Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15
16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19#endif
20
21/*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27#ifndef USER_PGTABLES_CEILING
28#define USER_PGTABLES_CEILING 0UL
29#endif
30
31/*
32 * This defines the first usable user address. Platforms
33 * can override its value with custom FIRST_USER_ADDRESS
34 * defined in their respective <asm/pgtable.h>.
35 */
36#ifndef FIRST_USER_ADDRESS
37#define FIRST_USER_ADDRESS 0UL
38#endif
39
40/*
41 * This defines the generic helper for accessing PMD page
42 * table page. Although platforms can still override this
43 * via their respective <asm/pgtable.h>.
44 */
45#ifndef pmd_pgtable
46#define pmd_pgtable(pmd) pmd_page(pmd)
47#endif
48
49/*
50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
51 *
52 * The pXx_index() functions return the index of the entry in the page
53 * table page which would control the given virtual address
54 *
55 * As these functions may be used by the same code for different levels of
56 * the page table folding, they are always available, regardless of
57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58 * because in such cases PTRS_PER_PxD equals 1.
59 */
60
61static inline unsigned long pte_index(unsigned long address)
62{
63 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
64}
65
66#ifndef pmd_index
67static inline unsigned long pmd_index(unsigned long address)
68{
69 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
70}
71#define pmd_index pmd_index
72#endif
73
74#ifndef pud_index
75static inline unsigned long pud_index(unsigned long address)
76{
77 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
78}
79#define pud_index pud_index
80#endif
81
82#ifndef pgd_index
83/* Must be a compile-time constant, so implement it as a macro */
84#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
85#endif
86
87#ifndef pte_offset_kernel
88static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
89{
90 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
91}
92#define pte_offset_kernel pte_offset_kernel
93#endif
94
95#if defined(CONFIG_HIGHPTE)
96#define pte_offset_map(dir, address) \
97 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
98 pte_index((address)))
99#define pte_unmap(pte) kunmap_atomic((pte))
100#else
101#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
102#define pte_unmap(pte) ((void)(pte)) /* NOP */
103#endif
104
105/* Find an entry in the second-level page table.. */
106#ifndef pmd_offset
107static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
108{
109 return pud_pgtable(*pud) + pmd_index(address);
110}
111#define pmd_offset pmd_offset
112#endif
113
114#ifndef pud_offset
115static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
116{
117 return p4d_pgtable(*p4d) + pud_index(address);
118}
119#define pud_offset pud_offset
120#endif
121
122static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
123{
124 return (pgd + pgd_index(address));
125};
126
127/*
128 * a shortcut to get a pgd_t in a given mm
129 */
130#ifndef pgd_offset
131#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
132#endif
133
134/*
135 * a shortcut which implies the use of the kernel's pgd, instead
136 * of a process's
137 */
138#ifndef pgd_offset_k
139#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
140#endif
141
142/*
143 * In many cases it is known that a virtual address is mapped at PMD or PTE
144 * level, so instead of traversing all the page table levels, we can get a
145 * pointer to the PMD entry in user or kernel page table or translate a virtual
146 * address to the pointer in the PTE in the kernel page tables with simple
147 * helpers.
148 */
149static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
150{
151 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
152}
153
154static inline pmd_t *pmd_off_k(unsigned long va)
155{
156 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
157}
158
159static inline pte_t *virt_to_kpte(unsigned long vaddr)
160{
161 pmd_t *pmd = pmd_off_k(vaddr);
162
163 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
164}
165
166#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
167extern int ptep_set_access_flags(struct vm_area_struct *vma,
168 unsigned long address, pte_t *ptep,
169 pte_t entry, int dirty);
170#endif
171
172#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
173#ifdef CONFIG_TRANSPARENT_HUGEPAGE
174extern int pmdp_set_access_flags(struct vm_area_struct *vma,
175 unsigned long address, pmd_t *pmdp,
176 pmd_t entry, int dirty);
177extern int pudp_set_access_flags(struct vm_area_struct *vma,
178 unsigned long address, pud_t *pudp,
179 pud_t entry, int dirty);
180#else
181static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
182 unsigned long address, pmd_t *pmdp,
183 pmd_t entry, int dirty)
184{
185 BUILD_BUG();
186 return 0;
187}
188static inline int pudp_set_access_flags(struct vm_area_struct *vma,
189 unsigned long address, pud_t *pudp,
190 pud_t entry, int dirty)
191{
192 BUILD_BUG();
193 return 0;
194}
195#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
196#endif
197
198#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
199static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
200 unsigned long address,
201 pte_t *ptep)
202{
203 pte_t pte = *ptep;
204 int r = 1;
205 if (!pte_young(pte))
206 r = 0;
207 else
208 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
209 return r;
210}
211#endif
212
213#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
215static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
216 unsigned long address,
217 pmd_t *pmdp)
218{
219 pmd_t pmd = *pmdp;
220 int r = 1;
221 if (!pmd_young(pmd))
222 r = 0;
223 else
224 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
225 return r;
226}
227#else
228static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
229 unsigned long address,
230 pmd_t *pmdp)
231{
232 BUILD_BUG();
233 return 0;
234}
235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
236#endif
237
238#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
239int ptep_clear_flush_young(struct vm_area_struct *vma,
240 unsigned long address, pte_t *ptep);
241#endif
242
243#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
244#ifdef CONFIG_TRANSPARENT_HUGEPAGE
245extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
246 unsigned long address, pmd_t *pmdp);
247#else
248/*
249 * Despite relevant to THP only, this API is called from generic rmap code
250 * under PageTransHuge(), hence needs a dummy implementation for !THP
251 */
252static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
253 unsigned long address, pmd_t *pmdp)
254{
255 BUILD_BUG();
256 return 0;
257}
258#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
259#endif
260
261#ifndef __HAVE_ARCH_PTEP_CLEAR
262static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
263 pte_t *ptep)
264{
265 pte_clear(mm, addr, ptep);
266}
267#endif
268
269#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
270static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
271 unsigned long address,
272 pte_t *ptep)
273{
274 pte_t pte = *ptep;
275 pte_clear(mm, address, ptep);
276 return pte;
277}
278#endif
279
280#ifndef __HAVE_ARCH_PTEP_GET
281static inline pte_t ptep_get(pte_t *ptep)
282{
283 return READ_ONCE(*ptep);
284}
285#endif
286
287#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
288/*
289 * WARNING: only to be used in the get_user_pages_fast() implementation.
