 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3206 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3207 adev->vm_manager.seqno[i] = 0;
3208
3209 spin_lock_init(&adev->vm_manager.prt_lock);
3210 atomic_set(&adev->vm_manager.num_prt_users, 0);
3211
3212 /* If not overridden by the user, by default, only in large BAR systems
3213 * Compute VM tables will be updated by CPU
3214 */
3215#ifdef CONFIG_X86_64
3216 if (amdgpu_vm_update_mode == -1) {
3217 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3218 adev->vm_manager.vm_update_mode =
3219 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3220 else
3221 adev->vm_manager.vm_update_mode = 0;
3222 } else
3223 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3224#else
3225 adev->vm_manager.vm_update_mode = 0;
3226#endif
3227
3228 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3229}
3230
3231/**
3232 * amdgpu_vm_manager_fini - cleanup VM manager
3233 *
3234 * @adev: amdgpu_device pointer
3235 *
3236 * Cleanup the VM manager and free resources.
3237 */
3238void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3239{
3240 WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3241 xa_destroy(&adev->vm_manager.pasids);
3242
3243 amdgpu_vmid_mgr_fini(adev);
3244}
3245
3246/**
3247 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3248 *
3249 * @dev: drm device pointer
3250 * @data: drm_amdgpu_vm
3251 * @filp: drm file pointer
3252 *
3253 * Returns:
3254 * 0 for success, -errno for errors.
3255 */
3256int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3257{
3258 union drm_amdgpu_vm *args = data;
3259 struct amdgpu_device *adev = drm_to_adev(dev);
3260 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3261 long timeout = msecs_to_jiffies(2000);
3262 int r;
3263
3264 switch (args->in.op) {
3265 case AMDGPU_VM_OP_RESERVE_VMID:
3266 /* We only have requirement to reserve vmid from gfxhub */
3267 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3268 AMDGPU_GFXHUB_0);
3269 if (r)
3270 return r;
3271 break;
3272 case AMDGPU_VM_OP_UNRESERVE_VMID:
3273 if (amdgpu_sriov_runtime(adev))
3274 timeout = 8 * timeout;
3275
3276 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3277 * not referenced anymore.
3278 */
3279 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3280 if (r)
3281 return r;
3282
3283 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3284 if (r < 0)
3285 return r;
3286
3287 amdgpu_bo_unreserve(fpriv->vm.root.bo);
3288 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3289 break;
3290 default:
3291 return -EINVAL;
3292 }
3293
3294 return 0;
3295}
3296
3297/**
3298 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3299 *
3300 * @adev: drm device pointer
3301 * @pasid: PASID identifier for VM
3302 * @task_info: task_info to fill.
3303 */
3304void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3305 struct amdgpu_task_info *task_info)
3306{
3307 struct amdgpu_vm *vm;
3308 unsigned long flags;
3309
3310 xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3311
3312 vm = xa_load(&adev->vm_manager.pasids, pasid);
3313 if (vm)
3314 *task_info = vm->task_info;
3315
3316 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3317}
3318
3319/**
3320 * amdgpu_vm_set_task_info - Sets VMs task info.
3321 *
3322 * @vm: vm for which to set the info
3323 */
3324void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3325{
3326 if (vm->task_info.pid)
3327 return;
3328
3329 vm->task_info.pid = current->pid;
3330 get_task_comm(vm->task_info.task_name, current);
3331
3332 if (current->group_leader->mm != current->mm)
3333 return;
3334
3335 vm->task_info.tgid = current->group_leader->pid;
3336 get_task_comm(vm->task_info.process_name, current->group_leader);
3337}
3338
3339/**
3340 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3341 * @adev: amdgpu device pointer
3342 * @pasid: PASID of the VM
3343 * @addr: Address of the fault
3344 * @write_fault: true is write fault, false is read fault
3345 *
3346 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3347 * shouldn't be reported any more.
