Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <net/net_namespace.h>
38#ifdef CONFIG_DCB
39#include <net/dcbnl.h>
40#endif
41#include <net/netprio_cgroup.h>
42#include <net/xdp.h>
43
44#include <linux/netdev_features.h>
45#include <linux/neighbour.h>
46#include <uapi/linux/netdevice.h>
47#include <uapi/linux/if_bonding.h>
48#include <uapi/linux/pkt_cls.h>
49#include <linux/hashtable.h>
50#include <linux/rbtree.h>
51#include <net/net_trackers.h>
52
53struct netpoll_info;
54struct device;
55struct ethtool_ops;
56struct phy_device;
57struct dsa_port;
58struct ip_tunnel_parm;
59struct macsec_context;
60struct macsec_ops;
61
62struct sfp_bus;
63/* 802.11 specific */
64struct wireless_dev;
65/* 802.15.4 specific */
66struct wpan_dev;
67struct mpls_dev;
68/* UDP Tunnel offloads */
69struct udp_tunnel_info;
70struct udp_tunnel_nic_info;
71struct udp_tunnel_nic;
72struct bpf_prog;
73struct xdp_buff;
74
75void synchronize_net(void);
76void netdev_set_default_ethtool_ops(struct net_device *dev,
77 const struct ethtool_ops *ops);
78
79/* Backlog congestion levels */
80#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
81#define NET_RX_DROP 1 /* packet dropped */
82
83#define MAX_NEST_DEV 8
84
85/*
86 * Transmit return codes: transmit return codes originate from three different
87 * namespaces:
88 *
89 * - qdisc return codes
90 * - driver transmit return codes
91 * - errno values
92 *
93 * Drivers are allowed to return any one of those in their hard_start_xmit()
94 * function. Real network devices commonly used with qdiscs should only return
95 * the driver transmit return codes though - when qdiscs are used, the actual
96 * transmission happens asynchronously, so the value is not propagated to
97 * higher layers. Virtual network devices transmit synchronously; in this case
98 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
99 * others are propagated to higher layers.
100 */
101
102/* qdisc ->enqueue() return codes. */
103#define NET_XMIT_SUCCESS 0x00
104#define NET_XMIT_DROP 0x01 /* skb dropped */
105#define NET_XMIT_CN 0x02 /* congestion notification */
106#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
107
108/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
109 * indicates that the device will soon be dropping packets, or already drops
110 * some packets of the same priority; prompting us to send less aggressively. */
111#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
112#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
113
114/* Driver transmit return codes */
115#define NETDEV_TX_MASK 0xf0
116
117enum netdev_tx {
118 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
119 NETDEV_TX_OK = 0x00, /* driver took care of packet */
120 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
121};
122typedef enum netdev_tx netdev_tx_t;
123
124/*
125 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
126 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
127 */
128static inline bool dev_xmit_complete(int rc)
129{
130 /*
131 * Positive cases with an skb consumed by a driver:
132 * - successful transmission (rc == NETDEV_TX_OK)
133 * - error while transmitting (rc < 0)
134 * - error while queueing to a different device (rc & NET_XMIT_MASK)
135 */
136 if (likely(rc < NET_XMIT_MASK))
137 return true;
138
139 return false;
140}
141
142/*
143 * Compute the worst-case header length according to the protocols
144 * used.
145 */
146
147#if defined(CONFIG_HYPERV_NET)
148# define LL_MAX_HEADER 128
149#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150# if defined(CONFIG_MAC80211_MESH)
151# define LL_MAX_HEADER 128
152# else
153# define LL_MAX_HEADER 96
154# endif
155#else
156# define LL_MAX_HEADER 32
157#endif
158
159#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161#define MAX_HEADER LL_MAX_HEADER
162#else
163#define MAX_HEADER (LL_MAX_HEADER + 48)
164#endif
165
166/*
167 * Old network device statistics. Fields are native words
168 * (unsigned long) so they can be read and written atomically.
169 */
170
171struct net_device_stats {
172 unsigned long rx_packets;
173 unsigned long tx_packets;
174 unsigned long rx_bytes;
175 unsigned long tx_bytes;
176 unsigned long rx_errors;
177 unsigned long tx_errors;
178 unsigned long rx_dropped;
179 unsigned long tx_dropped;
180 unsigned long multicast;
181 unsigned long collisions;
182 unsigned long rx_length_errors;
183 unsigned long rx_over_errors;
184 unsigned long rx_crc_errors;
185 unsigned long rx_frame_errors;
186 unsigned long rx_fifo_errors;
187 unsigned long rx_missed_errors;
188 unsigned long tx_aborted_errors;
189 unsigned long tx_carrier_errors;
190 unsigned long tx_fifo_errors;
191 unsigned long tx_heartbeat_errors;
192 unsigned long tx_window_errors;
193 unsigned long rx_compressed;
194 unsigned long tx_compressed;
195};
196
197
198#include <linux/cache.h>
199#include <linux/skbuff.h>
200
201#ifdef CONFIG_RPS
202#include <linux/static_key.h>
203extern struct static_key_false rps_needed;
204extern struct static_key_false rfs_needed;
205#endif
206
207struct neighbour;
208struct neigh_parms;
209struct sk_buff;
210
211struct netdev_hw_addr {
212 struct list_head list;
213 struct rb_node node;
214 unsigned char addr[MAX_ADDR_LEN];
215 unsigned char type;
216#define NETDEV_HW_ADDR_T_LAN 1
217#define NETDEV_HW_ADDR_T_SAN 2
218#define NETDEV_HW_ADDR_T_UNICAST 3
219#define NETDEV_HW_ADDR_T_MULTICAST 4
220 bool global_use;
221 int sync_cnt;
222 int refcount;
223 int synced;
224 struct rcu_head rcu_head;
225};
226
227struct netdev_hw_addr_list {
228 struct list_head list;
229 int count;
230
231 /* Auxiliary tree for faster lookup on addition and deletion */
232 struct rb_root tree;
233};
234
235#define netdev_hw_addr_list_count(l) ((l)->count)
236#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
237#define netdev_hw_addr_list_for_each(ha, l) \
238 list_for_each_entry(ha, &(l)->list, list)
239
240#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
241#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
242#define netdev_for_each_uc_addr(ha, dev) \
243 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
244
245#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
246#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
247#define netdev_for_each_mc_addr(ha, dev) \
248 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
249
250struct hh_cache {
251 unsigned int hh_len;
252 seqlock_t hh_lock;
253
254 /* cached hardware header; allow for machine alignment needs. */
255#define HH_DATA_MOD 16
256#define HH_DATA_OFF(__len) \
257 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
258#define HH_DATA_ALIGN(__len) \
259 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
260 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
261};
262
263/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
264 * Alternative is:
265 * dev->hard_header_len ? (dev->hard_header_len +
266 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
267 *
268 * We could use other alignment values, but we must maintain the
269 * relationship HH alignment <= LL alignment.
270 */
271#define LL_RESERVED_SPACE(dev) \
272 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
273#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
274 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275
276struct header_ops {
277 int (*create) (struct sk_buff *skb, struct net_device *dev,
278 unsigned short type, const void *daddr,
279 const void *saddr, unsigned int len);
280 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
281 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
282 void (*cache_update)(struct hh_cache *hh,
283 const struct net_device *dev,
284 const unsigned char *haddr);
285 bool (*validate)(const char *ll_header, unsigned int len);
286 __be16 (*parse_protocol)(const struct sk_buff *skb);
287};
288
289/* These flag bits are private to the generic network queueing
290 * layer; they may not be explicitly referenced by any other
291 * code.
292 */
293
294enum netdev_state_t {
295 __LINK_STATE_START,
296 __LINK_STATE_PRESENT,
297 __LINK_STATE_NOCARRIER,
298 __LINK_STATE_LINKWATCH_PENDING,
299 __LINK_STATE_DORMANT,
300 __LINK_STATE_TESTING,
301};
302
303struct gro_list {
304 struct list_head list;
305 int count;
306};
307
308/*
309 * size of gro hash buckets, must less than bit number of
310 * napi_struct::gro_bitmask
311 */
312#define GRO_HASH_BUCKETS 8
313
314/*
315 * Structure for NAPI scheduling similar to tasklet but with weighting
316 */
317struct napi_struct {
318 /* The poll_list must only be managed by the entity which
319 * changes the state of the NAPI_STATE_SCHED bit. This means
320 * whoever atomically sets that bit can add this napi_struct
321 * to the per-CPU poll_list, and whoever clears that bit
322 * can remove from the list right before clearing the bit.
323 */
324 struct list_head poll_list;
325
326 unsigned long state;
327 int weight;
328 int defer_hard_irqs_count;
329 unsigned long gro_bitmask;
330 int (*poll)(struct napi_struct *, int);
331#ifdef CONFIG_NETPOLL
332 int poll_owner;
333#endif
334 struct net_device *dev;
335 struct gro_list gro_hash[GRO_HASH_BUCKETS];
336 struct sk_buff *skb;
337 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
338 int rx_count; /* length of rx_list */
339 struct hrtimer timer;
340 struct list_head dev_list;
341 struct hlist_node napi_hash_node;
342 unsigned int napi_id;
343 struct task_struct *thread;
344};
345
346enum {
347 NAPI_STATE_SCHED, /* Poll is scheduled */
348 NAPI_STATE_MISSED, /* reschedule a napi */
349 NAPI_STATE_DISABLE, /* Disable pending */
350 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
351 NAPI_STATE_LISTED, /* NAPI added to system lists */
352 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
353 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
354 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
355 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
356 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
357};
358
359enum {
360 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
361 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
362 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
363 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
364 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
365 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
366 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
367 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
369 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
370};
371
372enum gro_result {
373 GRO_MERGED,
374 GRO_MERGED_FREE,
375 GRO_HELD,
376 GRO_NORMAL,
377 GRO_CONSUMED,
378};
379typedef enum gro_result gro_result_t;
380
381/*
382 * enum rx_handler_result - Possible return values for rx_handlers.
383 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384 * further.
385 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386 * case skb->dev was changed by rx_handler.
387 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389 *
390 * rx_handlers are functions called from inside __netif_receive_skb(), to do
391 * special processing of the skb, prior to delivery to protocol handlers.
392 *
393 * Currently, a net_device can only have a single rx_handler registered. Trying
394 * to register a second rx_handler will return -EBUSY.
395 *
396 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397 * To unregister a rx_handler on a net_device, use
398 * netdev_rx_handler_unregister().
399 *
400 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401 * do with the skb.
402 *
403 * If the rx_handler consumed the skb in some way, it should return
404 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405 * the skb to be delivered in some other way.
406 *
407 * If the rx_handler changed skb->dev, to divert the skb to another
408 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409 * new device will be called if it exists.
410 *
411 * If the rx_handler decides the skb should be ignored, it should return
412 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413 * are registered on exact device (ptype->dev == skb->dev).
414 *
415 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416 * delivered, it should return RX_HANDLER_PASS.
417 *
418 * A device without a registered rx_handler will behave as if rx_handler
419 * returned RX_HANDLER_PASS.
420 */
421
422enum rx_handler_result {
423 RX_HANDLER_CONSUMED,
424 RX_HANDLER_ANOTHER,
425 RX_HANDLER_EXACT,
426 RX_HANDLER_PASS,
427};
428typedef enum rx_handler_result rx_handler_result_t;
429typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430
431void __napi_schedule(struct napi_struct *n);
432void __napi_schedule_irqoff(struct napi_struct *n);
433
434static inline bool napi_disable_pending(struct napi_struct *n)
435{
436 return test_bit(NAPI_STATE_DISABLE, &n->state);
437}
438
439static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440{
441 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442}
443
444bool napi_schedule_prep(struct napi_struct *n);
445
446/**
447 * napi_schedule - schedule NAPI poll
448 * @n: NAPI context
449 *
450 * Schedule NAPI poll routine to be called if it is not already
451 * running.
452 */
453static inline void napi_schedule(struct napi_struct *n)
454{
455 if (napi_schedule_prep(n))
456 __napi_schedule(n);
457}
458
459/**
460 * napi_schedule_irqoff - schedule NAPI poll
461 * @n: NAPI context
462 *
463 * Variant of napi_schedule(), assuming hard irqs are masked.
464 */
465static inline void napi_schedule_irqoff(struct napi_struct *n)
466{
467 if (napi_schedule_prep(n))
468 __napi_schedule_irqoff(n);
469}
470
471/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
472static inline bool napi_reschedule(struct napi_struct *napi)
473{
474 if (napi_schedule_prep(napi)) {
475 __napi_schedule(napi);
476 return true;
477 }
478 return false;
479}
480
481bool napi_complete_done(struct napi_struct *n, int work_done);
482/**
483 * napi_complete - NAPI processing complete
484 * @n: NAPI context
485 *
486 * Mark NAPI processing as complete.
487 * Consider using napi_complete_done() instead.
488 * Return false if device should avoid rearming interrupts.
489 */
490static inline bool napi_complete(struct napi_struct *n)
491{
492 return napi_complete_done(n, 0);
493}
494
495int dev_set_threaded(struct net_device *dev, bool threaded);
496
497/**
498 * napi_disable - prevent NAPI from scheduling
499 * @n: NAPI context
500 *
501 * Stop NAPI from being scheduled on this context.
502 * Waits till any outstanding processing completes.
503 */
504void napi_disable(struct napi_struct *n);
505
506void napi_enable(struct napi_struct *n);
507
508/**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: NAPI context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516static inline void napi_synchronize(const struct napi_struct *n)
517{
518 if (IS_ENABLED(CONFIG_SMP))
519 while (test_bit(NAPI_STATE_SCHED, &n->state))
520 msleep(1);
521 else
522 barrier();
523}
524
525/**
526 * napi_if_scheduled_mark_missed - if napi is running, set the
527 * NAPIF_STATE_MISSED
528 * @n: NAPI context
529 *
530 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531 * NAPI is scheduled.
532 **/
533static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534{
535 unsigned long val, new;
536
537 do {
538 val = READ_ONCE(n->state);
539 if (val & NAPIF_STATE_DISABLE)
540 return true;
541
542 if (!(val & NAPIF_STATE_SCHED))
543 return false;
544
545 new = val | NAPIF_STATE_MISSED;
546 } while (cmpxchg(&n->state, val, new) != val);
547
548 return true;
549}
550
551enum netdev_queue_state_t {
552 __QUEUE_STATE_DRV_XOFF,
553 __QUEUE_STATE_STACK_XOFF,
554 __QUEUE_STATE_FROZEN,
555};
556
557#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
558#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
559#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
560
561#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 QUEUE_STATE_FROZEN)
564#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 QUEUE_STATE_FROZEN)
566
567/*
568 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
569 * netif_tx_* functions below are used to manipulate this flag. The
570 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571 * queue independently. The netif_xmit_*stopped functions below are called
572 * to check if the queue has been stopped by the driver or stack (either
573 * of the XOFF bits are set in the state). Drivers should not need to call
574 * netif_xmit*stopped functions, they should only be using netif_tx_*.
575 */
576
577struct netdev_queue {
578/*
579 * read-mostly part
580 */
581 struct net_device *dev;
582 netdevice_tracker dev_tracker;
583
584 struct Qdisc __rcu *qdisc;
585 struct Qdisc *qdisc_sleeping;
586#ifdef CONFIG_SYSFS
587 struct kobject kobj;
588#endif
589#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 int numa_node;
591#endif
592 unsigned long tx_maxrate;
593 /*
594 * Number of TX timeouts for this queue
595 * (/sys/class/net/DEV/Q/trans_timeout)
596 */
597 atomic_long_t trans_timeout;
598
599 /* Subordinate device that the queue has been assigned to */
600 struct net_device *sb_dev;
601#ifdef CONFIG_XDP_SOCKETS
602 struct xsk_buff_pool *pool;
603#endif
604/*
605 * write-mostly part
606 */
607 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
608 int xmit_lock_owner;
609 /*
610 * Time (in jiffies) of last Tx
611 */
612 unsigned long trans_start;
613
614 unsigned long state;
615
616#ifdef CONFIG_BQL
617 struct dql dql;
618#endif
619} ____cacheline_aligned_in_smp;
620
621extern int sysctl_fb_tunnels_only_for_init_net;
622extern int sysctl_devconf_inherit_init_net;
623
624/*
625 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
626 * == 1 : For initns only
627 * == 2 : For none.
628 */
629static inline bool net_has_fallback_tunnels(const struct net *net)
630{
631 return !IS_ENABLED(CONFIG_SYSCTL) ||
632 !sysctl_fb_tunnels_only_for_init_net ||
633 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
634}
635
636static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
637{
638#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
639 return q->numa_node;
640#else
641 return NUMA_NO_NODE;
642#endif
643}
644
645static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
646{
647#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 q->numa_node = node;
649#endif
650}
651
652#ifdef CONFIG_RPS
653/*
654 * This structure holds an RPS map which can be of variable length. The
655 * map is an array of CPUs.
656 */
657struct rps_map {
658 unsigned int len;
659 struct rcu_head rcu;
660 u16 cpus[];
661};
662#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
663
664/*
665 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
666 * tail pointer for that CPU's input queue at the time of last enqueue, and
667 * a hardware filter index.
668 */
669struct rps_dev_flow {
670 u16 cpu;
671 u16 filter;
672 unsigned int last_qtail;
673};
674#define RPS_NO_FILTER 0xffff
675
676/*
677 * The rps_dev_flow_table structure contains a table of flow mappings.
678 */
679struct rps_dev_flow_table {
680 unsigned int mask;
681 struct rcu_head rcu;
682 struct rps_dev_flow flows[];
683};
684#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
685 ((_num) * sizeof(struct rps_dev_flow)))
686
687/*
688 * The rps_sock_flow_table contains mappings of flows to the last CPU
689 * on which they were processed by the application (set in recvmsg).
690 * Each entry is a 32bit value. Upper part is the high-order bits
691 * of flow hash, lower part is CPU number.
692 * rps_cpu_mask is used to partition the space, depending on number of
693 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
694 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
695 * meaning we use 32-6=26 bits for the hash.
696 */
697struct rps_sock_flow_table {
698 u32 mask;
699
700 u32 ents[] ____cacheline_aligned_in_smp;
701};
702#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
703
704#define RPS_NO_CPU 0xffff
705
706extern u32 rps_cpu_mask;
707extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
708
709static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
710 u32 hash)
711{
712 if (table && hash) {
713 unsigned int index = hash & table->mask;
714 u32 val = hash & ~rps_cpu_mask;
715
716 /* We only give a hint, preemption can change CPU under us */
717 val |= raw_smp_processor_id();
718
719 if (table->ents[index] != val)
720 table->ents[index] = val;
721 }
722}
723
724#ifdef CONFIG_RFS_ACCEL
725bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
726 u16 filter_id);
727#endif
728#endif /* CONFIG_RPS */
729
730/* This structure contains an instance of an RX queue. */
731struct netdev_rx_queue {
732 struct xdp_rxq_info xdp_rxq;
733#ifdef CONFIG_RPS
734 struct rps_map __rcu *rps_map;
735 struct rps_dev_flow_table __rcu *rps_flow_table;
736#endif
737 struct kobject kobj;
738 struct net_device *dev;
739 netdevice_tracker dev_tracker;
740
741#ifdef CONFIG_XDP_SOCKETS
742 struct xsk_buff_pool *pool;
743#endif
744} ____cacheline_aligned_in_smp;
745
746/*
747 * RX queue sysfs structures and functions.
748 */
749struct rx_queue_attribute {
750 struct attribute attr;
751 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
752 ssize_t (*store)(struct netdev_rx_queue *queue,
753 const char *buf, size_t len);
754};
755
756/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
757enum xps_map_type {
758 XPS_CPUS = 0,
759 XPS_RXQS,
760 XPS_MAPS_MAX,
761};
762
763#ifdef CONFIG_XPS
764/*
765 * This structure holds an XPS map which can be of variable length. The
766 * map is an array of queues.
