Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5 *
6 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
7 *
8 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, and the entire permission notice in its entirety,
16 * including the disclaimer of warranties.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * ALTERNATIVELY, this product may be distributed under the terms of
25 * the GNU General Public License, in which case the provisions of the GPL are
26 * required INSTEAD OF the above restrictions. (This clause is
27 * necessary due to a potential bad interaction between the GPL and
28 * the restrictions contained in a BSD-style copyright.)
29 *
30 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
31 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
33 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
34 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
36 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
37 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
38 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
40 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
41 * DAMAGE.
42 */
43
44/*
45 * (now, with legal B.S. out of the way.....)
46 *
47 * This routine gathers environmental noise from device drivers, etc.,
48 * and returns good random numbers, suitable for cryptographic use.
49 * Besides the obvious cryptographic uses, these numbers are also good
50 * for seeding TCP sequence numbers, and other places where it is
51 * desirable to have numbers which are not only random, but hard to
52 * predict by an attacker.
53 *
54 * Theory of operation
55 * ===================
56 *
57 * Computers are very predictable devices. Hence it is extremely hard
58 * to produce truly random numbers on a computer --- as opposed to
59 * pseudo-random numbers, which can easily generated by using a
60 * algorithm. Unfortunately, it is very easy for attackers to guess
61 * the sequence of pseudo-random number generators, and for some
62 * applications this is not acceptable. So instead, we must try to
63 * gather "environmental noise" from the computer's environment, which
64 * must be hard for outside attackers to observe, and use that to
65 * generate random numbers. In a Unix environment, this is best done
66 * from inside the kernel.
67 *
68 * Sources of randomness from the environment include inter-keyboard
69 * timings, inter-interrupt timings from some interrupts, and other
70 * events which are both (a) non-deterministic and (b) hard for an
71 * outside observer to measure. Randomness from these sources are
72 * added to an "entropy pool", which is mixed using a CRC-like function.
73 * This is not cryptographically strong, but it is adequate assuming
74 * the randomness is not chosen maliciously, and it is fast enough that
75 * the overhead of doing it on every interrupt is very reasonable.
76 * As random bytes are mixed into the entropy pool, the routines keep
77 * an *estimate* of how many bits of randomness have been stored into
78 * the random number generator's internal state.
79 *
80 * When random bytes are desired, they are obtained by taking the BLAKE2s
81 * hash of the contents of the "entropy pool". The BLAKE2s hash avoids
82 * exposing the internal state of the entropy pool. It is believed to
83 * be computationally infeasible to derive any useful information
84 * about the input of BLAKE2s from its output. Even if it is possible to
85 * analyze BLAKE2s in some clever way, as long as the amount of data
86 * returned from the generator is less than the inherent entropy in
87 * the pool, the output data is totally unpredictable. For this
88 * reason, the routine decreases its internal estimate of how many
89 * bits of "true randomness" are contained in the entropy pool as it
90 * outputs random numbers.
91 *
92 * If this estimate goes to zero, the routine can still generate
93 * random numbers; however, an attacker may (at least in theory) be
94 * able to infer the future output of the generator from prior
95 * outputs. This requires successful cryptanalysis of BLAKE2s, which is
96 * not believed to be feasible, but there is a remote possibility.
97 * Nonetheless, these numbers should be useful for the vast majority
98 * of purposes.
99 *
100 * Exported interfaces ---- output
101 * ===============================
102 *
103 * There are four exported interfaces; two for use within the kernel,
104 * and two for use from userspace.
105 *
106 * Exported interfaces ---- userspace output
107 * -----------------------------------------
108 *
109 * The userspace interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- kernel output
123 * --------------------------------------
124 *
125 * The primary kernel interface is
126 *
127 * void get_random_bytes(void *buf, int nbytes);
128 *
129 * This interface will return the requested number of random bytes,
130 * and place it in the requested buffer. This is equivalent to a
131 * read from /dev/urandom.
132 *
133 * For less critical applications, there are the functions:
134 *
135 * u32 get_random_u32()
136 * u64 get_random_u64()
137 * unsigned int get_random_int()
138 * unsigned long get_random_long()
139 *
140 * These are produced by a cryptographic RNG seeded from get_random_bytes,
141 * and so do not deplete the entropy pool as much. These are recommended
142 * for most in-kernel operations *if the result is going to be stored in
143 * the kernel*.
144 *
145 * Specifically, the get_random_int() family do not attempt to do
146 * "anti-backtracking". If you capture the state of the kernel (e.g.
147 * by snapshotting the VM), you can figure out previous get_random_int()
148 * return values. But if the value is stored in the kernel anyway,
149 * this is not a problem.
150 *
151 * It *is* safe to expose get_random_int() output to attackers (e.g. as
152 * network cookies); given outputs 1..n, it's not feasible to predict
153 * outputs 0 or n+1. The only concern is an attacker who breaks into
154 * the kernel later; the get_random_int() engine is not reseeded as
155 * often as the get_random_bytes() one.
156 *
157 * get_random_bytes() is needed for keys that need to stay secret after
158 * they are erased from the kernel. For example, any key that will
159 * be wrapped and stored encrypted. And session encryption keys: we'd
160 * like to know that after the session is closed and the keys erased,
161 * the plaintext is unrecoverable to someone who recorded the ciphertext.
162 *
163 * But for network ports/cookies, stack canaries, PRNG seeds, address
164 * space layout randomization, session *authentication* keys, or other
165 * applications where the sensitive data is stored in the kernel in
166 * plaintext for as long as it's sensitive, the get_random_int() family
167 * is just fine.
168 *
169 * Consider ASLR. We want to keep the address space secret from an
170 * outside attacker while the process is running, but once the address
171 * space is torn down, it's of no use to an attacker any more. And it's
172 * stored in kernel data structures as long as it's alive, so worrying
173 * about an attacker's ability to extrapolate it from the get_random_int()
174 * CRNG is silly.
175 *
176 * Even some cryptographic keys are safe to generate with get_random_int().
177 * In particular, keys for SipHash are generally fine. Here, knowledge
178 * of the key authorizes you to do something to a kernel object (inject
179 * packets to a network connection, or flood a hash table), and the
180 * key is stored with the object being protected. Once it goes away,
181 * we no longer care if anyone knows the key.
182 *
183 * prandom_u32()
184 * -------------
185 *
186 * For even weaker applications, see the pseudorandom generator
187 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
188 * numbers aren't security-critical at all, these are *far* cheaper.
189 * Useful for self-tests, random error simulation, randomized backoffs,
190 * and any other application where you trust that nobody is trying to
191 * maliciously mess with you by guessing the "random" numbers.
192 *
193 * Exported interfaces ---- input
194 * ==============================
195 *
196 * The current exported interfaces for gathering environmental noise
197 * from the devices are:
198 *
199 * void add_device_randomness(const void *buf, unsigned int size);
200 * void add_input_randomness(unsigned int type, unsigned int code,
201 * unsigned int value);
202 * void add_interrupt_randomness(int irq);
203 * void add_disk_randomness(struct gendisk *disk);
204 * void add_hwgenerator_randomness(const char *buffer, size_t count,
205 * size_t entropy);
206 * void add_bootloader_randomness(const void *buf, unsigned int size);
207 *
208 * add_device_randomness() is for adding data to the random pool that
209 * is likely to differ between two devices (or possibly even per boot).
210 * This would be things like MAC addresses or serial numbers, or the
211 * read-out of the RTC. This does *not* add any actual entropy to the
212 * pool, but it initializes the pool to different values for devices
213 * that might otherwise be identical and have very little entropy
214 * available to them (particularly common in the embedded world).
215 *
216 * add_input_randomness() uses the input layer interrupt timing, as well as
217 * the event type information from the hardware.
218 *
219 * add_interrupt_randomness() uses the interrupt timing as random
220 * inputs to the entropy pool. Using the cycle counters and the irq source
221 * as inputs, it feeds the randomness roughly once a second.
222 *
223 * add_disk_randomness() uses what amounts to the seek time of block
224 * layer request events, on a per-disk_devt basis, as input to the
225 * entropy pool. Note that high-speed solid state drives with very low
226 * seek times do not make for good sources of entropy, as their seek
227 * times are usually fairly consistent.
228 *
229 * All of these routines try to estimate how many bits of randomness a
230 * particular randomness source. They do this by keeping track of the
231 * first and second order deltas of the event timings.
232 *
233 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
234 * entropy as specified by the caller. If the entropy pool is full it will
235 * block until more entropy is needed.
236 *
237 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
238 * add_device_randomness(), depending on whether or not the configuration
239 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
240 *
241 * Ensuring unpredictability at system startup
242 * ============================================
243 *
244 * When any operating system starts up, it will go through a sequence
245 * of actions that are fairly predictable by an adversary, especially
246 * if the start-up does not involve interaction with a human operator.
247 * This reduces the actual number of bits of unpredictability in the
248 * entropy pool below the value in entropy_count. In order to
249 * counteract this effect, it helps to carry information in the
250 * entropy pool across shut-downs and start-ups. To do this, put the
251 * following lines an appropriate script which is run during the boot
252 * sequence:
253 *
254 * echo "Initializing random number generator..."