290 *
291 * With get_user_pages_fast(), we walk down the pagetables without taking any
292 * locks. For this we would like to load the pointers atomically, but sometimes
293 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
294 * we do have is the guarantee that a PTE will only either go from not present
295 * to present, or present to not present or both -- it will not switch to a
296 * completely different present page without a TLB flush in between; something
297 * that we are blocking by holding interrupts off.
298 *
299 * Setting ptes from not present to present goes:
300 *
301 * ptep->pte_high = h;
302 * smp_wmb();
303 * ptep->pte_low = l;
304 *
305 * And present to not present goes:
306 *
307 * ptep->pte_low = 0;
308 * smp_wmb();
309 * ptep->pte_high = 0;
310 *
311 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
312 * We load pte_high *after* loading pte_low, which ensures we don't see an older
313 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
314 * picked up a changed pte high. We might have gotten rubbish values from
315 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
316 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
317 * operates on present ptes we're safe.
318 */
319static inline pte_t ptep_get_lockless(pte_t *ptep)
320{
321 pte_t pte;
322
323 do {
324 pte.pte_low = ptep->pte_low;
325 smp_rmb();
326 pte.pte_high = ptep->pte_high;
327 smp_rmb();
328 } while (unlikely(pte.pte_low != ptep->pte_low));
329
330 return pte;
331}
332#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
333/*
334 * We require that the PTE can be read atomically.
335 */
336static inline pte_t ptep_get_lockless(pte_t *ptep)
337{
338 return ptep_get(ptep);
339}
340#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
341
342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
343#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
344static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
345 unsigned long address,
346 pmd_t *pmdp)
347{
348 pmd_t pmd = *pmdp;
349 pmd_clear(pmdp);
350 return pmd;
351}
352#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
353#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
354static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
355 unsigned long address,
356 pud_t *pudp)
357{
358 pud_t pud = *pudp;
359
360 pud_clear(pudp);
361 return pud;
362}
363#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
364#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
365
366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
367#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
368static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
369 unsigned long address, pmd_t *pmdp,
370 int full)
371{
372 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
373}
374#endif
375
376#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
377static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
378 unsigned long address, pud_t *pudp,
379 int full)
380{
381 return pudp_huge_get_and_clear(mm, address, pudp);
382}
383#endif
384#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
385
386#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
387static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
388 unsigned long address, pte_t *ptep,
389 int full)
390{
391 pte_t pte;
392 pte = ptep_get_and_clear(mm, address, ptep);
393 return pte;
394}
395#endif
396
397
398/*
399 * If two threads concurrently fault at the same page, the thread that
400 * won the race updates the PTE and its local TLB/Cache. The other thread
401 * gives up, simply does nothing, and continues; on architectures where
402 * software can update TLB, local TLB can be updated here to avoid next page
403 * fault. This function updates TLB only, do nothing with cache or others.
404 * It is the difference with function update_mmu_cache.
405 */
406#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
407static inline void update_mmu_tlb(struct vm_area_struct *vma,
408 unsigned long address, pte_t *ptep)
409{
410}
411#define __HAVE_ARCH_UPDATE_MMU_TLB
412#endif
413
414/*
415 * Some architectures may be able to avoid expensive synchronization
416 * primitives when modifications are made to PTE's which are already
417 * not present, or in the process of an address space destruction.
418 */
419#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
420static inline void pte_clear_not_present_full(struct mm_struct *mm,
421 unsigned long address,
422 pte_t *ptep,
423 int full)
424{
425 pte_clear(mm, address, ptep);
426}
427#endif
428
429#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
430extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
431 unsigned long address,
432 pte_t *ptep);
433#endif
434
435#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
436extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
437 unsigned long address,
438 pmd_t *pmdp);
439extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
440 unsigned long address,
441 pud_t *pudp);
442#endif
443
444#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
445struct mm_struct;
446static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
447{
448 pte_t old_pte = *ptep;
449 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
450}
451#endif
452
453/*
454 * On some architectures hardware does not set page access bit when accessing
455 * memory page, it is responsibility of software setting this bit. It brings
456 * out extra page fault penalty to track page access bit. For optimization page
457 * access bit can be set during all page fault flow on these arches.
458 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
459 * where software maintains page access bit.