767 */
768struct xps_map {
769 unsigned int len;
770 unsigned int alloc_len;
771 struct rcu_head rcu;
772 u16 queues[];
773};
774#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776 - sizeof(struct xps_map)) / sizeof(u16))
777
778/*
779 * This structure holds all XPS maps for device. Maps are indexed by CPU.
780 *
781 * We keep track of the number of cpus/rxqs used when the struct is allocated,
782 * in nr_ids. This will help not accessing out-of-bound memory.
783 *
784 * We keep track of the number of traffic classes used when the struct is
785 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
786 * not crossing its upper bound, as the original dev->num_tc can be updated in
787 * the meantime.
788 */
789struct xps_dev_maps {
790 struct rcu_head rcu;
791 unsigned int nr_ids;
792 s16 num_tc;
793 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
794};
795
796#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
797 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
798
799#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
800 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
801
802#endif /* CONFIG_XPS */
803
804#define TC_MAX_QUEUE 16
805#define TC_BITMASK 15
806/* HW offloaded queuing disciplines txq count and offset maps */
807struct netdev_tc_txq {
808 u16 count;
809 u16 offset;
810};
811
812#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
813/*
814 * This structure is to hold information about the device
815 * configured to run FCoE protocol stack.
816 */
817struct netdev_fcoe_hbainfo {
818 char manufacturer[64];
819 char serial_number[64];
820 char hardware_version[64];
821 char driver_version[64];
822 char optionrom_version[64];
823 char firmware_version[64];
824 char model[256];
825 char model_description[256];
826};
827#endif
828
829#define MAX_PHYS_ITEM_ID_LEN 32
830
831/* This structure holds a unique identifier to identify some
832 * physical item (port for example) used by a netdevice.
833 */
834struct netdev_phys_item_id {
835 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
836 unsigned char id_len;
837};
838
839static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
840 struct netdev_phys_item_id *b)
841{
842 return a->id_len == b->id_len &&
843 memcmp(a->id, b->id, a->id_len) == 0;
844}
845
846typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
847 struct sk_buff *skb,
848 struct net_device *sb_dev);
849
850enum net_device_path_type {
851 DEV_PATH_ETHERNET = 0,
852 DEV_PATH_VLAN,
853 DEV_PATH_BRIDGE,
854 DEV_PATH_PPPOE,
855 DEV_PATH_DSA,
856};
857
858struct net_device_path {
859 enum net_device_path_type type;
860 const struct net_device *dev;
861 union {
862 struct {
863 u16 id;
864 __be16 proto;
865 u8 h_dest[ETH_ALEN];
866 } encap;
867 struct {
868 enum {
869 DEV_PATH_BR_VLAN_KEEP,
870 DEV_PATH_BR_VLAN_TAG,
871 DEV_PATH_BR_VLAN_UNTAG,
872 DEV_PATH_BR_VLAN_UNTAG_HW,
873 } vlan_mode;
874 u16 vlan_id;
875 __be16 vlan_proto;
876 } bridge;
877 struct {
878 int port;
879 u16 proto;
880 } dsa;
881 };
882};
883
884#define NET_DEVICE_PATH_STACK_MAX 5
885#define NET_DEVICE_PATH_VLAN_MAX 2
886
887struct net_device_path_stack {
888 int num_paths;
889 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
890};
891
892struct net_device_path_ctx {
893 const struct net_device *dev;
894 const u8 *daddr;
895
896 int num_vlans;
897 struct {
898 u16 id;
899 __be16 proto;
900 } vlan[NET_DEVICE_PATH_VLAN_MAX];
901};
902
903enum tc_setup_type {
904 TC_SETUP_QDISC_MQPRIO,
905 TC_SETUP_CLSU32,
906 TC_SETUP_CLSFLOWER,
907 TC_SETUP_CLSMATCHALL,
908 TC_SETUP_CLSBPF,
909 TC_SETUP_BLOCK,
910 TC_SETUP_QDISC_CBS,
911 TC_SETUP_QDISC_RED,
912 TC_SETUP_QDISC_PRIO,
913 TC_SETUP_QDISC_MQ,
914 TC_SETUP_QDISC_ETF,
915 TC_SETUP_ROOT_QDISC,
916 TC_SETUP_QDISC_GRED,
917 TC_SETUP_QDISC_TAPRIO,
918 TC_SETUP_FT,
919 TC_SETUP_QDISC_ETS,
920 TC_SETUP_QDISC_TBF,
921 TC_SETUP_QDISC_FIFO,
922 TC_SETUP_QDISC_HTB,
923 TC_SETUP_ACT,
924};
925
926/* These structures hold the attributes of bpf state that are being passed
927 * to the netdevice through the bpf op.
928 */
929enum bpf_netdev_command {
930 /* Set or clear a bpf program used in the earliest stages of packet
931 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
932 * is responsible for calling bpf_prog_put on any old progs that are
933 * stored. In case of error, the callee need not release the new prog
934 * reference, but on success it takes ownership and must bpf_prog_put
935 * when it is no longer used.
936 */
937 XDP_SETUP_PROG,
938 XDP_SETUP_PROG_HW,
939 /* BPF program for offload callbacks, invoked at program load time. */
940 BPF_OFFLOAD_MAP_ALLOC,
941 BPF_OFFLOAD_MAP_FREE,
942 XDP_SETUP_XSK_POOL,
943};
944
945struct bpf_prog_offload_ops;
946struct netlink_ext_ack;
947struct xdp_umem;
948struct xdp_dev_bulk_queue;
949struct bpf_xdp_link;
950
951enum bpf_xdp_mode {
952 XDP_MODE_SKB = 0,
953 XDP_MODE_DRV = 1,
954 XDP_MODE_HW = 2,
955 __MAX_XDP_MODE
956};
957
958struct bpf_xdp_entity {
959 struct bpf_prog *prog;
960 struct bpf_xdp_link *link;
961};
962
963struct netdev_bpf {
964 enum bpf_netdev_command command;
965 union {
966 /* XDP_SETUP_PROG */
967 struct {
968 u32 flags;
969 struct bpf_prog *prog;
970 struct netlink_ext_ack *extack;
971 };
972 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
973 struct {
974 struct bpf_offloaded_map *offmap;
975 };
976 /* XDP_SETUP_XSK_POOL */
977 struct {
978 struct xsk_buff_pool *pool;
979 u16 queue_id;
980 } xsk;
981 };
982};
983
984/* Flags for ndo_xsk_wakeup. */
985#define XDP_WAKEUP_RX (1 << 0)
986#define XDP_WAKEUP_TX (1 << 1)
987
988#ifdef CONFIG_XFRM_OFFLOAD
989struct xfrmdev_ops {
990 int (*xdo_dev_state_add) (struct xfrm_state *x);
991 void (*xdo_dev_state_delete) (struct xfrm_state *x);
992 void (*xdo_dev_state_free) (struct xfrm_state *x);
993 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
994 struct xfrm_state *x);
995 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
996};
997#endif
998
999struct dev_ifalias {
1000 struct rcu_head rcuhead;
1001 char ifalias[];
1002};
1003
1004struct devlink;
1005struct tlsdev_ops;
1006
1007struct netdev_name_node {
1008 struct hlist_node hlist;
1009 struct list_head list;
1010 struct net_device *dev;
1011 const char *name;
1012};
1013
1014int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1015int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1016
1017struct netdev_net_notifier {
1018 struct list_head list;
1019 struct notifier_block *nb;
1020};
1021
1022/*
1023 * This structure defines the management hooks for network devices.
1024 * The following hooks can be defined; unless noted otherwise, they are
1025 * optional and can be filled with a null pointer.
1026 *
1027 * int (*ndo_init)(struct net_device *dev);
1028 * This function is called once when a network device is registered.
1029 * The network device can use this for any late stage initialization
1030 * or semantic validation. It can fail with an error code which will
1031 * be propagated back to register_netdev.
1032 *
1033 * void (*ndo_uninit)(struct net_device *dev);
1034 * This function is called when device is unregistered or when registration
1035 * fails. It is not called if init fails.
1036 *
1037 * int (*ndo_open)(struct net_device *dev);
1038 * This function is called when a network device transitions to the up
1039 * state.
1040 *
1041 * int (*ndo_stop)(struct net_device *dev);
1042 * This function is called when a network device transitions to the down
1043 * state.
1044 *
1045 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1046 * struct net_device *dev);
1047 * Called when a packet needs to be transmitted.
1048 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1049 * the queue before that can happen; it's for obsolete devices and weird
1050 * corner cases, but the stack really does a non-trivial amount
1051 * of useless work if you return NETDEV_TX_BUSY.
1052 * Required; cannot be NULL.
1053 *
1054 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1055 * struct net_device *dev
1056 * netdev_features_t features);
1057 * Called by core transmit path to determine if device is capable of
1058 * performing offload operations on a given packet. This is to give
1059 * the device an opportunity to implement any restrictions that cannot
1060 * be otherwise expressed by feature flags. The check is called with
1061 * the set of features that the stack has calculated and it returns
1062 * those the driver believes to be appropriate.
1063 *
1064 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1065 * struct net_device *sb_dev);
1066 * Called to decide which queue to use when device supports multiple
1067 * transmit queues.
1068 *
1069 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1070 * This function is called to allow device receiver to make
1071 * changes to configuration when multicast or promiscuous is enabled.
1072 *
1073 * void (*ndo_set_rx_mode)(struct net_device *dev);
1074 * This function is called device changes address list filtering.
1075 * If driver handles unicast address filtering, it should set
1076 * IFF_UNICAST_FLT in its priv_flags.
1077 *
1078 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1079 * This function is called when the Media Access Control address
1080 * needs to be changed. If this interface is not defined, the
1081 * MAC address can not be changed.
1082 *
1083 * int (*ndo_validate_addr)(struct net_device *dev);
1084 * Test if Media Access Control address is valid for the device.
1085 *
1086 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087 * Old-style ioctl entry point. This is used internally by the
1088 * appletalk and ieee802154 subsystems but is no longer called by
1089 * the device ioctl handler.
1090 *
1091 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092 * Used by the bonding driver for its device specific ioctls:
1093 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1094 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1095 *
1096 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1097 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1098 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1099 *
1100 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1101 * Used to set network devices bus interface parameters. This interface
1102 * is retained for legacy reasons; new devices should use the bus
1103 * interface (PCI) for low level management.
1104 *
1105 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1106 * Called when a user wants to change the Maximum Transfer Unit
1107 * of a device.
1108 *
1109 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1110 * Callback used when the transmitter has not made any progress
1111 * for dev->watchdog ticks.
1112 *
1113 * void (*ndo_get_stats64)(struct net_device *dev,
1114 * struct rtnl_link_stats64 *storage);
1115 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1116 * Called when a user wants to get the network device usage
1117 * statistics. Drivers must do one of the following:
1118 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1119 * rtnl_link_stats64 structure passed by the caller.
1120 * 2. Define @ndo_get_stats to update a net_device_stats structure
1121 * (which should normally be dev->stats) and return a pointer to
1122 * it. The structure may be changed asynchronously only if each
1123 * field is written atomically.
1124 * 3. Update dev->stats asynchronously and atomically, and define
1125 * neither operation.
1126 *
1127 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1128 * Return true if this device supports offload stats of this attr_id.
1129 *
1130 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1131 * void *attr_data)
1132 * Get statistics for offload operations by attr_id. Write it into the
1133 * attr_data pointer.
1134 *
1135 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1136 * If device supports VLAN filtering this function is called when a
1137 * VLAN id is registered.
1138 *
1139 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1140 * If device supports VLAN filtering this function is called when a
1141 * VLAN id is unregistered.
1142 *
1143 * void (*ndo_poll_controller)(struct net_device *dev);
1144 *
1145 * SR-IOV management functions.
1146 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1147 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1148 * u8 qos, __be16 proto);
1149 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1150 * int max_tx_rate);
1151 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1152 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1153 * int (*ndo_get_vf_config)(struct net_device *dev,
1154 * int vf, struct ifla_vf_info *ivf);
1155 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1156 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1157 * struct nlattr *port[]);
1158 *
1159 * Enable or disable the VF ability to query its RSS Redirection Table and
1160 * Hash Key. This is needed since on some devices VF share this information
1161 * with PF and querying it may introduce a theoretical security risk.
1162 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1163 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1164 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1165 * void *type_data);
1166 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1167 * This is always called from the stack with the rtnl lock held and netif
1168 * tx queues stopped. This allows the netdevice to perform queue
1169 * management safely.
1170 *
1171 * Fiber Channel over Ethernet (FCoE) offload functions.
1172 * int (*ndo_fcoe_enable)(struct net_device *dev);
1173 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1174 * so the underlying device can perform whatever needed configuration or
1175 * initialization to support acceleration of FCoE traffic.
1176 *
1177 * int (*ndo_fcoe_disable)(struct net_device *dev);
1178 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1179 * so the underlying device can perform whatever needed clean-ups to
1180 * stop supporting acceleration of FCoE traffic.
1181 *
1182 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1183 * struct scatterlist *sgl, unsigned int sgc);
1184 * Called when the FCoE Initiator wants to initialize an I/O that
1185 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1186 * perform necessary setup and returns 1 to indicate the device is set up
1187 * successfully to perform DDP on this I/O, otherwise this returns 0.
1188 *
1189 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1190 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1191 * indicated by the FC exchange id 'xid', so the underlying device can
1192 * clean up and reuse resources for later DDP requests.
1193 *
1194 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1195 * struct scatterlist *sgl, unsigned int sgc);
1196 * Called when the FCoE Target wants to initialize an I/O that
1197 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1198 * perform necessary setup and returns 1 to indicate the device is set up
1199 * successfully to perform DDP on this I/O, otherwise this returns 0.
1200 *
1201 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1202 * struct netdev_fcoe_hbainfo *hbainfo);
1203 * Called when the FCoE Protocol stack wants information on the underlying
1204 * device. This information is utilized by the FCoE protocol stack to
1205 * register attributes with Fiber Channel management service as per the
1206 * FC-GS Fabric Device Management Information(FDMI) specification.
1207 *
1208 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1209 * Called when the underlying device wants to override default World Wide
1210 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1211 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1212 * protocol stack to use.
1213 *
1214 * RFS acceleration.
1215 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1216 * u16 rxq_index, u32 flow_id);
1217 * Set hardware filter for RFS. rxq_index is the target queue index;
1218 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1219 * Return the filter ID on success, or a negative error code.
1220 *
1221 * Slave management functions (for bridge, bonding, etc).
1222 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1223 * Called to make another netdev an underling.
1224 *
1225 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1226 * Called to release previously enslaved netdev.
1227 *
1228 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1229 * struct sk_buff *skb,
1230 * bool all_slaves);
1231 * Get the xmit slave of master device. If all_slaves is true, function
1232 * assume all the slaves can transmit.
1233 *
1234 * Feature/offload setting functions.
1235 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1236 * netdev_features_t features);
1237 * Adjusts the requested feature flags according to device-specific
1238 * constraints, and returns the resulting flags. Must not modify
1239 * the device state.
1240 *
1241 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1242 * Called to update device configuration to new features. Passed
1243 * feature set might be less than what was returned by ndo_fix_features()).
1244 * Must return >0 or -errno if it changed dev->features itself.
1245 *
1246 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1247 * struct net_device *dev,
1248 * const unsigned char *addr, u16 vid, u16 flags,
1249 * struct netlink_ext_ack *extack);
1250 * Adds an FDB entry to dev for addr.
1251 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1252 * struct net_device *dev,
1253 * const unsigned char *addr, u16 vid)
1254 * Deletes the FDB entry from dev coresponding to addr.
1255 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1256 * struct net_device *dev, struct net_device *filter_dev,
1257 * int *idx)
1258 * Used to add FDB entries to dump requests. Implementers should add
1259 * entries to skb and update idx with the number of entries.
1260 *
1261 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1262 * u16 flags, struct netlink_ext_ack *extack)
1263 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1264 * struct net_device *dev, u32 filter_mask,
1265 * int nlflags)
1266 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1267 * u16 flags);
1268 *
1269 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1270 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1271 * which do not represent real hardware may define this to allow their
1272 * userspace components to manage their virtual carrier state. Devices
1273 * that determine carrier state from physical hardware properties (eg
1274 * network cables) or protocol-dependent mechanisms (eg
1275 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1276 *
1277 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1278 * struct netdev_phys_item_id *ppid);
1279 * Called to get ID of physical port of this device. If driver does
1280 * not implement this, it is assumed that the hw is not able to have
1281 * multiple net devices on single physical port.
1282 *
1283 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1284 * struct netdev_phys_item_id *ppid)
1285 * Called to get the parent ID of the physical port of this device.
1286 *
1287 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1288 * struct net_device *dev)
1289 * Called by upper layer devices to accelerate switching or other
1290 * station functionality into hardware. 'pdev is the lowerdev
1291 * to use for the offload and 'dev' is the net device that will
1292 * back the offload. Returns a pointer to the private structure
1293 * the upper layer will maintain.
1294 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1295 * Called by upper layer device to delete the station created
1296 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1297 * the station and priv is the structure returned by the add
1298 * operation.
1299 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1300 * int queue_index, u32 maxrate);
1301 * Called when a user wants to set a max-rate limitation of specific
1302 * TX queue.
1303 * int (*ndo_get_iflink)(const struct net_device *dev);
1304 * Called to get the iflink value of this device.
1305 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1306 * This function is used to get egress tunnel information for given skb.
1307 * This is useful for retrieving outer tunnel header parameters while
1308 * sampling packet.
1309 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1310 * This function is used to specify the headroom that the skb must
1311 * consider when allocation skb during packet reception. Setting
1312 * appropriate rx headroom value allows avoiding skb head copy on
1313 * forward. Setting a negative value resets the rx headroom to the
1314 * default value.
1315 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1316 * This function is used to set or query state related to XDP on the
1317 * netdevice and manage BPF offload. See definition of
1318 * enum bpf_netdev_command for details.
1319 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1320 * u32 flags);
1321 * This function is used to submit @n XDP packets for transmit on a
1322 * netdevice. Returns number of frames successfully transmitted, frames
1323 * that got dropped are freed/returned via xdp_return_frame().
1324 * Returns negative number, means general error invoking ndo, meaning
1325 * no frames were xmit'ed and core-caller will free all frames.
1326 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1327 * struct xdp_buff *xdp);
1328 * Get the xmit slave of master device based on the xdp_buff.
1329 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1330 * This function is used to wake up the softirq, ksoftirqd or kthread
1331 * responsible for sending and/or receiving packets on a specific
1332 * queue id bound to an AF_XDP socket. The flags field specifies if
1333 * only RX, only Tx, or both should be woken up using the flags
1334 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1335 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1336 * Get devlink port instance associated with a given netdev.
1337 * Called with a reference on the netdevice and devlink locks only,
1338 * rtnl_lock is not held.
1339 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1340 * int cmd);
1341 * Add, change, delete or get information on an IPv4 tunnel.
1342 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1343 * If a device is paired with a peer device, return the peer instance.
1344 * The caller must be under RCU read context.