255 * random_seed=/var/run/random-seed
256 * # Carry a random seed from start-up to start-up
257 * # Load and then save the whole entropy pool
258 * if [ -f $random_seed ]; then
259 * cat $random_seed >/dev/urandom
260 * else
261 * touch $random_seed
262 * fi
263 * chmod 600 $random_seed
264 * dd if=/dev/urandom of=$random_seed count=1 bs=512
265 *
266 * and the following lines in an appropriate script which is run as
267 * the system is shutdown:
268 *
269 * # Carry a random seed from shut-down to start-up
270 * # Save the whole entropy pool
271 * echo "Saving random seed..."
272 * random_seed=/var/run/random-seed
273 * touch $random_seed
274 * chmod 600 $random_seed
275 * dd if=/dev/urandom of=$random_seed count=1 bs=512
276 *
277 * For example, on most modern systems using the System V init
278 * scripts, such code fragments would be found in
279 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
280 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
281 *
282 * Effectively, these commands cause the contents of the entropy pool
283 * to be saved at shut-down time and reloaded into the entropy pool at
284 * start-up. (The 'dd' in the addition to the bootup script is to
285 * make sure that /etc/random-seed is different for every start-up,
286 * even if the system crashes without executing rc.0.) Even with
287 * complete knowledge of the start-up activities, predicting the state
288 * of the entropy pool requires knowledge of the previous history of
289 * the system.
290 *
291 * Configuring the /dev/random driver under Linux
292 * ==============================================
293 *
294 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
295 * the /dev/mem major number (#1). So if your system does not have
296 * /dev/random and /dev/urandom created already, they can be created
297 * by using the commands:
298 *
299 * mknod /dev/random c 1 8
300 * mknod /dev/urandom c 1 9
301 *
302 * Acknowledgements:
303 * =================
304 *
305 * Ideas for constructing this random number generator were derived
306 * from Pretty Good Privacy's random number generator, and from private
307 * discussions with Phil Karn. Colin Plumb provided a faster random
308 * number generator, which speed up the mixing function of the entropy
309 * pool, taken from PGPfone. Dale Worley has also contributed many
310 * useful ideas and suggestions to improve this driver.
311 *
312 * Any flaws in the design are solely my responsibility, and should
313 * not be attributed to the Phil, Colin, or any of authors of PGP.
314 *
315 * Further background information on this topic may be obtained from
316 * RFC 1750, "Randomness Recommendations for Security", by Donald
317 * Eastlake, Steve Crocker, and Jeff Schiller.
318 */
319
320#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
321
322#include <linux/utsname.h>
323#include <linux/module.h>
324#include <linux/kernel.h>
325#include <linux/major.h>
326#include <linux/string.h>
327#include <linux/fcntl.h>
328#include <linux/slab.h>
329#include <linux/random.h>
330#include <linux/poll.h>
331#include <linux/init.h>
332#include <linux/fs.h>
333#include <linux/genhd.h>
334#include <linux/interrupt.h>
335#include <linux/mm.h>
336#include <linux/nodemask.h>
337#include <linux/spinlock.h>
338#include <linux/kthread.h>
339#include <linux/percpu.h>
340#include <linux/ptrace.h>
341#include <linux/workqueue.h>
342#include <linux/irq.h>
343#include <linux/ratelimit.h>
344#include <linux/syscalls.h>
345#include <linux/completion.h>
346#include <linux/uuid.h>
347#include <crypto/chacha.h>
348#include <crypto/blake2s.h>
349
350#include <asm/processor.h>
351#include <linux/uaccess.h>
352#include <asm/irq.h>
353#include <asm/irq_regs.h>
354#include <asm/io.h>
355
356#define CREATE_TRACE_POINTS
357#include <trace/events/random.h>
358
359/* #define ADD_INTERRUPT_BENCH */
360
361/*
362 * If the entropy count falls under this number of bits, then we
363 * should wake up processes which are selecting or polling on write
364 * access to /dev/random.
365 */
366static int random_write_wakeup_bits = 28 * (1 << 5);
367
368/*
369 * Originally, we used a primitive polynomial of degree .poolwords
370 * over GF(2). The taps for various sizes are defined below. They
371 * were chosen to be evenly spaced except for the last tap, which is 1
372 * to get the twisting happening as fast as possible.
373 *
374 * For the purposes of better mixing, we use the CRC-32 polynomial as
375 * well to make a (modified) twisted Generalized Feedback Shift
376 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
377 * generators. ACM Transactions on Modeling and Computer Simulation
378 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
379 * GFSR generators II. ACM Transactions on Modeling and Computer
380 * Simulation 4:254-266)
381 *
382 * Thanks to Colin Plumb for suggesting this.
383 *
384 * The mixing operation is much less sensitive than the output hash,
385 * where we use BLAKE2s. All that we want of mixing operation is that
386 * it be a good non-cryptographic hash; i.e. it not produce collisions
387 * when fed "random" data of the sort we expect to see. As long as
388 * the pool state differs for different inputs, we have preserved the
389 * input entropy and done a good job. The fact that an intelligent
390 * attacker can construct inputs that will produce controlled
391 * alterations to the pool's state is not important because we don't
392 * consider such inputs to contribute any randomness. The only
393 * property we need with respect to them is that the attacker can't
394 * increase his/her knowledge of the pool's state. Since all
395 * additions are reversible (knowing the final state and the input,
396 * you can reconstruct the initial state), if an attacker has any
397 * uncertainty about the initial state, he/she can only shuffle that
398 * uncertainty about, but never cause any collisions (which would
399 * decrease the uncertainty).
400 *
401 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
402 * Videau in their paper, "The Linux Pseudorandom Number Generator
403 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
404 * paper, they point out that we are not using a true Twisted GFSR,
405 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
406 * is, with only three taps, instead of the six that we are using).
407 * As a result, the resulting polynomial is neither primitive nor
408 * irreducible, and hence does not have a maximal period over
409 * GF(2**32). They suggest a slight change to the generator
410 * polynomial which improves the resulting TGFSR polynomial to be
411 * irreducible, which we have made here.
412 */
413enum poolinfo {
414 POOL_WORDS = 128,
415 POOL_WORDMASK = POOL_WORDS - 1,
416 POOL_BYTES = POOL_WORDS * sizeof(u32),
417 POOL_BITS = POOL_BYTES * 8,
418 POOL_BITSHIFT = ilog2(POOL_BITS),
419
420 /* To allow fractional bits to be tracked, the entropy_count field is
421 * denominated in units of 1/8th bits. */
422 POOL_ENTROPY_SHIFT = 3,
423#define POOL_ENTROPY_BITS() (input_pool.entropy_count >> POOL_ENTROPY_SHIFT)
424 POOL_FRACBITS = POOL_BITS << POOL_ENTROPY_SHIFT,
425
426 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
427 POOL_TAP1 = 104,
428 POOL_TAP2 = 76,
429 POOL_TAP3 = 51,
430 POOL_TAP4 = 25,
431 POOL_TAP5 = 1,
432
433 EXTRACT_SIZE = BLAKE2S_HASH_SIZE / 2
434};
435
436/*
437 * Static global variables
438 */
439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440static struct fasync_struct *fasync;
441
442static DEFINE_SPINLOCK(random_ready_list_lock);
443static LIST_HEAD(random_ready_list);
444
445struct crng_state {
446 u32 state[16];
447 unsigned long init_time;
448 spinlock_t lock;
449};
450
451static struct crng_state primary_crng = {
452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
453 .state[0] = CHACHA_CONSTANT_EXPA,
454 .state[1] = CHACHA_CONSTANT_ND_3,
455 .state[2] = CHACHA_CONSTANT_2_BY,
456 .state[3] = CHACHA_CONSTANT_TE_K,
457};
458
459/*
460 * crng_init = 0 --> Uninitialized
461 * 1 --> Initialized
462 * 2 --> Initialized from input_pool
463 *
464 * crng_init is protected by primary_crng->lock, and only increases
465 * its value (from 0->1->2).
466 */
467static int crng_init = 0;
468static bool crng_need_final_init = false;
469#define crng_ready() (likely(crng_init > 1))
470static int crng_init_cnt = 0;
471static unsigned long crng_global_init_time = 0;
472#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
473static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
474static void _crng_backtrack_protect(struct crng_state *crng,
475 u8 tmp[CHACHA_BLOCK_SIZE], int used);
476static void process_random_ready_list(void);
477static void _get_random_bytes(void *buf, int nbytes);
478
479static struct ratelimit_state unseeded_warning =
480 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
481static struct ratelimit_state urandom_warning =
482 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
483
484static int ratelimit_disable __read_mostly;
485
486module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
487MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
488
489/**********************************************************************
490 *
491 * OS independent entropy store. Here are the functions which handle
492 * storing entropy in an entropy pool.
493 *
494 **********************************************************************/
495
496static u32 input_pool_data[POOL_WORDS] __latent_entropy;
497
498static struct {
499 spinlock_t lock;
500 u16 add_ptr;
501 u16 input_rotate;
502 int entropy_count;
503} input_pool = {
504 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
505};
506
507static ssize_t extract_entropy(void *buf, size_t nbytes, int min);
508static ssize_t _extract_entropy(void *buf, size_t nbytes);
509
510static void crng_reseed(struct crng_state *crng, bool use_input_pool);
511
512static const u32 twist_table[8] = {
513 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
514 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
515
516/*
517 * This function adds bytes into the entropy "pool". It does not
518 * update the entropy estimate. The caller should call
519 * credit_entropy_bits if this is appropriate.
