Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/bitmap.h>
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/string.h>
30#include <linux/proc_fs.h>
31
32#include "of_private.h"
33
34LIST_HEAD(aliases_lookup);
35
36struct device_node *of_root;
37EXPORT_SYMBOL(of_root);
38struct device_node *of_chosen;
39EXPORT_SYMBOL(of_chosen);
40struct device_node *of_aliases;
41struct device_node *of_stdout;
42static const char *of_stdout_options;
43
44struct kset *of_kset;
45
46/*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52DEFINE_MUTEX(of_mutex);
53
54/* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57DEFINE_RAW_SPINLOCK(devtree_lock);
58
59bool of_node_name_eq(const struct device_node *np, const char *name)
60{
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71}
72EXPORT_SYMBOL(of_node_name_eq);
73
74bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75{
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80}
81EXPORT_SYMBOL(of_node_name_prefix);
82
83static bool __of_node_is_type(const struct device_node *np, const char *type)
84{
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88}
89
90int of_bus_n_addr_cells(struct device_node *np)
91{
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100}
101
102int of_n_addr_cells(struct device_node *np)
103{
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108}
109EXPORT_SYMBOL(of_n_addr_cells);
110
111int of_bus_n_size_cells(struct device_node *np)
112{
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121}
122
123int of_n_size_cells(struct device_node *np)
124{
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129}
130EXPORT_SYMBOL(of_n_size_cells);
131
132#ifdef CONFIG_NUMA
133int __weak of_node_to_nid(struct device_node *np)
134{
135 return NUMA_NO_NODE;
136}
137#endif
138
139#define OF_PHANDLE_CACHE_BITS 7
140#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
144static u32 of_phandle_cache_hash(phandle handle)
145{
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147}
148
149/*
150 * Caller must hold devtree_lock.
151 */
152void __of_phandle_cache_inv_entry(phandle handle)
153{
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165}
166
167void __init of_core_init(void)
168{
169 struct device_node *np;
170
171
172 /* Create the kset, and register existing nodes */
173 mutex_lock(&of_mutex);
174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 if (!of_kset) {
176 mutex_unlock(&of_mutex);
177 pr_err("failed to register existing nodes\n");
178 return;
179 }
180 for_each_of_allnodes(np) {
181 __of_attach_node_sysfs(np);
182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 }
185 mutex_unlock(&of_mutex);
186
187 /* Symlink in /proc as required by userspace ABI */
188 if (of_root)
189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190}
191
192static struct property *__of_find_property(const struct device_node *np,
193 const char *name, int *lenp)
194{
195 struct property *pp;
196
197 if (!np)
198 return NULL;
199
200 for (pp = np->properties; pp; pp = pp->next) {
201 if (of_prop_cmp(pp->name, name) == 0) {
202 if (lenp)
203 *lenp = pp->length;
204 break;
205 }
206 }
207
208 return pp;
209}
210
211struct property *of_find_property(const struct device_node *np,
212 const char *name,
213 int *lenp)
214{
215 struct property *pp;
216 unsigned long flags;
217
218 raw_spin_lock_irqsave(&devtree_lock, flags);
219 pp = __of_find_property(np, name, lenp);
220 raw_spin_unlock_irqrestore(&devtree_lock, flags);
221
222 return pp;
223}
224EXPORT_SYMBOL(of_find_property);
225
226struct device_node *__of_find_all_nodes(struct device_node *prev)
227{
228 struct device_node *np;
229 if (!prev) {
230 np = of_root;
231 } else if (prev->child) {
232 np = prev->child;
233 } else {
234 /* Walk back up looking for a sibling, or the end of the structure */
235 np = prev;
236 while (np->parent && !np->sibling)
237 np = np->parent;
238 np = np->sibling; /* Might be null at the end of the tree */
239 }
240 return np;
241}
242
243/**
244 * of_find_all_nodes - Get next node in global list
245 * @prev: Previous node or NULL to start iteration
246 * of_node_put() will be called on it
247 *
248 * Return: A node pointer with refcount incremented, use
249 * of_node_put() on it when done.
250 */
251struct device_node *of_find_all_nodes(struct device_node *prev)
252{
253 struct device_node *np;
254 unsigned long flags;
255
256 raw_spin_lock_irqsave(&devtree_lock, flags);
257 np = __of_find_all_nodes(prev);
258 of_node_get(np);
259 of_node_put(prev);
260 raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 return np;
262}
263EXPORT_SYMBOL(of_find_all_nodes);
264
265/*
266 * Find a property with a given name for a given node
267 * and return the value.
268 */
269const void *__of_get_property(const struct device_node *np,
270 const char *name, int *lenp)
271{
272 struct property *pp = __of_find_property(np, name, lenp);
273
274 return pp ? pp->value : NULL;
275}
276
277/*
278 * Find a property with a given name for a given node
279 * and return the value.
280 */
281const void *of_get_property(const struct device_node *np, const char *name,
282 int *lenp)
283{
284 struct property *pp = of_find_property(np, name, lenp);
285
286 return pp ? pp->value : NULL;
287}
288EXPORT_SYMBOL(of_get_property);
289
290/**
291 * of_get_cpu_hwid - Get the hardware ID from a CPU device node
292 *
293 * @cpun: CPU number(logical index) for which device node is required
294 * @thread: The local thread number to get the hardware ID for.
295 *
296 * Return: The hardware ID for the CPU node or ~0ULL if not found.
297 */
298u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
299{
300 const __be32 *cell;
301 int ac, len;
302
303 ac = of_n_addr_cells(cpun);
304 cell = of_get_property(cpun, "reg", &len);
305 if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
306 return ~0ULL;
307
308 cell += ac * thread;
309 return of_read_number(cell, ac);
310}
311
312/*
313 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
314 *
315 * @cpu: logical cpu index of a core/thread
316 * @phys_id: physical identifier of a core/thread
317 *
318 * CPU logical to physical index mapping is architecture specific.
319 * However this __weak function provides a default match of physical
320 * id to logical cpu index. phys_id provided here is usually values read
321 * from the device tree which must match the hardware internal registers.
322 *
323 * Returns true if the physical identifier and the logical cpu index
324 * correspond to the same core/thread, false otherwise.
325 */
326bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
327{
328 return (u32)phys_id == cpu;
329}
330
331/*
332 * Checks if the given "prop_name" property holds the physical id of the
333 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
334 * NULL, local thread number within the core is returned in it.
335 */
336static bool __of_find_n_match_cpu_property(struct device_node *cpun,
337 const char *prop_name, int cpu, unsigned int *thread)
338{
339 const __be32 *cell;
340 int ac, prop_len, tid;
341 u64 hwid;
342
343 ac = of_n_addr_cells(cpun);
344 cell = of_get_property(cpun, prop_name, &prop_len);
345 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
346 return true;
347 if (!cell || !ac)
348 return false;
349 prop_len /= sizeof(*cell) * ac;
350 for (tid = 0; tid < prop_len; tid++) {
351 hwid = of_read_number(cell, ac);
352 if (arch_match_cpu_phys_id(cpu, hwid)) {
353 if (thread)
354 *thread = tid;
355 return true;
356 }
357 cell += ac;
358 }
359 return false;
360}
361
362/*
363 * arch_find_n_match_cpu_physical_id - See if the given device node is
364 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
365 * else false. If 'thread' is non-NULL, the local thread number within the
366 * core is returned in it.
367 */
368bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
369 int cpu, unsigned int *thread)
370{
371 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
372 * for thread ids on PowerPC. If it doesn't exist fallback to
373 * standard "reg" property.
374 */
375 if (IS_ENABLED(CONFIG_PPC) &&
376 __of_find_n_match_cpu_property(cpun,
377 "ibm,ppc-interrupt-server#s",
378 cpu, thread))
379 return true;
380
381 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
382}
383
384/**
385 * of_get_cpu_node - Get device node associated with the given logical CPU
386 *
387 * @cpu: CPU number(logical index) for which device node is required
388 * @thread: if not NULL, local thread number within the physical core is
389 * returned
390 *
391 * The main purpose of this function is to retrieve the device node for the
392 * given logical CPU index. It should be used to initialize the of_node in
393 * cpu device. Once of_node in cpu device is populated, all the further
394 * references can use that instead.
