Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
29#include <linux/error-injection.h>
30#include <linux/hash.h>
31#include <linux/writeback.h>
32#include <linux/backing-dev.h>
33#include <linux/pagevec.h>
34#include <linux/security.h>
35#include <linux/cpuset.h>
36#include <linux/hugetlb.h>
37#include <linux/memcontrol.h>
38#include <linux/shmem_fs.h>
39#include <linux/rmap.h>
40#include <linux/delayacct.h>
41#include <linux/psi.h>
42#include <linux/ramfs.h>
43#include <linux/page_idle.h>
44#include <linux/migrate.h>
45#include <asm/pgalloc.h>
46#include <asm/tlbflush.h>
47#include "internal.h"
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
52/*
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
55#include <linux/buffer_head.h> /* for try_to_free_buffers */
56
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
76 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_pages lock
78 *
79 * ->i_rwsem
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
82 *
83 * ->mmap_lock
84 * ->i_mmap_rwsem
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
87 *
88 * ->mmap_lock
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
91 *
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
94 *
95 * bdi->wb.list_lock
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
98 *
99 * ->i_mmap_rwsem
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
104 *
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
119 *
120 * ->i_mmap_rwsem
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
122 */
123
124static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
126{
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
129
130 mapping_set_update(&xas, mapping);
131
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
136 }
137
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
146}
147
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
150{
151 long nr;
152
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 int mapcount;
156
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
163 mapcount = page_mapcount(&folio->page);
164 if (mapping_exiting(mapping) &&
165 folio_ref_count(folio) >= mapcount + 2) {
166 /*
167 * All vmas have already been torn down, so it's
168 * a good bet that actually the folio is unmapped,
169 * and we'd prefer not to leak it: if we're wrong,
170 * some other bad page check should catch it later.
171 */
172 page_mapcount_reset(&folio->page);
173 folio_ref_sub(folio, mapcount);
174 }
175 }
176
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
179 return;
180
181 nr = folio_nr_pages(folio);
182
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
191 }
192
193 /*
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data.
197 *
198 * This fixes dirty accounting after removing the folio entirely
199 * but leaves the dirty flag set: it has no effect for truncated
200 * folio and anyway will be cleared before returning folio to
201 * buddy allocator.
202 */
203 if (WARN_ON_ONCE(folio_test_dirty(folio)))
204 folio_account_cleaned(folio, mapping,
205 inode_to_wb(mapping->host));
206}
207
208/*
209 * Delete a page from the page cache and free it. Caller has to make
210 * sure the page is locked and that nobody else uses it - or that usage
211 * is safe. The caller must hold the i_pages lock.
212 */
213void __filemap_remove_folio(struct folio *folio, void *shadow)
214{
215 struct address_space *mapping = folio->mapping;
216
217 trace_mm_filemap_delete_from_page_cache(folio);
218 filemap_unaccount_folio(mapping, folio);
219 page_cache_delete(mapping, folio, shadow);
220}
221
222void filemap_free_folio(struct address_space *mapping, struct folio *folio)
223{
224 void (*freepage)(struct page *);
225 int refs = 1;
226
227 freepage = mapping->a_ops->freepage;
228 if (freepage)
229 freepage(&folio->page);
230
231 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
232 refs = folio_nr_pages(folio);
233 folio_put_refs(folio, refs);
234}
235
236/**
237 * filemap_remove_folio - Remove folio from page cache.
238 * @folio: The folio.
239 *
240 * This must be called only on folios that are locked and have been
241 * verified to be in the page cache. It will never put the folio into
242 * the free list because the caller has a reference on the page.
243 */
244void filemap_remove_folio(struct folio *folio)
245{
246 struct address_space *mapping = folio->mapping;
247
248 BUG_ON(!folio_test_locked(folio));
249 spin_lock(&mapping->host->i_lock);
250 xa_lock_irq(&mapping->i_pages);
251 __filemap_remove_folio(folio, NULL);
252 xa_unlock_irq(&mapping->i_pages);
253 if (mapping_shrinkable(mapping))
254 inode_add_lru(mapping->host);
255 spin_unlock(&mapping->host->i_lock);
256
257 filemap_free_folio(mapping, folio);
258}
259
260/*
261 * page_cache_delete_batch - delete several folios from page cache
262 * @mapping: the mapping to which folios belong
263 * @fbatch: batch of folios to delete
264 *
265 * The function walks over mapping->i_pages and removes folios passed in
266 * @fbatch from the mapping. The function expects @fbatch to be sorted
267 * by page index and is optimised for it to be dense.
268 * It tolerates holes in @fbatch (mapping entries at those indices are not
269 * modified).
270 *
271 * The function expects the i_pages lock to be held.
272 */
273static void page_cache_delete_batch(struct address_space *mapping,
274 struct folio_batch *fbatch)
275{
276 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
277 long total_pages = 0;
278 int i = 0;
279 struct folio *folio;
280
281 mapping_set_update(&xas, mapping);
282 xas_for_each(&xas, folio, ULONG_MAX) {
283 if (i >= folio_batch_count(fbatch))
284 break;
285
286 /* A swap/dax/shadow entry got inserted? Skip it. */
287 if (xa_is_value(folio))
288 continue;
289 /*
290 * A page got inserted in our range? Skip it. We have our
291 * pages locked so they are protected from being removed.
292 * If we see a page whose index is higher than ours, it
293 * means our page has been removed, which shouldn't be
294 * possible because we're holding the PageLock.
295 */
296 if (folio != fbatch->folios[i]) {
297 VM_BUG_ON_FOLIO(folio->index >
298 fbatch->folios[i]->index, folio);
299 continue;
300 }
301
302 WARN_ON_ONCE(!folio_test_locked(folio));
303
304 folio->mapping = NULL;
305 /* Leave folio->index set: truncation lookup relies on it */
306
307 i++;
308 xas_store(&xas, NULL);
309 total_pages += folio_nr_pages(folio);
310 }
311 mapping->nrpages -= total_pages;
312}
313
314void delete_from_page_cache_batch(struct address_space *mapping,
315 struct folio_batch *fbatch)
316{
317 int i;
318
319 if (!folio_batch_count(fbatch))
320 return;
321
322 spin_lock(&mapping->host->i_lock);
323 xa_lock_irq(&mapping->i_pages);
324 for (i = 0; i < folio_batch_count(fbatch); i++) {
325 struct folio *folio = fbatch->folios[i];
326
327 trace_mm_filemap_delete_from_page_cache(folio);
328 filemap_unaccount_folio(mapping, folio);
329 }
330 page_cache_delete_batch(mapping, fbatch);
331 xa_unlock_irq(&mapping->i_pages);
332 if (mapping_shrinkable(mapping))
333 inode_add_lru(mapping->host);
334 spin_unlock(&mapping->host->i_lock);
335
336 for (i = 0; i < folio_batch_count(fbatch); i++)
337 filemap_free_folio(mapping, fbatch->folios[i]);
338}
339
340int filemap_check_errors(struct address_space *mapping)
341{
342 int ret = 0;
343 /* Check for outstanding write errors */
344 if (test_bit(AS_ENOSPC, &mapping->flags) &&
345 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
346 ret = -ENOSPC;
347 if (test_bit(AS_EIO, &mapping->flags) &&
348 test_and_clear_bit(AS_EIO, &mapping->flags))
349 ret = -EIO;
350 return ret;
351}
352EXPORT_SYMBOL(filemap_check_errors);
353
354static int filemap_check_and_keep_errors(struct address_space *mapping)
355{
356 /* Check for outstanding write errors */
357 if (test_bit(AS_EIO, &mapping->flags))
358 return -EIO;
359 if (test_bit(AS_ENOSPC, &mapping->flags))
360 return -ENOSPC;
361 return 0;
362}
363
364/**
365 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
366 * @mapping: address space structure to write
367 * @wbc: the writeback_control controlling the writeout
368 *
369 * Call writepages on the mapping using the provided wbc to control the
370 * writeout.
371 *
372 * Return: %0 on success, negative error code otherwise.
373 */
374int filemap_fdatawrite_wbc(struct address_space *mapping,
375 struct writeback_control *wbc)
376{
377 int ret;
378
379 if (!mapping_can_writeback(mapping) ||
380 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
381 return 0;
382
383 wbc_attach_fdatawrite_inode(wbc, mapping->host);
384 ret = do_writepages(mapping, wbc);
385 wbc_detach_inode(wbc);
386 return ret;
387}
388EXPORT_SYMBOL(filemap_fdatawrite_wbc);
389
390/**
391 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
392 * @mapping: address space structure to write
393 * @start: offset in bytes where the range starts
394 * @end: offset in bytes where the range ends (inclusive)
395 * @sync_mode: enable synchronous operation
396 *
397 * Start writeback against all of a mapping's dirty pages that lie
398 * within the byte offsets <start, end> inclusive.
399 *
400 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
401 * opposed to a regular memory cleansing writeback. The difference between
402 * these two operations is that if a dirty page/buffer is encountered, it must
403 * be waited upon, and not just skipped over.
404 *
405 * Return: %0 on success, negative error code otherwise.
406 */
407int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 loff_t end, int sync_mode)
409{
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
412 .nr_to_write = LONG_MAX,
413 .range_start = start,
414 .range_end = end,
415 };
416
417 return filemap_fdatawrite_wbc(mapping, &wbc);
418}
419
420static inline int __filemap_fdatawrite(struct address_space *mapping,
421 int sync_mode)
422{
423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
424}
425
426int filemap_fdatawrite(struct address_space *mapping)
427{
428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
429}
430EXPORT_SYMBOL(filemap_fdatawrite);
431
432int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433 loff_t end)
434{
435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
436}
437EXPORT_SYMBOL(filemap_fdatawrite_range);
438
439/**
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
442 *
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
445 *
446 * Return: %0 on success, negative error code otherwise.
447 */
448int filemap_flush(struct address_space *mapping)
449{
450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
451}
452EXPORT_SYMBOL(filemap_flush);
453
454/**
455 * filemap_range_has_page - check if a page exists in range.
456 * @mapping: address space within which to check
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
459 *
460 * Find at least one page in the range supplied, usually used to check if
461 * direct writing in this range will trigger a writeback.
462 *
463 * Return: %true if at least one page exists in the specified range,
464 * %false otherwise.
465 */
466bool filemap_range_has_page(struct address_space *mapping,
467 loff_t start_byte, loff_t end_byte)
468{
469 struct page *page;
470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 pgoff_t max = end_byte >> PAGE_SHIFT;
472
473 if (end_byte < start_byte)
474 return false;
475
476 rcu_read_lock();
477 for (;;) {
478 page = xas_find(&xas, max);
479 if (xas_retry(&xas, page))
480 continue;
481 /* Shadow entries don't count */
482 if (xa_is_value(page))
483 continue;
484 /*
485 * We don't need to try to pin this page; we're about to
486 * release the RCU lock anyway. It is enough to know that
487 * there was a page here recently.
488 */
489 break;
490 }
491 rcu_read_unlock();
492
493 return page != NULL;
494}
495EXPORT_SYMBOL(filemap_range_has_page);
496
497static void __filemap_fdatawait_range(struct address_space *mapping,
498 loff_t start_byte, loff_t end_byte)
499{
500 pgoff_t index = start_byte >> PAGE_SHIFT;
501 pgoff_t end = end_byte >> PAGE_SHIFT;
502 struct pagevec pvec;
503 int nr_pages;
504
505 if (end_byte < start_byte)
506 return;
507
508 pagevec_init(&pvec);
509 while (index <= end) {
510 unsigned i;
511
512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
513 end, PAGECACHE_TAG_WRITEBACK);
514 if (!nr_pages)
515 break;
516
517 for (i = 0; i < nr_pages; i++) {
518 struct page *page = pvec.pages[i];
519
520 wait_on_page_writeback(page);
521 ClearPageError(page);
522 }
523 pagevec_release(&pvec);
524 cond_resched();
525 }
526}
527
528/**
529 * filemap_fdatawait_range - wait for writeback to complete
530 * @mapping: address space structure to wait for
531 * @start_byte: offset in bytes where the range starts
532 * @end_byte: offset in bytes where the range ends (inclusive)
533 *
534 * Walk the list of under-writeback pages of the given address space
535 * in the given range and wait for all of them. Check error status of
536 * the address space and return it.
537 *
538 * Since the error status of the address space is cleared by this function,
539 * callers are responsible for checking the return value and handling and/or
540 * reporting the error.
541 *
542 * Return: error status of the address space.
543 */
544int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 loff_t end_byte)
546{
547 __filemap_fdatawait_range(mapping, start_byte, end_byte);
548 return filemap_check_errors(mapping);
549}
550EXPORT_SYMBOL(filemap_fdatawait_range);
551
552/**
553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554 * @mapping: address space structure to wait for
555 * @start_byte: offset in bytes where the range starts
556 * @end_byte: offset in bytes where the range ends (inclusive)
557 *
558 * Walk the list of under-writeback pages of the given address space in the
559 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
560 * this function does not clear error status of the address space.
561 *
562 * Use this function if callers don't handle errors themselves. Expected
563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
564 * fsfreeze(8)
565 */
566int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
567 loff_t start_byte, loff_t end_byte)
568{
569 __filemap_fdatawait_range(mapping, start_byte, end_byte);
570 return filemap_check_and_keep_errors(mapping);
571}
572EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
573
574/**
575 * file_fdatawait_range - wait for writeback to complete
576 * @file: file pointing to address space structure to wait for
577 * @start_byte: offset in bytes where the range starts
578 * @end_byte: offset in bytes where the range ends (inclusive)
579 *
580 * Walk the list of under-writeback pages of the address space that file
581 * refers to, in the given range and wait for all of them. Check error
582 * status of the address space vs. the file->f_wb_err cursor and return it.
583 *
584 * Since the error status of the file is advanced by this function,
585 * callers are responsible for checking the return value and handling and/or
586 * reporting the error.
587 *
588 * Return: error status of the address space vs. the file->f_wb_err cursor.
589 */
590int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
591{
592 struct address_space *mapping = file->f_mapping;
593
594 __filemap_fdatawait_range(mapping, start_byte, end_byte);
595 return file_check_and_advance_wb_err(file);
596}
597EXPORT_SYMBOL(file_fdatawait_range);
598
599/**
600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601 * @mapping: address space structure to wait for
602 *
603 * Walk the list of under-writeback pages of the given address space
604 * and wait for all of them. Unlike filemap_fdatawait(), this function
605 * does not clear error status of the address space.
606 *
607 * Use this function if callers don't handle errors themselves. Expected
608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
609 * fsfreeze(8)
610 *
611 * Return: error status of the address space.
