Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/swapops.h>
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
25#include <linux/jiffies.h>
26#include <linux/memblock.h>
27#include <linux/compiler.h>
28#include <linux/kernel.h>
29#include <linux/kasan.h>
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
35#include <linux/ratelimit.h>
36#include <linux/oom.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
41#include <linux/memory_hotplug.h>
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
44#include <linux/vmstat.h>
45#include <linux/mempolicy.h>
46#include <linux/memremap.h>
47#include <linux/stop_machine.h>
48#include <linux/random.h>
49#include <linux/sort.h>
50#include <linux/pfn.h>
51#include <linux/backing-dev.h>
52#include <linux/fault-inject.h>
53#include <linux/page-isolation.h>
54#include <linux/debugobjects.h>
55#include <linux/kmemleak.h>
56#include <linux/compaction.h>
57#include <trace/events/kmem.h>
58#include <trace/events/oom.h>
59#include <linux/prefetch.h>
60#include <linux/mm_inline.h>
61#include <linux/mmu_notifier.h>
62#include <linux/migrate.h>
63#include <linux/hugetlb.h>
64#include <linux/sched/rt.h>
65#include <linux/sched/mm.h>
66#include <linux/page_owner.h>
67#include <linux/page_table_check.h>
68#include <linux/kthread.h>
69#include <linux/memcontrol.h>
70#include <linux/ftrace.h>
71#include <linux/lockdep.h>
72#include <linux/nmi.h>
73#include <linux/psi.h>
74#include <linux/padata.h>
75#include <linux/khugepaged.h>
76#include <linux/buffer_head.h>
77#include <linux/delayacct.h>
78#include <asm/sections.h>
79#include <asm/tlbflush.h>
80#include <asm/div64.h>
81#include "internal.h"
82#include "shuffle.h"
83#include "page_reporting.h"
84
85/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86typedef int __bitwise fpi_t;
87
88/* No special request */
89#define FPI_NONE ((__force fpi_t)0)
90
91/*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100
101/*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
109 * reporting).
110 */
111#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112
113/*
114 * Don't poison memory with KASAN (only for the tag-based modes).
115 * During boot, all non-reserved memblock memory is exposed to page_alloc.
116 * Poisoning all that memory lengthens boot time, especially on systems with
117 * large amount of RAM. This flag is used to skip that poisoning.
118 * This is only done for the tag-based KASAN modes, as those are able to
119 * detect memory corruptions with the memory tags assigned by default.
120 * All memory allocated normally after boot gets poisoned as usual.
121 */
122#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
123
124/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125static DEFINE_MUTEX(pcp_batch_high_lock);
126#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
127
128struct pagesets {
129 local_lock_t lock;
130};
131static DEFINE_PER_CPU(struct pagesets, pagesets) = {
132 .lock = INIT_LOCAL_LOCK(lock),
133};
134
135#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136DEFINE_PER_CPU(int, numa_node);
137EXPORT_PER_CPU_SYMBOL(numa_node);
138#endif
139
140DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141
142#ifdef CONFIG_HAVE_MEMORYLESS_NODES
143/*
144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147 * defined in <linux/topology.h>.
148 */
149DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
150EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151#endif
152
153/* work_structs for global per-cpu drains */
154struct pcpu_drain {
155 struct zone *zone;
156 struct work_struct work;
157};
158static DEFINE_MUTEX(pcpu_drain_mutex);
159static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
160
161#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
162volatile unsigned long latent_entropy __latent_entropy;
163EXPORT_SYMBOL(latent_entropy);
164#endif
165
166/*
167 * Array of node states.
168 */
169nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 [N_POSSIBLE] = NODE_MASK_ALL,
171 [N_ONLINE] = { { [0] = 1UL } },
172#ifndef CONFIG_NUMA
173 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
174#ifdef CONFIG_HIGHMEM
175 [N_HIGH_MEMORY] = { { [0] = 1UL } },
176#endif
177 [N_MEMORY] = { { [0] = 1UL } },
178 [N_CPU] = { { [0] = 1UL } },
179#endif /* NUMA */
180};
181EXPORT_SYMBOL(node_states);
182
183atomic_long_t _totalram_pages __read_mostly;
184EXPORT_SYMBOL(_totalram_pages);
185unsigned long totalreserve_pages __read_mostly;
186unsigned long totalcma_pages __read_mostly;
187
188int percpu_pagelist_high_fraction;
189gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
191EXPORT_SYMBOL(init_on_alloc);
192
193DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
194EXPORT_SYMBOL(init_on_free);
195
196static bool _init_on_alloc_enabled_early __read_mostly
197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
198static int __init early_init_on_alloc(char *buf)
199{
200
201 return kstrtobool(buf, &_init_on_alloc_enabled_early);
202}
203early_param("init_on_alloc", early_init_on_alloc);
204
205static bool _init_on_free_enabled_early __read_mostly
206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
207static int __init early_init_on_free(char *buf)
208{
209 return kstrtobool(buf, &_init_on_free_enabled_early);
210}
211early_param("init_on_free", early_init_on_free);
212
213/*
214 * A cached value of the page's pageblock's migratetype, used when the page is
215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217 * Also the migratetype set in the page does not necessarily match the pcplist
218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219 * other index - this ensures that it will be put on the correct CMA freelist.
220 */
221static inline int get_pcppage_migratetype(struct page *page)
222{
223 return page->index;
224}
225
226static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227{
228 page->index = migratetype;
229}
230
231#ifdef CONFIG_PM_SLEEP
232/*
233 * The following functions are used by the suspend/hibernate code to temporarily
234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235 * while devices are suspended. To avoid races with the suspend/hibernate code,
236 * they should always be called with system_transition_mutex held
237 * (gfp_allowed_mask also should only be modified with system_transition_mutex
238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239 * with that modification).
240 */
241
242static gfp_t saved_gfp_mask;
243
244void pm_restore_gfp_mask(void)
245{
246 WARN_ON(!mutex_is_locked(&system_transition_mutex));
247 if (saved_gfp_mask) {
248 gfp_allowed_mask = saved_gfp_mask;
249 saved_gfp_mask = 0;
250 }
251}
252
253void pm_restrict_gfp_mask(void)
254{
255 WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 WARN_ON(saved_gfp_mask);
257 saved_gfp_mask = gfp_allowed_mask;
258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
259}
260
261bool pm_suspended_storage(void)
262{
263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
264 return false;
265 return true;
266}
267#endif /* CONFIG_PM_SLEEP */
268
269#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
270unsigned int pageblock_order __read_mostly;
271#endif
272
273static void __free_pages_ok(struct page *page, unsigned int order,
274 fpi_t fpi_flags);
275
276/*
277 * results with 256, 32 in the lowmem_reserve sysctl:
278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279 * 1G machine -> (16M dma, 784M normal, 224M high)
280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
283 *
284 * TBD: should special case ZONE_DMA32 machines here - in those we normally
285 * don't need any ZONE_NORMAL reservation
286 */
287int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
288#ifdef CONFIG_ZONE_DMA
289 [ZONE_DMA] = 256,
290#endif
291#ifdef CONFIG_ZONE_DMA32
292 [ZONE_DMA32] = 256,
293#endif
294 [ZONE_NORMAL] = 32,
295#ifdef CONFIG_HIGHMEM
296 [ZONE_HIGHMEM] = 0,
297#endif
298 [ZONE_MOVABLE] = 0,
299};
300
301static char * const zone_names[MAX_NR_ZONES] = {
302#ifdef CONFIG_ZONE_DMA
303 "DMA",
304#endif
305#ifdef CONFIG_ZONE_DMA32
306 "DMA32",
307#endif
308 "Normal",
309#ifdef CONFIG_HIGHMEM
310 "HighMem",
311#endif
312 "Movable",
313#ifdef CONFIG_ZONE_DEVICE
314 "Device",
315#endif
316};
317
318const char * const migratetype_names[MIGRATE_TYPES] = {
319 "Unmovable",
320 "Movable",
321 "Reclaimable",
322 "HighAtomic",
323#ifdef CONFIG_CMA
324 "CMA",
325#endif
326#ifdef CONFIG_MEMORY_ISOLATION
327 "Isolate",
328#endif
329};
330
331compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 [NULL_COMPOUND_DTOR] = NULL,
333 [COMPOUND_PAGE_DTOR] = free_compound_page,
334#ifdef CONFIG_HUGETLB_PAGE
335 [HUGETLB_PAGE_DTOR] = free_huge_page,
336#endif
337#ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
339#endif
340};
341
342int min_free_kbytes = 1024;
343int user_min_free_kbytes = -1;
344int watermark_boost_factor __read_mostly = 15000;
345int watermark_scale_factor = 10;
346
347static unsigned long nr_kernel_pages __initdata;
348static unsigned long nr_all_pages __initdata;
349static unsigned long dma_reserve __initdata;
350
351static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353static unsigned long required_kernelcore __initdata;
354static unsigned long required_kernelcore_percent __initdata;
355static unsigned long required_movablecore __initdata;
356static unsigned long required_movablecore_percent __initdata;
357static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358static bool mirrored_kernelcore __meminitdata;
359
360/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361int movable_zone;
362EXPORT_SYMBOL(movable_zone);
363
364#if MAX_NUMNODES > 1
365unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
366unsigned int nr_online_nodes __read_mostly = 1;
367EXPORT_SYMBOL(nr_node_ids);
368EXPORT_SYMBOL(nr_online_nodes);
369#endif
370
371int page_group_by_mobility_disabled __read_mostly;
372
373#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
374/*
375 * During boot we initialize deferred pages on-demand, as needed, but once
376 * page_alloc_init_late() has finished, the deferred pages are all initialized,
377 * and we can permanently disable that path.
378 */
379static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380
381/*
382 * Calling kasan_poison_pages() only after deferred memory initialization
383 * has completed. Poisoning pages during deferred memory init will greatly
384 * lengthen the process and cause problem in large memory systems as the
385 * deferred pages initialization is done with interrupt disabled.
386 *
387 * Assuming that there will be no reference to those newly initialized
388 * pages before they are ever allocated, this should have no effect on
389 * KASAN memory tracking as the poison will be properly inserted at page
390 * allocation time. The only corner case is when pages are allocated by
391 * on-demand allocation and then freed again before the deferred pages
392 * initialization is done, but this is not likely to happen.
393 */
394static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
395{
396 return static_branch_unlikely(&deferred_pages) ||
397 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
398 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
399 PageSkipKASanPoison(page);
400}
401
402/* Returns true if the struct page for the pfn is uninitialised */
403static inline bool __meminit early_page_uninitialised(unsigned long pfn)
404{
405 int nid = early_pfn_to_nid(pfn);
406
407 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
408 return true;
409
410 return false;
411}
412
413/*
414 * Returns true when the remaining initialisation should be deferred until
415 * later in the boot cycle when it can be parallelised.
416 */
417static bool __meminit
418defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
419{
420 static unsigned long prev_end_pfn, nr_initialised;
421
422 /*
423 * prev_end_pfn static that contains the end of previous zone
424 * No need to protect because called very early in boot before smp_init.
425 */
426 if (prev_end_pfn != end_pfn) {
427 prev_end_pfn = end_pfn;
428 nr_initialised = 0;
429 }
430
431 /* Always populate low zones for address-constrained allocations */
432 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
433 return false;
434
435 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
436 return true;
437 /*
438 * We start only with one section of pages, more pages are added as
439 * needed until the rest of deferred pages are initialized.
440 */
441 nr_initialised++;
442 if ((nr_initialised > PAGES_PER_SECTION) &&
443 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
444 NODE_DATA(nid)->first_deferred_pfn = pfn;
445 return true;
446 }
447 return false;
448}
449#else
450static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
451{
452 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
453 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
454 PageSkipKASanPoison(page);
455}
456
457static inline bool early_page_uninitialised(unsigned long pfn)
458{
459 return false;
460}
461
462static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
463{
464 return false;
465}
466#endif
467
468/* Return a pointer to the bitmap storing bits affecting a block of pages */
469static inline unsigned long *get_pageblock_bitmap(const struct page *page,
470 unsigned long pfn)
471{
472#ifdef CONFIG_SPARSEMEM
473 return section_to_usemap(__pfn_to_section(pfn));
474#else
475 return page_zone(page)->pageblock_flags;
476#endif /* CONFIG_SPARSEMEM */
477}
478
479static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
480{
481#ifdef CONFIG_SPARSEMEM
482 pfn &= (PAGES_PER_SECTION-1);
483#else
484 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
485#endif /* CONFIG_SPARSEMEM */
486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
487}
488
489static __always_inline
490unsigned long __get_pfnblock_flags_mask(const struct page *page,
491 unsigned long pfn,
492 unsigned long mask)
493{
494 unsigned long *bitmap;
495 unsigned long bitidx, word_bitidx;
496 unsigned long word;
497
498 bitmap = get_pageblock_bitmap(page, pfn);
499 bitidx = pfn_to_bitidx(page, pfn);
500 word_bitidx = bitidx / BITS_PER_LONG;
501 bitidx &= (BITS_PER_LONG-1);
502
503 word = bitmap[word_bitidx];
504 return (word >> bitidx) & mask;
505}
506
507/**
508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509 * @page: The page within the block of interest
510 * @pfn: The target page frame number
511 * @mask: mask of bits that the caller is interested in
512 *
513 * Return: pageblock_bits flags
514 */
515unsigned long get_pfnblock_flags_mask(const struct page *page,
516 unsigned long pfn, unsigned long mask)
517{
518 return __get_pfnblock_flags_mask(page, pfn, mask);
519}
520
521static __always_inline int get_pfnblock_migratetype(const struct page *page,
522 unsigned long pfn)
523{
524 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
525}
526
527/**
528 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
529 * @page: The page within the block of interest
530 * @flags: The flags to set
531 * @pfn: The target page frame number
532 * @mask: mask of bits that the caller is interested in
533 */
534void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
535 unsigned long pfn,
536 unsigned long mask)
537{
538 unsigned long *bitmap;
539 unsigned long bitidx, word_bitidx;
540 unsigned long old_word, word;
541
542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
543 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
544
545 bitmap = get_pageblock_bitmap(page, pfn);
546 bitidx = pfn_to_bitidx(page, pfn);
547 word_bitidx = bitidx / BITS_PER_LONG;
548 bitidx &= (BITS_PER_LONG-1);
549
550 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
551
552 mask <<= bitidx;
553 flags <<= bitidx;
554
555 word = READ_ONCE(bitmap[word_bitidx]);
556 for (;;) {
557 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
558 if (word == old_word)
559 break;
560 word = old_word;
561 }
562}
563
564void set_pageblock_migratetype(struct page *page, int migratetype)
565{
566 if (unlikely(page_group_by_mobility_disabled &&
567 migratetype < MIGRATE_PCPTYPES))
568 migratetype = MIGRATE_UNMOVABLE;
569
570 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
571 page_to_pfn(page), MIGRATETYPE_MASK);
572}
573
574#ifdef CONFIG_DEBUG_VM
575static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
576{
577 int ret = 0;
578 unsigned seq;
579 unsigned long pfn = page_to_pfn(page);
580 unsigned long sp, start_pfn;
581
582 do {
583 seq = zone_span_seqbegin(zone);
584 start_pfn = zone->zone_start_pfn;
585 sp = zone->spanned_pages;
586 if (!zone_spans_pfn(zone, pfn))
587 ret = 1;
588 } while (zone_span_seqretry(zone, seq));
589
590 if (ret)
591 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
592 pfn, zone_to_nid(zone), zone->name,
593 start_pfn, start_pfn + sp);
594
595 return ret;
596}
597
598static int page_is_consistent(struct zone *zone, struct page *page)
599{
600 if (zone != page_zone(page))
601 return 0;
602
603 return 1;
604}
605/*
606 * Temporary debugging check for pages not lying within a given zone.
607 */
608static int __maybe_unused bad_range(struct zone *zone, struct page *page)
609{
610 if (page_outside_zone_boundaries(zone, page))
611 return 1;
612 if (!page_is_consistent(zone, page))
613 return 1;
614
615 return 0;
616}
617#else
618static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
619{
620 return 0;
621}
622#endif
623
624static void bad_page(struct page *page, const char *reason)
625{
626 static unsigned long resume;
627 static unsigned long nr_shown;
628 static unsigned long nr_unshown;
629
630 /*
631 * Allow a burst of 60 reports, then keep quiet for that minute;
632 * or allow a steady drip of one report per second.
633 */
634 if (nr_shown == 60) {
635 if (time_before(jiffies, resume)) {
636 nr_unshown++;
637 goto out;
638 }
639 if (nr_unshown) {
640 pr_alert(
641 "BUG: Bad page state: %lu messages suppressed\n",
642 nr_unshown);
643 nr_unshown = 0;
644 }
645 nr_shown = 0;
646 }
647 if (nr_shown++ == 0)
648 resume = jiffies + 60 * HZ;
649
650 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
651 current->comm, page_to_pfn(page));
652 dump_page(page, reason);
653
654 print_modules();
655 dump_stack();
656out:
657 /* Leave bad fields for debug, except PageBuddy could make trouble */
658 page_mapcount_reset(page); /* remove PageBuddy */
659 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
660}
661
662static inline unsigned int order_to_pindex(int migratetype, int order)
663{
664 int base = order;
665
666#ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 if (order > PAGE_ALLOC_COSTLY_ORDER) {
668 VM_BUG_ON(order != pageblock_order);
669 base = PAGE_ALLOC_COSTLY_ORDER + 1;
670 }
671#else
672 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
673#endif
674
675 return (MIGRATE_PCPTYPES * base) + migratetype;
676}
677
678static inline int pindex_to_order(unsigned int pindex)
679{
680 int order = pindex / MIGRATE_PCPTYPES;
681
682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
683 if (order > PAGE_ALLOC_COSTLY_ORDER)
684 order = pageblock_order;
685#else
686 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
687#endif
688
689 return order;
690}
691
692static inline bool pcp_allowed_order(unsigned int order)
693{
694 if (order <= PAGE_ALLOC_COSTLY_ORDER)
695 return true;
696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 if (order == pageblock_order)
698 return true;
699#endif
700 return false;
701}
702
703static inline void free_the_page(struct page *page, unsigned int order)
704{
705 if (pcp_allowed_order(order)) /* Via pcp? */
706 free_unref_page(page, order);
707 else
708 __free_pages_ok(page, order, FPI_NONE);
709}
710
711/*
712 * Higher-order pages are called "compound pages". They are structured thusly:
713 *
714 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
715 *
716 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
717 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
718 *
719 * The first tail page's ->compound_dtor holds the offset in array of compound
720 * page destructors. See compound_page_dtors.
721 *
722 * The first tail page's ->compound_order holds the order of allocation.
723 * This usage means that zero-order pages may not be compound.
724 */
725
726void free_compound_page(struct page *page)
727{
728 mem_cgroup_uncharge(page_folio(page));
729 free_the_page(page, compound_order(page));
730}
731
732static void prep_compound_head(struct page *page, unsigned int order)
733{
734 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
735 set_compound_order(page, order);
736 atomic_set(compound_mapcount_ptr(page), -1);
737 if (hpage_pincount_available(page))
738 atomic_set(compound_pincount_ptr(page), 0);
739}
740
741static void prep_compound_tail(struct page *head, int tail_idx)
742{
743 struct page *p = head + tail_idx;
744
745 p->mapping = TAIL_MAPPING;
746 set_compound_head(p, head);
747}
748
749void prep_compound_page(struct page *page, unsigned int order)
750{
751 int i;
752 int nr_pages = 1 << order;
753
754 __SetPageHead(page);
755 for (i = 1; i < nr_pages; i++)
756 prep_compound_tail(page, i);
757
758 prep_compound_head(page, order);
759}
760
761#ifdef CONFIG_DEBUG_PAGEALLOC
762unsigned int _debug_guardpage_minorder;
763
764bool _debug_pagealloc_enabled_early __read_mostly
765 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
766EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
767DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
768EXPORT_SYMBOL(_debug_pagealloc_enabled);
769
770DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
771
772static int __init early_debug_pagealloc(char *buf)
773{
774 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
775}
776early_param("debug_pagealloc", early_debug_pagealloc);
777
778static int __init debug_guardpage_minorder_setup(char *buf)
779{
780 unsigned long res;
781
782 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
783 pr_err("Bad debug_guardpage_minorder value\n");
784 return 0;
785 }
786 _debug_guardpage_minorder = res;
787 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
788 return 0;
789}
790early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
791
792static inline bool set_page_guard(struct zone *zone, struct page *page,
793 unsigned int order, int migratetype)
794{
795 if (!debug_guardpage_enabled())
796 return false;
797
798 if (order >= debug_guardpage_minorder())
799 return false;
800
801 __SetPageGuard(page);
802 INIT_LIST_HEAD(&page->lru);
803 set_page_private(page, order);
804 /* Guard pages are not available for any usage */
805 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
806
807 return true;
808}
809
810static inline void clear_page_guard(struct zone *zone, struct page *page,
811 unsigned int order, int migratetype)
812{
813 if (!debug_guardpage_enabled())
814 return;
815
816 __ClearPageGuard(page);
817
818 set_page_private(page, 0);
819 if (!is_migrate_isolate(migratetype))
820 __mod_zone_freepage_state(zone, (1 << order), migratetype);
821}
822#else
823static inline bool set_page_guard(struct zone *zone, struct page *page,
824 unsigned int order, int migratetype) { return false; }
825static inline void clear_page_guard(struct zone *zone, struct page *page,
826 unsigned int order, int migratetype) {}
827#endif
828
829/*
830 * Enable static keys related to various memory debugging and hardening options.
831 * Some override others, and depend on early params that are evaluated in the
832 * order of appearance. So we need to first gather the full picture of what was
833 * enabled, and then make decisions.
834 */
835void init_mem_debugging_and_hardening(void)
836{
837 bool page_poisoning_requested = false;
838
839#ifdef CONFIG_PAGE_POISONING
840 /*
841 * Page poisoning is debug page alloc for some arches. If
842 * either of those options are enabled, enable poisoning.
843 */
844 if (page_poisoning_enabled() ||
845 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
846 debug_pagealloc_enabled())) {
847 static_branch_enable(&_page_poisoning_enabled);
848 page_poisoning_requested = true;
849 }
850#endif
851
852 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
853 page_poisoning_requested) {
854 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
855 "will take precedence over init_on_alloc and init_on_free\n");
856 _init_on_alloc_enabled_early = false;
857 _init_on_free_enabled_early = false;
858 }
859
860 if (_init_on_alloc_enabled_early)
861 static_branch_enable(&init_on_alloc);
862 else
863 static_branch_disable(&init_on_alloc);
864
865 if (_init_on_free_enabled_early)
866 static_branch_enable(&init_on_free);
867 else
868 static_branch_disable(&init_on_free);
869
870#ifdef CONFIG_DEBUG_PAGEALLOC
871 if (!debug_pagealloc_enabled())
872 return;
873
874 static_branch_enable(&_debug_pagealloc_enabled);
875
876 if (!debug_guardpage_minorder())
877 return;
878
879 static_branch_enable(&_debug_guardpage_enabled);
880#endif
881}
882
883static inline void set_buddy_order(struct page *page, unsigned int order)
884{
885 set_page_private(page, order);
886 __SetPageBuddy(page);
887}
888
889/*
890 * This function checks whether a page is free && is the buddy
891 * we can coalesce a page and its buddy if
892 * (a) the buddy is not in a hole (check before calling!) &&
893 * (b) the buddy is in the buddy system &&
894 * (c) a page and its buddy have the same order &&
895 * (d) a page and its buddy are in the same zone.
896 *
897 * For recording whether a page is in the buddy system, we set PageBuddy.
898 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
899 *
900 * For recording page's order, we use page_private(page).
901 */
902static inline bool page_is_buddy(struct page *page, struct page *buddy,
903 unsigned int order)
904{
905 if (!page_is_guard(buddy) && !PageBuddy(buddy))
906 return false;
907
908 if (buddy_order(buddy) != order)
909 return false;
910
911 /*
912 * zone check is done late to avoid uselessly calculating
913 * zone/node ids for pages that could never merge.
914 */
915 if (page_zone_id(page) != page_zone_id(buddy))
916 return false;
917
918 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
919
920 return true;
921}
922
923#ifdef CONFIG_COMPACTION
924static inline struct capture_control *task_capc(struct zone *zone)
925{
926 struct capture_control *capc = current->capture_control;
927
928 return unlikely(capc) &&
929 !(current->flags & PF_KTHREAD) &&
930 !capc->page &&
931 capc->cc->zone == zone ? capc : NULL;
932}
933
934static inline bool
935compaction_capture(struct capture_control *capc, struct page *page,
936 int order, int migratetype)
937{
938 if (!capc || order != capc->cc->order)
939 return false;
940
941 /* Do not accidentally pollute CMA or isolated regions*/
942 if (is_migrate_cma(migratetype) ||
943 is_migrate_isolate(migratetype))
944 return false;
945
946 /*
947 * Do not let lower order allocations pollute a movable pageblock.
948 * This might let an unmovable request use a reclaimable pageblock
949 * and vice-versa but no more than normal fallback logic which can
950 * have trouble finding a high-order free page.
951 */
952 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
953 return false;
954
955 capc->page = page;
956 return true;
957}
958
959#else
960static inline struct capture_control *task_capc(struct zone *zone)
961{
962 return NULL;
963}
964
965static inline bool
966compaction_capture(struct capture_control *capc, struct page *page,
967 int order, int migratetype)
968{
969 return false;
970}
971#endif /* CONFIG_COMPACTION */
972
973/* Used for pages not on another list */
974static inline void add_to_free_list(struct page *page, struct zone *zone,
975 unsigned int order, int migratetype)
976{
977 struct free_area *area = &zone->free_area[order];
978
979 list_add(&page->lru, &area->free_list[migratetype]);
980 area->nr_free++;
981}
982
983/* Used for pages not on another list */
984static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
985 unsigned int order, int migratetype)
986{
987 struct free_area *area = &zone->free_area[order];
988
989 list_add_tail(&page->lru, &area->free_list[migratetype]);
990 area->nr_free++;
991}
992
993/*
994 * Used for pages which are on another list. Move the pages to the tail
995 * of the list - so the moved pages won't immediately be considered for
996 * allocation again (e.g., optimization for memory onlining).
997 */
998static inline void move_to_free_list(struct page *page, struct zone *zone,
999 unsigned int order, int migratetype)
1000{
1001 struct free_area *area = &zone->free_area[order];
1002
1003 list_move_tail(&page->lru, &area->free_list[migratetype]);
1004}
1005
1006static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1007 unsigned int order)
1008{
1009 /* clear reported state and update reported page count */
1010 if (page_reported(page))
1011 __ClearPageReported(page);
1012
1013 list_del(&page->lru);
1014 __ClearPageBuddy(page);
1015 set_page_private(page, 0);
1016 zone->free_area[order].nr_free--;
1017}
1018
1019/*
1020 * If this is not the largest possible page, check if the buddy
1021 * of the next-highest order is free. If it is, it's possible
1022 * that pages are being freed that will coalesce soon. In case,
1023 * that is happening, add the free page to the tail of the list
1024 * so it's less likely to be used soon and more likely to be merged
1025 * as a higher order page
1026 */
1027static inline bool
1028buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1029 struct page *page, unsigned int order)
1030{
1031 struct page *higher_page, *higher_buddy;
1032 unsigned long combined_pfn;
1033
1034 if (order >= MAX_ORDER - 2)
1035 return false;
1036
1037 combined_pfn = buddy_pfn & pfn;
1038 higher_page = page + (combined_pfn - pfn);
1039 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1040 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1041
1042 return page_is_buddy(higher_page, higher_buddy, order + 1);
1043}
1044
1045/*
1046 * Freeing function for a buddy system allocator.
1047 *
1048 * The concept of a buddy system is to maintain direct-mapped table
1049 * (containing bit values) for memory blocks of various "orders".
1050 * The bottom level table contains the map for the smallest allocatable
1051 * units of memory (here, pages), and each level above it describes
1052 * pairs of units from the levels below, hence, "buddies".
1053 * At a high level, all that happens here is marking the table entry
1054 * at the bottom level available, and propagating the changes upward
1055 * as necessary, plus some accounting needed to play nicely with other
1056 * parts of the VM system.
1057 * At each level, we keep a list of pages, which are heads of continuous
1058 * free pages of length of (1 << order) and marked with PageBuddy.
1059 * Page's order is recorded in page_private(page) field.
1060 * So when we are allocating or freeing one, we can derive the state of the
1061 * other. That is, if we allocate a small block, and both were
1062 * free, the remainder of the region must be split into blocks.
1063 * If a block is freed, and its buddy is also free, then this
1064 * triggers coalescing into a block of larger size.
1065 *
1066 * -- nyc
1067 */
1068
1069static inline void __free_one_page(struct page *page,
1070 unsigned long pfn,
1071 struct zone *zone, unsigned int order,
1072 int migratetype, fpi_t fpi_flags)
1073{
1074 struct capture_control *capc = task_capc(zone);
1075 unsigned long buddy_pfn;
1076 unsigned long combined_pfn;
1077 unsigned int max_order;
1078 struct page *buddy;
1079 bool to_tail;
1080
1081 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1082
1083 VM_BUG_ON(!zone_is_initialized(zone));
1084 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1085
1086 VM_BUG_ON(migratetype == -1);
1087 if (likely(!is_migrate_isolate(migratetype)))
1088 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1089
1090 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1091 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1092
1093continue_merging:
1094 while (order < max_order) {
1095 if (compaction_capture(capc, page, order, migratetype)) {
1096 __mod_zone_freepage_state(zone, -(1 << order),
1097 migratetype);
1098 return;
1099 }
1100 buddy_pfn = __find_buddy_pfn(pfn, order);
1101 buddy = page + (buddy_pfn - pfn);
1102
1103 if (!page_is_buddy(page, buddy, order))
1104 goto done_merging;
1105 /*
1106 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1107 * merge with it and move up one order.
1108 */
1109 if (page_is_guard(buddy))
1110 clear_page_guard(zone, buddy, order, migratetype);
1111 else
1112 del_page_from_free_list(buddy, zone, order);
1113 combined_pfn = buddy_pfn & pfn;
1114 page = page + (combined_pfn - pfn);
1115 pfn = combined_pfn;
1116 order++;
1117 }
1118 if (order < MAX_ORDER - 1) {
1119 /* If we are here, it means order is >= pageblock_order.
1120 * We want to prevent merge between freepages on isolate
1121 * pageblock and normal pageblock. Without this, pageblock
1122 * isolation could cause incorrect freepage or CMA accounting.
1123 *
1124 * We don't want to hit this code for the more frequent
1125 * low-order merging.
1126 */
1127 if (unlikely(has_isolate_pageblock(zone))) {
1128 int buddy_mt;
1129
1130 buddy_pfn = __find_buddy_pfn(pfn, order);
1131 buddy = page + (buddy_pfn - pfn);
1132 buddy_mt = get_pageblock_migratetype(buddy);
1133
1134 if (migratetype != buddy_mt
1135 && (is_migrate_isolate(migratetype) ||
1136 is_migrate_isolate(buddy_mt)))
1137 goto done_merging;
1138 }
1139 max_order = order + 1;
1140 goto continue_merging;
1141 }
1142
1143done_merging:
1144 set_buddy_order(page, order);
1145
1146 if (fpi_flags & FPI_TO_TAIL)
1147 to_tail = true;
1148 else if (is_shuffle_order(order))
1149 to_tail = shuffle_pick_tail();
1150 else
1151 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1152
1153 if (to_tail)
1154 add_to_free_list_tail(page, zone, order, migratetype);
1155 else
1156 add_to_free_list(page, zone, order, migratetype);
1157
1158 /* Notify page reporting subsystem of freed page */
1159 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1160 page_reporting_notify_free(order);
1161}
1162
1163/*
1164 * A bad page could be due to a number of fields. Instead of multiple branches,
1165 * try and check multiple fields with one check. The caller must do a detailed
1166 * check if necessary.
1167 */
1168static inline bool page_expected_state(struct page *page,
1169 unsigned long check_flags)
1170{
1171 if (unlikely(atomic_read(&page->_mapcount) != -1))
1172 return false;
1173
1174 if (unlikely((unsigned long)page->mapping |
1175 page_ref_count(page) |
1176#ifdef CONFIG_MEMCG
1177 page->memcg_data |
1178#endif
1179 (page->flags & check_flags)))
1180 return false;
1181
1182 return true;
1183}
1184
1185static const char *page_bad_reason(struct page *page, unsigned long flags)
1186{
1187 const char *bad_reason = NULL;
1188
1189 if (unlikely(atomic_read(&page->_mapcount) != -1))
1190 bad_reason = "nonzero mapcount";
1191 if (unlikely(page->mapping != NULL))
1192 bad_reason = "non-NULL mapping";
1193 if (unlikely(page_ref_count(page) != 0))
1194 bad_reason = "nonzero _refcount";
1195 if (unlikely(page->flags & flags)) {
1196 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1197 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1198 else
1199 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1200 }
1201#ifdef CONFIG_MEMCG
1202 if (unlikely(page->memcg_data))
1203 bad_reason = "page still charged to cgroup";
1204#endif
1205 return bad_reason;
1206}
1207
1208static void check_free_page_bad(struct page *page)
1209{
1210 bad_page(page,
1211 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1212}
1213
1214static inline int check_free_page(struct page *page)
1215{
1216 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1217 return 0;
1218
1219 /* Something has gone sideways, find it */
1220 check_free_page_bad(page);
1221 return 1;
1222}
1223
1224static int free_tail_pages_check(struct page *head_page, struct page *page)
1225{
1226 int ret = 1;
1227
1228 /*
1229 * We rely page->lru.next never has bit 0 set, unless the page
1230 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1231 */
1232 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1233
1234 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1235 ret = 0;
1236 goto out;
1237 }
1238 switch (page - head_page) {
1239 case 1:
1240 /* the first tail page: ->mapping may be compound_mapcount() */
1241 if (unlikely(compound_mapcount(page))) {
1242 bad_page(page, "nonzero compound_mapcount");
1243 goto out;
1244 }
1245 break;
1246 case 2:
1247 /*
1248 * the second tail page: ->mapping is
1249 * deferred_list.next -- ignore value.
1250 */
1251 break;
1252 default:
1253 if (page->mapping != TAIL_MAPPING) {
1254 bad_page(page, "corrupted mapping in tail page");
1255 goto out;
1256 }
1257 break;
1258 }
1259 if (unlikely(!PageTail(page))) {
1260 bad_page(page, "PageTail not set");
1261 goto out;
1262 }
1263 if (unlikely(compound_head(page) != head_page)) {
1264 bad_page(page, "compound_head not consistent");
1265 goto out;
1266 }
1267 ret = 0;
1268out:
1269 page->mapping = NULL;
1270 clear_compound_head(page);
1271 return ret;
1272}
1273
1274static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1275{
1276 int i;
1277
1278 if (zero_tags) {
1279 for (i = 0; i < numpages; i++)
1280 tag_clear_highpage(page + i);
1281 return;
1282 }
1283
1284 /* s390's use of memset() could override KASAN redzones. */
1285 kasan_disable_current();
1286 for (i = 0; i < numpages; i++) {
1287 u8 tag = page_kasan_tag(page + i);
1288 page_kasan_tag_reset(page + i);
1289 clear_highpage(page + i);
1290 page_kasan_tag_set(page + i, tag);
1291 }
1292 kasan_enable_current();
1293}
1294
1295static __always_inline bool free_pages_prepare(struct page *page,
1296 unsigned int order, bool check_free, fpi_t fpi_flags)
1297{
1298 int bad = 0;
1299 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1300
1301 VM_BUG_ON_PAGE(PageTail(page), page);
1302
1303 trace_mm_page_free(page, order);
1304
1305 if (unlikely(PageHWPoison(page)) && !order) {
1306 /*
1307 * Do not let hwpoison pages hit pcplists/buddy
1308 * Untie memcg state and reset page's owner
1309 */
1310 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1311 __memcg_kmem_uncharge_page(page, order);
1312 reset_page_owner(page, order);
1313 page_table_check_free(page, order);
1314 return false;
1315 }
1316
1317 /*
1318 * Check tail pages before head page information is cleared to
1319 * avoid checking PageCompound for order-0 pages.