395 *
396 * CPU logical to physical index mapping is architecture specific and is built
397 * before booting secondary cores. This function uses arch_match_cpu_phys_id
398 * which can be overridden by architecture specific implementation.
399 *
400 * Return: A node pointer for the logical cpu with refcount incremented, use
401 * of_node_put() on it when done. Returns NULL if not found.
402 */
403struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
404{
405 struct device_node *cpun;
406
407 for_each_of_cpu_node(cpun) {
408 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
409 return cpun;
410 }
411 return NULL;
412}
413EXPORT_SYMBOL(of_get_cpu_node);
414
415/**
416 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
417 *
418 * @cpu_node: Pointer to the device_node for CPU.
419 *
420 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
421 * CPU is not found.
422 */
423int of_cpu_node_to_id(struct device_node *cpu_node)
424{
425 int cpu;
426 bool found = false;
427 struct device_node *np;
428
429 for_each_possible_cpu(cpu) {
430 np = of_cpu_device_node_get(cpu);
431 found = (cpu_node == np);
432 of_node_put(np);
433 if (found)
434 return cpu;
435 }
436
437 return -ENODEV;
438}
439EXPORT_SYMBOL(of_cpu_node_to_id);
440
441/**
442 * of_get_cpu_state_node - Get CPU's idle state node at the given index
443 *
444 * @cpu_node: The device node for the CPU
445 * @index: The index in the list of the idle states
446 *
447 * Two generic methods can be used to describe a CPU's idle states, either via
448 * a flattened description through the "cpu-idle-states" binding or via the
449 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
450 * bindings. This function check for both and returns the idle state node for
451 * the requested index.
452 *
453 * Return: An idle state node if found at @index. The refcount is incremented
454 * for it, so call of_node_put() on it when done. Returns NULL if not found.
455 */
456struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
457 int index)
458{
459 struct of_phandle_args args;
460 int err;
461
462 err = of_parse_phandle_with_args(cpu_node, "power-domains",
463 "#power-domain-cells", 0, &args);
464 if (!err) {
465 struct device_node *state_node =
466 of_parse_phandle(args.np, "domain-idle-states", index);
467
468 of_node_put(args.np);
469 if (state_node)
470 return state_node;
471 }
472
473 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
474}
475EXPORT_SYMBOL(of_get_cpu_state_node);
476
477/**
478 * __of_device_is_compatible() - Check if the node matches given constraints
479 * @device: pointer to node
480 * @compat: required compatible string, NULL or "" for any match
481 * @type: required device_type value, NULL or "" for any match
482 * @name: required node name, NULL or "" for any match
483 *
484 * Checks if the given @compat, @type and @name strings match the
485 * properties of the given @device. A constraints can be skipped by
486 * passing NULL or an empty string as the constraint.
487 *
488 * Returns 0 for no match, and a positive integer on match. The return
489 * value is a relative score with larger values indicating better
490 * matches. The score is weighted for the most specific compatible value
491 * to get the highest score. Matching type is next, followed by matching
492 * name. Practically speaking, this results in the following priority
493 * order for matches:
494 *
495 * 1. specific compatible && type && name
496 * 2. specific compatible && type
497 * 3. specific compatible && name
498 * 4. specific compatible
499 * 5. general compatible && type && name
500 * 6. general compatible && type
501 * 7. general compatible && name
502 * 8. general compatible
503 * 9. type && name
504 * 10. type
505 * 11. name
506 */
507static int __of_device_is_compatible(const struct device_node *device,
508 const char *compat, const char *type, const char *name)
509{
510 struct property *prop;
511 const char *cp;
512 int index = 0, score = 0;
513
514 /* Compatible match has highest priority */
515 if (compat && compat[0]) {
516 prop = __of_find_property(device, "compatible", NULL);
517 for (cp = of_prop_next_string(prop, NULL); cp;
518 cp = of_prop_next_string(prop, cp), index++) {
519 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
520 score = INT_MAX/2 - (index << 2);
521 break;
522 }
523 }
524 if (!score)
525 return 0;
526 }
527
528 /* Matching type is better than matching name */
529 if (type && type[0]) {
530 if (!__of_node_is_type(device, type))
531 return 0;
532 score += 2;
533 }
534
535 /* Matching name is a bit better than not */
536 if (name && name[0]) {
537 if (!of_node_name_eq(device, name))
538 return 0;
539 score++;
540 }
541
542 return score;
543}
544
545/** Checks if the given "compat" string matches one of the strings in
546 * the device's "compatible" property
547 */
548int of_device_is_compatible(const struct device_node *device,
549 const char *compat)
550{
551 unsigned long flags;
552 int res;
553
554 raw_spin_lock_irqsave(&devtree_lock, flags);
555 res = __of_device_is_compatible(device, compat, NULL, NULL);
556 raw_spin_unlock_irqrestore(&devtree_lock, flags);
557 return res;
558}
559EXPORT_SYMBOL(of_device_is_compatible);
560
561/** Checks if the device is compatible with any of the entries in
562 * a NULL terminated array of strings. Returns the best match
563 * score or 0.
564 */
565int of_device_compatible_match(struct device_node *device,
566 const char *const *compat)
567{
568 unsigned int tmp, score = 0;
569
570 if (!compat)
571 return 0;
572
573 while (*compat) {
574 tmp = of_device_is_compatible(device, *compat);
575 if (tmp > score)
576 score = tmp;
577 compat++;
578 }
579
580 return score;
581}
582
583/**
584 * of_machine_is_compatible - Test root of device tree for a given compatible value
585 * @compat: compatible string to look for in root node's compatible property.
586 *
587 * Return: A positive integer if the root node has the given value in its
588 * compatible property.
589 */
590int of_machine_is_compatible(const char *compat)
591{
592 struct device_node *root;
593 int rc = 0;
594
595 root = of_find_node_by_path("/");
596 if (root) {
597 rc = of_device_is_compatible(root, compat);
598 of_node_put(root);
599 }
600 return rc;
601}
602EXPORT_SYMBOL(of_machine_is_compatible);
603
604/**
605 * __of_device_is_available - check if a device is available for use
606 *
607 * @device: Node to check for availability, with locks already held
608 *
609 * Return: True if the status property is absent or set to "okay" or "ok",
610 * false otherwise
611 */
612static bool __of_device_is_available(const struct device_node *device)
613{
614 const char *status;
615 int statlen;
616
617 if (!device)
618 return false;
619
620 status = __of_get_property(device, "status", &statlen);
621 if (status == NULL)
622 return true;
623
624 if (statlen > 0) {
625 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
626 return true;
627 }
628
629 return false;
630}
631
632/**
633 * of_device_is_available - check if a device is available for use
634 *
635 * @device: Node to check for availability
636 *
637 * Return: True if the status property is absent or set to "okay" or "ok",
638 * false otherwise
639 */
640bool of_device_is_available(const struct device_node *device)
641{
642 unsigned long flags;
643 bool res;
644
645 raw_spin_lock_irqsave(&devtree_lock, flags);
646 res = __of_device_is_available(device);
647 raw_spin_unlock_irqrestore(&devtree_lock, flags);
648 return res;
649
650}
651EXPORT_SYMBOL(of_device_is_available);
652
653/**
654 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
655 *
656 * @device: Node to check status for, with locks already held
657 *
658 * Return: True if the status property is set to "fail" or "fail-..." (for any
659 * error code suffix), false otherwise
660 */
661static bool __of_device_is_fail(const struct device_node *device)
662{
663 const char *status;
664
665 if (!device)
666 return false;
667
668 status = __of_get_property(device, "status", NULL);
669 if (status == NULL)
670 return false;
671
672 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
673}
674
675/**
676 * of_device_is_big_endian - check if a device has BE registers
677 *
678 * @device: Node to check for endianness
679 *
680 * Return: True if the device has a "big-endian" property, or if the kernel
681 * was compiled for BE *and* the device has a "native-endian" property.