612 */
613int filemap_fdatawait_keep_errors(struct address_space *mapping)
614{
615 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
616 return filemap_check_and_keep_errors(mapping);
617}
618EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
619
620/* Returns true if writeback might be needed or already in progress. */
621static bool mapping_needs_writeback(struct address_space *mapping)
622{
623 return mapping->nrpages;
624}
625
626bool filemap_range_has_writeback(struct address_space *mapping,
627 loff_t start_byte, loff_t end_byte)
628{
629 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
630 pgoff_t max = end_byte >> PAGE_SHIFT;
631 struct page *page;
632
633 if (end_byte < start_byte)
634 return false;
635
636 rcu_read_lock();
637 xas_for_each(&xas, page, max) {
638 if (xas_retry(&xas, page))
639 continue;
640 if (xa_is_value(page))
641 continue;
642 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
643 break;
644 }
645 rcu_read_unlock();
646 return page != NULL;
647}
648EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
649
650/**
651 * filemap_write_and_wait_range - write out & wait on a file range
652 * @mapping: the address_space for the pages
653 * @lstart: offset in bytes where the range starts
654 * @lend: offset in bytes where the range ends (inclusive)
655 *
656 * Write out and wait upon file offsets lstart->lend, inclusive.
657 *
658 * Note that @lend is inclusive (describes the last byte to be written) so
659 * that this function can be used to write to the very end-of-file (end = -1).
660 *
661 * Return: error status of the address space.
662 */
663int filemap_write_and_wait_range(struct address_space *mapping,
664 loff_t lstart, loff_t lend)
665{
666 int err = 0;
667
668 if (mapping_needs_writeback(mapping)) {
669 err = __filemap_fdatawrite_range(mapping, lstart, lend,
670 WB_SYNC_ALL);
671 /*
672 * Even if the above returned error, the pages may be
673 * written partially (e.g. -ENOSPC), so we wait for it.
674 * But the -EIO is special case, it may indicate the worst
675 * thing (e.g. bug) happened, so we avoid waiting for it.
676 */
677 if (err != -EIO) {
678 int err2 = filemap_fdatawait_range(mapping,
679 lstart, lend);
680 if (!err)
681 err = err2;
682 } else {
683 /* Clear any previously stored errors */
684 filemap_check_errors(mapping);
685 }
686 } else {
687 err = filemap_check_errors(mapping);
688 }
689 return err;
690}
691EXPORT_SYMBOL(filemap_write_and_wait_range);
692
693void __filemap_set_wb_err(struct address_space *mapping, int err)
694{
695 errseq_t eseq = errseq_set(&mapping->wb_err, err);
696
697 trace_filemap_set_wb_err(mapping, eseq);
698}
699EXPORT_SYMBOL(__filemap_set_wb_err);
700
701/**
702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
703 * and advance wb_err to current one
704 * @file: struct file on which the error is being reported
705 *
706 * When userland calls fsync (or something like nfsd does the equivalent), we
707 * want to report any writeback errors that occurred since the last fsync (or
708 * since the file was opened if there haven't been any).
709 *
710 * Grab the wb_err from the mapping. If it matches what we have in the file,
711 * then just quickly return 0. The file is all caught up.
712 *
713 * If it doesn't match, then take the mapping value, set the "seen" flag in
714 * it and try to swap it into place. If it works, or another task beat us
715 * to it with the new value, then update the f_wb_err and return the error
716 * portion. The error at this point must be reported via proper channels
717 * (a'la fsync, or NFS COMMIT operation, etc.).
718 *
719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
720 * value is protected by the f_lock since we must ensure that it reflects
721 * the latest value swapped in for this file descriptor.
722 *
723 * Return: %0 on success, negative error code otherwise.
724 */
725int file_check_and_advance_wb_err(struct file *file)
726{
727 int err = 0;
728 errseq_t old = READ_ONCE(file->f_wb_err);
729 struct address_space *mapping = file->f_mapping;
730
731 /* Locklessly handle the common case where nothing has changed */
732 if (errseq_check(&mapping->wb_err, old)) {
733 /* Something changed, must use slow path */
734 spin_lock(&file->f_lock);
735 old = file->f_wb_err;
736 err = errseq_check_and_advance(&mapping->wb_err,
737 &file->f_wb_err);
738 trace_file_check_and_advance_wb_err(file, old);
739 spin_unlock(&file->f_lock);
740 }
741
742 /*
743 * We're mostly using this function as a drop in replacement for
744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 * that the legacy code would have had on these flags.
746 */
747 clear_bit(AS_EIO, &mapping->flags);
748 clear_bit(AS_ENOSPC, &mapping->flags);
749 return err;
750}
751EXPORT_SYMBOL(file_check_and_advance_wb_err);
752
753/**
754 * file_write_and_wait_range - write out & wait on a file range
755 * @file: file pointing to address_space with pages
756 * @lstart: offset in bytes where the range starts
757 * @lend: offset in bytes where the range ends (inclusive)
758 *
759 * Write out and wait upon file offsets lstart->lend, inclusive.
760 *
761 * Note that @lend is inclusive (describes the last byte to be written) so
762 * that this function can be used to write to the very end-of-file (end = -1).
763 *
764 * After writing out and waiting on the data, we check and advance the
765 * f_wb_err cursor to the latest value, and return any errors detected there.
766 *
767 * Return: %0 on success, negative error code otherwise.
768 */
769int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770{
771 int err = 0, err2;
772 struct address_space *mapping = file->f_mapping;
773
774 if (mapping_needs_writeback(mapping)) {
775 err = __filemap_fdatawrite_range(mapping, lstart, lend,
776 WB_SYNC_ALL);
777 /* See comment of filemap_write_and_wait() */
778 if (err != -EIO)
779 __filemap_fdatawait_range(mapping, lstart, lend);
780 }
781 err2 = file_check_and_advance_wb_err(file);
782 if (!err)
783 err = err2;
784 return err;
785}
786EXPORT_SYMBOL(file_write_and_wait_range);
787
788/**
789 * replace_page_cache_page - replace a pagecache page with a new one
790 * @old: page to be replaced
791 * @new: page to replace with
792 *
793 * This function replaces a page in the pagecache with a new one. On
794 * success it acquires the pagecache reference for the new page and
795 * drops it for the old page. Both the old and new pages must be
796 * locked. This function does not add the new page to the LRU, the
797 * caller must do that.
798 *
799 * The remove + add is atomic. This function cannot fail.
800 */
801void replace_page_cache_page(struct page *old, struct page *new)
802{
803 struct folio *fold = page_folio(old);
804 struct folio *fnew = page_folio(new);
805 struct address_space *mapping = old->mapping;
806 void (*freepage)(struct page *) = mapping->a_ops->freepage;
807 pgoff_t offset = old->index;
808 XA_STATE(xas, &mapping->i_pages, offset);
809
810 VM_BUG_ON_PAGE(!PageLocked(old), old);
811 VM_BUG_ON_PAGE(!PageLocked(new), new);
812 VM_BUG_ON_PAGE(new->mapping, new);
813
814 get_page(new);
815 new->mapping = mapping;
816 new->index = offset;
817
818 mem_cgroup_migrate(fold, fnew);
819
820 xas_lock_irq(&xas);
821 xas_store(&xas, new);
822
823 old->mapping = NULL;
824 /* hugetlb pages do not participate in page cache accounting. */
825 if (!PageHuge(old))
826 __dec_lruvec_page_state(old, NR_FILE_PAGES);
827 if (!PageHuge(new))
828 __inc_lruvec_page_state(new, NR_FILE_PAGES);
829 if (PageSwapBacked(old))
830 __dec_lruvec_page_state(old, NR_SHMEM);
831 if (PageSwapBacked(new))
832 __inc_lruvec_page_state(new, NR_SHMEM);
833 xas_unlock_irq(&xas);
834 if (freepage)
835 freepage(old);
836 put_page(old);
837}
838EXPORT_SYMBOL_GPL(replace_page_cache_page);
839
840noinline int __filemap_add_folio(struct address_space *mapping,
841 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
842{
843 XA_STATE(xas, &mapping->i_pages, index);
844 int huge = folio_test_hugetlb(folio);
845 int error;
846 bool charged = false;
847
848 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
849 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
850 mapping_set_update(&xas, mapping);
851
852 folio_get(folio);
853 folio->mapping = mapping;
854 folio->index = index;
855
856 if (!huge) {
857 error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 if (error)
860 goto error;
861 charged = true;
862 }
863
864 gfp &= GFP_RECLAIM_MASK;
865
866 do {
867 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
868 void *entry, *old = NULL;
869
870 if (order > folio_order(folio))
871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
872 order, gfp);
873 xas_lock_irq(&xas);
874 xas_for_each_conflict(&xas, entry) {
875 old = entry;
876 if (!xa_is_value(entry)) {
877 xas_set_err(&xas, -EEXIST);
878 goto unlock;
879 }
880 }
881
882 if (old) {
883 if (shadowp)
884 *shadowp = old;
885 /* entry may have been split before we acquired lock */
886 order = xa_get_order(xas.xa, xas.xa_index);
887 if (order > folio_order(folio)) {
888 xas_split(&xas, old, order);
889 xas_reset(&xas);
890 }
891 }
892
893 xas_store(&xas, folio);
894 if (xas_error(&xas))
895 goto unlock;
896
897 mapping->nrpages++;
898
899 /* hugetlb pages do not participate in page cache accounting */
900 if (!huge)
901 __lruvec_stat_add_folio(folio, NR_FILE_PAGES);
902unlock:
903 xas_unlock_irq(&xas);
904 } while (xas_nomem(&xas, gfp));
905
906 if (xas_error(&xas)) {
907 error = xas_error(&xas);
908 if (charged)
909 mem_cgroup_uncharge(folio);
910 goto error;
911 }
912
913 trace_mm_filemap_add_to_page_cache(folio);
914 return 0;
915error:
916 folio->mapping = NULL;
917 /* Leave page->index set: truncation relies upon it */
918 folio_put(folio);
919 return error;
920}
921ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
922
923/**
924 * add_to_page_cache_locked - add a locked page to the pagecache
925 * @page: page to add
926 * @mapping: the page's address_space
927 * @offset: page index
928 * @gfp_mask: page allocation mode
929 *
930 * This function is used to add a page to the pagecache. It must be locked.
931 * This function does not add the page to the LRU. The caller must do that.
932 *
933 * Return: %0 on success, negative error code otherwise.
934 */
935int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
936 pgoff_t offset, gfp_t gfp_mask)
937{
938 return __filemap_add_folio(mapping, page_folio(page), offset,
939 gfp_mask, NULL);
940}
941EXPORT_SYMBOL(add_to_page_cache_locked);
942
943int filemap_add_folio(struct address_space *mapping, struct folio *folio,
944 pgoff_t index, gfp_t gfp)
945{
946 void *shadow = NULL;
947 int ret;
948
949 __folio_set_locked(folio);
950 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
951 if (unlikely(ret))
952 __folio_clear_locked(folio);
953 else {
954 /*
955 * The folio might have been evicted from cache only
956 * recently, in which case it should be activated like
957 * any other repeatedly accessed folio.
958 * The exception is folios getting rewritten; evicting other
959 * data from the working set, only to cache data that will
960 * get overwritten with something else, is a waste of memory.
961 */
962 WARN_ON_ONCE(folio_test_active(folio));
963 if (!(gfp & __GFP_WRITE) && shadow)
964 workingset_refault(folio, shadow);
965 folio_add_lru(folio);
966 }
967 return ret;
968}
969EXPORT_SYMBOL_GPL(filemap_add_folio);
970
971#ifdef CONFIG_NUMA
972struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
973{
974 int n;
975 struct folio *folio;
976
977 if (cpuset_do_page_mem_spread()) {
978 unsigned int cpuset_mems_cookie;
979 do {
980 cpuset_mems_cookie = read_mems_allowed_begin();
981 n = cpuset_mem_spread_node();
982 folio = __folio_alloc_node(gfp, order, n);
983 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
984
985 return folio;
986 }
987 return folio_alloc(gfp, order);
988}
989EXPORT_SYMBOL(filemap_alloc_folio);
990#endif
991
992/*
993 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
994 *
995 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
996 *
997 * @mapping1: the first mapping to lock
998 * @mapping2: the second mapping to lock
999 */
1000void filemap_invalidate_lock_two(struct address_space *mapping1,
1001 struct address_space *mapping2)
1002{
1003 if (mapping1 > mapping2)
1004 swap(mapping1, mapping2);
1005 if (mapping1)
1006 down_write(&mapping1->invalidate_lock);
1007 if (mapping2 && mapping1 != mapping2)
1008 down_write_nested(&mapping2->invalidate_lock, 1);
1009}
1010EXPORT_SYMBOL(filemap_invalidate_lock_two);
1011
1012/*
1013 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1014 *
1015 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1016 *
1017 * @mapping1: the first mapping to unlock
1018 * @mapping2: the second mapping to unlock
1019 */
1020void filemap_invalidate_unlock_two(struct address_space *mapping1,
1021 struct address_space *mapping2)
1022{
1023 if (mapping1)
1024 up_write(&mapping1->invalidate_lock);
1025 if (mapping2 && mapping1 != mapping2)
1026 up_write(&mapping2->invalidate_lock);
1027}
1028EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1029
1030/*
1031 * In order to wait for pages to become available there must be
1032 * waitqueues associated with pages. By using a hash table of
1033 * waitqueues where the bucket discipline is to maintain all
1034 * waiters on the same queue and wake all when any of the pages
1035 * become available, and for the woken contexts to check to be
1036 * sure the appropriate page became available, this saves space
1037 * at a cost of "thundering herd" phenomena during rare hash
1038 * collisions.
1039 */
1040#define PAGE_WAIT_TABLE_BITS 8
1041#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1042static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1043
1044static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1045{
1046 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1047}
1048
1049void __init pagecache_init(void)
1050{
1051 int i;
1052
1053 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1054 init_waitqueue_head(&folio_wait_table[i]);
1055
1056 page_writeback_init();
1057}
1058
1059/*
1060 * The page wait code treats the "wait->flags" somewhat unusually, because
1061 * we have multiple different kinds of waits, not just the usual "exclusive"
1062 * one.
1063 *
1064 * We have:
1065 *
1066 * (a) no special bits set:
1067 *
1068 * We're just waiting for the bit to be released, and when a waker
1069 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1070 * and remove it from the wait queue.
1071 *
1072 * Simple and straightforward.
1073 *
1074 * (b) WQ_FLAG_EXCLUSIVE:
1075 *
1076 * The waiter is waiting to get the lock, and only one waiter should
1077 * be woken up to avoid any thundering herd behavior. We'll set the
1078 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1079 *
1080 * This is the traditional exclusive wait.
1081 *
1082 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1083 *
1084 * The waiter is waiting to get the bit, and additionally wants the
1085 * lock to be transferred to it for fair lock behavior. If the lock
1086 * cannot be taken, we stop walking the wait queue without waking
1087 * the waiter.
1088 *
1089 * This is the "fair lock handoff" case, and in addition to setting
1090 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1091 * that it now has the lock.