520 *
521 * The pool is stirred with a primitive polynomial of the appropriate
522 * degree, and then twisted. We twist by three bits at a time because
523 * it's cheap to do so and helps slightly in the expected case where
524 * the entropy is concentrated in the low-order bits.
525 */
526static void _mix_pool_bytes(const void *in, int nbytes)
527{
528 unsigned long i;
529 int input_rotate;
530 const u8 *bytes = in;
531 u32 w;
532
533 input_rotate = input_pool.input_rotate;
534 i = input_pool.add_ptr;
535
536 /* mix one byte at a time to simplify size handling and churn faster */
537 while (nbytes--) {
538 w = rol32(*bytes++, input_rotate);
539 i = (i - 1) & POOL_WORDMASK;
540
541 /* XOR in the various taps */
542 w ^= input_pool_data[i];
543 w ^= input_pool_data[(i + POOL_TAP1) & POOL_WORDMASK];
544 w ^= input_pool_data[(i + POOL_TAP2) & POOL_WORDMASK];
545 w ^= input_pool_data[(i + POOL_TAP3) & POOL_WORDMASK];
546 w ^= input_pool_data[(i + POOL_TAP4) & POOL_WORDMASK];
547 w ^= input_pool_data[(i + POOL_TAP5) & POOL_WORDMASK];
548
549 /* Mix the result back in with a twist */
550 input_pool_data[i] = (w >> 3) ^ twist_table[w & 7];
551
552 /*
553 * Normally, we add 7 bits of rotation to the pool.
554 * At the beginning of the pool, add an extra 7 bits
555 * rotation, so that successive passes spread the
556 * input bits across the pool evenly.
557 */
558 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
559 }
560
561 input_pool.input_rotate = input_rotate;
562 input_pool.add_ptr = i;
563}
564
565static void __mix_pool_bytes(const void *in, int nbytes)
566{
567 trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
568 _mix_pool_bytes(in, nbytes);
569}
570
571static void mix_pool_bytes(const void *in, int nbytes)
572{
573 unsigned long flags;
574
575 trace_mix_pool_bytes(nbytes, _RET_IP_);
576 spin_lock_irqsave(&input_pool.lock, flags);
577 _mix_pool_bytes(in, nbytes);
578 spin_unlock_irqrestore(&input_pool.lock, flags);
579}
580
581struct fast_pool {
582 u32 pool[4];
583 unsigned long last;
584 u16 reg_idx;
585 u8 count;
586};
587
588/*
589 * This is a fast mixing routine used by the interrupt randomness
590 * collector. It's hardcoded for an 128 bit pool and assumes that any
591 * locks that might be needed are taken by the caller.
592 */
593static void fast_mix(struct fast_pool *f)
594{
595 u32 a = f->pool[0], b = f->pool[1];
596 u32 c = f->pool[2], d = f->pool[3];
597
598 a += b; c += d;
599 b = rol32(b, 6); d = rol32(d, 27);
600 d ^= a; b ^= c;
601
602 a += b; c += d;
603 b = rol32(b, 16); d = rol32(d, 14);
604 d ^= a; b ^= c;
605
606 a += b; c += d;
607 b = rol32(b, 6); d = rol32(d, 27);
608 d ^= a; b ^= c;
609
610 a += b; c += d;
611 b = rol32(b, 16); d = rol32(d, 14);
612 d ^= a; b ^= c;
613
614 f->pool[0] = a; f->pool[1] = b;
615 f->pool[2] = c; f->pool[3] = d;
616 f->count++;
617}
618
619static void process_random_ready_list(void)
620{
621 unsigned long flags;
622 struct random_ready_callback *rdy, *tmp;
623
624 spin_lock_irqsave(&random_ready_list_lock, flags);
625 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
626 struct module *owner = rdy->owner;
627
628 list_del_init(&rdy->list);
629 rdy->func(rdy);
630 module_put(owner);
631 }
632 spin_unlock_irqrestore(&random_ready_list_lock, flags);
633}
634
635/*
636 * Credit (or debit) the entropy store with n bits of entropy.
637 * Use credit_entropy_bits_safe() if the value comes from userspace
638 * or otherwise should be checked for extreme values.
639 */
640static void credit_entropy_bits(int nbits)
641{
642 int entropy_count, entropy_bits, orig;
643 int nfrac = nbits << POOL_ENTROPY_SHIFT;
644
645 /* Ensure that the multiplication can avoid being 64 bits wide. */
646 BUILD_BUG_ON(2 * (POOL_ENTROPY_SHIFT + POOL_BITSHIFT) > 31);
647
648 if (!nbits)
649 return;
650
651retry:
652 entropy_count = orig = READ_ONCE(input_pool.entropy_count);
653 if (nfrac < 0) {
654 /* Debit */
655 entropy_count += nfrac;
656 } else {
657 /*
658 * Credit: we have to account for the possibility of
659 * overwriting already present entropy. Even in the
660 * ideal case of pure Shannon entropy, new contributions
661 * approach the full value asymptotically:
662 *
663 * entropy <- entropy + (pool_size - entropy) *
664 * (1 - exp(-add_entropy/pool_size))
665 *
666 * For add_entropy <= pool_size/2 then
667 * (1 - exp(-add_entropy/pool_size)) >=
668 * (add_entropy/pool_size)*0.7869...
669 * so we can approximate the exponential with
670 * 3/4*add_entropy/pool_size and still be on the
671 * safe side by adding at most pool_size/2 at a time.
672 *
673 * The use of pool_size-2 in the while statement is to
674 * prevent rounding artifacts from making the loop
675 * arbitrarily long; this limits the loop to log2(pool_size)*2
676 * turns no matter how large nbits is.
677 */
678 int pnfrac = nfrac;
679 const int s = POOL_BITSHIFT + POOL_ENTROPY_SHIFT + 2;
680 /* The +2 corresponds to the /4 in the denominator */
681
682 do {
683 unsigned int anfrac = min(pnfrac, POOL_FRACBITS / 2);
684 unsigned int add =
685 ((POOL_FRACBITS - entropy_count) * anfrac * 3) >> s;
686
687 entropy_count += add;
688 pnfrac -= anfrac;
689 } while (unlikely(entropy_count < POOL_FRACBITS - 2 && pnfrac));
690 }
691
692 if (WARN_ON(entropy_count < 0)) {
693 pr_warn("negative entropy/overflow: count %d\n", entropy_count);
694 entropy_count = 0;
695 } else if (entropy_count > POOL_FRACBITS)
696 entropy_count = POOL_FRACBITS;
697 if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
698 goto retry;
699
700 trace_credit_entropy_bits(nbits, entropy_count >> POOL_ENTROPY_SHIFT, _RET_IP_);
701
702 entropy_bits = entropy_count >> POOL_ENTROPY_SHIFT;
703 if (crng_init < 2 && entropy_bits >= 128)
704 crng_reseed(&primary_crng, true);
705}
706
707static int credit_entropy_bits_safe(int nbits)
708{
709 if (nbits < 0)
710 return -EINVAL;
711
712 /* Cap the value to avoid overflows */
713 nbits = min(nbits, POOL_BITS);
714
715 credit_entropy_bits(nbits);
716 return 0;
717}
718
719/*********************************************************************
720 *
721 * CRNG using CHACHA20
722 *
723 *********************************************************************/
724
725#define CRNG_RESEED_INTERVAL (300 * HZ)
726
727static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
728
729/*
730 * Hack to deal with crazy userspace progams when they are all trying
731 * to access /dev/urandom in parallel. The programs are almost
732 * certainly doing something terribly wrong, but we'll work around
733 * their brain damage.