1345 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1346 * Get the forwarding path to reach the real device from the HW destination address
1347 */
1348struct net_device_ops {
1349 int (*ndo_init)(struct net_device *dev);
1350 void (*ndo_uninit)(struct net_device *dev);
1351 int (*ndo_open)(struct net_device *dev);
1352 int (*ndo_stop)(struct net_device *dev);
1353 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1354 struct net_device *dev);
1355 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1356 struct net_device *dev,
1357 netdev_features_t features);
1358 u16 (*ndo_select_queue)(struct net_device *dev,
1359 struct sk_buff *skb,
1360 struct net_device *sb_dev);
1361 void (*ndo_change_rx_flags)(struct net_device *dev,
1362 int flags);
1363 void (*ndo_set_rx_mode)(struct net_device *dev);
1364 int (*ndo_set_mac_address)(struct net_device *dev,
1365 void *addr);
1366 int (*ndo_validate_addr)(struct net_device *dev);
1367 int (*ndo_do_ioctl)(struct net_device *dev,
1368 struct ifreq *ifr, int cmd);
1369 int (*ndo_eth_ioctl)(struct net_device *dev,
1370 struct ifreq *ifr, int cmd);
1371 int (*ndo_siocbond)(struct net_device *dev,
1372 struct ifreq *ifr, int cmd);
1373 int (*ndo_siocwandev)(struct net_device *dev,
1374 struct if_settings *ifs);
1375 int (*ndo_siocdevprivate)(struct net_device *dev,
1376 struct ifreq *ifr,
1377 void __user *data, int cmd);
1378 int (*ndo_set_config)(struct net_device *dev,
1379 struct ifmap *map);
1380 int (*ndo_change_mtu)(struct net_device *dev,
1381 int new_mtu);
1382 int (*ndo_neigh_setup)(struct net_device *dev,
1383 struct neigh_parms *);
1384 void (*ndo_tx_timeout) (struct net_device *dev,
1385 unsigned int txqueue);
1386
1387 void (*ndo_get_stats64)(struct net_device *dev,
1388 struct rtnl_link_stats64 *storage);
1389 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1390 int (*ndo_get_offload_stats)(int attr_id,
1391 const struct net_device *dev,
1392 void *attr_data);
1393 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1394
1395 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1396 __be16 proto, u16 vid);
1397 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1398 __be16 proto, u16 vid);
1399#ifdef CONFIG_NET_POLL_CONTROLLER
1400 void (*ndo_poll_controller)(struct net_device *dev);
1401 int (*ndo_netpoll_setup)(struct net_device *dev,
1402 struct netpoll_info *info);
1403 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1404#endif
1405 int (*ndo_set_vf_mac)(struct net_device *dev,
1406 int queue, u8 *mac);
1407 int (*ndo_set_vf_vlan)(struct net_device *dev,
1408 int queue, u16 vlan,
1409 u8 qos, __be16 proto);
1410 int (*ndo_set_vf_rate)(struct net_device *dev,
1411 int vf, int min_tx_rate,
1412 int max_tx_rate);
1413 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1414 int vf, bool setting);
1415 int (*ndo_set_vf_trust)(struct net_device *dev,
1416 int vf, bool setting);
1417 int (*ndo_get_vf_config)(struct net_device *dev,
1418 int vf,
1419 struct ifla_vf_info *ivf);
1420 int (*ndo_set_vf_link_state)(struct net_device *dev,
1421 int vf, int link_state);
1422 int (*ndo_get_vf_stats)(struct net_device *dev,
1423 int vf,
1424 struct ifla_vf_stats
1425 *vf_stats);
1426 int (*ndo_set_vf_port)(struct net_device *dev,
1427 int vf,
1428 struct nlattr *port[]);
1429 int (*ndo_get_vf_port)(struct net_device *dev,
1430 int vf, struct sk_buff *skb);
1431 int (*ndo_get_vf_guid)(struct net_device *dev,
1432 int vf,
1433 struct ifla_vf_guid *node_guid,
1434 struct ifla_vf_guid *port_guid);
1435 int (*ndo_set_vf_guid)(struct net_device *dev,
1436 int vf, u64 guid,
1437 int guid_type);
1438 int (*ndo_set_vf_rss_query_en)(
1439 struct net_device *dev,
1440 int vf, bool setting);
1441 int (*ndo_setup_tc)(struct net_device *dev,
1442 enum tc_setup_type type,
1443 void *type_data);
1444#if IS_ENABLED(CONFIG_FCOE)
1445 int (*ndo_fcoe_enable)(struct net_device *dev);
1446 int (*ndo_fcoe_disable)(struct net_device *dev);
1447 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1448 u16 xid,
1449 struct scatterlist *sgl,
1450 unsigned int sgc);
1451 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1452 u16 xid);
1453 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1454 u16 xid,
1455 struct scatterlist *sgl,
1456 unsigned int sgc);
1457 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1458 struct netdev_fcoe_hbainfo *hbainfo);
1459#endif
1460
1461#if IS_ENABLED(CONFIG_LIBFCOE)
1462#define NETDEV_FCOE_WWNN 0
1463#define NETDEV_FCOE_WWPN 1
1464 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1465 u64 *wwn, int type);
1466#endif
1467
1468#ifdef CONFIG_RFS_ACCEL
1469 int (*ndo_rx_flow_steer)(struct net_device *dev,
1470 const struct sk_buff *skb,
1471 u16 rxq_index,
1472 u32 flow_id);
1473#endif
1474 int (*ndo_add_slave)(struct net_device *dev,
1475 struct net_device *slave_dev,
1476 struct netlink_ext_ack *extack);
1477 int (*ndo_del_slave)(struct net_device *dev,
1478 struct net_device *slave_dev);
1479 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1480 struct sk_buff *skb,
1481 bool all_slaves);
1482 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1483 struct sock *sk);
1484 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1485 netdev_features_t features);
1486 int (*ndo_set_features)(struct net_device *dev,
1487 netdev_features_t features);
1488 int (*ndo_neigh_construct)(struct net_device *dev,
1489 struct neighbour *n);
1490 void (*ndo_neigh_destroy)(struct net_device *dev,
1491 struct neighbour *n);
1492
1493 int (*ndo_fdb_add)(struct ndmsg *ndm,
1494 struct nlattr *tb[],
1495 struct net_device *dev,
1496 const unsigned char *addr,
1497 u16 vid,
1498 u16 flags,
1499 struct netlink_ext_ack *extack);
1500 int (*ndo_fdb_del)(struct ndmsg *ndm,
1501 struct nlattr *tb[],
1502 struct net_device *dev,
1503 const unsigned char *addr,
1504 u16 vid);
1505 int (*ndo_fdb_dump)(struct sk_buff *skb,
1506 struct netlink_callback *cb,
1507 struct net_device *dev,
1508 struct net_device *filter_dev,
1509 int *idx);
1510 int (*ndo_fdb_get)(struct sk_buff *skb,
1511 struct nlattr *tb[],
1512 struct net_device *dev,
1513 const unsigned char *addr,
1514 u16 vid, u32 portid, u32 seq,
1515 struct netlink_ext_ack *extack);
1516 int (*ndo_bridge_setlink)(struct net_device *dev,
1517 struct nlmsghdr *nlh,
1518 u16 flags,
1519 struct netlink_ext_ack *extack);
1520 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1521 u32 pid, u32 seq,
1522 struct net_device *dev,
1523 u32 filter_mask,
1524 int nlflags);
1525 int (*ndo_bridge_dellink)(struct net_device *dev,
1526 struct nlmsghdr *nlh,
1527 u16 flags);
1528 int (*ndo_change_carrier)(struct net_device *dev,
1529 bool new_carrier);
1530 int (*ndo_get_phys_port_id)(struct net_device *dev,
1531 struct netdev_phys_item_id *ppid);
1532 int (*ndo_get_port_parent_id)(struct net_device *dev,
1533 struct netdev_phys_item_id *ppid);
1534 int (*ndo_get_phys_port_name)(struct net_device *dev,
1535 char *name, size_t len);
1536 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1537 struct net_device *dev);
1538 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1539 void *priv);
1540
1541 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1542 int queue_index,
1543 u32 maxrate);
1544 int (*ndo_get_iflink)(const struct net_device *dev);
1545 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1546 struct sk_buff *skb);
1547 void (*ndo_set_rx_headroom)(struct net_device *dev,
1548 int needed_headroom);
1549 int (*ndo_bpf)(struct net_device *dev,
1550 struct netdev_bpf *bpf);
1551 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1552 struct xdp_frame **xdp,
1553 u32 flags);
1554 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1555 struct xdp_buff *xdp);
1556 int (*ndo_xsk_wakeup)(struct net_device *dev,
1557 u32 queue_id, u32 flags);
1558 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1559 int (*ndo_tunnel_ctl)(struct net_device *dev,
1560 struct ip_tunnel_parm *p, int cmd);
1561 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1562 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1563 struct net_device_path *path);
1564};
1565
1566/**
1567 * enum netdev_priv_flags - &struct net_device priv_flags
1568 *
1569 * These are the &struct net_device, they are only set internally
1570 * by drivers and used in the kernel. These flags are invisible to
1571 * userspace; this means that the order of these flags can change
1572 * during any kernel release.
1573 *
1574 * You should have a pretty good reason to be extending these flags.
1575 *
1576 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1577 * @IFF_EBRIDGE: Ethernet bridging device
1578 * @IFF_BONDING: bonding master or slave
1579 * @IFF_ISATAP: ISATAP interface (RFC4214)
1580 * @IFF_WAN_HDLC: WAN HDLC device
1581 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1582 * release skb->dst
1583 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1584 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1585 * @IFF_MACVLAN_PORT: device used as macvlan port
1586 * @IFF_BRIDGE_PORT: device used as bridge port
1587 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1588 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1589 * @IFF_UNICAST_FLT: Supports unicast filtering
1590 * @IFF_TEAM_PORT: device used as team port
1591 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1592 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1593 * change when it's running
1594 * @IFF_MACVLAN: Macvlan device
1595 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1596 * underlying stacked devices
1597 * @IFF_L3MDEV_MASTER: device is an L3 master device
1598 * @IFF_NO_QUEUE: device can run without qdisc attached
1599 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1600 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1601 * @IFF_TEAM: device is a team device
1602 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1603 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1604 * entity (i.e. the master device for bridged veth)
1605 * @IFF_MACSEC: device is a MACsec device
1606 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1607 * @IFF_FAILOVER: device is a failover master device
1608 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1609 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1610 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1611 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1612 * skb_headlen(skb) == 0 (data starts from frag0)
1613 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1614 */
1615enum netdev_priv_flags {
1616 IFF_802_1Q_VLAN = 1<<0,
1617 IFF_EBRIDGE = 1<<1,
1618 IFF_BONDING = 1<<2,
1619 IFF_ISATAP = 1<<3,
1620 IFF_WAN_HDLC = 1<<4,
1621 IFF_XMIT_DST_RELEASE = 1<<5,
1622 IFF_DONT_BRIDGE = 1<<6,
1623 IFF_DISABLE_NETPOLL = 1<<7,
1624 IFF_MACVLAN_PORT = 1<<8,
1625 IFF_BRIDGE_PORT = 1<<9,
1626 IFF_OVS_DATAPATH = 1<<10,
1627 IFF_TX_SKB_SHARING = 1<<11,
1628 IFF_UNICAST_FLT = 1<<12,
1629 IFF_TEAM_PORT = 1<<13,
1630 IFF_SUPP_NOFCS = 1<<14,
1631 IFF_LIVE_ADDR_CHANGE = 1<<15,
1632 IFF_MACVLAN = 1<<16,
1633 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1634 IFF_L3MDEV_MASTER = 1<<18,
1635 IFF_NO_QUEUE = 1<<19,
1636 IFF_OPENVSWITCH = 1<<20,
1637 IFF_L3MDEV_SLAVE = 1<<21,
1638 IFF_TEAM = 1<<22,
1639 IFF_RXFH_CONFIGURED = 1<<23,
1640 IFF_PHONY_HEADROOM = 1<<24,
1641 IFF_MACSEC = 1<<25,
1642 IFF_NO_RX_HANDLER = 1<<26,
1643 IFF_FAILOVER = 1<<27,
1644 IFF_FAILOVER_SLAVE = 1<<28,
1645 IFF_L3MDEV_RX_HANDLER = 1<<29,
1646 IFF_LIVE_RENAME_OK = 1<<30,
1647 IFF_TX_SKB_NO_LINEAR = 1<<31,
1648 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32),
1649};
1650
1651#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1652#define IFF_EBRIDGE IFF_EBRIDGE
1653#define IFF_BONDING IFF_BONDING
1654#define IFF_ISATAP IFF_ISATAP
1655#define IFF_WAN_HDLC IFF_WAN_HDLC
1656#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1657#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1658#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1659#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1660#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1661#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1662#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1663#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1664#define IFF_TEAM_PORT IFF_TEAM_PORT
1665#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1666#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1667#define IFF_MACVLAN IFF_MACVLAN
1668#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1669#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1670#define IFF_NO_QUEUE IFF_NO_QUEUE
1671#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1672#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1673#define IFF_TEAM IFF_TEAM
1674#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1675#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1676#define IFF_MACSEC IFF_MACSEC
1677#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1678#define IFF_FAILOVER IFF_FAILOVER
1679#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1680#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1681#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1682#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1683
1684/* Specifies the type of the struct net_device::ml_priv pointer */
1685enum netdev_ml_priv_type {
1686 ML_PRIV_NONE,
1687 ML_PRIV_CAN,
1688};
1689
1690/**
1691 * struct net_device - The DEVICE structure.
1692 *
1693 * Actually, this whole structure is a big mistake. It mixes I/O
1694 * data with strictly "high-level" data, and it has to know about
1695 * almost every data structure used in the INET module.
1696 *
1697 * @name: This is the first field of the "visible" part of this structure
1698 * (i.e. as seen by users in the "Space.c" file). It is the name
1699 * of the interface.
1700 *
1701 * @name_node: Name hashlist node
1702 * @ifalias: SNMP alias
1703 * @mem_end: Shared memory end
1704 * @mem_start: Shared memory start
1705 * @base_addr: Device I/O address
1706 * @irq: Device IRQ number
1707 *
1708 * @state: Generic network queuing layer state, see netdev_state_t
1709 * @dev_list: The global list of network devices
1710 * @napi_list: List entry used for polling NAPI devices
1711 * @unreg_list: List entry when we are unregistering the
1712 * device; see the function unregister_netdev
1713 * @close_list: List entry used when we are closing the device
1714 * @ptype_all: Device-specific packet handlers for all protocols
1715 * @ptype_specific: Device-specific, protocol-specific packet handlers
1716 *
1717 * @adj_list: Directly linked devices, like slaves for bonding
1718 * @features: Currently active device features
1719 * @hw_features: User-changeable features
1720 *
1721 * @wanted_features: User-requested features
1722 * @vlan_features: Mask of features inheritable by VLAN devices
1723 *
1724 * @hw_enc_features: Mask of features inherited by encapsulating devices
1725 * This field indicates what encapsulation
1726 * offloads the hardware is capable of doing,
1727 * and drivers will need to set them appropriately.
1728 *
1729 * @mpls_features: Mask of features inheritable by MPLS
1730 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1731 *
1732 * @ifindex: interface index
1733 * @group: The group the device belongs to
1734 *
1735 * @stats: Statistics struct, which was left as a legacy, use
1736 * rtnl_link_stats64 instead
1737 *
1738 * @rx_dropped: Dropped packets by core network,
1739 * do not use this in drivers
1740 * @tx_dropped: Dropped packets by core network,
1741 * do not use this in drivers
1742 * @rx_nohandler: nohandler dropped packets by core network on
1743 * inactive devices, do not use this in drivers
1744 * @carrier_up_count: Number of times the carrier has been up
1745 * @carrier_down_count: Number of times the carrier has been down
1746 *
1747 * @wireless_handlers: List of functions to handle Wireless Extensions,
1748 * instead of ioctl,
1749 * see <net/iw_handler.h> for details.
1750 * @wireless_data: Instance data managed by the core of wireless extensions
1751 *
1752 * @netdev_ops: Includes several pointers to callbacks,
1753 * if one wants to override the ndo_*() functions
1754 * @ethtool_ops: Management operations
1755 * @l3mdev_ops: Layer 3 master device operations
1756 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1757 * discovery handling. Necessary for e.g. 6LoWPAN.
1758 * @xfrmdev_ops: Transformation offload operations
1759 * @tlsdev_ops: Transport Layer Security offload operations
1760 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1761 * of Layer 2 headers.
1762 *
1763 * @flags: Interface flags (a la BSD)
1764 * @priv_flags: Like 'flags' but invisible to userspace,
1765 * see if.h for the definitions
1766 * @gflags: Global flags ( kept as legacy )
1767 * @padded: How much padding added by alloc_netdev()
1768 * @operstate: RFC2863 operstate
1769 * @link_mode: Mapping policy to operstate
1770 * @if_port: Selectable AUI, TP, ...
1771 * @dma: DMA channel
1772 * @mtu: Interface MTU value
1773 * @min_mtu: Interface Minimum MTU value
1774 * @max_mtu: Interface Maximum MTU value
1775 * @type: Interface hardware type
1776 * @hard_header_len: Maximum hardware header length.
1777 * @min_header_len: Minimum hardware header length
1778 *
1779 * @needed_headroom: Extra headroom the hardware may need, but not in all
1780 * cases can this be guaranteed
1781 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1782 * cases can this be guaranteed. Some cases also use
1783 * LL_MAX_HEADER instead to allocate the skb
1784 *
1785 * interface address info:
1786 *
1787 * @perm_addr: Permanent hw address
1788 * @addr_assign_type: Hw address assignment type
1789 * @addr_len: Hardware address length
1790 * @upper_level: Maximum depth level of upper devices.
1791 * @lower_level: Maximum depth level of lower devices.
1792 * @neigh_priv_len: Used in neigh_alloc()
1793 * @dev_id: Used to differentiate devices that share
1794 * the same link layer address
1795 * @dev_port: Used to differentiate devices that share
1796 * the same function
1797 * @addr_list_lock: XXX: need comments on this one
1798 * @name_assign_type: network interface name assignment type
1799 * @uc_promisc: Counter that indicates promiscuous mode
1800 * has been enabled due to the need to listen to
1801 * additional unicast addresses in a device that
1802 * does not implement ndo_set_rx_mode()
1803 * @uc: unicast mac addresses
1804 * @mc: multicast mac addresses
1805 * @dev_addrs: list of device hw addresses
1806 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1807 * @promiscuity: Number of times the NIC is told to work in
1808 * promiscuous mode; if it becomes 0 the NIC will
1809 * exit promiscuous mode
1810 * @allmulti: Counter, enables or disables allmulticast mode
1811 *
1812 * @vlan_info: VLAN info
1813 * @dsa_ptr: dsa specific data
1814 * @tipc_ptr: TIPC specific data
1815 * @atalk_ptr: AppleTalk link
1816 * @ip_ptr: IPv4 specific data
1817 * @dn_ptr: DECnet specific data
1818 * @ip6_ptr: IPv6 specific data
1819 * @ax25_ptr: AX.25 specific data
1820 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1821 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1822 * device struct
1823 * @mpls_ptr: mpls_dev struct pointer
1824 * @mctp_ptr: MCTP specific data
1825 *
1826 * @dev_addr: Hw address (before bcast,
1827 * because most packets are unicast)
1828 *
1829 * @_rx: Array of RX queues
1830 * @num_rx_queues: Number of RX queues
1831 * allocated at register_netdev() time
1832 * @real_num_rx_queues: Number of RX queues currently active in device
1833 * @xdp_prog: XDP sockets filter program pointer
1834 * @gro_flush_timeout: timeout for GRO layer in NAPI
1835 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1836 * allow to avoid NIC hard IRQ, on busy queues.
1837 *
1838 * @rx_handler: handler for received packets
1839 * @rx_handler_data: XXX: need comments on this one
1840 * @miniq_ingress: ingress/clsact qdisc specific data for
1841 * ingress processing
1842 * @ingress_queue: XXX: need comments on this one
1843 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1844 * @broadcast: hw bcast address
1845 *
1846 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1847 * indexed by RX queue number. Assigned by driver.