1320 */
1321 if (unlikely(order)) {
1322 bool compound = PageCompound(page);
1323 int i;
1324
1325 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1326
1327 if (compound) {
1328 ClearPageDoubleMap(page);
1329 ClearPageHasHWPoisoned(page);
1330 }
1331 for (i = 1; i < (1 << order); i++) {
1332 if (compound)
1333 bad += free_tail_pages_check(page, page + i);
1334 if (unlikely(check_free_page(page + i))) {
1335 bad++;
1336 continue;
1337 }
1338 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1339 }
1340 }
1341 if (PageMappingFlags(page))
1342 page->mapping = NULL;
1343 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1344 __memcg_kmem_uncharge_page(page, order);
1345 if (check_free)
1346 bad += check_free_page(page);
1347 if (bad)
1348 return false;
1349
1350 page_cpupid_reset_last(page);
1351 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1352 reset_page_owner(page, order);
1353 page_table_check_free(page, order);
1354
1355 if (!PageHighMem(page)) {
1356 debug_check_no_locks_freed(page_address(page),
1357 PAGE_SIZE << order);
1358 debug_check_no_obj_freed(page_address(page),
1359 PAGE_SIZE << order);
1360 }
1361
1362 kernel_poison_pages(page, 1 << order);
1363
1364 /*
1365 * As memory initialization might be integrated into KASAN,
1366 * kasan_free_pages and kernel_init_free_pages must be
1367 * kept together to avoid discrepancies in behavior.
1368 *
1369 * With hardware tag-based KASAN, memory tags must be set before the
1370 * page becomes unavailable via debug_pagealloc or arch_free_page.
1371 */
1372 if (kasan_has_integrated_init()) {
1373 if (!skip_kasan_poison)
1374 kasan_free_pages(page, order);
1375 } else {
1376 bool init = want_init_on_free();
1377
1378 if (init)
1379 kernel_init_free_pages(page, 1 << order, false);
1380 if (!skip_kasan_poison)
1381 kasan_poison_pages(page, order, init);
1382 }
1383
1384 /*
1385 * arch_free_page() can make the page's contents inaccessible. s390
1386 * does this. So nothing which can access the page's contents should
1387 * happen after this.
1388 */
1389 arch_free_page(page, order);
1390
1391 debug_pagealloc_unmap_pages(page, 1 << order);
1392
1393 return true;
1394}
1395
1396#ifdef CONFIG_DEBUG_VM
1397/*
1398 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1399 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1400 * moved from pcp lists to free lists.
1401 */
1402static bool free_pcp_prepare(struct page *page, unsigned int order)
1403{
1404 return free_pages_prepare(page, order, true, FPI_NONE);
1405}
1406
1407static bool bulkfree_pcp_prepare(struct page *page)
1408{
1409 if (debug_pagealloc_enabled_static())
1410 return check_free_page(page);
1411 else
1412 return false;
1413}
1414#else
1415/*
1416 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1417 * moving from pcp lists to free list in order to reduce overhead. With
1418 * debug_pagealloc enabled, they are checked also immediately when being freed
1419 * to the pcp lists.
1420 */
1421static bool free_pcp_prepare(struct page *page, unsigned int order)
1422{
1423 if (debug_pagealloc_enabled_static())
1424 return free_pages_prepare(page, order, true, FPI_NONE);
1425 else
1426 return free_pages_prepare(page, order, false, FPI_NONE);
1427}
1428
1429static bool bulkfree_pcp_prepare(struct page *page)
1430{
1431 return check_free_page(page);
1432}
1433#endif /* CONFIG_DEBUG_VM */
1434
1435static inline void prefetch_buddy(struct page *page)
1436{
1437 unsigned long pfn = page_to_pfn(page);
1438 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1439 struct page *buddy = page + (buddy_pfn - pfn);
1440
1441 prefetch(buddy);
1442}
1443
1444/*
1445 * Frees a number of pages from the PCP lists
1446 * Assumes all pages on list are in same zone.
1447 * count is the number of pages to free.
1448 */
1449static void free_pcppages_bulk(struct zone *zone, int count,
1450 struct per_cpu_pages *pcp)
1451{
1452 int pindex = 0;
1453 int batch_free = 0;
1454 int nr_freed = 0;
1455 unsigned int order;
1456 int prefetch_nr = READ_ONCE(pcp->batch);
1457 bool isolated_pageblocks;
1458 struct page *page, *tmp;
1459 LIST_HEAD(head);
1460
1461 /*
1462 * Ensure proper count is passed which otherwise would stuck in the
1463 * below while (list_empty(list)) loop.
1464 */
1465 count = min(pcp->count, count);
1466 while (count > 0) {
1467 struct list_head *list;
1468
1469 /*
1470 * Remove pages from lists in a round-robin fashion. A
1471 * batch_free count is maintained that is incremented when an
1472 * empty list is encountered. This is so more pages are freed
1473 * off fuller lists instead of spinning excessively around empty
1474 * lists
1475 */
1476 do {
1477 batch_free++;
1478 if (++pindex == NR_PCP_LISTS)
1479 pindex = 0;
1480 list = &pcp->lists[pindex];
1481 } while (list_empty(list));
1482
1483 /* This is the only non-empty list. Free them all. */
1484 if (batch_free == NR_PCP_LISTS)
1485 batch_free = count;
1486
1487 order = pindex_to_order(pindex);
1488 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1489 do {
1490 page = list_last_entry(list, struct page, lru);
1491 /* must delete to avoid corrupting pcp list */
1492 list_del(&page->lru);
1493 nr_freed += 1 << order;
1494 count -= 1 << order;
1495
1496 if (bulkfree_pcp_prepare(page))
1497 continue;
1498
1499 /* Encode order with the migratetype */
1500 page->index <<= NR_PCP_ORDER_WIDTH;
1501 page->index |= order;
1502
1503 list_add_tail(&page->lru, &head);
1504
1505 /*
1506 * We are going to put the page back to the global
1507 * pool, prefetch its buddy to speed up later access
1508 * under zone->lock. It is believed the overhead of
1509 * an additional test and calculating buddy_pfn here
1510 * can be offset by reduced memory latency later. To
1511 * avoid excessive prefetching due to large count, only
1512 * prefetch buddy for the first pcp->batch nr of pages.
1513 */
1514 if (prefetch_nr) {
1515 prefetch_buddy(page);
1516 prefetch_nr--;
1517 }
1518 } while (count > 0 && --batch_free && !list_empty(list));
1519 }
1520 pcp->count -= nr_freed;
1521
1522 /*
1523 * local_lock_irq held so equivalent to spin_lock_irqsave for
1524 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1525 */
1526 spin_lock(&zone->lock);
1527 isolated_pageblocks = has_isolate_pageblock(zone);
1528
1529 /*
1530 * Use safe version since after __free_one_page(),
1531 * page->lru.next will not point to original list.
1532 */
1533 list_for_each_entry_safe(page, tmp, &head, lru) {
1534 int mt = get_pcppage_migratetype(page);
1535
1536 /* mt has been encoded with the order (see above) */
1537 order = mt & NR_PCP_ORDER_MASK;
1538 mt >>= NR_PCP_ORDER_WIDTH;
1539
1540 /* MIGRATE_ISOLATE page should not go to pcplists */
1541 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1542 /* Pageblock could have been isolated meanwhile */
1543 if (unlikely(isolated_pageblocks))
1544 mt = get_pageblock_migratetype(page);
1545
1546 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1547 trace_mm_page_pcpu_drain(page, order, mt);
1548 }
1549 spin_unlock(&zone->lock);
1550}
1551
1552static void free_one_page(struct zone *zone,
1553 struct page *page, unsigned long pfn,
1554 unsigned int order,
1555 int migratetype, fpi_t fpi_flags)
1556{
1557 unsigned long flags;
1558
1559 spin_lock_irqsave(&zone->lock, flags);
1560 if (unlikely(has_isolate_pageblock(zone) ||
1561 is_migrate_isolate(migratetype))) {
1562 migratetype = get_pfnblock_migratetype(page, pfn);
1563 }
1564 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1565 spin_unlock_irqrestore(&zone->lock, flags);
1566}
1567
1568static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1569 unsigned long zone, int nid)
1570{
1571 mm_zero_struct_page(page);
1572 set_page_links(page, zone, nid, pfn);
1573 init_page_count(page);
1574 page_mapcount_reset(page);
1575 page_cpupid_reset_last(page);
1576 page_kasan_tag_reset(page);
1577
1578 INIT_LIST_HEAD(&page->lru);
1579#ifdef WANT_PAGE_VIRTUAL
1580 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1581 if (!is_highmem_idx(zone))
1582 set_page_address(page, __va(pfn << PAGE_SHIFT));
1583#endif
1584}
1585
1586#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1587static void __meminit init_reserved_page(unsigned long pfn)
1588{
1589 pg_data_t *pgdat;
1590 int nid, zid;
1591
1592 if (!early_page_uninitialised(pfn))
1593 return;
1594
1595 nid = early_pfn_to_nid(pfn);
1596 pgdat = NODE_DATA(nid);
1597
1598 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1599 struct zone *zone = &pgdat->node_zones[zid];
1600
1601 if (zone_spans_pfn(zone, pfn))
1602 break;
1603 }
1604 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1605}
1606#else
1607static inline void init_reserved_page(unsigned long pfn)
1608{
1609}
1610#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1611
1612/*
1613 * Initialised pages do not have PageReserved set. This function is
1614 * called for each range allocated by the bootmem allocator and
1615 * marks the pages PageReserved. The remaining valid pages are later
1616 * sent to the buddy page allocator.
1617 */
1618void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1619{
1620 unsigned long start_pfn = PFN_DOWN(start);
1621 unsigned long end_pfn = PFN_UP(end);
1622
1623 for (; start_pfn < end_pfn; start_pfn++) {
1624 if (pfn_valid(start_pfn)) {
1625 struct page *page = pfn_to_page(start_pfn);
1626
1627 init_reserved_page(start_pfn);
1628
1629 /* Avoid false-positive PageTail() */
1630 INIT_LIST_HEAD(&page->lru);
1631
1632 /*
1633 * no need for atomic set_bit because the struct
1634 * page is not visible yet so nobody should
1635 * access it yet.
1636 */
1637 __SetPageReserved(page);
1638 }
1639 }
1640}
1641
1642static void __free_pages_ok(struct page *page, unsigned int order,
1643 fpi_t fpi_flags)
1644{
1645 unsigned long flags;
1646 int migratetype;
1647 unsigned long pfn = page_to_pfn(page);
1648 struct zone *zone = page_zone(page);
1649
1650 if (!free_pages_prepare(page, order, true, fpi_flags))
1651 return;
1652
1653 migratetype = get_pfnblock_migratetype(page, pfn);
1654
1655 spin_lock_irqsave(&zone->lock, flags);
1656 if (unlikely(has_isolate_pageblock(zone) ||
1657 is_migrate_isolate(migratetype))) {
1658 migratetype = get_pfnblock_migratetype(page, pfn);
1659 }
1660 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1661 spin_unlock_irqrestore(&zone->lock, flags);
1662
1663 __count_vm_events(PGFREE, 1 << order);
1664}
1665
1666void __free_pages_core(struct page *page, unsigned int order)
1667{
1668 unsigned int nr_pages = 1 << order;
1669 struct page *p = page;
1670 unsigned int loop;
1671
1672 /*
1673 * When initializing the memmap, __init_single_page() sets the refcount
1674 * of all pages to 1 ("allocated"/"not free"). We have to set the
1675 * refcount of all involved pages to 0.
1676 */
1677 prefetchw(p);
1678 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1679 prefetchw(p + 1);
1680 __ClearPageReserved(p);
1681 set_page_count(p, 0);
1682 }
1683 __ClearPageReserved(p);
1684 set_page_count(p, 0);
1685
1686 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1687
1688 /*
1689 * Bypass PCP and place fresh pages right to the tail, primarily
1690 * relevant for memory onlining.
1691 */
1692 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1693}
1694
1695#ifdef CONFIG_NUMA
1696
1697/*
1698 * During memory init memblocks map pfns to nids. The search is expensive and
1699 * this caches recent lookups. The implementation of __early_pfn_to_nid
1700 * treats start/end as pfns.
1701 */
1702struct mminit_pfnnid_cache {
1703 unsigned long last_start;
1704 unsigned long last_end;
1705 int last_nid;
1706};
1707
1708static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1709
1710/*
1711 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1712 */
1713static int __meminit __early_pfn_to_nid(unsigned long pfn,
1714 struct mminit_pfnnid_cache *state)
1715{
1716 unsigned long start_pfn, end_pfn;
1717 int nid;
1718
1719 if (state->last_start <= pfn && pfn < state->last_end)
1720 return state->last_nid;
1721
1722 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1723 if (nid != NUMA_NO_NODE) {
1724 state->last_start = start_pfn;
1725 state->last_end = end_pfn;
1726 state->last_nid = nid;
1727 }
1728
1729 return nid;
1730}
1731
1732int __meminit early_pfn_to_nid(unsigned long pfn)
1733{
1734 static DEFINE_SPINLOCK(early_pfn_lock);
1735 int nid;
1736
1737 spin_lock(&early_pfn_lock);
1738 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1739 if (nid < 0)
1740 nid = first_online_node;
1741 spin_unlock(&early_pfn_lock);
1742
1743 return nid;
1744}
1745#endif /* CONFIG_NUMA */
1746
1747void __init memblock_free_pages(struct page *page, unsigned long pfn,
1748 unsigned int order)
1749{
1750 if (early_page_uninitialised(pfn))
1751 return;
1752 __free_pages_core(page, order);
1753}
1754
1755/*
1756 * Check that the whole (or subset of) a pageblock given by the interval of
1757 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1758 * with the migration of free compaction scanner.
1759 *
1760 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1761 *
1762 * It's possible on some configurations to have a setup like node0 node1 node0
1763 * i.e. it's possible that all pages within a zones range of pages do not
1764 * belong to a single zone. We assume that a border between node0 and node1
1765 * can occur within a single pageblock, but not a node0 node1 node0
1766 * interleaving within a single pageblock. It is therefore sufficient to check
1767 * the first and last page of a pageblock and avoid checking each individual
1768 * page in a pageblock.
1769 */
1770struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1771 unsigned long end_pfn, struct zone *zone)
1772{
1773 struct page *start_page;
1774 struct page *end_page;
1775
1776 /* end_pfn is one past the range we are checking */
1777 end_pfn--;
1778
1779 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1780 return NULL;
1781
1782 start_page = pfn_to_online_page(start_pfn);
1783 if (!start_page)
1784 return NULL;
1785
1786 if (page_zone(start_page) != zone)
1787 return NULL;
1788
1789 end_page = pfn_to_page(end_pfn);
1790
1791 /* This gives a shorter code than deriving page_zone(end_page) */
1792 if (page_zone_id(start_page) != page_zone_id(end_page))
1793 return NULL;
1794
1795 return start_page;
1796}
1797
1798void set_zone_contiguous(struct zone *zone)
1799{
1800 unsigned long block_start_pfn = zone->zone_start_pfn;
1801 unsigned long block_end_pfn;
1802
1803 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1804 for (; block_start_pfn < zone_end_pfn(zone);
1805 block_start_pfn = block_end_pfn,
1806 block_end_pfn += pageblock_nr_pages) {
1807
1808 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1809
1810 if (!__pageblock_pfn_to_page(block_start_pfn,
1811 block_end_pfn, zone))
1812 return;
1813 cond_resched();
1814 }
1815
1816 /* We confirm that there is no hole */
1817 zone->contiguous = true;
1818}
1819
1820void clear_zone_contiguous(struct zone *zone)
1821{
1822 zone->contiguous = false;
1823}
1824
1825#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1826static void __init deferred_free_range(unsigned long pfn,
1827 unsigned long nr_pages)
1828{
1829 struct page *page;
1830 unsigned long i;
1831
1832 if (!nr_pages)
1833 return;
1834
1835 page = pfn_to_page(pfn);
1836
1837 /* Free a large naturally-aligned chunk if possible */
1838 if (nr_pages == pageblock_nr_pages &&
1839 (pfn & (pageblock_nr_pages - 1)) == 0) {
1840 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1841 __free_pages_core(page, pageblock_order);
1842 return;
1843 }
1844
1845 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1846 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1847 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1848 __free_pages_core(page, 0);
1849 }
1850}
1851
1852/* Completion tracking for deferred_init_memmap() threads */
1853static atomic_t pgdat_init_n_undone __initdata;
1854static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1855
1856static inline void __init pgdat_init_report_one_done(void)
1857{
1858 if (atomic_dec_and_test(&pgdat_init_n_undone))
1859 complete(&pgdat_init_all_done_comp);
1860}
1861
1862/*
1863 * Returns true if page needs to be initialized or freed to buddy allocator.
1864 *
1865 * First we check if pfn is valid on architectures where it is possible to have
1866 * holes within pageblock_nr_pages. On systems where it is not possible, this
1867 * function is optimized out.
1868 *
1869 * Then, we check if a current large page is valid by only checking the validity
1870 * of the head pfn.
1871 */
1872static inline bool __init deferred_pfn_valid(unsigned long pfn)
1873{
1874 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1875 return false;
1876 return true;
1877}
1878
1879/*
1880 * Free pages to buddy allocator. Try to free aligned pages in
1881 * pageblock_nr_pages sizes.
1882 */
1883static void __init deferred_free_pages(unsigned long pfn,
1884 unsigned long end_pfn)
1885{
1886 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1887 unsigned long nr_free = 0;
1888
1889 for (; pfn < end_pfn; pfn++) {
1890 if (!deferred_pfn_valid(pfn)) {
1891 deferred_free_range(pfn - nr_free, nr_free);
1892 nr_free = 0;
1893 } else if (!(pfn & nr_pgmask)) {
1894 deferred_free_range(pfn - nr_free, nr_free);
1895 nr_free = 1;
1896 } else {
1897 nr_free++;
1898 }
1899 }
1900 /* Free the last block of pages to allocator */
1901 deferred_free_range(pfn - nr_free, nr_free);
1902}
1903
1904/*
1905 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1906 * by performing it only once every pageblock_nr_pages.
1907 * Return number of pages initialized.
1908 */
1909static unsigned long __init deferred_init_pages(struct zone *zone,
1910 unsigned long pfn,
1911 unsigned long end_pfn)
1912{
1913 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1914 int nid = zone_to_nid(zone);
1915 unsigned long nr_pages = 0;
1916 int zid = zone_idx(zone);
1917 struct page *page = NULL;
1918
1919 for (; pfn < end_pfn; pfn++) {
1920 if (!deferred_pfn_valid(pfn)) {
1921 page = NULL;
1922 continue;
1923 } else if (!page || !(pfn & nr_pgmask)) {
1924 page = pfn_to_page(pfn);
1925 } else {
1926 page++;
1927 }
1928 __init_single_page(page, pfn, zid, nid);
1929 nr_pages++;
1930 }
1931 return (nr_pages);
1932}
1933
1934/*
1935 * This function is meant to pre-load the iterator for the zone init.
1936 * Specifically it walks through the ranges until we are caught up to the
1937 * first_init_pfn value and exits there. If we never encounter the value we
1938 * return false indicating there are no valid ranges left.
1939 */
1940static bool __init
1941deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1942 unsigned long *spfn, unsigned long *epfn,
1943 unsigned long first_init_pfn)
1944{
1945 u64 j;
1946
1947 /*
1948 * Start out by walking through the ranges in this zone that have
1949 * already been initialized. We don't need to do anything with them
1950 * so we just need to flush them out of the system.
1951 */
1952 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1953 if (*epfn <= first_init_pfn)
1954 continue;
1955 if (*spfn < first_init_pfn)
1956 *spfn = first_init_pfn;
1957 *i = j;
1958 return true;
1959 }
1960
1961 return false;
1962}
1963
1964/*
1965 * Initialize and free pages. We do it in two loops: first we initialize
1966 * struct page, then free to buddy allocator, because while we are
1967 * freeing pages we can access pages that are ahead (computing buddy
1968 * page in __free_one_page()).
1969 *
1970 * In order to try and keep some memory in the cache we have the loop
1971 * broken along max page order boundaries. This way we will not cause
1972 * any issues with the buddy page computation.
1973 */
1974static unsigned long __init
1975deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1976 unsigned long *end_pfn)
1977{
1978 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1979 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1980 unsigned long nr_pages = 0;
1981 u64 j = *i;
1982
1983 /* First we loop through and initialize the page values */
1984 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1985 unsigned long t;
1986
1987 if (mo_pfn <= *start_pfn)
1988 break;
1989
1990 t = min(mo_pfn, *end_pfn);
1991 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1992
1993 if (mo_pfn < *end_pfn) {
1994 *start_pfn = mo_pfn;
1995 break;
1996 }
1997 }
1998
1999 /* Reset values and now loop through freeing pages as needed */
2000 swap(j, *i);
2001
2002 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2003 unsigned long t;
2004
2005 if (mo_pfn <= spfn)
2006 break;
2007
2008 t = min(mo_pfn, epfn);
2009 deferred_free_pages(spfn, t);
2010
2011 if (mo_pfn <= epfn)
2012 break;
2013 }
2014
2015 return nr_pages;
2016}
2017
2018static void __init
2019deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2020 void *arg)
2021{
2022 unsigned long spfn, epfn;
2023 struct zone *zone = arg;
2024 u64 i;
2025
2026 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2027
2028 /*
2029 * Initialize and free pages in MAX_ORDER sized increments so that we
2030 * can avoid introducing any issues with the buddy allocator.
2031 */
2032 while (spfn < end_pfn) {
2033 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2034 cond_resched();
2035 }
2036}
2037
2038/* An arch may override for more concurrency. */
2039__weak int __init
2040deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2041{
2042 return 1;
2043}
2044
2045/* Initialise remaining memory on a node */
2046static int __init deferred_init_memmap(void *data)
2047{
2048 pg_data_t *pgdat = data;
2049 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2050 unsigned long spfn = 0, epfn = 0;
2051 unsigned long first_init_pfn, flags;
2052 unsigned long start = jiffies;
2053 struct zone *zone;
2054 int zid, max_threads;
2055 u64 i;
2056
2057 /* Bind memory initialisation thread to a local node if possible */
2058 if (!cpumask_empty(cpumask))
2059 set_cpus_allowed_ptr(current, cpumask);
2060
2061 pgdat_resize_lock(pgdat, &flags);
2062 first_init_pfn = pgdat->first_deferred_pfn;
2063 if (first_init_pfn == ULONG_MAX) {
2064 pgdat_resize_unlock(pgdat, &flags);
2065 pgdat_init_report_one_done();
2066 return 0;
2067 }
2068
2069 /* Sanity check boundaries */
2070 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2071 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2072 pgdat->first_deferred_pfn = ULONG_MAX;
2073
2074 /*
2075 * Once we unlock here, the zone cannot be grown anymore, thus if an
2076 * interrupt thread must allocate this early in boot, zone must be
2077 * pre-grown prior to start of deferred page initialization.
2078 */
2079 pgdat_resize_unlock(pgdat, &flags);
2080
2081 /* Only the highest zone is deferred so find it */
2082 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2083 zone = pgdat->node_zones + zid;
2084 if (first_init_pfn < zone_end_pfn(zone))
2085 break;
2086 }
2087
2088 /* If the zone is empty somebody else may have cleared out the zone */
2089 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2090 first_init_pfn))
2091 goto zone_empty;
2092
2093 max_threads = deferred_page_init_max_threads(cpumask);
2094
2095 while (spfn < epfn) {
2096 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2097 struct padata_mt_job job = {
2098 .thread_fn = deferred_init_memmap_chunk,
2099 .fn_arg = zone,
2100 .start = spfn,
2101 .size = epfn_align - spfn,
2102 .align = PAGES_PER_SECTION,
2103 .min_chunk = PAGES_PER_SECTION,
2104 .max_threads = max_threads,
2105 };
2106
2107 padata_do_multithreaded(&job);
2108 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2109 epfn_align);
2110 }
2111zone_empty:
2112 /* Sanity check that the next zone really is unpopulated */
2113 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2114
2115 pr_info("node %d deferred pages initialised in %ums\n",
2116 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2117
2118 pgdat_init_report_one_done();
2119 return 0;
2120}
2121
2122/*
2123 * If this zone has deferred pages, try to grow it by initializing enough
2124 * deferred pages to satisfy the allocation specified by order, rounded up to
2125 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2126 * of SECTION_SIZE bytes by initializing struct pages in increments of
2127 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2128 *
2129 * Return true when zone was grown, otherwise return false. We return true even
2130 * when we grow less than requested, to let the caller decide if there are
2131 * enough pages to satisfy the allocation.
2132 *
2133 * Note: We use noinline because this function is needed only during boot, and
2134 * it is called from a __ref function _deferred_grow_zone. This way we are
2135 * making sure that it is not inlined into permanent text section.
2136 */
2137static noinline bool __init
2138deferred_grow_zone(struct zone *zone, unsigned int order)
2139{
2140 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2141 pg_data_t *pgdat = zone->zone_pgdat;
2142 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2143 unsigned long spfn, epfn, flags;
2144 unsigned long nr_pages = 0;
2145 u64 i;
2146
2147 /* Only the last zone may have deferred pages */
2148 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2149 return false;
2150
2151 pgdat_resize_lock(pgdat, &flags);
2152
2153 /*
2154 * If someone grew this zone while we were waiting for spinlock, return
2155 * true, as there might be enough pages already.
2156 */
2157 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2158 pgdat_resize_unlock(pgdat, &flags);
2159 return true;
2160 }
2161
2162 /* If the zone is empty somebody else may have cleared out the zone */
2163 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164 first_deferred_pfn)) {
2165 pgdat->first_deferred_pfn = ULONG_MAX;
2166 pgdat_resize_unlock(pgdat, &flags);
2167 /* Retry only once. */
2168 return first_deferred_pfn != ULONG_MAX;
2169 }
2170
2171 /*
2172 * Initialize and free pages in MAX_ORDER sized increments so
2173 * that we can avoid introducing any issues with the buddy
2174 * allocator.
2175 */
2176 while (spfn < epfn) {
2177 /* update our first deferred PFN for this section */
2178 first_deferred_pfn = spfn;
2179
2180 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2181 touch_nmi_watchdog();
2182
2183 /* We should only stop along section boundaries */
2184 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2185 continue;
2186
2187 /* If our quota has been met we can stop here */
2188 if (nr_pages >= nr_pages_needed)
2189 break;
2190 }
2191
2192 pgdat->first_deferred_pfn = spfn;
2193 pgdat_resize_unlock(pgdat, &flags);
2194
2195 return nr_pages > 0;
2196}
2197
2198/*
2199 * deferred_grow_zone() is __init, but it is called from
2200 * get_page_from_freelist() during early boot until deferred_pages permanently
2201 * disables this call. This is why we have refdata wrapper to avoid warning,
2202 * and to ensure that the function body gets unloaded.
2203 */
2204static bool __ref
2205_deferred_grow_zone(struct zone *zone, unsigned int order)
2206{
2207 return deferred_grow_zone(zone, order);
2208}
2209
2210#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2211
2212void __init page_alloc_init_late(void)
2213{
2214 struct zone *zone;
2215 int nid;
2216
2217#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2218
2219 /* There will be num_node_state(N_MEMORY) threads */
2220 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2221 for_each_node_state(nid, N_MEMORY) {
2222 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2223 }
2224
2225 /* Block until all are initialised */
2226 wait_for_completion(&pgdat_init_all_done_comp);
2227
2228 /*
2229 * We initialized the rest of the deferred pages. Permanently disable
2230 * on-demand struct page initialization.
2231 */
2232 static_branch_disable(&deferred_pages);
2233
2234 /* Reinit limits that are based on free pages after the kernel is up */
2235 files_maxfiles_init();
2236#endif
2237
2238 buffer_init();
2239
2240 /* Discard memblock private memory */
2241 memblock_discard();
2242
2243 for_each_node_state(nid, N_MEMORY)
2244 shuffle_free_memory(NODE_DATA(nid));
2245
2246 for_each_populated_zone(zone)
2247 set_zone_contiguous(zone);
2248}
2249
2250#ifdef CONFIG_CMA
2251/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2252void __init init_cma_reserved_pageblock(struct page *page)
2253{
2254 unsigned i = pageblock_nr_pages;
2255 struct page *p = page;
2256
2257 do {
2258 __ClearPageReserved(p);
2259 set_page_count(p, 0);
2260 } while (++p, --i);
2261
2262 set_pageblock_migratetype(page, MIGRATE_CMA);
2263
2264 if (pageblock_order >= MAX_ORDER) {
2265 i = pageblock_nr_pages;
2266 p = page;
2267 do {
2268 set_page_refcounted(p);
2269 __free_pages(p, MAX_ORDER - 1);
2270 p += MAX_ORDER_NR_PAGES;
2271 } while (i -= MAX_ORDER_NR_PAGES);
2272 } else {
2273 set_page_refcounted(page);
2274 __free_pages(page, pageblock_order);
2275 }
2276
2277 adjust_managed_page_count(page, pageblock_nr_pages);
2278 page_zone(page)->cma_pages += pageblock_nr_pages;
2279}
2280#endif
2281
2282/*
2283 * The order of subdivision here is critical for the IO subsystem.
2284 * Please do not alter this order without good reasons and regression
2285 * testing. Specifically, as large blocks of memory are subdivided,
2286 * the order in which smaller blocks are delivered depends on the order
2287 * they're subdivided in this function. This is the primary factor
2288 * influencing the order in which pages are delivered to the IO
2289 * subsystem according to empirical testing, and this is also justified
2290 * by considering the behavior of a buddy system containing a single
2291 * large block of memory acted on by a series of small allocations.
2292 * This behavior is a critical factor in sglist merging's success.
2293 *
2294 * -- nyc
2295 */
2296static inline void expand(struct zone *zone, struct page *page,
2297 int low, int high, int migratetype)
2298{
2299 unsigned long size = 1 << high;
2300
2301 while (high > low) {
2302 high--;
2303 size >>= 1;
2304 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2305
2306 /*
2307 * Mark as guard pages (or page), that will allow to
2308 * merge back to allocator when buddy will be freed.
2309 * Corresponding page table entries will not be touched,
2310 * pages will stay not present in virtual address space
2311 */
2312 if (set_page_guard(zone, &page[size], high, migratetype))
2313 continue;
2314
2315 add_to_free_list(&page[size], zone, high, migratetype);
2316 set_buddy_order(&page[size], high);
2317 }
2318}
2319
2320static void check_new_page_bad(struct page *page)
2321{
2322 if (unlikely(page->flags & __PG_HWPOISON)) {
2323 /* Don't complain about hwpoisoned pages */
2324 page_mapcount_reset(page); /* remove PageBuddy */
2325 return;
2326 }
2327
2328 bad_page(page,
2329 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2330}
2331
2332/*
2333 * This page is about to be returned from the page allocator
2334 */
2335static inline int check_new_page(struct page *page)
2336{
2337 if (likely(page_expected_state(page,
2338 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2339 return 0;
2340
2341 check_new_page_bad(page);
2342 return 1;
2343}
2344
2345#ifdef CONFIG_DEBUG_VM
2346/*
2347 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2348 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2349 * also checked when pcp lists are refilled from the free lists.
2350 */
2351static inline bool check_pcp_refill(struct page *page)
2352{
2353 if (debug_pagealloc_enabled_static())
2354 return check_new_page(page);
2355 else
2356 return false;
2357}
2358
2359static inline bool check_new_pcp(struct page *page)
2360{
2361 return check_new_page(page);
2362}
2363#else
2364/*
2365 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2366 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2367 * enabled, they are also checked when being allocated from the pcp lists.
2368 */
2369static inline bool check_pcp_refill(struct page *page)
2370{
2371 return check_new_page(page);
2372}
2373static inline bool check_new_pcp(struct page *page)
2374{
2375 if (debug_pagealloc_enabled_static())
2376 return check_new_page(page);
2377 else
2378 return false;
2379}
2380#endif /* CONFIG_DEBUG_VM */
2381
2382static bool check_new_pages(struct page *page, unsigned int order)
2383{
2384 int i;
2385 for (i = 0; i < (1 << order); i++) {
2386 struct page *p = page + i;
2387
2388 if (unlikely(check_new_page(p)))
2389 return true;
2390 }
2391
2392 return false;
2393}
2394
2395inline void post_alloc_hook(struct page *page, unsigned int order,
2396 gfp_t gfp_flags)
2397{
2398 set_page_private(page, 0);
2399 set_page_refcounted(page);
2400
2401 arch_alloc_page(page, order);
2402 debug_pagealloc_map_pages(page, 1 << order);
2403
2404 /*
2405 * Page unpoisoning must happen before memory initialization.
2406 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2407 * allocations and the page unpoisoning code will complain.
2408 */
2409 kernel_unpoison_pages(page, 1 << order);
2410
2411 /*
2412 * As memory initialization might be integrated into KASAN,
2413 * kasan_alloc_pages and kernel_init_free_pages must be
2414 * kept together to avoid discrepancies in behavior.
2415 */
2416 if (kasan_has_integrated_init()) {
2417 kasan_alloc_pages(page, order, gfp_flags);
2418 } else {
2419 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2420
2421 kasan_unpoison_pages(page, order, init);
2422 if (init)
2423 kernel_init_free_pages(page, 1 << order,
2424 gfp_flags & __GFP_ZEROTAGS);
2425 }
2426
2427 set_page_owner(page, order, gfp_flags);
2428 page_table_check_alloc(page, order);
2429}
2430
2431static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2432 unsigned int alloc_flags)
2433{
2434 post_alloc_hook(page, order, gfp_flags);
2435
2436 if (order && (gfp_flags & __GFP_COMP))
2437 prep_compound_page(page, order);
2438
2439 /*
2440 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2441 * allocate the page. The expectation is that the caller is taking
2442 * steps that will free more memory. The caller should avoid the page
2443 * being used for !PFMEMALLOC purposes.
2444 */
2445 if (alloc_flags & ALLOC_NO_WATERMARKS)
2446 set_page_pfmemalloc(page);
2447 else
2448 clear_page_pfmemalloc(page);
2449}
2450
2451/*
2452 * Go through the free lists for the given migratetype and remove
2453 * the smallest available page from the freelists
2454 */
2455static __always_inline
2456struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2457 int migratetype)
2458{
2459 unsigned int current_order;
2460 struct free_area *area;
2461 struct page *page;
2462
2463 /* Find a page of the appropriate size in the preferred list */
2464 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2465 area = &(zone->free_area[current_order]);
2466 page = get_page_from_free_area(area, migratetype);
2467 if (!page)
2468 continue;
2469 del_page_from_free_list(page, zone, current_order);
2470 expand(zone, page, order, current_order, migratetype);
2471 set_pcppage_migratetype(page, migratetype);
2472 return page;
2473 }
2474
2475 return NULL;
2476}
2477
2478
2479/*
2480 * This array describes the order lists are fallen back to when
2481 * the free lists for the desirable migrate type are depleted
2482 */
2483static int fallbacks[MIGRATE_TYPES][3] = {
2484 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2485 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2486 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2487#ifdef CONFIG_CMA
2488 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2489#endif
2490#ifdef CONFIG_MEMORY_ISOLATION
2491 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2492#endif
2493};
2494
2495#ifdef CONFIG_CMA
2496static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2497 unsigned int order)
2498{
2499 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2500}
2501#else
2502static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2503 unsigned int order) { return NULL; }
2504#endif
2505
2506/*
2507 * Move the free pages in a range to the freelist tail of the requested type.