734 */
735static struct crng_state **crng_node_pool __read_mostly;
736
737static void invalidate_batched_entropy(void);
738static void numa_crng_init(void);
739
740static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
741static int __init parse_trust_cpu(char *arg)
742{
743 return kstrtobool(arg, &trust_cpu);
744}
745early_param("random.trust_cpu", parse_trust_cpu);
746
747static bool crng_init_try_arch(struct crng_state *crng)
748{
749 int i;
750 bool arch_init = true;
751 unsigned long rv;
752
753 for (i = 4; i < 16; i++) {
754 if (!arch_get_random_seed_long(&rv) &&
755 !arch_get_random_long(&rv)) {
756 rv = random_get_entropy();
757 arch_init = false;
758 }
759 crng->state[i] ^= rv;
760 }
761
762 return arch_init;
763}
764
765static bool __init crng_init_try_arch_early(struct crng_state *crng)
766{
767 int i;
768 bool arch_init = true;
769 unsigned long rv;
770
771 for (i = 4; i < 16; i++) {
772 if (!arch_get_random_seed_long_early(&rv) &&
773 !arch_get_random_long_early(&rv)) {
774 rv = random_get_entropy();
775 arch_init = false;
776 }
777 crng->state[i] ^= rv;
778 }
779
780 return arch_init;
781}
782
783static void crng_initialize_secondary(struct crng_state *crng)
784{
785 chacha_init_consts(crng->state);
786 _get_random_bytes(&crng->state[4], sizeof(u32) * 12);
787 crng_init_try_arch(crng);
788 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
789}
790
791static void __init crng_initialize_primary(struct crng_state *crng)
792{
793 _extract_entropy(&crng->state[4], sizeof(u32) * 12);
794 if (crng_init_try_arch_early(crng) && trust_cpu && crng_init < 2) {
795 invalidate_batched_entropy();
796 numa_crng_init();
797 crng_init = 2;
798 pr_notice("crng init done (trusting CPU's manufacturer)\n");
799 }
800 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
801}
802
803static void crng_finalize_init(struct crng_state *crng)
804{
805 if (crng != &primary_crng || crng_init >= 2)
806 return;
807 if (!system_wq) {
808 /* We can't call numa_crng_init until we have workqueues,
809 * so mark this for processing later. */
810 crng_need_final_init = true;
811 return;
812 }
813
814 invalidate_batched_entropy();
815 numa_crng_init();
816 crng_init = 2;
817 process_random_ready_list();
818 wake_up_interruptible(&crng_init_wait);
819 kill_fasync(&fasync, SIGIO, POLL_IN);
820 pr_notice("crng init done\n");
821 if (unseeded_warning.missed) {
822 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
823 unseeded_warning.missed);
824 unseeded_warning.missed = 0;
825 }
826 if (urandom_warning.missed) {
827 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
828 urandom_warning.missed);
829 urandom_warning.missed = 0;
830 }
831}
832
833static void do_numa_crng_init(struct work_struct *work)
834{
835 int i;
836 struct crng_state *crng;
837 struct crng_state **pool;
838
839 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL | __GFP_NOFAIL);
840 for_each_online_node(i) {
841 crng = kmalloc_node(sizeof(struct crng_state),
842 GFP_KERNEL | __GFP_NOFAIL, i);
843 spin_lock_init(&crng->lock);
844 crng_initialize_secondary(crng);
845 pool[i] = crng;
846 }
847 /* pairs with READ_ONCE() in select_crng() */
848 if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
849 for_each_node(i)
850 kfree(pool[i]);
851 kfree(pool);
852 }
853}
854
855static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
856
857static void numa_crng_init(void)
858{
859 if (IS_ENABLED(CONFIG_NUMA))
860 schedule_work(&numa_crng_init_work);
861}
862
863static struct crng_state *select_crng(void)
864{
865 if (IS_ENABLED(CONFIG_NUMA)) {
866 struct crng_state **pool;
867 int nid = numa_node_id();
868
869 /* pairs with cmpxchg_release() in do_numa_crng_init() */
870 pool = READ_ONCE(crng_node_pool);
871 if (pool && pool[nid])
872 return pool[nid];
873 }
874
875 return &primary_crng;
876}
877
878/*
879 * crng_fast_load() can be called by code in the interrupt service
880 * path. So we can't afford to dilly-dally. Returns the number of
881 * bytes processed from cp.
882 */
883static size_t crng_fast_load(const u8 *cp, size_t len)
884{
885 unsigned long flags;
886 u8 *p;
887 size_t ret = 0;
888
889 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
890 return 0;
891 if (crng_init != 0) {
892 spin_unlock_irqrestore(&primary_crng.lock, flags);
893 return 0;
894 }
895 p = (u8 *)&primary_crng.state[4];
896 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
897 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
898 cp++; crng_init_cnt++; len--; ret++;
899 }
900 spin_unlock_irqrestore(&primary_crng.lock, flags);
901 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
902 invalidate_batched_entropy();
903 crng_init = 1;
904 pr_notice("fast init done\n");
905 }
906 return ret;
907}
908
909/*
910 * crng_slow_load() is called by add_device_randomness, which has two
911 * attributes. (1) We can't trust the buffer passed to it is
912 * guaranteed to be unpredictable (so it might not have any entropy at
913 * all), and (2) it doesn't have the performance constraints of
914 * crng_fast_load().
915 *
916 * So we do something more comprehensive which is guaranteed to touch
917 * all of the primary_crng's state, and which uses a LFSR with a
918 * period of 255 as part of the mixing algorithm. Finally, we do
919 * *not* advance crng_init_cnt since buffer we may get may be something
920 * like a fixed DMI table (for example), which might very well be
921 * unique to the machine, but is otherwise unvarying.
922 */
923static int crng_slow_load(const u8 *cp, size_t len)
924{
925 unsigned long flags;
926 static u8 lfsr = 1;
927 u8 tmp;
928 unsigned int i, max = CHACHA_KEY_SIZE;
929 const u8 *src_buf = cp;
930 u8 *dest_buf = (u8 *)&primary_crng.state[4];
931
932 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
933 return 0;
934 if (crng_init != 0) {
935 spin_unlock_irqrestore(&primary_crng.lock, flags);
936 return 0;
937 }
938 if (len > max)
939 max = len;
940
941 for (i = 0; i < max; i++) {
942 tmp = lfsr;
943 lfsr >>= 1;
944 if (tmp & 1)
945 lfsr ^= 0xE1;
946 tmp = dest_buf[i % CHACHA_KEY_SIZE];
947 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
948 lfsr += (tmp << 3) | (tmp >> 5);
949 }
950 spin_unlock_irqrestore(&primary_crng.lock, flags);
951 return 1;
952}
953
954static void crng_reseed(struct crng_state *crng, bool use_input_pool)
955{
956 unsigned long flags;
957 int i, num;
958 union {
959 u8 block[CHACHA_BLOCK_SIZE];
960 u32 key[8];
961 } buf;
962
963 if (use_input_pool) {
964 num = extract_entropy(&buf, 32, 16);
965 if (num == 0)
966 return;
967 } else {
968 _extract_crng(&primary_crng, buf.block);
969 _crng_backtrack_protect(&primary_crng, buf.block,
970 CHACHA_KEY_SIZE);
971 }
972 spin_lock_irqsave(&crng->lock, flags);
973 for (i = 0; i < 8; i++) {
974 unsigned long rv;
975 if (!arch_get_random_seed_long(&rv) &&
976 !arch_get_random_long(&rv))
977 rv = random_get_entropy();
978 crng->state[i + 4] ^= buf.key[i] ^ rv;
979 }
980 memzero_explicit(&buf, sizeof(buf));
981 WRITE_ONCE(crng->init_time, jiffies);
982 spin_unlock_irqrestore(&crng->lock, flags);
983 crng_finalize_init(crng);
984}
985
986static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE])
987{
988 unsigned long flags, init_time;
989
990 if (crng_ready()) {
991 init_time = READ_ONCE(crng->init_time);
992 if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
993 time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
994 crng_reseed(crng, crng == &primary_crng);
995 }
996 spin_lock_irqsave(&crng->lock, flags);
997 chacha20_block(&crng->state[0], out);
998 if (crng->state[12] == 0)
999 crng->state[13]++;
1000 spin_unlock_irqrestore(&crng->lock, flags);
1001}
1002
1003static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
1004{
1005 _extract_crng(select_crng(), out);
1006}
1007
1008/*
1009 * Use the leftover bytes from the CRNG block output (if there is
1010 * enough) to mutate the CRNG key to provide backtracking protection.
1011 */
1012static void _crng_backtrack_protect(struct crng_state *crng,
1013 u8 tmp[CHACHA_BLOCK_SIZE], int used)
1014{
1015 unsigned long flags;
1016 u32 *s, *d;
1017 int i;
1018
1019 used = round_up(used, sizeof(u32));
1020 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1021 extract_crng(tmp);
1022 used = 0;
1023 }
1024 spin_lock_irqsave(&crng->lock, flags);
1025 s = (u32 *)&tmp[used];
1026 d = &crng->state[4];
1027 for (i = 0; i < 8; i++)
1028 *d++ ^= *s++;
1029 spin_unlock_irqrestore(&crng->lock, flags);
1030}
1031
1032static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
1033{
1034 _crng_backtrack_protect(select_crng(), tmp, used);
1035}
1036
1037static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1038{
1039 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1040 u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1041 int large_request = (nbytes > 256);
1042
1043 while (nbytes) {
1044 if (large_request && need_resched()) {
1045 if (signal_pending(current)) {
1046 if (ret == 0)
1047 ret = -ERESTARTSYS;
1048 break;
1049 }
1050 schedule();
1051 }
1052
1053 extract_crng(tmp);
1054 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1055 if (copy_to_user(buf, tmp, i)) {
1056 ret = -EFAULT;
1057 break;
1058 }
1059
1060 nbytes -= i;
1061 buf += i;
1062 ret += i;
1063 }
1064 crng_backtrack_protect(tmp, i);
1065
1066 /* Wipe data just written to memory */
1067 memzero_explicit(tmp, sizeof(tmp));
1068
1069 return ret;
1070}
1071
1072/*********************************************************************
1073 *
1074 * Entropy input management
1075 *
1076 *********************************************************************/
1077
1078/* There is one of these per entropy source */
1079struct timer_rand_state {
1080 cycles_t last_time;
1081 long last_delta, last_delta2;
1082};
1083
1084#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1085
1086/*
1087 * Add device- or boot-specific data to the input pool to help
1088 * initialize it.
