Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/hashtable.h>
33#include <linux/interval_tree.h>
34#include <linux/rbtree.h>
35#include <linux/xarray.h>
36#include <asm/signal.h>
37
38#include <linux/kvm.h>
39#include <linux/kvm_para.h>
40
41#include <linux/kvm_types.h>
42
43#include <asm/kvm_host.h>
44#include <linux/kvm_dirty_ring.h>
45
46#ifndef KVM_MAX_VCPU_IDS
47#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
48#endif
49
50/*
51 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
52 * in kvm, other bits are visible for userspace which are defined in
53 * include/linux/kvm_h.
54 */
55#define KVM_MEMSLOT_INVALID (1UL << 16)
56
57/*
58 * Bit 63 of the memslot generation number is an "update in-progress flag",
59 * e.g. is temporarily set for the duration of install_new_memslots().
60 * This flag effectively creates a unique generation number that is used to
61 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
62 * i.e. may (or may not) have come from the previous memslots generation.
63 *
64 * This is necessary because the actual memslots update is not atomic with
65 * respect to the generation number update. Updating the generation number
66 * first would allow a vCPU to cache a spte from the old memslots using the
67 * new generation number, and updating the generation number after switching
68 * to the new memslots would allow cache hits using the old generation number
69 * to reference the defunct memslots.
70 *
71 * This mechanism is used to prevent getting hits in KVM's caches while a
72 * memslot update is in-progress, and to prevent cache hits *after* updating
73 * the actual generation number against accesses that were inserted into the
74 * cache *before* the memslots were updated.
75 */
76#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
77
78/* Two fragments for cross MMIO pages. */
79#define KVM_MAX_MMIO_FRAGMENTS 2
80
81#ifndef KVM_ADDRESS_SPACE_NUM
82#define KVM_ADDRESS_SPACE_NUM 1
83#endif
84
85/*
86 * For the normal pfn, the highest 12 bits should be zero,
87 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
88 * mask bit 63 to indicate the noslot pfn.
89 */
90#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
91#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
92#define KVM_PFN_NOSLOT (0x1ULL << 63)
93
94#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
95#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
96#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
97
98/*
99 * error pfns indicate that the gfn is in slot but faild to
100 * translate it to pfn on host.
101 */
102static inline bool is_error_pfn(kvm_pfn_t pfn)
103{
104 return !!(pfn & KVM_PFN_ERR_MASK);
105}
106
107/*
108 * error_noslot pfns indicate that the gfn can not be
109 * translated to pfn - it is not in slot or failed to
110 * translate it to pfn.
111 */
112static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
113{
114 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
115}
116
117/* noslot pfn indicates that the gfn is not in slot. */
118static inline bool is_noslot_pfn(kvm_pfn_t pfn)
119{
120 return pfn == KVM_PFN_NOSLOT;
121}
122
123/*
124 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
125 * provide own defines and kvm_is_error_hva
126 */
127#ifndef KVM_HVA_ERR_BAD
128
129#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
130#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
131
132static inline bool kvm_is_error_hva(unsigned long addr)
133{
134 return addr >= PAGE_OFFSET;
135}
136
137#endif
138
139#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
140
141static inline bool is_error_page(struct page *page)
142{
143 return IS_ERR(page);
144}
145
146#define KVM_REQUEST_MASK GENMASK(7,0)
147#define KVM_REQUEST_NO_WAKEUP BIT(8)
148#define KVM_REQUEST_WAIT BIT(9)
149/*
150 * Architecture-independent vcpu->requests bit members
151 * Bits 4-7 are reserved for more arch-independent bits.
152 */
153#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
154#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
155#define KVM_REQ_UNBLOCK 2
156#define KVM_REQ_UNHALT 3
157#define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158#define KVM_REQ_GPC_INVALIDATE (5 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
159#define KVM_REQUEST_ARCH_BASE 8
160
161#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
162 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
163 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
164})
165#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
166
167bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
168 unsigned long *vcpu_bitmap);
169bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
170bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
171 struct kvm_vcpu *except);
172bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
173 unsigned long *vcpu_bitmap);
174
175#define KVM_USERSPACE_IRQ_SOURCE_ID 0
176#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
177
178extern struct mutex kvm_lock;
179extern struct list_head vm_list;
180
181struct kvm_io_range {
182 gpa_t addr;
183 int len;
184 struct kvm_io_device *dev;
185};
186
187#define NR_IOBUS_DEVS 1000
188
189struct kvm_io_bus {
190 int dev_count;
191 int ioeventfd_count;
192 struct kvm_io_range range[];
193};
194
195enum kvm_bus {
196 KVM_MMIO_BUS,
197 KVM_PIO_BUS,
198 KVM_VIRTIO_CCW_NOTIFY_BUS,
199 KVM_FAST_MMIO_BUS,
200 KVM_NR_BUSES
201};
202
203int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
204 int len, const void *val);
205int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
206 gpa_t addr, int len, const void *val, long cookie);
207int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
208 int len, void *val);
209int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
210 int len, struct kvm_io_device *dev);
211int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
212 struct kvm_io_device *dev);
213struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
214 gpa_t addr);
215
216#ifdef CONFIG_KVM_ASYNC_PF
217struct kvm_async_pf {
218 struct work_struct work;
219 struct list_head link;
220 struct list_head queue;
221 struct kvm_vcpu *vcpu;
222 struct mm_struct *mm;
223 gpa_t cr2_or_gpa;
224 unsigned long addr;
225 struct kvm_arch_async_pf arch;
226 bool wakeup_all;
227 bool notpresent_injected;
228};
229
230void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
231void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
232bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
233 unsigned long hva, struct kvm_arch_async_pf *arch);
234int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
235#endif
236
237#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
238struct kvm_gfn_range {
239 struct kvm_memory_slot *slot;
240 gfn_t start;
241 gfn_t end;
242 pte_t pte;
243 bool may_block;
244};
245bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
246bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
247bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
248bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
249#endif
250
251enum {
252 OUTSIDE_GUEST_MODE,
253 IN_GUEST_MODE,
254 EXITING_GUEST_MODE,
255 READING_SHADOW_PAGE_TABLES,
256};
257
258#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
259
260struct kvm_host_map {
261 /*
262 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
263 * a 'struct page' for it. When using mem= kernel parameter some memory
264 * can be used as guest memory but they are not managed by host
265 * kernel).
266 * If 'pfn' is not managed by the host kernel, this field is
267 * initialized to KVM_UNMAPPED_PAGE.
268 */
269 struct page *page;
270 void *hva;
271 kvm_pfn_t pfn;
272 kvm_pfn_t gfn;
273};
274
275/*
276 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
277 * directly to check for that.
278 */
279static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
280{
281 return !!map->hva;
282}
283
284static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
285{
286 return single_task_running() && !need_resched() && ktime_before(cur, stop);
287}
288
289/*
290 * Sometimes a large or cross-page mmio needs to be broken up into separate
291 * exits for userspace servicing.