2508 * Note that start_page and end_pages are not aligned on a pageblock
2509 * boundary. If alignment is required, use move_freepages_block()
2510 */
2511static int move_freepages(struct zone *zone,
2512 unsigned long start_pfn, unsigned long end_pfn,
2513 int migratetype, int *num_movable)
2514{
2515 struct page *page;
2516 unsigned long pfn;
2517 unsigned int order;
2518 int pages_moved = 0;
2519
2520 for (pfn = start_pfn; pfn <= end_pfn;) {
2521 page = pfn_to_page(pfn);
2522 if (!PageBuddy(page)) {
2523 /*
2524 * We assume that pages that could be isolated for
2525 * migration are movable. But we don't actually try
2526 * isolating, as that would be expensive.
2527 */
2528 if (num_movable &&
2529 (PageLRU(page) || __PageMovable(page)))
2530 (*num_movable)++;
2531 pfn++;
2532 continue;
2533 }
2534
2535 /* Make sure we are not inadvertently changing nodes */
2536 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2537 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2538
2539 order = buddy_order(page);
2540 move_to_free_list(page, zone, order, migratetype);
2541 pfn += 1 << order;
2542 pages_moved += 1 << order;
2543 }
2544
2545 return pages_moved;
2546}
2547
2548int move_freepages_block(struct zone *zone, struct page *page,
2549 int migratetype, int *num_movable)
2550{
2551 unsigned long start_pfn, end_pfn, pfn;
2552
2553 if (num_movable)
2554 *num_movable = 0;
2555
2556 pfn = page_to_pfn(page);
2557 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2558 end_pfn = start_pfn + pageblock_nr_pages - 1;
2559
2560 /* Do not cross zone boundaries */
2561 if (!zone_spans_pfn(zone, start_pfn))
2562 start_pfn = pfn;
2563 if (!zone_spans_pfn(zone, end_pfn))
2564 return 0;
2565
2566 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2567 num_movable);
2568}
2569
2570static void change_pageblock_range(struct page *pageblock_page,
2571 int start_order, int migratetype)
2572{
2573 int nr_pageblocks = 1 << (start_order - pageblock_order);
2574
2575 while (nr_pageblocks--) {
2576 set_pageblock_migratetype(pageblock_page, migratetype);
2577 pageblock_page += pageblock_nr_pages;
2578 }
2579}
2580
2581/*
2582 * When we are falling back to another migratetype during allocation, try to
2583 * steal extra free pages from the same pageblocks to satisfy further
2584 * allocations, instead of polluting multiple pageblocks.
2585 *
2586 * If we are stealing a relatively large buddy page, it is likely there will
2587 * be more free pages in the pageblock, so try to steal them all. For
2588 * reclaimable and unmovable allocations, we steal regardless of page size,
2589 * as fragmentation caused by those allocations polluting movable pageblocks
2590 * is worse than movable allocations stealing from unmovable and reclaimable
2591 * pageblocks.
2592 */
2593static bool can_steal_fallback(unsigned int order, int start_mt)
2594{
2595 /*
2596 * Leaving this order check is intended, although there is
2597 * relaxed order check in next check. The reason is that
2598 * we can actually steal whole pageblock if this condition met,
2599 * but, below check doesn't guarantee it and that is just heuristic
2600 * so could be changed anytime.
2601 */
2602 if (order >= pageblock_order)
2603 return true;
2604
2605 if (order >= pageblock_order / 2 ||
2606 start_mt == MIGRATE_RECLAIMABLE ||
2607 start_mt == MIGRATE_UNMOVABLE ||
2608 page_group_by_mobility_disabled)
2609 return true;
2610
2611 return false;
2612}
2613
2614static inline bool boost_watermark(struct zone *zone)
2615{
2616 unsigned long max_boost;
2617
2618 if (!watermark_boost_factor)
2619 return false;
2620 /*
2621 * Don't bother in zones that are unlikely to produce results.
2622 * On small machines, including kdump capture kernels running
2623 * in a small area, boosting the watermark can cause an out of
2624 * memory situation immediately.
2625 */
2626 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2627 return false;
2628
2629 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2630 watermark_boost_factor, 10000);
2631
2632 /*
2633 * high watermark may be uninitialised if fragmentation occurs
2634 * very early in boot so do not boost. We do not fall
2635 * through and boost by pageblock_nr_pages as failing
2636 * allocations that early means that reclaim is not going
2637 * to help and it may even be impossible to reclaim the
2638 * boosted watermark resulting in a hang.
2639 */
2640 if (!max_boost)
2641 return false;
2642
2643 max_boost = max(pageblock_nr_pages, max_boost);
2644
2645 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2646 max_boost);
2647
2648 return true;
2649}
2650
2651/*
2652 * This function implements actual steal behaviour. If order is large enough,
2653 * we can steal whole pageblock. If not, we first move freepages in this
2654 * pageblock to our migratetype and determine how many already-allocated pages
2655 * are there in the pageblock with a compatible migratetype. If at least half
2656 * of pages are free or compatible, we can change migratetype of the pageblock
2657 * itself, so pages freed in the future will be put on the correct free list.
2658 */
2659static void steal_suitable_fallback(struct zone *zone, struct page *page,
2660 unsigned int alloc_flags, int start_type, bool whole_block)
2661{
2662 unsigned int current_order = buddy_order(page);
2663 int free_pages, movable_pages, alike_pages;
2664 int old_block_type;
2665
2666 old_block_type = get_pageblock_migratetype(page);
2667
2668 /*
2669 * This can happen due to races and we want to prevent broken
2670 * highatomic accounting.
2671 */
2672 if (is_migrate_highatomic(old_block_type))
2673 goto single_page;
2674
2675 /* Take ownership for orders >= pageblock_order */
2676 if (current_order >= pageblock_order) {
2677 change_pageblock_range(page, current_order, start_type);
2678 goto single_page;
2679 }
2680
2681 /*
2682 * Boost watermarks to increase reclaim pressure to reduce the
2683 * likelihood of future fallbacks. Wake kswapd now as the node
2684 * may be balanced overall and kswapd will not wake naturally.
2685 */
2686 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2687 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2688
2689 /* We are not allowed to try stealing from the whole block */
2690 if (!whole_block)
2691 goto single_page;
2692
2693 free_pages = move_freepages_block(zone, page, start_type,
2694 &movable_pages);
2695 /*
2696 * Determine how many pages are compatible with our allocation.
2697 * For movable allocation, it's the number of movable pages which
2698 * we just obtained. For other types it's a bit more tricky.
2699 */
2700 if (start_type == MIGRATE_MOVABLE) {
2701 alike_pages = movable_pages;
2702 } else {
2703 /*
2704 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2705 * to MOVABLE pageblock, consider all non-movable pages as
2706 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2707 * vice versa, be conservative since we can't distinguish the
2708 * exact migratetype of non-movable pages.
2709 */
2710 if (old_block_type == MIGRATE_MOVABLE)
2711 alike_pages = pageblock_nr_pages
2712 - (free_pages + movable_pages);
2713 else
2714 alike_pages = 0;
2715 }
2716
2717 /* moving whole block can fail due to zone boundary conditions */
2718 if (!free_pages)
2719 goto single_page;
2720
2721 /*
2722 * If a sufficient number of pages in the block are either free or of
2723 * comparable migratability as our allocation, claim the whole block.
2724 */
2725 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2726 page_group_by_mobility_disabled)
2727 set_pageblock_migratetype(page, start_type);
2728
2729 return;
2730
2731single_page:
2732 move_to_free_list(page, zone, current_order, start_type);
2733}
2734
2735/*
2736 * Check whether there is a suitable fallback freepage with requested order.
2737 * If only_stealable is true, this function returns fallback_mt only if
2738 * we can steal other freepages all together. This would help to reduce
2739 * fragmentation due to mixed migratetype pages in one pageblock.
2740 */
2741int find_suitable_fallback(struct free_area *area, unsigned int order,
2742 int migratetype, bool only_stealable, bool *can_steal)
2743{
2744 int i;
2745 int fallback_mt;
2746
2747 if (area->nr_free == 0)
2748 return -1;
2749
2750 *can_steal = false;
2751 for (i = 0;; i++) {
2752 fallback_mt = fallbacks[migratetype][i];
2753 if (fallback_mt == MIGRATE_TYPES)
2754 break;
2755
2756 if (free_area_empty(area, fallback_mt))
2757 continue;
2758
2759 if (can_steal_fallback(order, migratetype))
2760 *can_steal = true;
2761
2762 if (!only_stealable)
2763 return fallback_mt;
2764
2765 if (*can_steal)
2766 return fallback_mt;
2767 }
2768
2769 return -1;
2770}
2771
2772/*
2773 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2774 * there are no empty page blocks that contain a page with a suitable order
2775 */
2776static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2777 unsigned int alloc_order)
2778{
2779 int mt;
2780 unsigned long max_managed, flags;
2781
2782 /*
2783 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2784 * Check is race-prone but harmless.
2785 */
2786 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2787 if (zone->nr_reserved_highatomic >= max_managed)
2788 return;
2789
2790 spin_lock_irqsave(&zone->lock, flags);
2791
2792 /* Recheck the nr_reserved_highatomic limit under the lock */
2793 if (zone->nr_reserved_highatomic >= max_managed)
2794 goto out_unlock;
2795
2796 /* Yoink! */
2797 mt = get_pageblock_migratetype(page);
2798 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2799 && !is_migrate_cma(mt)) {
2800 zone->nr_reserved_highatomic += pageblock_nr_pages;
2801 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2802 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2803 }
2804
2805out_unlock:
2806 spin_unlock_irqrestore(&zone->lock, flags);
2807}
2808
2809/*
2810 * Used when an allocation is about to fail under memory pressure. This
2811 * potentially hurts the reliability of high-order allocations when under
2812 * intense memory pressure but failed atomic allocations should be easier
2813 * to recover from than an OOM.
2814 *
2815 * If @force is true, try to unreserve a pageblock even though highatomic
2816 * pageblock is exhausted.
2817 */
2818static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2819 bool force)
2820{
2821 struct zonelist *zonelist = ac->zonelist;
2822 unsigned long flags;
2823 struct zoneref *z;
2824 struct zone *zone;
2825 struct page *page;
2826 int order;
2827 bool ret;
2828
2829 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2830 ac->nodemask) {
2831 /*
2832 * Preserve at least one pageblock unless memory pressure
2833 * is really high.
2834 */
2835 if (!force && zone->nr_reserved_highatomic <=
2836 pageblock_nr_pages)
2837 continue;
2838
2839 spin_lock_irqsave(&zone->lock, flags);
2840 for (order = 0; order < MAX_ORDER; order++) {
2841 struct free_area *area = &(zone->free_area[order]);
2842
2843 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2844 if (!page)
2845 continue;
2846
2847 /*
2848 * In page freeing path, migratetype change is racy so
2849 * we can counter several free pages in a pageblock
2850 * in this loop although we changed the pageblock type
2851 * from highatomic to ac->migratetype. So we should
2852 * adjust the count once.
2853 */
2854 if (is_migrate_highatomic_page(page)) {
2855 /*
2856 * It should never happen but changes to
2857 * locking could inadvertently allow a per-cpu
2858 * drain to add pages to MIGRATE_HIGHATOMIC
2859 * while unreserving so be safe and watch for
2860 * underflows.
2861 */
2862 zone->nr_reserved_highatomic -= min(
2863 pageblock_nr_pages,
2864 zone->nr_reserved_highatomic);
2865 }
2866
2867 /*
2868 * Convert to ac->migratetype and avoid the normal
2869 * pageblock stealing heuristics. Minimally, the caller
2870 * is doing the work and needs the pages. More
2871 * importantly, if the block was always converted to
2872 * MIGRATE_UNMOVABLE or another type then the number
2873 * of pageblocks that cannot be completely freed
2874 * may increase.
2875 */
2876 set_pageblock_migratetype(page, ac->migratetype);
2877 ret = move_freepages_block(zone, page, ac->migratetype,
2878 NULL);
2879 if (ret) {
2880 spin_unlock_irqrestore(&zone->lock, flags);
2881 return ret;
2882 }
2883 }
2884 spin_unlock_irqrestore(&zone->lock, flags);
2885 }
2886
2887 return false;
2888}
2889
2890/*
2891 * Try finding a free buddy page on the fallback list and put it on the free
2892 * list of requested migratetype, possibly along with other pages from the same
2893 * block, depending on fragmentation avoidance heuristics. Returns true if
2894 * fallback was found so that __rmqueue_smallest() can grab it.
2895 *
2896 * The use of signed ints for order and current_order is a deliberate
2897 * deviation from the rest of this file, to make the for loop
2898 * condition simpler.
2899 */
2900static __always_inline bool
2901__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2902 unsigned int alloc_flags)
2903{
2904 struct free_area *area;
2905 int current_order;
2906 int min_order = order;
2907 struct page *page;
2908 int fallback_mt;
2909 bool can_steal;
2910
2911 /*
2912 * Do not steal pages from freelists belonging to other pageblocks
2913 * i.e. orders < pageblock_order. If there are no local zones free,
2914 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2915 */
2916 if (alloc_flags & ALLOC_NOFRAGMENT)
2917 min_order = pageblock_order;
2918
2919 /*
2920 * Find the largest available free page in the other list. This roughly
2921 * approximates finding the pageblock with the most free pages, which
2922 * would be too costly to do exactly.
2923 */
2924 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2925 --current_order) {
2926 area = &(zone->free_area[current_order]);
2927 fallback_mt = find_suitable_fallback(area, current_order,
2928 start_migratetype, false, &can_steal);
2929 if (fallback_mt == -1)
2930 continue;
2931
2932 /*
2933 * We cannot steal all free pages from the pageblock and the
2934 * requested migratetype is movable. In that case it's better to
2935 * steal and split the smallest available page instead of the
2936 * largest available page, because even if the next movable
2937 * allocation falls back into a different pageblock than this
2938 * one, it won't cause permanent fragmentation.
2939 */
2940 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2941 && current_order > order)
2942 goto find_smallest;
2943
2944 goto do_steal;
2945 }
2946
2947 return false;
2948
2949find_smallest:
2950 for (current_order = order; current_order < MAX_ORDER;
2951 current_order++) {
2952 area = &(zone->free_area[current_order]);
2953 fallback_mt = find_suitable_fallback(area, current_order,
2954 start_migratetype, false, &can_steal);
2955 if (fallback_mt != -1)
2956 break;
2957 }
2958
2959 /*
2960 * This should not happen - we already found a suitable fallback
2961 * when looking for the largest page.
2962 */
2963 VM_BUG_ON(current_order == MAX_ORDER);
2964
2965do_steal:
2966 page = get_page_from_free_area(area, fallback_mt);
2967
2968 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2969 can_steal);
2970
2971 trace_mm_page_alloc_extfrag(page, order, current_order,
2972 start_migratetype, fallback_mt);
2973
2974 return true;
2975
2976}
2977
2978/*
2979 * Do the hard work of removing an element from the buddy allocator.
2980 * Call me with the zone->lock already held.
2981 */
2982static __always_inline struct page *
2983__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2984 unsigned int alloc_flags)
2985{
2986 struct page *page;
2987
2988 if (IS_ENABLED(CONFIG_CMA)) {
2989 /*
2990 * Balance movable allocations between regular and CMA areas by
2991 * allocating from CMA when over half of the zone's free memory
2992 * is in the CMA area.
2993 */
2994 if (alloc_flags & ALLOC_CMA &&
2995 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2996 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2997 page = __rmqueue_cma_fallback(zone, order);
2998 if (page)
2999 goto out;
3000 }
3001 }
3002retry:
3003 page = __rmqueue_smallest(zone, order, migratetype);
3004 if (unlikely(!page)) {
3005 if (alloc_flags & ALLOC_CMA)
3006 page = __rmqueue_cma_fallback(zone, order);
3007
3008 if (!page && __rmqueue_fallback(zone, order, migratetype,
3009 alloc_flags))
3010 goto retry;
3011 }
3012out:
3013 if (page)
3014 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3015 return page;
3016}
3017
3018/*
3019 * Obtain a specified number of elements from the buddy allocator, all under
3020 * a single hold of the lock, for efficiency. Add them to the supplied list.
3021 * Returns the number of new pages which were placed at *list.
3022 */
3023static int rmqueue_bulk(struct zone *zone, unsigned int order,
3024 unsigned long count, struct list_head *list,
3025 int migratetype, unsigned int alloc_flags)
3026{
3027 int i, allocated = 0;
3028
3029 /*
3030 * local_lock_irq held so equivalent to spin_lock_irqsave for
3031 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3032 */
3033 spin_lock(&zone->lock);
3034 for (i = 0; i < count; ++i) {
3035 struct page *page = __rmqueue(zone, order, migratetype,
3036 alloc_flags);
3037 if (unlikely(page == NULL))
3038 break;
3039
3040 if (unlikely(check_pcp_refill(page)))
3041 continue;
3042
3043 /*
3044 * Split buddy pages returned by expand() are received here in
3045 * physical page order. The page is added to the tail of
3046 * caller's list. From the callers perspective, the linked list
3047 * is ordered by page number under some conditions. This is
3048 * useful for IO devices that can forward direction from the
3049 * head, thus also in the physical page order. This is useful
3050 * for IO devices that can merge IO requests if the physical
3051 * pages are ordered properly.
3052 */
3053 list_add_tail(&page->lru, list);
3054 allocated++;
3055 if (is_migrate_cma(get_pcppage_migratetype(page)))
3056 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3057 -(1 << order));
3058 }
3059
3060 /*
3061 * i pages were removed from the buddy list even if some leak due
3062 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3063 * on i. Do not confuse with 'allocated' which is the number of
3064 * pages added to the pcp list.
3065 */
3066 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3067 spin_unlock(&zone->lock);
3068 return allocated;
3069}
3070
3071#ifdef CONFIG_NUMA
3072/*
3073 * Called from the vmstat counter updater to drain pagesets of this
3074 * currently executing processor on remote nodes after they have
3075 * expired.
3076 *
3077 * Note that this function must be called with the thread pinned to
3078 * a single processor.
3079 */
3080void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3081{
3082 unsigned long flags;
3083 int to_drain, batch;
3084
3085 local_lock_irqsave(&pagesets.lock, flags);
3086 batch = READ_ONCE(pcp->batch);
3087 to_drain = min(pcp->count, batch);
3088 if (to_drain > 0)
3089 free_pcppages_bulk(zone, to_drain, pcp);
3090 local_unlock_irqrestore(&pagesets.lock, flags);
3091}
3092#endif
3093
3094/*
3095 * Drain pcplists of the indicated processor and zone.
3096 *
3097 * The processor must either be the current processor and the
3098 * thread pinned to the current processor or a processor that
3099 * is not online.
3100 */
3101static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3102{
3103 unsigned long flags;
3104 struct per_cpu_pages *pcp;
3105
3106 local_lock_irqsave(&pagesets.lock, flags);
3107
3108 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3109 if (pcp->count)
3110 free_pcppages_bulk(zone, pcp->count, pcp);
3111
3112 local_unlock_irqrestore(&pagesets.lock, flags);
3113}
3114
3115/*
3116 * Drain pcplists of all zones on the indicated processor.
3117 *
3118 * The processor must either be the current processor and the
3119 * thread pinned to the current processor or a processor that
3120 * is not online.
3121 */
3122static void drain_pages(unsigned int cpu)
3123{
3124 struct zone *zone;
3125
3126 for_each_populated_zone(zone) {
3127 drain_pages_zone(cpu, zone);
3128 }
3129}
3130
3131/*
3132 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3133 *
3134 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3135 * the single zone's pages.
3136 */
3137void drain_local_pages(struct zone *zone)
3138{
3139 int cpu = smp_processor_id();
3140
3141 if (zone)
3142 drain_pages_zone(cpu, zone);
3143 else
3144 drain_pages(cpu);
3145}
3146
3147static void drain_local_pages_wq(struct work_struct *work)
3148{
3149 struct pcpu_drain *drain;
3150
3151 drain = container_of(work, struct pcpu_drain, work);
3152
3153 /*
3154 * drain_all_pages doesn't use proper cpu hotplug protection so
3155 * we can race with cpu offline when the WQ can move this from
3156 * a cpu pinned worker to an unbound one. We can operate on a different
3157 * cpu which is alright but we also have to make sure to not move to
3158 * a different one.
3159 */
3160 migrate_disable();
3161 drain_local_pages(drain->zone);
3162 migrate_enable();
3163}
3164
3165/*
3166 * The implementation of drain_all_pages(), exposing an extra parameter to
3167 * drain on all cpus.
3168 *
3169 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3170 * not empty. The check for non-emptiness can however race with a free to
3171 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3172 * that need the guarantee that every CPU has drained can disable the
3173 * optimizing racy check.
3174 */
3175static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3176{
3177 int cpu;
3178
3179 /*
3180 * Allocate in the BSS so we won't require allocation in
3181 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3182 */
3183 static cpumask_t cpus_with_pcps;
3184
3185 /*
3186 * Make sure nobody triggers this path before mm_percpu_wq is fully
3187 * initialized.
3188 */
3189 if (WARN_ON_ONCE(!mm_percpu_wq))
3190 return;
3191
3192 /*
3193 * Do not drain if one is already in progress unless it's specific to
3194 * a zone. Such callers are primarily CMA and memory hotplug and need
3195 * the drain to be complete when the call returns.
3196 */
3197 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3198 if (!zone)
3199 return;
3200 mutex_lock(&pcpu_drain_mutex);
3201 }
3202
3203 /*
3204 * We don't care about racing with CPU hotplug event
3205 * as offline notification will cause the notified
3206 * cpu to drain that CPU pcps and on_each_cpu_mask
3207 * disables preemption as part of its processing
3208 */
3209 for_each_online_cpu(cpu) {
3210 struct per_cpu_pages *pcp;
3211 struct zone *z;
3212 bool has_pcps = false;
3213
3214 if (force_all_cpus) {
3215 /*
3216 * The pcp.count check is racy, some callers need a
3217 * guarantee that no cpu is missed.
3218 */
3219 has_pcps = true;
3220 } else if (zone) {
3221 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3222 if (pcp->count)
3223 has_pcps = true;
3224 } else {
3225 for_each_populated_zone(z) {
3226 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3227 if (pcp->count) {
3228 has_pcps = true;
3229 break;
3230 }
3231 }
3232 }
3233
3234 if (has_pcps)
3235 cpumask_set_cpu(cpu, &cpus_with_pcps);
3236 else
3237 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3238 }
3239
3240 for_each_cpu(cpu, &cpus_with_pcps) {
3241 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3242
3243 drain->zone = zone;
3244 INIT_WORK(&drain->work, drain_local_pages_wq);
3245 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3246 }
3247 for_each_cpu(cpu, &cpus_with_pcps)
3248 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3249
3250 mutex_unlock(&pcpu_drain_mutex);
3251}
3252
3253/*
3254 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3255 *
3256 * When zone parameter is non-NULL, spill just the single zone's pages.
3257 *
3258 * Note that this can be extremely slow as the draining happens in a workqueue.
3259 */
3260void drain_all_pages(struct zone *zone)
3261{
3262 __drain_all_pages(zone, false);
3263}
3264
3265#ifdef CONFIG_HIBERNATION
3266
3267/*
3268 * Touch the watchdog for every WD_PAGE_COUNT pages.
3269 */
3270#define WD_PAGE_COUNT (128*1024)
3271
3272void mark_free_pages(struct zone *zone)
3273{
3274 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3275 unsigned long flags;
3276 unsigned int order, t;
3277 struct page *page;
3278
3279 if (zone_is_empty(zone))
3280 return;
3281
3282 spin_lock_irqsave(&zone->lock, flags);
3283
3284 max_zone_pfn = zone_end_pfn(zone);
3285 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3286 if (pfn_valid(pfn)) {
3287 page = pfn_to_page(pfn);
3288
3289 if (!--page_count) {
3290 touch_nmi_watchdog();
3291 page_count = WD_PAGE_COUNT;
3292 }
3293
3294 if (page_zone(page) != zone)
3295 continue;
3296
3297 if (!swsusp_page_is_forbidden(page))
3298 swsusp_unset_page_free(page);
3299 }
3300
3301 for_each_migratetype_order(order, t) {
3302 list_for_each_entry(page,
3303 &zone->free_area[order].free_list[t], lru) {
3304 unsigned long i;
3305
3306 pfn = page_to_pfn(page);
3307 for (i = 0; i < (1UL << order); i++) {
3308 if (!--page_count) {
3309 touch_nmi_watchdog();
3310 page_count = WD_PAGE_COUNT;
3311 }
3312 swsusp_set_page_free(pfn_to_page(pfn + i));
3313 }
3314 }
3315 }
3316 spin_unlock_irqrestore(&zone->lock, flags);
3317}
3318#endif /* CONFIG_PM */
3319
3320static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3321 unsigned int order)
3322{
3323 int migratetype;
3324
3325 if (!free_pcp_prepare(page, order))
3326 return false;
3327
3328 migratetype = get_pfnblock_migratetype(page, pfn);
3329 set_pcppage_migratetype(page, migratetype);
3330 return true;
3331}
3332
3333static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3334{
3335 int min_nr_free, max_nr_free;
3336
3337 /* Check for PCP disabled or boot pageset */
3338 if (unlikely(high < batch))
3339 return 1;
3340
3341 /* Leave at least pcp->batch pages on the list */
3342 min_nr_free = batch;
3343 max_nr_free = high - batch;
3344
3345 /*
3346 * Double the number of pages freed each time there is subsequent
3347 * freeing of pages without any allocation.
3348 */
3349 batch <<= pcp->free_factor;
3350 if (batch < max_nr_free)
3351 pcp->free_factor++;
3352 batch = clamp(batch, min_nr_free, max_nr_free);
3353
3354 return batch;
3355}
3356
3357static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3358{
3359 int high = READ_ONCE(pcp->high);
3360
3361 if (unlikely(!high))
3362 return 0;
3363
3364 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3365 return high;
3366
3367 /*
3368 * If reclaim is active, limit the number of pages that can be
3369 * stored on pcp lists
3370 */
3371 return min(READ_ONCE(pcp->batch) << 2, high);
3372}
3373
3374static void free_unref_page_commit(struct page *page, unsigned long pfn,
3375 int migratetype, unsigned int order)
3376{
3377 struct zone *zone = page_zone(page);
3378 struct per_cpu_pages *pcp;
3379 int high;
3380 int pindex;
3381
3382 __count_vm_event(PGFREE);
3383 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3384 pindex = order_to_pindex(migratetype, order);
3385 list_add(&page->lru, &pcp->lists[pindex]);
3386 pcp->count += 1 << order;
3387 high = nr_pcp_high(pcp, zone);
3388 if (pcp->count >= high) {
3389 int batch = READ_ONCE(pcp->batch);
3390
3391 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3392 }
3393}
3394
3395/*
3396 * Free a pcp page
3397 */
3398void free_unref_page(struct page *page, unsigned int order)
3399{
3400 unsigned long flags;
3401 unsigned long pfn = page_to_pfn(page);
3402 int migratetype;
3403
3404 if (!free_unref_page_prepare(page, pfn, order))
3405 return;
3406
3407 /*
3408 * We only track unmovable, reclaimable and movable on pcp lists.
3409 * Place ISOLATE pages on the isolated list because they are being
3410 * offlined but treat HIGHATOMIC as movable pages so we can get those
3411 * areas back if necessary. Otherwise, we may have to free
3412 * excessively into the page allocator
3413 */
3414 migratetype = get_pcppage_migratetype(page);
3415 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3416 if (unlikely(is_migrate_isolate(migratetype))) {
3417 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3418 return;
3419 }
3420 migratetype = MIGRATE_MOVABLE;
3421 }
3422
3423 local_lock_irqsave(&pagesets.lock, flags);
3424 free_unref_page_commit(page, pfn, migratetype, order);
3425 local_unlock_irqrestore(&pagesets.lock, flags);
3426}
3427
3428/*
3429 * Free a list of 0-order pages
3430 */
3431void free_unref_page_list(struct list_head *list)
3432{
3433 struct page *page, *next;
3434 unsigned long flags, pfn;
3435 int batch_count = 0;
3436 int migratetype;
3437
3438 /* Prepare pages for freeing */
3439 list_for_each_entry_safe(page, next, list, lru) {
3440 pfn = page_to_pfn(page);
3441 if (!free_unref_page_prepare(page, pfn, 0)) {
3442 list_del(&page->lru);
3443 continue;
3444 }
3445
3446 /*
3447 * Free isolated pages directly to the allocator, see
3448 * comment in free_unref_page.
3449 */
3450 migratetype = get_pcppage_migratetype(page);
3451 if (unlikely(is_migrate_isolate(migratetype))) {
3452 list_del(&page->lru);
3453 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3454 continue;
3455 }
3456
3457 set_page_private(page, pfn);
3458 }
3459
3460 local_lock_irqsave(&pagesets.lock, flags);
3461 list_for_each_entry_safe(page, next, list, lru) {
3462 pfn = page_private(page);
3463 set_page_private(page, 0);
3464
3465 /*
3466 * Non-isolated types over MIGRATE_PCPTYPES get added
3467 * to the MIGRATE_MOVABLE pcp list.
3468 */
3469 migratetype = get_pcppage_migratetype(page);
3470 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3471 migratetype = MIGRATE_MOVABLE;
3472
3473 trace_mm_page_free_batched(page);
3474 free_unref_page_commit(page, pfn, migratetype, 0);
3475
3476 /*
3477 * Guard against excessive IRQ disabled times when we get
3478 * a large list of pages to free.
3479 */
3480 if (++batch_count == SWAP_CLUSTER_MAX) {
3481 local_unlock_irqrestore(&pagesets.lock, flags);
3482 batch_count = 0;
3483 local_lock_irqsave(&pagesets.lock, flags);
3484 }
3485 }
3486 local_unlock_irqrestore(&pagesets.lock, flags);
3487}
3488
3489/*
3490 * split_page takes a non-compound higher-order page, and splits it into
3491 * n (1<<order) sub-pages: page[0..n]
3492 * Each sub-page must be freed individually.
3493 *
3494 * Note: this is probably too low level an operation for use in drivers.
3495 * Please consult with lkml before using this in your driver.
3496 */
3497void split_page(struct page *page, unsigned int order)
3498{
3499 int i;
3500
3501 VM_BUG_ON_PAGE(PageCompound(page), page);
3502 VM_BUG_ON_PAGE(!page_count(page), page);
3503
3504 for (i = 1; i < (1 << order); i++)
3505 set_page_refcounted(page + i);
3506 split_page_owner(page, 1 << order);
3507 split_page_memcg(page, 1 << order);
3508}
3509EXPORT_SYMBOL_GPL(split_page);
3510
3511int __isolate_free_page(struct page *page, unsigned int order)
3512{
3513 unsigned long watermark;
3514 struct zone *zone;
3515 int mt;
3516
3517 BUG_ON(!PageBuddy(page));
3518
3519 zone = page_zone(page);
3520 mt = get_pageblock_migratetype(page);
3521
3522 if (!is_migrate_isolate(mt)) {
3523 /*
3524 * Obey watermarks as if the page was being allocated. We can
3525 * emulate a high-order watermark check with a raised order-0
3526 * watermark, because we already know our high-order page
3527 * exists.
3528 */
3529 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3530 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3531 return 0;
3532
3533 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3534 }
3535
3536 /* Remove page from free list */
3537
3538 del_page_from_free_list(page, zone, order);
3539
3540 /*
3541 * Set the pageblock if the isolated page is at least half of a
3542 * pageblock
3543 */
3544 if (order >= pageblock_order - 1) {
3545 struct page *endpage = page + (1 << order) - 1;
3546 for (; page < endpage; page += pageblock_nr_pages) {
3547 int mt = get_pageblock_migratetype(page);
3548 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3549 && !is_migrate_highatomic(mt))
3550 set_pageblock_migratetype(page,
3551 MIGRATE_MOVABLE);
3552 }
3553 }
3554
3555
3556 return 1UL << order;
3557}
3558
3559/**
3560 * __putback_isolated_page - Return a now-isolated page back where we got it
3561 * @page: Page that was isolated
3562 * @order: Order of the isolated page
3563 * @mt: The page's pageblock's migratetype
3564 *
3565 * This function is meant to return a page pulled from the free lists via
3566 * __isolate_free_page back to the free lists they were pulled from.
3567 */
3568void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3569{
3570 struct zone *zone = page_zone(page);
3571
3572 /* zone lock should be held when this function is called */
3573 lockdep_assert_held(&zone->lock);
3574
3575 /* Return isolated page to tail of freelist. */
3576 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3577 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3578}
3579
3580/*
3581 * Update NUMA hit/miss statistics
3582 *
3583 * Must be called with interrupts disabled.
3584 */
3585static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3586 long nr_account)
3587{
3588#ifdef CONFIG_NUMA
3589 enum numa_stat_item local_stat = NUMA_LOCAL;
3590
3591 /* skip numa counters update if numa stats is disabled */
3592 if (!static_branch_likely(&vm_numa_stat_key))
3593 return;
3594
3595 if (zone_to_nid(z) != numa_node_id())
3596 local_stat = NUMA_OTHER;
3597
3598 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3599 __count_numa_events(z, NUMA_HIT, nr_account);
3600 else {
3601 __count_numa_events(z, NUMA_MISS, nr_account);
3602 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3603 }
3604 __count_numa_events(z, local_stat, nr_account);
3605#endif
3606}
3607
3608/* Remove page from the per-cpu list, caller must protect the list */
3609static inline
3610struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3611 int migratetype,
3612 unsigned int alloc_flags,
3613 struct per_cpu_pages *pcp,
3614 struct list_head *list)
3615{
3616 struct page *page;
3617
3618 do {
3619 if (list_empty(list)) {
3620 int batch = READ_ONCE(pcp->batch);
3621 int alloced;
3622
3623 /*
3624 * Scale batch relative to order if batch implies
3625 * free pages can be stored on the PCP. Batch can
3626 * be 1 for small zones or for boot pagesets which
3627 * should never store free pages as the pages may
3628 * belong to arbitrary zones.
3629 */
3630 if (batch > 1)
3631 batch = max(batch >> order, 2);
3632 alloced = rmqueue_bulk(zone, order,
3633 batch, list,
3634 migratetype, alloc_flags);
3635
3636 pcp->count += alloced << order;
3637 if (unlikely(list_empty(list)))
3638 return NULL;
3639 }
3640
3641 page = list_first_entry(list, struct page, lru);
3642 list_del(&page->lru);
3643 pcp->count -= 1 << order;
3644 } while (check_new_pcp(page));
3645
3646 return page;
3647}
3648
3649/* Lock and remove page from the per-cpu list */
3650static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3651 struct zone *zone, unsigned int order,
3652 gfp_t gfp_flags, int migratetype,
3653 unsigned int alloc_flags)
3654{
3655 struct per_cpu_pages *pcp;
3656 struct list_head *list;
3657 struct page *page;
3658 unsigned long flags;
3659
3660 local_lock_irqsave(&pagesets.lock, flags);
3661
3662 /*
3663 * On allocation, reduce the number of pages that are batch freed.