1092 */
1093static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1094{
1095 unsigned int flags;
1096 struct wait_page_key *key = arg;
1097 struct wait_page_queue *wait_page
1098 = container_of(wait, struct wait_page_queue, wait);
1099
1100 if (!wake_page_match(wait_page, key))
1101 return 0;
1102
1103 /*
1104 * If it's a lock handoff wait, we get the bit for it, and
1105 * stop walking (and do not wake it up) if we can't.
1106 */
1107 flags = wait->flags;
1108 if (flags & WQ_FLAG_EXCLUSIVE) {
1109 if (test_bit(key->bit_nr, &key->folio->flags))
1110 return -1;
1111 if (flags & WQ_FLAG_CUSTOM) {
1112 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1113 return -1;
1114 flags |= WQ_FLAG_DONE;
1115 }
1116 }
1117
1118 /*
1119 * We are holding the wait-queue lock, but the waiter that
1120 * is waiting for this will be checking the flags without
1121 * any locking.
1122 *
1123 * So update the flags atomically, and wake up the waiter
1124 * afterwards to avoid any races. This store-release pairs
1125 * with the load-acquire in folio_wait_bit_common().
1126 */
1127 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1128 wake_up_state(wait->private, mode);
1129
1130 /*
1131 * Ok, we have successfully done what we're waiting for,
1132 * and we can unconditionally remove the wait entry.
1133 *
1134 * Note that this pairs with the "finish_wait()" in the
1135 * waiter, and has to be the absolute last thing we do.
1136 * After this list_del_init(&wait->entry) the wait entry
1137 * might be de-allocated and the process might even have
1138 * exited.
1139 */
1140 list_del_init_careful(&wait->entry);
1141 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1142}
1143
1144static void folio_wake_bit(struct folio *folio, int bit_nr)
1145{
1146 wait_queue_head_t *q = folio_waitqueue(folio);
1147 struct wait_page_key key;
1148 unsigned long flags;
1149 wait_queue_entry_t bookmark;
1150
1151 key.folio = folio;
1152 key.bit_nr = bit_nr;
1153 key.page_match = 0;
1154
1155 bookmark.flags = 0;
1156 bookmark.private = NULL;
1157 bookmark.func = NULL;
1158 INIT_LIST_HEAD(&bookmark.entry);
1159
1160 spin_lock_irqsave(&q->lock, flags);
1161 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1162
1163 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1164 /*
1165 * Take a breather from holding the lock,
1166 * allow pages that finish wake up asynchronously
1167 * to acquire the lock and remove themselves
1168 * from wait queue
1169 */
1170 spin_unlock_irqrestore(&q->lock, flags);
1171 cpu_relax();
1172 spin_lock_irqsave(&q->lock, flags);
1173 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1174 }
1175
1176 /*
1177 * It is possible for other pages to have collided on the waitqueue
1178 * hash, so in that case check for a page match. That prevents a long-
1179 * term waiter
1180 *
1181 * It is still possible to miss a case here, when we woke page waiters
1182 * and removed them from the waitqueue, but there are still other
1183 * page waiters.
1184 */
1185 if (!waitqueue_active(q) || !key.page_match) {
1186 folio_clear_waiters(folio);
1187 /*
1188 * It's possible to miss clearing Waiters here, when we woke
1189 * our page waiters, but the hashed waitqueue has waiters for
1190 * other pages on it.
1191 *
1192 * That's okay, it's a rare case. The next waker will clear it.
1193 */
1194 }
1195 spin_unlock_irqrestore(&q->lock, flags);
1196}
1197
1198static void folio_wake(struct folio *folio, int bit)
1199{
1200 if (!folio_test_waiters(folio))
1201 return;
1202 folio_wake_bit(folio, bit);
1203}
1204
1205/*
1206 * A choice of three behaviors for folio_wait_bit_common():
1207 */
1208enum behavior {
1209 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1210 * __folio_lock() waiting on then setting PG_locked.
1211 */
1212 SHARED, /* Hold ref to page and check the bit when woken, like
1213 * folio_wait_writeback() waiting on PG_writeback.
1214 */
1215 DROP, /* Drop ref to page before wait, no check when woken,
1216 * like folio_put_wait_locked() on PG_locked.
1217 */
1218};
1219
1220/*
1221 * Attempt to check (or get) the folio flag, and mark us done
1222 * if successful.
1223 */
1224static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1225 struct wait_queue_entry *wait)
1226{
1227 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1228 if (test_and_set_bit(bit_nr, &folio->flags))
1229 return false;
1230 } else if (test_bit(bit_nr, &folio->flags))
1231 return false;
1232
1233 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1234 return true;
1235}
1236
1237/* How many times do we accept lock stealing from under a waiter? */
1238int sysctl_page_lock_unfairness = 5;
1239
1240static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1241 int state, enum behavior behavior)
1242{
1243 wait_queue_head_t *q = folio_waitqueue(folio);
1244 int unfairness = sysctl_page_lock_unfairness;
1245 struct wait_page_queue wait_page;
1246 wait_queue_entry_t *wait = &wait_page.wait;
1247 bool thrashing = false;
1248 bool delayacct = false;
1249 unsigned long pflags;
1250
1251 if (bit_nr == PG_locked &&
1252 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1253 if (!folio_test_swapbacked(folio)) {
1254 delayacct_thrashing_start();
1255 delayacct = true;
1256 }
1257 psi_memstall_enter(&pflags);
1258 thrashing = true;
1259 }
1260
1261 init_wait(wait);
1262 wait->func = wake_page_function;
1263 wait_page.folio = folio;
1264 wait_page.bit_nr = bit_nr;
1265
1266repeat:
1267 wait->flags = 0;
1268 if (behavior == EXCLUSIVE) {
1269 wait->flags = WQ_FLAG_EXCLUSIVE;
1270 if (--unfairness < 0)
1271 wait->flags |= WQ_FLAG_CUSTOM;
1272 }
1273
1274 /*
1275 * Do one last check whether we can get the
1276 * page bit synchronously.
1277 *
1278 * Do the folio_set_waiters() marking before that
1279 * to let any waker we _just_ missed know they
1280 * need to wake us up (otherwise they'll never
1281 * even go to the slow case that looks at the
1282 * page queue), and add ourselves to the wait
1283 * queue if we need to sleep.
1284 *
1285 * This part needs to be done under the queue
1286 * lock to avoid races.
1287 */
1288 spin_lock_irq(&q->lock);
1289 folio_set_waiters(folio);
1290 if (!folio_trylock_flag(folio, bit_nr, wait))
1291 __add_wait_queue_entry_tail(q, wait);
1292 spin_unlock_irq(&q->lock);
1293
1294 /*
1295 * From now on, all the logic will be based on
1296 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1297 * see whether the page bit testing has already
1298 * been done by the wake function.
1299 *
1300 * We can drop our reference to the folio.
1301 */
1302 if (behavior == DROP)
1303 folio_put(folio);
1304
1305 /*
1306 * Note that until the "finish_wait()", or until
1307 * we see the WQ_FLAG_WOKEN flag, we need to
1308 * be very careful with the 'wait->flags', because
1309 * we may race with a waker that sets them.
1310 */
1311 for (;;) {
1312 unsigned int flags;
1313
1314 set_current_state(state);
1315
1316 /* Loop until we've been woken or interrupted */
1317 flags = smp_load_acquire(&wait->flags);
1318 if (!(flags & WQ_FLAG_WOKEN)) {
1319 if (signal_pending_state(state, current))
1320 break;
1321
1322 io_schedule();
1323 continue;
1324 }
1325
1326 /* If we were non-exclusive, we're done */
1327 if (behavior != EXCLUSIVE)
1328 break;
1329
1330 /* If the waker got the lock for us, we're done */
1331 if (flags & WQ_FLAG_DONE)
1332 break;
1333
1334 /*
1335 * Otherwise, if we're getting the lock, we need to
1336 * try to get it ourselves.
1337 *
1338 * And if that fails, we'll have to retry this all.
1339 */
1340 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1341 goto repeat;
1342
1343 wait->flags |= WQ_FLAG_DONE;
1344 break;
1345 }
1346
1347 /*
1348 * If a signal happened, this 'finish_wait()' may remove the last
1349 * waiter from the wait-queues, but the folio waiters bit will remain
1350 * set. That's ok. The next wakeup will take care of it, and trying
1351 * to do it here would be difficult and prone to races.
1352 */
1353 finish_wait(q, wait);
1354
1355 if (thrashing) {
1356 if (delayacct)
1357 delayacct_thrashing_end();
1358 psi_memstall_leave(&pflags);
1359 }
1360
1361 /*
1362 * NOTE! The wait->flags weren't stable until we've done the
1363 * 'finish_wait()', and we could have exited the loop above due
1364 * to a signal, and had a wakeup event happen after the signal
1365 * test but before the 'finish_wait()'.
1366 *
1367 * So only after the finish_wait() can we reliably determine
1368 * if we got woken up or not, so we can now figure out the final
1369 * return value based on that state without races.
1370 *
1371 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1372 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1373 */
1374 if (behavior == EXCLUSIVE)
1375 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1376
1377 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1378}
1379
1380#ifdef CONFIG_MIGRATION
1381/**
1382 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1383 * @entry: migration swap entry.
1384 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1385 * for pte entries, pass NULL for pmd entries.
1386 * @ptl: already locked ptl. This function will drop the lock.
1387 *
1388 * Wait for a migration entry referencing the given page to be removed. This is
1389 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1390 * this can be called without taking a reference on the page. Instead this
1391 * should be called while holding the ptl for the migration entry referencing
1392 * the page.
1393 *
1394 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1395 *
1396 * This follows the same logic as folio_wait_bit_common() so see the comments
1397 * there.
1398 */
1399void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1400 spinlock_t *ptl)
1401{
1402 struct wait_page_queue wait_page;
1403 wait_queue_entry_t *wait = &wait_page.wait;
1404 bool thrashing = false;
1405 bool delayacct = false;
1406 unsigned long pflags;
1407 wait_queue_head_t *q;
1408 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1409
1410 q = folio_waitqueue(folio);
1411 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1412 if (!folio_test_swapbacked(folio)) {
1413 delayacct_thrashing_start();
1414 delayacct = true;
1415 }
1416 psi_memstall_enter(&pflags);
1417 thrashing = true;
1418 }
1419
1420 init_wait(wait);
1421 wait->func = wake_page_function;
1422 wait_page.folio = folio;
1423 wait_page.bit_nr = PG_locked;
1424 wait->flags = 0;
1425
1426 spin_lock_irq(&q->lock);
1427 folio_set_waiters(folio);
1428 if (!folio_trylock_flag(folio, PG_locked, wait))
1429 __add_wait_queue_entry_tail(q, wait);
1430 spin_unlock_irq(&q->lock);
1431
1432 /*
1433 * If a migration entry exists for the page the migration path must hold
1434 * a valid reference to the page, and it must take the ptl to remove the
1435 * migration entry. So the page is valid until the ptl is dropped.
1436 */
1437 if (ptep)
1438 pte_unmap_unlock(ptep, ptl);
1439 else
1440 spin_unlock(ptl);
1441
1442 for (;;) {
1443 unsigned int flags;
1444
1445 set_current_state(TASK_UNINTERRUPTIBLE);
1446
1447 /* Loop until we've been woken or interrupted */
1448 flags = smp_load_acquire(&wait->flags);
1449 if (!(flags & WQ_FLAG_WOKEN)) {
1450 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1451 break;
1452
1453 io_schedule();
1454 continue;
1455 }
1456 break;
1457 }
1458
1459 finish_wait(q, wait);
1460
1461 if (thrashing) {
1462 if (delayacct)
1463 delayacct_thrashing_end();
1464 psi_memstall_leave(&pflags);
1465 }
1466}
1467#endif
1468
1469void folio_wait_bit(struct folio *folio, int bit_nr)
1470{
1471 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1472}
1473EXPORT_SYMBOL(folio_wait_bit);
1474
1475int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1476{
1477 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1478}
1479EXPORT_SYMBOL(folio_wait_bit_killable);
1480
1481/**
1482 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1483 * @folio: The folio to wait for.
1484 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1485 *
1486 * The caller should hold a reference on @folio. They expect the page to
1487 * become unlocked relatively soon, but do not wish to hold up migration
1488 * (for example) by holding the reference while waiting for the folio to
1489 * come unlocked. After this function returns, the caller should not
1490 * dereference @folio.
1491 *
1492 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1493 */
1494int folio_put_wait_locked(struct folio *folio, int state)
1495{
1496 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1497}
1498
1499/**
1500 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1501 * @folio: Folio defining the wait queue of interest
1502 * @waiter: Waiter to add to the queue
1503 *
1504 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1505 */
1506void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1507{
1508 wait_queue_head_t *q = folio_waitqueue(folio);
1509 unsigned long flags;
1510
1511 spin_lock_irqsave(&q->lock, flags);
1512 __add_wait_queue_entry_tail(q, waiter);
1513 folio_set_waiters(folio);
1514 spin_unlock_irqrestore(&q->lock, flags);
1515}
1516EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1517
1518#ifndef clear_bit_unlock_is_negative_byte
1519
1520/*
1521 * PG_waiters is the high bit in the same byte as PG_lock.
1522 *
1523 * On x86 (and on many other architectures), we can clear PG_lock and
1524 * test the sign bit at the same time. But if the architecture does
1525 * not support that special operation, we just do this all by hand
1526 * instead.
1527 *
1528 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1529 * being cleared, but a memory barrier should be unnecessary since it is
1530 * in the same byte as PG_locked.
1531 */
1532static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1533{
1534 clear_bit_unlock(nr, mem);
1535 /* smp_mb__after_atomic(); */
1536 return test_bit(PG_waiters, mem);
1537}
1538
1539#endif
1540
1541/**
1542 * folio_unlock - Unlock a locked folio.
1543 * @folio: The folio.
1544 *
1545 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1546 *
1547 * Context: May be called from interrupt or process context. May not be
1548 * called from NMI context.
1549 */
1550void folio_unlock(struct folio *folio)
1551{
1552 /* Bit 7 allows x86 to check the byte's sign bit */
1553 BUILD_BUG_ON(PG_waiters != 7);
1554 BUILD_BUG_ON(PG_locked > 7);
1555 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1556 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1557 folio_wake_bit(folio, PG_locked);
1558}
1559EXPORT_SYMBOL(folio_unlock);
1560
1561/**
1562 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1563 * @folio: The folio.
1564 *
1565 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1566 * it. The folio reference held for PG_private_2 being set is released.
1567 *
1568 * This is, for example, used when a netfs folio is being written to a local
1569 * disk cache, thereby allowing writes to the cache for the same folio to be
1570 * serialised.
1571 */
1572void folio_end_private_2(struct folio *folio)
1573{
1574 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1575 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1576 folio_wake_bit(folio, PG_private_2);
1577 folio_put(folio);
1578}
1579EXPORT_SYMBOL(folio_end_private_2);
1580
1581/**
1582 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1583 * @folio: The folio to wait on.