292 */
293struct kvm_mmio_fragment {
294 gpa_t gpa;
295 void *data;
296 unsigned len;
297};
298
299struct kvm_vcpu {
300 struct kvm *kvm;
301#ifdef CONFIG_PREEMPT_NOTIFIERS
302 struct preempt_notifier preempt_notifier;
303#endif
304 int cpu;
305 int vcpu_id; /* id given by userspace at creation */
306 int vcpu_idx; /* index in kvm->vcpus array */
307 int srcu_idx;
308 int mode;
309 u64 requests;
310 unsigned long guest_debug;
311
312 struct mutex mutex;
313 struct kvm_run *run;
314
315#ifndef __KVM_HAVE_ARCH_WQP
316 struct rcuwait wait;
317#endif
318 struct pid __rcu *pid;
319 int sigset_active;
320 sigset_t sigset;
321 unsigned int halt_poll_ns;
322 bool valid_wakeup;
323
324#ifdef CONFIG_HAS_IOMEM
325 int mmio_needed;
326 int mmio_read_completed;
327 int mmio_is_write;
328 int mmio_cur_fragment;
329 int mmio_nr_fragments;
330 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
331#endif
332
333#ifdef CONFIG_KVM_ASYNC_PF
334 struct {
335 u32 queued;
336 struct list_head queue;
337 struct list_head done;
338 spinlock_t lock;
339 } async_pf;
340#endif
341
342#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
343 /*
344 * Cpu relax intercept or pause loop exit optimization
345 * in_spin_loop: set when a vcpu does a pause loop exit
346 * or cpu relax intercepted.
347 * dy_eligible: indicates whether vcpu is eligible for directed yield.
348 */
349 struct {
350 bool in_spin_loop;
351 bool dy_eligible;
352 } spin_loop;
353#endif
354 bool preempted;
355 bool ready;
356 struct kvm_vcpu_arch arch;
357 struct kvm_vcpu_stat stat;
358 char stats_id[KVM_STATS_NAME_SIZE];
359 struct kvm_dirty_ring dirty_ring;
360
361 /*
362 * The most recently used memslot by this vCPU and the slots generation
363 * for which it is valid.
364 * No wraparound protection is needed since generations won't overflow in
365 * thousands of years, even assuming 1M memslot operations per second.
366 */
367 struct kvm_memory_slot *last_used_slot;
368 u64 last_used_slot_gen;
369};
370
371/* must be called with irqs disabled */
372static __always_inline void guest_enter_irqoff(void)
373{
374 /*
375 * This is running in ioctl context so its safe to assume that it's the
376 * stime pending cputime to flush.
377 */
378 instrumentation_begin();
379 vtime_account_guest_enter();
380 instrumentation_end();
381
382 /*
383 * KVM does not hold any references to rcu protected data when it
384 * switches CPU into a guest mode. In fact switching to a guest mode
385 * is very similar to exiting to userspace from rcu point of view. In
386 * addition CPU may stay in a guest mode for quite a long time (up to
387 * one time slice). Lets treat guest mode as quiescent state, just like
388 * we do with user-mode execution.
389 */
390 if (!context_tracking_guest_enter()) {
391 instrumentation_begin();
392 rcu_virt_note_context_switch(smp_processor_id());
393 instrumentation_end();
394 }
395}
396
397static __always_inline void guest_exit_irqoff(void)
398{
399 context_tracking_guest_exit();
400
401 instrumentation_begin();
402 /* Flush the guest cputime we spent on the guest */
403 vtime_account_guest_exit();
404 instrumentation_end();
405}
406
407static inline void guest_exit(void)
408{
409 unsigned long flags;
410
411 local_irq_save(flags);
412 guest_exit_irqoff();
413 local_irq_restore(flags);
414}
415
416static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
417{
418 /*
419 * The memory barrier ensures a previous write to vcpu->requests cannot
420 * be reordered with the read of vcpu->mode. It pairs with the general
421 * memory barrier following the write of vcpu->mode in VCPU RUN.
422 */
423 smp_mb__before_atomic();
424 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
425}
426
427/*
428 * Some of the bitops functions do not support too long bitmaps.
429 * This number must be determined not to exceed such limits.
430 */
431#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
432
433/*
434 * Since at idle each memslot belongs to two memslot sets it has to contain
435 * two embedded nodes for each data structure that it forms a part of.
436 *
437 * Two memslot sets (one active and one inactive) are necessary so the VM
438 * continues to run on one memslot set while the other is being modified.
439 *
440 * These two memslot sets normally point to the same set of memslots.
441 * They can, however, be desynchronized when performing a memslot management
442 * operation by replacing the memslot to be modified by its copy.
443 * After the operation is complete, both memslot sets once again point to
444 * the same, common set of memslot data.
445 *
446 * The memslots themselves are independent of each other so they can be
447 * individually added or deleted.
448 */
449struct kvm_memory_slot {
450 struct hlist_node id_node[2];
451 struct interval_tree_node hva_node[2];
452 struct rb_node gfn_node[2];
453 gfn_t base_gfn;
454 unsigned long npages;
455 unsigned long *dirty_bitmap;
456 struct kvm_arch_memory_slot arch;
457 unsigned long userspace_addr;
458 u32 flags;
459 short id;
460 u16 as_id;
461};
462
463static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
464{
465 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
466}
467
468static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
469{
470 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
471}
472
473static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
474{
475 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
476
477 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
478}
479
480#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
481#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
482#endif
483
484struct kvm_s390_adapter_int {
485 u64 ind_addr;
486 u64 summary_addr;
487 u64 ind_offset;
488 u32 summary_offset;
489 u32 adapter_id;
490};
491
492struct kvm_hv_sint {
493 u32 vcpu;
494 u32 sint;
495};
496
497struct kvm_xen_evtchn {
498 u32 port;
499 u32 vcpu;
500 u32 priority;
501};
502
503struct kvm_kernel_irq_routing_entry {
504 u32 gsi;
505 u32 type;
506 int (*set)(struct kvm_kernel_irq_routing_entry *e,
507 struct kvm *kvm, int irq_source_id, int level,
508 bool line_status);
509 union {
510 struct {
511 unsigned irqchip;
512 unsigned pin;
513 } irqchip;
514 struct {
515 u32 address_lo;
516 u32 address_hi;
517 u32 data;
518 u32 flags;
519 u32 devid;
520 } msi;
521 struct kvm_s390_adapter_int adapter;
522 struct kvm_hv_sint hv_sint;
523 struct kvm_xen_evtchn xen_evtchn;
524 };
525 struct hlist_node link;
526};
527
528#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
529struct kvm_irq_routing_table {
530 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
531 u32 nr_rt_entries;
532 /*
533 * Array indexed by gsi. Each entry contains list of irq chips
534 * the gsi is connected to.