460 */
461#ifndef pte_sw_mkyoung
462static inline pte_t pte_sw_mkyoung(pte_t pte)
463{
464 return pte;
465}
466#define pte_sw_mkyoung pte_sw_mkyoung
467#endif
468
469#ifndef pte_savedwrite
470#define pte_savedwrite pte_write
471#endif
472
473#ifndef pte_mk_savedwrite
474#define pte_mk_savedwrite pte_mkwrite
475#endif
476
477#ifndef pte_clear_savedwrite
478#define pte_clear_savedwrite pte_wrprotect
479#endif
480
481#ifndef pmd_savedwrite
482#define pmd_savedwrite pmd_write
483#endif
484
485#ifndef pmd_mk_savedwrite
486#define pmd_mk_savedwrite pmd_mkwrite
487#endif
488
489#ifndef pmd_clear_savedwrite
490#define pmd_clear_savedwrite pmd_wrprotect
491#endif
492
493#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
495static inline void pmdp_set_wrprotect(struct mm_struct *mm,
496 unsigned long address, pmd_t *pmdp)
497{
498 pmd_t old_pmd = *pmdp;
499 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
500}
501#else
502static inline void pmdp_set_wrprotect(struct mm_struct *mm,
503 unsigned long address, pmd_t *pmdp)
504{
505 BUILD_BUG();
506}
507#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
508#endif
509#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
510#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
511static inline void pudp_set_wrprotect(struct mm_struct *mm,
512 unsigned long address, pud_t *pudp)
513{
514 pud_t old_pud = *pudp;
515
516 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
517}
518#else
519static inline void pudp_set_wrprotect(struct mm_struct *mm,
520 unsigned long address, pud_t *pudp)
521{
522 BUILD_BUG();
523}
524#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
525#endif
526
527#ifndef pmdp_collapse_flush
528#ifdef CONFIG_TRANSPARENT_HUGEPAGE
529extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
530 unsigned long address, pmd_t *pmdp);
531#else
532static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
533 unsigned long address,
534 pmd_t *pmdp)
535{
536 BUILD_BUG();
537 return *pmdp;
538}
539#define pmdp_collapse_flush pmdp_collapse_flush
540#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
541#endif
542
543#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
544extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
545 pgtable_t pgtable);
546#endif
547
548#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
549extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
550#endif
551
552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
553/*
554 * This is an implementation of pmdp_establish() that is only suitable for an
555 * architecture that doesn't have hardware dirty/accessed bits. In this case we
556 * can't race with CPU which sets these bits and non-atomic approach is fine.
557 */
558static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
559 unsigned long address, pmd_t *pmdp, pmd_t pmd)
560{
561 pmd_t old_pmd = *pmdp;
562 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
563 return old_pmd;
564}
565#endif
566
567#ifndef __HAVE_ARCH_PMDP_INVALIDATE
568extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
569 pmd_t *pmdp);
570#endif
571
572#ifndef __HAVE_ARCH_PTE_SAME
573static inline int pte_same(pte_t pte_a, pte_t pte_b)
574{
575 return pte_val(pte_a) == pte_val(pte_b);
576}
577#endif
578
579#ifndef __HAVE_ARCH_PTE_UNUSED
580/*
581 * Some architectures provide facilities to virtualization guests
582 * so that they can flag allocated pages as unused. This allows the
583 * host to transparently reclaim unused pages. This function returns
584 * whether the pte's page is unused.
585 */
586static inline int pte_unused(pte_t pte)
587{
588 return 0;
589}
590#endif
591
592#ifndef pte_access_permitted
593#define pte_access_permitted(pte, write) \
594 (pte_present(pte) && (!(write) || pte_write(pte)))
595#endif
596
597#ifndef pmd_access_permitted
598#define pmd_access_permitted(pmd, write) \
599 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
600#endif
601
602#ifndef pud_access_permitted
603#define pud_access_permitted(pud, write) \
604 (pud_present(pud) && (!(write) || pud_write(pud)))
605#endif
606
607#ifndef p4d_access_permitted
608#define p4d_access_permitted(p4d, write) \
609 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
610#endif
611
612#ifndef pgd_access_permitted
613#define pgd_access_permitted(pgd, write) \
614 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
615#endif
616
617#ifndef __HAVE_ARCH_PMD_SAME
618static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
619{
620 return pmd_val(pmd_a) == pmd_val(pmd_b);
621}
622
623static inline int pud_same(pud_t pud_a, pud_t pud_b)
624{
625 return pud_val(pud_a) == pud_val(pud_b);
626}
627#endif
628
629#ifndef __HAVE_ARCH_P4D_SAME
630static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
631{
632 return p4d_val(p4d_a) == p4d_val(p4d_b);
633}
634#endif
635
636#ifndef __HAVE_ARCH_PGD_SAME
637static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
638{
639 return pgd_val(pgd_a) == pgd_val(pgd_b);
640}
641#endif
642
643/*
644 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
645 * TLB flush will be required as a result of the "set". For example, use
646 * in scenarios where it is known ahead of time that the routine is
647 * setting non-present entries, or re-setting an existing entry to the
648 * same value. Otherwise, use the typical "set" helpers and flush the
649 * TLB.