3664 * See nr_pcp_free() where free_factor is increased for subsequent
3665 * frees.
3666 */
3667 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3668 pcp->free_factor >>= 1;
3669 list = &pcp->lists[order_to_pindex(migratetype, order)];
3670 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3671 local_unlock_irqrestore(&pagesets.lock, flags);
3672 if (page) {
3673 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3674 zone_statistics(preferred_zone, zone, 1);
3675 }
3676 return page;
3677}
3678
3679/*
3680 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3681 */
3682static inline
3683struct page *rmqueue(struct zone *preferred_zone,
3684 struct zone *zone, unsigned int order,
3685 gfp_t gfp_flags, unsigned int alloc_flags,
3686 int migratetype)
3687{
3688 unsigned long flags;
3689 struct page *page;
3690
3691 if (likely(pcp_allowed_order(order))) {
3692 /*
3693 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3694 * we need to skip it when CMA area isn't allowed.
3695 */
3696 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3697 migratetype != MIGRATE_MOVABLE) {
3698 page = rmqueue_pcplist(preferred_zone, zone, order,
3699 gfp_flags, migratetype, alloc_flags);
3700 goto out;
3701 }
3702 }
3703
3704 /*
3705 * We most definitely don't want callers attempting to
3706 * allocate greater than order-1 page units with __GFP_NOFAIL.
3707 */
3708 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3709 spin_lock_irqsave(&zone->lock, flags);
3710
3711 do {
3712 page = NULL;
3713 /*
3714 * order-0 request can reach here when the pcplist is skipped
3715 * due to non-CMA allocation context. HIGHATOMIC area is
3716 * reserved for high-order atomic allocation, so order-0
3717 * request should skip it.
3718 */
3719 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3720 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3721 if (page)
3722 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3723 }
3724 if (!page)
3725 page = __rmqueue(zone, order, migratetype, alloc_flags);
3726 } while (page && check_new_pages(page, order));
3727 if (!page)
3728 goto failed;
3729
3730 __mod_zone_freepage_state(zone, -(1 << order),
3731 get_pcppage_migratetype(page));
3732 spin_unlock_irqrestore(&zone->lock, flags);
3733
3734 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3735 zone_statistics(preferred_zone, zone, 1);
3736
3737out:
3738 /* Separate test+clear to avoid unnecessary atomics */
3739 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3740 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3741 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3742 }
3743
3744 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3745 return page;
3746
3747failed:
3748 spin_unlock_irqrestore(&zone->lock, flags);
3749 return NULL;
3750}
3751
3752#ifdef CONFIG_FAIL_PAGE_ALLOC
3753
3754static struct {
3755 struct fault_attr attr;
3756
3757 bool ignore_gfp_highmem;
3758 bool ignore_gfp_reclaim;
3759 u32 min_order;
3760} fail_page_alloc = {
3761 .attr = FAULT_ATTR_INITIALIZER,
3762 .ignore_gfp_reclaim = true,
3763 .ignore_gfp_highmem = true,
3764 .min_order = 1,
3765};
3766
3767static int __init setup_fail_page_alloc(char *str)
3768{
3769 return setup_fault_attr(&fail_page_alloc.attr, str);
3770}
3771__setup("fail_page_alloc=", setup_fail_page_alloc);
3772
3773static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3774{
3775 if (order < fail_page_alloc.min_order)
3776 return false;
3777 if (gfp_mask & __GFP_NOFAIL)
3778 return false;
3779 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3780 return false;
3781 if (fail_page_alloc.ignore_gfp_reclaim &&
3782 (gfp_mask & __GFP_DIRECT_RECLAIM))
3783 return false;
3784
3785 return should_fail(&fail_page_alloc.attr, 1 << order);
3786}
3787
3788#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3789
3790static int __init fail_page_alloc_debugfs(void)
3791{
3792 umode_t mode = S_IFREG | 0600;
3793 struct dentry *dir;
3794
3795 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3796 &fail_page_alloc.attr);
3797
3798 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3799 &fail_page_alloc.ignore_gfp_reclaim);
3800 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3801 &fail_page_alloc.ignore_gfp_highmem);
3802 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3803
3804 return 0;
3805}
3806
3807late_initcall(fail_page_alloc_debugfs);
3808
3809#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3810
3811#else /* CONFIG_FAIL_PAGE_ALLOC */
3812
3813static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3814{
3815 return false;
3816}
3817
3818#endif /* CONFIG_FAIL_PAGE_ALLOC */
3819
3820noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3821{
3822 return __should_fail_alloc_page(gfp_mask, order);
3823}
3824ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3825
3826static inline long __zone_watermark_unusable_free(struct zone *z,
3827 unsigned int order, unsigned int alloc_flags)
3828{
3829 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3830 long unusable_free = (1 << order) - 1;
3831
3832 /*
3833 * If the caller does not have rights to ALLOC_HARDER then subtract
3834 * the high-atomic reserves. This will over-estimate the size of the
3835 * atomic reserve but it avoids a search.
3836 */
3837 if (likely(!alloc_harder))
3838 unusable_free += z->nr_reserved_highatomic;
3839
3840#ifdef CONFIG_CMA
3841 /* If allocation can't use CMA areas don't use free CMA pages */
3842 if (!(alloc_flags & ALLOC_CMA))
3843 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3844#endif
3845
3846 return unusable_free;
3847}
3848
3849/*
3850 * Return true if free base pages are above 'mark'. For high-order checks it
3851 * will return true of the order-0 watermark is reached and there is at least
3852 * one free page of a suitable size. Checking now avoids taking the zone lock
3853 * to check in the allocation paths if no pages are free.
3854 */
3855bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3856 int highest_zoneidx, unsigned int alloc_flags,
3857 long free_pages)
3858{
3859 long min = mark;
3860 int o;
3861 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3862
3863 /* free_pages may go negative - that's OK */
3864 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3865
3866 if (alloc_flags & ALLOC_HIGH)
3867 min -= min / 2;
3868
3869 if (unlikely(alloc_harder)) {
3870 /*
3871 * OOM victims can try even harder than normal ALLOC_HARDER
3872 * users on the grounds that it's definitely going to be in
3873 * the exit path shortly and free memory. Any allocation it
3874 * makes during the free path will be small and short-lived.
3875 */
3876 if (alloc_flags & ALLOC_OOM)
3877 min -= min / 2;
3878 else
3879 min -= min / 4;
3880 }
3881
3882 /*
3883 * Check watermarks for an order-0 allocation request. If these
3884 * are not met, then a high-order request also cannot go ahead
3885 * even if a suitable page happened to be free.
3886 */
3887 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3888 return false;
3889
3890 /* If this is an order-0 request then the watermark is fine */
3891 if (!order)
3892 return true;
3893
3894 /* For a high-order request, check at least one suitable page is free */
3895 for (o = order; o < MAX_ORDER; o++) {
3896 struct free_area *area = &z->free_area[o];
3897 int mt;
3898
3899 if (!area->nr_free)
3900 continue;
3901
3902 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3903 if (!free_area_empty(area, mt))
3904 return true;
3905 }
3906
3907#ifdef CONFIG_CMA
3908 if ((alloc_flags & ALLOC_CMA) &&
3909 !free_area_empty(area, MIGRATE_CMA)) {
3910 return true;
3911 }
3912#endif
3913 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3914 return true;
3915 }
3916 return false;
3917}
3918
3919bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3920 int highest_zoneidx, unsigned int alloc_flags)
3921{
3922 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3923 zone_page_state(z, NR_FREE_PAGES));
3924}
3925
3926static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3927 unsigned long mark, int highest_zoneidx,
3928 unsigned int alloc_flags, gfp_t gfp_mask)
3929{
3930 long free_pages;
3931
3932 free_pages = zone_page_state(z, NR_FREE_PAGES);
3933
3934 /*
3935 * Fast check for order-0 only. If this fails then the reserves
3936 * need to be calculated.
3937 */
3938 if (!order) {
3939 long fast_free;
3940
3941 fast_free = free_pages;
3942 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3943 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3944 return true;
3945 }
3946
3947 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3948 free_pages))
3949 return true;
3950 /*
3951 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3952 * when checking the min watermark. The min watermark is the
3953 * point where boosting is ignored so that kswapd is woken up
3954 * when below the low watermark.
3955 */
3956 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3957 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3958 mark = z->_watermark[WMARK_MIN];
3959 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3960 alloc_flags, free_pages);
3961 }
3962
3963 return false;
3964}
3965
3966bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3967 unsigned long mark, int highest_zoneidx)
3968{
3969 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3970
3971 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3972 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3973
3974 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3975 free_pages);
3976}
3977
3978#ifdef CONFIG_NUMA
3979int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3980
3981static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3982{
3983 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3984 node_reclaim_distance;
3985}
3986#else /* CONFIG_NUMA */
3987static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3988{
3989 return true;
3990}
3991#endif /* CONFIG_NUMA */
3992
3993/*
3994 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3995 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3996 * premature use of a lower zone may cause lowmem pressure problems that
3997 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3998 * probably too small. It only makes sense to spread allocations to avoid
3999 * fragmentation between the Normal and DMA32 zones.
4000 */
4001static inline unsigned int
4002alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4003{
4004 unsigned int alloc_flags;
4005
4006 /*
4007 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4008 * to save a branch.
4009 */
4010 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4011
4012#ifdef CONFIG_ZONE_DMA32
4013 if (!zone)
4014 return alloc_flags;
4015
4016 if (zone_idx(zone) != ZONE_NORMAL)
4017 return alloc_flags;
4018
4019 /*
4020 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4021 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4022 * on UMA that if Normal is populated then so is DMA32.
4023 */
4024 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4025 if (nr_online_nodes > 1 && !populated_zone(--zone))
4026 return alloc_flags;
4027
4028 alloc_flags |= ALLOC_NOFRAGMENT;
4029#endif /* CONFIG_ZONE_DMA32 */
4030 return alloc_flags;
4031}
4032
4033/* Must be called after current_gfp_context() which can change gfp_mask */
4034static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4035 unsigned int alloc_flags)
4036{
4037#ifdef CONFIG_CMA
4038 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4039 alloc_flags |= ALLOC_CMA;
4040#endif
4041 return alloc_flags;
4042}
4043
4044/*
4045 * get_page_from_freelist goes through the zonelist trying to allocate
4046 * a page.
4047 */
4048static struct page *
4049get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4050 const struct alloc_context *ac)
4051{
4052 struct zoneref *z;
4053 struct zone *zone;
4054 struct pglist_data *last_pgdat_dirty_limit = NULL;
4055 bool no_fallback;
4056
4057retry:
4058 /*
4059 * Scan zonelist, looking for a zone with enough free.
4060 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4061 */
4062 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4063 z = ac->preferred_zoneref;
4064 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4065 ac->nodemask) {
4066 struct page *page;
4067 unsigned long mark;
4068
4069 if (cpusets_enabled() &&
4070 (alloc_flags & ALLOC_CPUSET) &&
4071 !__cpuset_zone_allowed(zone, gfp_mask))
4072 continue;
4073 /*
4074 * When allocating a page cache page for writing, we
4075 * want to get it from a node that is within its dirty
4076 * limit, such that no single node holds more than its
4077 * proportional share of globally allowed dirty pages.
4078 * The dirty limits take into account the node's
4079 * lowmem reserves and high watermark so that kswapd
4080 * should be able to balance it without having to
4081 * write pages from its LRU list.
4082 *
4083 * XXX: For now, allow allocations to potentially
4084 * exceed the per-node dirty limit in the slowpath
4085 * (spread_dirty_pages unset) before going into reclaim,
4086 * which is important when on a NUMA setup the allowed
4087 * nodes are together not big enough to reach the
4088 * global limit. The proper fix for these situations
4089 * will require awareness of nodes in the
4090 * dirty-throttling and the flusher threads.
4091 */
4092 if (ac->spread_dirty_pages) {
4093 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4094 continue;
4095
4096 if (!node_dirty_ok(zone->zone_pgdat)) {
4097 last_pgdat_dirty_limit = zone->zone_pgdat;
4098 continue;
4099 }
4100 }
4101
4102 if (no_fallback && nr_online_nodes > 1 &&
4103 zone != ac->preferred_zoneref->zone) {
4104 int local_nid;
4105
4106 /*
4107 * If moving to a remote node, retry but allow
4108 * fragmenting fallbacks. Locality is more important
4109 * than fragmentation avoidance.
4110 */
4111 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4112 if (zone_to_nid(zone) != local_nid) {
4113 alloc_flags &= ~ALLOC_NOFRAGMENT;
4114 goto retry;
4115 }
4116 }
4117
4118 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4119 if (!zone_watermark_fast(zone, order, mark,
4120 ac->highest_zoneidx, alloc_flags,
4121 gfp_mask)) {
4122 int ret;
4123
4124#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4125 /*
4126 * Watermark failed for this zone, but see if we can
4127 * grow this zone if it contains deferred pages.
4128 */
4129 if (static_branch_unlikely(&deferred_pages)) {
4130 if (_deferred_grow_zone(zone, order))
4131 goto try_this_zone;
4132 }
4133#endif
4134 /* Checked here to keep the fast path fast */
4135 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4136 if (alloc_flags & ALLOC_NO_WATERMARKS)
4137 goto try_this_zone;
4138
4139 if (!node_reclaim_enabled() ||
4140 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4141 continue;
4142
4143 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4144 switch (ret) {
4145 case NODE_RECLAIM_NOSCAN:
4146 /* did not scan */
4147 continue;
4148 case NODE_RECLAIM_FULL:
4149 /* scanned but unreclaimable */
4150 continue;
4151 default:
4152 /* did we reclaim enough */
4153 if (zone_watermark_ok(zone, order, mark,
4154 ac->highest_zoneidx, alloc_flags))
4155 goto try_this_zone;
4156
4157 continue;
4158 }
4159 }
4160
4161try_this_zone:
4162 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4163 gfp_mask, alloc_flags, ac->migratetype);
4164 if (page) {
4165 prep_new_page(page, order, gfp_mask, alloc_flags);
4166
4167 /*
4168 * If this is a high-order atomic allocation then check
4169 * if the pageblock should be reserved for the future
4170 */
4171 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4172 reserve_highatomic_pageblock(page, zone, order);
4173
4174 return page;
4175 } else {
4176#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4177 /* Try again if zone has deferred pages */
4178 if (static_branch_unlikely(&deferred_pages)) {
4179 if (_deferred_grow_zone(zone, order))
4180 goto try_this_zone;
4181 }
4182#endif
4183 }
4184 }
4185
4186 /*
4187 * It's possible on a UMA machine to get through all zones that are
4188 * fragmented. If avoiding fragmentation, reset and try again.
4189 */
4190 if (no_fallback) {
4191 alloc_flags &= ~ALLOC_NOFRAGMENT;
4192 goto retry;
4193 }
4194
4195 return NULL;
4196}
4197
4198static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4199{
4200 unsigned int filter = SHOW_MEM_FILTER_NODES;
4201
4202 /*
4203 * This documents exceptions given to allocations in certain
4204 * contexts that are allowed to allocate outside current's set
4205 * of allowed nodes.
4206 */
4207 if (!(gfp_mask & __GFP_NOMEMALLOC))
4208 if (tsk_is_oom_victim(current) ||
4209 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4210 filter &= ~SHOW_MEM_FILTER_NODES;
4211 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4212 filter &= ~SHOW_MEM_FILTER_NODES;
4213
4214 show_mem(filter, nodemask);
4215}
4216
4217void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4218{
4219 struct va_format vaf;
4220 va_list args;
4221 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4222
4223 if ((gfp_mask & __GFP_NOWARN) ||
4224 !__ratelimit(&nopage_rs) ||
4225 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4226 return;
4227
4228 va_start(args, fmt);
4229 vaf.fmt = fmt;
4230 vaf.va = &args;
4231 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4232 current->comm, &vaf, gfp_mask, &gfp_mask,
4233 nodemask_pr_args(nodemask));
4234 va_end(args);
4235
4236 cpuset_print_current_mems_allowed();
4237 pr_cont("\n");
4238 dump_stack();
4239 warn_alloc_show_mem(gfp_mask, nodemask);
4240}
4241
4242static inline struct page *
4243__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4244 unsigned int alloc_flags,
4245 const struct alloc_context *ac)
4246{
4247 struct page *page;
4248
4249 page = get_page_from_freelist(gfp_mask, order,
4250 alloc_flags|ALLOC_CPUSET, ac);
4251 /*
4252 * fallback to ignore cpuset restriction if our nodes
4253 * are depleted
4254 */
4255 if (!page)
4256 page = get_page_from_freelist(gfp_mask, order,
4257 alloc_flags, ac);
4258
4259 return page;
4260}
4261
4262static inline struct page *
4263__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4264 const struct alloc_context *ac, unsigned long *did_some_progress)
4265{
4266 struct oom_control oc = {
4267 .zonelist = ac->zonelist,
4268 .nodemask = ac->nodemask,
4269 .memcg = NULL,
4270 .gfp_mask = gfp_mask,
4271 .order = order,
4272 };
4273 struct page *page;
4274
4275 *did_some_progress = 0;
4276
4277 /*
4278 * Acquire the oom lock. If that fails, somebody else is
4279 * making progress for us.
4280 */
4281 if (!mutex_trylock(&oom_lock)) {
4282 *did_some_progress = 1;
4283 schedule_timeout_uninterruptible(1);
4284 return NULL;
4285 }
4286
4287 /*
4288 * Go through the zonelist yet one more time, keep very high watermark
4289 * here, this is only to catch a parallel oom killing, we must fail if
4290 * we're still under heavy pressure. But make sure that this reclaim
4291 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4292 * allocation which will never fail due to oom_lock already held.
4293 */
4294 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4295 ~__GFP_DIRECT_RECLAIM, order,
4296 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4297 if (page)
4298 goto out;
4299
4300 /* Coredumps can quickly deplete all memory reserves */
4301 if (current->flags & PF_DUMPCORE)
4302 goto out;
4303 /* The OOM killer will not help higher order allocs */
4304 if (order > PAGE_ALLOC_COSTLY_ORDER)
4305 goto out;
4306 /*
4307 * We have already exhausted all our reclaim opportunities without any
4308 * success so it is time to admit defeat. We will skip the OOM killer
4309 * because it is very likely that the caller has a more reasonable
4310 * fallback than shooting a random task.
4311 *
4312 * The OOM killer may not free memory on a specific node.
4313 */
4314 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4315 goto out;
4316 /* The OOM killer does not needlessly kill tasks for lowmem */
4317 if (ac->highest_zoneidx < ZONE_NORMAL)
4318 goto out;
4319 if (pm_suspended_storage())
4320 goto out;
4321 /*
4322 * XXX: GFP_NOFS allocations should rather fail than rely on
4323 * other request to make a forward progress.
4324 * We are in an unfortunate situation where out_of_memory cannot
4325 * do much for this context but let's try it to at least get
4326 * access to memory reserved if the current task is killed (see
4327 * out_of_memory). Once filesystems are ready to handle allocation
4328 * failures more gracefully we should just bail out here.
4329 */
4330
4331 /* Exhausted what can be done so it's blame time */
4332 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4333 *did_some_progress = 1;
4334
4335 /*
4336 * Help non-failing allocations by giving them access to memory
4337 * reserves
4338 */
4339 if (gfp_mask & __GFP_NOFAIL)
4340 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4341 ALLOC_NO_WATERMARKS, ac);
4342 }
4343out:
4344 mutex_unlock(&oom_lock);
4345 return page;
4346}
4347
4348/*
4349 * Maximum number of compaction retries with a progress before OOM
4350 * killer is consider as the only way to move forward.
4351 */
4352#define MAX_COMPACT_RETRIES 16
4353
4354#ifdef CONFIG_COMPACTION
4355/* Try memory compaction for high-order allocations before reclaim */
4356static struct page *
4357__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4358 unsigned int alloc_flags, const struct alloc_context *ac,
4359 enum compact_priority prio, enum compact_result *compact_result)
4360{
4361 struct page *page = NULL;
4362 unsigned long pflags;
4363 unsigned int noreclaim_flag;
4364
4365 if (!order)
4366 return NULL;
4367
4368 psi_memstall_enter(&pflags);
4369 delayacct_compact_start();
4370 noreclaim_flag = memalloc_noreclaim_save();
4371
4372 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4373 prio, &page);
4374
4375 memalloc_noreclaim_restore(noreclaim_flag);
4376 psi_memstall_leave(&pflags);
4377 delayacct_compact_end();
4378
4379 if (*compact_result == COMPACT_SKIPPED)
4380 return NULL;
4381 /*
4382 * At least in one zone compaction wasn't deferred or skipped, so let's
4383 * count a compaction stall
4384 */
4385 count_vm_event(COMPACTSTALL);
4386
4387 /* Prep a captured page if available */
4388 if (page)
4389 prep_new_page(page, order, gfp_mask, alloc_flags);
4390
4391 /* Try get a page from the freelist if available */
4392 if (!page)
4393 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4394
4395 if (page) {
4396 struct zone *zone = page_zone(page);
4397
4398 zone->compact_blockskip_flush = false;
4399 compaction_defer_reset(zone, order, true);
4400 count_vm_event(COMPACTSUCCESS);
4401 return page;
4402 }
4403
4404 /*
4405 * It's bad if compaction run occurs and fails. The most likely reason
4406 * is that pages exist, but not enough to satisfy watermarks.
4407 */
4408 count_vm_event(COMPACTFAIL);
4409
4410 cond_resched();
4411
4412 return NULL;
4413}
4414
4415static inline bool
4416should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4417 enum compact_result compact_result,
4418 enum compact_priority *compact_priority,
4419 int *compaction_retries)
4420{
4421 int max_retries = MAX_COMPACT_RETRIES;
4422 int min_priority;
4423 bool ret = false;
4424 int retries = *compaction_retries;
4425 enum compact_priority priority = *compact_priority;
4426
4427 if (!order)
4428 return false;
4429
4430 if (fatal_signal_pending(current))
4431 return false;
4432
4433 if (compaction_made_progress(compact_result))
4434 (*compaction_retries)++;
4435
4436 /*
4437 * compaction considers all the zone as desperately out of memory
4438 * so it doesn't really make much sense to retry except when the
4439 * failure could be caused by insufficient priority
4440 */
4441 if (compaction_failed(compact_result))
4442 goto check_priority;
4443
4444 /*
4445 * compaction was skipped because there are not enough order-0 pages
4446 * to work with, so we retry only if it looks like reclaim can help.
4447 */
4448 if (compaction_needs_reclaim(compact_result)) {
4449 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4450 goto out;
4451 }
4452
4453 /*
4454 * make sure the compaction wasn't deferred or didn't bail out early
4455 * due to locks contention before we declare that we should give up.
4456 * But the next retry should use a higher priority if allowed, so
4457 * we don't just keep bailing out endlessly.
4458 */
4459 if (compaction_withdrawn(compact_result)) {
4460 goto check_priority;
4461 }
4462
4463 /*
4464 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4465 * costly ones because they are de facto nofail and invoke OOM
4466 * killer to move on while costly can fail and users are ready
4467 * to cope with that. 1/4 retries is rather arbitrary but we
4468 * would need much more detailed feedback from compaction to
4469 * make a better decision.
4470 */
4471 if (order > PAGE_ALLOC_COSTLY_ORDER)
4472 max_retries /= 4;
4473 if (*compaction_retries <= max_retries) {
4474 ret = true;
4475 goto out;
4476 }
4477
4478 /*
4479 * Make sure there are attempts at the highest priority if we exhausted
4480 * all retries or failed at the lower priorities.
4481 */
4482check_priority:
4483 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4484 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4485
4486 if (*compact_priority > min_priority) {
4487 (*compact_priority)--;
4488 *compaction_retries = 0;
4489 ret = true;
4490 }
4491out:
4492 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4493 return ret;
4494}
4495#else
4496static inline struct page *
4497__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4498 unsigned int alloc_flags, const struct alloc_context *ac,
4499 enum compact_priority prio, enum compact_result *compact_result)
4500{
4501 *compact_result = COMPACT_SKIPPED;
4502 return NULL;
4503}
4504
4505static inline bool
4506should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4507 enum compact_result compact_result,
4508 enum compact_priority *compact_priority,
4509 int *compaction_retries)
4510{
4511 struct zone *zone;
4512 struct zoneref *z;
4513
4514 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4515 return false;
4516
4517 /*
4518 * There are setups with compaction disabled which would prefer to loop
4519 * inside the allocator rather than hit the oom killer prematurely.
4520 * Let's give them a good hope and keep retrying while the order-0
4521 * watermarks are OK.
4522 */
4523 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4524 ac->highest_zoneidx, ac->nodemask) {
4525 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4526 ac->highest_zoneidx, alloc_flags))
4527 return true;
4528 }
4529 return false;
4530}
4531#endif /* CONFIG_COMPACTION */
4532
4533#ifdef CONFIG_LOCKDEP
4534static struct lockdep_map __fs_reclaim_map =
4535 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4536
4537static bool __need_reclaim(gfp_t gfp_mask)
4538{
4539 /* no reclaim without waiting on it */
4540 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4541 return false;
4542
4543 /* this guy won't enter reclaim */
4544 if (current->flags & PF_MEMALLOC)
4545 return false;
4546
4547 if (gfp_mask & __GFP_NOLOCKDEP)
4548 return false;
4549
4550 return true;
4551}
4552
4553void __fs_reclaim_acquire(unsigned long ip)
4554{
4555 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4556}
4557
4558void __fs_reclaim_release(unsigned long ip)
4559{
4560 lock_release(&__fs_reclaim_map, ip);
4561}
4562
4563void fs_reclaim_acquire(gfp_t gfp_mask)
4564{
4565 gfp_mask = current_gfp_context(gfp_mask);
4566
4567 if (__need_reclaim(gfp_mask)) {
4568 if (gfp_mask & __GFP_FS)
4569 __fs_reclaim_acquire(_RET_IP_);
4570
4571#ifdef CONFIG_MMU_NOTIFIER
4572 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4573 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4574#endif
4575
4576 }
4577}
4578EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4579
4580void fs_reclaim_release(gfp_t gfp_mask)
4581{
4582 gfp_mask = current_gfp_context(gfp_mask);
4583
4584 if (__need_reclaim(gfp_mask)) {
4585 if (gfp_mask & __GFP_FS)
4586 __fs_reclaim_release(_RET_IP_);
4587 }
4588}
4589EXPORT_SYMBOL_GPL(fs_reclaim_release);
4590#endif
4591
4592/* Perform direct synchronous page reclaim */
4593static unsigned long
4594__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4595 const struct alloc_context *ac)
4596{
4597 unsigned int noreclaim_flag;
4598 unsigned long pflags, progress;
4599
4600 cond_resched();
4601
4602 /* We now go into synchronous reclaim */
4603 cpuset_memory_pressure_bump();
4604 psi_memstall_enter(&pflags);
4605 fs_reclaim_acquire(gfp_mask);
4606 noreclaim_flag = memalloc_noreclaim_save();
4607
4608 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4609 ac->nodemask);
4610
4611 memalloc_noreclaim_restore(noreclaim_flag);
4612 fs_reclaim_release(gfp_mask);
4613 psi_memstall_leave(&pflags);
4614
4615 cond_resched();
4616
4617 return progress;
4618}
4619
4620/* The really slow allocator path where we enter direct reclaim */
4621static inline struct page *
4622__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4623 unsigned int alloc_flags, const struct alloc_context *ac,
4624 unsigned long *did_some_progress)
4625{
4626 struct page *page = NULL;
4627 bool drained = false;
4628
4629 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4630 if (unlikely(!(*did_some_progress)))
4631 return NULL;
4632
4633retry:
4634 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4635
4636 /*
4637 * If an allocation failed after direct reclaim, it could be because
4638 * pages are pinned on the per-cpu lists or in high alloc reserves.
4639 * Shrink them and try again
4640 */
4641 if (!page && !drained) {
4642 unreserve_highatomic_pageblock(ac, false);
4643 drain_all_pages(NULL);
4644 drained = true;
4645 goto retry;
4646 }
4647
4648 return page;
4649}
4650
4651static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4652 const struct alloc_context *ac)
4653{
4654 struct zoneref *z;
4655 struct zone *zone;
4656 pg_data_t *last_pgdat = NULL;
4657 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4658
4659 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4660 ac->nodemask) {
4661 if (last_pgdat != zone->zone_pgdat)
4662 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4663 last_pgdat = zone->zone_pgdat;
4664 }
4665}
4666
4667static inline unsigned int
4668gfp_to_alloc_flags(gfp_t gfp_mask)
4669{
4670 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4671
4672 /*
4673 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4674 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4675 * to save two branches.
4676 */
4677 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4678 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4679
4680 /*
4681 * The caller may dip into page reserves a bit more if the caller
4682 * cannot run direct reclaim, or if the caller has realtime scheduling
4683 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4684 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4685 */
4686 alloc_flags |= (__force int)
4687 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4688
4689 if (gfp_mask & __GFP_ATOMIC) {
4690 /*
4691 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4692 * if it can't schedule.
4693 */
4694 if (!(gfp_mask & __GFP_NOMEMALLOC))
4695 alloc_flags |= ALLOC_HARDER;
4696 /*
4697 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4698 * comment for __cpuset_node_allowed().
4699 */
4700 alloc_flags &= ~ALLOC_CPUSET;
4701 } else if (unlikely(rt_task(current)) && in_task())
4702 alloc_flags |= ALLOC_HARDER;
4703
4704 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4705
4706 return alloc_flags;
4707}
4708
4709static bool oom_reserves_allowed(struct task_struct *tsk)
4710{
4711 if (!tsk_is_oom_victim(tsk))
4712 return false;
4713
4714 /*
4715 * !MMU doesn't have oom reaper so give access to memory reserves
4716 * only to the thread with TIF_MEMDIE set
4717 */
4718 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4719 return false;
4720
4721 return true;
4722}
4723
4724/*
4725 * Distinguish requests which really need access to full memory
4726 * reserves from oom victims which can live with a portion of it
4727 */
4728static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4729{
4730 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4731 return 0;
4732 if (gfp_mask & __GFP_MEMALLOC)
4733 return ALLOC_NO_WATERMARKS;
4734 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4735 return ALLOC_NO_WATERMARKS;
4736 if (!in_interrupt()) {
4737 if (current->flags & PF_MEMALLOC)
4738 return ALLOC_NO_WATERMARKS;
4739 else if (oom_reserves_allowed(current))
4740 return ALLOC_OOM;
4741 }
4742
4743 return 0;
4744}
4745
4746bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4747{
4748 return !!__gfp_pfmemalloc_flags(gfp_mask);
4749}
4750
4751/*
4752 * Checks whether it makes sense to retry the reclaim to make a forward progress
4753 * for the given allocation request.
4754 *
4755 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4756 * without success, or when we couldn't even meet the watermark if we
4757 * reclaimed all remaining pages on the LRU lists.
4758 *
4759 * Returns true if a retry is viable or false to enter the oom path.
4760 */
4761static inline bool
4762should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4763 struct alloc_context *ac, int alloc_flags,
4764 bool did_some_progress, int *no_progress_loops)
4765{
4766 struct zone *zone;
4767 struct zoneref *z;
4768 bool ret = false;
4769
4770 /*
4771 * Costly allocations might have made a progress but this doesn't mean
4772 * their order will become available due to high fragmentation so
4773 * always increment the no progress counter for them
4774 */
4775 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4776 *no_progress_loops = 0;
4777 else
4778 (*no_progress_loops)++;
4779
4780 /*
4781 * Make sure we converge to OOM if we cannot make any progress
4782 * several times in the row.
4783 */
4784 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4785 /* Before OOM, exhaust highatomic_reserve */
4786 return unreserve_highatomic_pageblock(ac, true);
4787 }
4788
4789 /*
4790 * Keep reclaiming pages while there is a chance this will lead
4791 * somewhere. If none of the target zones can satisfy our allocation
4792 * request even if all reclaimable pages are considered then we are
4793 * screwed and have to go OOM.
4794 */
4795 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4796 ac->highest_zoneidx, ac->nodemask) {
4797 unsigned long available;
4798 unsigned long reclaimable;
4799 unsigned long min_wmark = min_wmark_pages(zone);
4800 bool wmark;
4801
4802 available = reclaimable = zone_reclaimable_pages(zone);
4803 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4804
4805 /*
4806 * Would the allocation succeed if we reclaimed all
4807 * reclaimable pages?
4808 */
4809 wmark = __zone_watermark_ok(zone, order, min_wmark,
4810 ac->highest_zoneidx, alloc_flags, available);
4811 trace_reclaim_retry_zone(z, order, reclaimable,
4812 available, min_wmark, *no_progress_loops, wmark);
4813 if (wmark) {
4814 ret = true;
4815 break;
4816 }
4817 }
4818
4819 /*
4820 * Memory allocation/reclaim might be called from a WQ context and the
4821 * current implementation of the WQ concurrency control doesn't
4822 * recognize that a particular WQ is congested if the worker thread is
4823 * looping without ever sleeping. Therefore we have to do a short sleep
4824 * here rather than calling cond_resched().
4825 */
4826 if (current->flags & PF_WQ_WORKER)
4827 schedule_timeout_uninterruptible(1);
4828 else
4829 cond_resched();
4830 return ret;
4831}
4832
4833static inline bool
4834check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4835{
4836 /*
4837 * It's possible that cpuset's mems_allowed and the nodemask from
4838 * mempolicy don't intersect. This should be normally dealt with by
4839 * policy_nodemask(), but it's possible to race with cpuset update in
4840 * such a way the check therein was true, and then it became false
4841 * before we got our cpuset_mems_cookie here.
4842 * This assumes that for all allocations, ac->nodemask can come only
4843 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4844 * when it does not intersect with the cpuset restrictions) or the
4845 * caller can deal with a violated nodemask.
4846 */
4847 if (cpusets_enabled() && ac->nodemask &&
4848 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4849 ac->nodemask = NULL;
4850 return true;
4851 }
4852
4853 /*
4854 * When updating a task's mems_allowed or mempolicy nodemask, it is
4855 * possible to race with parallel threads in such a way that our
4856 * allocation can fail while the mask is being updated. If we are about
4857 * to fail, check if the cpuset changed during allocation and if so,
4858 * retry.
4859 */
4860 if (read_mems_allowed_retry(cpuset_mems_cookie))
4861 return true;
4862
4863 return false;
4864}
4865
4866static inline struct page *
4867__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4868 struct alloc_context *ac)
4869{
4870 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4871 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4872 struct page *page = NULL;
4873 unsigned int alloc_flags;
4874 unsigned long did_some_progress;
4875 enum compact_priority compact_priority;
4876 enum compact_result compact_result;
4877 int compaction_retries;
4878 int no_progress_loops;
4879 unsigned int cpuset_mems_cookie;
4880 int reserve_flags;
4881
4882 /*
4883 * We also sanity check to catch abuse of atomic reserves being used by
4884 * callers that are not in atomic context.
4885 */
4886 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4887 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4888 gfp_mask &= ~__GFP_ATOMIC;
4889
4890retry_cpuset:
4891 compaction_retries = 0;
4892 no_progress_loops = 0;
4893 compact_priority = DEF_COMPACT_PRIORITY;
4894 cpuset_mems_cookie = read_mems_allowed_begin();
4895
4896 /*
4897 * The fast path uses conservative alloc_flags to succeed only until
4898 * kswapd needs to be woken up, and to avoid the cost of setting up
4899 * alloc_flags precisely. So we do that now.