1848 * This must only be set if the ndo_rx_flow_steer
1849 * operation is defined
1850 * @index_hlist: Device index hash chain
1851 *
1852 * @_tx: Array of TX queues
1853 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1854 * @real_num_tx_queues: Number of TX queues currently active in device
1855 * @qdisc: Root qdisc from userspace point of view
1856 * @tx_queue_len: Max frames per queue allowed
1857 * @tx_global_lock: XXX: need comments on this one
1858 * @xdp_bulkq: XDP device bulk queue
1859 * @xps_maps: all CPUs/RXQs maps for XPS device
1860 *
1861 * @xps_maps: XXX: need comments on this one
1862 * @miniq_egress: clsact qdisc specific data for
1863 * egress processing
1864 * @nf_hooks_egress: netfilter hooks executed for egress packets
1865 * @qdisc_hash: qdisc hash table
1866 * @watchdog_timeo: Represents the timeout that is used by
1867 * the watchdog (see dev_watchdog())
1868 * @watchdog_timer: List of timers
1869 *
1870 * @proto_down_reason: reason a netdev interface is held down
1871 * @pcpu_refcnt: Number of references to this device
1872 * @dev_refcnt: Number of references to this device
1873 * @refcnt_tracker: Tracker directory for tracked references to this device
1874 * @todo_list: Delayed register/unregister
1875 * @link_watch_list: XXX: need comments on this one
1876 *
1877 * @reg_state: Register/unregister state machine
1878 * @dismantle: Device is going to be freed
1879 * @rtnl_link_state: This enum represents the phases of creating
1880 * a new link
1881 *
1882 * @needs_free_netdev: Should unregister perform free_netdev?
1883 * @priv_destructor: Called from unregister
1884 * @npinfo: XXX: need comments on this one
1885 * @nd_net: Network namespace this network device is inside
1886 *
1887 * @ml_priv: Mid-layer private
1888 * @ml_priv_type: Mid-layer private type
1889 * @lstats: Loopback statistics
1890 * @tstats: Tunnel statistics
1891 * @dstats: Dummy statistics
1892 * @vstats: Virtual ethernet statistics
1893 *
1894 * @garp_port: GARP
1895 * @mrp_port: MRP
1896 *
1897 * @dev: Class/net/name entry
1898 * @sysfs_groups: Space for optional device, statistics and wireless
1899 * sysfs groups
1900 *
1901 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1902 * @rtnl_link_ops: Rtnl_link_ops
1903 *
1904 * @gso_max_size: Maximum size of generic segmentation offload
1905 * @gso_max_segs: Maximum number of segments that can be passed to the
1906 * NIC for GSO
1907 *
1908 * @dcbnl_ops: Data Center Bridging netlink ops
1909 * @num_tc: Number of traffic classes in the net device
1910 * @tc_to_txq: XXX: need comments on this one
1911 * @prio_tc_map: XXX: need comments on this one
1912 *
1913 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1914 *
1915 * @priomap: XXX: need comments on this one
1916 * @phydev: Physical device may attach itself
1917 * for hardware timestamping
1918 * @sfp_bus: attached &struct sfp_bus structure.
1919 *
1920 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1921 *
1922 * @proto_down: protocol port state information can be sent to the
1923 * switch driver and used to set the phys state of the
1924 * switch port.
1925 *
1926 * @wol_enabled: Wake-on-LAN is enabled
1927 *
1928 * @threaded: napi threaded mode is enabled
1929 *
1930 * @net_notifier_list: List of per-net netdev notifier block
1931 * that follow this device when it is moved
1932 * to another network namespace.
1933 *
1934 * @macsec_ops: MACsec offloading ops
1935 *
1936 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1937 * offload capabilities of the device
1938 * @udp_tunnel_nic: UDP tunnel offload state
1939 * @xdp_state: stores info on attached XDP BPF programs
1940 *
1941 * @nested_level: Used as a parameter of spin_lock_nested() of
1942 * dev->addr_list_lock.
1943 * @unlink_list: As netif_addr_lock() can be called recursively,
1944 * keep a list of interfaces to be deleted.
1945 * @gro_max_size: Maximum size of aggregated packet in generic
1946 * receive offload (GRO)
1947 *
1948 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
1949 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
1950 * @watchdog_dev_tracker: refcount tracker used by watchdog.
1951 *
1952 * FIXME: cleanup struct net_device such that network protocol info
1953 * moves out.
1954 */
1955
1956struct net_device {
1957 char name[IFNAMSIZ];
1958 struct netdev_name_node *name_node;
1959 struct dev_ifalias __rcu *ifalias;
1960 /*
1961 * I/O specific fields
1962 * FIXME: Merge these and struct ifmap into one
1963 */
1964 unsigned long mem_end;
1965 unsigned long mem_start;
1966 unsigned long base_addr;
1967
1968 /*
1969 * Some hardware also needs these fields (state,dev_list,
1970 * napi_list,unreg_list,close_list) but they are not
1971 * part of the usual set specified in Space.c.
1972 */
1973
1974 unsigned long state;
1975
1976 struct list_head dev_list;
1977 struct list_head napi_list;
1978 struct list_head unreg_list;
1979 struct list_head close_list;
1980 struct list_head ptype_all;
1981 struct list_head ptype_specific;
1982
1983 struct {
1984 struct list_head upper;
1985 struct list_head lower;
1986 } adj_list;
1987
1988 /* Read-mostly cache-line for fast-path access */
1989 unsigned int flags;
1990 unsigned long long priv_flags;
1991 const struct net_device_ops *netdev_ops;
1992 int ifindex;
1993 unsigned short gflags;
1994 unsigned short hard_header_len;
1995
1996 /* Note : dev->mtu is often read without holding a lock.
1997 * Writers usually hold RTNL.
1998 * It is recommended to use READ_ONCE() to annotate the reads,
1999 * and to use WRITE_ONCE() to annotate the writes.
2000 */
2001 unsigned int mtu;
2002 unsigned short needed_headroom;
2003 unsigned short needed_tailroom;
2004
2005 netdev_features_t features;
2006 netdev_features_t hw_features;
2007 netdev_features_t wanted_features;
2008 netdev_features_t vlan_features;
2009 netdev_features_t hw_enc_features;
2010 netdev_features_t mpls_features;
2011 netdev_features_t gso_partial_features;
2012
2013 unsigned int min_mtu;
2014 unsigned int max_mtu;
2015 unsigned short type;
2016 unsigned char min_header_len;
2017 unsigned char name_assign_type;
2018
2019 int group;
2020
2021 struct net_device_stats stats; /* not used by modern drivers */
2022
2023 atomic_long_t rx_dropped;
2024 atomic_long_t tx_dropped;
2025 atomic_long_t rx_nohandler;
2026
2027 /* Stats to monitor link on/off, flapping */
2028 atomic_t carrier_up_count;
2029 atomic_t carrier_down_count;
2030
2031#ifdef CONFIG_WIRELESS_EXT
2032 const struct iw_handler_def *wireless_handlers;
2033 struct iw_public_data *wireless_data;
2034#endif
2035 const struct ethtool_ops *ethtool_ops;
2036#ifdef CONFIG_NET_L3_MASTER_DEV
2037 const struct l3mdev_ops *l3mdev_ops;
2038#endif
2039#if IS_ENABLED(CONFIG_IPV6)
2040 const struct ndisc_ops *ndisc_ops;
2041#endif
2042
2043#ifdef CONFIG_XFRM_OFFLOAD
2044 const struct xfrmdev_ops *xfrmdev_ops;
2045#endif
2046
2047#if IS_ENABLED(CONFIG_TLS_DEVICE)
2048 const struct tlsdev_ops *tlsdev_ops;
2049#endif
2050
2051 const struct header_ops *header_ops;
2052
2053 unsigned char operstate;
2054 unsigned char link_mode;
2055
2056 unsigned char if_port;
2057 unsigned char dma;
2058
2059 /* Interface address info. */
2060 unsigned char perm_addr[MAX_ADDR_LEN];
2061 unsigned char addr_assign_type;
2062 unsigned char addr_len;
2063 unsigned char upper_level;
2064 unsigned char lower_level;
2065
2066 unsigned short neigh_priv_len;
2067 unsigned short dev_id;
2068 unsigned short dev_port;
2069 unsigned short padded;
2070
2071 spinlock_t addr_list_lock;
2072 int irq;
2073
2074 struct netdev_hw_addr_list uc;
2075 struct netdev_hw_addr_list mc;
2076 struct netdev_hw_addr_list dev_addrs;
2077
2078#ifdef CONFIG_SYSFS
2079 struct kset *queues_kset;
2080#endif
2081#ifdef CONFIG_LOCKDEP
2082 struct list_head unlink_list;
2083#endif
2084 unsigned int promiscuity;
2085 unsigned int allmulti;
2086 bool uc_promisc;
2087#ifdef CONFIG_LOCKDEP
2088 unsigned char nested_level;
2089#endif
2090
2091
2092 /* Protocol-specific pointers */
2093
2094#if IS_ENABLED(CONFIG_VLAN_8021Q)
2095 struct vlan_info __rcu *vlan_info;
2096#endif
2097#if IS_ENABLED(CONFIG_NET_DSA)
2098 struct dsa_port *dsa_ptr;
2099#endif
2100#if IS_ENABLED(CONFIG_TIPC)
2101 struct tipc_bearer __rcu *tipc_ptr;
2102#endif
2103#if IS_ENABLED(CONFIG_ATALK)
2104 void *atalk_ptr;
2105#endif
2106 struct in_device __rcu *ip_ptr;
2107#if IS_ENABLED(CONFIG_DECNET)
2108 struct dn_dev __rcu *dn_ptr;
2109#endif
2110 struct inet6_dev __rcu *ip6_ptr;
2111#if IS_ENABLED(CONFIG_AX25)
2112 void *ax25_ptr;
2113#endif
2114 struct wireless_dev *ieee80211_ptr;
2115 struct wpan_dev *ieee802154_ptr;
2116#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2117 struct mpls_dev __rcu *mpls_ptr;
2118#endif
2119#if IS_ENABLED(CONFIG_MCTP)
2120 struct mctp_dev __rcu *mctp_ptr;
2121#endif
2122
2123/*
2124 * Cache lines mostly used on receive path (including eth_type_trans())
2125 */
2126 /* Interface address info used in eth_type_trans() */
2127 const unsigned char *dev_addr;
2128
2129 struct netdev_rx_queue *_rx;
2130 unsigned int num_rx_queues;
2131 unsigned int real_num_rx_queues;
2132
2133 struct bpf_prog __rcu *xdp_prog;
2134 unsigned long gro_flush_timeout;
2135 int napi_defer_hard_irqs;
2136#define GRO_MAX_SIZE 65536
2137 unsigned int gro_max_size;
2138 rx_handler_func_t __rcu *rx_handler;
2139 void __rcu *rx_handler_data;
2140
2141#ifdef CONFIG_NET_CLS_ACT
2142 struct mini_Qdisc __rcu *miniq_ingress;
2143#endif
2144 struct netdev_queue __rcu *ingress_queue;
2145#ifdef CONFIG_NETFILTER_INGRESS
2146 struct nf_hook_entries __rcu *nf_hooks_ingress;
2147#endif
2148
2149 unsigned char broadcast[MAX_ADDR_LEN];
2150#ifdef CONFIG_RFS_ACCEL
2151 struct cpu_rmap *rx_cpu_rmap;
2152#endif
2153 struct hlist_node index_hlist;
2154
2155/*
2156 * Cache lines mostly used on transmit path
2157 */
2158 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2159 unsigned int num_tx_queues;
2160 unsigned int real_num_tx_queues;
2161 struct Qdisc *qdisc;
2162 unsigned int tx_queue_len;
2163 spinlock_t tx_global_lock;
2164
2165 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2166
2167#ifdef CONFIG_XPS
2168 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2169#endif
2170#ifdef CONFIG_NET_CLS_ACT
2171 struct mini_Qdisc __rcu *miniq_egress;
2172#endif
2173#ifdef CONFIG_NETFILTER_EGRESS
2174 struct nf_hook_entries __rcu *nf_hooks_egress;
2175#endif
2176
2177#ifdef CONFIG_NET_SCHED
2178 DECLARE_HASHTABLE (qdisc_hash, 4);
2179#endif
2180 /* These may be needed for future network-power-down code. */
2181 struct timer_list watchdog_timer;
2182 int watchdog_timeo;
2183
2184 u32 proto_down_reason;
2185
2186 struct list_head todo_list;
2187
2188#ifdef CONFIG_PCPU_DEV_REFCNT
2189 int __percpu *pcpu_refcnt;
2190#else
2191 refcount_t dev_refcnt;
2192#endif
2193 struct ref_tracker_dir refcnt_tracker;
2194
2195 struct list_head link_watch_list;
2196
2197 enum { NETREG_UNINITIALIZED=0,
2198 NETREG_REGISTERED, /* completed register_netdevice */
2199 NETREG_UNREGISTERING, /* called unregister_netdevice */
2200 NETREG_UNREGISTERED, /* completed unregister todo */
2201 NETREG_RELEASED, /* called free_netdev */
2202 NETREG_DUMMY, /* dummy device for NAPI poll */
2203 } reg_state:8;
2204
2205 bool dismantle;
2206
2207 enum {
2208 RTNL_LINK_INITIALIZED,
2209 RTNL_LINK_INITIALIZING,
2210 } rtnl_link_state:16;
2211
2212 bool needs_free_netdev;
2213 void (*priv_destructor)(struct net_device *dev);
2214
2215#ifdef CONFIG_NETPOLL
2216 struct netpoll_info __rcu *npinfo;
2217#endif
2218
2219 possible_net_t nd_net;
2220
2221 /* mid-layer private */
2222 void *ml_priv;
2223 enum netdev_ml_priv_type ml_priv_type;
2224
2225 union {
2226 struct pcpu_lstats __percpu *lstats;
2227 struct pcpu_sw_netstats __percpu *tstats;
2228 struct pcpu_dstats __percpu *dstats;
2229 };
2230
2231#if IS_ENABLED(CONFIG_GARP)
2232 struct garp_port __rcu *garp_port;
2233#endif
2234#if IS_ENABLED(CONFIG_MRP)
2235 struct mrp_port __rcu *mrp_port;
2236#endif
2237
2238 struct device dev;
2239 const struct attribute_group *sysfs_groups[4];
2240 const struct attribute_group *sysfs_rx_queue_group;
2241
2242 const struct rtnl_link_ops *rtnl_link_ops;
2243
2244 /* for setting kernel sock attribute on TCP connection setup */
2245#define GSO_MAX_SIZE 65536
2246 unsigned int gso_max_size;
2247#define GSO_MAX_SEGS 65535
2248 u16 gso_max_segs;
2249
2250#ifdef CONFIG_DCB
2251 const struct dcbnl_rtnl_ops *dcbnl_ops;
2252#endif
2253 s16 num_tc;
2254 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2255 u8 prio_tc_map[TC_BITMASK + 1];
2256
2257#if IS_ENABLED(CONFIG_FCOE)
2258 unsigned int fcoe_ddp_xid;
2259#endif
2260#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2261 struct netprio_map __rcu *priomap;
2262#endif
2263 struct phy_device *phydev;
2264 struct sfp_bus *sfp_bus;
2265 struct lock_class_key *qdisc_tx_busylock;
2266 bool proto_down;
2267 unsigned wol_enabled:1;
2268 unsigned threaded:1;
2269
2270 struct list_head net_notifier_list;
2271
2272#if IS_ENABLED(CONFIG_MACSEC)
2273 /* MACsec management functions */
2274 const struct macsec_ops *macsec_ops;
2275#endif
2276 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2277 struct udp_tunnel_nic *udp_tunnel_nic;
2278
2279 /* protected by rtnl_lock */
2280 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2281
2282 u8 dev_addr_shadow[MAX_ADDR_LEN];
2283 netdevice_tracker linkwatch_dev_tracker;
2284 netdevice_tracker watchdog_dev_tracker;
2285};
2286#define to_net_dev(d) container_of(d, struct net_device, dev)
2287
2288static inline bool netif_elide_gro(const struct net_device *dev)
2289{
2290 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2291 return true;
2292 return false;
2293}
2294
2295#define NETDEV_ALIGN 32
2296
2297static inline
2298int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2299{
2300 return dev->prio_tc_map[prio & TC_BITMASK];
2301}
2302
2303static inline
2304int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2305{
2306 if (tc >= dev->num_tc)
2307 return -EINVAL;
2308
2309 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2310 return 0;
2311}
2312
2313int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2314void netdev_reset_tc(struct net_device *dev);
2315int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2316int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2317
2318static inline
2319int netdev_get_num_tc(struct net_device *dev)
2320{
2321 return dev->num_tc;
2322}
2323
2324static inline void net_prefetch(void *p)
2325{
2326 prefetch(p);
2327#if L1_CACHE_BYTES < 128
2328 prefetch((u8 *)p + L1_CACHE_BYTES);
2329#endif
2330}
2331
2332static inline void net_prefetchw(void *p)
2333{
2334 prefetchw(p);
2335#if L1_CACHE_BYTES < 128
2336 prefetchw((u8 *)p + L1_CACHE_BYTES);
2337#endif
2338}
2339
2340void netdev_unbind_sb_channel(struct net_device *dev,
2341 struct net_device *sb_dev);
2342int netdev_bind_sb_channel_queue(struct net_device *dev,
2343 struct net_device *sb_dev,
2344 u8 tc, u16 count, u16 offset);
2345int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2346static inline int netdev_get_sb_channel(struct net_device *dev)
2347{
2348 return max_t(int, -dev->num_tc, 0);
2349}
2350
2351static inline
2352struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2353 unsigned int index)
2354{
2355 return &dev->_tx[index];
2356}
2357
2358static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2359 const struct sk_buff *skb)
2360{
2361 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2362}
2363
2364static inline void netdev_for_each_tx_queue(struct net_device *dev,
2365 void (*f)(struct net_device *,
2366 struct netdev_queue *,
2367 void *),
2368 void *arg)
2369{
2370 unsigned int i;
2371
2372 for (i = 0; i < dev->num_tx_queues; i++)
2373 f(dev, &dev->_tx[i], arg);
2374}
2375
2376#define netdev_lockdep_set_classes(dev) \
2377{ \
2378 static struct lock_class_key qdisc_tx_busylock_key; \
2379 static struct lock_class_key qdisc_xmit_lock_key; \
2380 static struct lock_class_key dev_addr_list_lock_key; \
2381 unsigned int i; \
2382 \
2383 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2384 lockdep_set_class(&(dev)->addr_list_lock, \
2385 &dev_addr_list_lock_key); \
2386 for (i = 0; i < (dev)->num_tx_queues; i++) \
2387 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2388 &qdisc_xmit_lock_key); \
2389}
2390
2391u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2392 struct net_device *sb_dev);
2393struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2394 struct sk_buff *skb,
2395 struct net_device *sb_dev);
2396
2397/* returns the headroom that the master device needs to take in account
2398 * when forwarding to this dev
2399 */
2400static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2401{
2402 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2403}
2404
2405static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2406{
2407 if (dev->netdev_ops->ndo_set_rx_headroom)
2408 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2409}
2410
2411/* set the device rx headroom to the dev's default */
2412static inline void netdev_reset_rx_headroom(struct net_device *dev)
2413{
2414 netdev_set_rx_headroom(dev, -1);
2415}
2416
2417static inline void *netdev_get_ml_priv(struct net_device *dev,
2418 enum netdev_ml_priv_type type)
2419{
2420 if (dev->ml_priv_type != type)
2421 return NULL;
2422
2423 return dev->ml_priv;
2424}
2425
2426static inline void netdev_set_ml_priv(struct net_device *dev,
2427 void *ml_priv,
2428 enum netdev_ml_priv_type type)
2429{
2430 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2431 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2432 dev->ml_priv_type, type);
2433 WARN(!dev->ml_priv_type && dev->ml_priv,
2434 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2435
2436 dev->ml_priv = ml_priv;
2437 dev->ml_priv_type = type;
2438}
2439
2440/*
2441 * Net namespace inlines
2442 */
2443static inline
2444struct net *dev_net(const struct net_device *dev)
2445{
2446 return read_pnet(&dev->nd_net);
2447}
2448
2449static inline
2450void dev_net_set(struct net_device *dev, struct net *net)
2451{
2452 write_pnet(&dev->nd_net, net);
2453}
2454
2455/**
2456 * netdev_priv - access network device private data
2457 * @dev: network device
2458 *
2459 * Get network device private data
2460 */
2461static inline void *netdev_priv(const struct net_device *dev)
2462{
2463 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2464}
2465
2466/* Set the sysfs physical device reference for the network logical device
2467 * if set prior to registration will cause a symlink during initialization.