1584 *
1585 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1586 */
1587void folio_wait_private_2(struct folio *folio)
1588{
1589 while (folio_test_private_2(folio))
1590 folio_wait_bit(folio, PG_private_2);
1591}
1592EXPORT_SYMBOL(folio_wait_private_2);
1593
1594/**
1595 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1596 * @folio: The folio to wait on.
1597 *
1598 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1599 * fatal signal is received by the calling task.
1600 *
1601 * Return:
1602 * - 0 if successful.
1603 * - -EINTR if a fatal signal was encountered.
1604 */
1605int folio_wait_private_2_killable(struct folio *folio)
1606{
1607 int ret = 0;
1608
1609 while (folio_test_private_2(folio)) {
1610 ret = folio_wait_bit_killable(folio, PG_private_2);
1611 if (ret < 0)
1612 break;
1613 }
1614
1615 return ret;
1616}
1617EXPORT_SYMBOL(folio_wait_private_2_killable);
1618
1619/**
1620 * folio_end_writeback - End writeback against a folio.
1621 * @folio: The folio.
1622 */
1623void folio_end_writeback(struct folio *folio)
1624{
1625 /*
1626 * folio_test_clear_reclaim() could be used here but it is an
1627 * atomic operation and overkill in this particular case. Failing
1628 * to shuffle a folio marked for immediate reclaim is too mild
1629 * a gain to justify taking an atomic operation penalty at the
1630 * end of every folio writeback.
1631 */
1632 if (folio_test_reclaim(folio)) {
1633 folio_clear_reclaim(folio);
1634 folio_rotate_reclaimable(folio);
1635 }
1636
1637 /*
1638 * Writeback does not hold a folio reference of its own, relying
1639 * on truncation to wait for the clearing of PG_writeback.
1640 * But here we must make sure that the folio is not freed and
1641 * reused before the folio_wake().
1642 */
1643 folio_get(folio);
1644 if (!__folio_end_writeback(folio))
1645 BUG();
1646
1647 smp_mb__after_atomic();
1648 folio_wake(folio, PG_writeback);
1649 acct_reclaim_writeback(folio);
1650 folio_put(folio);
1651}
1652EXPORT_SYMBOL(folio_end_writeback);
1653
1654/*
1655 * After completing I/O on a page, call this routine to update the page
1656 * flags appropriately
1657 */
1658void page_endio(struct page *page, bool is_write, int err)
1659{
1660 if (!is_write) {
1661 if (!err) {
1662 SetPageUptodate(page);
1663 } else {
1664 ClearPageUptodate(page);
1665 SetPageError(page);
1666 }
1667 unlock_page(page);
1668 } else {
1669 if (err) {
1670 struct address_space *mapping;
1671
1672 SetPageError(page);
1673 mapping = page_mapping(page);
1674 if (mapping)
1675 mapping_set_error(mapping, err);
1676 }
1677 end_page_writeback(page);
1678 }
1679}
1680EXPORT_SYMBOL_GPL(page_endio);
1681
1682/**
1683 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1684 * @folio: The folio to lock
1685 */
1686void __folio_lock(struct folio *folio)
1687{
1688 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1689 EXCLUSIVE);
1690}
1691EXPORT_SYMBOL(__folio_lock);
1692
1693int __folio_lock_killable(struct folio *folio)
1694{
1695 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1696 EXCLUSIVE);
1697}
1698EXPORT_SYMBOL_GPL(__folio_lock_killable);
1699
1700static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1701{
1702 struct wait_queue_head *q = folio_waitqueue(folio);
1703 int ret = 0;
1704
1705 wait->folio = folio;
1706 wait->bit_nr = PG_locked;
1707
1708 spin_lock_irq(&q->lock);
1709 __add_wait_queue_entry_tail(q, &wait->wait);
1710 folio_set_waiters(folio);
1711 ret = !folio_trylock(folio);
1712 /*
1713 * If we were successful now, we know we're still on the
1714 * waitqueue as we're still under the lock. This means it's
1715 * safe to remove and return success, we know the callback
1716 * isn't going to trigger.
1717 */
1718 if (!ret)
1719 __remove_wait_queue(q, &wait->wait);
1720 else
1721 ret = -EIOCBQUEUED;
1722 spin_unlock_irq(&q->lock);
1723 return ret;
1724}
1725
1726/*
1727 * Return values:
1728 * true - folio is locked; mmap_lock is still held.
1729 * false - folio is not locked.
1730 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1731 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1732 * which case mmap_lock is still held.
1733 *
1734 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1735 * with the folio locked and the mmap_lock unperturbed.
1736 */
1737bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1738 unsigned int flags)
1739{
1740 if (fault_flag_allow_retry_first(flags)) {
1741 /*
1742 * CAUTION! In this case, mmap_lock is not released
1743 * even though return 0.
1744 */
1745 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1746 return false;
1747
1748 mmap_read_unlock(mm);
1749 if (flags & FAULT_FLAG_KILLABLE)
1750 folio_wait_locked_killable(folio);
1751 else
1752 folio_wait_locked(folio);
1753 return false;
1754 }
1755 if (flags & FAULT_FLAG_KILLABLE) {
1756 bool ret;
1757
1758 ret = __folio_lock_killable(folio);
1759 if (ret) {
1760 mmap_read_unlock(mm);
1761 return false;
1762 }
1763 } else {
1764 __folio_lock(folio);
1765 }
1766
1767 return true;
1768}
1769
1770/**
1771 * page_cache_next_miss() - Find the next gap in the page cache.
1772 * @mapping: Mapping.
1773 * @index: Index.
1774 * @max_scan: Maximum range to search.
1775 *
1776 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1777 * gap with the lowest index.
1778 *
1779 * This function may be called under the rcu_read_lock. However, this will
1780 * not atomically search a snapshot of the cache at a single point in time.
1781 * For example, if a gap is created at index 5, then subsequently a gap is
1782 * created at index 10, page_cache_next_miss covering both indices may
1783 * return 10 if called under the rcu_read_lock.
1784 *
1785 * Return: The index of the gap if found, otherwise an index outside the
1786 * range specified (in which case 'return - index >= max_scan' will be true).
1787 * In the rare case of index wrap-around, 0 will be returned.
1788 */
1789pgoff_t page_cache_next_miss(struct address_space *mapping,
1790 pgoff_t index, unsigned long max_scan)
1791{
1792 XA_STATE(xas, &mapping->i_pages, index);
1793
1794 while (max_scan--) {
1795 void *entry = xas_next(&xas);
1796 if (!entry || xa_is_value(entry))
1797 break;
1798 if (xas.xa_index == 0)
1799 break;
1800 }
1801
1802 return xas.xa_index;
1803}
1804EXPORT_SYMBOL(page_cache_next_miss);
1805
1806/**
1807 * page_cache_prev_miss() - Find the previous gap in the page cache.
1808 * @mapping: Mapping.
1809 * @index: Index.
1810 * @max_scan: Maximum range to search.
1811 *
1812 * Search the range [max(index - max_scan + 1, 0), index] for the
1813 * gap with the highest index.
1814 *
1815 * This function may be called under the rcu_read_lock. However, this will
1816 * not atomically search a snapshot of the cache at a single point in time.
1817 * For example, if a gap is created at index 10, then subsequently a gap is
1818 * created at index 5, page_cache_prev_miss() covering both indices may
1819 * return 5 if called under the rcu_read_lock.
1820 *
1821 * Return: The index of the gap if found, otherwise an index outside the
1822 * range specified (in which case 'index - return >= max_scan' will be true).
1823 * In the rare case of wrap-around, ULONG_MAX will be returned.
1824 */
1825pgoff_t page_cache_prev_miss(struct address_space *mapping,
1826 pgoff_t index, unsigned long max_scan)
1827{
1828 XA_STATE(xas, &mapping->i_pages, index);
1829
1830 while (max_scan--) {
1831 void *entry = xas_prev(&xas);
1832 if (!entry || xa_is_value(entry))
1833 break;
1834 if (xas.xa_index == ULONG_MAX)
1835 break;
1836 }
1837
1838 return xas.xa_index;
1839}
1840EXPORT_SYMBOL(page_cache_prev_miss);
1841
1842/*
1843 * Lockless page cache protocol:
1844 * On the lookup side:
1845 * 1. Load the folio from i_pages
1846 * 2. Increment the refcount if it's not zero
1847 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1848 *
1849 * On the removal side:
1850 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1851 * B. Remove the page from i_pages
1852 * C. Return the page to the page allocator
1853 *
1854 * This means that any page may have its reference count temporarily
1855 * increased by a speculative page cache (or fast GUP) lookup as it can
1856 * be allocated by another user before the RCU grace period expires.
1857 * Because the refcount temporarily acquired here may end up being the
1858 * last refcount on the page, any page allocation must be freeable by
1859 * folio_put().
1860 */
1861
1862/*
1863 * mapping_get_entry - Get a page cache entry.
1864 * @mapping: the address_space to search
1865 * @index: The page cache index.
1866 *
1867 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1868 * it is returned with an increased refcount. If it is a shadow entry
1869 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1870 * it is returned without further action.
1871 *
1872 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1873 */
1874static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1875{
1876 XA_STATE(xas, &mapping->i_pages, index);
1877 struct folio *folio;
1878
1879 rcu_read_lock();
1880repeat:
1881 xas_reset(&xas);
1882 folio = xas_load(&xas);
1883 if (xas_retry(&xas, folio))
1884 goto repeat;
1885 /*
1886 * A shadow entry of a recently evicted page, or a swap entry from
1887 * shmem/tmpfs. Return it without attempting to raise page count.
1888 */
1889 if (!folio || xa_is_value(folio))
1890 goto out;
1891
1892 if (!folio_try_get_rcu(folio))
1893 goto repeat;
1894
1895 if (unlikely(folio != xas_reload(&xas))) {
1896 folio_put(folio);
1897 goto repeat;
1898 }
1899out:
1900 rcu_read_unlock();
1901
1902 return folio;
1903}
1904
1905/**
1906 * __filemap_get_folio - Find and get a reference to a folio.
1907 * @mapping: The address_space to search.
1908 * @index: The page index.
1909 * @fgp_flags: %FGP flags modify how the folio is returned.
1910 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1911 *
1912 * Looks up the page cache entry at @mapping & @index.
1913 *
1914 * @fgp_flags can be zero or more of these flags:
1915 *
1916 * * %FGP_ACCESSED - The folio will be marked accessed.
1917 * * %FGP_LOCK - The folio is returned locked.
1918 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1919 * instead of allocating a new folio to replace it.
1920 * * %FGP_CREAT - If no page is present then a new page is allocated using
1921 * @gfp and added to the page cache and the VM's LRU list.
1922 * The page is returned locked and with an increased refcount.
1923 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1924 * page is already in cache. If the page was allocated, unlock it before
1925 * returning so the caller can do the same dance.
1926 * * %FGP_WRITE - The page will be written to by the caller.
1927 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1928 * * %FGP_NOWAIT - Don't get blocked by page lock.
1929 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1930 *
1931 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1932 * if the %GFP flags specified for %FGP_CREAT are atomic.
1933 *
1934 * If there is a page cache page, it is returned with an increased refcount.
1935 *
1936 * Return: The found folio or %NULL otherwise.
1937 */
1938struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1939 int fgp_flags, gfp_t gfp)
1940{
1941 struct folio *folio;
1942
1943repeat:
1944 folio = mapping_get_entry(mapping, index);
1945 if (xa_is_value(folio)) {
1946 if (fgp_flags & FGP_ENTRY)
1947 return folio;
1948 folio = NULL;
1949 }
1950 if (!folio)
1951 goto no_page;
1952
1953 if (fgp_flags & FGP_LOCK) {
1954 if (fgp_flags & FGP_NOWAIT) {
1955 if (!folio_trylock(folio)) {
1956 folio_put(folio);
1957 return NULL;
1958 }
1959 } else {
1960 folio_lock(folio);
1961 }
1962
1963 /* Has the page been truncated? */
1964 if (unlikely(folio->mapping != mapping)) {
1965 folio_unlock(folio);
1966 folio_put(folio);
1967 goto repeat;
1968 }
1969 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1970 }
1971
1972 if (fgp_flags & FGP_ACCESSED)
1973 folio_mark_accessed(folio);
1974 else if (fgp_flags & FGP_WRITE) {
1975 /* Clear idle flag for buffer write */
1976 if (folio_test_idle(folio))
1977 folio_clear_idle(folio);
1978 }
1979
1980 if (fgp_flags & FGP_STABLE)
1981 folio_wait_stable(folio);
1982no_page:
1983 if (!folio && (fgp_flags & FGP_CREAT)) {
1984 int err;
1985 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1986 gfp |= __GFP_WRITE;
1987 if (fgp_flags & FGP_NOFS)
1988 gfp &= ~__GFP_FS;
1989
1990 folio = filemap_alloc_folio(gfp, 0);
1991 if (!folio)
1992 return NULL;
1993
1994 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1995 fgp_flags |= FGP_LOCK;
1996
1997 /* Init accessed so avoid atomic mark_page_accessed later */
1998 if (fgp_flags & FGP_ACCESSED)
1999 __folio_set_referenced(folio);
2000
2001 err = filemap_add_folio(mapping, folio, index, gfp);
2002 if (unlikely(err)) {
2003 folio_put(folio);
2004 folio = NULL;
2005 if (err == -EEXIST)
2006 goto repeat;
2007 }
2008
2009 /*
2010 * filemap_add_folio locks the page, and for mmap
2011 * we expect an unlocked page.
2012 */
2013 if (folio && (fgp_flags & FGP_FOR_MMAP))
2014 folio_unlock(folio);
2015 }
2016
2017 return folio;
2018}
2019EXPORT_SYMBOL(__filemap_get_folio);
2020
2021static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2022 xa_mark_t mark)
2023{
2024 struct folio *folio;
2025
2026retry:
2027 if (mark == XA_PRESENT)
2028 folio = xas_find(xas, max);
2029 else
2030 folio = xas_find_marked(xas, max, mark);
2031
2032 if (xas_retry(xas, folio))
2033 goto retry;
2034 /*
2035 * A shadow entry of a recently evicted page, a swap
2036 * entry from shmem/tmpfs or a DAX entry. Return it
2037 * without attempting to raise page count.
2038 */
2039 if (!folio || xa_is_value(folio))
2040 return folio;
2041
2042 if (!folio_try_get_rcu(folio))
2043 goto reset;
2044
2045 if (unlikely(folio != xas_reload(xas))) {
2046 folio_put(folio);
2047 goto reset;
2048 }
2049
2050 return folio;
2051reset:
2052 xas_reset(xas);
2053 goto retry;
2054}
2055
2056/**
2057 * find_get_entries - gang pagecache lookup
2058 * @mapping: The address_space to search
2059 * @start: The starting page cache index
2060 * @end: The final page index (inclusive).