682 * Returns false otherwise.
683 *
684 * Callers would nominally use ioread32be/iowrite32be if
685 * of_device_is_big_endian() == true, or readl/writel otherwise.
686 */
687bool of_device_is_big_endian(const struct device_node *device)
688{
689 if (of_property_read_bool(device, "big-endian"))
690 return true;
691 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
692 of_property_read_bool(device, "native-endian"))
693 return true;
694 return false;
695}
696EXPORT_SYMBOL(of_device_is_big_endian);
697
698/**
699 * of_get_parent - Get a node's parent if any
700 * @node: Node to get parent
701 *
702 * Return: A node pointer with refcount incremented, use
703 * of_node_put() on it when done.
704 */
705struct device_node *of_get_parent(const struct device_node *node)
706{
707 struct device_node *np;
708 unsigned long flags;
709
710 if (!node)
711 return NULL;
712
713 raw_spin_lock_irqsave(&devtree_lock, flags);
714 np = of_node_get(node->parent);
715 raw_spin_unlock_irqrestore(&devtree_lock, flags);
716 return np;
717}
718EXPORT_SYMBOL(of_get_parent);
719
720/**
721 * of_get_next_parent - Iterate to a node's parent
722 * @node: Node to get parent of
723 *
724 * This is like of_get_parent() except that it drops the
725 * refcount on the passed node, making it suitable for iterating
726 * through a node's parents.
727 *
728 * Return: A node pointer with refcount incremented, use
729 * of_node_put() on it when done.
730 */
731struct device_node *of_get_next_parent(struct device_node *node)
732{
733 struct device_node *parent;
734 unsigned long flags;
735
736 if (!node)
737 return NULL;
738
739 raw_spin_lock_irqsave(&devtree_lock, flags);
740 parent = of_node_get(node->parent);
741 of_node_put(node);
742 raw_spin_unlock_irqrestore(&devtree_lock, flags);
743 return parent;
744}
745EXPORT_SYMBOL(of_get_next_parent);
746
747static struct device_node *__of_get_next_child(const struct device_node *node,
748 struct device_node *prev)
749{
750 struct device_node *next;
751
752 if (!node)
753 return NULL;
754
755 next = prev ? prev->sibling : node->child;
756 of_node_get(next);
757 of_node_put(prev);
758 return next;
759}
760#define __for_each_child_of_node(parent, child) \
761 for (child = __of_get_next_child(parent, NULL); child != NULL; \
762 child = __of_get_next_child(parent, child))
763
764/**
765 * of_get_next_child - Iterate a node childs
766 * @node: parent node
767 * @prev: previous child of the parent node, or NULL to get first
768 *
769 * Return: A node pointer with refcount incremented, use of_node_put() on
770 * it when done. Returns NULL when prev is the last child. Decrements the
771 * refcount of prev.
772 */
773struct device_node *of_get_next_child(const struct device_node *node,
774 struct device_node *prev)
775{
776 struct device_node *next;
777 unsigned long flags;
778
779 raw_spin_lock_irqsave(&devtree_lock, flags);
780 next = __of_get_next_child(node, prev);
781 raw_spin_unlock_irqrestore(&devtree_lock, flags);
782 return next;
783}
784EXPORT_SYMBOL(of_get_next_child);
785
786/**
787 * of_get_next_available_child - Find the next available child node
788 * @node: parent node
789 * @prev: previous child of the parent node, or NULL to get first
790 *
791 * This function is like of_get_next_child(), except that it
792 * automatically skips any disabled nodes (i.e. status = "disabled").
793 */
794struct device_node *of_get_next_available_child(const struct device_node *node,
795 struct device_node *prev)
796{
797 struct device_node *next;
798 unsigned long flags;
799
800 if (!node)
801 return NULL;
802
803 raw_spin_lock_irqsave(&devtree_lock, flags);
804 next = prev ? prev->sibling : node->child;
805 for (; next; next = next->sibling) {
806 if (!__of_device_is_available(next))
807 continue;
808 if (of_node_get(next))
809 break;
810 }
811 of_node_put(prev);
812 raw_spin_unlock_irqrestore(&devtree_lock, flags);
813 return next;
814}
815EXPORT_SYMBOL(of_get_next_available_child);
816
817/**
818 * of_get_next_cpu_node - Iterate on cpu nodes
819 * @prev: previous child of the /cpus node, or NULL to get first
820 *
821 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
822 * will be skipped.
823 *
824 * Return: A cpu node pointer with refcount incremented, use of_node_put()
825 * on it when done. Returns NULL when prev is the last child. Decrements
826 * the refcount of prev.
827 */
828struct device_node *of_get_next_cpu_node(struct device_node *prev)
829{
830 struct device_node *next = NULL;
831 unsigned long flags;
832 struct device_node *node;
833
834 if (!prev)
835 node = of_find_node_by_path("/cpus");
836
837 raw_spin_lock_irqsave(&devtree_lock, flags);
838 if (prev)
839 next = prev->sibling;
840 else if (node) {
841 next = node->child;
842 of_node_put(node);
843 }
844 for (; next; next = next->sibling) {
845 if (__of_device_is_fail(next))
846 continue;
847 if (!(of_node_name_eq(next, "cpu") ||
848 __of_node_is_type(next, "cpu")))
849 continue;
850 if (of_node_get(next))
851 break;
852 }
853 of_node_put(prev);
854 raw_spin_unlock_irqrestore(&devtree_lock, flags);
855 return next;
856}
857EXPORT_SYMBOL(of_get_next_cpu_node);
858
859/**
860 * of_get_compatible_child - Find compatible child node
861 * @parent: parent node
862 * @compatible: compatible string
863 *
864 * Lookup child node whose compatible property contains the given compatible
865 * string.
866 *
867 * Return: a node pointer with refcount incremented, use of_node_put() on it
868 * when done; or NULL if not found.
869 */
870struct device_node *of_get_compatible_child(const struct device_node *parent,
871 const char *compatible)
872{
873 struct device_node *child;
874
875 for_each_child_of_node(parent, child) {
876 if (of_device_is_compatible(child, compatible))
877 break;
878 }
879
880 return child;
881}
882EXPORT_SYMBOL(of_get_compatible_child);
883
884/**
885 * of_get_child_by_name - Find the child node by name for a given parent
886 * @node: parent node
887 * @name: child name to look for.
888 *
889 * This function looks for child node for given matching name
890 *
891 * Return: A node pointer if found, with refcount incremented, use
892 * of_node_put() on it when done.
893 * Returns NULL if node is not found.
894 */
895struct device_node *of_get_child_by_name(const struct device_node *node,
896 const char *name)
897{
898 struct device_node *child;
899
900 for_each_child_of_node(node, child)
901 if (of_node_name_eq(child, name))
902 break;
903 return child;
904}
905EXPORT_SYMBOL(of_get_child_by_name);
906
907struct device_node *__of_find_node_by_path(struct device_node *parent,
908 const char *path)
909{
910 struct device_node *child;
911 int len;
912
913 len = strcspn(path, "/:");
914 if (!len)
915 return NULL;
916
917 __for_each_child_of_node(parent, child) {
918 const char *name = kbasename(child->full_name);
919 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
920 return child;
921 }
922 return NULL;
923}
924
925struct device_node *__of_find_node_by_full_path(struct device_node *node,
926 const char *path)
927{
928 const char *separator = strchr(path, ':');
929
930 while (node && *path == '/') {
931 struct device_node *tmp = node;
932
933 path++; /* Increment past '/' delimiter */
934 node = __of_find_node_by_path(node, path);
935 of_node_put(tmp);
936 path = strchrnul(path, '/');
937 if (separator && separator < path)
938 break;
939 }
940 return node;
941}
942
943/**
944 * of_find_node_opts_by_path - Find a node matching a full OF path
945 * @path: Either the full path to match, or if the path does not
946 * start with '/', the name of a property of the /aliases
947 * node (an alias). In the case of an alias, the node
948 * matching the alias' value will be returned.