1089 *
1090 * None of this adds any entropy; it is meant to avoid the problem of
1091 * the entropy pool having similar initial state across largely
1092 * identical devices.
1093 */
1094void add_device_randomness(const void *buf, unsigned int size)
1095{
1096 unsigned long time = random_get_entropy() ^ jiffies;
1097 unsigned long flags;
1098
1099 if (!crng_ready() && size)
1100 crng_slow_load(buf, size);
1101
1102 trace_add_device_randomness(size, _RET_IP_);
1103 spin_lock_irqsave(&input_pool.lock, flags);
1104 _mix_pool_bytes(buf, size);
1105 _mix_pool_bytes(&time, sizeof(time));
1106 spin_unlock_irqrestore(&input_pool.lock, flags);
1107}
1108EXPORT_SYMBOL(add_device_randomness);
1109
1110static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1111
1112/*
1113 * This function adds entropy to the entropy "pool" by using timing
1114 * delays. It uses the timer_rand_state structure to make an estimate
1115 * of how many bits of entropy this call has added to the pool.
1116 *
1117 * The number "num" is also added to the pool - it should somehow describe
1118 * the type of event which just happened. This is currently 0-255 for
1119 * keyboard scan codes, and 256 upwards for interrupts.
1120 *
1121 */
1122static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1123{
1124 struct {
1125 long jiffies;
1126 unsigned int cycles;
1127 unsigned int num;
1128 } sample;
1129 long delta, delta2, delta3;
1130
1131 sample.jiffies = jiffies;
1132 sample.cycles = random_get_entropy();
1133 sample.num = num;
1134 mix_pool_bytes(&sample, sizeof(sample));
1135
1136 /*
1137 * Calculate number of bits of randomness we probably added.
1138 * We take into account the first, second and third-order deltas
1139 * in order to make our estimate.
1140 */
1141 delta = sample.jiffies - READ_ONCE(state->last_time);
1142 WRITE_ONCE(state->last_time, sample.jiffies);
1143
1144 delta2 = delta - READ_ONCE(state->last_delta);
1145 WRITE_ONCE(state->last_delta, delta);
1146
1147 delta3 = delta2 - READ_ONCE(state->last_delta2);
1148 WRITE_ONCE(state->last_delta2, delta2);
1149
1150 if (delta < 0)
1151 delta = -delta;
1152 if (delta2 < 0)
1153 delta2 = -delta2;
1154 if (delta3 < 0)
1155 delta3 = -delta3;
1156 if (delta > delta2)
1157 delta = delta2;
1158 if (delta > delta3)
1159 delta = delta3;
1160
1161 /*
1162 * delta is now minimum absolute delta.
1163 * Round down by 1 bit on general principles,
1164 * and limit entropy estimate to 12 bits.
1165 */
1166 credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
1167}
1168
1169void add_input_randomness(unsigned int type, unsigned int code,
1170 unsigned int value)
1171{
1172 static unsigned char last_value;
1173
1174 /* ignore autorepeat and the like */
1175 if (value == last_value)
1176 return;
1177
1178 last_value = value;
1179 add_timer_randomness(&input_timer_state,
1180 (type << 4) ^ code ^ (code >> 4) ^ value);
1181 trace_add_input_randomness(POOL_ENTROPY_BITS());
1182}
1183EXPORT_SYMBOL_GPL(add_input_randomness);
1184
1185static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1186
1187#ifdef ADD_INTERRUPT_BENCH
1188static unsigned long avg_cycles, avg_deviation;
1189
1190#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1191#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
1192
1193static void add_interrupt_bench(cycles_t start)
1194{
1195 long delta = random_get_entropy() - start;
1196
1197 /* Use a weighted moving average */
1198 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1199 avg_cycles += delta;
1200 /* And average deviation */
1201 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1202 avg_deviation += delta;
1203}
1204#else
1205#define add_interrupt_bench(x)
1206#endif
1207
1208static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1209{
1210 u32 *ptr = (u32 *)regs;
1211 unsigned int idx;
1212
1213 if (regs == NULL)
1214 return 0;
1215 idx = READ_ONCE(f->reg_idx);
1216 if (idx >= sizeof(struct pt_regs) / sizeof(u32))
1217 idx = 0;
1218 ptr += idx++;
1219 WRITE_ONCE(f->reg_idx, idx);
1220 return *ptr;
1221}
1222
1223void add_interrupt_randomness(int irq)
1224{
1225 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1226 struct pt_regs *regs = get_irq_regs();
1227 unsigned long now = jiffies;
1228 cycles_t cycles = random_get_entropy();
1229 u32 c_high, j_high;
1230 u64 ip;
1231
1232 if (cycles == 0)
1233 cycles = get_reg(fast_pool, regs);
1234 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1235 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1236 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1237 fast_pool->pool[1] ^= now ^ c_high;
1238 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1239 fast_pool->pool[2] ^= ip;
1240 fast_pool->pool[3] ^=
1241 (sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
1242
1243 fast_mix(fast_pool);
1244 add_interrupt_bench(cycles);
1245
1246 if (unlikely(crng_init == 0)) {
1247 if ((fast_pool->count >= 64) &&
1248 crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
1249 fast_pool->count = 0;
1250 fast_pool->last = now;
1251 }
1252 return;
1253 }
1254
1255 if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
1256 return;
1257
1258 if (!spin_trylock(&input_pool.lock))
1259 return;
1260
1261 fast_pool->last = now;
1262 __mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
1263 spin_unlock(&input_pool.lock);
1264
1265 fast_pool->count = 0;
1266
1267 /* award one bit for the contents of the fast pool */
1268 credit_entropy_bits(1);
1269}
1270EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1271
1272#ifdef CONFIG_BLOCK
1273void add_disk_randomness(struct gendisk *disk)
1274{
1275 if (!disk || !disk->random)
1276 return;
1277 /* first major is 1, so we get >= 0x200 here */
1278 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1279 trace_add_disk_randomness(disk_devt(disk), POOL_ENTROPY_BITS());
1280}
1281EXPORT_SYMBOL_GPL(add_disk_randomness);
1282#endif
1283
1284/*********************************************************************
1285 *
1286 * Entropy extraction routines
1287 *
1288 *********************************************************************/
1289
1290/*
1291 * This function decides how many bytes to actually take from the
1292 * given pool, and also debits the entropy count accordingly.
1293 */
1294static size_t account(size_t nbytes, int min)
1295{
1296 int entropy_count, orig;
1297 size_t ibytes, nfrac;
1298
1299 BUG_ON(input_pool.entropy_count > POOL_FRACBITS);
1300
1301 /* Can we pull enough? */
1302retry:
1303 entropy_count = orig = READ_ONCE(input_pool.entropy_count);
1304 if (WARN_ON(entropy_count < 0)) {
1305 pr_warn("negative entropy count: count %d\n", entropy_count);
1306 entropy_count = 0;
1307 }
1308
1309 /* never pull more than available */
1310 ibytes = min_t(size_t, nbytes, entropy_count >> (POOL_ENTROPY_SHIFT + 3));
1311 if (ibytes < min)
1312 ibytes = 0;
1313 nfrac = ibytes << (POOL_ENTROPY_SHIFT + 3);
1314 if ((size_t)entropy_count > nfrac)
1315 entropy_count -= nfrac;
1316 else
1317 entropy_count = 0;
1318
1319 if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
1320 goto retry;
1321
1322 trace_debit_entropy(8 * ibytes);
1323 if (ibytes && POOL_ENTROPY_BITS() < random_write_wakeup_bits) {
1324 wake_up_interruptible(&random_write_wait);
1325 kill_fasync(&fasync, SIGIO, POLL_OUT);
1326 }
1327
1328 return ibytes;
1329}
1330
1331/*
1332 * This function does the actual extraction for extract_entropy.
1333 *
1334 * Note: we assume that .poolwords is a multiple of 16 words.
1335 */
1336static void extract_buf(u8 *out)
1337{
1338 struct blake2s_state state __aligned(__alignof__(unsigned long));
1339 u8 hash[BLAKE2S_HASH_SIZE];
1340 unsigned long *salt;
1341 unsigned long flags;
1342
1343 blake2s_init(&state, sizeof(hash));
1344
1345 /*
1346 * If we have an architectural hardware random number
1347 * generator, use it for BLAKE2's salt & personal fields.
1348 */
1349 for (salt = (unsigned long *)&state.h[4];
1350 salt < (unsigned long *)&state.h[8]; ++salt) {
1351 unsigned long v;
1352 if (!arch_get_random_long(&v))
1353 break;
1354 *salt ^= v;
1355 }
1356
1357 /* Generate a hash across the pool */
1358 spin_lock_irqsave(&input_pool.lock, flags);
1359 blake2s_update(&state, (const u8 *)input_pool_data, POOL_BYTES);
1360 blake2s_final(&state, hash); /* final zeros out state */
1361
1362 /*
1363 * We mix the hash back into the pool to prevent backtracking
1364 * attacks (where the attacker knows the state of the pool
1365 * plus the current outputs, and attempts to find previous
1366 * outputs), unless the hash function can be inverted. By
1367 * mixing at least a hash worth of hash data back, we make
1368 * brute-forcing the feedback as hard as brute-forcing the
1369 * hash.