2061 * @fbatch: Where the resulting entries are placed.
2062 * @indices: The cache indices corresponding to the entries in @entries
2063 *
2064 * find_get_entries() will search for and return a batch of entries in
2065 * the mapping. The entries are placed in @fbatch. find_get_entries()
2066 * takes a reference on any actual folios it returns.
2067 *
2068 * The entries have ascending indexes. The indices may not be consecutive
2069 * due to not-present entries or large folios.
2070 *
2071 * Any shadow entries of evicted folios, or swap entries from
2072 * shmem/tmpfs, are included in the returned array.
2073 *
2074 * Return: The number of entries which were found.
2075 */
2076unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2077 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2078{
2079 XA_STATE(xas, &mapping->i_pages, start);
2080 struct folio *folio;
2081
2082 rcu_read_lock();
2083 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2084 indices[fbatch->nr] = xas.xa_index;
2085 if (!folio_batch_add(fbatch, folio))
2086 break;
2087 }
2088 rcu_read_unlock();
2089
2090 return folio_batch_count(fbatch);
2091}
2092
2093/**
2094 * find_lock_entries - Find a batch of pagecache entries.
2095 * @mapping: The address_space to search.
2096 * @start: The starting page cache index.
2097 * @end: The final page index (inclusive).
2098 * @fbatch: Where the resulting entries are placed.
2099 * @indices: The cache indices of the entries in @fbatch.
2100 *
2101 * find_lock_entries() will return a batch of entries from @mapping.
2102 * Swap, shadow and DAX entries are included. Folios are returned
2103 * locked and with an incremented refcount. Folios which are locked
2104 * by somebody else or under writeback are skipped. Folios which are
2105 * partially outside the range are not returned.
2106 *
2107 * The entries have ascending indexes. The indices may not be consecutive
2108 * due to not-present entries, large folios, folios which could not be
2109 * locked or folios under writeback.
2110 *
2111 * Return: The number of entries which were found.
2112 */
2113unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2114 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2115{
2116 XA_STATE(xas, &mapping->i_pages, start);
2117 struct folio *folio;
2118
2119 rcu_read_lock();
2120 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2121 if (!xa_is_value(folio)) {
2122 if (folio->index < start)
2123 goto put;
2124 if (folio->index + folio_nr_pages(folio) - 1 > end)
2125 goto put;
2126 if (!folio_trylock(folio))
2127 goto put;
2128 if (folio->mapping != mapping ||
2129 folio_test_writeback(folio))
2130 goto unlock;
2131 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2132 folio);
2133 }
2134 indices[fbatch->nr] = xas.xa_index;
2135 if (!folio_batch_add(fbatch, folio))
2136 break;
2137 continue;
2138unlock:
2139 folio_unlock(folio);
2140put:
2141 folio_put(folio);
2142 }
2143 rcu_read_unlock();
2144
2145 return folio_batch_count(fbatch);
2146}
2147
2148static inline
2149bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2150{
2151 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2152 return false;
2153 if (index >= max)
2154 return false;
2155 return index < folio->index + folio_nr_pages(folio) - 1;
2156}
2157
2158/**
2159 * find_get_pages_range - gang pagecache lookup
2160 * @mapping: The address_space to search
2161 * @start: The starting page index
2162 * @end: The final page index (inclusive)
2163 * @nr_pages: The maximum number of pages
2164 * @pages: Where the resulting pages are placed
2165 *
2166 * find_get_pages_range() will search for and return a group of up to @nr_pages
2167 * pages in the mapping starting at index @start and up to index @end
2168 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2169 * a reference against the returned pages.
2170 *
2171 * The search returns a group of mapping-contiguous pages with ascending
2172 * indexes. There may be holes in the indices due to not-present pages.
2173 * We also update @start to index the next page for the traversal.
2174 *
2175 * Return: the number of pages which were found. If this number is
2176 * smaller than @nr_pages, the end of specified range has been
2177 * reached.
2178 */
2179unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2180 pgoff_t end, unsigned int nr_pages,
2181 struct page **pages)
2182{
2183 XA_STATE(xas, &mapping->i_pages, *start);
2184 struct folio *folio;
2185 unsigned ret = 0;
2186
2187 if (unlikely(!nr_pages))
2188 return 0;
2189
2190 rcu_read_lock();
2191 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2192 /* Skip over shadow, swap and DAX entries */
2193 if (xa_is_value(folio))
2194 continue;
2195
2196again:
2197 pages[ret] = folio_file_page(folio, xas.xa_index);
2198 if (++ret == nr_pages) {
2199 *start = xas.xa_index + 1;
2200 goto out;
2201 }
2202 if (folio_more_pages(folio, xas.xa_index, end)) {
2203 xas.xa_index++;
2204 folio_ref_inc(folio);
2205 goto again;
2206 }
2207 }
2208
2209 /*
2210 * We come here when there is no page beyond @end. We take care to not
2211 * overflow the index @start as it confuses some of the callers. This
2212 * breaks the iteration when there is a page at index -1 but that is
2213 * already broken anyway.
2214 */
2215 if (end == (pgoff_t)-1)
2216 *start = (pgoff_t)-1;
2217 else
2218 *start = end + 1;
2219out:
2220 rcu_read_unlock();
2221
2222 return ret;
2223}
2224
2225/**
2226 * find_get_pages_contig - gang contiguous pagecache lookup
2227 * @mapping: The address_space to search
2228 * @index: The starting page index
2229 * @nr_pages: The maximum number of pages
2230 * @pages: Where the resulting pages are placed
2231 *
2232 * find_get_pages_contig() works exactly like find_get_pages(), except
2233 * that the returned number of pages are guaranteed to be contiguous.
2234 *
2235 * Return: the number of pages which were found.
2236 */
2237unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2238 unsigned int nr_pages, struct page **pages)
2239{
2240 XA_STATE(xas, &mapping->i_pages, index);
2241 struct folio *folio;
2242 unsigned int ret = 0;
2243
2244 if (unlikely(!nr_pages))
2245 return 0;
2246
2247 rcu_read_lock();
2248 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2249 if (xas_retry(&xas, folio))
2250 continue;
2251 /*
2252 * If the entry has been swapped out, we can stop looking.
2253 * No current caller is looking for DAX entries.
2254 */
2255 if (xa_is_value(folio))
2256 break;
2257
2258 if (!folio_try_get_rcu(folio))
2259 goto retry;
2260
2261 if (unlikely(folio != xas_reload(&xas)))
2262 goto put_page;
2263
2264again:
2265 pages[ret] = folio_file_page(folio, xas.xa_index);
2266 if (++ret == nr_pages)
2267 break;
2268 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2269 xas.xa_index++;
2270 folio_ref_inc(folio);
2271 goto again;
2272 }
2273 continue;
2274put_page:
2275 folio_put(folio);
2276retry:
2277 xas_reset(&xas);
2278 }
2279 rcu_read_unlock();
2280 return ret;
2281}
2282EXPORT_SYMBOL(find_get_pages_contig);
2283
2284/**
2285 * find_get_pages_range_tag - Find and return head pages matching @tag.
2286 * @mapping: the address_space to search
2287 * @index: the starting page index
2288 * @end: The final page index (inclusive)
2289 * @tag: the tag index
2290 * @nr_pages: the maximum number of pages
2291 * @pages: where the resulting pages are placed
2292 *
2293 * Like find_get_pages(), except we only return head pages which are tagged
2294 * with @tag. @index is updated to the index immediately after the last
2295 * page we return, ready for the next iteration.
2296 *
2297 * Return: the number of pages which were found.
2298 */
2299unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2300 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2301 struct page **pages)
2302{
2303 XA_STATE(xas, &mapping->i_pages, *index);
2304 struct folio *folio;
2305 unsigned ret = 0;
2306
2307 if (unlikely(!nr_pages))
2308 return 0;
2309
2310 rcu_read_lock();
2311 while ((folio = find_get_entry(&xas, end, tag))) {
2312 /*
2313 * Shadow entries should never be tagged, but this iteration
2314 * is lockless so there is a window for page reclaim to evict
2315 * a page we saw tagged. Skip over it.
2316 */
2317 if (xa_is_value(folio))
2318 continue;
2319
2320 pages[ret] = &folio->page;
2321 if (++ret == nr_pages) {
2322 *index = folio->index + folio_nr_pages(folio);
2323 goto out;
2324 }
2325 }
2326
2327 /*
2328 * We come here when we got to @end. We take care to not overflow the
2329 * index @index as it confuses some of the callers. This breaks the
2330 * iteration when there is a page at index -1 but that is already
2331 * broken anyway.
2332 */
2333 if (end == (pgoff_t)-1)
2334 *index = (pgoff_t)-1;
2335 else
2336 *index = end + 1;
2337out:
2338 rcu_read_unlock();
2339
2340 return ret;
2341}
2342EXPORT_SYMBOL(find_get_pages_range_tag);
2343
2344/*
2345 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2346 * a _large_ part of the i/o request. Imagine the worst scenario:
2347 *
2348 * ---R__________________________________________B__________
2349 * ^ reading here ^ bad block(assume 4k)
2350 *
2351 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2352 * => failing the whole request => read(R) => read(R+1) =>
2353 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2354 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2355 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2356 *
2357 * It is going insane. Fix it by quickly scaling down the readahead size.
2358 */
2359static void shrink_readahead_size_eio(struct file_ra_state *ra)
2360{
2361 ra->ra_pages /= 4;
2362}
2363
2364/*
2365 * filemap_get_read_batch - Get a batch of folios for read
2366 *
2367 * Get a batch of folios which represent a contiguous range of bytes in
2368 * the file. No exceptional entries will be returned. If @index is in
2369 * the middle of a folio, the entire folio will be returned. The last
2370 * folio in the batch may have the readahead flag set or the uptodate flag
2371 * clear so that the caller can take the appropriate action.
2372 */
2373static void filemap_get_read_batch(struct address_space *mapping,
2374 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2375{
2376 XA_STATE(xas, &mapping->i_pages, index);
2377 struct folio *folio;
2378
2379 rcu_read_lock();
2380 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2381 if (xas_retry(&xas, folio))
2382 continue;
2383 if (xas.xa_index > max || xa_is_value(folio))
2384 break;
2385 if (!folio_try_get_rcu(folio))
2386 goto retry;
2387
2388 if (unlikely(folio != xas_reload(&xas)))
2389 goto put_folio;
2390
2391 if (!folio_batch_add(fbatch, folio))
2392 break;
2393 if (!folio_test_uptodate(folio))
2394 break;
2395 if (folio_test_readahead(folio))
2396 break;
2397 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2398 continue;
2399put_folio:
2400 folio_put(folio);
2401retry:
2402 xas_reset(&xas);
2403 }
2404 rcu_read_unlock();
2405}
2406
2407static int filemap_read_folio(struct file *file, struct address_space *mapping,
2408 struct folio *folio)
2409{
2410 int error;
2411
2412 /*
2413 * A previous I/O error may have been due to temporary failures,
2414 * eg. multipath errors. PG_error will be set again if readpage
2415 * fails.
2416 */
2417 folio_clear_error(folio);
2418 /* Start the actual read. The read will unlock the page. */
2419 error = mapping->a_ops->readpage(file, &folio->page);
2420 if (error)
2421 return error;
2422
2423 error = folio_wait_locked_killable(folio);
2424 if (error)
2425 return error;
2426 if (folio_test_uptodate(folio))
2427 return 0;
2428 shrink_readahead_size_eio(&file->f_ra);
2429 return -EIO;
2430}
2431
2432static bool filemap_range_uptodate(struct address_space *mapping,
2433 loff_t pos, struct iov_iter *iter, struct folio *folio)
2434{
2435 int count;
2436
2437 if (folio_test_uptodate(folio))
2438 return true;
2439 /* pipes can't handle partially uptodate pages */
2440 if (iov_iter_is_pipe(iter))
2441 return false;
2442 if (!mapping->a_ops->is_partially_uptodate)
2443 return false;
2444 if (mapping->host->i_blkbits >= folio_shift(folio))
2445 return false;
2446
2447 count = iter->count;
2448 if (folio_pos(folio) > pos) {
2449 count -= folio_pos(folio) - pos;
2450 pos = 0;
2451 } else {
2452 pos -= folio_pos(folio);
2453 }
2454
2455 return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count);
2456}
2457
2458static int filemap_update_page(struct kiocb *iocb,
2459 struct address_space *mapping, struct iov_iter *iter,
2460 struct folio *folio)
2461{
2462 int error;
2463
2464 if (iocb->ki_flags & IOCB_NOWAIT) {
2465 if (!filemap_invalidate_trylock_shared(mapping))
2466 return -EAGAIN;
2467 } else {
2468 filemap_invalidate_lock_shared(mapping);
2469 }
2470
2471 if (!folio_trylock(folio)) {
2472 error = -EAGAIN;
2473 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2474 goto unlock_mapping;
2475 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2476 filemap_invalidate_unlock_shared(mapping);
2477 /*
2478 * This is where we usually end up waiting for a
2479 * previously submitted readahead to finish.
2480 */
2481 folio_put_wait_locked(folio, TASK_KILLABLE);
2482 return AOP_TRUNCATED_PAGE;
2483 }
2484 error = __folio_lock_async(folio, iocb->ki_waitq);
2485 if (error)
2486 goto unlock_mapping;
2487 }
2488
2489 error = AOP_TRUNCATED_PAGE;
2490 if (!folio->mapping)
2491 goto unlock;
2492
2493 error = 0;
2494 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2495 goto unlock;
2496
2497 error = -EAGAIN;
2498 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2499 goto unlock;
2500
2501 error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2502 goto unlock_mapping;
2503unlock:
2504 folio_unlock(folio);
2505unlock_mapping:
2506 filemap_invalidate_unlock_shared(mapping);
2507 if (error == AOP_TRUNCATED_PAGE)
2508 folio_put(folio);
2509 return error;
2510}
2511
2512static int filemap_create_folio(struct file *file,
2513 struct address_space *mapping, pgoff_t index,
2514 struct folio_batch *fbatch)
2515{
2516 struct folio *folio;
2517 int error;
2518
2519 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2520 if (!folio)
2521 return -ENOMEM;
2522
2523 /*
2524 * Protect against truncate / hole punch. Grabbing invalidate_lock
2525 * here assures we cannot instantiate and bring uptodate new
2526 * pagecache folios after evicting page cache during truncate
2527 * and before actually freeing blocks. Note that we could
2528 * release invalidate_lock after inserting the folio into
2529 * the page cache as the locked folio would then be enough to
2530 * synchronize with hole punching. But there are code paths
2531 * such as filemap_update_page() filling in partially uptodate
2532 * pages or ->readpages() that need to hold invalidate_lock
2533 * while mapping blocks for IO so let's hold the lock here as
2534 * well to keep locking rules simple.