535 */
536 struct hlist_head map[];
537};
538#endif
539
540#ifndef KVM_PRIVATE_MEM_SLOTS
541#define KVM_PRIVATE_MEM_SLOTS 0
542#endif
543
544#define KVM_MEM_SLOTS_NUM SHRT_MAX
545#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
546
547#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
548static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
549{
550 return 0;
551}
552#endif
553
554struct kvm_memslots {
555 u64 generation;
556 atomic_long_t last_used_slot;
557 struct rb_root_cached hva_tree;
558 struct rb_root gfn_tree;
559 /*
560 * The mapping table from slot id to memslot.
561 *
562 * 7-bit bucket count matches the size of the old id to index array for
563 * 512 slots, while giving good performance with this slot count.
564 * Higher bucket counts bring only small performance improvements but
565 * always result in higher memory usage (even for lower memslot counts).
566 */
567 DECLARE_HASHTABLE(id_hash, 7);
568 int node_idx;
569};
570
571struct kvm {
572#ifdef KVM_HAVE_MMU_RWLOCK
573 rwlock_t mmu_lock;
574#else
575 spinlock_t mmu_lock;
576#endif /* KVM_HAVE_MMU_RWLOCK */
577
578 struct mutex slots_lock;
579
580 /*
581 * Protects the arch-specific fields of struct kvm_memory_slots in
582 * use by the VM. To be used under the slots_lock (above) or in a
583 * kvm->srcu critical section where acquiring the slots_lock would
584 * lead to deadlock with the synchronize_srcu in
585 * install_new_memslots.
586 */
587 struct mutex slots_arch_lock;
588 struct mm_struct *mm; /* userspace tied to this vm */
589 unsigned long nr_memslot_pages;
590 /* The two memslot sets - active and inactive (per address space) */
591 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
592 /* The current active memslot set for each address space */
593 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
594 struct xarray vcpu_array;
595
596 /* Used to wait for completion of MMU notifiers. */
597 spinlock_t mn_invalidate_lock;
598 unsigned long mn_active_invalidate_count;
599 struct rcuwait mn_memslots_update_rcuwait;
600
601 /* For management / invalidation of gfn_to_pfn_caches */
602 spinlock_t gpc_lock;
603 struct list_head gpc_list;
604
605 /*
606 * created_vcpus is protected by kvm->lock, and is incremented
607 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
608 * incremented after storing the kvm_vcpu pointer in vcpus,
609 * and is accessed atomically.
610 */
611 atomic_t online_vcpus;
612 int created_vcpus;
613 int last_boosted_vcpu;
614 struct list_head vm_list;
615 struct mutex lock;
616 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
617#ifdef CONFIG_HAVE_KVM_EVENTFD
618 struct {
619 spinlock_t lock;
620 struct list_head items;
621 struct list_head resampler_list;
622 struct mutex resampler_lock;
623 } irqfds;
624 struct list_head ioeventfds;
625#endif
626 struct kvm_vm_stat stat;
627 struct kvm_arch arch;
628 refcount_t users_count;
629#ifdef CONFIG_KVM_MMIO
630 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
631 spinlock_t ring_lock;
632 struct list_head coalesced_zones;
633#endif
634
635 struct mutex irq_lock;
636#ifdef CONFIG_HAVE_KVM_IRQCHIP
637 /*
638 * Update side is protected by irq_lock.
639 */
640 struct kvm_irq_routing_table __rcu *irq_routing;
641#endif
642#ifdef CONFIG_HAVE_KVM_IRQFD
643 struct hlist_head irq_ack_notifier_list;
644#endif
645
646#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
647 struct mmu_notifier mmu_notifier;
648 unsigned long mmu_notifier_seq;
649 long mmu_notifier_count;
650 unsigned long mmu_notifier_range_start;
651 unsigned long mmu_notifier_range_end;
652#endif
653 struct list_head devices;
654 u64 manual_dirty_log_protect;
655 struct dentry *debugfs_dentry;
656 struct kvm_stat_data **debugfs_stat_data;
657 struct srcu_struct srcu;
658 struct srcu_struct irq_srcu;
659 pid_t userspace_pid;
660 unsigned int max_halt_poll_ns;
661 u32 dirty_ring_size;
662 bool vm_bugged;
663 bool vm_dead;
664
665#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
666 struct notifier_block pm_notifier;
667#endif
668 char stats_id[KVM_STATS_NAME_SIZE];
669};
670
671#define kvm_err(fmt, ...) \
672 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
673#define kvm_info(fmt, ...) \
674 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
675#define kvm_debug(fmt, ...) \
676 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
677#define kvm_debug_ratelimited(fmt, ...) \
678 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
679 ## __VA_ARGS__)
680#define kvm_pr_unimpl(fmt, ...) \
681 pr_err_ratelimited("kvm [%i]: " fmt, \
682 task_tgid_nr(current), ## __VA_ARGS__)
683
684/* The guest did something we don't support. */
685#define vcpu_unimpl(vcpu, fmt, ...) \
686 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
687 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
688
689#define vcpu_debug(vcpu, fmt, ...) \
690 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
691#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
692 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
693 ## __VA_ARGS__)
694#define vcpu_err(vcpu, fmt, ...) \
695 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
696
697static inline void kvm_vm_dead(struct kvm *kvm)
698{
699 kvm->vm_dead = true;
700 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
701}
702
703static inline void kvm_vm_bugged(struct kvm *kvm)
704{
705 kvm->vm_bugged = true;
706 kvm_vm_dead(kvm);
707}
708
709
710#define KVM_BUG(cond, kvm, fmt...) \
711({ \
712 int __ret = (cond); \
713 \
714 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
715 kvm_vm_bugged(kvm); \
716 unlikely(__ret); \
717})
718
719#define KVM_BUG_ON(cond, kvm) \
720({ \
721 int __ret = (cond); \
722 \
723 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
724 kvm_vm_bugged(kvm); \
725 unlikely(__ret); \
726})
727
728static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
729{
730 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
731}
732
733static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
734{
735 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
736 lockdep_is_held(&kvm->slots_lock) ||
737 !refcount_read(&kvm->users_count));
738}
739
740static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
741{
742 int num_vcpus = atomic_read(&kvm->online_vcpus);
743 i = array_index_nospec(i, num_vcpus);
744
745 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
746 smp_rmb();
747 return xa_load(&kvm->vcpu_array, i);
748}
749
750#define kvm_for_each_vcpu(idx, vcpup, kvm) \
751 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
752 (atomic_read(&kvm->online_vcpus) - 1))
753
754static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
755{
756 struct kvm_vcpu *vcpu = NULL;
757 unsigned long i;
758
759 if (id < 0)
760 return NULL;
761 if (id < KVM_MAX_VCPUS)
762 vcpu = kvm_get_vcpu(kvm, id);
763 if (vcpu && vcpu->vcpu_id == id)
764 return vcpu;
765 kvm_for_each_vcpu(i, vcpu, kvm)
766 if (vcpu->vcpu_id == id)
767 return vcpu;
768 return NULL;
769}
770
771static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
772{
773 return vcpu->vcpu_idx;
774}
775
776void kvm_destroy_vcpus(struct kvm *kvm);
777
778void vcpu_load(struct kvm_vcpu *vcpu);
779void vcpu_put(struct kvm_vcpu *vcpu);
780
781#ifdef __KVM_HAVE_IOAPIC
782void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
783void kvm_arch_post_irq_routing_update(struct kvm *kvm);
784#else
785static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
786{
787}
788static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
789{
790}
791#endif
792
793#ifdef CONFIG_HAVE_KVM_IRQFD
794int kvm_irqfd_init(void);
795void kvm_irqfd_exit(void);
796#else
797static inline int kvm_irqfd_init(void)
798{
799 return 0;
800}
801
802static inline void kvm_irqfd_exit(void)
803{
804}
805#endif
806int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
807 struct module *module);
808void kvm_exit(void);
809
810void kvm_get_kvm(struct kvm *kvm);
811bool kvm_get_kvm_safe(struct kvm *kvm);
812void kvm_put_kvm(struct kvm *kvm);
813bool file_is_kvm(struct file *file);
814void kvm_put_kvm_no_destroy(struct kvm *kvm);
815
816static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
817{
818 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
819 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
820 lockdep_is_held(&kvm->slots_lock) ||
821 !refcount_read(&kvm->users_count));
822}
823
824static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
825{
826 return __kvm_memslots(kvm, 0);
827}
828
829static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
830{
831 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
832
833 return __kvm_memslots(vcpu->kvm, as_id);
834}
835
836static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
837{
838 return RB_EMPTY_ROOT(&slots->gfn_tree);
839}
840
841#define kvm_for_each_memslot(memslot, bkt, slots) \
842 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
843 if (WARN_ON_ONCE(!memslot->npages)) { \
844 } else
845
846static inline
847struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
848{
849 struct kvm_memory_slot *slot;
850 int idx = slots->node_idx;