650 */
651#define set_pte_safe(ptep, pte) \
652({ \
653 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
654 set_pte(ptep, pte); \
655})
656
657#define set_pmd_safe(pmdp, pmd) \
658({ \
659 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
660 set_pmd(pmdp, pmd); \
661})
662
663#define set_pud_safe(pudp, pud) \
664({ \
665 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
666 set_pud(pudp, pud); \
667})
668
669#define set_p4d_safe(p4dp, p4d) \
670({ \
671 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
672 set_p4d(p4dp, p4d); \
673})
674
675#define set_pgd_safe(pgdp, pgd) \
676({ \
677 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
678 set_pgd(pgdp, pgd); \
679})
680
681#ifndef __HAVE_ARCH_DO_SWAP_PAGE
682/*
683 * Some architectures support metadata associated with a page. When a
684 * page is being swapped out, this metadata must be saved so it can be
685 * restored when the page is swapped back in. SPARC M7 and newer
686 * processors support an ADI (Application Data Integrity) tag for the
687 * page as metadata for the page. arch_do_swap_page() can restore this
688 * metadata when a page is swapped back in.
689 */
690static inline void arch_do_swap_page(struct mm_struct *mm,
691 struct vm_area_struct *vma,
692 unsigned long addr,
693 pte_t pte, pte_t oldpte)
694{
695
696}
697#endif
698
699#ifndef __HAVE_ARCH_UNMAP_ONE
700/*
701 * Some architectures support metadata associated with a page. When a
702 * page is being swapped out, this metadata must be saved so it can be
703 * restored when the page is swapped back in. SPARC M7 and newer
704 * processors support an ADI (Application Data Integrity) tag for the
705 * page as metadata for the page. arch_unmap_one() can save this
706 * metadata on a swap-out of a page.
707 */
708static inline int arch_unmap_one(struct mm_struct *mm,
709 struct vm_area_struct *vma,
710 unsigned long addr,
711 pte_t orig_pte)
712{
713 return 0;
714}
715#endif
716
717/*
718 * Allow architectures to preserve additional metadata associated with
719 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
720 * prototypes must be defined in the arch-specific asm/pgtable.h file.
721 */
722#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
723static inline int arch_prepare_to_swap(struct page *page)
724{
725 return 0;
726}
727#endif
728
729#ifndef __HAVE_ARCH_SWAP_INVALIDATE
730static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
731{
732}
733
734static inline void arch_swap_invalidate_area(int type)
735{
736}
737#endif
738
739#ifndef __HAVE_ARCH_SWAP_RESTORE
740static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
741{
742}
743#endif
744
745#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
746#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
747#endif
748
749#ifndef __HAVE_ARCH_MOVE_PTE
750#define move_pte(pte, prot, old_addr, new_addr) (pte)
751#endif
752
753#ifndef pte_accessible
754# define pte_accessible(mm, pte) ((void)(pte), 1)
755#endif
756
757#ifndef flush_tlb_fix_spurious_fault
758#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
759#endif
760
761/*
762 * When walking page tables, get the address of the next boundary,
763 * or the end address of the range if that comes earlier. Although no
764 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
765 */
766
767#define pgd_addr_end(addr, end) \
768({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
769 (__boundary - 1 < (end) - 1)? __boundary: (end); \
770})
771
772#ifndef p4d_addr_end
773#define p4d_addr_end(addr, end) \
774({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
775 (__boundary - 1 < (end) - 1)? __boundary: (end); \
776})
777#endif
778
779#ifndef pud_addr_end
780#define pud_addr_end(addr, end) \
781({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
782 (__boundary - 1 < (end) - 1)? __boundary: (end); \
783})
784#endif
785
786#ifndef pmd_addr_end
787#define pmd_addr_end(addr, end) \
788({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
789 (__boundary - 1 < (end) - 1)? __boundary: (end); \
790})
791#endif
792
793/*
794 * When walking page tables, we usually want to skip any p?d_none entries;
795 * and any p?d_bad entries - reporting the error before resetting to none.
796 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
797 */
798void pgd_clear_bad(pgd_t *);
799
800#ifndef __PAGETABLE_P4D_FOLDED
801void p4d_clear_bad(p4d_t *);
802#else
803#define p4d_clear_bad(p4d) do { } while (0)
804#endif
805
806#ifndef __PAGETABLE_PUD_FOLDED
807void pud_clear_bad(pud_t *);
808#else
809#define pud_clear_bad(p4d) do { } while (0)
810#endif
811
812void pmd_clear_bad(pmd_t *);
813
814static inline int pgd_none_or_clear_bad(pgd_t *pgd)
815{
816 if (pgd_none(*pgd))
817 return 1;
818 if (unlikely(pgd_bad(*pgd))) {
819 pgd_clear_bad(pgd);
820 return 1;
821 }
822 return 0;
823}
824
825static inline int p4d_none_or_clear_bad(p4d_t *p4d)
826{
827 if (p4d_none(*p4d))
828 return 1;
829 if (unlikely(p4d_bad(*p4d))) {
830 p4d_clear_bad(p4d);
831 return 1;
832 }
833 return 0;
834}
835
836static inline int pud_none_or_clear_bad(pud_t *pud)
837{
838 if (pud_none(*pud))
839 return 1;
840 if (unlikely(pud_bad(*pud))) {
841 pud_clear_bad(pud);
842 return 1;
843 }
844 return 0;
845}
846
847static inline int pmd_none_or_clear_bad(pmd_t *pmd)
848{
849 if (pmd_none(*pmd))
850 return 1;
851 if (unlikely(pmd_bad(*pmd))) {
852 pmd_clear_bad(pmd);
853 return 1;
854 }
855 return 0;
856}
857
858static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
859 unsigned long addr,
860 pte_t *ptep)
861{
862 /*
863 * Get the current pte state, but zero it out to make it
864 * non-present, preventing the hardware from asynchronously
865 * updating it.