2468 */
2469#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2470
2471/* Set the sysfs device type for the network logical device to allow
2472 * fine-grained identification of different network device types. For
2473 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2474 */
2475#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2476
2477/* Default NAPI poll() weight
2478 * Device drivers are strongly advised to not use bigger value
2479 */
2480#define NAPI_POLL_WEIGHT 64
2481
2482/**
2483 * netif_napi_add - initialize a NAPI context
2484 * @dev: network device
2485 * @napi: NAPI context
2486 * @poll: polling function
2487 * @weight: default weight
2488 *
2489 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2490 * *any* of the other NAPI-related functions.
2491 */
2492void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2493 int (*poll)(struct napi_struct *, int), int weight);
2494
2495/**
2496 * netif_tx_napi_add - initialize a NAPI context
2497 * @dev: network device
2498 * @napi: NAPI context
2499 * @poll: polling function
2500 * @weight: default weight
2501 *
2502 * This variant of netif_napi_add() should be used from drivers using NAPI
2503 * to exclusively poll a TX queue.
2504 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2505 */
2506static inline void netif_tx_napi_add(struct net_device *dev,
2507 struct napi_struct *napi,
2508 int (*poll)(struct napi_struct *, int),
2509 int weight)
2510{
2511 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2512 netif_napi_add(dev, napi, poll, weight);
2513}
2514
2515/**
2516 * __netif_napi_del - remove a NAPI context
2517 * @napi: NAPI context
2518 *
2519 * Warning: caller must observe RCU grace period before freeing memory
2520 * containing @napi. Drivers might want to call this helper to combine
2521 * all the needed RCU grace periods into a single one.
2522 */
2523void __netif_napi_del(struct napi_struct *napi);
2524
2525/**
2526 * netif_napi_del - remove a NAPI context
2527 * @napi: NAPI context
2528 *
2529 * netif_napi_del() removes a NAPI context from the network device NAPI list
2530 */
2531static inline void netif_napi_del(struct napi_struct *napi)
2532{
2533 __netif_napi_del(napi);
2534 synchronize_net();
2535}
2536
2537struct packet_type {
2538 __be16 type; /* This is really htons(ether_type). */
2539 bool ignore_outgoing;
2540 struct net_device *dev; /* NULL is wildcarded here */
2541 netdevice_tracker dev_tracker;
2542 int (*func) (struct sk_buff *,
2543 struct net_device *,
2544 struct packet_type *,
2545 struct net_device *);
2546 void (*list_func) (struct list_head *,
2547 struct packet_type *,
2548 struct net_device *);
2549 bool (*id_match)(struct packet_type *ptype,
2550 struct sock *sk);
2551 void *af_packet_priv;
2552 struct list_head list;
2553};
2554
2555struct offload_callbacks {
2556 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2557 netdev_features_t features);
2558 struct sk_buff *(*gro_receive)(struct list_head *head,
2559 struct sk_buff *skb);
2560 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2561};
2562
2563struct packet_offload {
2564 __be16 type; /* This is really htons(ether_type). */
2565 u16 priority;
2566 struct offload_callbacks callbacks;
2567 struct list_head list;
2568};
2569
2570/* often modified stats are per-CPU, other are shared (netdev->stats) */
2571struct pcpu_sw_netstats {
2572 u64 rx_packets;
2573 u64 rx_bytes;
2574 u64 tx_packets;
2575 u64 tx_bytes;
2576 struct u64_stats_sync syncp;
2577} __aligned(4 * sizeof(u64));
2578
2579struct pcpu_lstats {
2580 u64_stats_t packets;
2581 u64_stats_t bytes;
2582 struct u64_stats_sync syncp;
2583} __aligned(2 * sizeof(u64));
2584
2585void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2586
2587static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2588{
2589 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2590
2591 u64_stats_update_begin(&tstats->syncp);
2592 tstats->rx_bytes += len;
2593 tstats->rx_packets++;
2594 u64_stats_update_end(&tstats->syncp);
2595}
2596
2597static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2598 unsigned int packets,
2599 unsigned int len)
2600{
2601 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2602
2603 u64_stats_update_begin(&tstats->syncp);
2604 tstats->tx_bytes += len;
2605 tstats->tx_packets += packets;
2606 u64_stats_update_end(&tstats->syncp);
2607}
2608
2609static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2610{
2611 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2612
2613 u64_stats_update_begin(&lstats->syncp);
2614 u64_stats_add(&lstats->bytes, len);
2615 u64_stats_inc(&lstats->packets);
2616 u64_stats_update_end(&lstats->syncp);
2617}
2618
2619#define __netdev_alloc_pcpu_stats(type, gfp) \
2620({ \
2621 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2622 if (pcpu_stats) { \
2623 int __cpu; \
2624 for_each_possible_cpu(__cpu) { \
2625 typeof(type) *stat; \
2626 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2627 u64_stats_init(&stat->syncp); \
2628 } \
2629 } \
2630 pcpu_stats; \
2631})
2632
2633#define netdev_alloc_pcpu_stats(type) \
2634 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2635
2636#define devm_netdev_alloc_pcpu_stats(dev, type) \
2637({ \
2638 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2639 if (pcpu_stats) { \
2640 int __cpu; \
2641 for_each_possible_cpu(__cpu) { \
2642 typeof(type) *stat; \
2643 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2644 u64_stats_init(&stat->syncp); \
2645 } \
2646 } \
2647 pcpu_stats; \
2648})
2649
2650enum netdev_lag_tx_type {
2651 NETDEV_LAG_TX_TYPE_UNKNOWN,
2652 NETDEV_LAG_TX_TYPE_RANDOM,
2653 NETDEV_LAG_TX_TYPE_BROADCAST,
2654 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2655 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2656 NETDEV_LAG_TX_TYPE_HASH,
2657};
2658
2659enum netdev_lag_hash {
2660 NETDEV_LAG_HASH_NONE,
2661 NETDEV_LAG_HASH_L2,
2662 NETDEV_LAG_HASH_L34,
2663 NETDEV_LAG_HASH_L23,
2664 NETDEV_LAG_HASH_E23,
2665 NETDEV_LAG_HASH_E34,
2666 NETDEV_LAG_HASH_VLAN_SRCMAC,
2667 NETDEV_LAG_HASH_UNKNOWN,
2668};
2669
2670struct netdev_lag_upper_info {
2671 enum netdev_lag_tx_type tx_type;
2672 enum netdev_lag_hash hash_type;
2673};
2674
2675struct netdev_lag_lower_state_info {
2676 u8 link_up : 1,
2677 tx_enabled : 1;
2678};
2679
2680#include <linux/notifier.h>
2681
2682/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2683 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2684 * adding new types.
2685 */
2686enum netdev_cmd {
2687 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2688 NETDEV_DOWN,
2689 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2690 detected a hardware crash and restarted
2691 - we can use this eg to kick tcp sessions
2692 once done */
2693 NETDEV_CHANGE, /* Notify device state change */
2694 NETDEV_REGISTER,
2695 NETDEV_UNREGISTER,
2696 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2697 NETDEV_CHANGEADDR, /* notify after the address change */
2698 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2699 NETDEV_GOING_DOWN,
2700 NETDEV_CHANGENAME,
2701 NETDEV_FEAT_CHANGE,
2702 NETDEV_BONDING_FAILOVER,
2703 NETDEV_PRE_UP,
2704 NETDEV_PRE_TYPE_CHANGE,
2705 NETDEV_POST_TYPE_CHANGE,
2706 NETDEV_POST_INIT,
2707 NETDEV_RELEASE,
2708 NETDEV_NOTIFY_PEERS,
2709 NETDEV_JOIN,
2710 NETDEV_CHANGEUPPER,
2711 NETDEV_RESEND_IGMP,
2712 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2713 NETDEV_CHANGEINFODATA,
2714 NETDEV_BONDING_INFO,
2715 NETDEV_PRECHANGEUPPER,
2716 NETDEV_CHANGELOWERSTATE,
2717 NETDEV_UDP_TUNNEL_PUSH_INFO,
2718 NETDEV_UDP_TUNNEL_DROP_INFO,
2719 NETDEV_CHANGE_TX_QUEUE_LEN,
2720 NETDEV_CVLAN_FILTER_PUSH_INFO,
2721 NETDEV_CVLAN_FILTER_DROP_INFO,
2722 NETDEV_SVLAN_FILTER_PUSH_INFO,
2723 NETDEV_SVLAN_FILTER_DROP_INFO,
2724};
2725const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2726
2727int register_netdevice_notifier(struct notifier_block *nb);
2728int unregister_netdevice_notifier(struct notifier_block *nb);
2729int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2730int unregister_netdevice_notifier_net(struct net *net,
2731 struct notifier_block *nb);
2732int register_netdevice_notifier_dev_net(struct net_device *dev,
2733 struct notifier_block *nb,
2734 struct netdev_net_notifier *nn);
2735int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2736 struct notifier_block *nb,
2737 struct netdev_net_notifier *nn);
2738
2739struct netdev_notifier_info {
2740 struct net_device *dev;
2741 struct netlink_ext_ack *extack;
2742};
2743
2744struct netdev_notifier_info_ext {
2745 struct netdev_notifier_info info; /* must be first */
2746 union {
2747 u32 mtu;
2748 } ext;
2749};
2750
2751struct netdev_notifier_change_info {
2752 struct netdev_notifier_info info; /* must be first */
2753 unsigned int flags_changed;
2754};
2755
2756struct netdev_notifier_changeupper_info {
2757 struct netdev_notifier_info info; /* must be first */
2758 struct net_device *upper_dev; /* new upper dev */
2759 bool master; /* is upper dev master */
2760 bool linking; /* is the notification for link or unlink */
2761 void *upper_info; /* upper dev info */
2762};
2763
2764struct netdev_notifier_changelowerstate_info {
2765 struct netdev_notifier_info info; /* must be first */
2766 void *lower_state_info; /* is lower dev state */
2767};
2768
2769struct netdev_notifier_pre_changeaddr_info {
2770 struct netdev_notifier_info info; /* must be first */
2771 const unsigned char *dev_addr;
2772};
2773
2774static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2775 struct net_device *dev)
2776{
2777 info->dev = dev;
2778 info->extack = NULL;
2779}
2780
2781static inline struct net_device *
2782netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2783{
2784 return info->dev;
2785}
2786
2787static inline struct netlink_ext_ack *
2788netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2789{
2790 return info->extack;
2791}
2792
2793int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2794
2795
2796extern rwlock_t dev_base_lock; /* Device list lock */
2797
2798#define for_each_netdev(net, d) \
2799 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2800#define for_each_netdev_reverse(net, d) \
2801 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2802#define for_each_netdev_rcu(net, d) \
2803 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2804#define for_each_netdev_safe(net, d, n) \
2805 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2806#define for_each_netdev_continue(net, d) \
2807 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2808#define for_each_netdev_continue_reverse(net, d) \
2809 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2810 dev_list)
2811#define for_each_netdev_continue_rcu(net, d) \
2812 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2813#define for_each_netdev_in_bond_rcu(bond, slave) \
2814 for_each_netdev_rcu(&init_net, slave) \
2815 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2816#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2817
2818static inline struct net_device *next_net_device(struct net_device *dev)
2819{
2820 struct list_head *lh;
2821 struct net *net;
2822
2823 net = dev_net(dev);
2824 lh = dev->dev_list.next;
2825 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2826}
2827
2828static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2829{
2830 struct list_head *lh;
2831 struct net *net;
2832
2833 net = dev_net(dev);
2834 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2835 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2836}
2837
2838static inline struct net_device *first_net_device(struct net *net)
2839{
2840 return list_empty(&net->dev_base_head) ? NULL :
2841 net_device_entry(net->dev_base_head.next);
2842}
2843
2844static inline struct net_device *first_net_device_rcu(struct net *net)
2845{
2846 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2847
2848 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2849}
2850
2851int netdev_boot_setup_check(struct net_device *dev);
2852struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2853 const char *hwaddr);
2854struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2855void dev_add_pack(struct packet_type *pt);
2856void dev_remove_pack(struct packet_type *pt);
2857void __dev_remove_pack(struct packet_type *pt);
2858void dev_add_offload(struct packet_offload *po);
2859void dev_remove_offload(struct packet_offload *po);
2860
2861int dev_get_iflink(const struct net_device *dev);
2862int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2863int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2864 struct net_device_path_stack *stack);
2865struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2866 unsigned short mask);
2867struct net_device *dev_get_by_name(struct net *net, const char *name);
2868struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2869struct net_device *__dev_get_by_name(struct net *net, const char *name);
2870bool netdev_name_in_use(struct net *net, const char *name);
2871int dev_alloc_name(struct net_device *dev, const char *name);
2872int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2873void dev_close(struct net_device *dev);
2874void dev_close_many(struct list_head *head, bool unlink);
2875void dev_disable_lro(struct net_device *dev);
2876int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2877u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2878 struct net_device *sb_dev);
2879u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2880 struct net_device *sb_dev);
2881
2882int dev_queue_xmit(struct sk_buff *skb);
2883int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2884int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2885
2886static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2887{
2888 int ret;
2889
2890 ret = __dev_direct_xmit(skb, queue_id);
2891 if (!dev_xmit_complete(ret))
2892 kfree_skb(skb);
2893 return ret;
2894}
2895
2896int register_netdevice(struct net_device *dev);
2897void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2898void unregister_netdevice_many(struct list_head *head);
2899static inline void unregister_netdevice(struct net_device *dev)
2900{
2901 unregister_netdevice_queue(dev, NULL);
2902}
2903
2904int netdev_refcnt_read(const struct net_device *dev);
2905void free_netdev(struct net_device *dev);
2906void netdev_freemem(struct net_device *dev);
2907int init_dummy_netdev(struct net_device *dev);
2908
2909struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2910 struct sk_buff *skb,
2911 bool all_slaves);
2912struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2913 struct sock *sk);
2914struct net_device *dev_get_by_index(struct net *net, int ifindex);
2915struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2916struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2917struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2918int netdev_get_name(struct net *net, char *name, int ifindex);
2919int dev_restart(struct net_device *dev);
2920
2921
2922static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2923 unsigned short type,
2924 const void *daddr, const void *saddr,
2925 unsigned int len)
2926{
2927 if (!dev->header_ops || !dev->header_ops->create)
2928 return 0;
2929
2930 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2931}
2932
2933static inline int dev_parse_header(const struct sk_buff *skb,
2934 unsigned char *haddr)
2935{
2936 const struct net_device *dev = skb->dev;
2937
2938 if (!dev->header_ops || !dev->header_ops->parse)
2939 return 0;
2940 return dev->header_ops->parse(skb, haddr);
2941}
2942
2943static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2944{
2945 const struct net_device *dev = skb->dev;
2946
2947 if (!dev->header_ops || !dev->header_ops->parse_protocol)
2948 return 0;
2949 return dev->header_ops->parse_protocol(skb);
2950}
2951
2952/* ll_header must have at least hard_header_len allocated */
2953static inline bool dev_validate_header(const struct net_device *dev,
2954 char *ll_header, int len)
2955{
2956 if (likely(len >= dev->hard_header_len))
2957 return true;
2958 if (len < dev->min_header_len)
2959 return false;
2960
2961 if (capable(CAP_SYS_RAWIO)) {
2962 memset(ll_header + len, 0, dev->hard_header_len - len);
2963 return true;
2964 }
2965
2966 if (dev->header_ops && dev->header_ops->validate)
2967 return dev->header_ops->validate(ll_header, len);
2968
2969 return false;
2970}
2971
2972static inline bool dev_has_header(const struct net_device *dev)
2973{
2974 return dev->header_ops && dev->header_ops->create;
2975}
2976
2977#ifdef CONFIG_NET_FLOW_LIMIT
2978#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2979struct sd_flow_limit {
2980 u64 count;
2981 unsigned int num_buckets;
2982 unsigned int history_head;
2983 u16 history[FLOW_LIMIT_HISTORY];
2984 u8 buckets[];
2985};
2986
2987extern int netdev_flow_limit_table_len;
2988#endif /* CONFIG_NET_FLOW_LIMIT */
2989
2990/*
2991 * Incoming packets are placed on per-CPU queues
2992 */
2993struct softnet_data {
2994 struct list_head poll_list;
2995 struct sk_buff_head process_queue;
2996
2997 /* stats */
2998 unsigned int processed;
2999 unsigned int time_squeeze;
3000 unsigned int received_rps;
3001#ifdef CONFIG_RPS
3002 struct softnet_data *rps_ipi_list;
3003#endif
3004#ifdef CONFIG_NET_FLOW_LIMIT
3005 struct sd_flow_limit __rcu *flow_limit;
3006#endif
3007 struct Qdisc *output_queue;
3008 struct Qdisc **output_queue_tailp;
3009 struct sk_buff *completion_queue;
3010#ifdef CONFIG_XFRM_OFFLOAD
3011 struct sk_buff_head xfrm_backlog;
3012#endif
3013 /* written and read only by owning cpu: */
3014 struct {
3015 u16 recursion;
3016 u8 more;
3017 } xmit;
3018#ifdef CONFIG_RPS
3019 /* input_queue_head should be written by cpu owning this struct,
3020 * and only read by other cpus. Worth using a cache line.
3021 */
3022 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3023
3024 /* Elements below can be accessed between CPUs for RPS/RFS */
3025 call_single_data_t csd ____cacheline_aligned_in_smp;
3026 struct softnet_data *rps_ipi_next;
3027 unsigned int cpu;
3028 unsigned int input_queue_tail;
3029#endif
3030 unsigned int dropped;
3031 struct sk_buff_head input_pkt_queue;
3032 struct napi_struct backlog;
3033
3034};
3035
3036static inline void input_queue_head_incr(struct softnet_data *sd)
3037{
3038#ifdef CONFIG_RPS
3039 sd->input_queue_head++;
3040#endif
3041}
3042
3043static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3044 unsigned int *qtail)
3045{
3046#ifdef CONFIG_RPS
3047 *qtail = ++sd->input_queue_tail;
3048#endif
3049}
3050
3051DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3052
3053static inline int dev_recursion_level(void)
3054{
3055 return this_cpu_read(softnet_data.xmit.recursion);
3056}
3057
3058#define XMIT_RECURSION_LIMIT 8
3059static inline bool dev_xmit_recursion(void)
3060{
3061 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3062 XMIT_RECURSION_LIMIT);
3063}
3064
3065static inline void dev_xmit_recursion_inc(void)
3066{
3067 __this_cpu_inc(softnet_data.xmit.recursion);
3068}
3069
3070static inline void dev_xmit_recursion_dec(void)
3071{
3072 __this_cpu_dec(softnet_data.xmit.recursion);
3073}
3074
3075void __netif_schedule(struct Qdisc *q);
3076void netif_schedule_queue(struct netdev_queue *txq);
3077
3078static inline void netif_tx_schedule_all(struct net_device *dev)
3079{
3080 unsigned int i;
3081
3082 for (i = 0; i < dev->num_tx_queues; i++)
3083 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3084}
3085
3086static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3087{
3088 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3089}
3090
3091/**
3092 * netif_start_queue - allow transmit
3093 * @dev: network device
3094 *
3095 * Allow upper layers to call the device hard_start_xmit routine.