4900 */
4901 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4902
4903 /*
4904 * We need to recalculate the starting point for the zonelist iterator
4905 * because we might have used different nodemask in the fast path, or
4906 * there was a cpuset modification and we are retrying - otherwise we
4907 * could end up iterating over non-eligible zones endlessly.
4908 */
4909 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4910 ac->highest_zoneidx, ac->nodemask);
4911 if (!ac->preferred_zoneref->zone)
4912 goto nopage;
4913
4914 /*
4915 * Check for insane configurations where the cpuset doesn't contain
4916 * any suitable zone to satisfy the request - e.g. non-movable
4917 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4918 */
4919 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4920 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4921 ac->highest_zoneidx,
4922 &cpuset_current_mems_allowed);
4923 if (!z->zone)
4924 goto nopage;
4925 }
4926
4927 if (alloc_flags & ALLOC_KSWAPD)
4928 wake_all_kswapds(order, gfp_mask, ac);
4929
4930 /*
4931 * The adjusted alloc_flags might result in immediate success, so try
4932 * that first
4933 */
4934 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4935 if (page)
4936 goto got_pg;
4937
4938 /*
4939 * For costly allocations, try direct compaction first, as it's likely
4940 * that we have enough base pages and don't need to reclaim. For non-
4941 * movable high-order allocations, do that as well, as compaction will
4942 * try prevent permanent fragmentation by migrating from blocks of the
4943 * same migratetype.
4944 * Don't try this for allocations that are allowed to ignore
4945 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4946 */
4947 if (can_direct_reclaim &&
4948 (costly_order ||
4949 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4950 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4951 page = __alloc_pages_direct_compact(gfp_mask, order,
4952 alloc_flags, ac,
4953 INIT_COMPACT_PRIORITY,
4954 &compact_result);
4955 if (page)
4956 goto got_pg;
4957
4958 /*
4959 * Checks for costly allocations with __GFP_NORETRY, which
4960 * includes some THP page fault allocations
4961 */
4962 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4963 /*
4964 * If allocating entire pageblock(s) and compaction
4965 * failed because all zones are below low watermarks
4966 * or is prohibited because it recently failed at this
4967 * order, fail immediately unless the allocator has
4968 * requested compaction and reclaim retry.
4969 *
4970 * Reclaim is
4971 * - potentially very expensive because zones are far
4972 * below their low watermarks or this is part of very
4973 * bursty high order allocations,
4974 * - not guaranteed to help because isolate_freepages()
4975 * may not iterate over freed pages as part of its
4976 * linear scan, and
4977 * - unlikely to make entire pageblocks free on its
4978 * own.
4979 */
4980 if (compact_result == COMPACT_SKIPPED ||
4981 compact_result == COMPACT_DEFERRED)
4982 goto nopage;
4983
4984 /*
4985 * Looks like reclaim/compaction is worth trying, but
4986 * sync compaction could be very expensive, so keep
4987 * using async compaction.
4988 */
4989 compact_priority = INIT_COMPACT_PRIORITY;
4990 }
4991 }
4992
4993retry:
4994 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4995 if (alloc_flags & ALLOC_KSWAPD)
4996 wake_all_kswapds(order, gfp_mask, ac);
4997
4998 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4999 if (reserve_flags)
5000 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5001
5002 /*
5003 * Reset the nodemask and zonelist iterators if memory policies can be
5004 * ignored. These allocations are high priority and system rather than
5005 * user oriented.
5006 */
5007 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5008 ac->nodemask = NULL;
5009 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5010 ac->highest_zoneidx, ac->nodemask);
5011 }
5012
5013 /* Attempt with potentially adjusted zonelist and alloc_flags */
5014 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5015 if (page)
5016 goto got_pg;
5017
5018 /* Caller is not willing to reclaim, we can't balance anything */
5019 if (!can_direct_reclaim)
5020 goto nopage;
5021
5022 /* Avoid recursion of direct reclaim */
5023 if (current->flags & PF_MEMALLOC)
5024 goto nopage;
5025
5026 /* Try direct reclaim and then allocating */
5027 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5028 &did_some_progress);
5029 if (page)
5030 goto got_pg;
5031
5032 /* Try direct compaction and then allocating */
5033 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5034 compact_priority, &compact_result);
5035 if (page)
5036 goto got_pg;
5037
5038 /* Do not loop if specifically requested */
5039 if (gfp_mask & __GFP_NORETRY)
5040 goto nopage;
5041
5042 /*
5043 * Do not retry costly high order allocations unless they are
5044 * __GFP_RETRY_MAYFAIL
5045 */
5046 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5047 goto nopage;
5048
5049 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5050 did_some_progress > 0, &no_progress_loops))
5051 goto retry;
5052
5053 /*
5054 * It doesn't make any sense to retry for the compaction if the order-0
5055 * reclaim is not able to make any progress because the current
5056 * implementation of the compaction depends on the sufficient amount
5057 * of free memory (see __compaction_suitable)
5058 */
5059 if (did_some_progress > 0 &&
5060 should_compact_retry(ac, order, alloc_flags,
5061 compact_result, &compact_priority,
5062 &compaction_retries))
5063 goto retry;
5064
5065
5066 /* Deal with possible cpuset update races before we start OOM killing */
5067 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5068 goto retry_cpuset;
5069
5070 /* Reclaim has failed us, start killing things */
5071 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5072 if (page)
5073 goto got_pg;
5074
5075 /* Avoid allocations with no watermarks from looping endlessly */
5076 if (tsk_is_oom_victim(current) &&
5077 (alloc_flags & ALLOC_OOM ||
5078 (gfp_mask & __GFP_NOMEMALLOC)))
5079 goto nopage;
5080
5081 /* Retry as long as the OOM killer is making progress */
5082 if (did_some_progress) {
5083 no_progress_loops = 0;
5084 goto retry;
5085 }
5086
5087nopage:
5088 /* Deal with possible cpuset update races before we fail */
5089 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5090 goto retry_cpuset;
5091
5092 /*
5093 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5094 * we always retry
5095 */
5096 if (gfp_mask & __GFP_NOFAIL) {
5097 /*
5098 * All existing users of the __GFP_NOFAIL are blockable, so warn
5099 * of any new users that actually require GFP_NOWAIT
5100 */
5101 if (WARN_ON_ONCE(!can_direct_reclaim))
5102 goto fail;
5103
5104 /*
5105 * PF_MEMALLOC request from this context is rather bizarre
5106 * because we cannot reclaim anything and only can loop waiting
5107 * for somebody to do a work for us
5108 */
5109 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5110
5111 /*
5112 * non failing costly orders are a hard requirement which we
5113 * are not prepared for much so let's warn about these users
5114 * so that we can identify them and convert them to something
5115 * else.
5116 */
5117 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5118
5119 /*
5120 * Help non-failing allocations by giving them access to memory
5121 * reserves but do not use ALLOC_NO_WATERMARKS because this
5122 * could deplete whole memory reserves which would just make
5123 * the situation worse
5124 */
5125 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5126 if (page)
5127 goto got_pg;
5128
5129 cond_resched();
5130 goto retry;
5131 }
5132fail:
5133 warn_alloc(gfp_mask, ac->nodemask,
5134 "page allocation failure: order:%u", order);
5135got_pg:
5136 return page;
5137}
5138
5139static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5140 int preferred_nid, nodemask_t *nodemask,
5141 struct alloc_context *ac, gfp_t *alloc_gfp,
5142 unsigned int *alloc_flags)
5143{
5144 ac->highest_zoneidx = gfp_zone(gfp_mask);
5145 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5146 ac->nodemask = nodemask;
5147 ac->migratetype = gfp_migratetype(gfp_mask);
5148
5149 if (cpusets_enabled()) {
5150 *alloc_gfp |= __GFP_HARDWALL;
5151 /*
5152 * When we are in the interrupt context, it is irrelevant
5153 * to the current task context. It means that any node ok.
5154 */
5155 if (in_task() && !ac->nodemask)
5156 ac->nodemask = &cpuset_current_mems_allowed;
5157 else
5158 *alloc_flags |= ALLOC_CPUSET;
5159 }
5160
5161 fs_reclaim_acquire(gfp_mask);
5162 fs_reclaim_release(gfp_mask);
5163
5164 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5165
5166 if (should_fail_alloc_page(gfp_mask, order))
5167 return false;
5168
5169 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5170
5171 /* Dirty zone balancing only done in the fast path */
5172 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5173
5174 /*
5175 * The preferred zone is used for statistics but crucially it is
5176 * also used as the starting point for the zonelist iterator. It
5177 * may get reset for allocations that ignore memory policies.
5178 */
5179 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5180 ac->highest_zoneidx, ac->nodemask);
5181
5182 return true;
5183}
5184
5185/*
5186 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5187 * @gfp: GFP flags for the allocation
5188 * @preferred_nid: The preferred NUMA node ID to allocate from
5189 * @nodemask: Set of nodes to allocate from, may be NULL
5190 * @nr_pages: The number of pages desired on the list or array
5191 * @page_list: Optional list to store the allocated pages
5192 * @page_array: Optional array to store the pages
5193 *
5194 * This is a batched version of the page allocator that attempts to
5195 * allocate nr_pages quickly. Pages are added to page_list if page_list
5196 * is not NULL, otherwise it is assumed that the page_array is valid.
5197 *
5198 * For lists, nr_pages is the number of pages that should be allocated.
5199 *
5200 * For arrays, only NULL elements are populated with pages and nr_pages
5201 * is the maximum number of pages that will be stored in the array.
5202 *
5203 * Returns the number of pages on the list or array.
5204 */
5205unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5206 nodemask_t *nodemask, int nr_pages,
5207 struct list_head *page_list,
5208 struct page **page_array)
5209{
5210 struct page *page;
5211 unsigned long flags;
5212 struct zone *zone;
5213 struct zoneref *z;
5214 struct per_cpu_pages *pcp;
5215 struct list_head *pcp_list;
5216 struct alloc_context ac;
5217 gfp_t alloc_gfp;
5218 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5219 int nr_populated = 0, nr_account = 0;
5220
5221 /*
5222 * Skip populated array elements to determine if any pages need
5223 * to be allocated before disabling IRQs.
5224 */
5225 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5226 nr_populated++;
5227
5228 /* No pages requested? */
5229 if (unlikely(nr_pages <= 0))
5230 goto out;
5231
5232 /* Already populated array? */
5233 if (unlikely(page_array && nr_pages - nr_populated == 0))
5234 goto out;
5235
5236 /* Bulk allocator does not support memcg accounting. */
5237 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5238 goto failed;
5239
5240 /* Use the single page allocator for one page. */
5241 if (nr_pages - nr_populated == 1)
5242 goto failed;
5243
5244#ifdef CONFIG_PAGE_OWNER
5245 /*
5246 * PAGE_OWNER may recurse into the allocator to allocate space to
5247 * save the stack with pagesets.lock held. Releasing/reacquiring
5248 * removes much of the performance benefit of bulk allocation so
5249 * force the caller to allocate one page at a time as it'll have
5250 * similar performance to added complexity to the bulk allocator.
5251 */
5252 if (static_branch_unlikely(&page_owner_inited))
5253 goto failed;
5254#endif
5255
5256 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5257 gfp &= gfp_allowed_mask;
5258 alloc_gfp = gfp;
5259 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5260 goto out;
5261 gfp = alloc_gfp;
5262
5263 /* Find an allowed local zone that meets the low watermark. */
5264 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5265 unsigned long mark;
5266
5267 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5268 !__cpuset_zone_allowed(zone, gfp)) {
5269 continue;
5270 }
5271
5272 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5273 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5274 goto failed;
5275 }
5276
5277 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5278 if (zone_watermark_fast(zone, 0, mark,
5279 zonelist_zone_idx(ac.preferred_zoneref),
5280 alloc_flags, gfp)) {
5281 break;
5282 }
5283 }
5284
5285 /*
5286 * If there are no allowed local zones that meets the watermarks then
5287 * try to allocate a single page and reclaim if necessary.
5288 */
5289 if (unlikely(!zone))
5290 goto failed;
5291
5292 /* Attempt the batch allocation */
5293 local_lock_irqsave(&pagesets.lock, flags);
5294 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5295 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5296
5297 while (nr_populated < nr_pages) {
5298
5299 /* Skip existing pages */
5300 if (page_array && page_array[nr_populated]) {
5301 nr_populated++;
5302 continue;
5303 }
5304
5305 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5306 pcp, pcp_list);
5307 if (unlikely(!page)) {
5308 /* Try and get at least one page */
5309 if (!nr_populated)
5310 goto failed_irq;
5311 break;
5312 }
5313 nr_account++;
5314
5315 prep_new_page(page, 0, gfp, 0);
5316 if (page_list)
5317 list_add(&page->lru, page_list);
5318 else
5319 page_array[nr_populated] = page;
5320 nr_populated++;
5321 }
5322
5323 local_unlock_irqrestore(&pagesets.lock, flags);
5324
5325 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5326 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5327
5328out:
5329 return nr_populated;
5330
5331failed_irq:
5332 local_unlock_irqrestore(&pagesets.lock, flags);
5333
5334failed:
5335 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5336 if (page) {
5337 if (page_list)
5338 list_add(&page->lru, page_list);
5339 else
5340 page_array[nr_populated] = page;
5341 nr_populated++;
5342 }
5343
5344 goto out;
5345}
5346EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5347
5348/*
5349 * This is the 'heart' of the zoned buddy allocator.
5350 */
5351struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5352 nodemask_t *nodemask)
5353{
5354 struct page *page;
5355 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5356 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5357 struct alloc_context ac = { };
5358
5359 /*
5360 * There are several places where we assume that the order value is sane
5361 * so bail out early if the request is out of bound.
5362 */
5363 if (unlikely(order >= MAX_ORDER)) {
5364 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5365 return NULL;
5366 }
5367
5368 gfp &= gfp_allowed_mask;
5369 /*
5370 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5371 * resp. GFP_NOIO which has to be inherited for all allocation requests
5372 * from a particular context which has been marked by
5373 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5374 * movable zones are not used during allocation.
5375 */
5376 gfp = current_gfp_context(gfp);
5377 alloc_gfp = gfp;
5378 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5379 &alloc_gfp, &alloc_flags))
5380 return NULL;
5381
5382 /*
5383 * Forbid the first pass from falling back to types that fragment
5384 * memory until all local zones are considered.
5385 */
5386 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5387
5388 /* First allocation attempt */
5389 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5390 if (likely(page))
5391 goto out;
5392
5393 alloc_gfp = gfp;
5394 ac.spread_dirty_pages = false;
5395
5396 /*
5397 * Restore the original nodemask if it was potentially replaced with
5398 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5399 */
5400 ac.nodemask = nodemask;
5401
5402 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5403
5404out:
5405 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5406 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5407 __free_pages(page, order);
5408 page = NULL;
5409 }
5410
5411 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5412
5413 return page;
5414}
5415EXPORT_SYMBOL(__alloc_pages);
5416
5417struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5418 nodemask_t *nodemask)
5419{
5420 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5421 preferred_nid, nodemask);
5422
5423 if (page && order > 1)
5424 prep_transhuge_page(page);
5425 return (struct folio *)page;
5426}
5427EXPORT_SYMBOL(__folio_alloc);
5428
5429/*
5430 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5431 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5432 * you need to access high mem.
5433 */
5434unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5435{
5436 struct page *page;
5437
5438 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5439 if (!page)
5440 return 0;
5441 return (unsigned long) page_address(page);
5442}
5443EXPORT_SYMBOL(__get_free_pages);
5444
5445unsigned long get_zeroed_page(gfp_t gfp_mask)
5446{
5447 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5448}
5449EXPORT_SYMBOL(get_zeroed_page);
5450
5451/**
5452 * __free_pages - Free pages allocated with alloc_pages().
5453 * @page: The page pointer returned from alloc_pages().
5454 * @order: The order of the allocation.
5455 *
5456 * This function can free multi-page allocations that are not compound
5457 * pages. It does not check that the @order passed in matches that of
5458 * the allocation, so it is easy to leak memory. Freeing more memory
5459 * than was allocated will probably emit a warning.
5460 *
5461 * If the last reference to this page is speculative, it will be released
5462 * by put_page() which only frees the first page of a non-compound
5463 * allocation. To prevent the remaining pages from being leaked, we free
5464 * the subsequent pages here. If you want to use the page's reference
5465 * count to decide when to free the allocation, you should allocate a
5466 * compound page, and use put_page() instead of __free_pages().
5467 *
5468 * Context: May be called in interrupt context or while holding a normal
5469 * spinlock, but not in NMI context or while holding a raw spinlock.
5470 */
5471void __free_pages(struct page *page, unsigned int order)
5472{
5473 if (put_page_testzero(page))
5474 free_the_page(page, order);
5475 else if (!PageHead(page))
5476 while (order-- > 0)
5477 free_the_page(page + (1 << order), order);
5478}
5479EXPORT_SYMBOL(__free_pages);
5480
5481void free_pages(unsigned long addr, unsigned int order)
5482{
5483 if (addr != 0) {
5484 VM_BUG_ON(!virt_addr_valid((void *)addr));
5485 __free_pages(virt_to_page((void *)addr), order);
5486 }
5487}
5488
5489EXPORT_SYMBOL(free_pages);
5490
5491/*
5492 * Page Fragment:
5493 * An arbitrary-length arbitrary-offset area of memory which resides
5494 * within a 0 or higher order page. Multiple fragments within that page
5495 * are individually refcounted, in the page's reference counter.
5496 *
5497 * The page_frag functions below provide a simple allocation framework for
5498 * page fragments. This is used by the network stack and network device
5499 * drivers to provide a backing region of memory for use as either an
5500 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5501 */
5502static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5503 gfp_t gfp_mask)
5504{
5505 struct page *page = NULL;
5506 gfp_t gfp = gfp_mask;
5507
5508#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5509 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5510 __GFP_NOMEMALLOC;
5511 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5512 PAGE_FRAG_CACHE_MAX_ORDER);
5513 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5514#endif
5515 if (unlikely(!page))
5516 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5517
5518 nc->va = page ? page_address(page) : NULL;
5519
5520 return page;
5521}
5522
5523void __page_frag_cache_drain(struct page *page, unsigned int count)
5524{
5525 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5526
5527 if (page_ref_sub_and_test(page, count))
5528 free_the_page(page, compound_order(page));
5529}
5530EXPORT_SYMBOL(__page_frag_cache_drain);
5531
5532void *page_frag_alloc_align(struct page_frag_cache *nc,
5533 unsigned int fragsz, gfp_t gfp_mask,
5534 unsigned int align_mask)
5535{
5536 unsigned int size = PAGE_SIZE;
5537 struct page *page;
5538 int offset;
5539
5540 if (unlikely(!nc->va)) {
5541refill:
5542 page = __page_frag_cache_refill(nc, gfp_mask);
5543 if (!page)
5544 return NULL;
5545
5546#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5547 /* if size can vary use size else just use PAGE_SIZE */
5548 size = nc->size;
5549#endif
5550 /* Even if we own the page, we do not use atomic_set().
5551 * This would break get_page_unless_zero() users.
5552 */
5553 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5554
5555 /* reset page count bias and offset to start of new frag */
5556 nc->pfmemalloc = page_is_pfmemalloc(page);
5557 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5558 nc->offset = size;
5559 }
5560
5561 offset = nc->offset - fragsz;
5562 if (unlikely(offset < 0)) {
5563 page = virt_to_page(nc->va);
5564
5565 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5566 goto refill;
5567
5568 if (unlikely(nc->pfmemalloc)) {
5569 free_the_page(page, compound_order(page));
5570 goto refill;
5571 }
5572
5573#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5574 /* if size can vary use size else just use PAGE_SIZE */
5575 size = nc->size;
5576#endif
5577 /* OK, page count is 0, we can safely set it */
5578 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5579
5580 /* reset page count bias and offset to start of new frag */
5581 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5582 offset = size - fragsz;
5583 }
5584
5585 nc->pagecnt_bias--;
5586 offset &= align_mask;
5587 nc->offset = offset;
5588
5589 return nc->va + offset;
5590}
5591EXPORT_SYMBOL(page_frag_alloc_align);
5592
5593/*
5594 * Frees a page fragment allocated out of either a compound or order 0 page.
5595 */
5596void page_frag_free(void *addr)
5597{
5598 struct page *page = virt_to_head_page(addr);
5599
5600 if (unlikely(put_page_testzero(page)))
5601 free_the_page(page, compound_order(page));
5602}
5603EXPORT_SYMBOL(page_frag_free);
5604
5605static void *make_alloc_exact(unsigned long addr, unsigned int order,
5606 size_t size)
5607{
5608 if (addr) {
5609 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5610 unsigned long used = addr + PAGE_ALIGN(size);
5611
5612 split_page(virt_to_page((void *)addr), order);
5613 while (used < alloc_end) {
5614 free_page(used);
5615 used += PAGE_SIZE;
5616 }
5617 }
5618 return (void *)addr;
5619}
5620
5621/**
5622 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5623 * @size: the number of bytes to allocate
5624 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5625 *
5626 * This function is similar to alloc_pages(), except that it allocates the
5627 * minimum number of pages to satisfy the request. alloc_pages() can only
5628 * allocate memory in power-of-two pages.
5629 *
5630 * This function is also limited by MAX_ORDER.
5631 *
5632 * Memory allocated by this function must be released by free_pages_exact().
5633 *
5634 * Return: pointer to the allocated area or %NULL in case of error.
5635 */
5636void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5637{
5638 unsigned int order = get_order(size);
5639 unsigned long addr;
5640
5641 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5642 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5643
5644 addr = __get_free_pages(gfp_mask, order);
5645 return make_alloc_exact(addr, order, size);
5646}
5647EXPORT_SYMBOL(alloc_pages_exact);
5648
5649/**
5650 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5651 * pages on a node.
5652 * @nid: the preferred node ID where memory should be allocated
5653 * @size: the number of bytes to allocate
5654 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5655 *
5656 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5657 * back.
5658 *
5659 * Return: pointer to the allocated area or %NULL in case of error.
5660 */
5661void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5662{
5663 unsigned int order = get_order(size);
5664 struct page *p;
5665
5666 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5667 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5668
5669 p = alloc_pages_node(nid, gfp_mask, order);
5670 if (!p)
5671 return NULL;
5672 return make_alloc_exact((unsigned long)page_address(p), order, size);
5673}
5674
5675/**
5676 * free_pages_exact - release memory allocated via alloc_pages_exact()
5677 * @virt: the value returned by alloc_pages_exact.
5678 * @size: size of allocation, same value as passed to alloc_pages_exact().
5679 *
5680 * Release the memory allocated by a previous call to alloc_pages_exact.
5681 */
5682void free_pages_exact(void *virt, size_t size)
5683{
5684 unsigned long addr = (unsigned long)virt;
5685 unsigned long end = addr + PAGE_ALIGN(size);
5686
5687 while (addr < end) {
5688 free_page(addr);
5689 addr += PAGE_SIZE;
5690 }
5691}
5692EXPORT_SYMBOL(free_pages_exact);
5693
5694/**
5695 * nr_free_zone_pages - count number of pages beyond high watermark
5696 * @offset: The zone index of the highest zone
5697 *
5698 * nr_free_zone_pages() counts the number of pages which are beyond the
5699 * high watermark within all zones at or below a given zone index. For each
5700 * zone, the number of pages is calculated as:
5701 *
5702 * nr_free_zone_pages = managed_pages - high_pages
5703 *
5704 * Return: number of pages beyond high watermark.
5705 */
5706static unsigned long nr_free_zone_pages(int offset)
5707{
5708 struct zoneref *z;
5709 struct zone *zone;
5710
5711 /* Just pick one node, since fallback list is circular */
5712 unsigned long sum = 0;
5713
5714 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5715
5716 for_each_zone_zonelist(zone, z, zonelist, offset) {
5717 unsigned long size = zone_managed_pages(zone);
5718 unsigned long high = high_wmark_pages(zone);
5719 if (size > high)
5720 sum += size - high;
5721 }
5722
5723 return sum;
5724}
5725
5726/**
5727 * nr_free_buffer_pages - count number of pages beyond high watermark
5728 *
5729 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5730 * watermark within ZONE_DMA and ZONE_NORMAL.
5731 *
5732 * Return: number of pages beyond high watermark within ZONE_DMA and
5733 * ZONE_NORMAL.
5734 */
5735unsigned long nr_free_buffer_pages(void)
5736{
5737 return nr_free_zone_pages(gfp_zone(GFP_USER));
5738}
5739EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5740
5741static inline void show_node(struct zone *zone)
5742{
5743 if (IS_ENABLED(CONFIG_NUMA))
5744 printk("Node %d ", zone_to_nid(zone));
5745}
5746
5747long si_mem_available(void)
5748{
5749 long available;
5750 unsigned long pagecache;
5751 unsigned long wmark_low = 0;
5752 unsigned long pages[NR_LRU_LISTS];
5753 unsigned long reclaimable;
5754 struct zone *zone;
5755 int lru;
5756
5757 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5758 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5759
5760 for_each_zone(zone)
5761 wmark_low += low_wmark_pages(zone);
5762
5763 /*
5764 * Estimate the amount of memory available for userspace allocations,
5765 * without causing swapping.
5766 */
5767 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5768
5769 /*
5770 * Not all the page cache can be freed, otherwise the system will
5771 * start swapping. Assume at least half of the page cache, or the
5772 * low watermark worth of cache, needs to stay.
5773 */
5774 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5775 pagecache -= min(pagecache / 2, wmark_low);
5776 available += pagecache;
5777
5778 /*
5779 * Part of the reclaimable slab and other kernel memory consists of
5780 * items that are in use, and cannot be freed. Cap this estimate at the
5781 * low watermark.
5782 */
5783 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5784 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5785 available += reclaimable - min(reclaimable / 2, wmark_low);
5786
5787 if (available < 0)
5788 available = 0;
5789 return available;
5790}
5791EXPORT_SYMBOL_GPL(si_mem_available);
5792
5793void si_meminfo(struct sysinfo *val)
5794{
5795 val->totalram = totalram_pages();
5796 val->sharedram = global_node_page_state(NR_SHMEM);
5797 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5798 val->bufferram = nr_blockdev_pages();
5799 val->totalhigh = totalhigh_pages();
5800 val->freehigh = nr_free_highpages();
5801 val->mem_unit = PAGE_SIZE;
5802}
5803
5804EXPORT_SYMBOL(si_meminfo);
5805
5806#ifdef CONFIG_NUMA
5807void si_meminfo_node(struct sysinfo *val, int nid)
5808{
5809 int zone_type; /* needs to be signed */
5810 unsigned long managed_pages = 0;
5811 unsigned long managed_highpages = 0;
5812 unsigned long free_highpages = 0;
5813 pg_data_t *pgdat = NODE_DATA(nid);
5814
5815 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5816 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5817 val->totalram = managed_pages;
5818 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5819 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5820#ifdef CONFIG_HIGHMEM
5821 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5822 struct zone *zone = &pgdat->node_zones[zone_type];
5823
5824 if (is_highmem(zone)) {
5825 managed_highpages += zone_managed_pages(zone);
5826 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5827 }
5828 }
5829 val->totalhigh = managed_highpages;
5830 val->freehigh = free_highpages;
5831#else
5832 val->totalhigh = managed_highpages;
5833 val->freehigh = free_highpages;
5834#endif
5835 val->mem_unit = PAGE_SIZE;
5836}
5837#endif
5838
5839/*
5840 * Determine whether the node should be displayed or not, depending on whether
5841 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5842 */
5843static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5844{
5845 if (!(flags & SHOW_MEM_FILTER_NODES))
5846 return false;
5847
5848 /*
5849 * no node mask - aka implicit memory numa policy. Do not bother with
5850 * the synchronization - read_mems_allowed_begin - because we do not
5851 * have to be precise here.
5852 */
5853 if (!nodemask)
5854 nodemask = &cpuset_current_mems_allowed;
5855
5856 return !node_isset(nid, *nodemask);
5857}
5858
5859#define K(x) ((x) << (PAGE_SHIFT-10))
5860
5861static void show_migration_types(unsigned char type)
5862{
5863 static const char types[MIGRATE_TYPES] = {
5864 [MIGRATE_UNMOVABLE] = 'U',
5865 [MIGRATE_MOVABLE] = 'M',
5866 [MIGRATE_RECLAIMABLE] = 'E',
5867 [MIGRATE_HIGHATOMIC] = 'H',
5868#ifdef CONFIG_CMA
5869 [MIGRATE_CMA] = 'C',
5870#endif
5871#ifdef CONFIG_MEMORY_ISOLATION
5872 [MIGRATE_ISOLATE] = 'I',
5873#endif
5874 };
5875 char tmp[MIGRATE_TYPES + 1];
5876 char *p = tmp;
5877 int i;
5878
5879 for (i = 0; i < MIGRATE_TYPES; i++) {
5880 if (type & (1 << i))
5881 *p++ = types[i];
5882 }
5883
5884 *p = '\0';
5885 printk(KERN_CONT "(%s) ", tmp);
5886}
5887
5888/*
5889 * Show free area list (used inside shift_scroll-lock stuff)
5890 * We also calculate the percentage fragmentation. We do this by counting the
5891 * memory on each free list with the exception of the first item on the list.
5892 *
5893 * Bits in @filter:
5894 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5895 * cpuset.
5896 */
5897void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5898{
5899 unsigned long free_pcp = 0;
5900 int cpu;
5901 struct zone *zone;
5902 pg_data_t *pgdat;
5903
5904 for_each_populated_zone(zone) {
5905 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5906 continue;
5907
5908 for_each_online_cpu(cpu)
5909 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5910 }
5911
5912 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5913 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5914 " unevictable:%lu dirty:%lu writeback:%lu\n"
5915 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5916 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5917 " kernel_misc_reclaimable:%lu\n"
5918 " free:%lu free_pcp:%lu free_cma:%lu\n",
5919 global_node_page_state(NR_ACTIVE_ANON),
5920 global_node_page_state(NR_INACTIVE_ANON),
5921 global_node_page_state(NR_ISOLATED_ANON),
5922 global_node_page_state(NR_ACTIVE_FILE),
5923 global_node_page_state(NR_INACTIVE_FILE),
5924 global_node_page_state(NR_ISOLATED_FILE),
5925 global_node_page_state(NR_UNEVICTABLE),
5926 global_node_page_state(NR_FILE_DIRTY),
5927 global_node_page_state(NR_WRITEBACK),
5928 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5929 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5930 global_node_page_state(NR_FILE_MAPPED),
5931 global_node_page_state(NR_SHMEM),
5932 global_node_page_state(NR_PAGETABLE),
5933 global_zone_page_state(NR_BOUNCE),
5934 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5935 global_zone_page_state(NR_FREE_PAGES),
5936 free_pcp,
5937 global_zone_page_state(NR_FREE_CMA_PAGES));
5938
5939 for_each_online_pgdat(pgdat) {
5940 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5941 continue;
5942
5943 printk("Node %d"
5944 " active_anon:%lukB"
5945 " inactive_anon:%lukB"
5946 " active_file:%lukB"
5947 " inactive_file:%lukB"
5948 " unevictable:%lukB"
5949 " isolated(anon):%lukB"
5950 " isolated(file):%lukB"
5951 " mapped:%lukB"
5952 " dirty:%lukB"
5953 " writeback:%lukB"
5954 " shmem:%lukB"
5955#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5956 " shmem_thp: %lukB"
5957 " shmem_pmdmapped: %lukB"
5958 " anon_thp: %lukB"
5959#endif
5960 " writeback_tmp:%lukB"
5961 " kernel_stack:%lukB"
5962#ifdef CONFIG_SHADOW_CALL_STACK
5963 " shadow_call_stack:%lukB"
5964#endif
5965 " pagetables:%lukB"
5966 " all_unreclaimable? %s"
5967 "\n",
5968 pgdat->node_id,
5969 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5970 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5971 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5972 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5973 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5974 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5975 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5976 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5977 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5978 K(node_page_state(pgdat, NR_WRITEBACK)),
5979 K(node_page_state(pgdat, NR_SHMEM)),
5980#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5981 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5982 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5983 K(node_page_state(pgdat, NR_ANON_THPS)),
5984#endif
5985 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5986 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5987#ifdef CONFIG_SHADOW_CALL_STACK
5988 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5989#endif
5990 K(node_page_state(pgdat, NR_PAGETABLE)),
5991 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5992 "yes" : "no");
5993 }
5994
5995 for_each_populated_zone(zone) {
5996 int i;
5997
5998 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5999 continue;
6000
6001 free_pcp = 0;
6002 for_each_online_cpu(cpu)
6003 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6004
6005 show_node(zone);
6006 printk(KERN_CONT
6007 "%s"
6008 " free:%lukB"
6009 " boost:%lukB"
6010 " min:%lukB"
6011 " low:%lukB"
6012 " high:%lukB"
6013 " reserved_highatomic:%luKB"
6014 " active_anon:%lukB"
6015 " inactive_anon:%lukB"
6016 " active_file:%lukB"
6017 " inactive_file:%lukB"
6018 " unevictable:%lukB"
6019 " writepending:%lukB"
6020 " present:%lukB"
6021 " managed:%lukB"
6022 " mlocked:%lukB"
6023 " bounce:%lukB"
6024 " free_pcp:%lukB"
6025 " local_pcp:%ukB"
6026 " free_cma:%lukB"
6027 "\n",
6028 zone->name,
6029 K(zone_page_state(zone, NR_FREE_PAGES)),
6030 K(zone->watermark_boost),
6031 K(min_wmark_pages(zone)),
6032 K(low_wmark_pages(zone)),
6033 K(high_wmark_pages(zone)),
6034 K(zone->nr_reserved_highatomic),
6035 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6036 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6037 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6038 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6039 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6040 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6041 K(zone->present_pages),
6042 K(zone_managed_pages(zone)),
6043 K(zone_page_state(zone, NR_MLOCK)),
6044 K(zone_page_state(zone, NR_BOUNCE)),
6045 K(free_pcp),
6046 K(this_cpu_read(zone->per_cpu_pageset->count)),
6047 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6048 printk("lowmem_reserve[]:");
6049 for (i = 0; i < MAX_NR_ZONES; i++)
6050 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6051 printk(KERN_CONT "\n");
6052 }
6053
6054 for_each_populated_zone(zone) {
6055 unsigned int order;
6056 unsigned long nr[MAX_ORDER], flags, total = 0;
6057 unsigned char types[MAX_ORDER];
6058
6059 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6060 continue;
6061 show_node(zone);
6062 printk(KERN_CONT "%s: ", zone->name);
6063
6064 spin_lock_irqsave(&zone->lock, flags);
6065 for (order = 0; order < MAX_ORDER; order++) {
6066 struct free_area *area = &zone->free_area[order];
6067 int type;
6068
6069 nr[order] = area->nr_free;
6070 total += nr[order] << order;
6071
6072 types[order] = 0;
6073 for (type = 0; type < MIGRATE_TYPES; type++) {
6074 if (!free_area_empty(area, type))
6075 types[order] |= 1 << type;
6076 }
6077 }
6078 spin_unlock_irqrestore(&zone->lock, flags);
6079 for (order = 0; order < MAX_ORDER; order++) {
6080 printk(KERN_CONT "%lu*%lukB ",
6081 nr[order], K(1UL) << order);
6082 if (nr[order])
6083 show_migration_types(types[order]);
6084 }
6085 printk(KERN_CONT "= %lukB\n", K(total));
6086 }
6087
6088 hugetlb_show_meminfo();
6089
6090 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6091
6092 show_swap_cache_info();
6093}
6094
6095static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6096{
6097 zoneref->zone = zone;
6098 zoneref->zone_idx = zone_idx(zone);
6099}
6100
6101/*
6102 * Builds allocation fallback zone lists.