851
852 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
853 if (slot->id == id)
854 return slot;
855 }
856
857 return NULL;
858}
859
860/* Iterator used for walking memslots that overlap a gfn range. */
861struct kvm_memslot_iter {
862 struct kvm_memslots *slots;
863 struct rb_node *node;
864 struct kvm_memory_slot *slot;
865};
866
867static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
868{
869 iter->node = rb_next(iter->node);
870 if (!iter->node)
871 return;
872
873 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
874}
875
876static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
877 struct kvm_memslots *slots,
878 gfn_t start)
879{
880 int idx = slots->node_idx;
881 struct rb_node *tmp;
882 struct kvm_memory_slot *slot;
883
884 iter->slots = slots;
885
886 /*
887 * Find the so called "upper bound" of a key - the first node that has
888 * its key strictly greater than the searched one (the start gfn in our case).
889 */
890 iter->node = NULL;
891 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
892 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
893 if (start < slot->base_gfn) {
894 iter->node = tmp;
895 tmp = tmp->rb_left;
896 } else {
897 tmp = tmp->rb_right;
898 }
899 }
900
901 /*
902 * Find the slot with the lowest gfn that can possibly intersect with
903 * the range, so we'll ideally have slot start <= range start
904 */
905 if (iter->node) {
906 /*
907 * A NULL previous node means that the very first slot
908 * already has a higher start gfn.
909 * In this case slot start > range start.
910 */
911 tmp = rb_prev(iter->node);
912 if (tmp)
913 iter->node = tmp;
914 } else {
915 /* a NULL node below means no slots */
916 iter->node = rb_last(&slots->gfn_tree);
917 }
918
919 if (iter->node) {
920 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
921
922 /*
923 * It is possible in the slot start < range start case that the
924 * found slot ends before or at range start (slot end <= range start)
925 * and so it does not overlap the requested range.
926 *
927 * In such non-overlapping case the next slot (if it exists) will
928 * already have slot start > range start, otherwise the logic above
929 * would have found it instead of the current slot.
930 */
931 if (iter->slot->base_gfn + iter->slot->npages <= start)
932 kvm_memslot_iter_next(iter);
933 }
934}
935
936static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
937{
938 if (!iter->node)
939 return false;
940
941 /*
942 * If this slot starts beyond or at the end of the range so does
943 * every next one
944 */
945 return iter->slot->base_gfn < end;
946}
947
948/* Iterate over each memslot at least partially intersecting [start, end) range */
949#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
950 for (kvm_memslot_iter_start(iter, slots, start); \
951 kvm_memslot_iter_is_valid(iter, end); \
952 kvm_memslot_iter_next(iter))
953
954/*
955 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
956 * - create a new memory slot
957 * - delete an existing memory slot
958 * - modify an existing memory slot
959 * -- move it in the guest physical memory space
960 * -- just change its flags
961 *
962 * Since flags can be changed by some of these operations, the following
963 * differentiation is the best we can do for __kvm_set_memory_region():
964 */
965enum kvm_mr_change {
966 KVM_MR_CREATE,
967 KVM_MR_DELETE,
968 KVM_MR_MOVE,
969 KVM_MR_FLAGS_ONLY,
970};
971
972int kvm_set_memory_region(struct kvm *kvm,
973 const struct kvm_userspace_memory_region *mem);
974int __kvm_set_memory_region(struct kvm *kvm,
975 const struct kvm_userspace_memory_region *mem);
976void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
977void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
978int kvm_arch_prepare_memory_region(struct kvm *kvm,
979 const struct kvm_memory_slot *old,
980 struct kvm_memory_slot *new,
981 enum kvm_mr_change change);
982void kvm_arch_commit_memory_region(struct kvm *kvm,
983 struct kvm_memory_slot *old,
984 const struct kvm_memory_slot *new,
985 enum kvm_mr_change change);
986/* flush all memory translations */
987void kvm_arch_flush_shadow_all(struct kvm *kvm);
988/* flush memory translations pointing to 'slot' */
989void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
990 struct kvm_memory_slot *slot);
991
992int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
993 struct page **pages, int nr_pages);
994
995struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
996unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
997unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
998unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
999unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1000 bool *writable);
1001void kvm_release_page_clean(struct page *page);
1002void kvm_release_page_dirty(struct page *page);
1003void kvm_set_page_accessed(struct page *page);
1004
1005kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1006kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1007 bool *writable);
1008kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1009kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1010kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1011 bool atomic, bool *async, bool write_fault,
1012 bool *writable, hva_t *hva);
1013
1014void kvm_release_pfn_clean(kvm_pfn_t pfn);
1015void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1016void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1017void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1018
1019void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1020int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1021 int len);
1022int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1023int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1024 void *data, unsigned long len);
1025int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1026 void *data, unsigned int offset,
1027 unsigned long len);
1028int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1029 int offset, int len);
1030int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1031 unsigned long len);
1032int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1033 void *data, unsigned long len);
1034int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1035 void *data, unsigned int offset,
1036 unsigned long len);
1037int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1038 gpa_t gpa, unsigned long len);
1039
1040#define __kvm_get_guest(kvm, gfn, offset, v) \
1041({ \
1042 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1043 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1044 int __ret = -EFAULT; \
1045 \
1046 if (!kvm_is_error_hva(__addr)) \
1047 __ret = get_user(v, __uaddr); \
1048 __ret; \
1049})
1050
1051#define kvm_get_guest(kvm, gpa, v) \
1052({ \
1053 gpa_t __gpa = gpa; \
1054 struct kvm *__kvm = kvm; \
1055 \
1056 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1057 offset_in_page(__gpa), v); \
1058})
1059
1060#define __kvm_put_guest(kvm, gfn, offset, v) \
1061({ \
1062 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1063 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1064 int __ret = -EFAULT; \
1065 \
1066 if (!kvm_is_error_hva(__addr)) \
1067 __ret = put_user(v, __uaddr); \
1068 if (!__ret) \
1069 mark_page_dirty(kvm, gfn); \
1070 __ret; \
1071})
1072
1073#define kvm_put_guest(kvm, gpa, v) \
1074({ \
1075 gpa_t __gpa = gpa; \
1076 struct kvm *__kvm = kvm; \
1077 \
1078 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1079 offset_in_page(__gpa), v); \
1080})
1081
1082int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1083struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1084bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1085bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1086unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1087void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1088void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1089
1090struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1091struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1092kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1093kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1094int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1095struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1096void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1097unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1098unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1099int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1100 int len);
1101int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1102 unsigned long len);
1103int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1104 unsigned long len);
1105int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1106 int offset, int len);
1107int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1108 unsigned long len);
1109void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1110
1111/**
1112 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1113 * given guest physical address.
