at v5.16 19 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9#include <linux/slab.h> 10#include <linux/mm.h> 11#include <linux/dma-mapping.h> 12#include <linux/genalloc.h> 13#include <linux/highmem.h> 14#include <linux/vmalloc.h> 15#ifdef CONFIG_X86 16#include <asm/set_memory.h> 17#endif 18#include <sound/memalloc.h> 19#include "memalloc_local.h" 20 21static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 22 23/* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 24static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 25 gfp_t default_gfp) 26{ 27 if (!dmab->dev.dev) 28 return default_gfp; 29 else 30 return (__force gfp_t)(unsigned long)dmab->dev.dev; 31} 32 33static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 34{ 35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 36 37 if (WARN_ON_ONCE(!ops || !ops->alloc)) 38 return NULL; 39 return ops->alloc(dmab, size); 40} 41 42/** 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 44 * type and direction 45 * @type: the DMA buffer type 46 * @device: the device pointer 47 * @dir: DMA direction 48 * @size: the buffer size to allocate 49 * @dmab: buffer allocation record to store the allocated data 50 * 51 * Calls the memory-allocator function for the corresponding 52 * buffer type. 53 * 54 * Return: Zero if the buffer with the given size is allocated successfully, 55 * otherwise a negative value on error. 56 */ 57int snd_dma_alloc_dir_pages(int type, struct device *device, 58 enum dma_data_direction dir, size_t size, 59 struct snd_dma_buffer *dmab) 60{ 61 if (WARN_ON(!size)) 62 return -ENXIO; 63 if (WARN_ON(!dmab)) 64 return -ENXIO; 65 66 size = PAGE_ALIGN(size); 67 dmab->dev.type = type; 68 dmab->dev.dev = device; 69 dmab->dev.dir = dir; 70 dmab->bytes = 0; 71 dmab->addr = 0; 72 dmab->private_data = NULL; 73 dmab->area = __snd_dma_alloc_pages(dmab, size); 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78} 79EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 80 81/** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98{ 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112} 113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115/** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122{ 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127} 128EXPORT_SYMBOL(snd_dma_free_pages); 129 130/* called by devres */ 131static void __snd_release_pages(struct device *dev, void *res) 132{ 133 snd_dma_free_pages(res); 134} 135 136/** 137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 138 * @dev: the device pointer 139 * @type: the DMA buffer type 140 * @dir: DMA direction 141 * @size: the buffer size to allocate 142 * 143 * Allocate buffer pages depending on the given type and manage using devres. 144 * The pages will be released automatically at the device removal. 145 * 146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 148 * SNDRV_DMA_TYPE_VMALLOC type. 149 * 150 * The function returns the snd_dma_buffer object at success, or NULL if failed. 151 */ 152struct snd_dma_buffer * 153snd_devm_alloc_dir_pages(struct device *dev, int type, 154 enum dma_data_direction dir, size_t size) 155{ 156 struct snd_dma_buffer *dmab; 157 int err; 158 159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 160 type == SNDRV_DMA_TYPE_VMALLOC)) 161 return NULL; 162 163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 164 if (!dmab) 165 return NULL; 166 167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 168 if (err < 0) { 169 devres_free(dmab); 170 return NULL; 171 } 172 173 devres_add(dev, dmab); 174 return dmab; 175} 176EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 177 178/** 179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 180 * @dmab: buffer allocation information 181 * @area: VM area information 182 */ 183int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 184 struct vm_area_struct *area) 185{ 186 const struct snd_malloc_ops *ops; 187 188 if (!dmab) 189 return -ENOENT; 190 ops = snd_dma_get_ops(dmab); 191 if (ops && ops->mmap) 192 return ops->mmap(dmab, area); 193 else 194 return -ENOENT; 195} 196EXPORT_SYMBOL(snd_dma_buffer_mmap); 197 198#ifdef CONFIG_HAS_DMA 199/** 200 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 201 * @dmab: buffer allocation information 202 * @mode: sync mode 203 */ 204void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 205 enum snd_dma_sync_mode mode) 206{ 207 const struct snd_malloc_ops *ops; 208 209 if (!dmab || !dmab->dev.need_sync) 210 return; 211 ops = snd_dma_get_ops(dmab); 212 if (ops && ops->sync) 213 ops->sync(dmab, mode); 214} 215EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 216#endif /* CONFIG_HAS_DMA */ 217 218/** 219 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 220 * @dmab: buffer allocation information 221 * @offset: offset in the ring buffer 222 */ 223dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 224{ 225 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 226 227 if (ops && ops->get_addr) 228 return ops->get_addr(dmab, offset); 229 else 230 return dmab->addr + offset; 231} 232EXPORT_SYMBOL(snd_sgbuf_get_addr); 233 234/** 235 * snd_sgbuf_get_page - return the physical page at the corresponding offset 236 * @dmab: buffer allocation information 237 * @offset: offset in the ring buffer 238 */ 239struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 240{ 241 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 242 243 if (ops && ops->get_page) 244 return ops->get_page(dmab, offset); 245 else 246 return virt_to_page(dmab->area + offset); 247} 248EXPORT_SYMBOL(snd_sgbuf_get_page); 249 250/** 251 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 252 * on sg-buffer 253 * @dmab: buffer allocation information 254 * @ofs: offset in the ring buffer 255 * @size: the requested size 256 */ 257unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 258 unsigned int ofs, unsigned int size) 259{ 260 