866 */
867 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
868}
869
870static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
871 unsigned long addr,
872 pte_t *ptep, pte_t pte)
873{
874 /*
875 * The pte is non-present, so there's no hardware state to
876 * preserve.
877 */
878 set_pte_at(vma->vm_mm, addr, ptep, pte);
879}
880
881#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
882/*
883 * Start a pte protection read-modify-write transaction, which
884 * protects against asynchronous hardware modifications to the pte.
885 * The intention is not to prevent the hardware from making pte
886 * updates, but to prevent any updates it may make from being lost.
887 *
888 * This does not protect against other software modifications of the
889 * pte; the appropriate pte lock must be held over the transaction.
890 *
891 * Note that this interface is intended to be batchable, meaning that
892 * ptep_modify_prot_commit may not actually update the pte, but merely
893 * queue the update to be done at some later time. The update must be
894 * actually committed before the pte lock is released, however.
895 */
896static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
897 unsigned long addr,
898 pte_t *ptep)
899{
900 return __ptep_modify_prot_start(vma, addr, ptep);
901}
902
903/*
904 * Commit an update to a pte, leaving any hardware-controlled bits in
905 * the PTE unmodified.
906 */
907static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
908 unsigned long addr,
909 pte_t *ptep, pte_t old_pte, pte_t pte)
910{
911 __ptep_modify_prot_commit(vma, addr, ptep, pte);
912}
913#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
914#endif /* CONFIG_MMU */
915
916/*
917 * No-op macros that just return the current protection value. Defined here
918 * because these macros can be used even if CONFIG_MMU is not defined.
919 */
920
921#ifndef pgprot_nx
922#define pgprot_nx(prot) (prot)
923#endif
924
925#ifndef pgprot_noncached
926#define pgprot_noncached(prot) (prot)
927#endif
928
929#ifndef pgprot_writecombine
930#define pgprot_writecombine pgprot_noncached
931#endif
932
933#ifndef pgprot_writethrough
934#define pgprot_writethrough pgprot_noncached
935#endif
936
937#ifndef pgprot_device
938#define pgprot_device pgprot_noncached
939#endif
940
941#ifndef pgprot_mhp
942#define pgprot_mhp(prot) (prot)
943#endif
944
945#ifdef CONFIG_MMU
946#ifndef pgprot_modify
947#define pgprot_modify pgprot_modify
948static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
949{
950 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
951 newprot = pgprot_noncached(newprot);
952 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
953 newprot = pgprot_writecombine(newprot);
954 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
955 newprot = pgprot_device(newprot);
956 return newprot;
957}
958#endif
959#endif /* CONFIG_MMU */
960
961#ifndef pgprot_encrypted
962#define pgprot_encrypted(prot) (prot)
963#endif
964
965#ifndef pgprot_decrypted
966#define pgprot_decrypted(prot) (prot)
967#endif
968
969/*
970 * A facility to provide lazy MMU batching. This allows PTE updates and
971 * page invalidations to be delayed until a call to leave lazy MMU mode
972 * is issued. Some architectures may benefit from doing this, and it is
973 * beneficial for both shadow and direct mode hypervisors, which may batch
974 * the PTE updates which happen during this window. Note that using this
975 * interface requires that read hazards be removed from the code. A read
976 * hazard could result in the direct mode hypervisor case, since the actual
977 * write to the page tables may not yet have taken place, so reads though
978 * a raw PTE pointer after it has been modified are not guaranteed to be
979 * up to date. This mode can only be entered and left under the protection of
980 * the page table locks for all page tables which may be modified. In the UP
981 * case, this is required so that preemption is disabled, and in the SMP case,
982 * it must synchronize the delayed page table writes properly on other CPUs.
983 */
984#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
985#define arch_enter_lazy_mmu_mode() do {} while (0)
986#define arch_leave_lazy_mmu_mode() do {} while (0)
987#define arch_flush_lazy_mmu_mode() do {} while (0)
988#endif
989
990/*
991 * A facility to provide batching of the reload of page tables and
992 * other process state with the actual context switch code for
993 * paravirtualized guests. By convention, only one of the batched
994 * update (lazy) modes (CPU, MMU) should be active at any given time,
995 * entry should never be nested, and entry and exits should always be
996 * paired. This is for sanity of maintaining and reasoning about the
997 * kernel code. In this case, the exit (end of the context switch) is
998 * in architecture-specific code, and so doesn't need a generic
999 * definition.