3096 */
3097static inline void netif_start_queue(struct net_device *dev)
3098{
3099 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3100}
3101
3102static inline void netif_tx_start_all_queues(struct net_device *dev)
3103{
3104 unsigned int i;
3105
3106 for (i = 0; i < dev->num_tx_queues; i++) {
3107 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3108 netif_tx_start_queue(txq);
3109 }
3110}
3111
3112void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3113
3114/**
3115 * netif_wake_queue - restart transmit
3116 * @dev: network device
3117 *
3118 * Allow upper layers to call the device hard_start_xmit routine.
3119 * Used for flow control when transmit resources are available.
3120 */
3121static inline void netif_wake_queue(struct net_device *dev)
3122{
3123 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3124}
3125
3126static inline void netif_tx_wake_all_queues(struct net_device *dev)
3127{
3128 unsigned int i;
3129
3130 for (i = 0; i < dev->num_tx_queues; i++) {
3131 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3132 netif_tx_wake_queue(txq);
3133 }
3134}
3135
3136static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3137{
3138 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3139}
3140
3141/**
3142 * netif_stop_queue - stop transmitted packets
3143 * @dev: network device
3144 *
3145 * Stop upper layers calling the device hard_start_xmit routine.
3146 * Used for flow control when transmit resources are unavailable.
3147 */
3148static inline void netif_stop_queue(struct net_device *dev)
3149{
3150 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3151}
3152
3153void netif_tx_stop_all_queues(struct net_device *dev);
3154
3155static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3156{
3157 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3158}
3159
3160/**
3161 * netif_queue_stopped - test if transmit queue is flowblocked
3162 * @dev: network device
3163 *
3164 * Test if transmit queue on device is currently unable to send.
3165 */
3166static inline bool netif_queue_stopped(const struct net_device *dev)
3167{
3168 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3169}
3170
3171static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3172{
3173 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3174}
3175
3176static inline bool
3177netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3178{
3179 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3180}
3181
3182static inline bool
3183netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3184{
3185 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3186}
3187
3188/**
3189 * netdev_queue_set_dql_min_limit - set dql minimum limit
3190 * @dev_queue: pointer to transmit queue
3191 * @min_limit: dql minimum limit
3192 *
3193 * Forces xmit_more() to return true until the minimum threshold
3194 * defined by @min_limit is reached (or until the tx queue is
3195 * empty). Warning: to be use with care, misuse will impact the
3196 * latency.
3197 */
3198static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3199 unsigned int min_limit)
3200{
3201#ifdef CONFIG_BQL
3202 dev_queue->dql.min_limit = min_limit;
3203#endif
3204}
3205
3206/**
3207 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3208 * @dev_queue: pointer to transmit queue
3209 *
3210 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3211 * to give appropriate hint to the CPU.
3212 */
3213static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3214{
3215#ifdef CONFIG_BQL
3216 prefetchw(&dev_queue->dql.num_queued);
3217#endif
3218}
3219
3220/**
3221 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3222 * @dev_queue: pointer to transmit queue
3223 *
3224 * BQL enabled drivers might use this helper in their TX completion path,
3225 * to give appropriate hint to the CPU.
3226 */
3227static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3228{
3229#ifdef CONFIG_BQL
3230 prefetchw(&dev_queue->dql.limit);
3231#endif
3232}
3233
3234static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3235 unsigned int bytes)
3236{
3237#ifdef CONFIG_BQL
3238 dql_queued(&dev_queue->dql, bytes);
3239
3240 if (likely(dql_avail(&dev_queue->dql) >= 0))
3241 return;
3242
3243 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3244
3245 /*
3246 * The XOFF flag must be set before checking the dql_avail below,
3247 * because in netdev_tx_completed_queue we update the dql_completed
3248 * before checking the XOFF flag.
3249 */
3250 smp_mb();
3251
3252 /* check again in case another CPU has just made room avail */
3253 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3254 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3255#endif
3256}
3257
3258/* Variant of netdev_tx_sent_queue() for drivers that are aware
3259 * that they should not test BQL status themselves.
3260 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3261 * skb of a batch.
3262 * Returns true if the doorbell must be used to kick the NIC.
3263 */
3264static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3265 unsigned int bytes,
3266 bool xmit_more)
3267{
3268 if (xmit_more) {
3269#ifdef CONFIG_BQL
3270 dql_queued(&dev_queue->dql, bytes);
3271#endif
3272 return netif_tx_queue_stopped(dev_queue);
3273 }
3274 netdev_tx_sent_queue(dev_queue, bytes);
3275 return true;
3276}
3277
3278/**
3279 * netdev_sent_queue - report the number of bytes queued to hardware
3280 * @dev: network device
3281 * @bytes: number of bytes queued to the hardware device queue
3282 *
3283 * Report the number of bytes queued for sending/completion to the network
3284 * device hardware queue. @bytes should be a good approximation and should
3285 * exactly match netdev_completed_queue() @bytes
3286 */
3287static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3288{
3289 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3290}
3291
3292static inline bool __netdev_sent_queue(struct net_device *dev,
3293 unsigned int bytes,
3294 bool xmit_more)
3295{
3296 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3297 xmit_more);
3298}
3299
3300static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3301 unsigned int pkts, unsigned int bytes)
3302{
3303#ifdef CONFIG_BQL
3304 if (unlikely(!bytes))
3305 return;
3306
3307 dql_completed(&dev_queue->dql, bytes);
3308
3309 /*
3310 * Without the memory barrier there is a small possiblity that
3311 * netdev_tx_sent_queue will miss the update and cause the queue to
3312 * be stopped forever
3313 */
3314 smp_mb();
3315
3316 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3317 return;
3318
3319 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3320 netif_schedule_queue(dev_queue);
3321#endif
3322}
3323
3324/**
3325 * netdev_completed_queue - report bytes and packets completed by device
3326 * @dev: network device
3327 * @pkts: actual number of packets sent over the medium
3328 * @bytes: actual number of bytes sent over the medium
3329 *
3330 * Report the number of bytes and packets transmitted by the network device
3331 * hardware queue over the physical medium, @bytes must exactly match the
3332 * @bytes amount passed to netdev_sent_queue()
3333 */
3334static inline void netdev_completed_queue(struct net_device *dev,
3335 unsigned int pkts, unsigned int bytes)
3336{
3337 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3338}
3339
3340static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3341{
3342#ifdef CONFIG_BQL
3343 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3344 dql_reset(&q->dql);
3345#endif
3346}
3347
3348/**
3349 * netdev_reset_queue - reset the packets and bytes count of a network device
3350 * @dev_queue: network device
3351 *
3352 * Reset the bytes and packet count of a network device and clear the
3353 * software flow control OFF bit for this network device
3354 */
3355static inline void netdev_reset_queue(struct net_device *dev_queue)
3356{
3357 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3358}
3359
3360/**
3361 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3362 * @dev: network device
3363 * @queue_index: given tx queue index
3364 *
3365 * Returns 0 if given tx queue index >= number of device tx queues,
3366 * otherwise returns the originally passed tx queue index.
3367 */
3368static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3369{
3370 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3371 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3372 dev->name, queue_index,
3373 dev->real_num_tx_queues);
3374 return 0;
3375 }
3376
3377 return queue_index;
3378}
3379
3380/**
3381 * netif_running - test if up
3382 * @dev: network device
3383 *
3384 * Test if the device has been brought up.
3385 */
3386static inline bool netif_running(const struct net_device *dev)
3387{
3388 return test_bit(__LINK_STATE_START, &dev->state);
3389}
3390
3391/*
3392 * Routines to manage the subqueues on a device. We only need start,
3393 * stop, and a check if it's stopped. All other device management is
3394 * done at the overall netdevice level.
3395 * Also test the device if we're multiqueue.
3396 */
3397
3398/**
3399 * netif_start_subqueue - allow sending packets on subqueue
3400 * @dev: network device
3401 * @queue_index: sub queue index
3402 *
3403 * Start individual transmit queue of a device with multiple transmit queues.
3404 */
3405static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3406{
3407 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3408
3409 netif_tx_start_queue(txq);
3410}
3411
3412/**
3413 * netif_stop_subqueue - stop sending packets on subqueue
3414 * @dev: network device
3415 * @queue_index: sub queue index
3416 *
3417 * Stop individual transmit queue of a device with multiple transmit queues.
3418 */
3419static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3420{
3421 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3422 netif_tx_stop_queue(txq);
3423}
3424
3425/**
3426 * __netif_subqueue_stopped - test status of subqueue
3427 * @dev: network device
3428 * @queue_index: sub queue index
3429 *
3430 * Check individual transmit queue of a device with multiple transmit queues.
3431 */
3432static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3433 u16 queue_index)
3434{
3435 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3436
3437 return netif_tx_queue_stopped(txq);
3438}
3439
3440/**
3441 * netif_subqueue_stopped - test status of subqueue
3442 * @dev: network device
3443 * @skb: sub queue buffer pointer
3444 *
3445 * Check individual transmit queue of a device with multiple transmit queues.
3446 */
3447static inline bool netif_subqueue_stopped(const struct net_device *dev,
3448 struct sk_buff *skb)
3449{
3450 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3451}
3452
3453/**
3454 * netif_wake_subqueue - allow sending packets on subqueue
3455 * @dev: network device
3456 * @queue_index: sub queue index
3457 *
3458 * Resume individual transmit queue of a device with multiple transmit queues.
3459 */
3460static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3461{
3462 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3463
3464 netif_tx_wake_queue(txq);
3465}
3466
3467#ifdef CONFIG_XPS
3468int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3469 u16 index);
3470int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3471 u16 index, enum xps_map_type type);
3472
3473/**
3474 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3475 * @j: CPU/Rx queue index
3476 * @mask: bitmask of all cpus/rx queues
3477 * @nr_bits: number of bits in the bitmask
3478 *
3479 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3480 */
3481static inline bool netif_attr_test_mask(unsigned long j,
3482 const unsigned long *mask,
3483 unsigned int nr_bits)
3484{
3485 cpu_max_bits_warn(j, nr_bits);
3486 return test_bit(j, mask);
3487}
3488
3489/**
3490 * netif_attr_test_online - Test for online CPU/Rx queue
3491 * @j: CPU/Rx queue index
3492 * @online_mask: bitmask for CPUs/Rx queues that are online
3493 * @nr_bits: number of bits in the bitmask
3494 *
3495 * Returns true if a CPU/Rx queue is online.
3496 */
3497static inline bool netif_attr_test_online(unsigned long j,
3498 const unsigned long *online_mask,
3499 unsigned int nr_bits)
3500{
3501 cpu_max_bits_warn(j, nr_bits);
3502
3503 if (online_mask)
3504 return test_bit(j, online_mask);
3505
3506 return (j < nr_bits);
3507}
3508
3509/**
3510 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3511 * @n: CPU/Rx queue index
3512 * @srcp: the cpumask/Rx queue mask pointer
3513 * @nr_bits: number of bits in the bitmask
3514 *
3515 * Returns >= nr_bits if no further CPUs/Rx queues set.
3516 */
3517static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3518 unsigned int nr_bits)
3519{
3520 /* -1 is a legal arg here. */
3521 if (n != -1)
3522 cpu_max_bits_warn(n, nr_bits);
3523
3524 if (srcp)
3525 return find_next_bit(srcp, nr_bits, n + 1);
3526
3527 return n + 1;
3528}
3529
3530/**
3531 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3532 * @n: CPU/Rx queue index
3533 * @src1p: the first CPUs/Rx queues mask pointer
3534 * @src2p: the second CPUs/Rx queues mask pointer
3535 * @nr_bits: number of bits in the bitmask
3536 *
3537 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3538 */
3539static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3540 const unsigned long *src2p,
3541 unsigned int nr_bits)
3542{
3543 /* -1 is a legal arg here. */
3544 if (n != -1)
3545 cpu_max_bits_warn(n, nr_bits);
3546
3547 if (src1p && src2p)
3548 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3549 else if (src1p)
3550 return find_next_bit(src1p, nr_bits, n + 1);
3551 else if (src2p)
3552 return find_next_bit(src2p, nr_bits, n + 1);
3553
3554 return n + 1;
3555}
3556#else
3557static inline int netif_set_xps_queue(struct net_device *dev,
3558 const struct cpumask *mask,
3559 u16 index)
3560{
3561 return 0;
3562}
3563
3564static inline int __netif_set_xps_queue(struct net_device *dev,
3565 const unsigned long *mask,
3566 u16 index, enum xps_map_type type)
3567{
3568 return 0;
3569}
3570#endif
3571
3572/**
3573 * netif_is_multiqueue - test if device has multiple transmit queues
3574 * @dev: network device
3575 *
3576 * Check if device has multiple transmit queues
3577 */
3578static inline bool netif_is_multiqueue(const struct net_device *dev)
3579{
3580 return dev->num_tx_queues > 1;
3581}
3582
3583int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3584
3585#ifdef CONFIG_SYSFS
3586int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3587#else
3588static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3589 unsigned int rxqs)
3590{
3591 dev->real_num_rx_queues = rxqs;
3592 return 0;
3593}
3594#endif
3595int netif_set_real_num_queues(struct net_device *dev,
3596 unsigned int txq, unsigned int rxq);
3597
3598static inline struct netdev_rx_queue *
3599__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3600{
3601 return dev->_rx + rxq;
3602}
3603
3604#ifdef CONFIG_SYSFS
3605static inline unsigned int get_netdev_rx_queue_index(
3606 struct netdev_rx_queue *queue)
3607{
3608 struct net_device *dev = queue->dev;
3609 int index = queue - dev->_rx;
3610
3611 BUG_ON(index >= dev->num_rx_queues);
3612 return index;
3613}
3614#endif
3615
3616#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3617int netif_get_num_default_rss_queues(void);
3618
3619enum skb_free_reason {
3620 SKB_REASON_CONSUMED,
3621 SKB_REASON_DROPPED,
3622};
3623
3624void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3625void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3626
3627/*
3628 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3629 * interrupt context or with hardware interrupts being disabled.
3630 * (in_hardirq() || irqs_disabled())
3631 *
3632 * We provide four helpers that can be used in following contexts :
3633 *
3634 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3635 * replacing kfree_skb(skb)
3636 *
3637 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3638 * Typically used in place of consume_skb(skb) in TX completion path
3639 *
3640 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3641 * replacing kfree_skb(skb)
3642 *
3643 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3644 * and consumed a packet. Used in place of consume_skb(skb)
3645 */
3646static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3647{
3648 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3649}
3650
3651static inline void dev_consume_skb_irq(struct sk_buff *skb)
3652{
3653 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3654}
3655
3656static inline void dev_kfree_skb_any(struct sk_buff *skb)
3657{
3658 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3659}
3660
3661static inline void dev_consume_skb_any(struct sk_buff *skb)
3662{
3663 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3664}
3665
3666u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3667 struct bpf_prog *xdp_prog);
3668void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3669int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3670int netif_rx(struct sk_buff *skb);
3671int netif_rx_ni(struct sk_buff *skb);
3672int netif_rx_any_context(struct sk_buff *skb);
3673int netif_receive_skb(struct sk_buff *skb);
3674int netif_receive_skb_core(struct sk_buff *skb);
3675void netif_receive_skb_list_internal(struct list_head *head);
3676void netif_receive_skb_list(struct list_head *head);
3677gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3678void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3679struct sk_buff *napi_get_frags(struct napi_struct *napi);
3680gro_result_t napi_gro_frags(struct napi_struct *napi);
3681struct packet_offload *gro_find_receive_by_type(__be16 type);
3682struct packet_offload *gro_find_complete_by_type(__be16 type);
3683
3684static inline void napi_free_frags(struct napi_struct *napi)
3685{
3686 kfree_skb(napi->skb);
3687 napi->skb = NULL;
3688}
3689
3690bool netdev_is_rx_handler_busy(struct net_device *dev);
3691int netdev_rx_handler_register(struct net_device *dev,
3692 rx_handler_func_t *rx_handler,
3693 void *rx_handler_data);
3694void netdev_rx_handler_unregister(struct net_device *dev);
3695
3696bool dev_valid_name(const char *name);
3697static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3698{
3699 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3700}
3701int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3702int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3703int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3704 void __user *data, bool *need_copyout);
3705int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3706int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3707unsigned int dev_get_flags(const struct net_device *);
3708int __dev_change_flags(struct net_device *dev, unsigned int flags,
3709 struct netlink_ext_ack *extack);
3710int dev_change_flags(struct net_device *dev, unsigned int flags,
3711 struct netlink_ext_ack *extack);
3712void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3713 unsigned int gchanges);
3714int dev_change_name(struct net_device *, const char *);
3715int dev_set_alias(struct net_device *, const char *, size_t);
3716int dev_get_alias(const struct net_device *, char *, size_t);
3717int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3718 const char *pat, int new_ifindex);
3719static inline
3720int dev_change_net_namespace(struct net_device *dev, struct net *net,
3721 const char *pat)
3722{
3723 return __dev_change_net_namespace(dev, net, pat, 0);
3724}
3725int __dev_set_mtu(struct net_device *, int);
3726int dev_validate_mtu(struct net_device *dev, int mtu,
3727 struct netlink_ext_ack *extack);
3728int dev_set_mtu_ext(struct net_device *dev, int mtu,
3729 struct netlink_ext_ack *extack);
3730int dev_set_mtu(struct net_device *, int);
3731int dev_change_tx_queue_len(struct net_device *, unsigned long);
3732void dev_set_group(struct net_device *, int);
3733int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3734 struct netlink_ext_ack *extack);
3735int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3736 struct netlink_ext_ack *extack);
3737int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3738 struct netlink_ext_ack *extack);
3739int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3740int dev_change_carrier(struct net_device *, bool new_carrier);
3741int dev_get_phys_port_id(struct net_device *dev,
3742 struct netdev_phys_item_id *ppid);
3743int dev_get_phys_port_name(struct net_device *dev,
3744 char *name, size_t len);
3745int dev_get_port_parent_id(struct net_device *dev,
3746 struct netdev_phys_item_id *ppid, bool recurse);
3747bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3748int dev_change_proto_down(struct net_device *dev, bool proto_down);
3749void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3750 u32 value);
3751struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3752struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3753 struct netdev_queue *txq, int *ret);
3754
3755typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3756int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3757 int fd, int expected_fd, u32 flags);
3758int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3759u8 dev_xdp_prog_count(struct net_device *dev);
3760u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3761
3762int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3763int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3764int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3765bool is_skb_forwardable(const struct net_device *dev,
3766 const struct sk_buff *skb);
3767
3768static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3769 const struct sk_buff *skb,
3770 const bool check_mtu)
3771{
3772 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3773 unsigned int len;
3774
3775 if (!(dev->flags & IFF_UP))
3776 return false;
3777
3778 if (!check_mtu)
3779 return true;
3780
3781 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3782 if (skb->len <= len)
3783 return true;
3784
3785 /* if TSO is enabled, we don't care about the length as the packet
3786 * could be forwarded without being segmented before
3787 */
3788 if (skb_is_gso(skb))
3789 return true;
3790
3791 return false;
3792}
3793
3794static __always_inline int ____dev_forward_skb(struct net_device *dev,
3795 struct sk_buff *skb,
3796 const bool check_mtu)
3797{
3798 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3799 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3800 atomic_long_inc(&dev->rx_dropped);
3801 kfree_skb(skb);
3802 return NET_RX_DROP;
3803 }
3804
3805 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3806 skb->priority = 0;
3807 return 0;
3808}
3809
3810bool dev_nit_active(struct net_device *dev);
3811void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3812
3813extern int netdev_budget;
3814extern unsigned int netdev_budget_usecs;
3815
3816/* Called by rtnetlink.c:rtnl_unlock() */
3817void netdev_run_todo(void);
3818
3819/**
3820 * dev_put - release reference to device
3821 * @dev: network device
3822 *
3823 * Release reference to device to allow it to be freed.