1114 *
1115 * @kvm: pointer to kvm instance.
1116 * @gpc: struct gfn_to_pfn_cache object.
1117 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1118 * invalidation.
1119 * @guest_uses_pa: indicates that the resulting host physical PFN is used while
1120 * @vcpu is IN_GUEST_MODE so invalidations should wake it.
1121 * @kernel_map: requests a kernel virtual mapping (kmap / memremap).
1122 * @gpa: guest physical address to map.
1123 * @len: sanity check; the range being access must fit a single page.
1124 * @dirty: mark the cache dirty immediately.
1125 *
1126 * @return: 0 for success.
1127 * -EINVAL for a mapping which would cross a page boundary.
1128 * -EFAULT for an untranslatable guest physical address.
1129 *
1130 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1131 * invalidations to be processed. Invalidation callbacks to @vcpu using
1132 * %KVM_REQ_GPC_INVALIDATE will occur only for MMU notifiers, not for KVM
1133 * memslot changes. Callers are required to use kvm_gfn_to_pfn_cache_check()
1134 * to ensure that the cache is valid before accessing the target page.
1135 */
1136int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1137 struct kvm_vcpu *vcpu, bool guest_uses_pa,
1138 bool kernel_map, gpa_t gpa, unsigned long len,
1139 bool dirty);
1140
1141/**
1142 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1143 *
1144 * @kvm: pointer to kvm instance.
1145 * @gpc: struct gfn_to_pfn_cache object.
1146 * @gpa: current guest physical address to map.
1147 * @len: sanity check; the range being access must fit a single page.
1148 * @dirty: mark the cache dirty immediately.
1149 *
1150 * @return: %true if the cache is still valid and the address matches.
1151 * %false if the cache is not valid.
1152 *
1153 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1154 * while calling this function, and then continue to hold the lock until the
1155 * access is complete.
1156 *
1157 * Callers in IN_GUEST_MODE may do so without locking, although they should
1158 * still hold a read lock on kvm->scru for the memslot checks.
1159 */
1160bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1161 gpa_t gpa, unsigned long len);
1162
1163/**
1164 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1165 *
1166 * @kvm: pointer to kvm instance.
1167 * @gpc: struct gfn_to_pfn_cache object.
1168 * @gpa: updated guest physical address to map.
1169 * @len: sanity check; the range being access must fit a single page.
1170 * @dirty: mark the cache dirty immediately.
1171 *
1172 * @return: 0 for success.
1173 * -EINVAL for a mapping which would cross a page boundary.
1174 * -EFAULT for an untranslatable guest physical address.
1175 *
1176 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1177 * returm from this function does not mean the page can be immediately
1178 * accessed because it may have raced with an invalidation. Callers must
1179 * still lock and check the cache status, as this function does not return
1180 * with the lock still held to permit access.
1181 */
1182int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1183 gpa_t gpa, unsigned long len, bool dirty);
1184
1185/**
1186 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1187 *
1188 * @kvm: pointer to kvm instance.
1189 * @gpc: struct gfn_to_pfn_cache object.
1190 *
1191 * This unmaps the referenced page and marks it dirty, if appropriate. The
1192 * cache is left in the invalid state but at least the mapping from GPA to
1193 * userspace HVA will remain cached and can be reused on a subsequent
1194 * refresh.
1195 */
1196void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1197
1198/**
1199 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1200 *
1201 * @kvm: pointer to kvm instance.
1202 * @gpc: struct gfn_to_pfn_cache object.
1203 *
1204 * This removes a cache from the @kvm's list to be processed on MMU notifier
1205 * invocation.
1206 */
1207void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1208
1209void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1210void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1211
1212void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1213bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1214void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1215void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1216bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1217void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1218int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1219void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1220
1221void kvm_flush_remote_tlbs(struct kvm *kvm);
1222void kvm_reload_remote_mmus(struct kvm *kvm);
1223
1224#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1225int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1226int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1227void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1228void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1229#endif
1230
1231void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1232 unsigned long end);
1233void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1234 unsigned long end);
1235
1236long kvm_arch_dev_ioctl(struct file *filp,
1237 unsigned int ioctl, unsigned long arg);
1238long kvm_arch_vcpu_ioctl(struct file *filp,
1239 unsigned int ioctl, unsigned long arg);
1240vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1241
1242int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1243
1244void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1245 struct kvm_memory_slot *slot,
1246 gfn_t gfn_offset,
1247 unsigned long mask);
1248void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1249
1250#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1251void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1252 const struct kvm_memory_slot *memslot);
1253#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1254int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1255int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1256 int *is_dirty, struct kvm_memory_slot **memslot);
1257#endif
1258
1259int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1260 bool line_status);
1261int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1262 struct kvm_enable_cap *cap);
1263long kvm_arch_vm_ioctl(struct file *filp,
1264 unsigned int ioctl, unsigned long arg);
1265
1266int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1267int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1268
1269int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1270 struct kvm_translation *tr);
1271
1272int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1273int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1274int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1275 struct kvm_sregs *sregs);
1276int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1277 struct kvm_sregs *sregs);
1278int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1279 struct kvm_mp_state *mp_state);
1280int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1281 struct kvm_mp_state *mp_state);
1282int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1283 struct kvm_guest_debug *dbg);
1284int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1285
1286int kvm_arch_init(void *opaque);
1287void kvm_arch_exit(void);
1288
1289void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1290
1291void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1292void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1293int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1294int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1295void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1296void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1297
1298#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1299int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1300#endif
1301
1302#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1303void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1304#endif
1305
1306int kvm_arch_hardware_enable(void);
1307void kvm_arch_hardware_disable(void);
1308int kvm_arch_hardware_setup(void *opaque);
1309void kvm_arch_hardware_unsetup(void);
1310int kvm_arch_check_processor_compat(void *opaque);
1311int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1312bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1313int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1314bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1315bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1316int kvm_arch_post_init_vm(struct kvm *kvm);
1317void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1318int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1319
1320#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1321/*
1322 * All architectures that want to use vzalloc currently also
1323 * need their own kvm_arch_alloc_vm implementation.