6103 *
6104 * Add all populated zones of a node to the zonelist.
6105 */
6106static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6107{
6108 struct zone *zone;
6109 enum zone_type zone_type = MAX_NR_ZONES;
6110 int nr_zones = 0;
6111
6112 do {
6113 zone_type--;
6114 zone = pgdat->node_zones + zone_type;
6115 if (managed_zone(zone)) {
6116 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6117 check_highest_zone(zone_type);
6118 }
6119 } while (zone_type);
6120
6121 return nr_zones;
6122}
6123
6124#ifdef CONFIG_NUMA
6125
6126static int __parse_numa_zonelist_order(char *s)
6127{
6128 /*
6129 * We used to support different zonelists modes but they turned
6130 * out to be just not useful. Let's keep the warning in place
6131 * if somebody still use the cmd line parameter so that we do
6132 * not fail it silently
6133 */
6134 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6135 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6136 return -EINVAL;
6137 }
6138 return 0;
6139}
6140
6141char numa_zonelist_order[] = "Node";
6142
6143/*
6144 * sysctl handler for numa_zonelist_order
6145 */
6146int numa_zonelist_order_handler(struct ctl_table *table, int write,
6147 void *buffer, size_t *length, loff_t *ppos)
6148{
6149 if (write)
6150 return __parse_numa_zonelist_order(buffer);
6151 return proc_dostring(table, write, buffer, length, ppos);
6152}
6153
6154
6155#define MAX_NODE_LOAD (nr_online_nodes)
6156static int node_load[MAX_NUMNODES];
6157
6158/**
6159 * find_next_best_node - find the next node that should appear in a given node's fallback list
6160 * @node: node whose fallback list we're appending
6161 * @used_node_mask: nodemask_t of already used nodes
6162 *
6163 * We use a number of factors to determine which is the next node that should
6164 * appear on a given node's fallback list. The node should not have appeared
6165 * already in @node's fallback list, and it should be the next closest node
6166 * according to the distance array (which contains arbitrary distance values
6167 * from each node to each node in the system), and should also prefer nodes
6168 * with no CPUs, since presumably they'll have very little allocation pressure
6169 * on them otherwise.
6170 *
6171 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6172 */
6173int find_next_best_node(int node, nodemask_t *used_node_mask)
6174{
6175 int n, val;
6176 int min_val = INT_MAX;
6177 int best_node = NUMA_NO_NODE;
6178
6179 /* Use the local node if we haven't already */
6180 if (!node_isset(node, *used_node_mask)) {
6181 node_set(node, *used_node_mask);
6182 return node;
6183 }
6184
6185 for_each_node_state(n, N_MEMORY) {
6186
6187 /* Don't want a node to appear more than once */
6188 if (node_isset(n, *used_node_mask))
6189 continue;
6190
6191 /* Use the distance array to find the distance */
6192 val = node_distance(node, n);
6193
6194 /* Penalize nodes under us ("prefer the next node") */
6195 val += (n < node);
6196
6197 /* Give preference to headless and unused nodes */
6198 if (!cpumask_empty(cpumask_of_node(n)))
6199 val += PENALTY_FOR_NODE_WITH_CPUS;
6200
6201 /* Slight preference for less loaded node */
6202 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6203 val += node_load[n];
6204
6205 if (val < min_val) {
6206 min_val = val;
6207 best_node = n;
6208 }
6209 }
6210
6211 if (best_node >= 0)
6212 node_set(best_node, *used_node_mask);
6213
6214 return best_node;
6215}
6216
6217
6218/*
6219 * Build zonelists ordered by node and zones within node.
6220 * This results in maximum locality--normal zone overflows into local
6221 * DMA zone, if any--but risks exhausting DMA zone.
6222 */
6223static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6224 unsigned nr_nodes)
6225{
6226 struct zoneref *zonerefs;
6227 int i;
6228
6229 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6230
6231 for (i = 0; i < nr_nodes; i++) {
6232 int nr_zones;
6233
6234 pg_data_t *node = NODE_DATA(node_order[i]);
6235
6236 nr_zones = build_zonerefs_node(node, zonerefs);
6237 zonerefs += nr_zones;
6238 }
6239 zonerefs->zone = NULL;
6240 zonerefs->zone_idx = 0;
6241}
6242
6243/*
6244 * Build gfp_thisnode zonelists
6245 */
6246static void build_thisnode_zonelists(pg_data_t *pgdat)
6247{
6248 struct zoneref *zonerefs;
6249 int nr_zones;
6250
6251 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6252 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6253 zonerefs += nr_zones;
6254 zonerefs->zone = NULL;
6255 zonerefs->zone_idx = 0;
6256}
6257
6258/*
6259 * Build zonelists ordered by zone and nodes within zones.
6260 * This results in conserving DMA zone[s] until all Normal memory is
6261 * exhausted, but results in overflowing to remote node while memory
6262 * may still exist in local DMA zone.
6263 */
6264
6265static void build_zonelists(pg_data_t *pgdat)
6266{
6267 static int node_order[MAX_NUMNODES];
6268 int node, load, nr_nodes = 0;
6269 nodemask_t used_mask = NODE_MASK_NONE;
6270 int local_node, prev_node;
6271
6272 /* NUMA-aware ordering of nodes */
6273 local_node = pgdat->node_id;
6274 load = nr_online_nodes;
6275 prev_node = local_node;
6276
6277 memset(node_order, 0, sizeof(node_order));
6278 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6279 /*
6280 * We don't want to pressure a particular node.
6281 * So adding penalty to the first node in same
6282 * distance group to make it round-robin.
6283 */
6284 if (node_distance(local_node, node) !=
6285 node_distance(local_node, prev_node))
6286 node_load[node] += load;
6287
6288 node_order[nr_nodes++] = node;
6289 prev_node = node;
6290 load--;
6291 }
6292
6293 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6294 build_thisnode_zonelists(pgdat);
6295 pr_info("Fallback order for Node %d: ", local_node);
6296 for (node = 0; node < nr_nodes; node++)
6297 pr_cont("%d ", node_order[node]);
6298 pr_cont("\n");
6299}
6300
6301#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6302/*
6303 * Return node id of node used for "local" allocations.
6304 * I.e., first node id of first zone in arg node's generic zonelist.
6305 * Used for initializing percpu 'numa_mem', which is used primarily
6306 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6307 */
6308int local_memory_node(int node)
6309{
6310 struct zoneref *z;
6311
6312 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6313 gfp_zone(GFP_KERNEL),
6314 NULL);
6315 return zone_to_nid(z->zone);
6316}
6317#endif
6318
6319static void setup_min_unmapped_ratio(void);
6320static void setup_min_slab_ratio(void);
6321#else /* CONFIG_NUMA */
6322
6323static void build_zonelists(pg_data_t *pgdat)
6324{
6325 int node, local_node;
6326 struct zoneref *zonerefs;
6327 int nr_zones;
6328
6329 local_node = pgdat->node_id;
6330
6331 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6332 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6333 zonerefs += nr_zones;
6334
6335 /*
6336 * Now we build the zonelist so that it contains the zones
6337 * of all the other nodes.
6338 * We don't want to pressure a particular node, so when
6339 * building the zones for node N, we make sure that the
6340 * zones coming right after the local ones are those from
6341 * node N+1 (modulo N)
6342 */
6343 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6344 if (!node_online(node))
6345 continue;
6346 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6347 zonerefs += nr_zones;
6348 }
6349 for (node = 0; node < local_node; node++) {
6350 if (!node_online(node))
6351 continue;
6352 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6353 zonerefs += nr_zones;
6354 }
6355
6356 zonerefs->zone = NULL;
6357 zonerefs->zone_idx = 0;
6358}
6359
6360#endif /* CONFIG_NUMA */
6361
6362/*
6363 * Boot pageset table. One per cpu which is going to be used for all
6364 * zones and all nodes. The parameters will be set in such a way
6365 * that an item put on a list will immediately be handed over to
6366 * the buddy list. This is safe since pageset manipulation is done
6367 * with interrupts disabled.
6368 *
6369 * The boot_pagesets must be kept even after bootup is complete for
6370 * unused processors and/or zones. They do play a role for bootstrapping
6371 * hotplugged processors.
6372 *
6373 * zoneinfo_show() and maybe other functions do
6374 * not check if the processor is online before following the pageset pointer.
6375 * Other parts of the kernel may not check if the zone is available.
6376 */
6377static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6378/* These effectively disable the pcplists in the boot pageset completely */
6379#define BOOT_PAGESET_HIGH 0
6380#define BOOT_PAGESET_BATCH 1
6381static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6382static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6383static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6384
6385static void __build_all_zonelists(void *data)
6386{
6387 int nid;
6388 int __maybe_unused cpu;
6389 pg_data_t *self = data;
6390 static DEFINE_SPINLOCK(lock);
6391
6392 spin_lock(&lock);
6393
6394#ifdef CONFIG_NUMA
6395 memset(node_load, 0, sizeof(node_load));
6396#endif
6397
6398 /*
6399 * This node is hotadded and no memory is yet present. So just
6400 * building zonelists is fine - no need to touch other nodes.
6401 */
6402 if (self && !node_online(self->node_id)) {
6403 build_zonelists(self);
6404 } else {
6405 for_each_online_node(nid) {
6406 pg_data_t *pgdat = NODE_DATA(nid);
6407
6408 build_zonelists(pgdat);
6409 }
6410
6411#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6412 /*
6413 * We now know the "local memory node" for each node--
6414 * i.e., the node of the first zone in the generic zonelist.
6415 * Set up numa_mem percpu variable for on-line cpus. During
6416 * boot, only the boot cpu should be on-line; we'll init the
6417 * secondary cpus' numa_mem as they come on-line. During
6418 * node/memory hotplug, we'll fixup all on-line cpus.
6419 */
6420 for_each_online_cpu(cpu)
6421 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6422#endif
6423 }
6424
6425 spin_unlock(&lock);
6426}
6427
6428static noinline void __init
6429build_all_zonelists_init(void)
6430{
6431 int cpu;
6432
6433 __build_all_zonelists(NULL);
6434
6435 /*
6436 * Initialize the boot_pagesets that are going to be used
6437 * for bootstrapping processors. The real pagesets for
6438 * each zone will be allocated later when the per cpu
6439 * allocator is available.
6440 *
6441 * boot_pagesets are used also for bootstrapping offline
6442 * cpus if the system is already booted because the pagesets
6443 * are needed to initialize allocators on a specific cpu too.
6444 * F.e. the percpu allocator needs the page allocator which
6445 * needs the percpu allocator in order to allocate its pagesets
6446 * (a chicken-egg dilemma).
6447 */
6448 for_each_possible_cpu(cpu)
6449 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6450
6451 mminit_verify_zonelist();
6452 cpuset_init_current_mems_allowed();
6453}
6454
6455/*
6456 * unless system_state == SYSTEM_BOOTING.
6457 *
6458 * __ref due to call of __init annotated helper build_all_zonelists_init
6459 * [protected by SYSTEM_BOOTING].
6460 */
6461void __ref build_all_zonelists(pg_data_t *pgdat)
6462{
6463 unsigned long vm_total_pages;
6464
6465 if (system_state == SYSTEM_BOOTING) {
6466 build_all_zonelists_init();
6467 } else {
6468 __build_all_zonelists(pgdat);
6469 /* cpuset refresh routine should be here */
6470 }
6471 /* Get the number of free pages beyond high watermark in all zones. */
6472 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6473 /*
6474 * Disable grouping by mobility if the number of pages in the
6475 * system is too low to allow the mechanism to work. It would be
6476 * more accurate, but expensive to check per-zone. This check is
6477 * made on memory-hotadd so a system can start with mobility
6478 * disabled and enable it later
6479 */
6480 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6481 page_group_by_mobility_disabled = 1;
6482 else
6483 page_group_by_mobility_disabled = 0;
6484
6485 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6486 nr_online_nodes,
6487 page_group_by_mobility_disabled ? "off" : "on",
6488 vm_total_pages);
6489#ifdef CONFIG_NUMA
6490 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6491#endif
6492}
6493
6494/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6495static bool __meminit
6496overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6497{
6498 static struct memblock_region *r;
6499
6500 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6501 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6502 for_each_mem_region(r) {
6503 if (*pfn < memblock_region_memory_end_pfn(r))
6504 break;
6505 }
6506 }
6507 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6508 memblock_is_mirror(r)) {
6509 *pfn = memblock_region_memory_end_pfn(r);
6510 return true;
6511 }
6512 }
6513 return false;
6514}
6515
6516/*
6517 * Initially all pages are reserved - free ones are freed
6518 * up by memblock_free_all() once the early boot process is
6519 * done. Non-atomic initialization, single-pass.
6520 *
6521 * All aligned pageblocks are initialized to the specified migratetype
6522 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6523 * zone stats (e.g., nr_isolate_pageblock) are touched.
6524 */
6525void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6526 unsigned long start_pfn, unsigned long zone_end_pfn,
6527 enum meminit_context context,
6528 struct vmem_altmap *altmap, int migratetype)
6529{
6530 unsigned long pfn, end_pfn = start_pfn + size;
6531 struct page *page;
6532
6533 if (highest_memmap_pfn < end_pfn - 1)
6534 highest_memmap_pfn = end_pfn - 1;
6535
6536#ifdef CONFIG_ZONE_DEVICE
6537 /*
6538 * Honor reservation requested by the driver for this ZONE_DEVICE
6539 * memory. We limit the total number of pages to initialize to just
6540 * those that might contain the memory mapping. We will defer the
6541 * ZONE_DEVICE page initialization until after we have released
6542 * the hotplug lock.
6543 */
6544 if (zone == ZONE_DEVICE) {
6545 if (!altmap)
6546 return;
6547
6548 if (start_pfn == altmap->base_pfn)
6549 start_pfn += altmap->reserve;
6550 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6551 }
6552#endif
6553
6554 for (pfn = start_pfn; pfn < end_pfn; ) {
6555 /*
6556 * There can be holes in boot-time mem_map[]s handed to this
6557 * function. They do not exist on hotplugged memory.
6558 */
6559 if (context == MEMINIT_EARLY) {
6560 if (overlap_memmap_init(zone, &pfn))
6561 continue;
6562 if (defer_init(nid, pfn, zone_end_pfn))
6563 break;
6564 }
6565
6566 page = pfn_to_page(pfn);
6567 __init_single_page(page, pfn, zone, nid);
6568 if (context == MEMINIT_HOTPLUG)
6569 __SetPageReserved(page);
6570
6571 /*
6572 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6573 * such that unmovable allocations won't be scattered all
6574 * over the place during system boot.
6575 */
6576 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6577 set_pageblock_migratetype(page, migratetype);
6578 cond_resched();
6579 }
6580 pfn++;
6581 }
6582}
6583
6584#ifdef CONFIG_ZONE_DEVICE
6585static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6586 unsigned long zone_idx, int nid,
6587 struct dev_pagemap *pgmap)
6588{
6589
6590 __init_single_page(page, pfn, zone_idx, nid);
6591
6592 /*
6593 * Mark page reserved as it will need to wait for onlining
6594 * phase for it to be fully associated with a zone.
6595 *
6596 * We can use the non-atomic __set_bit operation for setting
6597 * the flag as we are still initializing the pages.
6598 */
6599 __SetPageReserved(page);
6600
6601 /*
6602 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6603 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6604 * ever freed or placed on a driver-private list.
6605 */
6606 page->pgmap = pgmap;
6607 page->zone_device_data = NULL;
6608
6609 /*
6610 * Mark the block movable so that blocks are reserved for
6611 * movable at startup. This will force kernel allocations
6612 * to reserve their blocks rather than leaking throughout
6613 * the address space during boot when many long-lived
6614 * kernel allocations are made.
6615 *
6616 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6617 * because this is done early in section_activate()
6618 */
6619 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6620 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6621 cond_resched();
6622 }
6623}
6624
6625static void __ref memmap_init_compound(struct page *head,
6626 unsigned long head_pfn,
6627 unsigned long zone_idx, int nid,
6628 struct dev_pagemap *pgmap,
6629 unsigned long nr_pages)
6630{
6631 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6632 unsigned int order = pgmap->vmemmap_shift;
6633
6634 __SetPageHead(head);
6635 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6636 struct page *page = pfn_to_page(pfn);
6637
6638 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6639 prep_compound_tail(head, pfn - head_pfn);
6640 set_page_count(page, 0);
6641
6642 /*
6643 * The first tail page stores compound_mapcount_ptr() and
6644 * compound_order() and the second tail page stores
6645 * compound_pincount_ptr(). Call prep_compound_head() after
6646 * the first and second tail pages have been initialized to
6647 * not have the data overwritten.
6648 */
6649 if (pfn == head_pfn + 2)
6650 prep_compound_head(head, order);
6651 }
6652}
6653
6654void __ref memmap_init_zone_device(struct zone *zone,
6655 unsigned long start_pfn,
6656 unsigned long nr_pages,
6657 struct dev_pagemap *pgmap)
6658{
6659 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6660 struct pglist_data *pgdat = zone->zone_pgdat;
6661 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6662 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6663 unsigned long zone_idx = zone_idx(zone);
6664 unsigned long start = jiffies;
6665 int nid = pgdat->node_id;
6666
6667 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6668 return;
6669
6670 /*
6671 * The call to memmap_init should have already taken care
6672 * of the pages reserved for the memmap, so we can just jump to
6673 * the end of that region and start processing the device pages.
6674 */
6675 if (altmap) {
6676 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6677 nr_pages = end_pfn - start_pfn;
6678 }
6679
6680 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6681 struct page *page = pfn_to_page(pfn);
6682
6683 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6684
6685 if (pfns_per_compound == 1)
6686 continue;
6687
6688 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6689 pfns_per_compound);
6690 }
6691
6692 pr_info("%s initialised %lu pages in %ums\n", __func__,
6693 nr_pages, jiffies_to_msecs(jiffies - start));
6694}
6695
6696#endif
6697static void __meminit zone_init_free_lists(struct zone *zone)
6698{
6699 unsigned int order, t;
6700 for_each_migratetype_order(order, t) {
6701 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6702 zone->free_area[order].nr_free = 0;
6703 }
6704}
6705
6706/*
6707 * Only struct pages that correspond to ranges defined by memblock.memory
6708 * are zeroed and initialized by going through __init_single_page() during
6709 * memmap_init_zone_range().
6710 *
6711 * But, there could be struct pages that correspond to holes in
6712 * memblock.memory. This can happen because of the following reasons:
6713 * - physical memory bank size is not necessarily the exact multiple of the
6714 * arbitrary section size
6715 * - early reserved memory may not be listed in memblock.memory
6716 * - memory layouts defined with memmap= kernel parameter may not align
6717 * nicely with memmap sections
6718 *
6719 * Explicitly initialize those struct pages so that:
6720 * - PG_Reserved is set
6721 * - zone and node links point to zone and node that span the page if the
6722 * hole is in the middle of a zone
6723 * - zone and node links point to adjacent zone/node if the hole falls on
6724 * the zone boundary; the pages in such holes will be prepended to the
6725 * zone/node above the hole except for the trailing pages in the last
6726 * section that will be appended to the zone/node below.
6727 */
6728static void __init init_unavailable_range(unsigned long spfn,
6729 unsigned long epfn,
6730 int zone, int node)
6731{
6732 unsigned long pfn;
6733 u64 pgcnt = 0;
6734
6735 for (pfn = spfn; pfn < epfn; pfn++) {
6736 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6737 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6738 + pageblock_nr_pages - 1;
6739 continue;
6740 }
6741 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6742 __SetPageReserved(pfn_to_page(pfn));
6743 pgcnt++;
6744 }
6745
6746 if (pgcnt)
6747 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6748 node, zone_names[zone], pgcnt);
6749}
6750
6751static void __init memmap_init_zone_range(struct zone *zone,
6752 unsigned long start_pfn,
6753 unsigned long end_pfn,
6754 unsigned long *hole_pfn)
6755{
6756 unsigned long zone_start_pfn = zone->zone_start_pfn;
6757 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6758 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6759
6760 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6761 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6762
6763 if (start_pfn >= end_pfn)
6764 return;
6765
6766 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6767 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6768
6769 if (*hole_pfn < start_pfn)
6770 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6771
6772 *hole_pfn = end_pfn;
6773}
6774
6775static void __init memmap_init(void)
6776{
6777 unsigned long start_pfn, end_pfn;
6778 unsigned long hole_pfn = 0;
6779 int i, j, zone_id = 0, nid;
6780
6781 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6782 struct pglist_data *node = NODE_DATA(nid);
6783
6784 for (j = 0; j < MAX_NR_ZONES; j++) {
6785 struct zone *zone = node->node_zones + j;
6786
6787 if (!populated_zone(zone))
6788 continue;
6789
6790 memmap_init_zone_range(zone, start_pfn, end_pfn,
6791 &hole_pfn);
6792 zone_id = j;
6793 }
6794 }
6795
6796#ifdef CONFIG_SPARSEMEM
6797 /*
6798 * Initialize the memory map for hole in the range [memory_end,
6799 * section_end].
6800 * Append the pages in this hole to the highest zone in the last
6801 * node.
6802 * The call to init_unavailable_range() is outside the ifdef to
6803 * silence the compiler warining about zone_id set but not used;
6804 * for FLATMEM it is a nop anyway
6805 */
6806 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6807 if (hole_pfn < end_pfn)
6808#endif
6809 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6810}
6811
6812void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6813 phys_addr_t min_addr, int nid, bool exact_nid)
6814{
6815 void *ptr;
6816
6817 if (exact_nid)
6818 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6819 MEMBLOCK_ALLOC_ACCESSIBLE,
6820 nid);
6821 else
6822 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6823 MEMBLOCK_ALLOC_ACCESSIBLE,
6824 nid);
6825
6826 if (ptr && size > 0)
6827 page_init_poison(ptr, size);
6828
6829 return ptr;
6830}
6831
6832static int zone_batchsize(struct zone *zone)
6833{
6834#ifdef CONFIG_MMU
6835 int batch;
6836
6837 /*
6838 * The number of pages to batch allocate is either ~0.1%
6839 * of the zone or 1MB, whichever is smaller. The batch
6840 * size is striking a balance between allocation latency
6841 * and zone lock contention.
6842 */
6843 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6844 batch /= 4; /* We effectively *= 4 below */
6845 if (batch < 1)
6846 batch = 1;
6847
6848 /*
6849 * Clamp the batch to a 2^n - 1 value. Having a power
6850 * of 2 value was found to be more likely to have
6851 * suboptimal cache aliasing properties in some cases.
6852 *
6853 * For example if 2 tasks are alternately allocating
6854 * batches of pages, one task can end up with a lot
6855 * of pages of one half of the possible page colors
6856 * and the other with pages of the other colors.
6857 */
6858 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6859
6860 return batch;
6861
6862#else
6863 /* The deferral and batching of frees should be suppressed under NOMMU
6864 * conditions.
6865 *
6866 * The problem is that NOMMU needs to be able to allocate large chunks
6867 * of contiguous memory as there's no hardware page translation to
6868 * assemble apparent contiguous memory from discontiguous pages.
6869 *
6870 * Queueing large contiguous runs of pages for batching, however,
6871 * causes the pages to actually be freed in smaller chunks. As there
6872 * can be a significant delay between the individual batches being
6873 * recycled, this leads to the once large chunks of space being
6874 * fragmented and becoming unavailable for high-order allocations.
6875 */
6876 return 0;
6877#endif
6878}
6879
6880static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6881{
6882#ifdef CONFIG_MMU
6883 int high;
6884 int nr_split_cpus;
6885 unsigned long total_pages;
6886
6887 if (!percpu_pagelist_high_fraction) {
6888 /*
6889 * By default, the high value of the pcp is based on the zone
6890 * low watermark so that if they are full then background
6891 * reclaim will not be started prematurely.
6892 */
6893 total_pages = low_wmark_pages(zone);
6894 } else {
6895 /*
6896 * If percpu_pagelist_high_fraction is configured, the high
6897 * value is based on a fraction of the managed pages in the
6898 * zone.
6899 */
6900 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6901 }
6902
6903 /*
6904 * Split the high value across all online CPUs local to the zone. Note
6905 * that early in boot that CPUs may not be online yet and that during
6906 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6907 * onlined. For memory nodes that have no CPUs, split pcp->high across
6908 * all online CPUs to mitigate the risk that reclaim is triggered
6909 * prematurely due to pages stored on pcp lists.
6910 */
6911 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6912 if (!nr_split_cpus)
6913 nr_split_cpus = num_online_cpus();
6914 high = total_pages / nr_split_cpus;
6915
6916 /*
6917 * Ensure high is at least batch*4. The multiple is based on the
6918 * historical relationship between high and batch.
6919 */
6920 high = max(high, batch << 2);
6921
6922 return high;
6923#else
6924 return 0;
6925#endif
6926}
6927
6928/*
6929 * pcp->high and pcp->batch values are related and generally batch is lower
6930 * than high. They are also related to pcp->count such that count is lower
6931 * than high, and as soon as it reaches high, the pcplist is flushed.
6932 *
6933 * However, guaranteeing these relations at all times would require e.g. write
6934 * barriers here but also careful usage of read barriers at the read side, and
6935 * thus be prone to error and bad for performance. Thus the update only prevents
6936 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6937 * can cope with those fields changing asynchronously, and fully trust only the
6938 * pcp->count field on the local CPU with interrupts disabled.
6939 *
6940 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6941 * outside of boot time (or some other assurance that no concurrent updaters
6942 * exist).
6943 */
6944static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6945 unsigned long batch)
6946{
6947 WRITE_ONCE(pcp->batch, batch);
6948 WRITE_ONCE(pcp->high, high);
6949}
6950
6951static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6952{
6953 int pindex;
6954
6955 memset(pcp, 0, sizeof(*pcp));
6956 memset(pzstats, 0, sizeof(*pzstats));
6957
6958 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6959 INIT_LIST_HEAD(&pcp->lists[pindex]);
6960
6961 /*
6962 * Set batch and high values safe for a boot pageset. A true percpu
6963 * pageset's initialization will update them subsequently. Here we don't
6964 * need to be as careful as pageset_update() as nobody can access the
6965 * pageset yet.
6966 */
6967 pcp->high = BOOT_PAGESET_HIGH;
6968 pcp->batch = BOOT_PAGESET_BATCH;
6969 pcp->free_factor = 0;
6970}
6971
6972static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6973 unsigned long batch)
6974{
6975 struct per_cpu_pages *pcp;
6976 int cpu;
6977
6978 for_each_possible_cpu(cpu) {
6979 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6980 pageset_update(pcp, high, batch);
6981 }
6982}
6983
6984/*
6985 * Calculate and set new high and batch values for all per-cpu pagesets of a
6986 * zone based on the zone's size.
6987 */
6988static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6989{
6990 int new_high, new_batch;
6991
6992 new_batch = max(1, zone_batchsize(zone));
6993 new_high = zone_highsize(zone, new_batch, cpu_online);
6994
6995 if (zone->pageset_high == new_high &&
6996 zone->pageset_batch == new_batch)
6997 return;
6998
6999 zone->pageset_high = new_high;
7000 zone->pageset_batch = new_batch;
7001
7002 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7003}
7004
7005void __meminit setup_zone_pageset(struct zone *zone)
7006{
7007 int cpu;
7008
7009 /* Size may be 0 on !SMP && !NUMA */
7010 if (sizeof(struct per_cpu_zonestat) > 0)
7011 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7012
7013 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7014 for_each_possible_cpu(cpu) {
7015 struct per_cpu_pages *pcp;
7016 struct per_cpu_zonestat *pzstats;
7017
7018 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7019 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7020 per_cpu_pages_init(pcp, pzstats);
7021 }
7022
7023 zone_set_pageset_high_and_batch(zone, 0);
7024}
7025
7026/*
7027 * Allocate per cpu pagesets and initialize them.
7028 * Before this call only boot pagesets were available.
7029 */
7030void __init setup_per_cpu_pageset(void)
7031{
7032 struct pglist_data *pgdat;
7033 struct zone *zone;
7034 int __maybe_unused cpu;
7035
7036 for_each_populated_zone(zone)
7037 setup_zone_pageset(zone);
7038
7039#ifdef CONFIG_NUMA
7040 /*
7041 * Unpopulated zones continue using the boot pagesets.
7042 * The numa stats for these pagesets need to be reset.
7043 * Otherwise, they will end up skewing the stats of
7044 * the nodes these zones are associated with.
7045 */
7046 for_each_possible_cpu(cpu) {
7047 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7048 memset(pzstats->vm_numa_event, 0,
7049 sizeof(pzstats->vm_numa_event));
7050 }
7051#endif
7052
7053 for_each_online_pgdat(pgdat)
7054 pgdat->per_cpu_nodestats =
7055 alloc_percpu(struct per_cpu_nodestat);
7056}
7057
7058static __meminit void zone_pcp_init(struct zone *zone)
7059{
7060 /*
7061 * per cpu subsystem is not up at this point. The following code
7062 * relies on the ability of the linker to provide the
7063 * offset of a (static) per cpu variable into the per cpu area.
7064 */
7065 zone->per_cpu_pageset = &boot_pageset;
7066 zone->per_cpu_zonestats = &boot_zonestats;
7067 zone->pageset_high = BOOT_PAGESET_HIGH;
7068 zone->pageset_batch = BOOT_PAGESET_BATCH;
7069
7070 if (populated_zone(zone))
7071 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7072 zone->present_pages, zone_batchsize(zone));
7073}
7074
7075void __meminit init_currently_empty_zone(struct zone *zone,
7076 unsigned long zone_start_pfn,
7077 unsigned long size)
7078{
7079 struct pglist_data *pgdat = zone->zone_pgdat;
7080 int zone_idx = zone_idx(zone) + 1;
7081
7082 if (zone_idx > pgdat->nr_zones)
7083 pgdat->nr_zones = zone_idx;
7084
7085 zone->zone_start_pfn = zone_start_pfn;
7086
7087 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7088 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7089 pgdat->node_id,
7090 (unsigned long)zone_idx(zone),
7091 zone_start_pfn, (zone_start_pfn + size));
7092
7093 zone_init_free_lists(zone);
7094 zone->initialized = 1;
7095}
7096
7097/**
7098 * get_pfn_range_for_nid - Return the start and end page frames for a node
7099 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7100 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7101 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7102 *
7103 * It returns the start and end page frame of a node based on information
7104 * provided by memblock_set_node(). If called for a node
7105 * with no available memory, a warning is printed and the start and end
7106 * PFNs will be 0.
7107 */
7108void __init get_pfn_range_for_nid(unsigned int nid,
7109 unsigned long *start_pfn, unsigned long *end_pfn)
7110{
7111 unsigned long this_start_pfn, this_end_pfn;
7112 int i;
7113
7114 *start_pfn = -1UL;
7115 *end_pfn = 0;
7116
7117 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7118 *start_pfn = min(*start_pfn, this_start_pfn);
7119 *end_pfn = max(*end_pfn, this_end_pfn);
7120 }
7121
7122 if (*start_pfn == -1UL)
7123 *start_pfn = 0;
7124}
7125
7126/*
7127 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7128 * assumption is made that zones within a node are ordered in monotonic
7129 * increasing memory addresses so that the "highest" populated zone is used
7130 */
7131static void __init find_usable_zone_for_movable(void)
7132{
7133 int zone_index;
7134 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7135 if (zone_index == ZONE_MOVABLE)
7136 continue;
7137
7138 if (arch_zone_highest_possible_pfn[zone_index] >
7139 arch_zone_lowest_possible_pfn[zone_index])
7140 break;
7141 }
7142
7143 VM_BUG_ON(zone_index == -1);
7144 movable_zone = zone_index;
7145}
7146
7147/*
7148 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7149 * because it is sized independent of architecture. Unlike the other zones,
7150 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7151 * in each node depending on the size of each node and how evenly kernelcore
7152 * is distributed. This helper function adjusts the zone ranges
7153 * provided by the architecture for a given node by using the end of the
7154 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7155 * zones within a node are in order of monotonic increases memory addresses
7156 */
7157static void __init adjust_zone_range_for_zone_movable(int nid,
7158 unsigned long zone_type,
7159 unsigned long node_start_pfn,
7160 unsigned long node_end_pfn,
7161 unsigned long *zone_start_pfn,
7162 unsigned long *zone_end_pfn)
7163{
7164 /* Only adjust if ZONE_MOVABLE is on this node */
7165 if (zone_movable_pfn[nid]) {
7166 /* Size ZONE_MOVABLE */
7167 if (zone_type == ZONE_MOVABLE) {
7168 *zone_start_pfn = zone_movable_pfn[nid];
7169 *zone_end_pfn = min(node_end_pfn,
7170 arch_zone_highest_possible_pfn[movable_zone]);
7171
7172 /* Adjust for ZONE_MOVABLE starting within this range */
7173 } else if (!mirrored_kernelcore &&
7174 *zone_start_pfn < zone_movable_pfn[nid] &&
7175 *zone_end_pfn > zone_movable_pfn[nid]) {
7176 *zone_end_pfn = zone_movable_pfn[nid];
7177
7178 /* Check if this whole range is within ZONE_MOVABLE */
7179 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7180 *zone_start_pfn = *zone_end_pfn;
7181 }
7182}
7183
7184/*
7185 * Return the number of pages a zone spans in a node, including holes
7186 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7187 */
7188static unsigned long __init zone_spanned_pages_in_node(int nid,
7189 unsigned long zone_type,
7190 unsigned long node_start_pfn,
7191 unsigned long node_end_pfn,
7192 unsigned long *zone_start_pfn,
7193 unsigned long *zone_end_pfn)
7194{
7195 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7196 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7197 /* When hotadd a new node from cpu_up(), the node should be empty */
7198 if (!node_start_pfn && !node_end_pfn)
7199 return 0;
7200
7201 /* Get the start and end of the zone */
7202 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7203 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7204 adjust_zone_range_for_zone_movable(nid, zone_type,
7205 node_start_pfn, node_end_pfn,
7206 zone_start_pfn, zone_end_pfn);
7207
7208 /* Check that this node has pages within the zone's required range */
7209 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7210 return 0;
7211
7212 /* Move the zone boundaries inside the node if necessary */
7213 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7214 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7215
7216 /* Return the spanned pages */
7217 return *zone_end_pfn - *zone_start_pfn;
7218}
7219
7220/*
7221 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7222 * then all holes in the requested range will be accounted for.
7223 */
7224unsigned long __init __absent_pages_in_range(int nid,
7225 unsigned long range_start_pfn,
7226 unsigned long range_end_pfn)
7227{
7228 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7229 unsigned long start_pfn, end_pfn;
7230 int i;
7231
7232 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7233 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7234 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7235 nr_absent -= end_pfn - start_pfn;
7236 }
7237 return nr_absent;
7238}
7239
7240/**
7241 * absent_pages_in_range - Return number of page frames in holes within a range
7242 * @start_pfn: The start PFN to start searching for holes
7243 * @end_pfn: The end PFN to stop searching for holes
7244 *
7245 * Return: the number of pages frames in memory holes within a range.