3824 * Try using dev_put_track() instead.
3825 */
3826static inline void dev_put(struct net_device *dev)
3827{
3828 if (dev) {
3829#ifdef CONFIG_PCPU_DEV_REFCNT
3830 this_cpu_dec(*dev->pcpu_refcnt);
3831#else
3832 refcount_dec(&dev->dev_refcnt);
3833#endif
3834 }
3835}
3836
3837/**
3838 * dev_hold - get reference to device
3839 * @dev: network device
3840 *
3841 * Hold reference to device to keep it from being freed.
3842 * Try using dev_hold_track() instead.
3843 */
3844static inline void dev_hold(struct net_device *dev)
3845{
3846 if (dev) {
3847#ifdef CONFIG_PCPU_DEV_REFCNT
3848 this_cpu_inc(*dev->pcpu_refcnt);
3849#else
3850 refcount_inc(&dev->dev_refcnt);
3851#endif
3852 }
3853}
3854
3855static inline void netdev_tracker_alloc(struct net_device *dev,
3856 netdevice_tracker *tracker, gfp_t gfp)
3857{
3858#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3859 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3860#endif
3861}
3862
3863static inline void netdev_tracker_free(struct net_device *dev,
3864 netdevice_tracker *tracker)
3865{
3866#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3867 ref_tracker_free(&dev->refcnt_tracker, tracker);
3868#endif
3869}
3870
3871static inline void dev_hold_track(struct net_device *dev,
3872 netdevice_tracker *tracker, gfp_t gfp)
3873{
3874 if (dev) {
3875 dev_hold(dev);
3876 netdev_tracker_alloc(dev, tracker, gfp);
3877 }
3878}
3879
3880static inline void dev_put_track(struct net_device *dev,
3881 netdevice_tracker *tracker)
3882{
3883 if (dev) {
3884 netdev_tracker_free(dev, tracker);
3885 dev_put(dev);
3886 }
3887}
3888
3889static inline void dev_replace_track(struct net_device *odev,
3890 struct net_device *ndev,
3891 netdevice_tracker *tracker,
3892 gfp_t gfp)
3893{
3894 if (odev)
3895 netdev_tracker_free(odev, tracker);
3896
3897 dev_hold(ndev);
3898 dev_put(odev);
3899
3900 if (ndev)
3901 netdev_tracker_alloc(ndev, tracker, gfp);
3902}
3903
3904/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3905 * and _off may be called from IRQ context, but it is caller
3906 * who is responsible for serialization of these calls.
3907 *
3908 * The name carrier is inappropriate, these functions should really be
3909 * called netif_lowerlayer_*() because they represent the state of any
3910 * kind of lower layer not just hardware media.
3911 */
3912
3913void linkwatch_init_dev(struct net_device *dev);
3914void linkwatch_fire_event(struct net_device *dev);
3915void linkwatch_forget_dev(struct net_device *dev);
3916
3917/**
3918 * netif_carrier_ok - test if carrier present
3919 * @dev: network device
3920 *
3921 * Check if carrier is present on device
3922 */
3923static inline bool netif_carrier_ok(const struct net_device *dev)
3924{
3925 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3926}
3927
3928unsigned long dev_trans_start(struct net_device *dev);
3929
3930void __netdev_watchdog_up(struct net_device *dev);
3931
3932void netif_carrier_on(struct net_device *dev);
3933void netif_carrier_off(struct net_device *dev);
3934void netif_carrier_event(struct net_device *dev);
3935
3936/**
3937 * netif_dormant_on - mark device as dormant.
3938 * @dev: network device
3939 *
3940 * Mark device as dormant (as per RFC2863).
3941 *
3942 * The dormant state indicates that the relevant interface is not
3943 * actually in a condition to pass packets (i.e., it is not 'up') but is
3944 * in a "pending" state, waiting for some external event. For "on-
3945 * demand" interfaces, this new state identifies the situation where the
3946 * interface is waiting for events to place it in the up state.
3947 */
3948static inline void netif_dormant_on(struct net_device *dev)
3949{
3950 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3951 linkwatch_fire_event(dev);
3952}
3953
3954/**
3955 * netif_dormant_off - set device as not dormant.
3956 * @dev: network device
3957 *
3958 * Device is not in dormant state.
3959 */
3960static inline void netif_dormant_off(struct net_device *dev)
3961{
3962 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3963 linkwatch_fire_event(dev);
3964}
3965
3966/**
3967 * netif_dormant - test if device is dormant
3968 * @dev: network device
3969 *
3970 * Check if device is dormant.
3971 */
3972static inline bool netif_dormant(const struct net_device *dev)
3973{
3974 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3975}
3976
3977
3978/**
3979 * netif_testing_on - mark device as under test.
3980 * @dev: network device
3981 *
3982 * Mark device as under test (as per RFC2863).
3983 *
3984 * The testing state indicates that some test(s) must be performed on
3985 * the interface. After completion, of the test, the interface state
3986 * will change to up, dormant, or down, as appropriate.
3987 */
3988static inline void netif_testing_on(struct net_device *dev)
3989{
3990 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3991 linkwatch_fire_event(dev);
3992}
3993
3994/**
3995 * netif_testing_off - set device as not under test.
3996 * @dev: network device
3997 *
3998 * Device is not in testing state.
3999 */
4000static inline void netif_testing_off(struct net_device *dev)
4001{
4002 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4003 linkwatch_fire_event(dev);
4004}
4005
4006/**
4007 * netif_testing - test if device is under test
4008 * @dev: network device
4009 *
4010 * Check if device is under test
4011 */
4012static inline bool netif_testing(const struct net_device *dev)
4013{
4014 return test_bit(__LINK_STATE_TESTING, &dev->state);
4015}
4016
4017
4018/**
4019 * netif_oper_up - test if device is operational
4020 * @dev: network device
4021 *
4022 * Check if carrier is operational
4023 */
4024static inline bool netif_oper_up(const struct net_device *dev)
4025{
4026 return (dev->operstate == IF_OPER_UP ||
4027 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4028}
4029
4030/**
4031 * netif_device_present - is device available or removed
4032 * @dev: network device
4033 *
4034 * Check if device has not been removed from system.
4035 */
4036static inline bool netif_device_present(const struct net_device *dev)
4037{
4038 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4039}
4040
4041void netif_device_detach(struct net_device *dev);
4042
4043void netif_device_attach(struct net_device *dev);
4044
4045/*
4046 * Network interface message level settings
4047 */
4048
4049enum {
4050 NETIF_MSG_DRV_BIT,
4051 NETIF_MSG_PROBE_BIT,
4052 NETIF_MSG_LINK_BIT,
4053 NETIF_MSG_TIMER_BIT,
4054 NETIF_MSG_IFDOWN_BIT,
4055 NETIF_MSG_IFUP_BIT,
4056 NETIF_MSG_RX_ERR_BIT,
4057 NETIF_MSG_TX_ERR_BIT,
4058 NETIF_MSG_TX_QUEUED_BIT,
4059 NETIF_MSG_INTR_BIT,
4060 NETIF_MSG_TX_DONE_BIT,
4061 NETIF_MSG_RX_STATUS_BIT,
4062 NETIF_MSG_PKTDATA_BIT,
4063 NETIF_MSG_HW_BIT,
4064 NETIF_MSG_WOL_BIT,
4065
4066 /* When you add a new bit above, update netif_msg_class_names array
4067 * in net/ethtool/common.c
4068 */
4069 NETIF_MSG_CLASS_COUNT,
4070};
4071/* Both ethtool_ops interface and internal driver implementation use u32 */
4072static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4073
4074#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4075#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4076
4077#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4078#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4079#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4080#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4081#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4082#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4083#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4084#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4085#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4086#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4087#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4088#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4089#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4090#define NETIF_MSG_HW __NETIF_MSG(HW)
4091#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4092
4093#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4094#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4095#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4096#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4097#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4098#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4099#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4100#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4101#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4102#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4103#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4104#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4105#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4106#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4107#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4108
4109static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4110{
4111 /* use default */
4112 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4113 return default_msg_enable_bits;
4114 if (debug_value == 0) /* no output */
4115 return 0;
4116 /* set low N bits */
4117 return (1U << debug_value) - 1;
4118}
4119
4120static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4121{
4122 spin_lock(&txq->_xmit_lock);
4123 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4124 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4125}
4126
4127static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128{
4129 __acquire(&txq->_xmit_lock);
4130 return true;
4131}
4132
4133static inline void __netif_tx_release(struct netdev_queue *txq)
4134{
4135 __release(&txq->_xmit_lock);
4136}
4137
4138static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139{
4140 spin_lock_bh(&txq->_xmit_lock);
4141 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4142 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4143}
4144
4145static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4146{
4147 bool ok = spin_trylock(&txq->_xmit_lock);
4148
4149 if (likely(ok)) {
4150 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4151 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4152 }
4153 return ok;
4154}
4155
4156static inline void __netif_tx_unlock(struct netdev_queue *txq)
4157{
4158 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4159 WRITE_ONCE(txq->xmit_lock_owner, -1);
4160 spin_unlock(&txq->_xmit_lock);
4161}
4162
4163static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4164{
4165 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4166 WRITE_ONCE(txq->xmit_lock_owner, -1);
4167 spin_unlock_bh(&txq->_xmit_lock);
4168}
4169
4170/*
4171 * txq->trans_start can be read locklessly from dev_watchdog()
4172 */
4173static inline void txq_trans_update(struct netdev_queue *txq)
4174{
4175 if (txq->xmit_lock_owner != -1)
4176 WRITE_ONCE(txq->trans_start, jiffies);
4177}
4178
4179static inline void txq_trans_cond_update(struct netdev_queue *txq)
4180{
4181 unsigned long now = jiffies;
4182
4183 if (READ_ONCE(txq->trans_start) != now)
4184 WRITE_ONCE(txq->trans_start, now);
4185}
4186
4187/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4188static inline void netif_trans_update(struct net_device *dev)
4189{
4190 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4191
4192 txq_trans_cond_update(txq);
4193}
4194
4195/**
4196 * netif_tx_lock - grab network device transmit lock
4197 * @dev: network device
4198 *
4199 * Get network device transmit lock
4200 */
4201void netif_tx_lock(struct net_device *dev);
4202
4203static inline void netif_tx_lock_bh(struct net_device *dev)
4204{
4205 local_bh_disable();
4206 netif_tx_lock(dev);
4207}
4208
4209void netif_tx_unlock(struct net_device *dev);
4210
4211static inline void netif_tx_unlock_bh(struct net_device *dev)
4212{
4213 netif_tx_unlock(dev);
4214 local_bh_enable();
4215}
4216
4217#define HARD_TX_LOCK(dev, txq, cpu) { \
4218 if ((dev->features & NETIF_F_LLTX) == 0) { \
4219 __netif_tx_lock(txq, cpu); \
4220 } else { \
4221 __netif_tx_acquire(txq); \
4222 } \
4223}
4224
4225#define HARD_TX_TRYLOCK(dev, txq) \
4226 (((dev->features & NETIF_F_LLTX) == 0) ? \
4227 __netif_tx_trylock(txq) : \
4228 __netif_tx_acquire(txq))
4229
4230#define HARD_TX_UNLOCK(dev, txq) { \
4231 if ((dev->features & NETIF_F_LLTX) == 0) { \
4232 __netif_tx_unlock(txq); \
4233 } else { \
4234 __netif_tx_release(txq); \
4235 } \
4236}
4237
4238static inline void netif_tx_disable(struct net_device *dev)
4239{
4240 unsigned int i;
4241 int cpu;
4242
4243 local_bh_disable();
4244 cpu = smp_processor_id();
4245 spin_lock(&dev->tx_global_lock);
4246 for (i = 0; i < dev->num_tx_queues; i++) {
4247 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4248
4249 __netif_tx_lock(txq, cpu);
4250 netif_tx_stop_queue(txq);
4251 __netif_tx_unlock(txq);
4252 }
4253 spin_unlock(&dev->tx_global_lock);
4254 local_bh_enable();
4255}
4256
4257static inline void netif_addr_lock(struct net_device *dev)
4258{
4259 unsigned char nest_level = 0;
4260
4261#ifdef CONFIG_LOCKDEP
4262 nest_level = dev->nested_level;
4263#endif
4264 spin_lock_nested(&dev->addr_list_lock, nest_level);
4265}
4266
4267static inline void netif_addr_lock_bh(struct net_device *dev)
4268{
4269 unsigned char nest_level = 0;
4270
4271#ifdef CONFIG_LOCKDEP
4272 nest_level = dev->nested_level;
4273#endif
4274 local_bh_disable();
4275 spin_lock_nested(&dev->addr_list_lock, nest_level);
4276}
4277
4278static inline void netif_addr_unlock(struct net_device *dev)
4279{
4280 spin_unlock(&dev->addr_list_lock);
4281}
4282
4283static inline void netif_addr_unlock_bh(struct net_device *dev)
4284{
4285 spin_unlock_bh(&dev->addr_list_lock);
4286}
4287
4288/*
4289 * dev_addrs walker. Should be used only for read access. Call with
4290 * rcu_read_lock held.
4291 */
4292#define for_each_dev_addr(dev, ha) \
4293 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4294
4295/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4296
4297void ether_setup(struct net_device *dev);
4298
4299/* Support for loadable net-drivers */
4300struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4301 unsigned char name_assign_type,
4302 void (*setup)(struct net_device *),
4303 unsigned int txqs, unsigned int rxqs);
4304#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4305 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4306
4307#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4308 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4309 count)
4310
4311int register_netdev(struct net_device *dev);
4312void unregister_netdev(struct net_device *dev);
4313
4314int devm_register_netdev(struct device *dev, struct net_device *ndev);
4315
4316/* General hardware address lists handling functions */
4317int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4318 struct netdev_hw_addr_list *from_list, int addr_len);
4319void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4320 struct netdev_hw_addr_list *from_list, int addr_len);
4321int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4322 struct net_device *dev,
4323 int (*sync)(struct net_device *, const unsigned char *),
4324 int (*unsync)(struct net_device *,
4325 const unsigned char *));
4326int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4327 struct net_device *dev,
4328 int (*sync)(struct net_device *,
4329 const unsigned char *, int),
4330 int (*unsync)(struct net_device *,
4331 const unsigned char *, int));
4332void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4333 struct net_device *dev,
4334 int (*unsync)(struct net_device *,
4335 const unsigned char *, int));
4336void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4337 struct net_device *dev,
4338 int (*unsync)(struct net_device *,
4339 const unsigned char *));
4340void __hw_addr_init(struct netdev_hw_addr_list *list);
4341
4342/* Functions used for device addresses handling */
4343void dev_addr_mod(struct net_device *dev, unsigned int offset,
4344 const void *addr, size_t len);
4345
4346static inline void
4347__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4348{
4349 dev_addr_mod(dev, 0, addr, len);
4350}
4351
4352static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4353{
4354 __dev_addr_set(dev, addr, dev->addr_len);
4355}
4356
4357int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4358 unsigned char addr_type);
4359int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4360 unsigned char addr_type);
4361void dev_addr_flush(struct net_device *dev);
4362int dev_addr_init(struct net_device *dev);
4363void dev_addr_check(struct net_device *dev);
4364
4365/* Functions used for unicast addresses handling */
4366int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4367int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4368int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4369int dev_uc_sync(struct net_device *to, struct net_device *from);
4370int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4371void dev_uc_unsync(struct net_device *to, struct net_device *from);
4372void dev_uc_flush(struct net_device *dev);
4373void dev_uc_init(struct net_device *dev);
4374
4375/**
4376 * __dev_uc_sync - Synchonize device's unicast list
4377 * @dev: device to sync
4378 * @sync: function to call if address should be added
4379 * @unsync: function to call if address should be removed
4380 *
4381 * Add newly added addresses to the interface, and release
4382 * addresses that have been deleted.
4383 */
4384static inline int __dev_uc_sync(struct net_device *dev,
4385 int (*sync)(struct net_device *,
4386 const unsigned char *),
4387 int (*unsync)(struct net_device *,
4388 const unsigned char *))
4389{
4390 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4391}
4392
4393/**
4394 * __dev_uc_unsync - Remove synchronized addresses from device
4395 * @dev: device to sync
4396 * @unsync: function to call if address should be removed
4397 *
4398 * Remove all addresses that were added to the device by dev_uc_sync().
4399 */
4400static inline void __dev_uc_unsync(struct net_device *dev,
4401 int (*unsync)(struct net_device *,
4402 const unsigned char *))
4403{
4404 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4405}
4406
4407/* Functions used for multicast addresses handling */
4408int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4409int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4410int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4411int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4412int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4413int dev_mc_sync(struct net_device *to, struct net_device *from);
4414int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4415void dev_mc_unsync(struct net_device *to, struct net_device *from);
4416void dev_mc_flush(struct net_device *dev);
4417void dev_mc_init(struct net_device *dev);
4418
4419/**
4420 * __dev_mc_sync - Synchonize device's multicast list
4421 * @dev: device to sync
4422 * @sync: function to call if address should be added
4423 * @unsync: function to call if address should be removed
4424 *
4425 * Add newly added addresses to the interface, and release
4426 * addresses that have been deleted.
4427 */
4428static inline int __dev_mc_sync(struct net_device *dev,
4429 int (*sync)(struct net_device *,
4430 const unsigned char *),
4431 int (*unsync)(struct net_device *,
4432 const unsigned char *))
4433{
4434 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4435}
4436
4437/**
4438 * __dev_mc_unsync - Remove synchronized addresses from device
4439 * @dev: device to sync
4440 * @unsync: function to call if address should be removed
4441 *
4442 * Remove all addresses that were added to the device by dev_mc_sync().