1370 */
1371 __mix_pool_bytes(hash, sizeof(hash));
1372 spin_unlock_irqrestore(&input_pool.lock, flags);
1373
1374 /* Note that EXTRACT_SIZE is half of hash size here, because above
1375 * we've dumped the full length back into mixer. By reducing the
1376 * amount that we emit, we retain a level of forward secrecy.
1377 */
1378 memcpy(out, hash, EXTRACT_SIZE);
1379 memzero_explicit(hash, sizeof(hash));
1380}
1381
1382static ssize_t _extract_entropy(void *buf, size_t nbytes)
1383{
1384 ssize_t ret = 0, i;
1385 u8 tmp[EXTRACT_SIZE];
1386
1387 while (nbytes) {
1388 extract_buf(tmp);
1389 i = min_t(int, nbytes, EXTRACT_SIZE);
1390 memcpy(buf, tmp, i);
1391 nbytes -= i;
1392 buf += i;
1393 ret += i;
1394 }
1395
1396 /* Wipe data just returned from memory */
1397 memzero_explicit(tmp, sizeof(tmp));
1398
1399 return ret;
1400}
1401
1402/*
1403 * This function extracts randomness from the "entropy pool", and
1404 * returns it in a buffer.
1405 *
1406 * The min parameter specifies the minimum amount we can pull before
1407 * failing to avoid races that defeat catastrophic reseeding.
1408 */
1409static ssize_t extract_entropy(void *buf, size_t nbytes, int min)
1410{
1411 trace_extract_entropy(nbytes, POOL_ENTROPY_BITS(), _RET_IP_);
1412 nbytes = account(nbytes, min);
1413 return _extract_entropy(buf, nbytes);
1414}
1415
1416#define warn_unseeded_randomness(previous) \
1417 _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
1418
1419static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
1420{
1421#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1422 const bool print_once = false;
1423#else
1424 static bool print_once __read_mostly;
1425#endif
1426
1427 if (print_once || crng_ready() ||
1428 (previous && (caller == READ_ONCE(*previous))))
1429 return;
1430 WRITE_ONCE(*previous, caller);
1431#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1432 print_once = true;
1433#endif
1434 if (__ratelimit(&unseeded_warning))
1435 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
1436 func_name, caller, crng_init);
1437}
1438
1439/*
1440 * This function is the exported kernel interface. It returns some
1441 * number of good random numbers, suitable for key generation, seeding
1442 * TCP sequence numbers, etc. It does not rely on the hardware random
1443 * number generator. For random bytes direct from the hardware RNG
1444 * (when available), use get_random_bytes_arch(). In order to ensure
1445 * that the randomness provided by this function is okay, the function
1446 * wait_for_random_bytes() should be called and return 0 at least once
1447 * at any point prior.
1448 */
1449static void _get_random_bytes(void *buf, int nbytes)
1450{
1451 u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1452
1453 trace_get_random_bytes(nbytes, _RET_IP_);
1454
1455 while (nbytes >= CHACHA_BLOCK_SIZE) {
1456 extract_crng(buf);
1457 buf += CHACHA_BLOCK_SIZE;
1458 nbytes -= CHACHA_BLOCK_SIZE;
1459 }
1460
1461 if (nbytes > 0) {
1462 extract_crng(tmp);
1463 memcpy(buf, tmp, nbytes);
1464 crng_backtrack_protect(tmp, nbytes);
1465 } else
1466 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1467 memzero_explicit(tmp, sizeof(tmp));
1468}
1469
1470void get_random_bytes(void *buf, int nbytes)
1471{
1472 static void *previous;
1473
1474 warn_unseeded_randomness(&previous);
1475 _get_random_bytes(buf, nbytes);
1476}
1477EXPORT_SYMBOL(get_random_bytes);
1478
1479/*
1480 * Each time the timer fires, we expect that we got an unpredictable
1481 * jump in the cycle counter. Even if the timer is running on another
1482 * CPU, the timer activity will be touching the stack of the CPU that is
1483 * generating entropy..
1484 *
1485 * Note that we don't re-arm the timer in the timer itself - we are
1486 * happy to be scheduled away, since that just makes the load more
1487 * complex, but we do not want the timer to keep ticking unless the
1488 * entropy loop is running.
1489 *
1490 * So the re-arming always happens in the entropy loop itself.
1491 */
1492static void entropy_timer(struct timer_list *t)
1493{
1494 credit_entropy_bits(1);
1495}
1496
1497/*
1498 * If we have an actual cycle counter, see if we can
1499 * generate enough entropy with timing noise
1500 */
1501static void try_to_generate_entropy(void)
1502{
1503 struct {
1504 unsigned long now;
1505 struct timer_list timer;
1506 } stack;
1507
1508 stack.now = random_get_entropy();
1509
1510 /* Slow counter - or none. Don't even bother */
1511 if (stack.now == random_get_entropy())
1512 return;
1513
1514 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1515 while (!crng_ready()) {
1516 if (!timer_pending(&stack.timer))
1517 mod_timer(&stack.timer, jiffies + 1);
1518 mix_pool_bytes(&stack.now, sizeof(stack.now));
1519 schedule();
1520 stack.now = random_get_entropy();
1521 }
1522
1523 del_timer_sync(&stack.timer);
1524 destroy_timer_on_stack(&stack.timer);
1525 mix_pool_bytes(&stack.now, sizeof(stack.now));
1526}
1527
1528/*
1529 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1530 * cryptographically secure random numbers. This applies to: the /dev/urandom
1531 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1532 * family of functions. Using any of these functions without first calling
1533 * this function forfeits the guarantee of security.
1534 *
1535 * Returns: 0 if the urandom pool has been seeded.
1536 * -ERESTARTSYS if the function was interrupted by a signal.
1537 */
1538int wait_for_random_bytes(void)
1539{
1540 if (likely(crng_ready()))
1541 return 0;
1542
1543 do {
1544 int ret;
1545 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1546 if (ret)
1547 return ret > 0 ? 0 : ret;
1548
1549 try_to_generate_entropy();
1550 } while (!crng_ready());
1551
1552 return 0;
1553}
1554EXPORT_SYMBOL(wait_for_random_bytes);
1555
1556/*
1557 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1558 * to supply cryptographically secure random numbers. This applies to: the
1559 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1560 * ,u64,int,long} family of functions.
1561 *
1562 * Returns: true if the urandom pool has been seeded.
1563 * false if the urandom pool has not been seeded.
1564 */
1565bool rng_is_initialized(void)
1566{
1567 return crng_ready();
1568}
1569EXPORT_SYMBOL(rng_is_initialized);
1570
1571/*
1572 * Add a callback function that will be invoked when the nonblocking
1573 * pool is initialised.
1574 *
1575 * returns: 0 if callback is successfully added
1576 * -EALREADY if pool is already initialised (callback not called)
1577 * -ENOENT if module for callback is not alive
1578 */
1579int add_random_ready_callback(struct random_ready_callback *rdy)
1580{
1581 struct module *owner;
1582 unsigned long flags;
1583 int err = -EALREADY;
1584
1585 if (crng_ready())
1586 return err;
1587
1588 owner = rdy->owner;
1589 if (!try_module_get(owner))
1590 return -ENOENT;
1591
1592 spin_lock_irqsave(&random_ready_list_lock, flags);
1593 if (crng_ready())
1594 goto out;
1595
1596 owner = NULL;
1597
1598 list_add(&rdy->list, &random_ready_list);
1599 err = 0;
1600
1601out:
1602 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1603
1604 module_put(owner);
1605
1606 return err;
1607}
1608EXPORT_SYMBOL(add_random_ready_callback);
1609
1610/*
1611 * Delete a previously registered readiness callback function.
1612 */
1613void del_random_ready_callback(struct random_ready_callback *rdy)
1614{
1615 unsigned long flags;
1616 struct module *owner = NULL;
1617
1618 spin_lock_irqsave(&random_ready_list_lock, flags);
1619 if (!list_empty(&rdy->list)) {
1620 list_del_init(&rdy->list);
1621 owner = rdy->owner;
1622 }
1623 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1624
1625 module_put(owner);
1626}
1627EXPORT_SYMBOL(del_random_ready_callback);
1628
1629/*
1630 * This function will use the architecture-specific hardware random
1631 * number generator if it is available. The arch-specific hw RNG will
1632 * almost certainly be faster than what we can do in software, but it
1633 * is impossible to verify that it is implemented securely (as
1634 * opposed, to, say, the AES encryption of a sequence number using a
1635 * key known by the NSA). So it's useful if we need the speed, but
1636 * only if we're willing to trust the hardware manufacturer not to
1637 * have put in a back door.
1638 *
1639 * Return number of bytes filled in.