1324 */
1325static inline struct kvm *kvm_arch_alloc_vm(void)
1326{
1327 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1328}
1329#endif
1330
1331static inline void __kvm_arch_free_vm(struct kvm *kvm)
1332{
1333 kvfree(kvm);
1334}
1335
1336#ifndef __KVM_HAVE_ARCH_VM_FREE
1337static inline void kvm_arch_free_vm(struct kvm *kvm)
1338{
1339 __kvm_arch_free_vm(kvm);
1340}
1341#endif
1342
1343#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1344static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1345{
1346 return -ENOTSUPP;
1347}
1348#endif
1349
1350#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1351void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1352void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1353bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1354#else
1355static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1356{
1357}
1358
1359static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1360{
1361}
1362
1363static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1364{
1365 return false;
1366}
1367#endif
1368#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1369void kvm_arch_start_assignment(struct kvm *kvm);
1370void kvm_arch_end_assignment(struct kvm *kvm);
1371bool kvm_arch_has_assigned_device(struct kvm *kvm);
1372#else
1373static inline void kvm_arch_start_assignment(struct kvm *kvm)
1374{
1375}
1376
1377static inline void kvm_arch_end_assignment(struct kvm *kvm)
1378{
1379}
1380
1381static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1382{
1383 return false;
1384}
1385#endif
1386
1387static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1388{
1389#ifdef __KVM_HAVE_ARCH_WQP
1390 return vcpu->arch.waitp;
1391#else
1392 return &vcpu->wait;
1393#endif
1394}
1395
1396/*
1397 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1398 * true if the vCPU was blocking and was awakened, false otherwise.
1399 */
1400static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1401{
1402 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1403}
1404
1405static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1406{
1407 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1408}
1409
1410#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1411/*
1412 * returns true if the virtual interrupt controller is initialized and
1413 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1414 * controller is dynamically instantiated and this is not always true.
1415 */
1416bool kvm_arch_intc_initialized(struct kvm *kvm);
1417#else
1418static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1419{
1420 return true;
1421}
1422#endif
1423
1424#ifdef CONFIG_GUEST_PERF_EVENTS
1425unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1426
1427void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1428void kvm_unregister_perf_callbacks(void);
1429#else
1430static inline void kvm_register_perf_callbacks(void *ign) {}
1431static inline void kvm_unregister_perf_callbacks(void) {}
1432#endif /* CONFIG_GUEST_PERF_EVENTS */
1433
1434int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1435void kvm_arch_destroy_vm(struct kvm *kvm);
1436void kvm_arch_sync_events(struct kvm *kvm);
1437
1438int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1439
1440bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1441bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1442
1443struct kvm_irq_ack_notifier {
1444 struct hlist_node link;
1445 unsigned gsi;
1446 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1447};
1448
1449int kvm_irq_map_gsi(struct kvm *kvm,
1450 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1451int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1452
1453int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1454 bool line_status);
1455int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1456 int irq_source_id, int level, bool line_status);
1457int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1458 struct kvm *kvm, int irq_source_id,
1459 int level, bool line_status);
1460bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1461void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1462void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1463void kvm_register_irq_ack_notifier(struct kvm *kvm,
1464 struct kvm_irq_ack_notifier *kian);
1465void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1466 struct kvm_irq_ack_notifier *kian);
1467int kvm_request_irq_source_id(struct kvm *kvm);
1468void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1469bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1470
1471/*
1472 * Returns a pointer to the memslot if it contains gfn.
1473 * Otherwise returns NULL.
1474 */
1475static inline struct kvm_memory_slot *
1476try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1477{
1478 if (!slot)
1479 return NULL;
1480
1481 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1482 return slot;
1483 else
1484 return NULL;
1485}
1486
1487/*
1488 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1489 *
1490 * With "approx" set returns the memslot also when the address falls
1491 * in a hole. In that case one of the memslots bordering the hole is
1492 * returned.
1493 */
1494static inline struct kvm_memory_slot *
1495search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1496{
1497 struct kvm_memory_slot *slot;
1498 struct rb_node *node;
1499 int idx = slots->node_idx;
1500
1501 slot = NULL;
1502 for (node = slots->gfn_tree.rb_node; node; ) {
1503 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1504 if (gfn >= slot->base_gfn) {
1505 if (gfn < slot->base_gfn + slot->npages)
1506 return slot;
1507 node = node->rb_right;
1508 } else
1509 node = node->rb_left;
1510 }
1511
1512 return approx ? slot : NULL;
1513}
1514
1515static inline struct kvm_memory_slot *
1516____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1517{
1518 struct kvm_memory_slot *slot;
1519
1520 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1521 slot = try_get_memslot(slot, gfn);
1522 if (slot)
1523 return slot;
1524
1525 slot = search_memslots(slots, gfn, approx);
1526 if (slot) {
1527 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1528 return slot;
1529 }
1530
1531 return NULL;
1532}
1533
1534/*
1535 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1536 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1537 * because that would bloat other code too much.
1538 */
1539static inline struct kvm_memory_slot *
1540__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1541{
1542 return ____gfn_to_memslot(slots, gfn, false);
1543}
1544
1545static inline unsigned long
1546__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1547{
1548 /*
1549 * The index was checked originally in search_memslots. To avoid
1550 * that a malicious guest builds a Spectre gadget out of e.g. page
1551 * table walks, do not let the processor speculate loads outside
1552 * the guest's registered memslots.