2535 */
2536 filemap_invalidate_lock_shared(mapping);
2537 error = filemap_add_folio(mapping, folio, index,
2538 mapping_gfp_constraint(mapping, GFP_KERNEL));
2539 if (error == -EEXIST)
2540 error = AOP_TRUNCATED_PAGE;
2541 if (error)
2542 goto error;
2543
2544 error = filemap_read_folio(file, mapping, folio);
2545 if (error)
2546 goto error;
2547
2548 filemap_invalidate_unlock_shared(mapping);
2549 folio_batch_add(fbatch, folio);
2550 return 0;
2551error:
2552 filemap_invalidate_unlock_shared(mapping);
2553 folio_put(folio);
2554 return error;
2555}
2556
2557static int filemap_readahead(struct kiocb *iocb, struct file *file,
2558 struct address_space *mapping, struct folio *folio,
2559 pgoff_t last_index)
2560{
2561 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2562
2563 if (iocb->ki_flags & IOCB_NOIO)
2564 return -EAGAIN;
2565 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2566 return 0;
2567}
2568
2569static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2570 struct folio_batch *fbatch)
2571{
2572 struct file *filp = iocb->ki_filp;
2573 struct address_space *mapping = filp->f_mapping;
2574 struct file_ra_state *ra = &filp->f_ra;
2575 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2576 pgoff_t last_index;
2577 struct folio *folio;
2578 int err = 0;
2579
2580 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2581retry:
2582 if (fatal_signal_pending(current))
2583 return -EINTR;
2584
2585 filemap_get_read_batch(mapping, index, last_index, fbatch);
2586 if (!folio_batch_count(fbatch)) {
2587 if (iocb->ki_flags & IOCB_NOIO)
2588 return -EAGAIN;
2589 page_cache_sync_readahead(mapping, ra, filp, index,
2590 last_index - index);
2591 filemap_get_read_batch(mapping, index, last_index, fbatch);
2592 }
2593 if (!folio_batch_count(fbatch)) {
2594 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2595 return -EAGAIN;
2596 err = filemap_create_folio(filp, mapping,
2597 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2598 if (err == AOP_TRUNCATED_PAGE)
2599 goto retry;
2600 return err;
2601 }
2602
2603 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2604 if (folio_test_readahead(folio)) {
2605 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2606 if (err)
2607 goto err;
2608 }
2609 if (!folio_test_uptodate(folio)) {
2610 if ((iocb->ki_flags & IOCB_WAITQ) &&
2611 folio_batch_count(fbatch) > 1)
2612 iocb->ki_flags |= IOCB_NOWAIT;
2613 err = filemap_update_page(iocb, mapping, iter, folio);
2614 if (err)
2615 goto err;
2616 }
2617
2618 return 0;
2619err:
2620 if (err < 0)
2621 folio_put(folio);
2622 if (likely(--fbatch->nr))
2623 return 0;
2624 if (err == AOP_TRUNCATED_PAGE)
2625 goto retry;
2626 return err;
2627}
2628
2629/**
2630 * filemap_read - Read data from the page cache.
2631 * @iocb: The iocb to read.
2632 * @iter: Destination for the data.
2633 * @already_read: Number of bytes already read by the caller.
2634 *
2635 * Copies data from the page cache. If the data is not currently present,
2636 * uses the readahead and readpage address_space operations to fetch it.
2637 *
2638 * Return: Total number of bytes copied, including those already read by
2639 * the caller. If an error happens before any bytes are copied, returns
2640 * a negative error number.
2641 */
2642ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2643 ssize_t already_read)
2644{
2645 struct file *filp = iocb->ki_filp;
2646 struct file_ra_state *ra = &filp->f_ra;
2647 struct address_space *mapping = filp->f_mapping;
2648 struct inode *inode = mapping->host;
2649 struct folio_batch fbatch;
2650 int i, error = 0;
2651 bool writably_mapped;
2652 loff_t isize, end_offset;
2653
2654 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2655 return 0;
2656 if (unlikely(!iov_iter_count(iter)))
2657 return 0;
2658
2659 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2660 folio_batch_init(&fbatch);
2661
2662 do {
2663 cond_resched();
2664
2665 /*
2666 * If we've already successfully copied some data, then we
2667 * can no longer safely return -EIOCBQUEUED. Hence mark
2668 * an async read NOWAIT at that point.
2669 */
2670 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2671 iocb->ki_flags |= IOCB_NOWAIT;
2672
2673 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2674 break;
2675
2676 error = filemap_get_pages(iocb, iter, &fbatch);
2677 if (error < 0)
2678 break;
2679
2680 /*
2681 * i_size must be checked after we know the pages are Uptodate.
2682 *
2683 * Checking i_size after the check allows us to calculate
2684 * the correct value for "nr", which means the zero-filled
2685 * part of the page is not copied back to userspace (unless
2686 * another truncate extends the file - this is desired though).
2687 */
2688 isize = i_size_read(inode);
2689 if (unlikely(iocb->ki_pos >= isize))
2690 goto put_folios;
2691 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2692
2693 /*
2694 * Once we start copying data, we don't want to be touching any
2695 * cachelines that might be contended:
2696 */
2697 writably_mapped = mapping_writably_mapped(mapping);
2698
2699 /*
2700 * When a sequential read accesses a page several times, only
2701 * mark it as accessed the first time.
2702 */
2703 if (iocb->ki_pos >> PAGE_SHIFT !=
2704 ra->prev_pos >> PAGE_SHIFT)
2705 folio_mark_accessed(fbatch.folios[0]);
2706
2707 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2708 struct folio *folio = fbatch.folios[i];
2709 size_t fsize = folio_size(folio);
2710 size_t offset = iocb->ki_pos & (fsize - 1);
2711 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2712 fsize - offset);
2713 size_t copied;
2714
2715 if (end_offset < folio_pos(folio))
2716 break;
2717 if (i > 0)
2718 folio_mark_accessed(folio);
2719 /*
2720 * If users can be writing to this folio using arbitrary
2721 * virtual addresses, take care of potential aliasing
2722 * before reading the folio on the kernel side.
2723 */
2724 if (writably_mapped)
2725 flush_dcache_folio(folio);
2726
2727 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2728
2729 already_read += copied;
2730 iocb->ki_pos += copied;
2731 ra->prev_pos = iocb->ki_pos;
2732
2733 if (copied < bytes) {
2734 error = -EFAULT;
2735 break;
2736 }
2737 }
2738put_folios:
2739 for (i = 0; i < folio_batch_count(&fbatch); i++)
2740 folio_put(fbatch.folios[i]);
2741 folio_batch_init(&fbatch);
2742 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2743
2744 file_accessed(filp);
2745
2746 return already_read ? already_read : error;
2747}
2748EXPORT_SYMBOL_GPL(filemap_read);
2749
2750/**
2751 * generic_file_read_iter - generic filesystem read routine
2752 * @iocb: kernel I/O control block
2753 * @iter: destination for the data read
2754 *
2755 * This is the "read_iter()" routine for all filesystems
2756 * that can use the page cache directly.
2757 *
2758 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2759 * be returned when no data can be read without waiting for I/O requests
2760 * to complete; it doesn't prevent readahead.
2761 *
2762 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2763 * requests shall be made for the read or for readahead. When no data
2764 * can be read, -EAGAIN shall be returned. When readahead would be
2765 * triggered, a partial, possibly empty read shall be returned.
2766 *
2767 * Return:
2768 * * number of bytes copied, even for partial reads
2769 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2770 */
2771ssize_t
2772generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2773{
2774 size_t count = iov_iter_count(iter);
2775 ssize_t retval = 0;
2776
2777 if (!count)
2778 return 0; /* skip atime */
2779
2780 if (iocb->ki_flags & IOCB_DIRECT) {
2781 struct file *file = iocb->ki_filp;
2782 struct address_space *mapping = file->f_mapping;
2783 struct inode *inode = mapping->host;
2784
2785 if (iocb->ki_flags & IOCB_NOWAIT) {
2786 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2787 iocb->ki_pos + count - 1))
2788 return -EAGAIN;
2789 } else {
2790 retval = filemap_write_and_wait_range(mapping,
2791 iocb->ki_pos,
2792 iocb->ki_pos + count - 1);
2793 if (retval < 0)
2794 return retval;
2795 }
2796
2797 file_accessed(file);
2798
2799 retval = mapping->a_ops->direct_IO(iocb, iter);
2800 if (retval >= 0) {
2801 iocb->ki_pos += retval;
2802 count -= retval;
2803 }
2804 if (retval != -EIOCBQUEUED)
2805 iov_iter_revert(iter, count - iov_iter_count(iter));
2806
2807 /*
2808 * Btrfs can have a short DIO read if we encounter
2809 * compressed extents, so if there was an error, or if
2810 * we've already read everything we wanted to, or if
2811 * there was a short read because we hit EOF, go ahead
2812 * and return. Otherwise fallthrough to buffered io for
2813 * the rest of the read. Buffered reads will not work for
2814 * DAX files, so don't bother trying.
2815 */
2816 if (retval < 0 || !count || IS_DAX(inode))
2817 return retval;
2818 if (iocb->ki_pos >= i_size_read(inode))
2819 return retval;
2820 }
2821
2822 return filemap_read(iocb, iter, retval);
2823}
2824EXPORT_SYMBOL(generic_file_read_iter);
2825
2826static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2827 struct address_space *mapping, struct folio *folio,
2828 loff_t start, loff_t end, bool seek_data)
2829{
2830 const struct address_space_operations *ops = mapping->a_ops;
2831 size_t offset, bsz = i_blocksize(mapping->host);
2832
2833 if (xa_is_value(folio) || folio_test_uptodate(folio))
2834 return seek_data ? start : end;
2835 if (!ops->is_partially_uptodate)
2836 return seek_data ? end : start;
2837
2838 xas_pause(xas);
2839 rcu_read_unlock();
2840 folio_lock(folio);
2841 if (unlikely(folio->mapping != mapping))
2842 goto unlock;
2843
2844 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2845
2846 do {
2847 if (ops->is_partially_uptodate(&folio->page, offset, bsz) ==
2848 seek_data)
2849 break;
2850 start = (start + bsz) & ~(bsz - 1);
2851 offset += bsz;
2852 } while (offset < folio_size(folio));
2853unlock:
2854 folio_unlock(folio);
2855 rcu_read_lock();
2856 return start;
2857}
2858
2859static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2860{
2861 if (xa_is_value(folio))
2862 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2863 return folio_size(folio);
2864}
2865
2866/**
2867 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2868 * @mapping: Address space to search.
2869 * @start: First byte to consider.
2870 * @end: Limit of search (exclusive).
2871 * @whence: Either SEEK_HOLE or SEEK_DATA.
2872 *
2873 * If the page cache knows which blocks contain holes and which blocks
2874 * contain data, your filesystem can use this function to implement
2875 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2876 * entirely memory-based such as tmpfs, and filesystems which support
2877 * unwritten extents.
2878 *
2879 * Return: The requested offset on success, or -ENXIO if @whence specifies
2880 * SEEK_DATA and there is no data after @start. There is an implicit hole
2881 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2882 * and @end contain data.
2883 */
2884loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2885 loff_t end, int whence)
2886{
2887 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2888 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2889 bool seek_data = (whence == SEEK_DATA);
2890 struct folio *folio;
2891
2892 if (end <= start)
2893 return -ENXIO;
2894
2895 rcu_read_lock();
2896 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2897 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2898 size_t seek_size;
2899
2900 if (start < pos) {
2901 if (!seek_data)
2902 goto unlock;
2903 start = pos;
2904 }
2905
2906 seek_size = seek_folio_size(&xas, folio);
2907 pos = round_up((u64)pos + 1, seek_size);
2908 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2909 seek_data);
2910 if (start < pos)
2911 goto unlock;
2912 if (start >= end)
2913 break;
2914 if (seek_size > PAGE_SIZE)
2915 xas_set(&xas, pos >> PAGE_SHIFT);
2916 if (!xa_is_value(folio))
2917 folio_put(folio);
2918 }
2919 if (seek_data)
2920 start = -ENXIO;
2921unlock:
2922 rcu_read_unlock();
2923 if (folio && !xa_is_value(folio))
2924 folio_put(folio);
2925 if (start > end)
2926 return end;
2927 return start;
2928}
2929
2930#ifdef CONFIG_MMU
2931#define MMAP_LOTSAMISS (100)
2932/*
2933 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2934 * @vmf - the vm_fault for this fault.
2935 * @folio - the folio to lock.
2936 * @fpin - the pointer to the file we may pin (or is already pinned).
2937 *
2938 * This works similar to lock_folio_or_retry in that it can drop the
2939 * mmap_lock. It differs in that it actually returns the folio locked
2940 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2941 * to drop the mmap_lock then fpin will point to the pinned file and
2942 * needs to be fput()'ed at a later point.
2943 */
2944static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2945 struct file **fpin)
2946{
2947 if (folio_trylock(folio))
2948 return 1;
2949
2950 /*
2951 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2952 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2953 * is supposed to work. We have way too many special cases..
2954 */
2955 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2956 return 0;
2957
2958 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2959 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2960 if (__folio_lock_killable(folio)) {
2961 /*
2962 * We didn't have the right flags to drop the mmap_lock,
2963 * but all fault_handlers only check for fatal signals
2964 * if we return VM_FAULT_RETRY, so we need to drop the
2965 * mmap_lock here and return 0 if we don't have a fpin.
2966 */
2967 if (*fpin == NULL)
2968 mmap_read_unlock(vmf->vma->vm_mm);
2969 return 0;
2970 }
2971 } else
2972 __folio_lock(folio);
2973
2974 return 1;
2975}
2976
2977/*
2978 * Synchronous readahead happens when we don't even find a page in the page
2979 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2980 * to drop the mmap sem we return the file that was pinned in order for us to do
2981 * that. If we didn't pin a file then we return NULL. The file that is
2982 * returned needs to be fput()'ed when we're done with it.
2983 */
2984static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2985{
2986 struct file *file = vmf->vma->vm_file;
2987 struct file_ra_state *ra = &file->f_ra;
2988 struct address_space *mapping = file->f_mapping;
2989 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2990 struct file *fpin = NULL;
2991 unsigned int mmap_miss;
2992
2993 /* If we don't want any read-ahead, don't bother */
2994 if (vmf->vma->vm_flags & VM_RAND_READ)
2995 return fpin;
2996 if (!ra->ra_pages)
2997 return fpin;
2998
2999 if (vmf->vma->vm_flags & VM_SEQ_READ) {
3000 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3001 page_cache_sync_ra(&ractl, ra->ra_pages);
3002 return fpin;
3003 }
3004
3005 /* Avoid banging the cache line if not needed */
3006 mmap_miss = READ_ONCE(ra->mmap_miss);
3007 if (mmap_miss < MMAP_LOTSAMISS * 10)
3008 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3009
3010 /*
3011 * Do we miss much more than hit in this file? If so,
3012 * stop bothering with read-ahead. It will only hurt.