1640 */
1641int __must_check get_random_bytes_arch(void *buf, int nbytes)
1642{
1643 int left = nbytes;
1644 u8 *p = buf;
1645
1646 trace_get_random_bytes_arch(left, _RET_IP_);
1647 while (left) {
1648 unsigned long v;
1649 int chunk = min_t(int, left, sizeof(unsigned long));
1650
1651 if (!arch_get_random_long(&v))
1652 break;
1653
1654 memcpy(p, &v, chunk);
1655 p += chunk;
1656 left -= chunk;
1657 }
1658
1659 return nbytes - left;
1660}
1661EXPORT_SYMBOL(get_random_bytes_arch);
1662
1663/*
1664 * init_std_data - initialize pool with system data
1665 *
1666 * This function clears the pool's entropy count and mixes some system
1667 * data into the pool to prepare it for use. The pool is not cleared
1668 * as that can only decrease the entropy in the pool.
1669 */
1670static void __init init_std_data(void)
1671{
1672 int i;
1673 ktime_t now = ktime_get_real();
1674 unsigned long rv;
1675
1676 mix_pool_bytes(&now, sizeof(now));
1677 for (i = POOL_BYTES; i > 0; i -= sizeof(rv)) {
1678 if (!arch_get_random_seed_long(&rv) &&
1679 !arch_get_random_long(&rv))
1680 rv = random_get_entropy();
1681 mix_pool_bytes(&rv, sizeof(rv));
1682 }
1683 mix_pool_bytes(utsname(), sizeof(*(utsname())));
1684}
1685
1686/*
1687 * Note that setup_arch() may call add_device_randomness()
1688 * long before we get here. This allows seeding of the pools
1689 * with some platform dependent data very early in the boot
1690 * process. But it limits our options here. We must use
1691 * statically allocated structures that already have all
1692 * initializations complete at compile time. We should also
1693 * take care not to overwrite the precious per platform data
1694 * we were given.
1695 */
1696int __init rand_initialize(void)
1697{
1698 init_std_data();
1699 if (crng_need_final_init)
1700 crng_finalize_init(&primary_crng);
1701 crng_initialize_primary(&primary_crng);
1702 crng_global_init_time = jiffies;
1703 if (ratelimit_disable) {
1704 urandom_warning.interval = 0;
1705 unseeded_warning.interval = 0;
1706 }
1707 return 0;
1708}
1709
1710#ifdef CONFIG_BLOCK
1711void rand_initialize_disk(struct gendisk *disk)
1712{
1713 struct timer_rand_state *state;
1714
1715 /*
1716 * If kzalloc returns null, we just won't use that entropy
1717 * source.
1718 */
1719 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1720 if (state) {
1721 state->last_time = INITIAL_JIFFIES;
1722 disk->random = state;
1723 }
1724}
1725#endif
1726
1727static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
1728 size_t nbytes, loff_t *ppos)
1729{
1730 int ret;
1731
1732 nbytes = min_t(size_t, nbytes, INT_MAX >> (POOL_ENTROPY_SHIFT + 3));
1733 ret = extract_crng_user(buf, nbytes);
1734 trace_urandom_read(8 * nbytes, 0, POOL_ENTROPY_BITS());
1735 return ret;
1736}
1737
1738static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
1739 loff_t *ppos)
1740{
1741 static int maxwarn = 10;
1742
1743 if (!crng_ready() && maxwarn > 0) {
1744 maxwarn--;
1745 if (__ratelimit(&urandom_warning))
1746 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1747 current->comm, nbytes);
1748 }
1749
1750 return urandom_read_nowarn(file, buf, nbytes, ppos);
1751}
1752
1753static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
1754 loff_t *ppos)
1755{
1756 int ret;
1757
1758 ret = wait_for_random_bytes();
1759 if (ret != 0)
1760 return ret;
1761 return urandom_read_nowarn(file, buf, nbytes, ppos);
1762}
1763
1764static __poll_t random_poll(struct file *file, poll_table *wait)
1765{
1766 __poll_t mask;
1767
1768 poll_wait(file, &crng_init_wait, wait);
1769 poll_wait(file, &random_write_wait, wait);
1770 mask = 0;
1771 if (crng_ready())
1772 mask |= EPOLLIN | EPOLLRDNORM;
1773 if (POOL_ENTROPY_BITS() < random_write_wakeup_bits)
1774 mask |= EPOLLOUT | EPOLLWRNORM;
1775 return mask;
1776}
1777
1778static int write_pool(const char __user *buffer, size_t count)
1779{
1780 size_t bytes;
1781 u32 t, buf[16];
1782 const char __user *p = buffer;
1783
1784 while (count > 0) {
1785 int b, i = 0;
1786
1787 bytes = min(count, sizeof(buf));
1788 if (copy_from_user(&buf, p, bytes))
1789 return -EFAULT;
1790
1791 for (b = bytes; b > 0; b -= sizeof(u32), i++) {
1792 if (!arch_get_random_int(&t))
1793 break;
1794 buf[i] ^= t;
1795 }
1796
1797 count -= bytes;
1798 p += bytes;
1799
1800 mix_pool_bytes(buf, bytes);
1801 cond_resched();
1802 }
1803
1804 return 0;
1805}
1806
1807static ssize_t random_write(struct file *file, const char __user *buffer,
1808 size_t count, loff_t *ppos)
1809{
1810 size_t ret;
1811
1812 ret = write_pool(buffer, count);
1813 if (ret)
1814 return ret;
1815
1816 return (ssize_t)count;
1817}
1818
1819static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1820{
1821 int size, ent_count;
1822 int __user *p = (int __user *)arg;
1823 int retval;
1824
1825 switch (cmd) {
1826 case RNDGETENTCNT:
1827 /* inherently racy, no point locking */
1828 ent_count = POOL_ENTROPY_BITS();
1829 if (put_user(ent_count, p))
1830 return -EFAULT;
1831 return 0;
1832 case RNDADDTOENTCNT:
1833 if (!capable(CAP_SYS_ADMIN))
1834 return -EPERM;
1835 if (get_user(ent_count, p))
1836 return -EFAULT;
1837 return credit_entropy_bits_safe(ent_count);
1838 case RNDADDENTROPY:
1839 if (!capable(CAP_SYS_ADMIN))
1840 return -EPERM;
1841 if (get_user(ent_count, p++))
1842 return -EFAULT;
1843 if (ent_count < 0)
1844 return -EINVAL;
1845 if (get_user(size, p++))
1846 return -EFAULT;
1847 retval = write_pool((const char __user *)p, size);
1848 if (retval < 0)
1849 return retval;
1850 return credit_entropy_bits_safe(ent_count);
1851 case RNDZAPENTCNT:
1852 case RNDCLEARPOOL:
1853 /*
1854 * Clear the entropy pool counters. We no longer clear
1855 * the entropy pool, as that's silly.
1856 */
1857 if (!capable(CAP_SYS_ADMIN))
1858 return -EPERM;
1859 input_pool.entropy_count = 0;
1860 return 0;
1861 case RNDRESEEDCRNG:
1862 if (!capable(CAP_SYS_ADMIN))
1863 return -EPERM;
1864 if (crng_init < 2)
1865 return -ENODATA;
1866 crng_reseed(&primary_crng, true);
1867 WRITE_ONCE(crng_global_init_time, jiffies - 1);
1868 return 0;
1869 default:
1870 return -EINVAL;
1871 }
1872}
1873
1874static int random_fasync(int fd, struct file *filp, int on)
1875{
1876 return fasync_helper(fd, filp, on, &fasync);
1877}
1878
1879const struct file_operations random_fops = {
1880 .read = random_read,
1881 .write = random_write,
1882 .poll = random_poll,
1883 .unlocked_ioctl = random_ioctl,
1884 .compat_ioctl = compat_ptr_ioctl,
1885 .fasync = random_fasync,
1886 .llseek = noop_llseek,
1887};
1888
1889const struct file_operations urandom_fops = {
1890 .read = urandom_read,
1891 .write = random_write,
1892 .unlocked_ioctl = random_ioctl,
1893 .compat_ioctl = compat_ptr_ioctl,
1894 .fasync = random_fasync,
1895 .llseek = noop_llseek,
1896};
1897
1898SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
1899 flags)
1900{
1901 int ret;
1902
1903 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1904 return -EINVAL;
1905
1906 /*
1907 * Requesting insecure and blocking randomness at the same time makes
1908 * no sense.
1909 */
1910 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1911 return -EINVAL;
1912
1913 if (count > INT_MAX)
1914 count = INT_MAX;
1915
1916 if (!(flags & GRND_INSECURE) && !crng_ready()) {
1917 if (flags & GRND_NONBLOCK)
1918 return -EAGAIN;
1919 ret = wait_for_random_bytes();
1920 if (unlikely(ret))
1921 return ret;
1922 }
1923 return urandom_read_nowarn(NULL, buf, count, NULL);
1924}
1925
1926/********************************************************************
1927 *
1928 * Sysctl interface
1929 *
1930 ********************************************************************/
1931
1932#ifdef CONFIG_SYSCTL
1933
1934#include <linux/sysctl.h>
1935
1936static int min_write_thresh;
1937static int max_write_thresh = POOL_BITS;
1938static int random_min_urandom_seed = 60;
1939static char sysctl_bootid[16];
1940
1941/*
1942 * This function is used to return both the bootid UUID, and random
1943 * UUID. The difference is in whether table->data is NULL; if it is,
1944 * then a new UUID is generated and returned to the user.
1945 *
1946 * If the user accesses this via the proc interface, the UUID will be
1947 * returned as an ASCII string in the standard UUID format; if via the
1948 * sysctl system call, as 16 bytes of binary data.