1553 */
1554 unsigned long offset = gfn - slot->base_gfn;
1555 offset = array_index_nospec(offset, slot->npages);
1556 return slot->userspace_addr + offset * PAGE_SIZE;
1557}
1558
1559static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1560{
1561 return gfn_to_memslot(kvm, gfn)->id;
1562}
1563
1564static inline gfn_t
1565hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1566{
1567 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1568
1569 return slot->base_gfn + gfn_offset;
1570}
1571
1572static inline gpa_t gfn_to_gpa(gfn_t gfn)
1573{
1574 return (gpa_t)gfn << PAGE_SHIFT;
1575}
1576
1577static inline gfn_t gpa_to_gfn(gpa_t gpa)
1578{
1579 return (gfn_t)(gpa >> PAGE_SHIFT);
1580}
1581
1582static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1583{
1584 return (hpa_t)pfn << PAGE_SHIFT;
1585}
1586
1587static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1588 gpa_t gpa)
1589{
1590 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1591}
1592
1593static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1594{
1595 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1596
1597 return kvm_is_error_hva(hva);
1598}
1599
1600enum kvm_stat_kind {
1601 KVM_STAT_VM,
1602 KVM_STAT_VCPU,
1603};
1604
1605struct kvm_stat_data {
1606 struct kvm *kvm;
1607 const struct _kvm_stats_desc *desc;
1608 enum kvm_stat_kind kind;
1609};
1610
1611struct _kvm_stats_desc {
1612 struct kvm_stats_desc desc;
1613 char name[KVM_STATS_NAME_SIZE];
1614};
1615
1616#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1617 .flags = type | unit | base | \
1618 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1619 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1620 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1621 .exponent = exp, \
1622 .size = sz, \
1623 .bucket_size = bsz
1624
1625#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1626 { \
1627 { \
1628 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1629 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1630 }, \
1631 .name = #stat, \
1632 }
1633#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1634 { \
1635 { \
1636 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1637 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1638 }, \
1639 .name = #stat, \
1640 }
1641#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1642 { \
1643 { \
1644 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1645 .offset = offsetof(struct kvm_vm_stat, stat) \
1646 }, \
1647 .name = #stat, \
1648 }
1649#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1650 { \
1651 { \
1652 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1653 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1654 }, \
1655 .name = #stat, \
1656 }
1657/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1658#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1659 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1660
1661#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1662 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1663 unit, base, exponent, 1, 0)
1664#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1665 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1666 unit, base, exponent, 1, 0)
1667#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1668 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1669 unit, base, exponent, 1, 0)
1670#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1671 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1672 unit, base, exponent, sz, bsz)
1673#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1674 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1675 unit, base, exponent, sz, 0)
1676
1677/* Cumulative counter, read/write */
1678#define STATS_DESC_COUNTER(SCOPE, name) \
1679 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1680 KVM_STATS_BASE_POW10, 0)
1681/* Instantaneous counter, read only */
1682#define STATS_DESC_ICOUNTER(SCOPE, name) \
1683 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1684 KVM_STATS_BASE_POW10, 0)
1685/* Peak counter, read/write */
1686#define STATS_DESC_PCOUNTER(SCOPE, name) \
1687 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1688 KVM_STATS_BASE_POW10, 0)
1689
1690/* Cumulative time in nanosecond */
1691#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1692 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1693 KVM_STATS_BASE_POW10, -9)
1694/* Linear histogram for time in nanosecond */
1695#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1696 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1697 KVM_STATS_BASE_POW10, -9, sz, bsz)
1698/* Logarithmic histogram for time in nanosecond */
1699#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1700 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1701 KVM_STATS_BASE_POW10, -9, sz)
1702
1703#define KVM_GENERIC_VM_STATS() \
1704 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1705 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1706
1707#define KVM_GENERIC_VCPU_STATS() \
1708 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1709 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1710 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1711 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1712 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1713 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1714 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1715 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1716 HALT_POLL_HIST_COUNT), \
1717 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1718 HALT_POLL_HIST_COUNT), \
1719 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1720 HALT_POLL_HIST_COUNT), \
1721 STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking)
1722
1723extern struct dentry *kvm_debugfs_dir;
1724
1725ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1726 const struct _kvm_stats_desc *desc,
1727 void *stats, size_t size_stats,
1728 char __user *user_buffer, size_t size, loff_t *offset);
1729
1730/**
1731 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1732 * statistics data.
1733 *
1734 * @data: start address of the stats data
1735 * @size: the number of bucket of the stats data
1736 * @value: the new value used to update the linear histogram's bucket
1737 * @bucket_size: the size (width) of a bucket
1738 */
1739static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1740 u64 value, size_t bucket_size)
1741{
1742 size_t index = div64_u64(value, bucket_size);
1743
1744 index = min(index, size - 1);
1745 ++data[index];
1746}
1747
1748/**
1749 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1750 * statistics data.
1751 *
1752 * @data: start address of the stats data
1753 * @size: the number of bucket of the stats data
1754 * @value: the new value used to update the logarithmic histogram's bucket
1755 */
1756static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1757{
1758 size_t index = fls64(value);
1759
1760 index = min(index, size - 1);
1761 ++data[index];
1762}
1763
1764#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1765 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1766#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1767 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1768
1769
1770extern const struct kvm_stats_header kvm_vm_stats_header;
1771extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1772extern const struct kvm_stats_header kvm_vcpu_stats_header;
1773extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1774
1775#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1776static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1777{
1778 if (unlikely(kvm->mmu_notifier_count))
1779 return 1;
1780 /*
1781 * Ensure the read of mmu_notifier_count happens before the read
1782 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1783 * mmu_notifier_invalidate_range_end to make sure that the caller
1784 * either sees the old (non-zero) value of mmu_notifier_count or
1785 * the new (incremented) value of mmu_notifier_seq.
1786 * PowerPC Book3s HV KVM calls this under a per-page lock
1787 * rather than under kvm->mmu_lock, for scalability, so
1788 * can't rely on kvm->mmu_lock to keep things ordered.
1789 */
1790 smp_rmb();
1791 if (kvm->mmu_notifier_seq != mmu_seq)
1792 return 1;
1793 return 0;
1794}
1795
1796static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1797 unsigned long mmu_seq,
1798 unsigned long hva)
1799{
1800 lockdep_assert_held(&kvm->mmu_lock);
1801 /*
1802 * If mmu_notifier_count is non-zero, then the range maintained by
1803 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1804 * might be being invalidated. Note that it may include some false
1805 * positives, due to shortcuts when handing concurrent invalidations.