3348 */
3349bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3350 uint64_t addr, bool write_fault)
3351{
3352 bool is_compute_context = false;
3353 struct amdgpu_bo *root;
3354 unsigned long irqflags;
3355 uint64_t value, flags;
3356 struct amdgpu_vm *vm;
3357 int r;
3358
3359 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3360 vm = xa_load(&adev->vm_manager.pasids, pasid);
3361 if (vm) {
3362 root = amdgpu_bo_ref(vm->root.bo);
3363 is_compute_context = vm->is_compute_context;
3364 } else {
3365 root = NULL;
3366 }
3367 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3368
3369 if (!root)
3370 return false;
3371
3372 addr /= AMDGPU_GPU_PAGE_SIZE;
3373
3374 if (is_compute_context &&
3375 !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3376 amdgpu_bo_unref(&root);
3377 return true;
3378 }
3379
3380 r = amdgpu_bo_reserve(root, true);
3381 if (r)
3382 goto error_unref;
3383
3384 /* Double check that the VM still exists */
3385 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3386 vm = xa_load(&adev->vm_manager.pasids, pasid);
3387 if (vm && vm->root.bo != root)
3388 vm = NULL;
3389 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3390 if (!vm)
3391 goto error_unlock;
3392
3393 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3394 AMDGPU_PTE_SYSTEM;
3395
3396 if (is_compute_context) {
3397 /* Intentionally setting invalid PTE flag
3398 * combination to force a no-retry-fault
3399 */
3400 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3401 AMDGPU_PTE_TF;
3402 value = 0;
3403 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3404 /* Redirect the access to the dummy page */
3405 value = adev->dummy_page_addr;
3406 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3407 AMDGPU_PTE_WRITEABLE;
3408
3409 } else {
3410 /* Let the hw retry silently on the PTE */
3411 value = 0;
3412 }
3413
3414 r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3415 if (r) {
3416 pr_debug("failed %d to reserve fence slot\n", r);
3417 goto error_unlock;
3418 }
3419
3420 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3421 addr, flags, value, NULL, NULL, NULL,
3422 NULL);
3423 if (r)
3424 goto error_unlock;
3425
3426 r = amdgpu_vm_update_pdes(adev, vm, true);
3427
3428error_unlock:
3429 amdgpu_bo_unreserve(root);
3430 if (r < 0)
3431 DRM_ERROR("Can't handle page fault (%d)\n", r);
3432
3433error_unref:
3434 amdgpu_bo_unref(&root);
3435
3436 return false;
3437}
3438
3439#if defined(CONFIG_DEBUG_FS)
3440/**
3441 * amdgpu_debugfs_vm_bo_info - print BO info for the VM
3442 *
3443 * @vm: Requested VM for printing BO info
3444 * @m: debugfs file
3445 *
3446 * Print BO information in debugfs file for the VM
3447 */
3448void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3449{
3450 struct amdgpu_bo_va *bo_va, *tmp;
3451 u64 total_idle = 0;
3452 u64 total_evicted = 0;
3453 u64 total_relocated = 0;
3454 u64 total_moved = 0;
3455 u64 total_invalidated = 0;
3456 u64 total_done = 0;
3457 unsigned int total_idle_objs = 0;
3458 unsigned int total_evicted_objs = 0;
3459 unsigned int total_relocated_objs = 0;
3460 unsigned int total_moved_objs = 0;
3461 unsigned int total_invalidated_objs = 0;
3462 unsigned int total_done_objs = 0;
3463 unsigned int id = 0;
3464
3465 seq_puts(m, "\tIdle BOs:\n");
3466 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3467 if (!bo_va->base.bo)
3468 continue;
3469 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3470 }
3471 total_idle_objs = id;
3472 id = 0;
3473
3474 seq_puts(m, "\tEvicted BOs:\n");
3475 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3476 if (!bo_va->base.bo)
3477 continue;
3478 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3479 }
3480 total_evicted_objs = id;
3481 id = 0;
3482
3483 seq_puts(m, "\tRelocated BOs:\n");
3484 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3485 if (!bo_va->base.bo)
3486 continue;
3487 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3488 }
3489 total_relocated_objs = id;
3490 id = 0;
3491
3492 seq_puts(m, "\tMoved BOs:\n");
3493 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3494 if (!bo_va->base.bo)
3495 continue;
3496 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3497 }
3498 total_moved_objs = id;
3499 id = 0;
3500
3501 seq_puts(m, "\tInvalidated BOs:\n");
3502 spin_lock(&vm->invalidated_lock);
3503 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3504 if (!bo_va->base.bo)
3505 continue;
3506 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3507 }
3508 total_invalidated_objs = id;
3509 id = 0;
3510
3511 seq_puts(m, "\tDone BOs:\n");
3512 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3513 if (!bo_va->base.bo)
3514 continue;
3515 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3516 }
3517 spin_unlock(&vm->invalidated_lock);
3518 total_done_objs = id;
3519
3520 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle,
3521 total_idle_objs);
3522 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted,
3523 total_evicted_objs);
3524 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated,
3525 total_relocated_objs);
3526 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved,
3527 total_moved_objs);
3528 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3529 total_invalidated_objs);
3530 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done,
3531 total_done_objs);
3532}
3533#endif