1000 */
1001#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1002#define arch_start_context_switch(prev) do {} while (0)
1003#endif
1004
1005#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1006#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1007static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1008{
1009 return pmd;
1010}
1011
1012static inline int pmd_swp_soft_dirty(pmd_t pmd)
1013{
1014 return 0;
1015}
1016
1017static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1018{
1019 return pmd;
1020}
1021#endif
1022#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1023static inline int pte_soft_dirty(pte_t pte)
1024{
1025 return 0;
1026}
1027
1028static inline int pmd_soft_dirty(pmd_t pmd)
1029{
1030 return 0;
1031}
1032
1033static inline pte_t pte_mksoft_dirty(pte_t pte)
1034{
1035 return pte;
1036}
1037
1038static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1039{
1040 return pmd;
1041}
1042
1043static inline pte_t pte_clear_soft_dirty(pte_t pte)
1044{
1045 return pte;
1046}
1047
1048static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1049{
1050 return pmd;
1051}
1052
1053static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1054{
1055 return pte;
1056}
1057
1058static inline int pte_swp_soft_dirty(pte_t pte)
1059{
1060 return 0;
1061}
1062
1063static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1064{
1065 return pte;
1066}
1067
1068static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1069{
1070 return pmd;
1071}
1072
1073static inline int pmd_swp_soft_dirty(pmd_t pmd)
1074{
1075 return 0;
1076}
1077
1078static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1079{
1080 return pmd;
1081}
1082#endif
1083
1084#ifndef __HAVE_PFNMAP_TRACKING
1085/*
1086 * Interfaces that can be used by architecture code to keep track of
1087 * memory type of pfn mappings specified by the remap_pfn_range,
1088 * vmf_insert_pfn.
1089 */
1090
1091/*
1092 * track_pfn_remap is called when a _new_ pfn mapping is being established
1093 * by remap_pfn_range() for physical range indicated by pfn and size.
1094 */
1095static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1096 unsigned long pfn, unsigned long addr,
1097 unsigned long size)
1098{
1099 return 0;
1100}
1101
1102/*
1103 * track_pfn_insert is called when a _new_ single pfn is established
1104 * by vmf_insert_pfn().
1105 */
1106static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1107 pfn_t pfn)
1108{
1109}
1110
1111/*
1112 * track_pfn_copy is called when vma that is covering the pfnmap gets
1113 * copied through copy_page_range().
1114 */
1115static inline int track_pfn_copy(struct vm_area_struct *vma)
1116{
1117 return 0;
1118}
1119
1120/*
1121 * untrack_pfn is called while unmapping a pfnmap for a region.
1122 * untrack can be called for a specific region indicated by pfn and size or
1123 * can be for the entire vma (in which case pfn, size are zero).
1124 */
1125static inline void untrack_pfn(struct vm_area_struct *vma,
1126 unsigned long pfn, unsigned long size)
1127{
1128}
1129
1130/*
1131 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1132 */
1133static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1134{
1135}
1136#else
1137extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1138 unsigned long pfn, unsigned long addr,
1139 unsigned long size);
1140extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1141 pfn_t pfn);
1142extern int track_pfn_copy(struct vm_area_struct *vma);
1143extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1144 unsigned long size);
1145extern void untrack_pfn_moved(struct vm_area_struct *vma);
1146#endif
1147
1148#ifdef CONFIG_MMU
1149#ifdef __HAVE_COLOR_ZERO_PAGE
1150static inline int is_zero_pfn(unsigned long pfn)
1151{
1152 extern unsigned long zero_pfn;
1153 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1154 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1155}
1156
1157#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1158
1159#else
1160static inline int is_zero_pfn(unsigned long pfn)
1161{
1162 extern unsigned long zero_pfn;
1163 return pfn == zero_pfn;
1164}
1165
1166static inline unsigned long my_zero_pfn(unsigned long addr)
1167{
1168 extern unsigned long zero_pfn;
1169 return zero_pfn;
1170}
1171#endif
1172#else
1173static inline int is_zero_pfn(unsigned long pfn)
1174{
1175 return 0;
1176}
1177
1178static inline unsigned long my_zero_pfn(unsigned long addr)
1179{
1180 return 0;
1181}
1182#endif /* CONFIG_MMU */
1183
1184#ifdef CONFIG_MMU
1185
1186#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1187static inline int pmd_trans_huge(pmd_t pmd)
1188{
1189 return 0;
1190}
1191#ifndef pmd_write
1192static inline int pmd_write(pmd_t pmd)
1193{
1194 BUG();
1195 return 0;
1196}
1197#endif /* pmd_write */
1198#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1199
1200#ifndef pud_write
1201static inline int pud_write(pud_t pud)
1202{
1203 BUG();
1204 return 0;
1205}
1206#endif /* pud_write */
1207
1208#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1209static inline int pmd_devmap(pmd_t pmd)
1210{
1211 return 0;
1212}
1213static inline int pud_devmap(pud_t pud)
1214{
1215 return 0;
1216}
1217static inline int pgd_devmap(pgd_t pgd)
1218{
1219 return 0;
1220}
1221#endif
1222
1223#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1224 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1225 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1226static inline int pud_trans_huge(pud_t pud)
1227{
1228 return 0;
1229}
1230#endif
1231
1232/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1233static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1234{
1235 pud_t pudval = READ_ONCE(*pud);
1236
1237 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1238 return 1;
1239 if (unlikely(pud_bad(pudval))) {
1240 pud_clear_bad(pud);
1241 return 1;
1242 }
1243 return 0;
1244}
1245
1246/* See pmd_trans_unstable for discussion. */
1247static inline int pud_trans_unstable(pud_t *pud)
1248{
1249#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1250 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1251 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1252#else
1253 return 0;
1254#endif
1255}
1256
1257#ifndef pmd_read_atomic
1258static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1259{
1260 /*
1261 * Depend on compiler for an atomic pmd read. NOTE: this is
1262 * only going to work, if the pmdval_t isn't larger than
1263 * an unsigned long.