949 * @opts: Address of a pointer into which to store the start of
950 * an options string appended to the end of the path with
951 * a ':' separator.
952 *
953 * Valid paths:
954 * * /foo/bar Full path
955 * * foo Valid alias
956 * * foo/bar Valid alias + relative path
957 *
958 * Return: A node pointer with refcount incremented, use
959 * of_node_put() on it when done.
960 */
961struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
962{
963 struct device_node *np = NULL;
964 struct property *pp;
965 unsigned long flags;
966 const char *separator = strchr(path, ':');
967
968 if (opts)
969 *opts = separator ? separator + 1 : NULL;
970
971 if (strcmp(path, "/") == 0)
972 return of_node_get(of_root);
973
974 /* The path could begin with an alias */
975 if (*path != '/') {
976 int len;
977 const char *p = separator;
978
979 if (!p)
980 p = strchrnul(path, '/');
981 len = p - path;
982
983 /* of_aliases must not be NULL */
984 if (!of_aliases)
985 return NULL;
986
987 for_each_property_of_node(of_aliases, pp) {
988 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
989 np = of_find_node_by_path(pp->value);
990 break;
991 }
992 }
993 if (!np)
994 return NULL;
995 path = p;
996 }
997
998 /* Step down the tree matching path components */
999 raw_spin_lock_irqsave(&devtree_lock, flags);
1000 if (!np)
1001 np = of_node_get(of_root);
1002 np = __of_find_node_by_full_path(np, path);
1003 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1004 return np;
1005}
1006EXPORT_SYMBOL(of_find_node_opts_by_path);
1007
1008/**
1009 * of_find_node_by_name - Find a node by its "name" property
1010 * @from: The node to start searching from or NULL; the node
1011 * you pass will not be searched, only the next one
1012 * will. Typically, you pass what the previous call
1013 * returned. of_node_put() will be called on @from.
1014 * @name: The name string to match against
1015 *
1016 * Return: A node pointer with refcount incremented, use
1017 * of_node_put() on it when done.
1018 */
1019struct device_node *of_find_node_by_name(struct device_node *from,
1020 const char *name)
1021{
1022 struct device_node *np;
1023 unsigned long flags;
1024
1025 raw_spin_lock_irqsave(&devtree_lock, flags);
1026 for_each_of_allnodes_from(from, np)
1027 if (of_node_name_eq(np, name) && of_node_get(np))
1028 break;
1029 of_node_put(from);
1030 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1031 return np;
1032}
1033EXPORT_SYMBOL(of_find_node_by_name);
1034
1035/**
1036 * of_find_node_by_type - Find a node by its "device_type" property
1037 * @from: The node to start searching from, or NULL to start searching
1038 * the entire device tree. The node you pass will not be
1039 * searched, only the next one will; typically, you pass
1040 * what the previous call returned. of_node_put() will be
1041 * called on from for you.
1042 * @type: The type string to match against
1043 *
1044 * Return: A node pointer with refcount incremented, use
1045 * of_node_put() on it when done.
1046 */
1047struct device_node *of_find_node_by_type(struct device_node *from,
1048 const char *type)
1049{
1050 struct device_node *np;
1051 unsigned long flags;
1052
1053 raw_spin_lock_irqsave(&devtree_lock, flags);
1054 for_each_of_allnodes_from(from, np)
1055 if (__of_node_is_type(np, type) && of_node_get(np))
1056 break;
1057 of_node_put(from);
1058 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1059 return np;
1060}
1061EXPORT_SYMBOL(of_find_node_by_type);
1062
1063/**
1064 * of_find_compatible_node - Find a node based on type and one of the
1065 * tokens in its "compatible" property
1066 * @from: The node to start searching from or NULL, the node
1067 * you pass will not be searched, only the next one
1068 * will; typically, you pass what the previous call
1069 * returned. of_node_put() will be called on it
1070 * @type: The type string to match "device_type" or NULL to ignore
1071 * @compatible: The string to match to one of the tokens in the device
1072 * "compatible" list.
1073 *
1074 * Return: A node pointer with refcount incremented, use
1075 * of_node_put() on it when done.
1076 */
1077struct device_node *of_find_compatible_node(struct device_node *from,
1078 const char *type, const char *compatible)
1079{
1080 struct device_node *np;
1081 unsigned long flags;
1082
1083 raw_spin_lock_irqsave(&devtree_lock, flags);
1084 for_each_of_allnodes_from(from, np)
1085 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1086 of_node_get(np))
1087 break;
1088 of_node_put(from);
1089 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1090 return np;
1091}
1092EXPORT_SYMBOL(of_find_compatible_node);
1093
1094/**
1095 * of_find_node_with_property - Find a node which has a property with
1096 * the given name.
1097 * @from: The node to start searching from or NULL, the node
1098 * you pass will not be searched, only the next one
1099 * will; typically, you pass what the previous call
1100 * returned. of_node_put() will be called on it
1101 * @prop_name: The name of the property to look for.
1102 *
1103 * Return: A node pointer with refcount incremented, use
1104 * of_node_put() on it when done.
1105 */
1106struct device_node *of_find_node_with_property(struct device_node *from,
1107 const char *prop_name)
1108{
1109 struct device_node *np;
1110 struct property *pp;
1111 unsigned long flags;
1112
1113 raw_spin_lock_irqsave(&devtree_lock, flags);
1114 for_each_of_allnodes_from(from, np) {
1115 for (pp = np->properties; pp; pp = pp->next) {
1116 if (of_prop_cmp(pp->name, prop_name) == 0) {
1117 of_node_get(np);
1118 goto out;
1119 }
1120 }
1121 }
1122out:
1123 of_node_put(from);
1124 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125 return np;
1126}
1127EXPORT_SYMBOL(of_find_node_with_property);
1128
1129static
1130const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1131 const struct device_node *node)
1132{
1133 const struct of_device_id *best_match = NULL;
1134 int score, best_score = 0;
1135
1136 if (!matches)
1137 return NULL;
1138
1139 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1140 score = __of_device_is_compatible(node, matches->compatible,
1141 matches->type, matches->name);
1142 if (score > best_score) {
1143 best_match = matches;
1144 best_score = score;
1145 }
1146 }
1147
1148 return best_match;
1149}
1150
1151/**
1152 * of_match_node - Tell if a device_node has a matching of_match structure
1153 * @matches: array of of device match structures to search in
1154 * @node: the of device structure to match against
1155 *
1156 * Low level utility function used by device matching.
1157 */
1158const struct of_device_id *of_match_node(const struct of_device_id *matches,
1159 const struct device_node *node)
1160{
1161 const struct of_device_id *match;
1162 unsigned long flags;
1163
1164 raw_spin_lock_irqsave(&devtree_lock, flags);
1165 match = __of_match_node(matches, node);
1166 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1167 return match;
1168}
1169EXPORT_SYMBOL(of_match_node);
1170
1171/**
1172 * of_find_matching_node_and_match - Find a node based on an of_device_id
1173 * match table.
1174 * @from: The node to start searching from or NULL, the node
1175 * you pass will not be searched, only the next one
1176 * will; typically, you pass what the previous call
1177 * returned. of_node_put() will be called on it
1178 * @matches: array of of device match structures to search in
1179 * @match: Updated to point at the matches entry which matched
1180 *
1181 * Return: A node pointer with refcount incremented, use
1182 * of_node_put() on it when done.