7246 */
7247unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7248 unsigned long end_pfn)
7249{
7250 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7251}
7252
7253/* Return the number of page frames in holes in a zone on a node */
7254static unsigned long __init zone_absent_pages_in_node(int nid,
7255 unsigned long zone_type,
7256 unsigned long node_start_pfn,
7257 unsigned long node_end_pfn)
7258{
7259 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7260 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7261 unsigned long zone_start_pfn, zone_end_pfn;
7262 unsigned long nr_absent;
7263
7264 /* When hotadd a new node from cpu_up(), the node should be empty */
7265 if (!node_start_pfn && !node_end_pfn)
7266 return 0;
7267
7268 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7269 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7270
7271 adjust_zone_range_for_zone_movable(nid, zone_type,
7272 node_start_pfn, node_end_pfn,
7273 &zone_start_pfn, &zone_end_pfn);
7274 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7275
7276 /*
7277 * ZONE_MOVABLE handling.
7278 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7279 * and vice versa.
7280 */
7281 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7282 unsigned long start_pfn, end_pfn;
7283 struct memblock_region *r;
7284
7285 for_each_mem_region(r) {
7286 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7287 zone_start_pfn, zone_end_pfn);
7288 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7289 zone_start_pfn, zone_end_pfn);
7290
7291 if (zone_type == ZONE_MOVABLE &&
7292 memblock_is_mirror(r))
7293 nr_absent += end_pfn - start_pfn;
7294
7295 if (zone_type == ZONE_NORMAL &&
7296 !memblock_is_mirror(r))
7297 nr_absent += end_pfn - start_pfn;
7298 }
7299 }
7300
7301 return nr_absent;
7302}
7303
7304static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7305 unsigned long node_start_pfn,
7306 unsigned long node_end_pfn)
7307{
7308 unsigned long realtotalpages = 0, totalpages = 0;
7309 enum zone_type i;
7310
7311 for (i = 0; i < MAX_NR_ZONES; i++) {
7312 struct zone *zone = pgdat->node_zones + i;
7313 unsigned long zone_start_pfn, zone_end_pfn;
7314 unsigned long spanned, absent;
7315 unsigned long size, real_size;
7316
7317 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7318 node_start_pfn,
7319 node_end_pfn,
7320 &zone_start_pfn,
7321 &zone_end_pfn);
7322 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7323 node_start_pfn,
7324 node_end_pfn);
7325
7326 size = spanned;
7327 real_size = size - absent;
7328
7329 if (size)
7330 zone->zone_start_pfn = zone_start_pfn;
7331 else
7332 zone->zone_start_pfn = 0;
7333 zone->spanned_pages = size;
7334 zone->present_pages = real_size;
7335#if defined(CONFIG_MEMORY_HOTPLUG)
7336 zone->present_early_pages = real_size;
7337#endif
7338
7339 totalpages += size;
7340 realtotalpages += real_size;
7341 }
7342
7343 pgdat->node_spanned_pages = totalpages;
7344 pgdat->node_present_pages = realtotalpages;
7345 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7346}
7347
7348#ifndef CONFIG_SPARSEMEM
7349/*
7350 * Calculate the size of the zone->blockflags rounded to an unsigned long
7351 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7352 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7353 * round what is now in bits to nearest long in bits, then return it in
7354 * bytes.
7355 */
7356static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7357{
7358 unsigned long usemapsize;
7359
7360 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7361 usemapsize = roundup(zonesize, pageblock_nr_pages);
7362 usemapsize = usemapsize >> pageblock_order;
7363 usemapsize *= NR_PAGEBLOCK_BITS;
7364 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7365
7366 return usemapsize / 8;
7367}
7368
7369static void __ref setup_usemap(struct zone *zone)
7370{
7371 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7372 zone->spanned_pages);
7373 zone->pageblock_flags = NULL;
7374 if (usemapsize) {
7375 zone->pageblock_flags =
7376 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7377 zone_to_nid(zone));
7378 if (!zone->pageblock_flags)
7379 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7380 usemapsize, zone->name, zone_to_nid(zone));
7381 }
7382}
7383#else
7384static inline void setup_usemap(struct zone *zone) {}
7385#endif /* CONFIG_SPARSEMEM */
7386
7387#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7388
7389/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7390void __init set_pageblock_order(void)
7391{
7392 unsigned int order;
7393
7394 /* Check that pageblock_nr_pages has not already been setup */
7395 if (pageblock_order)
7396 return;
7397
7398 if (HPAGE_SHIFT > PAGE_SHIFT)
7399 order = HUGETLB_PAGE_ORDER;
7400 else
7401 order = MAX_ORDER - 1;
7402
7403 /*
7404 * Assume the largest contiguous order of interest is a huge page.
7405 * This value may be variable depending on boot parameters on IA64 and
7406 * powerpc.
7407 */
7408 pageblock_order = order;
7409}
7410#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7411
7412/*
7413 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7414 * is unused as pageblock_order is set at compile-time. See
7415 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7416 * the kernel config
7417 */
7418void __init set_pageblock_order(void)
7419{
7420}
7421
7422#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7423
7424static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7425 unsigned long present_pages)
7426{
7427 unsigned long pages = spanned_pages;
7428
7429 /*
7430 * Provide a more accurate estimation if there are holes within
7431 * the zone and SPARSEMEM is in use. If there are holes within the
7432 * zone, each populated memory region may cost us one or two extra
7433 * memmap pages due to alignment because memmap pages for each
7434 * populated regions may not be naturally aligned on page boundary.
7435 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7436 */
7437 if (spanned_pages > present_pages + (present_pages >> 4) &&
7438 IS_ENABLED(CONFIG_SPARSEMEM))
7439 pages = present_pages;
7440
7441 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7442}
7443
7444#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7445static void pgdat_init_split_queue(struct pglist_data *pgdat)
7446{
7447 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7448
7449 spin_lock_init(&ds_queue->split_queue_lock);
7450 INIT_LIST_HEAD(&ds_queue->split_queue);
7451 ds_queue->split_queue_len = 0;
7452}
7453#else
7454static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7455#endif
7456
7457#ifdef CONFIG_COMPACTION
7458static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7459{
7460 init_waitqueue_head(&pgdat->kcompactd_wait);
7461}
7462#else
7463static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7464#endif
7465
7466static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7467{
7468 int i;
7469
7470 pgdat_resize_init(pgdat);
7471
7472 pgdat_init_split_queue(pgdat);
7473 pgdat_init_kcompactd(pgdat);
7474
7475 init_waitqueue_head(&pgdat->kswapd_wait);
7476 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7477
7478 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7479 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7480
7481 pgdat_page_ext_init(pgdat);
7482 lruvec_init(&pgdat->__lruvec);
7483}
7484
7485static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7486 unsigned long remaining_pages)
7487{
7488 atomic_long_set(&zone->managed_pages, remaining_pages);
7489 zone_set_nid(zone, nid);
7490 zone->name = zone_names[idx];
7491 zone->zone_pgdat = NODE_DATA(nid);
7492 spin_lock_init(&zone->lock);
7493 zone_seqlock_init(zone);
7494 zone_pcp_init(zone);
7495}
7496
7497/*
7498 * Set up the zone data structures
7499 * - init pgdat internals
7500 * - init all zones belonging to this node
7501 *
7502 * NOTE: this function is only called during memory hotplug
7503 */
7504#ifdef CONFIG_MEMORY_HOTPLUG
7505void __ref free_area_init_core_hotplug(int nid)
7506{
7507 enum zone_type z;
7508 pg_data_t *pgdat = NODE_DATA(nid);
7509
7510 pgdat_init_internals(pgdat);
7511 for (z = 0; z < MAX_NR_ZONES; z++)
7512 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7513}
7514#endif
7515
7516/*
7517 * Set up the zone data structures:
7518 * - mark all pages reserved
7519 * - mark all memory queues empty
7520 * - clear the memory bitmaps
7521 *
7522 * NOTE: pgdat should get zeroed by caller.
7523 * NOTE: this function is only called during early init.
7524 */
7525static void __init free_area_init_core(struct pglist_data *pgdat)
7526{
7527 enum zone_type j;
7528 int nid = pgdat->node_id;
7529
7530 pgdat_init_internals(pgdat);
7531 pgdat->per_cpu_nodestats = &boot_nodestats;
7532
7533 for (j = 0; j < MAX_NR_ZONES; j++) {
7534 struct zone *zone = pgdat->node_zones + j;
7535 unsigned long size, freesize, memmap_pages;
7536
7537 size = zone->spanned_pages;
7538 freesize = zone->present_pages;
7539
7540 /*
7541 * Adjust freesize so that it accounts for how much memory
7542 * is used by this zone for memmap. This affects the watermark
7543 * and per-cpu initialisations
7544 */
7545 memmap_pages = calc_memmap_size(size, freesize);
7546 if (!is_highmem_idx(j)) {
7547 if (freesize >= memmap_pages) {
7548 freesize -= memmap_pages;
7549 if (memmap_pages)
7550 pr_debug(" %s zone: %lu pages used for memmap\n",
7551 zone_names[j], memmap_pages);
7552 } else
7553 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7554 zone_names[j], memmap_pages, freesize);
7555 }
7556
7557 /* Account for reserved pages */
7558 if (j == 0 && freesize > dma_reserve) {
7559 freesize -= dma_reserve;
7560 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7561 }
7562
7563 if (!is_highmem_idx(j))
7564 nr_kernel_pages += freesize;
7565 /* Charge for highmem memmap if there are enough kernel pages */
7566 else if (nr_kernel_pages > memmap_pages * 2)
7567 nr_kernel_pages -= memmap_pages;
7568 nr_all_pages += freesize;
7569
7570 /*
7571 * Set an approximate value for lowmem here, it will be adjusted
7572 * when the bootmem allocator frees pages into the buddy system.
7573 * And all highmem pages will be managed by the buddy system.
7574 */
7575 zone_init_internals(zone, j, nid, freesize);
7576
7577 if (!size)
7578 continue;
7579
7580 set_pageblock_order();
7581 setup_usemap(zone);
7582 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7583 }
7584}
7585
7586#ifdef CONFIG_FLATMEM
7587static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7588{
7589 unsigned long __maybe_unused start = 0;
7590 unsigned long __maybe_unused offset = 0;
7591
7592 /* Skip empty nodes */
7593 if (!pgdat->node_spanned_pages)
7594 return;
7595
7596 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7597 offset = pgdat->node_start_pfn - start;
7598 /* ia64 gets its own node_mem_map, before this, without bootmem */
7599 if (!pgdat->node_mem_map) {
7600 unsigned long size, end;
7601 struct page *map;
7602
7603 /*
7604 * The zone's endpoints aren't required to be MAX_ORDER
7605 * aligned but the node_mem_map endpoints must be in order
7606 * for the buddy allocator to function correctly.
7607 */
7608 end = pgdat_end_pfn(pgdat);
7609 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7610 size = (end - start) * sizeof(struct page);
7611 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7612 pgdat->node_id, false);
7613 if (!map)
7614 panic("Failed to allocate %ld bytes for node %d memory map\n",
7615 size, pgdat->node_id);
7616 pgdat->node_mem_map = map + offset;
7617 }
7618 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7619 __func__, pgdat->node_id, (unsigned long)pgdat,
7620 (unsigned long)pgdat->node_mem_map);
7621#ifndef CONFIG_NUMA
7622 /*
7623 * With no DISCONTIG, the global mem_map is just set as node 0's
7624 */
7625 if (pgdat == NODE_DATA(0)) {
7626 mem_map = NODE_DATA(0)->node_mem_map;
7627 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7628 mem_map -= offset;
7629 }
7630#endif
7631}
7632#else
7633static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7634#endif /* CONFIG_FLATMEM */
7635
7636#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7637static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7638{
7639 pgdat->first_deferred_pfn = ULONG_MAX;
7640}
7641#else
7642static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7643#endif
7644
7645static void __init free_area_init_node(int nid)
7646{
7647 pg_data_t *pgdat = NODE_DATA(nid);
7648 unsigned long start_pfn = 0;
7649 unsigned long end_pfn = 0;
7650
7651 /* pg_data_t should be reset to zero when it's allocated */
7652 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7653
7654 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7655
7656 pgdat->node_id = nid;
7657 pgdat->node_start_pfn = start_pfn;
7658 pgdat->per_cpu_nodestats = NULL;
7659
7660 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7661 (u64)start_pfn << PAGE_SHIFT,
7662 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7663 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7664
7665 alloc_node_mem_map(pgdat);
7666 pgdat_set_deferred_range(pgdat);
7667
7668 free_area_init_core(pgdat);
7669}
7670
7671void __init free_area_init_memoryless_node(int nid)
7672{
7673 free_area_init_node(nid);
7674}
7675
7676#if MAX_NUMNODES > 1
7677/*
7678 * Figure out the number of possible node ids.
7679 */
7680void __init setup_nr_node_ids(void)
7681{
7682 unsigned int highest;
7683
7684 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7685 nr_node_ids = highest + 1;
7686}
7687#endif
7688
7689/**
7690 * node_map_pfn_alignment - determine the maximum internode alignment
7691 *
7692 * This function should be called after node map is populated and sorted.
7693 * It calculates the maximum power of two alignment which can distinguish
7694 * all the nodes.
7695 *
7696 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7697 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7698 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7699 * shifted, 1GiB is enough and this function will indicate so.
7700 *
7701 * This is used to test whether pfn -> nid mapping of the chosen memory
7702 * model has fine enough granularity to avoid incorrect mapping for the
7703 * populated node map.
7704 *
7705 * Return: the determined alignment in pfn's. 0 if there is no alignment
7706 * requirement (single node).
7707 */
7708unsigned long __init node_map_pfn_alignment(void)
7709{
7710 unsigned long accl_mask = 0, last_end = 0;
7711 unsigned long start, end, mask;
7712 int last_nid = NUMA_NO_NODE;
7713 int i, nid;
7714
7715 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7716 if (!start || last_nid < 0 || last_nid == nid) {
7717 last_nid = nid;
7718 last_end = end;
7719 continue;
7720 }
7721
7722 /*
7723 * Start with a mask granular enough to pin-point to the
7724 * start pfn and tick off bits one-by-one until it becomes
7725 * too coarse to separate the current node from the last.
7726 */
7727 mask = ~((1 << __ffs(start)) - 1);
7728 while (mask && last_end <= (start & (mask << 1)))
7729 mask <<= 1;
7730
7731 /* accumulate all internode masks */
7732 accl_mask |= mask;
7733 }
7734
7735 /* convert mask to number of pages */
7736 return ~accl_mask + 1;
7737}
7738
7739/**
7740 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7741 *
7742 * Return: the minimum PFN based on information provided via
7743 * memblock_set_node().
7744 */
7745unsigned long __init find_min_pfn_with_active_regions(void)
7746{
7747 return PHYS_PFN(memblock_start_of_DRAM());
7748}
7749
7750/*
7751 * early_calculate_totalpages()
7752 * Sum pages in active regions for movable zone.
7753 * Populate N_MEMORY for calculating usable_nodes.
7754 */
7755static unsigned long __init early_calculate_totalpages(void)
7756{
7757 unsigned long totalpages = 0;
7758 unsigned long start_pfn, end_pfn;
7759 int i, nid;
7760
7761 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7762 unsigned long pages = end_pfn - start_pfn;
7763
7764 totalpages += pages;
7765 if (pages)
7766 node_set_state(nid, N_MEMORY);
7767 }
7768 return totalpages;
7769}
7770
7771/*
7772 * Find the PFN the Movable zone begins in each node. Kernel memory
7773 * is spread evenly between nodes as long as the nodes have enough
7774 * memory. When they don't, some nodes will have more kernelcore than
7775 * others
7776 */
7777static void __init find_zone_movable_pfns_for_nodes(void)
7778{
7779 int i, nid;
7780 unsigned long usable_startpfn;
7781 unsigned long kernelcore_node, kernelcore_remaining;
7782 /* save the state before borrow the nodemask */
7783 nodemask_t saved_node_state = node_states[N_MEMORY];
7784 unsigned long totalpages = early_calculate_totalpages();
7785 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7786 struct memblock_region *r;
7787
7788 /* Need to find movable_zone earlier when movable_node is specified. */
7789 find_usable_zone_for_movable();
7790
7791 /*
7792 * If movable_node is specified, ignore kernelcore and movablecore
7793 * options.
7794 */
7795 if (movable_node_is_enabled()) {
7796 for_each_mem_region(r) {
7797 if (!memblock_is_hotpluggable(r))
7798 continue;
7799
7800 nid = memblock_get_region_node(r);
7801
7802 usable_startpfn = PFN_DOWN(r->base);
7803 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7804 min(usable_startpfn, zone_movable_pfn[nid]) :
7805 usable_startpfn;
7806 }
7807
7808 goto out2;
7809 }
7810
7811 /*
7812 * If kernelcore=mirror is specified, ignore movablecore option
7813 */
7814 if (mirrored_kernelcore) {
7815 bool mem_below_4gb_not_mirrored = false;
7816
7817 for_each_mem_region(r) {
7818 if (memblock_is_mirror(r))
7819 continue;
7820
7821 nid = memblock_get_region_node(r);
7822
7823 usable_startpfn = memblock_region_memory_base_pfn(r);
7824
7825 if (usable_startpfn < 0x100000) {
7826 mem_below_4gb_not_mirrored = true;
7827 continue;
7828 }
7829
7830 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7831 min(usable_startpfn, zone_movable_pfn[nid]) :
7832 usable_startpfn;
7833 }
7834
7835 if (mem_below_4gb_not_mirrored)
7836 pr_warn("This configuration results in unmirrored kernel memory.\n");
7837
7838 goto out2;
7839 }
7840
7841 /*
7842 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7843 * amount of necessary memory.
7844 */
7845 if (required_kernelcore_percent)
7846 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7847 10000UL;
7848 if (required_movablecore_percent)
7849 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7850 10000UL;
7851
7852 /*
7853 * If movablecore= was specified, calculate what size of
7854 * kernelcore that corresponds so that memory usable for
7855 * any allocation type is evenly spread. If both kernelcore
7856 * and movablecore are specified, then the value of kernelcore
7857 * will be used for required_kernelcore if it's greater than
7858 * what movablecore would have allowed.
7859 */
7860 if (required_movablecore) {
7861 unsigned long corepages;
7862
7863 /*
7864 * Round-up so that ZONE_MOVABLE is at least as large as what
7865 * was requested by the user
7866 */
7867 required_movablecore =
7868 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7869 required_movablecore = min(totalpages, required_movablecore);
7870 corepages = totalpages - required_movablecore;
7871
7872 required_kernelcore = max(required_kernelcore, corepages);
7873 }
7874
7875 /*
7876 * If kernelcore was not specified or kernelcore size is larger
7877 * than totalpages, there is no ZONE_MOVABLE.
7878 */
7879 if (!required_kernelcore || required_kernelcore >= totalpages)
7880 goto out;
7881
7882 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7883 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7884
7885restart:
7886 /* Spread kernelcore memory as evenly as possible throughout nodes */
7887 kernelcore_node = required_kernelcore / usable_nodes;
7888 for_each_node_state(nid, N_MEMORY) {
7889 unsigned long start_pfn, end_pfn;
7890
7891 /*
7892 * Recalculate kernelcore_node if the division per node
7893 * now exceeds what is necessary to satisfy the requested
7894 * amount of memory for the kernel
7895 */
7896 if (required_kernelcore < kernelcore_node)
7897 kernelcore_node = required_kernelcore / usable_nodes;
7898
7899 /*
7900 * As the map is walked, we track how much memory is usable
7901 * by the kernel using kernelcore_remaining. When it is
7902 * 0, the rest of the node is usable by ZONE_MOVABLE
7903 */
7904 kernelcore_remaining = kernelcore_node;
7905
7906 /* Go through each range of PFNs within this node */
7907 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7908 unsigned long size_pages;
7909
7910 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7911 if (start_pfn >= end_pfn)
7912 continue;
7913
7914 /* Account for what is only usable for kernelcore */
7915 if (start_pfn < usable_startpfn) {
7916 unsigned long kernel_pages;
7917 kernel_pages = min(end_pfn, usable_startpfn)
7918 - start_pfn;
7919
7920 kernelcore_remaining -= min(kernel_pages,
7921 kernelcore_remaining);
7922 required_kernelcore -= min(kernel_pages,
7923 required_kernelcore);
7924
7925 /* Continue if range is now fully accounted */
7926 if (end_pfn <= usable_startpfn) {
7927
7928 /*
7929 * Push zone_movable_pfn to the end so
7930 * that if we have to rebalance
7931 * kernelcore across nodes, we will
7932 * not double account here
7933 */
7934 zone_movable_pfn[nid] = end_pfn;
7935 continue;
7936 }
7937 start_pfn = usable_startpfn;
7938 }
7939
7940 /*
7941 * The usable PFN range for ZONE_MOVABLE is from
7942 * start_pfn->end_pfn. Calculate size_pages as the
7943 * number of pages used as kernelcore
7944 */
7945 size_pages = end_pfn - start_pfn;
7946 if (size_pages > kernelcore_remaining)
7947 size_pages = kernelcore_remaining;
7948 zone_movable_pfn[nid] = start_pfn + size_pages;
7949
7950 /*
7951 * Some kernelcore has been met, update counts and
7952 * break if the kernelcore for this node has been
7953 * satisfied
7954 */
7955 required_kernelcore -= min(required_kernelcore,
7956 size_pages);
7957 kernelcore_remaining -= size_pages;
7958 if (!kernelcore_remaining)
7959 break;
7960 }
7961 }
7962
7963 /*
7964 * If there is still required_kernelcore, we do another pass with one
7965 * less node in the count. This will push zone_movable_pfn[nid] further
7966 * along on the nodes that still have memory until kernelcore is
7967 * satisfied
7968 */
7969 usable_nodes--;
7970 if (usable_nodes && required_kernelcore > usable_nodes)
7971 goto restart;
7972
7973out2:
7974 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7975 for (nid = 0; nid < MAX_NUMNODES; nid++)
7976 zone_movable_pfn[nid] =
7977 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7978
7979out:
7980 /* restore the node_state */
7981 node_states[N_MEMORY] = saved_node_state;
7982}
7983
7984/* Any regular or high memory on that node ? */
7985static void check_for_memory(pg_data_t *pgdat, int nid)
7986{
7987 enum zone_type zone_type;
7988
7989 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7990 struct zone *zone = &pgdat->node_zones[zone_type];
7991 if (populated_zone(zone)) {
7992 if (IS_ENABLED(CONFIG_HIGHMEM))
7993 node_set_state(nid, N_HIGH_MEMORY);
7994 if (zone_type <= ZONE_NORMAL)
7995 node_set_state(nid, N_NORMAL_MEMORY);
7996 break;
7997 }
7998 }
7999}
8000
8001/*
8002 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8003 * such cases we allow max_zone_pfn sorted in the descending order
8004 */
8005bool __weak arch_has_descending_max_zone_pfns(void)
8006{
8007 return false;
8008}
8009
8010/**
8011 * free_area_init - Initialise all pg_data_t and zone data
8012 * @max_zone_pfn: an array of max PFNs for each zone
8013 *
8014 * This will call free_area_init_node() for each active node in the system.
8015 * Using the page ranges provided by memblock_set_node(), the size of each
8016 * zone in each node and their holes is calculated. If the maximum PFN
8017 * between two adjacent zones match, it is assumed that the zone is empty.
8018 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8019 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8020 * starts where the previous one ended. For example, ZONE_DMA32 starts
8021 * at arch_max_dma_pfn.
8022 */
8023void __init free_area_init(unsigned long *max_zone_pfn)
8024{
8025 unsigned long start_pfn, end_pfn;
8026 int i, nid, zone;
8027 bool descending;
8028
8029 /* Record where the zone boundaries are */
8030 memset(arch_zone_lowest_possible_pfn, 0,
8031 sizeof(arch_zone_lowest_possible_pfn));
8032 memset(arch_zone_highest_possible_pfn, 0,
8033 sizeof(arch_zone_highest_possible_pfn));
8034
8035 start_pfn = find_min_pfn_with_active_regions();
8036 descending = arch_has_descending_max_zone_pfns();
8037
8038 for (i = 0; i < MAX_NR_ZONES; i++) {
8039 if (descending)
8040 zone = MAX_NR_ZONES - i - 1;
8041 else
8042 zone = i;
8043
8044 if (zone == ZONE_MOVABLE)
8045 continue;
8046
8047 end_pfn = max(max_zone_pfn[zone], start_pfn);
8048 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8049 arch_zone_highest_possible_pfn[zone] = end_pfn;
8050
8051 start_pfn = end_pfn;
8052 }
8053
8054 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8055 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8056 find_zone_movable_pfns_for_nodes();
8057
8058 /* Print out the zone ranges */
8059 pr_info("Zone ranges:\n");
8060 for (i = 0; i < MAX_NR_ZONES; i++) {
8061 if (i == ZONE_MOVABLE)
8062 continue;
8063 pr_info(" %-8s ", zone_names[i]);
8064 if (arch_zone_lowest_possible_pfn[i] ==
8065 arch_zone_highest_possible_pfn[i])
8066 pr_cont("empty\n");
8067 else
8068 pr_cont("[mem %#018Lx-%#018Lx]\n",
8069 (u64)arch_zone_lowest_possible_pfn[i]
8070 << PAGE_SHIFT,
8071 ((u64)arch_zone_highest_possible_pfn[i]
8072 << PAGE_SHIFT) - 1);
8073 }
8074
8075 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8076 pr_info("Movable zone start for each node\n");
8077 for (i = 0; i < MAX_NUMNODES; i++) {
8078 if (zone_movable_pfn[i])
8079 pr_info(" Node %d: %#018Lx\n", i,
8080 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8081 }
8082
8083 /*
8084 * Print out the early node map, and initialize the
8085 * subsection-map relative to active online memory ranges to
8086 * enable future "sub-section" extensions of the memory map.
8087 */
8088 pr_info("Early memory node ranges\n");
8089 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8090 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8091 (u64)start_pfn << PAGE_SHIFT,
8092 ((u64)end_pfn << PAGE_SHIFT) - 1);
8093 subsection_map_init(start_pfn, end_pfn - start_pfn);
8094 }
8095
8096 /* Initialise every node */
8097 mminit_verify_pageflags_layout();
8098 setup_nr_node_ids();
8099 for_each_online_node(nid) {
8100 pg_data_t *pgdat = NODE_DATA(nid);
8101 free_area_init_node(nid);
8102
8103 /* Any memory on that node */
8104 if (pgdat->node_present_pages)
8105 node_set_state(nid, N_MEMORY);
8106 check_for_memory(pgdat, nid);
8107 }
8108
8109 memmap_init();
8110}
8111
8112static int __init cmdline_parse_core(char *p, unsigned long *core,
8113 unsigned long *percent)
8114{
8115 unsigned long long coremem;
8116 char *endptr;
8117
8118 if (!p)
8119 return -EINVAL;
8120
8121 /* Value may be a percentage of total memory, otherwise bytes */
8122 coremem = simple_strtoull(p, &endptr, 0);
8123 if (*endptr == '%') {
8124 /* Paranoid check for percent values greater than 100 */
8125 WARN_ON(coremem > 100);
8126
8127 *percent = coremem;
8128 } else {
8129 coremem = memparse(p, &p);
8130 /* Paranoid check that UL is enough for the coremem value */
8131 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8132
8133 *core = coremem >> PAGE_SHIFT;
8134 *percent = 0UL;
8135 }
8136 return 0;
8137}
8138
8139/*
8140 * kernelcore=size sets the amount of memory for use for allocations that
8141 * cannot be reclaimed or migrated.
8142 */
8143static int __init cmdline_parse_kernelcore(char *p)
8144{
8145 /* parse kernelcore=mirror */
8146 if (parse_option_str(p, "mirror")) {
8147 mirrored_kernelcore = true;
8148 return 0;
8149 }
8150
8151 return cmdline_parse_core(p, &required_kernelcore,
8152 &required_kernelcore_percent);
8153}
8154
8155/*
8156 * movablecore=size sets the amount of memory for use for allocations that
8157 * can be reclaimed or migrated.
8158 */
8159static int __init cmdline_parse_movablecore(char *p)
8160{
8161 return cmdline_parse_core(p, &required_movablecore,
8162 &required_movablecore_percent);
8163}
8164
8165early_param("kernelcore", cmdline_parse_kernelcore);
8166early_param("movablecore", cmdline_parse_movablecore);
8167
8168void adjust_managed_page_count(struct page *page, long count)
8169{
8170 atomic_long_add(count, &page_zone(page)->managed_pages);
8171 totalram_pages_add(count);
8172#ifdef CONFIG_HIGHMEM
8173 if (PageHighMem(page))
8174 totalhigh_pages_add(count);
8175#endif
8176}
8177EXPORT_SYMBOL(adjust_managed_page_count);
8178
8179unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8180{
8181 void *pos;
8182 unsigned long pages = 0;
8183
8184 start = (void *)PAGE_ALIGN((unsigned long)start);
8185 end = (void *)((unsigned long)end & PAGE_MASK);
8186 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8187 struct page *page = virt_to_page(pos);
8188 void *direct_map_addr;
8189
8190 /*
8191 * 'direct_map_addr' might be different from 'pos'
8192 * because some architectures' virt_to_page()
8193 * work with aliases. Getting the direct map
8194 * address ensures that we get a _writeable_
8195 * alias for the memset().
8196 */
8197 direct_map_addr = page_address(page);
8198 /*
8199 * Perform a kasan-unchecked memset() since this memory
8200 * has not been initialized.
8201 */
8202 direct_map_addr = kasan_reset_tag(direct_map_addr);
8203 if ((unsigned int)poison <= 0xFF)
8204 memset(direct_map_addr, poison, PAGE_SIZE);
8205
8206 free_reserved_page(page);
8207 }
8208
8209 if (pages && s)
8210 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8211
8212 return pages;
8213}
8214
8215void __init mem_init_print_info(void)
8216{
8217 unsigned long physpages, codesize, datasize, rosize, bss_size;
8218 unsigned long init_code_size, init_data_size;
8219
8220 physpages = get_num_physpages();
8221 codesize = _etext - _stext;
8222 datasize = _edata - _sdata;
8223 rosize = __end_rodata - __start_rodata;
8224 bss_size = __bss_stop - __bss_start;
8225 init_data_size = __init_end - __init_begin;
8226 init_code_size = _einittext - _sinittext;
8227
8228 /*
8229 * Detect special cases and adjust section sizes accordingly:
8230 * 1) .init.* may be embedded into .data sections
8231 * 2) .init.text.* may be out of [__init_begin, __init_end],
8232 * please refer to arch/tile/kernel/vmlinux.lds.S.
8233 * 3) .rodata.* may be embedded into .text or .data sections.
8234 */
8235#define adj_init_size(start, end, size, pos, adj) \
8236 do { \
8237 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8238 size -= adj; \
8239 } while (0)
8240
8241 adj_init_size(__init_begin, __init_end, init_data_size,
8242 _sinittext, init_code_size);
8243 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8244 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8245 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8246 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8247
8248#undef adj_init_size
8249
8250 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8251#ifdef CONFIG_HIGHMEM
8252 ", %luK highmem"
8253#endif
8254 ")\n",
8255 K(nr_free_pages()), K(physpages),
8256 codesize >> 10, datasize >> 10, rosize >> 10,
8257 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8258 K(physpages - totalram_pages() - totalcma_pages),
8259 K(totalcma_pages)
8260#ifdef CONFIG_HIGHMEM
8261 , K(totalhigh_pages())
8262#endif
8263 );
8264}
8265
8266/**
8267 * set_dma_reserve - set the specified number of pages reserved in the first zone
8268 * @new_dma_reserve: The number of pages to mark reserved
8269 *
8270 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8271 * In the DMA zone, a significant percentage may be consumed by kernel image
8272 * and other unfreeable allocations which can skew the watermarks badly. This
8273 * function may optionally be used to account for unfreeable pages in the
8274 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8275 * smaller per-cpu batchsize.
8276 */
8277void __init set_dma_reserve(unsigned long new_dma_reserve)
8278{
8279 dma_reserve = new_dma_reserve;
8280}
8281
8282static int page_alloc_cpu_dead(unsigned int cpu)
8283{
8284 struct zone *zone;
8285
8286 lru_add_drain_cpu(cpu);
8287 drain_pages(cpu);
8288
8289 /*
8290 * Spill the event counters of the dead processor
8291 * into the current processors event counters.
8292 * This artificially elevates the count of the current
8293 * processor.
8294 */
8295 vm_events_fold_cpu(cpu);
8296
8297 /*
8298 * Zero the differential counters of the dead processor
8299 * so that the vm statistics are consistent.
8300 *
8301 * This is only okay since the processor is dead and cannot
8302 * race with what we are doing.
8303 */
8304 cpu_vm_stats_fold(cpu);
8305
8306 for_each_populated_zone(zone)
8307 zone_pcp_update(zone, 0);
8308
8309 return 0;
8310}
8311
8312static int page_alloc_cpu_online(unsigned int cpu)
8313{
8314 struct zone *zone;
8315
8316 for_each_populated_zone(zone)
8317 zone_pcp_update(zone, 1);
8318 return 0;
8319}
8320
8321#ifdef CONFIG_NUMA
8322int hashdist = HASHDIST_DEFAULT;
8323
8324static int __init set_hashdist(char *str)
8325{
8326 if (!str)
8327 return 0;
8328 hashdist = simple_strtoul(str, &str, 0);
8329 return 1;
8330}
8331__setup("hashdist=", set_hashdist);
8332#endif
8333
8334void __init page_alloc_init(void)
8335{
8336 int ret;
8337
8338#ifdef CONFIG_NUMA
8339 if (num_node_state(N_MEMORY) == 1)
8340 hashdist = 0;
8341#endif
8342
8343 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8344 "mm/page_alloc:pcp",
8345 page_alloc_cpu_online,
8346 page_alloc_cpu_dead);
8347 WARN_ON(ret < 0);
8348}
8349
8350/*
8351 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8352 * or min_free_kbytes changes.
8353 */
8354static void calculate_totalreserve_pages(void)
8355{
8356 struct pglist_data *pgdat;
8357 unsigned long reserve_pages = 0;
8358 enum zone_type i, j;
8359
8360 for_each_online_pgdat(pgdat) {
8361
8362 pgdat->totalreserve_pages = 0;
8363
8364 for (i = 0; i < MAX_NR_ZONES; i++) {
8365 struct zone *zone = pgdat->node_zones + i;
8366 long max = 0;
8367 unsigned long managed_pages = zone_managed_pages(zone);
8368
8369 /* Find valid and maximum lowmem_reserve in the zone */
8370 for (j = i; j < MAX_NR_ZONES; j++) {
8371 if (zone->lowmem_reserve[j] > max)
8372 max = zone->lowmem_reserve[j];
8373 }
8374
8375 /* we treat the high watermark as reserved pages. */
8376 max += high_wmark_pages(zone);
8377
8378 if (max > managed_pages)
8379 max = managed_pages;
8380
8381 pgdat->totalreserve_pages += max;
8382
8383 reserve_pages += max;
8384 }
8385 }
8386 totalreserve_pages = reserve_pages;
8387}
8388
8389/*
8390 * setup_per_zone_lowmem_reserve - called whenever
8391 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8392 * has a correct pages reserved value, so an adequate number of
8393 * pages are left in the zone after a successful __alloc_pages().