1806 */
1807 if (unlikely(kvm->mmu_notifier_count) &&
1808 hva >= kvm->mmu_notifier_range_start &&
1809 hva < kvm->mmu_notifier_range_end)
1810 return 1;
1811 if (kvm->mmu_notifier_seq != mmu_seq)
1812 return 1;
1813 return 0;
1814}
1815#endif
1816
1817#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1818
1819#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1820
1821bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1822int kvm_set_irq_routing(struct kvm *kvm,
1823 const struct kvm_irq_routing_entry *entries,
1824 unsigned nr,
1825 unsigned flags);
1826int kvm_set_routing_entry(struct kvm *kvm,
1827 struct kvm_kernel_irq_routing_entry *e,
1828 const struct kvm_irq_routing_entry *ue);
1829void kvm_free_irq_routing(struct kvm *kvm);
1830
1831#else
1832
1833static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1834
1835#endif
1836
1837int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1838
1839#ifdef CONFIG_HAVE_KVM_EVENTFD
1840
1841void kvm_eventfd_init(struct kvm *kvm);
1842int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1843
1844#ifdef CONFIG_HAVE_KVM_IRQFD
1845int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1846void kvm_irqfd_release(struct kvm *kvm);
1847void kvm_irq_routing_update(struct kvm *);
1848#else
1849static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1850{
1851 return -EINVAL;
1852}
1853
1854static inline void kvm_irqfd_release(struct kvm *kvm) {}
1855#endif
1856
1857#else
1858
1859static inline void kvm_eventfd_init(struct kvm *kvm) {}
1860
1861static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1862{
1863 return -EINVAL;
1864}
1865
1866static inline void kvm_irqfd_release(struct kvm *kvm) {}
1867
1868#ifdef CONFIG_HAVE_KVM_IRQCHIP
1869static inline void kvm_irq_routing_update(struct kvm *kvm)
1870{
1871}
1872#endif
1873
1874static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1875{
1876 return -ENOSYS;
1877}
1878
1879#endif /* CONFIG_HAVE_KVM_EVENTFD */
1880
1881void kvm_arch_irq_routing_update(struct kvm *kvm);
1882
1883static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1884{
1885 /*
1886 * Ensure the rest of the request is published to kvm_check_request's
1887 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1888 */
1889 smp_wmb();
1890 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1891}
1892
1893static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1894{
1895 return READ_ONCE(vcpu->requests);
1896}
1897
1898static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1899{
1900 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1901}
1902
1903static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1904{
1905 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1906}
1907
1908static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1909{
1910 if (kvm_test_request(req, vcpu)) {
1911 kvm_clear_request(req, vcpu);
1912
1913 /*
1914 * Ensure the rest of the request is visible to kvm_check_request's
1915 * caller. Paired with the smp_wmb in kvm_make_request.
1916 */
1917 smp_mb__after_atomic();
1918 return true;
1919 } else {
1920 return false;
1921 }
1922}
1923
1924extern bool kvm_rebooting;
1925
1926extern unsigned int halt_poll_ns;
1927extern unsigned int halt_poll_ns_grow;
1928extern unsigned int halt_poll_ns_grow_start;
1929extern unsigned int halt_poll_ns_shrink;
1930
1931struct kvm_device {
1932 const struct kvm_device_ops *ops;
1933 struct kvm *kvm;
1934 void *private;
1935 struct list_head vm_node;
1936};
1937
1938/* create, destroy, and name are mandatory */
1939struct kvm_device_ops {
1940 const char *name;
1941
1942 /*
1943 * create is called holding kvm->lock and any operations not suitable
1944 * to do while holding the lock should be deferred to init (see
1945 * below).
1946 */
1947 int (*create)(struct kvm_device *dev, u32 type);
1948
1949 /*
1950 * init is called after create if create is successful and is called
1951 * outside of holding kvm->lock.
1952 */
1953 void (*init)(struct kvm_device *dev);
1954
1955 /*
1956 * Destroy is responsible for freeing dev.
1957 *
1958 * Destroy may be called before or after destructors are called
1959 * on emulated I/O regions, depending on whether a reference is
1960 * held by a vcpu or other kvm component that gets destroyed
1961 * after the emulated I/O.
1962 */
1963 void (*destroy)(struct kvm_device *dev);
1964
1965 /*
1966 * Release is an alternative method to free the device. It is
1967 * called when the device file descriptor is closed. Once
1968 * release is called, the destroy method will not be called
1969 * anymore as the device is removed from the device list of
1970 * the VM. kvm->lock is held.
1971 */
1972 void (*release)(struct kvm_device *dev);
1973
1974 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1975 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1976 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1977 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1978 unsigned long arg);
1979 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1980};
1981
1982void kvm_device_get(struct kvm_device *dev);
1983void kvm_device_put(struct kvm_device *dev);
1984struct kvm_device *kvm_device_from_filp(struct file *filp);
1985int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1986void kvm_unregister_device_ops(u32 type);
1987
1988extern struct kvm_device_ops kvm_mpic_ops;
1989extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1990extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1991
1992#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1993
1994static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1995{
1996 vcpu->spin_loop.in_spin_loop = val;
1997}
1998static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1999{
2000 vcpu->spin_loop.dy_eligible = val;
2001}
2002
2003#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2004
2005static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2006{
2007}
2008
2009static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2010{
2011}
2012#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2013
2014static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2015{
2016 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2017 !(memslot->flags & KVM_MEMSLOT_INVALID));
2018}
2019
2020struct kvm_vcpu *kvm_get_running_vcpu(void);
2021struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2022
2023#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2024bool kvm_arch_has_irq_bypass(void);
2025int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2026 struct irq_bypass_producer *);
2027void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2028 struct irq_bypass_producer *);
2029void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2030void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2031int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2032 uint32_t guest_irq, bool set);
2033bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2034 struct kvm_kernel_irq_routing_entry *);
2035#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2036
2037#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2038/* If we wakeup during the poll time, was it a sucessful poll? */
2039static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2040{
2041 return vcpu->valid_wakeup;
2042}
2043
2044#else
2045static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2046{
2047 return true;
2048}
2049#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2050
2051#ifdef CONFIG_HAVE_KVM_NO_POLL
2052/* Callback that tells if we must not poll */
2053bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2054#else
2055static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2056{
2057 return false;
2058}
2059#endif /* CONFIG_HAVE_KVM_NO_POLL */
2060
2061#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2062long kvm_arch_vcpu_async_ioctl(struct file *filp,
2063 unsigned int ioctl, unsigned long arg);
2064#else
2065static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2066 unsigned int ioctl,
2067 unsigned long arg)
2068{
2069 return -ENOIOCTLCMD;
2070}
2071#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2072
2073void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2074 unsigned long start, unsigned long end);
2075
2076#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2077int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2078#else
2079static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2080{
2081 return 0;
2082}
2083#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2084
2085typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2086
2087int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2088 uintptr_t data, const char *name,
2089 struct task_struct **thread_ptr);
2090
2091#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2092static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2093{
2094 vcpu->run->exit_reason = KVM_EXIT_INTR;
2095 vcpu->stat.signal_exits++;
2096}
2097#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2098
2099/*
2100 * This defines how many reserved entries we want to keep before we
2101 * kick the vcpu to the userspace to avoid dirty ring full. This
2102 * value can be tuned to higher if e.g. PML is enabled on the host.
2103 */
2104#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2105
2106/* Max number of entries allowed for each kvm dirty ring */
2107#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2108
2109#endif