1183 */
1184struct device_node *of_find_matching_node_and_match(struct device_node *from,
1185 const struct of_device_id *matches,
1186 const struct of_device_id **match)
1187{
1188 struct device_node *np;
1189 const struct of_device_id *m;
1190 unsigned long flags;
1191
1192 if (match)
1193 *match = NULL;
1194
1195 raw_spin_lock_irqsave(&devtree_lock, flags);
1196 for_each_of_allnodes_from(from, np) {
1197 m = __of_match_node(matches, np);
1198 if (m && of_node_get(np)) {
1199 if (match)
1200 *match = m;
1201 break;
1202 }
1203 }
1204 of_node_put(from);
1205 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1206 return np;
1207}
1208EXPORT_SYMBOL(of_find_matching_node_and_match);
1209
1210/**
1211 * of_modalias_node - Lookup appropriate modalias for a device node
1212 * @node: pointer to a device tree node
1213 * @modalias: Pointer to buffer that modalias value will be copied into
1214 * @len: Length of modalias value
1215 *
1216 * Based on the value of the compatible property, this routine will attempt
1217 * to choose an appropriate modalias value for a particular device tree node.
1218 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1219 * from the first entry in the compatible list property.
1220 *
1221 * Return: This routine returns 0 on success, <0 on failure.
1222 */
1223int of_modalias_node(struct device_node *node, char *modalias, int len)
1224{
1225 const char *compatible, *p;
1226 int cplen;
1227
1228 compatible = of_get_property(node, "compatible", &cplen);
1229 if (!compatible || strlen(compatible) > cplen)
1230 return -ENODEV;
1231 p = strchr(compatible, ',');
1232 strlcpy(modalias, p ? p + 1 : compatible, len);
1233 return 0;
1234}
1235EXPORT_SYMBOL_GPL(of_modalias_node);
1236
1237/**
1238 * of_find_node_by_phandle - Find a node given a phandle
1239 * @handle: phandle of the node to find
1240 *
1241 * Return: A node pointer with refcount incremented, use
1242 * of_node_put() on it when done.
1243 */
1244struct device_node *of_find_node_by_phandle(phandle handle)
1245{
1246 struct device_node *np = NULL;
1247 unsigned long flags;
1248 u32 handle_hash;
1249
1250 if (!handle)
1251 return NULL;
1252
1253 handle_hash = of_phandle_cache_hash(handle);
1254
1255 raw_spin_lock_irqsave(&devtree_lock, flags);
1256
1257 if (phandle_cache[handle_hash] &&
1258 handle == phandle_cache[handle_hash]->phandle)
1259 np = phandle_cache[handle_hash];
1260
1261 if (!np) {
1262 for_each_of_allnodes(np)
1263 if (np->phandle == handle &&
1264 !of_node_check_flag(np, OF_DETACHED)) {
1265 phandle_cache[handle_hash] = np;
1266 break;
1267 }
1268 }
1269
1270 of_node_get(np);
1271 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1272 return np;
1273}
1274EXPORT_SYMBOL(of_find_node_by_phandle);
1275
1276void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1277{
1278 int i;
1279 printk("%s %pOF", msg, args->np);
1280 for (i = 0; i < args->args_count; i++) {
1281 const char delim = i ? ',' : ':';
1282
1283 pr_cont("%c%08x", delim, args->args[i]);
1284 }
1285 pr_cont("\n");
1286}
1287
1288int of_phandle_iterator_init(struct of_phandle_iterator *it,
1289 const struct device_node *np,
1290 const char *list_name,
1291 const char *cells_name,
1292 int cell_count)
1293{
1294 const __be32 *list;
1295 int size;
1296
1297 memset(it, 0, sizeof(*it));
1298
1299 /*
1300 * one of cell_count or cells_name must be provided to determine the
1301 * argument length.
1302 */
1303 if (cell_count < 0 && !cells_name)
1304 return -EINVAL;
1305
1306 list = of_get_property(np, list_name, &size);
1307 if (!list)
1308 return -ENOENT;
1309
1310 it->cells_name = cells_name;
1311 it->cell_count = cell_count;
1312 it->parent = np;
1313 it->list_end = list + size / sizeof(*list);
1314 it->phandle_end = list;
1315 it->cur = list;
1316
1317 return 0;
1318}
1319EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1320
1321int of_phandle_iterator_next(struct of_phandle_iterator *it)
1322{
1323 uint32_t count = 0;
1324
1325 if (it->node) {
1326 of_node_put(it->node);
1327 it->node = NULL;
1328 }
1329
1330 if (!it->cur || it->phandle_end >= it->list_end)
1331 return -ENOENT;
1332
1333 it->cur = it->phandle_end;
1334
1335 /* If phandle is 0, then it is an empty entry with no arguments. */
1336 it->phandle = be32_to_cpup(it->cur++);
1337
1338 if (it->phandle) {
1339
1340 /*
1341 * Find the provider node and parse the #*-cells property to
1342 * determine the argument length.
1343 */
1344 it->node = of_find_node_by_phandle(it->phandle);
1345
1346 if (it->cells_name) {
1347 if (!it->node) {
1348 pr_err("%pOF: could not find phandle %d\n",
1349 it->parent, it->phandle);
1350 goto err;
1351 }
1352
1353 if (of_property_read_u32(it->node, it->cells_name,
1354 &count)) {
1355 /*
1356 * If both cell_count and cells_name is given,
1357 * fall back to cell_count in absence
1358 * of the cells_name property
1359 */
1360 if (it->cell_count >= 0) {
1361 count = it->cell_count;
1362 } else {
1363 pr_err("%pOF: could not get %s for %pOF\n",
1364 it->parent,
1365 it->cells_name,
1366 it->node);
1367 goto err;
1368 }
1369 }
1370 } else {
1371 count = it->cell_count;
1372 }
1373
1374 /*
1375 * Make sure that the arguments actually fit in the remaining
1376 * property data length
1377 */
1378 if (it->cur + count > it->list_end) {
1379 if (it->cells_name)
1380 pr_err("%pOF: %s = %d found %td\n",
1381 it->parent, it->cells_name,
1382 count, it->list_end - it->cur);
1383 else
1384 pr_err("%pOF: phandle %s needs %d, found %td\n",
1385 it->parent, of_node_full_name(it->node),
1386 count, it->list_end - it->cur);
1387 goto err;
1388 }
1389 }
1390
1391 it->phandle_end = it->cur + count;
1392 it->cur_count = count;
1393
1394 return 0;
1395
1396err:
1397 if (it->node) {
1398 of_node_put(it->node);
1399 it->node = NULL;
1400 }
1401
1402 return -EINVAL;
1403}
1404EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1405
1406int of_phandle_iterator_args(struct of_phandle_iterator *it,
1407 uint32_t *args,
1408 int size)
1409{
1410 int i, count;
1411
1412 count = it->cur_count;
1413
1414 if (WARN_ON(size < count))
1415 count = size;
1416
1417 for (i = 0; i < count; i++)
1418 args[i] = be32_to_cpup(it->cur++);
1419
1420 return count;
1421}
1422
1423int __of_parse_phandle_with_args(const struct device_node *np,
1424 const char *list_name,
1425 const char *cells_name,
1426 int cell_count, int index,
1427 struct of_phandle_args *out_args)
1428{
1429 struct of_phandle_iterator it;
1430 int rc, cur_index = 0;
1431
1432 if (index < 0)
1433 return -EINVAL;
1434
1435 /* Loop over the phandles until all the requested entry is found */
1436 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1437 /*
1438 * All of the error cases bail out of the loop, so at
1439 * this point, the parsing is successful. If the requested
1440 * index matches, then fill the out_args structure and return,
1441 * or return -ENOENT for an empty entry.
1442 */
1443 rc = -ENOENT;
1444 if (cur_index == index) {
1445 if (!it.phandle)
1446 goto err;
1447
1448 if (out_args) {
1449 int c;
1450
1451 c = of_phandle_iterator_args(&it,
1452 out_args->args,
1453 MAX_PHANDLE_ARGS);
1454 out_args->np = it.node;
1455 out_args->args_count = c;
1456 } else {
1457 of_node_put(it.node);
1458 }
1459
1460 /* Found it! return success */
1461 return 0;
1462 }
1463
1464 cur_index++;
1465 }
1466
1467 /*
1468 * Unlock node before returning result; will be one of:
1469 * -ENOENT : index is for empty phandle
1470 * -EINVAL : parsing error on data
1471 */
1472
1473 err:
1474 of_node_put(it.node);
1475 return rc;
1476}
1477EXPORT_SYMBOL(__of_parse_phandle_with_args);
1478
1479/**
1480 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1481 * @np: pointer to a device tree node containing a list
1482 * @list_name: property name that contains a list
1483 * @stem_name: stem of property names that specify phandles' arguments count
1484 * @index: index of a phandle to parse out
1485 * @out_args: optional pointer to output arguments structure (will be filled)
1486 *
1487 * This function is useful to parse lists of phandles and their arguments.