8394 */
8395static void setup_per_zone_lowmem_reserve(void)
8396{
8397 struct pglist_data *pgdat;
8398 enum zone_type i, j;
8399
8400 for_each_online_pgdat(pgdat) {
8401 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8402 struct zone *zone = &pgdat->node_zones[i];
8403 int ratio = sysctl_lowmem_reserve_ratio[i];
8404 bool clear = !ratio || !zone_managed_pages(zone);
8405 unsigned long managed_pages = 0;
8406
8407 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8408 struct zone *upper_zone = &pgdat->node_zones[j];
8409
8410 managed_pages += zone_managed_pages(upper_zone);
8411
8412 if (clear)
8413 zone->lowmem_reserve[j] = 0;
8414 else
8415 zone->lowmem_reserve[j] = managed_pages / ratio;
8416 }
8417 }
8418 }
8419
8420 /* update totalreserve_pages */
8421 calculate_totalreserve_pages();
8422}
8423
8424static void __setup_per_zone_wmarks(void)
8425{
8426 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8427 unsigned long lowmem_pages = 0;
8428 struct zone *zone;
8429 unsigned long flags;
8430
8431 /* Calculate total number of !ZONE_HIGHMEM pages */
8432 for_each_zone(zone) {
8433 if (!is_highmem(zone))
8434 lowmem_pages += zone_managed_pages(zone);
8435 }
8436
8437 for_each_zone(zone) {
8438 u64 tmp;
8439
8440 spin_lock_irqsave(&zone->lock, flags);
8441 tmp = (u64)pages_min * zone_managed_pages(zone);
8442 do_div(tmp, lowmem_pages);
8443 if (is_highmem(zone)) {
8444 /*
8445 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8446 * need highmem pages, so cap pages_min to a small
8447 * value here.
8448 *
8449 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8450 * deltas control async page reclaim, and so should
8451 * not be capped for highmem.
8452 */
8453 unsigned long min_pages;
8454
8455 min_pages = zone_managed_pages(zone) / 1024;
8456 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8457 zone->_watermark[WMARK_MIN] = min_pages;
8458 } else {
8459 /*
8460 * If it's a lowmem zone, reserve a number of pages
8461 * proportionate to the zone's size.
8462 */
8463 zone->_watermark[WMARK_MIN] = tmp;
8464 }
8465
8466 /*
8467 * Set the kswapd watermarks distance according to the
8468 * scale factor in proportion to available memory, but
8469 * ensure a minimum size on small systems.
8470 */
8471 tmp = max_t(u64, tmp >> 2,
8472 mult_frac(zone_managed_pages(zone),
8473 watermark_scale_factor, 10000));
8474
8475 zone->watermark_boost = 0;
8476 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8477 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8478
8479 spin_unlock_irqrestore(&zone->lock, flags);
8480 }
8481
8482 /* update totalreserve_pages */
8483 calculate_totalreserve_pages();
8484}
8485
8486/**
8487 * setup_per_zone_wmarks - called when min_free_kbytes changes
8488 * or when memory is hot-{added|removed}
8489 *
8490 * Ensures that the watermark[min,low,high] values for each zone are set
8491 * correctly with respect to min_free_kbytes.
8492 */
8493void setup_per_zone_wmarks(void)
8494{
8495 struct zone *zone;
8496 static DEFINE_SPINLOCK(lock);
8497
8498 spin_lock(&lock);
8499 __setup_per_zone_wmarks();
8500 spin_unlock(&lock);
8501
8502 /*
8503 * The watermark size have changed so update the pcpu batch
8504 * and high limits or the limits may be inappropriate.
8505 */
8506 for_each_zone(zone)
8507 zone_pcp_update(zone, 0);
8508}
8509
8510/*
8511 * Initialise min_free_kbytes.
8512 *
8513 * For small machines we want it small (128k min). For large machines
8514 * we want it large (256MB max). But it is not linear, because network
8515 * bandwidth does not increase linearly with machine size. We use
8516 *
8517 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8518 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8519 *
8520 * which yields
8521 *
8522 * 16MB: 512k
8523 * 32MB: 724k
8524 * 64MB: 1024k
8525 * 128MB: 1448k
8526 * 256MB: 2048k
8527 * 512MB: 2896k
8528 * 1024MB: 4096k
8529 * 2048MB: 5792k
8530 * 4096MB: 8192k
8531 * 8192MB: 11584k
8532 * 16384MB: 16384k
8533 */
8534void calculate_min_free_kbytes(void)
8535{
8536 unsigned long lowmem_kbytes;
8537 int new_min_free_kbytes;
8538
8539 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8540 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8541
8542 if (new_min_free_kbytes > user_min_free_kbytes)
8543 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8544 else
8545 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8546 new_min_free_kbytes, user_min_free_kbytes);
8547
8548}
8549
8550int __meminit init_per_zone_wmark_min(void)
8551{
8552 calculate_min_free_kbytes();
8553 setup_per_zone_wmarks();
8554 refresh_zone_stat_thresholds();
8555 setup_per_zone_lowmem_reserve();
8556
8557#ifdef CONFIG_NUMA
8558 setup_min_unmapped_ratio();
8559 setup_min_slab_ratio();
8560#endif
8561
8562 khugepaged_min_free_kbytes_update();
8563
8564 return 0;
8565}
8566postcore_initcall(init_per_zone_wmark_min)
8567
8568/*
8569 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8570 * that we can call two helper functions whenever min_free_kbytes
8571 * changes.
8572 */
8573int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8574 void *buffer, size_t *length, loff_t *ppos)
8575{
8576 int rc;
8577
8578 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8579 if (rc)
8580 return rc;
8581
8582 if (write) {
8583 user_min_free_kbytes = min_free_kbytes;
8584 setup_per_zone_wmarks();
8585 }
8586 return 0;
8587}
8588
8589int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8590 void *buffer, size_t *length, loff_t *ppos)
8591{
8592 int rc;
8593
8594 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8595 if (rc)
8596 return rc;
8597
8598 if (write)
8599 setup_per_zone_wmarks();
8600
8601 return 0;
8602}
8603
8604#ifdef CONFIG_NUMA
8605static void setup_min_unmapped_ratio(void)
8606{
8607 pg_data_t *pgdat;
8608 struct zone *zone;
8609
8610 for_each_online_pgdat(pgdat)
8611 pgdat->min_unmapped_pages = 0;
8612
8613 for_each_zone(zone)
8614 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8615 sysctl_min_unmapped_ratio) / 100;
8616}
8617
8618
8619int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8620 void *buffer, size_t *length, loff_t *ppos)
8621{
8622 int rc;
8623
8624 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8625 if (rc)
8626 return rc;
8627
8628 setup_min_unmapped_ratio();
8629
8630 return 0;
8631}
8632
8633static void setup_min_slab_ratio(void)
8634{
8635 pg_data_t *pgdat;
8636 struct zone *zone;
8637
8638 for_each_online_pgdat(pgdat)
8639 pgdat->min_slab_pages = 0;
8640
8641 for_each_zone(zone)
8642 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8643 sysctl_min_slab_ratio) / 100;
8644}
8645
8646int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8647 void *buffer, size_t *length, loff_t *ppos)
8648{
8649 int rc;
8650
8651 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8652 if (rc)
8653 return rc;
8654
8655 setup_min_slab_ratio();
8656
8657 return 0;
8658}
8659#endif
8660
8661/*
8662 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8663 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8664 * whenever sysctl_lowmem_reserve_ratio changes.
8665 *
8666 * The reserve ratio obviously has absolutely no relation with the
8667 * minimum watermarks. The lowmem reserve ratio can only make sense
8668 * if in function of the boot time zone sizes.
8669 */
8670int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8671 void *buffer, size_t *length, loff_t *ppos)
8672{
8673 int i;
8674
8675 proc_dointvec_minmax(table, write, buffer, length, ppos);
8676
8677 for (i = 0; i < MAX_NR_ZONES; i++) {
8678 if (sysctl_lowmem_reserve_ratio[i] < 1)
8679 sysctl_lowmem_reserve_ratio[i] = 0;
8680 }
8681
8682 setup_per_zone_lowmem_reserve();
8683 return 0;
8684}
8685
8686/*
8687 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8688 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8689 * pagelist can have before it gets flushed back to buddy allocator.
8690 */
8691int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8692 int write, void *buffer, size_t *length, loff_t *ppos)
8693{
8694 struct zone *zone;
8695 int old_percpu_pagelist_high_fraction;
8696 int ret;
8697
8698 mutex_lock(&pcp_batch_high_lock);
8699 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8700
8701 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8702 if (!write || ret < 0)
8703 goto out;
8704
8705 /* Sanity checking to avoid pcp imbalance */
8706 if (percpu_pagelist_high_fraction &&
8707 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8708 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8709 ret = -EINVAL;
8710 goto out;
8711 }
8712
8713 /* No change? */
8714 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8715 goto out;
8716
8717 for_each_populated_zone(zone)
8718 zone_set_pageset_high_and_batch(zone, 0);
8719out:
8720 mutex_unlock(&pcp_batch_high_lock);
8721 return ret;
8722}
8723
8724#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8725/*
8726 * Returns the number of pages that arch has reserved but
8727 * is not known to alloc_large_system_hash().
8728 */
8729static unsigned long __init arch_reserved_kernel_pages(void)
8730{
8731 return 0;
8732}
8733#endif
8734
8735/*
8736 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8737 * machines. As memory size is increased the scale is also increased but at
8738 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8739 * quadruples the scale is increased by one, which means the size of hash table
8740 * only doubles, instead of quadrupling as well.
8741 * Because 32-bit systems cannot have large physical memory, where this scaling
8742 * makes sense, it is disabled on such platforms.
8743 */
8744#if __BITS_PER_LONG > 32
8745#define ADAPT_SCALE_BASE (64ul << 30)
8746#define ADAPT_SCALE_SHIFT 2
8747#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8748#endif
8749
8750/*
8751 * allocate a large system hash table from bootmem
8752 * - it is assumed that the hash table must contain an exact power-of-2
8753 * quantity of entries
8754 * - limit is the number of hash buckets, not the total allocation size
8755 */
8756void *__init alloc_large_system_hash(const char *tablename,
8757 unsigned long bucketsize,
8758 unsigned long numentries,
8759 int scale,
8760 int flags,
8761 unsigned int *_hash_shift,
8762 unsigned int *_hash_mask,
8763 unsigned long low_limit,
8764 unsigned long high_limit)
8765{
8766 unsigned long long max = high_limit;
8767 unsigned long log2qty, size;
8768 void *table = NULL;
8769 gfp_t gfp_flags;
8770 bool virt;
8771 bool huge;
8772
8773 /* allow the kernel cmdline to have a say */
8774 if (!numentries) {
8775 /* round applicable memory size up to nearest megabyte */
8776 numentries = nr_kernel_pages;
8777 numentries -= arch_reserved_kernel_pages();
8778
8779 /* It isn't necessary when PAGE_SIZE >= 1MB */
8780 if (PAGE_SHIFT < 20)
8781 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8782
8783#if __BITS_PER_LONG > 32
8784 if (!high_limit) {
8785 unsigned long adapt;
8786
8787 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8788 adapt <<= ADAPT_SCALE_SHIFT)
8789 scale++;
8790 }
8791#endif
8792
8793 /* limit to 1 bucket per 2^scale bytes of low memory */
8794 if (scale > PAGE_SHIFT)
8795 numentries >>= (scale - PAGE_SHIFT);
8796 else
8797 numentries <<= (PAGE_SHIFT - scale);
8798
8799 /* Make sure we've got at least a 0-order allocation.. */
8800 if (unlikely(flags & HASH_SMALL)) {
8801 /* Makes no sense without HASH_EARLY */
8802 WARN_ON(!(flags & HASH_EARLY));
8803 if (!(numentries >> *_hash_shift)) {
8804 numentries = 1UL << *_hash_shift;
8805 BUG_ON(!numentries);
8806 }
8807 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8808 numentries = PAGE_SIZE / bucketsize;
8809 }
8810 numentries = roundup_pow_of_two(numentries);
8811
8812 /* limit allocation size to 1/16 total memory by default */
8813 if (max == 0) {
8814 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8815 do_div(max, bucketsize);
8816 }
8817 max = min(max, 0x80000000ULL);
8818
8819 if (numentries < low_limit)
8820 numentries = low_limit;
8821 if (numentries > max)
8822 numentries = max;
8823
8824 log2qty = ilog2(numentries);
8825
8826 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8827 do {
8828 virt = false;
8829 size = bucketsize << log2qty;
8830 if (flags & HASH_EARLY) {
8831 if (flags & HASH_ZERO)
8832 table = memblock_alloc(size, SMP_CACHE_BYTES);
8833 else
8834 table = memblock_alloc_raw(size,
8835 SMP_CACHE_BYTES);
8836 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8837 table = __vmalloc(size, gfp_flags);
8838 virt = true;
8839 if (table)
8840 huge = is_vm_area_hugepages(table);
8841 } else {
8842 /*
8843 * If bucketsize is not a power-of-two, we may free
8844 * some pages at the end of hash table which
8845 * alloc_pages_exact() automatically does
8846 */
8847 table = alloc_pages_exact(size, gfp_flags);
8848 kmemleak_alloc(table, size, 1, gfp_flags);
8849 }
8850 } while (!table && size > PAGE_SIZE && --log2qty);
8851
8852 if (!table)
8853 panic("Failed to allocate %s hash table\n", tablename);
8854
8855 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8856 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8857 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8858
8859 if (_hash_shift)
8860 *_hash_shift = log2qty;
8861 if (_hash_mask)
8862 *_hash_mask = (1 << log2qty) - 1;
8863
8864 return table;
8865}
8866
8867/*
8868 * This function checks whether pageblock includes unmovable pages or not.
8869 *
8870 * PageLRU check without isolation or lru_lock could race so that
8871 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8872 * check without lock_page also may miss some movable non-lru pages at
8873 * race condition. So you can't expect this function should be exact.
8874 *
8875 * Returns a page without holding a reference. If the caller wants to
8876 * dereference that page (e.g., dumping), it has to make sure that it
8877 * cannot get removed (e.g., via memory unplug) concurrently.
8878 *
8879 */
8880struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8881 int migratetype, int flags)
8882{
8883 unsigned long iter = 0;
8884 unsigned long pfn = page_to_pfn(page);
8885 unsigned long offset = pfn % pageblock_nr_pages;
8886
8887 if (is_migrate_cma_page(page)) {
8888 /*
8889 * CMA allocations (alloc_contig_range) really need to mark
8890 * isolate CMA pageblocks even when they are not movable in fact
8891 * so consider them movable here.
8892 */
8893 if (is_migrate_cma(migratetype))
8894 return NULL;
8895
8896 return page;
8897 }
8898
8899 for (; iter < pageblock_nr_pages - offset; iter++) {
8900 page = pfn_to_page(pfn + iter);
8901
8902 /*
8903 * Both, bootmem allocations and memory holes are marked
8904 * PG_reserved and are unmovable. We can even have unmovable
8905 * allocations inside ZONE_MOVABLE, for example when
8906 * specifying "movablecore".
8907 */
8908 if (PageReserved(page))
8909 return page;
8910
8911 /*
8912 * If the zone is movable and we have ruled out all reserved
8913 * pages then it should be reasonably safe to assume the rest
8914 * is movable.
8915 */
8916 if (zone_idx(zone) == ZONE_MOVABLE)
8917 continue;
8918
8919 /*
8920 * Hugepages are not in LRU lists, but they're movable.
8921 * THPs are on the LRU, but need to be counted as #small pages.
8922 * We need not scan over tail pages because we don't
8923 * handle each tail page individually in migration.
8924 */
8925 if (PageHuge(page) || PageTransCompound(page)) {
8926 struct page *head = compound_head(page);
8927 unsigned int skip_pages;
8928
8929 if (PageHuge(page)) {
8930 if (!hugepage_migration_supported(page_hstate(head)))
8931 return page;
8932 } else if (!PageLRU(head) && !__PageMovable(head)) {
8933 return page;
8934 }
8935
8936 skip_pages = compound_nr(head) - (page - head);
8937 iter += skip_pages - 1;
8938 continue;
8939 }
8940
8941 /*
8942 * We can't use page_count without pin a page
8943 * because another CPU can free compound page.
8944 * This check already skips compound tails of THP
8945 * because their page->_refcount is zero at all time.
8946 */
8947 if (!page_ref_count(page)) {
8948 if (PageBuddy(page))
8949 iter += (1 << buddy_order(page)) - 1;
8950 continue;
8951 }
8952
8953 /*
8954 * The HWPoisoned page may be not in buddy system, and
8955 * page_count() is not 0.
8956 */
8957 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8958 continue;
8959
8960 /*
8961 * We treat all PageOffline() pages as movable when offlining
8962 * to give drivers a chance to decrement their reference count
8963 * in MEM_GOING_OFFLINE in order to indicate that these pages
8964 * can be offlined as there are no direct references anymore.
8965 * For actually unmovable PageOffline() where the driver does
8966 * not support this, we will fail later when trying to actually
8967 * move these pages that still have a reference count > 0.
8968 * (false negatives in this function only)
8969 */
8970 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8971 continue;
8972
8973 if (__PageMovable(page) || PageLRU(page))
8974 continue;
8975
8976 /*
8977 * If there are RECLAIMABLE pages, we need to check
8978 * it. But now, memory offline itself doesn't call
8979 * shrink_node_slabs() and it still to be fixed.
8980 */
8981 return page;
8982 }
8983 return NULL;
8984}
8985
8986#ifdef CONFIG_CONTIG_ALLOC
8987static unsigned long pfn_max_align_down(unsigned long pfn)
8988{
8989 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8990 pageblock_nr_pages) - 1);
8991}
8992
8993static unsigned long pfn_max_align_up(unsigned long pfn)
8994{
8995 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8996 pageblock_nr_pages));
8997}
8998
8999#if defined(CONFIG_DYNAMIC_DEBUG) || \
9000 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9001/* Usage: See admin-guide/dynamic-debug-howto.rst */
9002static void alloc_contig_dump_pages(struct list_head *page_list)
9003{
9004 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9005
9006 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9007 struct page *page;
9008
9009 dump_stack();
9010 list_for_each_entry(page, page_list, lru)
9011 dump_page(page, "migration failure");
9012 }
9013}
9014#else
9015static inline void alloc_contig_dump_pages(struct list_head *page_list)
9016{
9017}
9018#endif
9019
9020/* [start, end) must belong to a single zone. */
9021static int __alloc_contig_migrate_range(struct compact_control *cc,
9022 unsigned long start, unsigned long end)
9023{
9024 /* This function is based on compact_zone() from compaction.c. */
9025 unsigned int nr_reclaimed;
9026 unsigned long pfn = start;
9027 unsigned int tries = 0;
9028 int ret = 0;
9029 struct migration_target_control mtc = {
9030 .nid = zone_to_nid(cc->zone),
9031 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9032 };
9033
9034 lru_cache_disable();
9035
9036 while (pfn < end || !list_empty(&cc->migratepages)) {
9037 if (fatal_signal_pending(current)) {
9038 ret = -EINTR;
9039 break;
9040 }
9041
9042 if (list_empty(&cc->migratepages)) {
9043 cc->nr_migratepages = 0;
9044 ret = isolate_migratepages_range(cc, pfn, end);
9045 if (ret && ret != -EAGAIN)
9046 break;
9047 pfn = cc->migrate_pfn;
9048 tries = 0;
9049 } else if (++tries == 5) {
9050 ret = -EBUSY;
9051 break;
9052 }
9053
9054 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9055 &cc->migratepages);
9056 cc->nr_migratepages -= nr_reclaimed;
9057
9058 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9059 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9060
9061 /*
9062 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9063 * to retry again over this error, so do the same here.
9064 */
9065 if (ret == -ENOMEM)
9066 break;
9067 }
9068
9069 lru_cache_enable();
9070 if (ret < 0) {
9071 if (ret == -EBUSY)
9072 alloc_contig_dump_pages(&cc->migratepages);
9073 putback_movable_pages(&cc->migratepages);
9074 return ret;
9075 }
9076 return 0;
9077}
9078
9079/**
9080 * alloc_contig_range() -- tries to allocate given range of pages
9081 * @start: start PFN to allocate
9082 * @end: one-past-the-last PFN to allocate
9083 * @migratetype: migratetype of the underlying pageblocks (either
9084 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9085 * in range must have the same migratetype and it must
9086 * be either of the two.
9087 * @gfp_mask: GFP mask to use during compaction
9088 *
9089 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9090 * aligned. The PFN range must belong to a single zone.
9091 *
9092 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9093 * pageblocks in the range. Once isolated, the pageblocks should not
9094 * be modified by others.
9095 *
9096 * Return: zero on success or negative error code. On success all
9097 * pages which PFN is in [start, end) are allocated for the caller and
9098 * need to be freed with free_contig_range().
9099 */
9100int alloc_contig_range(unsigned long start, unsigned long end,
9101 unsigned migratetype, gfp_t gfp_mask)
9102{
9103 unsigned long outer_start, outer_end;
9104 unsigned int order;
9105 int ret = 0;
9106
9107 struct compact_control cc = {
9108 .nr_migratepages = 0,
9109 .order = -1,
9110 .zone = page_zone(pfn_to_page(start)),
9111 .mode = MIGRATE_SYNC,
9112 .ignore_skip_hint = true,
9113 .no_set_skip_hint = true,
9114 .gfp_mask = current_gfp_context(gfp_mask),
9115 .alloc_contig = true,
9116 };
9117 INIT_LIST_HEAD(&cc.migratepages);
9118
9119 /*
9120 * What we do here is we mark all pageblocks in range as
9121 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9122 * have different sizes, and due to the way page allocator
9123 * work, we align the range to biggest of the two pages so
9124 * that page allocator won't try to merge buddies from
9125 * different pageblocks and change MIGRATE_ISOLATE to some
9126 * other migration type.
9127 *
9128 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9129 * migrate the pages from an unaligned range (ie. pages that
9130 * we are interested in). This will put all the pages in
9131 * range back to page allocator as MIGRATE_ISOLATE.
9132 *
9133 * When this is done, we take the pages in range from page
9134 * allocator removing them from the buddy system. This way
9135 * page allocator will never consider using them.
9136 *
9137 * This lets us mark the pageblocks back as
9138 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9139 * aligned range but not in the unaligned, original range are
9140 * put back to page allocator so that buddy can use them.
9141 */
9142
9143 ret = start_isolate_page_range(pfn_max_align_down(start),
9144 pfn_max_align_up(end), migratetype, 0);
9145 if (ret)
9146 return ret;
9147
9148 drain_all_pages(cc.zone);
9149
9150 /*
9151 * In case of -EBUSY, we'd like to know which page causes problem.
9152 * So, just fall through. test_pages_isolated() has a tracepoint
9153 * which will report the busy page.
9154 *
9155 * It is possible that busy pages could become available before
9156 * the call to test_pages_isolated, and the range will actually be
9157 * allocated. So, if we fall through be sure to clear ret so that
9158 * -EBUSY is not accidentally used or returned to caller.
9159 */
9160 ret = __alloc_contig_migrate_range(&cc, start, end);
9161 if (ret && ret != -EBUSY)
9162 goto done;
9163 ret = 0;
9164
9165 /*
9166 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9167 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9168 * more, all pages in [start, end) are free in page allocator.
9169 * What we are going to do is to allocate all pages from
9170 * [start, end) (that is remove them from page allocator).
9171 *
9172 * The only problem is that pages at the beginning and at the
9173 * end of interesting range may be not aligned with pages that
9174 * page allocator holds, ie. they can be part of higher order
9175 * pages. Because of this, we reserve the bigger range and
9176 * once this is done free the pages we are not interested in.
9177 *
9178 * We don't have to hold zone->lock here because the pages are
9179 * isolated thus they won't get removed from buddy.
9180 */
9181
9182 order = 0;
9183 outer_start = start;
9184 while (!PageBuddy(pfn_to_page(outer_start))) {
9185 if (++order >= MAX_ORDER) {
9186 outer_start = start;
9187 break;
9188 }
9189 outer_start &= ~0UL << order;
9190 }
9191
9192 if (outer_start != start) {
9193 order = buddy_order(pfn_to_page(outer_start));
9194
9195 /*
9196 * outer_start page could be small order buddy page and
9197 * it doesn't include start page. Adjust outer_start
9198 * in this case to report failed page properly
9199 * on tracepoint in test_pages_isolated()
9200 */
9201 if (outer_start + (1UL << order) <= start)
9202 outer_start = start;
9203 }
9204
9205 /* Make sure the range is really isolated. */
9206 if (test_pages_isolated(outer_start, end, 0)) {
9207 ret = -EBUSY;
9208 goto done;
9209 }
9210
9211 /* Grab isolated pages from freelists. */
9212 outer_end = isolate_freepages_range(&cc, outer_start, end);
9213 if (!outer_end) {
9214 ret = -EBUSY;
9215 goto done;
9216 }
9217
9218 /* Free head and tail (if any) */
9219 if (start != outer_start)
9220 free_contig_range(outer_start, start - outer_start);
9221 if (end != outer_end)
9222 free_contig_range(end, outer_end - end);
9223
9224done:
9225 undo_isolate_page_range(pfn_max_align_down(start),
9226 pfn_max_align_up(end), migratetype);
9227 return ret;
9228}
9229EXPORT_SYMBOL(alloc_contig_range);
9230
9231static int __alloc_contig_pages(unsigned long start_pfn,
9232 unsigned long nr_pages, gfp_t gfp_mask)
9233{
9234 unsigned long end_pfn = start_pfn + nr_pages;
9235
9236 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9237 gfp_mask);
9238}
9239
9240static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9241 unsigned long nr_pages)
9242{
9243 unsigned long i, end_pfn = start_pfn + nr_pages;
9244 struct page *page;
9245
9246 for (i = start_pfn; i < end_pfn; i++) {
9247 page = pfn_to_online_page(i);
9248 if (!page)
9249 return false;
9250
9251 if (page_zone(page) != z)
9252 return false;
9253
9254 if (PageReserved(page))
9255 return false;
9256 }
9257 return true;
9258}
9259
9260static bool zone_spans_last_pfn(const struct zone *zone,
9261 unsigned long start_pfn, unsigned long nr_pages)
9262{
9263 unsigned long last_pfn = start_pfn + nr_pages - 1;
9264
9265 return zone_spans_pfn(zone, last_pfn);
9266}
9267
9268/**
9269 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9270 * @nr_pages: Number of contiguous pages to allocate
9271 * @gfp_mask: GFP mask to limit search and used during compaction
9272 * @nid: Target node
9273 * @nodemask: Mask for other possible nodes
9274 *
9275 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9276 * on an applicable zonelist to find a contiguous pfn range which can then be
9277 * tried for allocation with alloc_contig_range(). This routine is intended
9278 * for allocation requests which can not be fulfilled with the buddy allocator.
9279 *
9280 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9281 * power of two, then allocated range is also guaranteed to be aligned to same
9282 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9283 *
9284 * Allocated pages can be freed with free_contig_range() or by manually calling
9285 * __free_page() on each allocated page.
9286 *
9287 * Return: pointer to contiguous pages on success, or NULL if not successful.
9288 */
9289struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9290 int nid, nodemask_t *nodemask)
9291{
9292 unsigned long ret, pfn, flags;
9293 struct zonelist *zonelist;
9294 struct zone *zone;
9295 struct zoneref *z;
9296
9297 zonelist = node_zonelist(nid, gfp_mask);
9298 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9299 gfp_zone(gfp_mask), nodemask) {
9300 spin_lock_irqsave(&zone->lock, flags);
9301
9302 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9303 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9304 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9305 /*
9306 * We release the zone lock here because
9307 * alloc_contig_range() will also lock the zone
9308 * at some point. If there's an allocation
9309 * spinning on this lock, it may win the race
9310 * and cause alloc_contig_range() to fail...
9311 */
9312 spin_unlock_irqrestore(&zone->lock, flags);
9313 ret = __alloc_contig_pages(pfn, nr_pages,
9314 gfp_mask);
9315 if (!ret)
9316 return pfn_to_page(pfn);
9317 spin_lock_irqsave(&zone->lock, flags);
9318 }
9319 pfn += nr_pages;
9320 }
9321 spin_unlock_irqrestore(&zone->lock, flags);
9322 }
9323 return NULL;
9324}
9325#endif /* CONFIG_CONTIG_ALLOC */
9326
9327void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9328{
9329 unsigned long count = 0;
9330
9331 for (; nr_pages--; pfn++) {
9332 struct page *page = pfn_to_page(pfn);
9333
9334 count += page_count(page) != 1;
9335 __free_page(page);
9336 }
9337 WARN(count != 0, "%lu pages are still in use!\n", count);
9338}
9339EXPORT_SYMBOL(free_contig_range);
9340
9341/*
9342 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9343 * page high values need to be recalculated.
9344 */
9345void zone_pcp_update(struct zone *zone, int cpu_online)
9346{
9347 mutex_lock(&pcp_batch_high_lock);
9348 zone_set_pageset_high_and_batch(zone, cpu_online);
9349 mutex_unlock(&pcp_batch_high_lock);
9350}
9351
9352/*
9353 * Effectively disable pcplists for the zone by setting the high limit to 0
9354 * and draining all cpus. A concurrent page freeing on another CPU that's about
9355 * to put the page on pcplist will either finish before the drain and the page
9356 * will be drained, or observe the new high limit and skip the pcplist.
9357 *
9358 * Must be paired with a call to zone_pcp_enable().
9359 */
9360void zone_pcp_disable(struct zone *zone)
9361{
9362 mutex_lock(&pcp_batch_high_lock);
9363 __zone_set_pageset_high_and_batch(zone, 0, 1);
9364 __drain_all_pages(zone, true);
9365}
9366
9367void zone_pcp_enable(struct zone *zone)
9368{
9369 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9370 mutex_unlock(&pcp_batch_high_lock);
9371}
9372
9373void zone_pcp_reset(struct zone *zone)
9374{
9375 int cpu;
9376 struct per_cpu_zonestat *pzstats;
9377
9378 if (zone->per_cpu_pageset != &boot_pageset) {
9379 for_each_online_cpu(cpu) {
9380 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9381 drain_zonestat(zone, pzstats);
9382 }
9383 free_percpu(zone->per_cpu_pageset);
9384 free_percpu(zone->per_cpu_zonestats);
9385 zone->per_cpu_pageset = &boot_pageset;
9386 zone->per_cpu_zonestats = &boot_zonestats;
9387 }
9388}
9389
9390#ifdef CONFIG_MEMORY_HOTREMOVE
9391/*
9392 * All pages in the range must be in a single zone, must not contain holes,
9393 * must span full sections, and must be isolated before calling this function.
9394 */
9395void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9396{
9397 unsigned long pfn = start_pfn;
9398 struct page *page;
9399 struct zone *zone;
9400 unsigned int order;
9401 unsigned long flags;
9402
9403 offline_mem_sections(pfn, end_pfn);
9404 zone = page_zone(pfn_to_page(pfn));
9405 spin_lock_irqsave(&zone->lock, flags);
9406 while (pfn < end_pfn) {
9407 page = pfn_to_page(pfn);
9408 /*
9409 * The HWPoisoned page may be not in buddy system, and
9410 * page_count() is not 0.
9411 */
9412 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9413 pfn++;
9414 continue;
9415 }
9416 /*
9417 * At this point all remaining PageOffline() pages have a
9418 * reference count of 0 and can simply be skipped.
9419 */
9420 if (PageOffline(page)) {
9421 BUG_ON(page_count(page));
9422 BUG_ON(PageBuddy(page));
9423 pfn++;
9424 continue;
9425 }
9426
9427 BUG_ON(page_count(page));
9428 BUG_ON(!PageBuddy(page));
9429 order = buddy_order(page);
9430 del_page_from_free_list(page, zone, order);
9431 pfn += (1 << order);
9432 }
9433 spin_unlock_irqrestore(&zone->lock, flags);
9434}
9435#endif
9436
9437/*
9438 * This function returns a stable result only if called under zone lock.
9439 */
9440bool is_free_buddy_page(struct page *page)
9441{
9442 unsigned long pfn = page_to_pfn(page);
9443 unsigned int order;
9444
9445 for (order = 0; order < MAX_ORDER; order++) {
9446 struct page *page_head = page - (pfn & ((1 << order) - 1));
9447
9448 if (PageBuddy(page_head) &&
9449 buddy_order_unsafe(page_head) >= order)
9450 break;
9451 }
9452
9453 return order < MAX_ORDER;
9454}
9455
9456#ifdef CONFIG_MEMORY_FAILURE
9457/*
9458 * Break down a higher-order page in sub-pages, and keep our target out of
9459 * buddy allocator.
9460 */
9461static void break_down_buddy_pages(struct zone *zone, struct page *page,
9462 struct page *target, int low, int high,
9463 int migratetype)
9464{
9465 unsigned long size = 1 << high;
9466 struct page *current_buddy, *next_page;
9467
9468 while (high > low) {
9469 high--;
9470 size >>= 1;
9471
9472 if (target >= &page[size]) {
9473 next_page = page + size;
9474 current_buddy = page;
9475 } else {
9476 next_page = page;
9477 current_buddy = page + size;
9478 }
9479
9480 if (set_page_guard(zone, current_buddy, high, migratetype))
9481 continue;
9482
9483 if (current_buddy != target) {
9484 add_to_free_list(current_buddy, zone, high, migratetype);
9485 set_buddy_order(current_buddy, high);
9486 page = next_page;
9487 }
9488 }
9489}
9490
9491/*
9492 * Take a page that will be marked as poisoned off the buddy allocator.
9493 */
9494bool take_page_off_buddy(struct page *page)
9495{
9496 struct zone *zone = page_zone(page);
9497 unsigned long pfn = page_to_pfn(page);
9498 unsigned long flags;
9499 unsigned int order;
9500 bool ret = false;
9501
9502 spin_lock_irqsave(&zone->lock, flags);
9503 for (order = 0; order < MAX_ORDER; order++) {
9504 struct page *page_head = page - (pfn & ((1 << order) - 1));
9505 int page_order = buddy_order(page_head);
9506
9507 if (PageBuddy(page_head) && page_order >= order) {
9508 unsigned long pfn_head = page_to_pfn(page_head);
9509 int migratetype = get_pfnblock_migratetype(page_head,
9510 pfn_head);
9511
9512 del_page_from_free_list(page_head, zone, page_order);
9513 break_down_buddy_pages(zone, page_head, page, 0,
9514 page_order, migratetype);
9515 SetPageHWPoisonTakenOff(page);
9516 if (!is_migrate_isolate(migratetype))
9517 __mod_zone_freepage_state(zone, -1, migratetype);
9518 ret = true;
9519 break;
9520 }
9521 if (page_count(page_head) > 0)
9522 break;
9523 }
9524 spin_unlock_irqrestore(&zone->lock, flags);
9525 return ret;
9526}
9527
9528/*
9529 * Cancel takeoff done by take_page_off_buddy().
9530 */
9531bool put_page_back_buddy(struct page *page)
9532{
9533 struct zone *zone = page_zone(page);
9534 unsigned long pfn = page_to_pfn(page);
9535 unsigned long flags;
9536 int migratetype = get_pfnblock_migratetype(page, pfn);
9537 bool ret = false;
9538
9539 spin_lock_irqsave(&zone->lock, flags);
9540 if (put_page_testzero(page)) {
9541 ClearPageHWPoisonTakenOff(page);
9542 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9543 if (TestClearPageHWPoison(page)) {
9544 num_poisoned_pages_dec();
9545 ret = true;
9546 }
9547 }
9548 spin_unlock_irqrestore(&zone->lock, flags);
9549
9550 return ret;
9551}
9552#endif
9553
9554#ifdef CONFIG_ZONE_DMA
9555bool has_managed_dma(void)
9556{
9557 struct pglist_data *pgdat;
9558
9559 for_each_online_pgdat(pgdat) {
9560 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9561
9562 if (managed_zone(zone))
9563 return true;
9564 }
9565 return false;
9566}
9567#endif /* CONFIG_ZONE_DMA */