1949 */
1950static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
1951 size_t *lenp, loff_t *ppos)
1952{
1953 struct ctl_table fake_table;
1954 unsigned char buf[64], tmp_uuid[16], *uuid;
1955
1956 uuid = table->data;
1957 if (!uuid) {
1958 uuid = tmp_uuid;
1959 generate_random_uuid(uuid);
1960 } else {
1961 static DEFINE_SPINLOCK(bootid_spinlock);
1962
1963 spin_lock(&bootid_spinlock);
1964 if (!uuid[8])
1965 generate_random_uuid(uuid);
1966 spin_unlock(&bootid_spinlock);
1967 }
1968
1969 sprintf(buf, "%pU", uuid);
1970
1971 fake_table.data = buf;
1972 fake_table.maxlen = sizeof(buf);
1973
1974 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1975}
1976
1977/*
1978 * Return entropy available scaled to integral bits
1979 */
1980static int proc_do_entropy(struct ctl_table *table, int write, void *buffer,
1981 size_t *lenp, loff_t *ppos)
1982{
1983 struct ctl_table fake_table;
1984 int entropy_count;
1985
1986 entropy_count = *(int *)table->data >> POOL_ENTROPY_SHIFT;
1987
1988 fake_table.data = &entropy_count;
1989 fake_table.maxlen = sizeof(entropy_count);
1990
1991 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1992}
1993
1994static int sysctl_poolsize = POOL_BITS;
1995static struct ctl_table random_table[] = {
1996 {
1997 .procname = "poolsize",
1998 .data = &sysctl_poolsize,
1999 .maxlen = sizeof(int),
2000 .mode = 0444,
2001 .proc_handler = proc_dointvec,
2002 },
2003 {
2004 .procname = "entropy_avail",
2005 .maxlen = sizeof(int),
2006 .mode = 0444,
2007 .proc_handler = proc_do_entropy,
2008 .data = &input_pool.entropy_count,
2009 },
2010 {
2011 .procname = "write_wakeup_threshold",
2012 .data = &random_write_wakeup_bits,
2013 .maxlen = sizeof(int),
2014 .mode = 0644,
2015 .proc_handler = proc_dointvec_minmax,
2016 .extra1 = &min_write_thresh,
2017 .extra2 = &max_write_thresh,
2018 },
2019 {
2020 .procname = "urandom_min_reseed_secs",
2021 .data = &random_min_urandom_seed,
2022 .maxlen = sizeof(int),
2023 .mode = 0644,
2024 .proc_handler = proc_dointvec,
2025 },
2026 {
2027 .procname = "boot_id",
2028 .data = &sysctl_bootid,
2029 .maxlen = 16,
2030 .mode = 0444,
2031 .proc_handler = proc_do_uuid,
2032 },
2033 {
2034 .procname = "uuid",
2035 .maxlen = 16,
2036 .mode = 0444,
2037 .proc_handler = proc_do_uuid,
2038 },
2039#ifdef ADD_INTERRUPT_BENCH
2040 {
2041 .procname = "add_interrupt_avg_cycles",
2042 .data = &avg_cycles,
2043 .maxlen = sizeof(avg_cycles),
2044 .mode = 0444,
2045 .proc_handler = proc_doulongvec_minmax,
2046 },
2047 {
2048 .procname = "add_interrupt_avg_deviation",
2049 .data = &avg_deviation,
2050 .maxlen = sizeof(avg_deviation),
2051 .mode = 0444,
2052 .proc_handler = proc_doulongvec_minmax,
2053 },
2054#endif
2055 { }
2056};
2057
2058/*
2059 * rand_initialize() is called before sysctl_init(),
2060 * so we cannot call register_sysctl_init() in rand_initialize()
2061 */
2062static int __init random_sysctls_init(void)
2063{
2064 register_sysctl_init("kernel/random", random_table);
2065 return 0;
2066}
2067device_initcall(random_sysctls_init);
2068#endif /* CONFIG_SYSCTL */
2069
2070struct batched_entropy {
2071 union {
2072 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2073 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2074 };
2075 unsigned int position;
2076 spinlock_t batch_lock;
2077};
2078
2079/*
2080 * Get a random word for internal kernel use only. The quality of the random
2081 * number is good as /dev/urandom, but there is no backtrack protection, with
2082 * the goal of being quite fast and not depleting entropy. In order to ensure
2083 * that the randomness provided by this function is okay, the function
2084 * wait_for_random_bytes() should be called and return 0 at least once at any
2085 * point prior.
2086 */
2087static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2088 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2089};
2090
2091u64 get_random_u64(void)
2092{
2093 u64 ret;
2094 unsigned long flags;
2095 struct batched_entropy *batch;
2096 static void *previous;
2097
2098 warn_unseeded_randomness(&previous);
2099
2100 batch = raw_cpu_ptr(&batched_entropy_u64);
2101 spin_lock_irqsave(&batch->batch_lock, flags);
2102 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2103 extract_crng((u8 *)batch->entropy_u64);
2104 batch->position = 0;
2105 }
2106 ret = batch->entropy_u64[batch->position++];
2107 spin_unlock_irqrestore(&batch->batch_lock, flags);
2108 return ret;
2109}
2110EXPORT_SYMBOL(get_random_u64);
2111
2112static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2113 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2114};
2115u32 get_random_u32(void)
2116{
2117 u32 ret;
2118 unsigned long flags;
2119 struct batched_entropy *batch;
2120 static void *previous;
2121
2122 warn_unseeded_randomness(&previous);
2123
2124 batch = raw_cpu_ptr(&batched_entropy_u32);
2125 spin_lock_irqsave(&batch->batch_lock, flags);
2126 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2127 extract_crng((u8 *)batch->entropy_u32);
2128 batch->position = 0;
2129 }
2130 ret = batch->entropy_u32[batch->position++];
2131 spin_unlock_irqrestore(&batch->batch_lock, flags);
2132 return ret;
2133}
2134EXPORT_SYMBOL(get_random_u32);
2135
2136/* It's important to invalidate all potential batched entropy that might
2137 * be stored before the crng is initialized, which we can do lazily by
2138 * simply resetting the counter to zero so that it's re-extracted on the
2139 * next usage. */
2140static void invalidate_batched_entropy(void)
2141{
2142 int cpu;
2143 unsigned long flags;
2144
2145 for_each_possible_cpu(cpu) {
2146 struct batched_entropy *batched_entropy;
2147
2148 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2149 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2150 batched_entropy->position = 0;
2151 spin_unlock(&batched_entropy->batch_lock);
2152
2153 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2154 spin_lock(&batched_entropy->batch_lock);
2155 batched_entropy->position = 0;
2156 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2157 }
2158}
2159
2160/**
2161 * randomize_page - Generate a random, page aligned address
2162 * @start: The smallest acceptable address the caller will take.
2163 * @range: The size of the area, starting at @start, within which the
2164 * random address must fall.
2165 *
2166 * If @start + @range would overflow, @range is capped.
2167 *
2168 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2169 * @start was already page aligned. We now align it regardless.
2170 *
2171 * Return: A page aligned address within [start, start + range). On error,
2172 * @start is returned.
2173 */
2174unsigned long randomize_page(unsigned long start, unsigned long range)
2175{
2176 if (!PAGE_ALIGNED(start)) {
2177 range -= PAGE_ALIGN(start) - start;
2178 start = PAGE_ALIGN(start);
2179 }
2180
2181 if (start > ULONG_MAX - range)
2182 range = ULONG_MAX - start;
2183
2184 range >>= PAGE_SHIFT;
2185
2186 if (range == 0)
2187 return start;
2188
2189 return start + (get_random_long() % range << PAGE_SHIFT);
2190}
2191
2192/* Interface for in-kernel drivers of true hardware RNGs.
2193 * Those devices may produce endless random bits and will be throttled
2194 * when our pool is full.
2195 */
2196void add_hwgenerator_randomness(const char *buffer, size_t count,
2197 size_t entropy)
2198{
2199 if (unlikely(crng_init == 0)) {
2200 size_t ret = crng_fast_load(buffer, count);
2201 mix_pool_bytes(buffer, ret);
2202 count -= ret;
2203 buffer += ret;
2204 if (!count || crng_init == 0)
2205 return;
2206 }
2207
2208 /* Suspend writing if we're above the trickle threshold.
2209 * We'll be woken up again once below random_write_wakeup_thresh,
2210 * or when the calling thread is about to terminate.
2211 */
2212 wait_event_interruptible(random_write_wait,
2213 !system_wq || kthread_should_stop() ||
2214 POOL_ENTROPY_BITS() <= random_write_wakeup_bits);
2215 mix_pool_bytes(buffer, count);
2216 credit_entropy_bits(entropy);
2217}
2218EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2219
2220/* Handle random seed passed by bootloader.
2221 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2222 * it would be regarded as device data.
2223 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2224 */
2225void add_bootloader_randomness(const void *buf, unsigned int size)
2226{
2227 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2228 add_hwgenerator_randomness(buf, size, size * 8);
2229 else
2230 add_device_randomness(buf, size);
2231}
2232EXPORT_SYMBOL_GPL(add_bootloader_randomness);