1264 */
1265 return *pmdp;
1266}
1267#endif
1268
1269#ifndef arch_needs_pgtable_deposit
1270#define arch_needs_pgtable_deposit() (false)
1271#endif
1272/*
1273 * This function is meant to be used by sites walking pagetables with
1274 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1275 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1276 * into a null pmd and the transhuge page fault can convert a null pmd
1277 * into an hugepmd or into a regular pmd (if the hugepage allocation
1278 * fails). While holding the mmap_lock in read mode the pmd becomes
1279 * stable and stops changing under us only if it's not null and not a
1280 * transhuge pmd. When those races occurs and this function makes a
1281 * difference vs the standard pmd_none_or_clear_bad, the result is
1282 * undefined so behaving like if the pmd was none is safe (because it
1283 * can return none anyway). The compiler level barrier() is critically
1284 * important to compute the two checks atomically on the same pmdval.
1285 *
1286 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1287 * care of reading the pmd atomically to avoid SMP race conditions
1288 * against pmd_populate() when the mmap_lock is hold for reading by the
1289 * caller (a special atomic read not done by "gcc" as in the generic
1290 * version above, is also needed when THP is disabled because the page
1291 * fault can populate the pmd from under us).
1292 */
1293static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1294{
1295 pmd_t pmdval = pmd_read_atomic(pmd);
1296 /*
1297 * The barrier will stabilize the pmdval in a register or on
1298 * the stack so that it will stop changing under the code.
1299 *
1300 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1301 * pmd_read_atomic is allowed to return a not atomic pmdval
1302 * (for example pointing to an hugepage that has never been
1303 * mapped in the pmd). The below checks will only care about
1304 * the low part of the pmd with 32bit PAE x86 anyway, with the
1305 * exception of pmd_none(). So the important thing is that if
1306 * the low part of the pmd is found null, the high part will
1307 * be also null or the pmd_none() check below would be
1308 * confused.
1309 */
1310#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1311 barrier();
1312#endif
1313 /*
1314 * !pmd_present() checks for pmd migration entries
1315 *
1316 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1317 * But using that requires moving current function and pmd_trans_unstable()
1318 * to linux/swapops.h to resolve dependency, which is too much code move.
1319 *
1320 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1321 * because !pmd_present() pages can only be under migration not swapped
1322 * out.
1323 *
1324 * pmd_none() is preserved for future condition checks on pmd migration
1325 * entries and not confusing with this function name, although it is
1326 * redundant with !pmd_present().
1327 */
1328 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1329 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1330 return 1;
1331 if (unlikely(pmd_bad(pmdval))) {
1332 pmd_clear_bad(pmd);
1333 return 1;
1334 }
1335 return 0;
1336}
1337
1338/*
1339 * This is a noop if Transparent Hugepage Support is not built into
1340 * the kernel. Otherwise it is equivalent to
1341 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1342 * places that already verified the pmd is not none and they want to
1343 * walk ptes while holding the mmap sem in read mode (write mode don't
1344 * need this). If THP is not enabled, the pmd can't go away under the
1345 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1346 * run a pmd_trans_unstable before walking the ptes after
1347 * split_huge_pmd returns (because it may have run when the pmd become
1348 * null, but then a page fault can map in a THP and not a regular page).
1349 */
1350static inline int pmd_trans_unstable(pmd_t *pmd)
1351{
1352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1354#else
1355 return 0;
1356#endif
1357}
1358
1359/*
1360 * the ordering of these checks is important for pmds with _page_devmap set.
1361 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1362 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1363 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1364 */
1365static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1366{
1367 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1368}
1369
1370#ifndef CONFIG_NUMA_BALANCING
1371/*
1372 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1373 * the only case the kernel cares is for NUMA balancing and is only ever set
1374 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1375 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1376 * is the responsibility of the caller to distinguish between PROT_NONE
1377 * protections and NUMA hinting fault protections.
1378 */
1379static inline int pte_protnone(pte_t pte)
1380{
1381 return 0;
1382}
1383
1384static inline int pmd_protnone(pmd_t pmd)
1385{
1386 return 0;
1387}
1388#endif /* CONFIG_NUMA_BALANCING */
1389
1390#endif /* CONFIG_MMU */
1391
1392#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1393
1394#ifndef __PAGETABLE_P4D_FOLDED
1395int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1396int p4d_clear_huge(p4d_t *p4d);
1397#else
1398static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1399{
1400 return 0;
1401}
1402static inline int p4d_clear_huge(p4d_t *p4d)
1403{
1404 return 0;
1405}
1406#endif /* !__PAGETABLE_P4D_FOLDED */
1407
1408int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1409int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1410int pud_clear_huge(pud_t *pud);
1411int pmd_clear_huge(pmd_t *pmd);
1412int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1413int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1414int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1415#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1416static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1417{
1418 return 0;
1419}
1420static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1421{
1422 return 0;
1423}
1424static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1425{
1426 return 0;
1427}
1428static inline int p4d_clear_huge(p4d_t *p4d)
1429{
1430 return 0;
1431}
1432static inline int pud_clear_huge(pud_t *pud)
1433{
1434 return 0;
1435}
1436static inline int pmd_clear_huge(pmd_t *pmd)
1437{
1438 return 0;
1439}
1440static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1441{
1442 return 0;
1443}
1444static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1445{
1446 return 0;
1447}
1448static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1449{
1450 return 0;
1451}
1452#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1453
1454#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1455#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1456/*
1457 * ARCHes with special requirements for evicting THP backing TLB entries can
1458 * implement this. Otherwise also, it can help optimize normal TLB flush in
1459 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1460 * entire TLB if flush span is greater than a threshold, which will
1461 * likely be true for a single huge page. Thus a single THP flush will
1462 * invalidate the entire TLB which is not desirable.