1488 * Returns 0 on success and fills out_args, on error returns appropriate errno
1489 * value. The difference between this function and of_parse_phandle_with_args()
1490 * is that this API remaps a phandle if the node the phandle points to has
1491 * a <@stem_name>-map property.
1492 *
1493 * Caller is responsible to call of_node_put() on the returned out_args->np
1494 * pointer.
1495 *
1496 * Example::
1497 *
1498 * phandle1: node1 {
1499 * #list-cells = <2>;
1500 * };
1501 *
1502 * phandle2: node2 {
1503 * #list-cells = <1>;
1504 * };
1505 *
1506 * phandle3: node3 {
1507 * #list-cells = <1>;
1508 * list-map = <0 &phandle2 3>,
1509 * <1 &phandle2 2>,
1510 * <2 &phandle1 5 1>;
1511 * list-map-mask = <0x3>;
1512 * };
1513 *
1514 * node4 {
1515 * list = <&phandle1 1 2 &phandle3 0>;
1516 * };
1517 *
1518 * To get a device_node of the ``node2`` node you may call this:
1519 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1520 */
1521int of_parse_phandle_with_args_map(const struct device_node *np,
1522 const char *list_name,
1523 const char *stem_name,
1524 int index, struct of_phandle_args *out_args)
1525{
1526 char *cells_name, *map_name = NULL, *mask_name = NULL;
1527 char *pass_name = NULL;
1528 struct device_node *cur, *new = NULL;
1529 const __be32 *map, *mask, *pass;
1530 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1531 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1532 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1533 const __be32 *match_array = initial_match_array;
1534 int i, ret, map_len, match;
1535 u32 list_size, new_size;
1536
1537 if (index < 0)
1538 return -EINVAL;
1539
1540 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1541 if (!cells_name)
1542 return -ENOMEM;
1543
1544 ret = -ENOMEM;
1545 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1546 if (!map_name)
1547 goto free;
1548
1549 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1550 if (!mask_name)
1551 goto free;
1552
1553 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1554 if (!pass_name)
1555 goto free;
1556
1557 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1558 out_args);
1559 if (ret)
1560 goto free;
1561
1562 /* Get the #<list>-cells property */
1563 cur = out_args->np;
1564 ret = of_property_read_u32(cur, cells_name, &list_size);
1565 if (ret < 0)
1566 goto put;
1567
1568 /* Precalculate the match array - this simplifies match loop */
1569 for (i = 0; i < list_size; i++)
1570 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1571
1572 ret = -EINVAL;
1573 while (cur) {
1574 /* Get the <list>-map property */
1575 map = of_get_property(cur, map_name, &map_len);
1576 if (!map) {
1577 ret = 0;
1578 goto free;
1579 }
1580 map_len /= sizeof(u32);
1581
1582 /* Get the <list>-map-mask property (optional) */
1583 mask = of_get_property(cur, mask_name, NULL);
1584 if (!mask)
1585 mask = dummy_mask;
1586 /* Iterate through <list>-map property */
1587 match = 0;
1588 while (map_len > (list_size + 1) && !match) {
1589 /* Compare specifiers */
1590 match = 1;
1591 for (i = 0; i < list_size; i++, map_len--)
1592 match &= !((match_array[i] ^ *map++) & mask[i]);
1593
1594 of_node_put(new);
1595 new = of_find_node_by_phandle(be32_to_cpup(map));
1596 map++;
1597 map_len--;
1598
1599 /* Check if not found */
1600 if (!new)
1601 goto put;
1602
1603 if (!of_device_is_available(new))
1604 match = 0;
1605
1606 ret = of_property_read_u32(new, cells_name, &new_size);
1607 if (ret)
1608 goto put;
1609
1610 /* Check for malformed properties */
1611 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1612 goto put;
1613 if (map_len < new_size)
1614 goto put;
1615
1616 /* Move forward by new node's #<list>-cells amount */
1617 map += new_size;
1618 map_len -= new_size;
1619 }
1620 if (!match)
1621 goto put;
1622
1623 /* Get the <list>-map-pass-thru property (optional) */
1624 pass = of_get_property(cur, pass_name, NULL);
1625 if (!pass)
1626 pass = dummy_pass;
1627
1628 /*
1629 * Successfully parsed a <list>-map translation; copy new
1630 * specifier into the out_args structure, keeping the
1631 * bits specified in <list>-map-pass-thru.
1632 */
1633 match_array = map - new_size;
1634 for (i = 0; i < new_size; i++) {
1635 __be32 val = *(map - new_size + i);
1636
1637 if (i < list_size) {
1638 val &= ~pass[i];
1639 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1640 }
1641
1642 out_args->args[i] = be32_to_cpu(val);
1643 }
1644 out_args->args_count = list_size = new_size;
1645 /* Iterate again with new provider */
1646 out_args->np = new;
1647 of_node_put(cur);
1648 cur = new;
1649 }
1650put:
1651 of_node_put(cur);
1652 of_node_put(new);
1653free:
1654 kfree(mask_name);
1655 kfree(map_name);
1656 kfree(cells_name);
1657 kfree(pass_name);
1658
1659 return ret;
1660}
1661EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1662
1663/**
1664 * of_count_phandle_with_args() - Find the number of phandles references in a property
1665 * @np: pointer to a device tree node containing a list
1666 * @list_name: property name that contains a list
1667 * @cells_name: property name that specifies phandles' arguments count
1668 *
1669 * Return: The number of phandle + argument tuples within a property. It
1670 * is a typical pattern to encode a list of phandle and variable
1671 * arguments into a single property. The number of arguments is encoded
1672 * by a property in the phandle-target node. For example, a gpios
1673 * property would contain a list of GPIO specifies consisting of a
1674 * phandle and 1 or more arguments. The number of arguments are
1675 * determined by the #gpio-cells property in the node pointed to by the
1676 * phandle.
1677 */
1678int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1679 const char *cells_name)
1680{
1681 struct of_phandle_iterator it;
1682 int rc, cur_index = 0;
1683
1684 /*
1685 * If cells_name is NULL we assume a cell count of 0. This makes
1686 * counting the phandles trivial as each 32bit word in the list is a
1687 * phandle and no arguments are to consider. So we don't iterate through
1688 * the list but just use the length to determine the phandle count.
1689 */
1690 if (!cells_name) {
1691 const __be32 *list;
1692 int size;
1693
1694 list = of_get_property(np, list_name, &size);
1695 if (!list)
1696 return -ENOENT;
1697
1698 return size / sizeof(*list);
1699 }
1700
1701 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1702 if (rc)
1703 return rc;
1704
1705 while ((rc = of_phandle_iterator_next(&it)) == 0)
1706 cur_index += 1;
1707
1708 if (rc != -ENOENT)
1709 return rc;
1710
1711 return cur_index;
1712}
1713EXPORT_SYMBOL(of_count_phandle_with_args);
1714
1715/**
1716 * __of_add_property - Add a property to a node without lock operations
1717 * @np: Caller's Device Node
1718 * @prop: Property to add
1719 */
1720int __of_add_property(struct device_node *np, struct property *prop)
1721{
1722 struct property **next;
1723
1724 prop->next = NULL;
1725 next = &np->properties;
1726 while (*next) {
1727 if (strcmp(prop->name, (*next)->name) == 0)
1728 /* duplicate ! don't insert it */
1729 return -EEXIST;
1730
1731 next = &(*next)->next;
1732 }
1733 *next = prop;
1734
1735 return 0;
1736}
1737
1738/**
1739 * of_add_property - Add a property to a node
1740 * @np: Caller's Device Node
1741 * @prop: Property to add
1742 */
1743int of_add_property(struct device_node *np, struct property *prop)
1744{
1745 unsigned long flags;
1746 int rc;
1747
1748 mutex_lock(&of_mutex);
1749
1750 raw_spin_lock_irqsave(&devtree_lock, flags);
1751 rc = __of_add_property(np, prop);
1752 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1753
1754 if (!rc)
1755 __of_add_property_sysfs(np, prop);
1756
1757 mutex_unlock(&of_mutex);
1758
1759 if (!rc)
1760 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1761
1762 return rc;
1763}
1764EXPORT_SYMBOL_GPL(of_add_property);
1765
1766int __of_remove_property(struct device_node *np, struct property *prop)
1767{
1768 struct property **next;
1769
1770 for (next = &np->properties; *next; next = &(*next)->next) {
1771 if (*next == prop)
1772 break;
1773 }
1774 if (*next == NULL)
1775 return -ENODEV;
1776
1777 /* found the node */
1778 *next = prop->next;
1779 prop->next = np->deadprops;
1780 np->deadprops = prop;
1781
1782 return 0;
1783}
1784
1785/**
1786 * of_remove_property - Remove a property from a node.