3013 */
3014 if (mmap_miss > MMAP_LOTSAMISS)
3015 return fpin;
3016
3017 /*
3018 * mmap read-around
3019 */
3020 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3021 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3022 ra->size = ra->ra_pages;
3023 ra->async_size = ra->ra_pages / 4;
3024 ractl._index = ra->start;
3025 do_page_cache_ra(&ractl, ra->size, ra->async_size);
3026 return fpin;
3027}
3028
3029/*
3030 * Asynchronous readahead happens when we find the page and PG_readahead,
3031 * so we want to possibly extend the readahead further. We return the file that
3032 * was pinned if we have to drop the mmap_lock in order to do IO.
3033 */
3034static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3035 struct folio *folio)
3036{
3037 struct file *file = vmf->vma->vm_file;
3038 struct file_ra_state *ra = &file->f_ra;
3039 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3040 struct file *fpin = NULL;
3041 unsigned int mmap_miss;
3042
3043 /* If we don't want any read-ahead, don't bother */
3044 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3045 return fpin;
3046
3047 mmap_miss = READ_ONCE(ra->mmap_miss);
3048 if (mmap_miss)
3049 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3050
3051 if (folio_test_readahead(folio)) {
3052 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3053 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3054 }
3055 return fpin;
3056}
3057
3058/**
3059 * filemap_fault - read in file data for page fault handling
3060 * @vmf: struct vm_fault containing details of the fault
3061 *
3062 * filemap_fault() is invoked via the vma operations vector for a
3063 * mapped memory region to read in file data during a page fault.
3064 *
3065 * The goto's are kind of ugly, but this streamlines the normal case of having
3066 * it in the page cache, and handles the special cases reasonably without
3067 * having a lot of duplicated code.
3068 *
3069 * vma->vm_mm->mmap_lock must be held on entry.
3070 *
3071 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3072 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3073 *
3074 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3075 * has not been released.
3076 *
3077 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3078 *
3079 * Return: bitwise-OR of %VM_FAULT_ codes.
3080 */
3081vm_fault_t filemap_fault(struct vm_fault *vmf)
3082{
3083 int error;
3084 struct file *file = vmf->vma->vm_file;
3085 struct file *fpin = NULL;
3086 struct address_space *mapping = file->f_mapping;
3087 struct inode *inode = mapping->host;
3088 pgoff_t max_idx, index = vmf->pgoff;
3089 struct folio *folio;
3090 vm_fault_t ret = 0;
3091 bool mapping_locked = false;
3092
3093 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3094 if (unlikely(index >= max_idx))
3095 return VM_FAULT_SIGBUS;
3096
3097 /*
3098 * Do we have something in the page cache already?
3099 */
3100 folio = filemap_get_folio(mapping, index);
3101 if (likely(folio)) {
3102 /*
3103 * We found the page, so try async readahead before waiting for
3104 * the lock.
3105 */
3106 if (!(vmf->flags & FAULT_FLAG_TRIED))
3107 fpin = do_async_mmap_readahead(vmf, folio);
3108 if (unlikely(!folio_test_uptodate(folio))) {
3109 filemap_invalidate_lock_shared(mapping);
3110 mapping_locked = true;
3111 }
3112 } else {
3113 /* No page in the page cache at all */
3114 count_vm_event(PGMAJFAULT);
3115 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3116 ret = VM_FAULT_MAJOR;
3117 fpin = do_sync_mmap_readahead(vmf);
3118retry_find:
3119 /*
3120 * See comment in filemap_create_folio() why we need
3121 * invalidate_lock
3122 */
3123 if (!mapping_locked) {
3124 filemap_invalidate_lock_shared(mapping);
3125 mapping_locked = true;
3126 }
3127 folio = __filemap_get_folio(mapping, index,
3128 FGP_CREAT|FGP_FOR_MMAP,
3129 vmf->gfp_mask);
3130 if (!folio) {
3131 if (fpin)
3132 goto out_retry;
3133 filemap_invalidate_unlock_shared(mapping);
3134 return VM_FAULT_OOM;
3135 }
3136 }
3137
3138 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3139 goto out_retry;
3140
3141 /* Did it get truncated? */
3142 if (unlikely(folio->mapping != mapping)) {
3143 folio_unlock(folio);
3144 folio_put(folio);
3145 goto retry_find;
3146 }
3147 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3148
3149 /*
3150 * We have a locked page in the page cache, now we need to check
3151 * that it's up-to-date. If not, it is going to be due to an error.
3152 */
3153 if (unlikely(!folio_test_uptodate(folio))) {
3154 /*
3155 * The page was in cache and uptodate and now it is not.
3156 * Strange but possible since we didn't hold the page lock all
3157 * the time. Let's drop everything get the invalidate lock and
3158 * try again.
3159 */
3160 if (!mapping_locked) {
3161 folio_unlock(folio);
3162 folio_put(folio);
3163 goto retry_find;
3164 }
3165 goto page_not_uptodate;
3166 }
3167
3168 /*
3169 * We've made it this far and we had to drop our mmap_lock, now is the
3170 * time to return to the upper layer and have it re-find the vma and
3171 * redo the fault.
3172 */
3173 if (fpin) {
3174 folio_unlock(folio);
3175 goto out_retry;
3176 }
3177 if (mapping_locked)
3178 filemap_invalidate_unlock_shared(mapping);
3179
3180 /*
3181 * Found the page and have a reference on it.
3182 * We must recheck i_size under page lock.
3183 */
3184 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3185 if (unlikely(index >= max_idx)) {
3186 folio_unlock(folio);
3187 folio_put(folio);
3188 return VM_FAULT_SIGBUS;
3189 }
3190
3191 vmf->page = folio_file_page(folio, index);
3192 return ret | VM_FAULT_LOCKED;
3193
3194page_not_uptodate:
3195 /*
3196 * Umm, take care of errors if the page isn't up-to-date.
3197 * Try to re-read it _once_. We do this synchronously,
3198 * because there really aren't any performance issues here
3199 * and we need to check for errors.
3200 */
3201 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3202 error = filemap_read_folio(file, mapping, folio);
3203 if (fpin)
3204 goto out_retry;
3205 folio_put(folio);
3206
3207 if (!error || error == AOP_TRUNCATED_PAGE)
3208 goto retry_find;
3209 filemap_invalidate_unlock_shared(mapping);
3210
3211 return VM_FAULT_SIGBUS;
3212
3213out_retry:
3214 /*
3215 * We dropped the mmap_lock, we need to return to the fault handler to
3216 * re-find the vma and come back and find our hopefully still populated
3217 * page.
3218 */
3219 if (folio)
3220 folio_put(folio);
3221 if (mapping_locked)
3222 filemap_invalidate_unlock_shared(mapping);
3223 if (fpin)
3224 fput(fpin);
3225 return ret | VM_FAULT_RETRY;
3226}
3227EXPORT_SYMBOL(filemap_fault);
3228
3229static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3230{
3231 struct mm_struct *mm = vmf->vma->vm_mm;
3232
3233 /* Huge page is mapped? No need to proceed. */
3234 if (pmd_trans_huge(*vmf->pmd)) {
3235 unlock_page(page);
3236 put_page(page);
3237 return true;
3238 }
3239
3240 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3241 vm_fault_t ret = do_set_pmd(vmf, page);
3242 if (!ret) {
3243 /* The page is mapped successfully, reference consumed. */
3244 unlock_page(page);
3245 return true;
3246 }
3247 }
3248
3249 if (pmd_none(*vmf->pmd))
3250 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3251
3252 /* See comment in handle_pte_fault() */
3253 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3254 unlock_page(page);
3255 put_page(page);
3256 return true;
3257 }
3258
3259 return false;
3260}
3261
3262static struct folio *next_uptodate_page(struct folio *folio,
3263 struct address_space *mapping,
3264 struct xa_state *xas, pgoff_t end_pgoff)
3265{
3266 unsigned long max_idx;
3267
3268 do {
3269 if (!folio)
3270 return NULL;
3271 if (xas_retry(xas, folio))
3272 continue;
3273 if (xa_is_value(folio))
3274 continue;
3275 if (folio_test_locked(folio))
3276 continue;
3277 if (!folio_try_get_rcu(folio))
3278 continue;
3279 /* Has the page moved or been split? */
3280 if (unlikely(folio != xas_reload(xas)))
3281 goto skip;
3282 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3283 goto skip;
3284 if (!folio_trylock(folio))
3285 goto skip;
3286 if (folio->mapping != mapping)
3287 goto unlock;
3288 if (!folio_test_uptodate(folio))
3289 goto unlock;
3290 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3291 if (xas->xa_index >= max_idx)
3292 goto unlock;
3293 return folio;
3294unlock:
3295 folio_unlock(folio);
3296skip:
3297 folio_put(folio);
3298 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3299
3300 return NULL;
3301}
3302
3303static inline struct folio *first_map_page(struct address_space *mapping,
3304 struct xa_state *xas,
3305 pgoff_t end_pgoff)
3306{
3307 return next_uptodate_page(xas_find(xas, end_pgoff),
3308 mapping, xas, end_pgoff);
3309}
3310
3311static inline struct folio *next_map_page(struct address_space *mapping,
3312 struct xa_state *xas,
3313 pgoff_t end_pgoff)
3314{
3315 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3316 mapping, xas, end_pgoff);
3317}
3318
3319vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3320 pgoff_t start_pgoff, pgoff_t end_pgoff)
3321{
3322 struct vm_area_struct *vma = vmf->vma;
3323 struct file *file = vma->vm_file;
3324 struct address_space *mapping = file->f_mapping;
3325 pgoff_t last_pgoff = start_pgoff;
3326 unsigned long addr;
3327 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3328 struct folio *folio;
3329 struct page *page;
3330 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3331 vm_fault_t ret = 0;
3332
3333 rcu_read_lock();
3334 folio = first_map_page(mapping, &xas, end_pgoff);
3335 if (!folio)
3336 goto out;
3337
3338 if (filemap_map_pmd(vmf, &folio->page)) {
3339 ret = VM_FAULT_NOPAGE;
3340 goto out;
3341 }
3342
3343 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3344 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3345 do {
3346again:
3347 page = folio_file_page(folio, xas.xa_index);
3348 if (PageHWPoison(page))
3349 goto unlock;
3350
3351 if (mmap_miss > 0)
3352 mmap_miss--;
3353
3354 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3355 vmf->pte += xas.xa_index - last_pgoff;
3356 last_pgoff = xas.xa_index;
3357
3358 if (!pte_none(*vmf->pte))
3359 goto unlock;
3360
3361 /* We're about to handle the fault */
3362 if (vmf->address == addr)
3363 ret = VM_FAULT_NOPAGE;
3364
3365 do_set_pte(vmf, page, addr);
3366 /* no need to invalidate: a not-present page won't be cached */
3367 update_mmu_cache(vma, addr, vmf->pte);
3368 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3369 xas.xa_index++;
3370 folio_ref_inc(folio);
3371 goto again;
3372 }
3373 folio_unlock(folio);
3374 continue;
3375unlock:
3376 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3377 xas.xa_index++;
3378 goto again;
3379 }
3380 folio_unlock(folio);
3381 folio_put(folio);
3382 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3383 pte_unmap_unlock(vmf->pte, vmf->ptl);
3384out:
3385 rcu_read_unlock();
3386 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3387 return ret;
3388}
3389EXPORT_SYMBOL(filemap_map_pages);
3390
3391vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3392{
3393 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3394 struct folio *folio = page_folio(vmf->page);
3395 vm_fault_t ret = VM_FAULT_LOCKED;
3396
3397 sb_start_pagefault(mapping->host->i_sb);
3398 file_update_time(vmf->vma->vm_file);
3399 folio_lock(folio);
3400 if (folio->mapping != mapping) {
3401 folio_unlock(folio);
3402 ret = VM_FAULT_NOPAGE;
3403 goto out;
3404 }
3405 /*
3406 * We mark the folio dirty already here so that when freeze is in
3407 * progress, we are guaranteed that writeback during freezing will
3408 * see the dirty folio and writeprotect it again.
3409 */
3410 folio_mark_dirty(folio);
3411 folio_wait_stable(folio);
3412out:
3413 sb_end_pagefault(mapping->host->i_sb);
3414 return ret;
3415}
3416
3417const struct vm_operations_struct generic_file_vm_ops = {
3418 .fault = filemap_fault,
3419 .map_pages = filemap_map_pages,
3420 .page_mkwrite = filemap_page_mkwrite,
3421};
3422
3423/* This is used for a general mmap of a disk file */
3424
3425int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3426{
3427 struct address_space *mapping = file->f_mapping;
3428
3429 if (!mapping->a_ops->readpage)
3430 return -ENOEXEC;
3431 file_accessed(file);
3432 vma->vm_ops = &generic_file_vm_ops;
3433 return 0;
3434}
3435
3436/*
3437 * This is for filesystems which do not implement ->writepage.
3438 */
3439int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3440{
3441 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3442 return -EINVAL;
3443 return generic_file_mmap(file, vma);
3444}
3445#else
3446vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3447{
3448 return VM_FAULT_SIGBUS;
3449}
3450int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3451{
3452 return -ENOSYS;
3453}
3454int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3455{
3456 return -ENOSYS;
3457}
3458#endif /* CONFIG_MMU */
3459
3460EXPORT_SYMBOL(filemap_page_mkwrite);
3461EXPORT_SYMBOL(generic_file_mmap);
3462EXPORT_SYMBOL(generic_file_readonly_mmap);
3463
3464static struct folio *do_read_cache_folio(struct address_space *mapping,
3465 pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3466{
3467 struct folio *folio;
3468 int err;
3469repeat:
3470 folio = filemap_get_folio(mapping, index);
3471 if (!folio) {
3472 folio = filemap_alloc_folio(gfp, 0);
3473 if (!folio)
3474 return ERR_PTR(-ENOMEM);
3475 err = filemap_add_folio(mapping, folio, index, gfp);
3476 if (unlikely(err)) {
3477 folio_put(folio);
3478 if (err == -EEXIST)
3479 goto repeat;
3480 /* Presumably ENOMEM for xarray node */
3481 return ERR_PTR(err);
3482 }
3483
3484filler:
3485 if (filler)
3486 err = filler(data, &folio->page);
3487 else
3488 err = mapping->a_ops->readpage(data, &folio->page);
3489
3490 if (err < 0) {
3491 folio_put(folio);
3492 return ERR_PTR(err);
3493 }
3494
3495 folio_wait_locked(folio);
3496 if (!folio_test_uptodate(folio)) {
3497 folio_put(folio);
3498 return ERR_PTR(-EIO);
3499 }
3500
3501 goto out;
3502 }
3503 if (folio_test_uptodate(folio))
3504 goto out;
3505
3506 if (!folio_trylock(folio)) {
3507 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3508 goto repeat;
3509 }
3510
3511 /* Folio was truncated from mapping */
3512 if (!folio->mapping) {
3513 folio_unlock(folio);
3514 folio_put(folio);
3515 goto repeat;
3516 }
3517
3518 /* Someone else locked and filled the page in a very small window */
3519 if (folio_test_uptodate(folio)) {
3520 folio_unlock(folio);
3521 goto out;
3522 }
3523
3524 /*
3525 * A previous I/O error may have been due to temporary
3526 * failures.