1463 * e.g. see arch/arc: flush_pmd_tlb_range
1464 */
1465#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1466#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1467#else
1468#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1469#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1470#endif
1471#endif
1472
1473struct file;
1474int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1475 unsigned long size, pgprot_t *vma_prot);
1476
1477#ifndef CONFIG_X86_ESPFIX64
1478static inline void init_espfix_bsp(void) { }
1479#endif
1480
1481extern void __init pgtable_cache_init(void);
1482
1483#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1484static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1485{
1486 return true;
1487}
1488
1489static inline bool arch_has_pfn_modify_check(void)
1490{
1491 return false;
1492}
1493#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1494
1495/*
1496 * Architecture PAGE_KERNEL_* fallbacks
1497 *
1498 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1499 * because they really don't support them, or the port needs to be updated to
1500 * reflect the required functionality. Below are a set of relatively safe
1501 * fallbacks, as best effort, which we can count on in lieu of the architectures
1502 * not defining them on their own yet.
1503 */
1504
1505#ifndef PAGE_KERNEL_RO
1506# define PAGE_KERNEL_RO PAGE_KERNEL
1507#endif
1508
1509#ifndef PAGE_KERNEL_EXEC
1510# define PAGE_KERNEL_EXEC PAGE_KERNEL
1511#endif
1512
1513/*
1514 * Page Table Modification bits for pgtbl_mod_mask.
1515 *
1516 * These are used by the p?d_alloc_track*() set of functions an in the generic
1517 * vmalloc/ioremap code to track at which page-table levels entries have been
1518 * modified. Based on that the code can better decide when vmalloc and ioremap
1519 * mapping changes need to be synchronized to other page-tables in the system.
1520 */
1521#define __PGTBL_PGD_MODIFIED 0
1522#define __PGTBL_P4D_MODIFIED 1
1523#define __PGTBL_PUD_MODIFIED 2
1524#define __PGTBL_PMD_MODIFIED 3
1525#define __PGTBL_PTE_MODIFIED 4
1526
1527#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1528#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1529#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1530#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1531#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1532
1533/* Page-Table Modification Mask */
1534typedef unsigned int pgtbl_mod_mask;
1535
1536#endif /* !__ASSEMBLY__ */
1537
1538#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1539#ifdef CONFIG_PHYS_ADDR_T_64BIT
1540/*
1541 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1542 * with physical address space extension, but falls back to
1543 * BITS_PER_LONG otherwise.
1544 */
1545#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1546#else
1547#define MAX_POSSIBLE_PHYSMEM_BITS 32
1548#endif
1549#endif
1550
1551#ifndef has_transparent_hugepage
1552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1553#define has_transparent_hugepage() 1
1554#else
1555#define has_transparent_hugepage() 0
1556#endif
1557#endif
1558
1559/*
1560 * On some architectures it depends on the mm if the p4d/pud or pmd
1561 * layer of the page table hierarchy is folded or not.
1562 */
1563#ifndef mm_p4d_folded
1564#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1565#endif
1566
1567#ifndef mm_pud_folded
1568#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1569#endif
1570
1571#ifndef mm_pmd_folded
1572#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1573#endif
1574
1575#ifndef p4d_offset_lockless
1576#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1577#endif
1578#ifndef pud_offset_lockless
1579#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1580#endif
1581#ifndef pmd_offset_lockless
1582#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1583#endif
1584
1585/*
1586 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1587 * This differs from p?d_huge() by the fact that they are always available (if
1588 * the architecture supports large pages at the appropriate level) even
1589 * if CONFIG_HUGETLB_PAGE is not defined.
1590 * Only meaningful when called on a valid entry.
1591 */
1592#ifndef pgd_leaf
1593#define pgd_leaf(x) 0
1594#endif
1595#ifndef p4d_leaf
1596#define p4d_leaf(x) 0
1597#endif
1598#ifndef pud_leaf
1599#define pud_leaf(x) 0
1600#endif
1601#ifndef pmd_leaf
1602#define pmd_leaf(x) 0
1603#endif
1604
1605#ifndef pgd_leaf_size
1606#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1607#endif
1608#ifndef p4d_leaf_size
1609#define p4d_leaf_size(x) P4D_SIZE
1610#endif
1611#ifndef pud_leaf_size
1612#define pud_leaf_size(x) PUD_SIZE
1613#endif
1614#ifndef pmd_leaf_size
1615#define pmd_leaf_size(x) PMD_SIZE
1616#endif
1617#ifndef pte_leaf_size
1618#define pte_leaf_size(x) PAGE_SIZE
1619#endif
1620
1621/*
1622 * Some architectures have MMUs that are configurable or selectable at boot
1623 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1624 * helps to have a static maximum value.
1625 */
1626
1627#ifndef MAX_PTRS_PER_PTE
1628#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1629#endif
1630
1631#ifndef MAX_PTRS_PER_PMD
1632#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1633#endif
1634
1635#ifndef MAX_PTRS_PER_PUD
1636#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1637#endif
1638
1639#ifndef MAX_PTRS_PER_P4D
1640#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1641#endif
1642
1643#endif /* _LINUX_PGTABLE_H */