4443 */
4444static inline void __dev_mc_unsync(struct net_device *dev,
4445 int (*unsync)(struct net_device *,
4446 const unsigned char *))
4447{
4448 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4449}
4450
4451/* Functions used for secondary unicast and multicast support */
4452void dev_set_rx_mode(struct net_device *dev);
4453void __dev_set_rx_mode(struct net_device *dev);
4454int dev_set_promiscuity(struct net_device *dev, int inc);
4455int dev_set_allmulti(struct net_device *dev, int inc);
4456void netdev_state_change(struct net_device *dev);
4457void __netdev_notify_peers(struct net_device *dev);
4458void netdev_notify_peers(struct net_device *dev);
4459void netdev_features_change(struct net_device *dev);
4460/* Load a device via the kmod */
4461void dev_load(struct net *net, const char *name);
4462struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4463 struct rtnl_link_stats64 *storage);
4464void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4465 const struct net_device_stats *netdev_stats);
4466void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4467 const struct pcpu_sw_netstats __percpu *netstats);
4468void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4469
4470extern int netdev_max_backlog;
4471extern int netdev_tstamp_prequeue;
4472extern int netdev_unregister_timeout_secs;
4473extern int weight_p;
4474extern int dev_weight_rx_bias;
4475extern int dev_weight_tx_bias;
4476extern int dev_rx_weight;
4477extern int dev_tx_weight;
4478extern int gro_normal_batch;
4479
4480enum {
4481 NESTED_SYNC_IMM_BIT,
4482 NESTED_SYNC_TODO_BIT,
4483};
4484
4485#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4486#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4487
4488#define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4489#define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4490
4491struct netdev_nested_priv {
4492 unsigned char flags;
4493 void *data;
4494};
4495
4496bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4497struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4498 struct list_head **iter);
4499
4500#ifdef CONFIG_LOCKDEP
4501static LIST_HEAD(net_unlink_list);
4502
4503static inline void net_unlink_todo(struct net_device *dev)
4504{
4505 if (list_empty(&dev->unlink_list))
4506 list_add_tail(&dev->unlink_list, &net_unlink_list);
4507}
4508#endif
4509
4510/* iterate through upper list, must be called under RCU read lock */
4511#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4512 for (iter = &(dev)->adj_list.upper, \
4513 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4514 updev; \
4515 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4516
4517int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4518 int (*fn)(struct net_device *upper_dev,
4519 struct netdev_nested_priv *priv),
4520 struct netdev_nested_priv *priv);
4521
4522bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4523 struct net_device *upper_dev);
4524
4525bool netdev_has_any_upper_dev(struct net_device *dev);
4526
4527void *netdev_lower_get_next_private(struct net_device *dev,
4528 struct list_head **iter);
4529void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4530 struct list_head **iter);
4531
4532#define netdev_for_each_lower_private(dev, priv, iter) \
4533 for (iter = (dev)->adj_list.lower.next, \
4534 priv = netdev_lower_get_next_private(dev, &(iter)); \
4535 priv; \
4536 priv = netdev_lower_get_next_private(dev, &(iter)))
4537
4538#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4539 for (iter = &(dev)->adj_list.lower, \
4540 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4541 priv; \
4542 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4543
4544void *netdev_lower_get_next(struct net_device *dev,
4545 struct list_head **iter);
4546
4547#define netdev_for_each_lower_dev(dev, ldev, iter) \
4548 for (iter = (dev)->adj_list.lower.next, \
4549 ldev = netdev_lower_get_next(dev, &(iter)); \
4550 ldev; \
4551 ldev = netdev_lower_get_next(dev, &(iter)))
4552
4553struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4554 struct list_head **iter);
4555int netdev_walk_all_lower_dev(struct net_device *dev,
4556 int (*fn)(struct net_device *lower_dev,
4557 struct netdev_nested_priv *priv),
4558 struct netdev_nested_priv *priv);
4559int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4560 int (*fn)(struct net_device *lower_dev,
4561 struct netdev_nested_priv *priv),
4562 struct netdev_nested_priv *priv);
4563
4564void *netdev_adjacent_get_private(struct list_head *adj_list);
4565void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4566struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4567struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4568int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4569 struct netlink_ext_ack *extack);
4570int netdev_master_upper_dev_link(struct net_device *dev,
4571 struct net_device *upper_dev,
4572 void *upper_priv, void *upper_info,
4573 struct netlink_ext_ack *extack);
4574void netdev_upper_dev_unlink(struct net_device *dev,
4575 struct net_device *upper_dev);
4576int netdev_adjacent_change_prepare(struct net_device *old_dev,
4577 struct net_device *new_dev,
4578 struct net_device *dev,
4579 struct netlink_ext_ack *extack);
4580void netdev_adjacent_change_commit(struct net_device *old_dev,
4581 struct net_device *new_dev,
4582 struct net_device *dev);
4583void netdev_adjacent_change_abort(struct net_device *old_dev,
4584 struct net_device *new_dev,
4585 struct net_device *dev);
4586void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4587void *netdev_lower_dev_get_private(struct net_device *dev,
4588 struct net_device *lower_dev);
4589void netdev_lower_state_changed(struct net_device *lower_dev,
4590 void *lower_state_info);
4591
4592/* RSS keys are 40 or 52 bytes long */
4593#define NETDEV_RSS_KEY_LEN 52
4594extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4595void netdev_rss_key_fill(void *buffer, size_t len);
4596
4597int skb_checksum_help(struct sk_buff *skb);
4598int skb_crc32c_csum_help(struct sk_buff *skb);
4599int skb_csum_hwoffload_help(struct sk_buff *skb,
4600 const netdev_features_t features);
4601
4602struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4603 netdev_features_t features, bool tx_path);
4604struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4605 netdev_features_t features);
4606
4607struct netdev_bonding_info {
4608 ifslave slave;
4609 ifbond master;
4610};
4611
4612struct netdev_notifier_bonding_info {
4613 struct netdev_notifier_info info; /* must be first */
4614 struct netdev_bonding_info bonding_info;
4615};
4616
4617void netdev_bonding_info_change(struct net_device *dev,
4618 struct netdev_bonding_info *bonding_info);
4619
4620#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4621void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4622#else
4623static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4624 const void *data)
4625{
4626}
4627#endif
4628
4629static inline
4630struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4631{
4632 return __skb_gso_segment(skb, features, true);
4633}
4634__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4635
4636static inline bool can_checksum_protocol(netdev_features_t features,
4637 __be16 protocol)
4638{
4639 if (protocol == htons(ETH_P_FCOE))
4640 return !!(features & NETIF_F_FCOE_CRC);
4641
4642 /* Assume this is an IP checksum (not SCTP CRC) */
4643
4644 if (features & NETIF_F_HW_CSUM) {
4645 /* Can checksum everything */
4646 return true;
4647 }
4648
4649 switch (protocol) {
4650 case htons(ETH_P_IP):
4651 return !!(features & NETIF_F_IP_CSUM);
4652 case htons(ETH_P_IPV6):
4653 return !!(features & NETIF_F_IPV6_CSUM);
4654 default:
4655 return false;
4656 }
4657}
4658
4659#ifdef CONFIG_BUG
4660void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4661#else
4662static inline void netdev_rx_csum_fault(struct net_device *dev,
4663 struct sk_buff *skb)
4664{
4665}
4666#endif
4667/* rx skb timestamps */
4668void net_enable_timestamp(void);
4669void net_disable_timestamp(void);
4670
4671#ifdef CONFIG_PROC_FS
4672int __init dev_proc_init(void);
4673#else
4674#define dev_proc_init() 0
4675#endif
4676
4677static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4678 struct sk_buff *skb, struct net_device *dev,
4679 bool more)
4680{
4681 __this_cpu_write(softnet_data.xmit.more, more);
4682 return ops->ndo_start_xmit(skb, dev);
4683}
4684
4685static inline bool netdev_xmit_more(void)
4686{
4687 return __this_cpu_read(softnet_data.xmit.more);
4688}
4689
4690static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4691 struct netdev_queue *txq, bool more)
4692{
4693 const struct net_device_ops *ops = dev->netdev_ops;
4694 netdev_tx_t rc;
4695
4696 rc = __netdev_start_xmit(ops, skb, dev, more);
4697 if (rc == NETDEV_TX_OK)
4698 txq_trans_update(txq);
4699
4700 return rc;
4701}
4702
4703int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4704 const void *ns);
4705void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4706 const void *ns);
4707
4708extern const struct kobj_ns_type_operations net_ns_type_operations;
4709
4710const char *netdev_drivername(const struct net_device *dev);
4711
4712void linkwatch_run_queue(void);
4713
4714static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4715 netdev_features_t f2)
4716{
4717 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4718 if (f1 & NETIF_F_HW_CSUM)
4719 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4720 else
4721 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4722 }
4723
4724 return f1 & f2;
4725}
4726
4727static inline netdev_features_t netdev_get_wanted_features(
4728 struct net_device *dev)
4729{
4730 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4731}
4732netdev_features_t netdev_increment_features(netdev_features_t all,
4733 netdev_features_t one, netdev_features_t mask);
4734
4735/* Allow TSO being used on stacked device :
4736 * Performing the GSO segmentation before last device
4737 * is a performance improvement.
4738 */
4739static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4740 netdev_features_t mask)
4741{
4742 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4743}
4744
4745int __netdev_update_features(struct net_device *dev);
4746void netdev_update_features(struct net_device *dev);
4747void netdev_change_features(struct net_device *dev);
4748
4749void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4750 struct net_device *dev);
4751
4752netdev_features_t passthru_features_check(struct sk_buff *skb,
4753 struct net_device *dev,
4754 netdev_features_t features);
4755netdev_features_t netif_skb_features(struct sk_buff *skb);
4756
4757static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4758{
4759 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4760
4761 /* check flags correspondence */
4762 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4763 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4764 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4765 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4766 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4767 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4768 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4769 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4770 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4771 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4772 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4773 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4774 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4775 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4776 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4777 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4778 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4779 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4780 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4781
4782 return (features & feature) == feature;
4783}
4784
4785static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4786{
4787 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4788 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4789}
4790
4791static inline bool netif_needs_gso(struct sk_buff *skb,
4792 netdev_features_t features)
4793{
4794 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4795 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4796 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4797}
4798
4799static inline void netif_set_gso_max_size(struct net_device *dev,
4800 unsigned int size)
4801{
4802 /* dev->gso_max_size is read locklessly from sk_setup_caps() */
4803 WRITE_ONCE(dev->gso_max_size, size);
4804}
4805
4806static inline void netif_set_gso_max_segs(struct net_device *dev,
4807 unsigned int segs)
4808{
4809 /* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4810 WRITE_ONCE(dev->gso_max_segs, segs);
4811}
4812
4813static inline void netif_set_gro_max_size(struct net_device *dev,
4814 unsigned int size)
4815{
4816 /* This pairs with the READ_ONCE() in skb_gro_receive() */
4817 WRITE_ONCE(dev->gro_max_size, size);
4818}
4819
4820static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4821 int pulled_hlen, u16 mac_offset,
4822 int mac_len)
4823{
4824 skb->protocol = protocol;
4825 skb->encapsulation = 1;
4826 skb_push(skb, pulled_hlen);
4827 skb_reset_transport_header(skb);
4828 skb->mac_header = mac_offset;
4829 skb->network_header = skb->mac_header + mac_len;
4830 skb->mac_len = mac_len;
4831}
4832
4833static inline bool netif_is_macsec(const struct net_device *dev)
4834{
4835 return dev->priv_flags & IFF_MACSEC;
4836}
4837
4838static inline bool netif_is_macvlan(const struct net_device *dev)
4839{
4840 return dev->priv_flags & IFF_MACVLAN;
4841}
4842
4843static inline bool netif_is_macvlan_port(const struct net_device *dev)
4844{
4845 return dev->priv_flags & IFF_MACVLAN_PORT;
4846}
4847
4848static inline bool netif_is_bond_master(const struct net_device *dev)
4849{
4850 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4851}
4852
4853static inline bool netif_is_bond_slave(const struct net_device *dev)
4854{
4855 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4856}
4857
4858static inline bool netif_supports_nofcs(struct net_device *dev)
4859{
4860 return dev->priv_flags & IFF_SUPP_NOFCS;
4861}
4862
4863static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4864{
4865 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4866}
4867
4868static inline bool netif_is_l3_master(const struct net_device *dev)
4869{
4870 return dev->priv_flags & IFF_L3MDEV_MASTER;
4871}
4872
4873static inline bool netif_is_l3_slave(const struct net_device *dev)
4874{
4875 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4876}
4877
4878static inline bool netif_is_bridge_master(const struct net_device *dev)
4879{
4880 return dev->priv_flags & IFF_EBRIDGE;
4881}
4882
4883static inline bool netif_is_bridge_port(const struct net_device *dev)
4884{
4885 return dev->priv_flags & IFF_BRIDGE_PORT;
4886}
4887
4888static inline bool netif_is_ovs_master(const struct net_device *dev)
4889{
4890 return dev->priv_flags & IFF_OPENVSWITCH;
4891}
4892
4893static inline bool netif_is_ovs_port(const struct net_device *dev)
4894{
4895 return dev->priv_flags & IFF_OVS_DATAPATH;
4896}
4897
4898static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4899{
4900 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4901}
4902
4903static inline bool netif_is_team_master(const struct net_device *dev)
4904{
4905 return dev->priv_flags & IFF_TEAM;
4906}
4907
4908static inline bool netif_is_team_port(const struct net_device *dev)
4909{
4910 return dev->priv_flags & IFF_TEAM_PORT;
4911}
4912
4913static inline bool netif_is_lag_master(const struct net_device *dev)
4914{
4915 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4916}
4917
4918static inline bool netif_is_lag_port(const struct net_device *dev)
4919{
4920 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4921}
4922
4923static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4924{
4925 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4926}
4927
4928static inline bool netif_is_failover(const struct net_device *dev)
4929{
4930 return dev->priv_flags & IFF_FAILOVER;
4931}
4932
4933static inline bool netif_is_failover_slave(const struct net_device *dev)
4934{
4935 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4936}
4937
4938/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4939static inline void netif_keep_dst(struct net_device *dev)
4940{
4941 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4942}
4943
4944/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4945static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4946{
4947 /* TODO: reserve and use an additional IFF bit, if we get more users */
4948 return netif_is_macsec(dev);
4949}
4950
4951extern struct pernet_operations __net_initdata loopback_net_ops;
4952
4953/* Logging, debugging and troubleshooting/diagnostic helpers. */
4954
4955/* netdev_printk helpers, similar to dev_printk */
4956
4957static inline const char *netdev_name(const struct net_device *dev)
4958{
4959 if (!dev->name[0] || strchr(dev->name, '%'))
4960 return "(unnamed net_device)";
4961 return dev->name;
4962}
4963
4964static inline bool netdev_unregistering(const struct net_device *dev)
4965{
4966 return dev->reg_state == NETREG_UNREGISTERING;
4967}
4968
4969static inline const char *netdev_reg_state(const struct net_device *dev)
4970{
4971 switch (dev->reg_state) {
4972 case NETREG_UNINITIALIZED: return " (uninitialized)";
4973 case NETREG_REGISTERED: return "";
4974 case NETREG_UNREGISTERING: return " (unregistering)";
4975 case NETREG_UNREGISTERED: return " (unregistered)";
4976 case NETREG_RELEASED: return " (released)";
4977 case NETREG_DUMMY: return " (dummy)";
4978 }
4979
4980 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4981 return " (unknown)";
4982}
4983
4984__printf(3, 4) __cold
4985void netdev_printk(const char *level, const struct net_device *dev,
4986 const char *format, ...);
4987__printf(2, 3) __cold
4988void netdev_emerg(const struct net_device *dev, const char *format, ...);
4989__printf(2, 3) __cold
4990void netdev_alert(const struct net_device *dev, const char *format, ...);
4991__printf(2, 3) __cold
4992void netdev_crit(const struct net_device *dev, const char *format, ...);
4993__printf(2, 3) __cold
4994void netdev_err(const struct net_device *dev, const char *format, ...);
4995__printf(2, 3) __cold
4996void netdev_warn(const struct net_device *dev, const char *format, ...);
4997__printf(2, 3) __cold
4998void netdev_notice(const struct net_device *dev, const char *format, ...);
4999__printf(2, 3) __cold
5000void netdev_info(const struct net_device *dev, const char *format, ...);
5001
5002#define netdev_level_once(level, dev, fmt, ...) \
5003do { \
5004 static bool __section(".data.once") __print_once; \
5005 \
5006 if (!__print_once) { \
5007 __print_once = true; \
5008 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5009 } \
5010} while (0)
5011
5012#define netdev_emerg_once(dev, fmt, ...) \
5013 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5014#define netdev_alert_once(dev, fmt, ...) \
5015 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5016#define netdev_crit_once(dev, fmt, ...) \
5017 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5018#define netdev_err_once(dev, fmt, ...) \
5019 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5020#define netdev_warn_once(dev, fmt, ...) \
5021 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5022#define netdev_notice_once(dev, fmt, ...) \
5023 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5024#define netdev_info_once(dev, fmt, ...) \
5025 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5026
5027#define MODULE_ALIAS_NETDEV(device) \
5028 MODULE_ALIAS("netdev-" device)
5029
5030#if defined(CONFIG_DYNAMIC_DEBUG) || \
5031 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5032#define netdev_dbg(__dev, format, args...) \
5033do { \
5034 dynamic_netdev_dbg(__dev, format, ##args); \
5035} while (0)
5036#elif defined(DEBUG)
5037#define netdev_dbg(__dev, format, args...) \
5038 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5039#else
5040#define netdev_dbg(__dev, format, args...) \
5041({ \
5042 if (0) \
5043 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5044})
5045#endif
5046
5047#if defined(VERBOSE_DEBUG)
5048#define netdev_vdbg netdev_dbg
5049#else
5050
5051#define netdev_vdbg(dev, format, args...) \
5052({ \
5053 if (0) \
5054 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5055 0; \
5056})
5057#endif
5058
5059/*
5060 * netdev_WARN() acts like dev_printk(), but with the key difference
5061 * of using a WARN/WARN_ON to get the message out, including the
5062 * file/line information and a backtrace.
5063 */
5064#define netdev_WARN(dev, format, args...) \
5065 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5066 netdev_reg_state(dev), ##args)
5067
5068#define netdev_WARN_ONCE(dev, format, args...) \
5069 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5070 netdev_reg_state(dev), ##args)
5071
5072/* netif printk helpers, similar to netdev_printk */
5073
5074#define netif_printk(priv, type, level, dev, fmt, args...) \
5075do { \
5076 if (netif_msg_##type(priv)) \
5077 netdev_printk(level, (dev), fmt, ##args); \
5078} while (0)
5079
5080#define netif_level(level, priv, type, dev, fmt, args...) \
5081do { \
5082 if (netif_msg_##type(priv)) \
5083 netdev_##level(dev, fmt, ##args); \
5084} while (0)
5085
5086#define netif_emerg(priv, type, dev, fmt, args...) \
5087 netif_level(emerg, priv, type, dev, fmt, ##args)
5088#define netif_alert(priv, type, dev, fmt, args...) \
5089 netif_level(alert, priv, type, dev, fmt, ##args)
5090#define netif_crit(priv, type, dev, fmt, args...) \
5091 netif_level(crit, priv, type, dev, fmt, ##args)
5092#define netif_err(priv, type, dev, fmt, args...) \
5093 netif_level(err, priv, type, dev, fmt, ##args)
5094#define netif_warn(priv, type, dev, fmt, args...) \
5095 netif_level(warn, priv, type, dev, fmt, ##args)
5096#define netif_notice(priv, type, dev, fmt, args...) \
5097 netif_level(notice, priv, type, dev, fmt, ##args)
5098#define netif_info(priv, type, dev, fmt, args...) \
5099 netif_level(info, priv, type, dev, fmt, ##args)
5100
5101#if defined(CONFIG_DYNAMIC_DEBUG) || \
5102 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5103#define netif_dbg(priv, type, netdev, format, args...) \
5104do { \
5105 if (netif_msg_##type(priv)) \
5106 dynamic_netdev_dbg(netdev, format, ##args); \
5107} while (0)
5108#elif defined(DEBUG)
5109#define netif_dbg(priv, type, dev, format, args...) \
5110 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5111#else
5112#define netif_dbg(priv, type, dev, format, args...) \
5113({ \
5114 if (0) \
5115 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5116 0; \
5117})
5118#endif
5119
5120/* if @cond then downgrade to debug, else print at @level */
5121#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5122 do { \
5123 if (cond) \
5124 netif_dbg(priv, type, netdev, fmt, ##args); \
5125 else \
5126 netif_ ## level(priv, type, netdev, fmt, ##args); \
5127 } while (0)
5128
5129#if defined(VERBOSE_DEBUG)
5130#define netif_vdbg netif_dbg
5131#else
5132#define netif_vdbg(priv, type, dev, format, args...) \
5133({ \
5134 if (0) \
5135 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5136 0; \
5137})
5138#endif
5139
5140/*
5141 * The list of packet types we will receive (as opposed to discard)
5142 * and the routines to invoke.
5143 *
5144 * Why 16. Because with 16 the only overlap we get on a hash of the
5145 * low nibble of the protocol value is RARP/SNAP/X.25.
5146 *
5147 * 0800 IP
5148 * 0001 802.3
5149 * 0002 AX.25
5150 * 0004 802.2
5151 * 8035 RARP
5152 * 0005 SNAP
5153 * 0805 X.25
5154 * 0806 ARP
5155 * 8137 IPX
5156 * 0009 Localtalk
5157 * 86DD IPv6
5158 */
5159#define PTYPE_HASH_SIZE (16)
5160#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5161
5162extern struct list_head ptype_all __read_mostly;
5163extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5164
5165extern struct net_device *blackhole_netdev;
5166
5167#endif /* _LINUX_NETDEVICE_H */