1787 * @np: Caller's Device Node
1788 * @prop: Property to remove
1789 *
1790 * Note that we don't actually remove it, since we have given out
1791 * who-knows-how-many pointers to the data using get-property.
1792 * Instead we just move the property to the "dead properties"
1793 * list, so it won't be found any more.
1794 */
1795int of_remove_property(struct device_node *np, struct property *prop)
1796{
1797 unsigned long flags;
1798 int rc;
1799
1800 if (!prop)
1801 return -ENODEV;
1802
1803 mutex_lock(&of_mutex);
1804
1805 raw_spin_lock_irqsave(&devtree_lock, flags);
1806 rc = __of_remove_property(np, prop);
1807 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1808
1809 if (!rc)
1810 __of_remove_property_sysfs(np, prop);
1811
1812 mutex_unlock(&of_mutex);
1813
1814 if (!rc)
1815 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1816
1817 return rc;
1818}
1819EXPORT_SYMBOL_GPL(of_remove_property);
1820
1821int __of_update_property(struct device_node *np, struct property *newprop,
1822 struct property **oldpropp)
1823{
1824 struct property **next, *oldprop;
1825
1826 for (next = &np->properties; *next; next = &(*next)->next) {
1827 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1828 break;
1829 }
1830 *oldpropp = oldprop = *next;
1831
1832 if (oldprop) {
1833 /* replace the node */
1834 newprop->next = oldprop->next;
1835 *next = newprop;
1836 oldprop->next = np->deadprops;
1837 np->deadprops = oldprop;
1838 } else {
1839 /* new node */
1840 newprop->next = NULL;
1841 *next = newprop;
1842 }
1843
1844 return 0;
1845}
1846
1847/*
1848 * of_update_property - Update a property in a node, if the property does
1849 * not exist, add it.
1850 *
1851 * Note that we don't actually remove it, since we have given out
1852 * who-knows-how-many pointers to the data using get-property.
1853 * Instead we just move the property to the "dead properties" list,
1854 * and add the new property to the property list
1855 */
1856int of_update_property(struct device_node *np, struct property *newprop)
1857{
1858 struct property *oldprop;
1859 unsigned long flags;
1860 int rc;
1861
1862 if (!newprop->name)
1863 return -EINVAL;
1864
1865 mutex_lock(&of_mutex);
1866
1867 raw_spin_lock_irqsave(&devtree_lock, flags);
1868 rc = __of_update_property(np, newprop, &oldprop);
1869 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1870
1871 if (!rc)
1872 __of_update_property_sysfs(np, newprop, oldprop);
1873
1874 mutex_unlock(&of_mutex);
1875
1876 if (!rc)
1877 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1878
1879 return rc;
1880}
1881
1882static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1883 int id, const char *stem, int stem_len)
1884{
1885 ap->np = np;
1886 ap->id = id;
1887 strncpy(ap->stem, stem, stem_len);
1888 ap->stem[stem_len] = 0;
1889 list_add_tail(&ap->link, &aliases_lookup);
1890 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1891 ap->alias, ap->stem, ap->id, np);
1892}
1893
1894/**
1895 * of_alias_scan - Scan all properties of the 'aliases' node
1896 * @dt_alloc: An allocator that provides a virtual address to memory
1897 * for storing the resulting tree
1898 *
1899 * The function scans all the properties of the 'aliases' node and populates
1900 * the global lookup table with the properties. It returns the
1901 * number of alias properties found, or an error code in case of failure.
1902 */
1903void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1904{
1905 struct property *pp;
1906
1907 of_aliases = of_find_node_by_path("/aliases");
1908 of_chosen = of_find_node_by_path("/chosen");
1909 if (of_chosen == NULL)
1910 of_chosen = of_find_node_by_path("/chosen@0");
1911
1912 if (of_chosen) {
1913 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1914 const char *name = NULL;
1915
1916 if (of_property_read_string(of_chosen, "stdout-path", &name))
1917 of_property_read_string(of_chosen, "linux,stdout-path",
1918 &name);
1919 if (IS_ENABLED(CONFIG_PPC) && !name)
1920 of_property_read_string(of_aliases, "stdout", &name);
1921 if (name)
1922 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1923 }
1924
1925 if (!of_aliases)
1926 return;
1927
1928 for_each_property_of_node(of_aliases, pp) {
1929 const char *start = pp->name;
1930 const char *end = start + strlen(start);
1931 struct device_node *np;
1932 struct alias_prop *ap;
1933 int id, len;
1934
1935 /* Skip those we do not want to proceed */
1936 if (!strcmp(pp->name, "name") ||
1937 !strcmp(pp->name, "phandle") ||
1938 !strcmp(pp->name, "linux,phandle"))
1939 continue;
1940
1941 np = of_find_node_by_path(pp->value);
1942 if (!np)
1943 continue;
1944
1945 /* walk the alias backwards to extract the id and work out
1946 * the 'stem' string */
1947 while (isdigit(*(end-1)) && end > start)
1948 end--;
1949 len = end - start;
1950
1951 if (kstrtoint(end, 10, &id) < 0)
1952 continue;
1953
1954 /* Allocate an alias_prop with enough space for the stem */
1955 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1956 if (!ap)
1957 continue;
1958 memset(ap, 0, sizeof(*ap) + len + 1);
1959 ap->alias = start;
1960 of_alias_add(ap, np, id, start, len);
1961 }
1962}
1963
1964/**
1965 * of_alias_get_id - Get alias id for the given device_node
1966 * @np: Pointer to the given device_node
1967 * @stem: Alias stem of the given device_node
1968 *
1969 * The function travels the lookup table to get the alias id for the given
1970 * device_node and alias stem.
1971 *
1972 * Return: The alias id if found.
1973 */
1974int of_alias_get_id(struct device_node *np, const char *stem)
1975{
1976 struct alias_prop *app;
1977 int id = -ENODEV;
1978
1979 mutex_lock(&of_mutex);
1980 list_for_each_entry(app, &aliases_lookup, link) {
1981 if (strcmp(app->stem, stem) != 0)
1982 continue;
1983
1984 if (np == app->np) {
1985 id = app->id;
1986 break;
1987 }
1988 }
1989 mutex_unlock(&of_mutex);
1990
1991 return id;
1992}
1993EXPORT_SYMBOL_GPL(of_alias_get_id);
1994
1995/**
1996 * of_alias_get_alias_list - Get alias list for the given device driver
1997 * @matches: Array of OF device match structures to search in
1998 * @stem: Alias stem of the given device_node
1999 * @bitmap: Bitmap field pointer
2000 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2001 *
2002 * The function travels the lookup table to record alias ids for the given
2003 * device match structures and alias stem.