3527 * Clear page error before actual read, PG_error will be
3528 * set again if read page fails.
3529 */
3530 folio_clear_error(folio);
3531 goto filler;
3532
3533out:
3534 folio_mark_accessed(folio);
3535 return folio;
3536}
3537
3538/**
3539 * read_cache_folio - read into page cache, fill it if needed
3540 * @mapping: the page's address_space
3541 * @index: the page index
3542 * @filler: function to perform the read
3543 * @data: first arg to filler(data, page) function, often left as NULL
3544 *
3545 * Read into the page cache. If a page already exists, and PageUptodate() is
3546 * not set, try to fill the page and wait for it to become unlocked.
3547 *
3548 * If the page does not get brought uptodate, return -EIO.
3549 *
3550 * The function expects mapping->invalidate_lock to be already held.
3551 *
3552 * Return: up to date page on success, ERR_PTR() on failure.
3553 */
3554struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3555 filler_t filler, void *data)
3556{
3557 return do_read_cache_folio(mapping, index, filler, data,
3558 mapping_gfp_mask(mapping));
3559}
3560EXPORT_SYMBOL(read_cache_folio);
3561
3562static struct page *do_read_cache_page(struct address_space *mapping,
3563 pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3564{
3565 struct folio *folio;
3566
3567 folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3568 if (IS_ERR(folio))
3569 return &folio->page;
3570 return folio_file_page(folio, index);
3571}
3572
3573struct page *read_cache_page(struct address_space *mapping,
3574 pgoff_t index, filler_t *filler, void *data)
3575{
3576 return do_read_cache_page(mapping, index, filler, data,
3577 mapping_gfp_mask(mapping));
3578}
3579EXPORT_SYMBOL(read_cache_page);
3580
3581/**
3582 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3583 * @mapping: the page's address_space
3584 * @index: the page index
3585 * @gfp: the page allocator flags to use if allocating
3586 *
3587 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3588 * any new page allocations done using the specified allocation flags.
3589 *
3590 * If the page does not get brought uptodate, return -EIO.
3591 *
3592 * The function expects mapping->invalidate_lock to be already held.
3593 *
3594 * Return: up to date page on success, ERR_PTR() on failure.
3595 */
3596struct page *read_cache_page_gfp(struct address_space *mapping,
3597 pgoff_t index,
3598 gfp_t gfp)
3599{
3600 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3601}
3602EXPORT_SYMBOL(read_cache_page_gfp);
3603
3604int pagecache_write_begin(struct file *file, struct address_space *mapping,
3605 loff_t pos, unsigned len, unsigned flags,
3606 struct page **pagep, void **fsdata)
3607{
3608 const struct address_space_operations *aops = mapping->a_ops;
3609
3610 return aops->write_begin(file, mapping, pos, len, flags,
3611 pagep, fsdata);
3612}
3613EXPORT_SYMBOL(pagecache_write_begin);
3614
3615int pagecache_write_end(struct file *file, struct address_space *mapping,
3616 loff_t pos, unsigned len, unsigned copied,
3617 struct page *page, void *fsdata)
3618{
3619 const struct address_space_operations *aops = mapping->a_ops;
3620
3621 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3622}
3623EXPORT_SYMBOL(pagecache_write_end);
3624
3625/*
3626 * Warn about a page cache invalidation failure during a direct I/O write.
3627 */
3628void dio_warn_stale_pagecache(struct file *filp)
3629{
3630 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3631 char pathname[128];
3632 char *path;
3633
3634 errseq_set(&filp->f_mapping->wb_err, -EIO);
3635 if (__ratelimit(&_rs)) {
3636 path = file_path(filp, pathname, sizeof(pathname));
3637 if (IS_ERR(path))
3638 path = "(unknown)";
3639 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3640 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3641 current->comm);
3642 }
3643}
3644
3645ssize_t
3646generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3647{
3648 struct file *file = iocb->ki_filp;
3649 struct address_space *mapping = file->f_mapping;
3650 struct inode *inode = mapping->host;
3651 loff_t pos = iocb->ki_pos;
3652 ssize_t written;
3653 size_t write_len;
3654 pgoff_t end;
3655
3656 write_len = iov_iter_count(from);
3657 end = (pos + write_len - 1) >> PAGE_SHIFT;
3658
3659 if (iocb->ki_flags & IOCB_NOWAIT) {
3660 /* If there are pages to writeback, return */
3661 if (filemap_range_has_page(file->f_mapping, pos,
3662 pos + write_len - 1))
3663 return -EAGAIN;
3664 } else {
3665 written = filemap_write_and_wait_range(mapping, pos,
3666 pos + write_len - 1);
3667 if (written)
3668 goto out;
3669 }
3670
3671 /*
3672 * After a write we want buffered reads to be sure to go to disk to get
3673 * the new data. We invalidate clean cached page from the region we're
3674 * about to write. We do this *before* the write so that we can return
3675 * without clobbering -EIOCBQUEUED from ->direct_IO().
3676 */
3677 written = invalidate_inode_pages2_range(mapping,
3678 pos >> PAGE_SHIFT, end);
3679 /*
3680 * If a page can not be invalidated, return 0 to fall back
3681 * to buffered write.
3682 */
3683 if (written) {
3684 if (written == -EBUSY)
3685 return 0;
3686 goto out;
3687 }
3688
3689 written = mapping->a_ops->direct_IO(iocb, from);
3690
3691 /*
3692 * Finally, try again to invalidate clean pages which might have been
3693 * cached by non-direct readahead, or faulted in by get_user_pages()
3694 * if the source of the write was an mmap'ed region of the file
3695 * we're writing. Either one is a pretty crazy thing to do,
3696 * so we don't support it 100%. If this invalidation
3697 * fails, tough, the write still worked...
3698 *
3699 * Most of the time we do not need this since dio_complete() will do
3700 * the invalidation for us. However there are some file systems that
3701 * do not end up with dio_complete() being called, so let's not break
3702 * them by removing it completely.
3703 *
3704 * Noticeable example is a blkdev_direct_IO().
3705 *
3706 * Skip invalidation for async writes or if mapping has no pages.
3707 */
3708 if (written > 0 && mapping->nrpages &&
3709 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3710 dio_warn_stale_pagecache(file);
3711
3712 if (written > 0) {
3713 pos += written;
3714 write_len -= written;
3715 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3716 i_size_write(inode, pos);
3717 mark_inode_dirty(inode);
3718 }
3719 iocb->ki_pos = pos;
3720 }
3721 if (written != -EIOCBQUEUED)
3722 iov_iter_revert(from, write_len - iov_iter_count(from));
3723out:
3724 return written;
3725}
3726EXPORT_SYMBOL(generic_file_direct_write);
3727
3728ssize_t generic_perform_write(struct file *file,
3729 struct iov_iter *i, loff_t pos)
3730{
3731 struct address_space *mapping = file->f_mapping;
3732 const struct address_space_operations *a_ops = mapping->a_ops;
3733 long status = 0;
3734 ssize_t written = 0;
3735 unsigned int flags = 0;
3736
3737 do {
3738 struct page *page;
3739 unsigned long offset; /* Offset into pagecache page */
3740 unsigned long bytes; /* Bytes to write to page */
3741 size_t copied; /* Bytes copied from user */
3742 void *fsdata;
3743
3744 offset = (pos & (PAGE_SIZE - 1));
3745 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3746 iov_iter_count(i));
3747
3748again:
3749 /*
3750 * Bring in the user page that we will copy from _first_.
3751 * Otherwise there's a nasty deadlock on copying from the
3752 * same page as we're writing to, without it being marked
3753 * up-to-date.
3754 */
3755 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3756 status = -EFAULT;
3757 break;
3758 }
3759
3760 if (fatal_signal_pending(current)) {
3761 status = -EINTR;
3762 break;
3763 }
3764
3765 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3766 &page, &fsdata);
3767 if (unlikely(status < 0))
3768 break;
3769
3770 if (mapping_writably_mapped(mapping))
3771 flush_dcache_page(page);
3772
3773 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3774 flush_dcache_page(page);
3775
3776 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3777 page, fsdata);
3778 if (unlikely(status != copied)) {
3779 iov_iter_revert(i, copied - max(status, 0L));
3780 if (unlikely(status < 0))
3781 break;
3782 }
3783 cond_resched();
3784
3785 if (unlikely(status == 0)) {
3786 /*
3787 * A short copy made ->write_end() reject the
3788 * thing entirely. Might be memory poisoning
3789 * halfway through, might be a race with munmap,
3790 * might be severe memory pressure.
3791 */
3792 if (copied)
3793 bytes = copied;
3794 goto again;
3795 }
3796 pos += status;
3797 written += status;
3798
3799 balance_dirty_pages_ratelimited(mapping);
3800 } while (iov_iter_count(i));
3801
3802 return written ? written : status;
3803}
3804EXPORT_SYMBOL(generic_perform_write);
3805
3806/**
3807 * __generic_file_write_iter - write data to a file
3808 * @iocb: IO state structure (file, offset, etc.)
3809 * @from: iov_iter with data to write
3810 *
3811 * This function does all the work needed for actually writing data to a
3812 * file. It does all basic checks, removes SUID from the file, updates
3813 * modification times and calls proper subroutines depending on whether we
3814 * do direct IO or a standard buffered write.
3815 *
3816 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3817 * object which does not need locking at all.
3818 *
3819 * This function does *not* take care of syncing data in case of O_SYNC write.
3820 * A caller has to handle it. This is mainly due to the fact that we want to
3821 * avoid syncing under i_rwsem.
3822 *
3823 * Return:
3824 * * number of bytes written, even for truncated writes
3825 * * negative error code if no data has been written at all
3826 */
3827ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3828{
3829 struct file *file = iocb->ki_filp;
3830 struct address_space *mapping = file->f_mapping;
3831 struct inode *inode = mapping->host;
3832 ssize_t written = 0;
3833 ssize_t err;
3834 ssize_t status;
3835
3836 /* We can write back this queue in page reclaim */
3837 current->backing_dev_info = inode_to_bdi(inode);
3838 err = file_remove_privs(file);
3839 if (err)
3840 goto out;
3841
3842 err = file_update_time(file);
3843 if (err)
3844 goto out;
3845
3846 if (iocb->ki_flags & IOCB_DIRECT) {
3847 loff_t pos, endbyte;
3848
3849 written = generic_file_direct_write(iocb, from);
3850 /*
3851 * If the write stopped short of completing, fall back to
3852 * buffered writes. Some filesystems do this for writes to
3853 * holes, for example. For DAX files, a buffered write will
3854 * not succeed (even if it did, DAX does not handle dirty
3855 * page-cache pages correctly).
3856 */
3857 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3858 goto out;
3859
3860 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3861 /*
3862 * If generic_perform_write() returned a synchronous error
3863 * then we want to return the number of bytes which were
3864 * direct-written, or the error code if that was zero. Note
3865 * that this differs from normal direct-io semantics, which
3866 * will return -EFOO even if some bytes were written.
3867 */
3868 if (unlikely(status < 0)) {
3869 err = status;
3870 goto out;
3871 }
3872 /*
3873 * We need to ensure that the page cache pages are written to
3874 * disk and invalidated to preserve the expected O_DIRECT
3875 * semantics.
3876 */
3877 endbyte = pos + status - 1;
3878 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3879 if (err == 0) {
3880 iocb->ki_pos = endbyte + 1;
3881 written += status;
3882 invalidate_mapping_pages(mapping,
3883 pos >> PAGE_SHIFT,
3884 endbyte >> PAGE_SHIFT);
3885 } else {
3886 /*
3887 * We don't know how much we wrote, so just return
3888 * the number of bytes which were direct-written
3889 */
3890 }
3891 } else {
3892 written = generic_perform_write(file, from, iocb->ki_pos);
3893 if (likely(written > 0))
3894 iocb->ki_pos += written;
3895 }
3896out:
3897 current->backing_dev_info = NULL;
3898 return written ? written : err;
3899}
3900EXPORT_SYMBOL(__generic_file_write_iter);
3901
3902/**
3903 * generic_file_write_iter - write data to a file
3904 * @iocb: IO state structure
3905 * @from: iov_iter with data to write
3906 *
3907 * This is a wrapper around __generic_file_write_iter() to be used by most
3908 * filesystems. It takes care of syncing the file in case of O_SYNC file
3909 * and acquires i_rwsem as needed.
3910 * Return:
3911 * * negative error code if no data has been written at all of
3912 * vfs_fsync_range() failed for a synchronous write
3913 * * number of bytes written, even for truncated writes
3914 */
3915ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3916{
3917 struct file *file = iocb->ki_filp;
3918 struct inode *inode = file->f_mapping->host;
3919 ssize_t ret;
3920
3921 inode_lock(inode);
3922 ret = generic_write_checks(iocb, from);
3923 if (ret > 0)
3924 ret = __generic_file_write_iter(iocb, from);
3925 inode_unlock(inode);
3926
3927 if (ret > 0)
3928 ret = generic_write_sync(iocb, ret);
3929 return ret;
3930}
3931EXPORT_SYMBOL(generic_file_write_iter);
3932
3933/**
3934 * filemap_release_folio() - Release fs-specific metadata on a folio.
3935 * @folio: The folio which the kernel is trying to free.
3936 * @gfp: Memory allocation flags (and I/O mode).
3937 *
3938 * The address_space is trying to release any data attached to a folio
3939 * (presumably at folio->private).
3940 *
3941 * This will also be called if the private_2 flag is set on a page,
3942 * indicating that the folio has other metadata associated with it.
3943 *
3944 * The @gfp argument specifies whether I/O may be performed to release
3945 * this page (__GFP_IO), and whether the call may block
3946 * (__GFP_RECLAIM & __GFP_FS).
3947 *
3948 * Return: %true if the release was successful, otherwise %false.
3949 */
3950bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3951{
3952 struct address_space * const mapping = folio->mapping;
3953
3954 BUG_ON(!folio_test_locked(folio));
3955 if (folio_test_writeback(folio))
3956 return false;
3957
3958 if (mapping && mapping->a_ops->releasepage)
3959 return mapping->a_ops->releasepage(&folio->page, gfp);
3960 return try_to_free_buffers(&folio->page);
3961}
3962EXPORT_SYMBOL(filemap_release_folio);