2004 *
2005 * Return: 0 or -ENOSYS when !CONFIG_OF or
2006 * -EOVERFLOW if alias ID is greater then allocated nbits
2007 */
2008int of_alias_get_alias_list(const struct of_device_id *matches,
2009 const char *stem, unsigned long *bitmap,
2010 unsigned int nbits)
2011{
2012 struct alias_prop *app;
2013 int ret = 0;
2014
2015 /* Zero bitmap field to make sure that all the time it is clean */
2016 bitmap_zero(bitmap, nbits);
2017
2018 mutex_lock(&of_mutex);
2019 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2020 list_for_each_entry(app, &aliases_lookup, link) {
2021 pr_debug("%s: stem: %s, id: %d\n",
2022 __func__, app->stem, app->id);
2023
2024 if (strcmp(app->stem, stem) != 0) {
2025 pr_debug("%s: stem comparison didn't pass %s\n",
2026 __func__, app->stem);
2027 continue;
2028 }
2029
2030 if (of_match_node(matches, app->np)) {
2031 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2032
2033 if (app->id >= nbits) {
2034 pr_warn("%s: ID %d >= than bitmap field %d\n",
2035 __func__, app->id, nbits);
2036 ret = -EOVERFLOW;
2037 } else {
2038 set_bit(app->id, bitmap);
2039 }
2040 }
2041 }
2042 mutex_unlock(&of_mutex);
2043
2044 return ret;
2045}
2046EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2047
2048/**
2049 * of_alias_get_highest_id - Get highest alias id for the given stem
2050 * @stem: Alias stem to be examined
2051 *
2052 * The function travels the lookup table to get the highest alias id for the
2053 * given alias stem. It returns the alias id if found.
2054 */
2055int of_alias_get_highest_id(const char *stem)
2056{
2057 struct alias_prop *app;
2058 int id = -ENODEV;
2059
2060 mutex_lock(&of_mutex);
2061 list_for_each_entry(app, &aliases_lookup, link) {
2062 if (strcmp(app->stem, stem) != 0)
2063 continue;
2064
2065 if (app->id > id)
2066 id = app->id;
2067 }
2068 mutex_unlock(&of_mutex);
2069
2070 return id;
2071}
2072EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2073
2074/**
2075 * of_console_check() - Test and setup console for DT setup
2076 * @dn: Pointer to device node
2077 * @name: Name to use for preferred console without index. ex. "ttyS"
2078 * @index: Index to use for preferred console.
2079 *
2080 * Check if the given device node matches the stdout-path property in the
2081 * /chosen node. If it does then register it as the preferred console.
2082 *
2083 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2084 */
2085bool of_console_check(struct device_node *dn, char *name, int index)
2086{
2087 if (!dn || dn != of_stdout || console_set_on_cmdline)
2088 return false;
2089
2090 /*
2091 * XXX: cast `options' to char pointer to suppress complication
2092 * warnings: printk, UART and console drivers expect char pointer.
2093 */
2094 return !add_preferred_console(name, index, (char *)of_stdout_options);
2095}
2096EXPORT_SYMBOL_GPL(of_console_check);
2097
2098/**
2099 * of_find_next_cache_node - Find a node's subsidiary cache
2100 * @np: node of type "cpu" or "cache"
2101 *
2102 * Return: A node pointer with refcount incremented, use
2103 * of_node_put() on it when done. Caller should hold a reference
2104 * to np.
2105 */
2106struct device_node *of_find_next_cache_node(const struct device_node *np)
2107{
2108 struct device_node *child, *cache_node;
2109
2110 cache_node = of_parse_phandle(np, "l2-cache", 0);
2111 if (!cache_node)
2112 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2113
2114 if (cache_node)
2115 return cache_node;
2116
2117 /* OF on pmac has nodes instead of properties named "l2-cache"
2118 * beneath CPU nodes.
2119 */
2120 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2121 for_each_child_of_node(np, child)
2122 if (of_node_is_type(child, "cache"))
2123 return child;
2124
2125 return NULL;
2126}
2127
2128/**
2129 * of_find_last_cache_level - Find the level at which the last cache is
2130 * present for the given logical cpu
2131 *
2132 * @cpu: cpu number(logical index) for which the last cache level is needed
2133 *
2134 * Return: The the level at which the last cache is present. It is exactly
2135 * same as the total number of cache levels for the given logical cpu.
2136 */
2137int of_find_last_cache_level(unsigned int cpu)
2138{
2139 u32 cache_level = 0;
2140 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2141
2142 while (np) {
2143 prev = np;
2144 of_node_put(np);
2145 np = of_find_next_cache_node(np);
2146 }
2147
2148 of_property_read_u32(prev, "cache-level", &cache_level);
2149
2150 return cache_level;
2151}
2152
2153/**
2154 * of_map_id - Translate an ID through a downstream mapping.
2155 * @np: root complex device node.
2156 * @id: device ID to map.
2157 * @map_name: property name of the map to use.
2158 * @map_mask_name: optional property name of the mask to use.
2159 * @target: optional pointer to a target device node.
2160 * @id_out: optional pointer to receive the translated ID.
2161 *
2162 * Given a device ID, look up the appropriate implementation-defined
2163 * platform ID and/or the target device which receives transactions on that
2164 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2165 * @id_out may be NULL if only the other is required. If @target points to
2166 * a non-NULL device node pointer, only entries targeting that node will be
2167 * matched; if it points to a NULL value, it will receive the device node of
2168 * the first matching target phandle, with a reference held.
2169 *
2170 * Return: 0 on success or a standard error code on failure.
2171 */
2172int of_map_id(struct device_node *np, u32 id,
2173 const char *map_name, const char *map_mask_name,
2174 struct device_node **target, u32 *id_out)
2175{
2176 u32 map_mask, masked_id;
2177 int map_len;
2178 const __be32 *map = NULL;
2179
2180 if (!np || !map_name || (!target && !id_out))
2181 return -EINVAL;
2182
2183 map = of_get_property(np, map_name, &map_len);
2184 if (!map) {
2185 if (target)
2186 return -ENODEV;
2187 /* Otherwise, no map implies no translation */
2188 *id_out = id;
2189 return 0;
2190 }
2191
2192 if (!map_len || map_len % (4 * sizeof(*map))) {
2193 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2194 map_name, map_len);
2195 return -EINVAL;
2196 }
2197
2198 /* The default is to select all bits. */
2199 map_mask = 0xffffffff;
2200
2201 /*
2202 * Can be overridden by "{iommu,msi}-map-mask" property.
2203 * If of_property_read_u32() fails, the default is used.
2204 */
2205 if (map_mask_name)
2206 of_property_read_u32(np, map_mask_name, &map_mask);
2207
2208 masked_id = map_mask & id;
2209 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2210 struct device_node *phandle_node;
2211 u32 id_base = be32_to_cpup(map + 0);
2212 u32 phandle = be32_to_cpup(map + 1);
2213 u32 out_base = be32_to_cpup(map + 2);
2214 u32 id_len = be32_to_cpup(map + 3);
2215
2216 if (id_base & ~map_mask) {
2217 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2218 np, map_name, map_name,
2219 map_mask, id_base);
2220 return -EFAULT;
2221 }
2222
2223 if (masked_id < id_base || masked_id >= id_base + id_len)
2224 continue;
2225
2226 phandle_node = of_find_node_by_phandle(phandle);
2227 if (!phandle_node)
2228 return -ENODEV;
2229
2230 if (target) {
2231 if (*target)
2232 of_node_put(phandle_node);
2233 else
2234 *target = phandle_node;
2235
2236 if (*target != phandle_node)
2237 continue;
2238 }
2239
2240 if (id_out)
2241 *id_out = masked_id - id_base + out_base;
2242
2243 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2244 np, map_name, map_mask, id_base, out_base,
2245 id_len, id, masked_id - id_base + out_base);
2246 return 0;
2247 }
2248
2249 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2250 id, target && *target ? *target : NULL);
2251
2252 /* Bypasses translation */
2253 if (id_out)
2254 *id_out = id;
2255 return 0;
2256}
2257EXPORT_SYMBOL_GPL(of_map_id);