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 261 262 if (ops && ops->get_chunk_size) 263 return ops->get_chunk_size(dmab, ofs, size); 264 else 265 return size; 266} 267EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 268 269/* 270 * Continuous pages allocator 271 */ 272static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 273{ 274 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 275 void *p = alloc_pages_exact(size, gfp); 276 277 if (p) 278 dmab->addr = page_to_phys(virt_to_page(p)); 279 return p; 280} 281 282static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 283{ 284 free_pages_exact(dmab->area, dmab->bytes); 285} 286 287static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 288 struct vm_area_struct *area) 289{ 290 return remap_pfn_range(area, area->vm_start, 291 dmab->addr >> PAGE_SHIFT, 292 area->vm_end - area->vm_start, 293 area->vm_page_prot); 294} 295 296static const struct snd_malloc_ops snd_dma_continuous_ops = { 297 .alloc = snd_dma_continuous_alloc, 298 .free = snd_dma_continuous_free, 299 .mmap = snd_dma_continuous_mmap, 300}; 301 302/* 303 * VMALLOC allocator 304 */ 305static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 306{ 307 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 308 309 return __vmalloc(size, gfp); 310} 311 312static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 313{ 314 vfree(dmab->area); 315} 316 317static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 318 struct vm_area_struct *area) 319{ 320 return remap_vmalloc_range(area, dmab->area, 0); 321} 322 323#define get_vmalloc_page_addr(dmab, offset) \ 324 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 325 326static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 327 size_t offset) 328{ 329 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 330} 331 332static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 333 size_t offset) 334{ 335 return vmalloc_to_page(dmab->area + offset); 336} 337 338static unsigned int 339snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 340 unsigned int ofs, unsigned int size) 341{ 342 unsigned int start, end; 343 unsigned long addr; 344 345 start = ALIGN_DOWN(ofs, PAGE_SIZE); 346 end = ofs + size - 1; /* the last byte address */ 347 /* check page continuity */ 348 addr = get_vmalloc_page_addr(dmab, start); 349 for (;;) { 350 start += PAGE_SIZE; 351 if (start > end) 352 break; 353 addr += PAGE_SIZE; 354 if (get_vmalloc_page_addr(dmab, start) != addr) 355 return start - ofs; 356 } 357 /* ok, all on continuous pages */ 358 return size; 359} 360 361static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 362 .alloc = snd_dma_vmalloc_alloc, 363 .free = snd_dma_vmalloc_free, 364 .mmap = snd_dma_vmalloc_mmap, 365 .get_addr = snd_dma_vmalloc_get_addr, 366 .get_page = snd_dma_vmalloc_get_page, 367 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 368}; 369 370#ifdef CONFIG_HAS_DMA 371/* 372 * IRAM allocator 373 */ 374#ifdef CONFIG_GENERIC_ALLOCATOR 375static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 376{ 377 struct device *dev = dmab->dev.dev; 378 struct gen_pool *pool; 379 void *p; 380 381 if (dev->of_node) { 382 pool = of_gen_pool_get(dev->of_node, "iram", 0); 383 /* Assign the pool into private_data field */ 384 dmab->private_data = pool; 385 386 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 387 if (p) 388 return p; 389 } 390 391 /* Internal memory might have limited size and no enough space, 392 * so if we fail to malloc, try to fetch memory traditionally. 393 */ 394 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 395 return __snd_dma_alloc_pages(dmab, size); 396} 397 398static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 399{ 400 struct gen_pool *pool = dmab->private_data; 401 402 if (pool && dmab->area) 403 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 404} 405 406static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 407 struct vm_area_struct *area) 408{ 409 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 410 return remap_pfn_range(area, area->vm_start, 411 dmab->addr >> PAGE_SHIFT, 412 area->vm_end - area->vm_start, 413 area->vm_page_prot); 414} 415 416static const struct snd_malloc_ops snd_dma_iram_ops = { 417 .alloc = snd_dma_iram_alloc, 418 .free = snd_dma_iram_free, 419 .mmap = snd_dma_iram_mmap, 420}; 421#endif /* CONFIG_GENERIC_ALLOCATOR */ 422 423#define DEFAULT_GFP \ 424 (GFP_KERNEL | \ 425 __GFP_COMP | /* compound page lets parts be mapped */ \ 426 __GFP_NORETRY | /* don't trigger OOM-killer */ \ 427 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 428 429/* 430 * Coherent device pages allocator 431 */ 432static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 433{ 434 void *p; 435 436 p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 437#ifdef CONFIG_X86 438 if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 439 set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT); 440#endif 441 return p; 442} 443 444static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 445{ 446#ifdef CONFIG_X86 447 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 448 set_memory_wb((unsigned long)dmab->area, 449 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT); 450#endif 451 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 452} 453 454static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 455 struct vm_area_struct *area) 456{ 457#ifdef CONFIG_X86 458 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 459 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 460#endif 461 return dma_mmap_coherent(dmab->dev.dev, area, 462 dmab->area, dmab->addr, dmab->bytes); 463} 464 465static const struct snd_malloc_ops snd_dma_dev_ops = { 466 .alloc = snd_dma_dev_alloc, 467 .free = snd_dma_dev_free, 468 .mmap = snd_dma_dev_mmap, 469}; 470 471/* 472 * Write-combined pages 473 */ 474#ifdef CONFIG_X86 475/* On x86, share the same ops as the standard dev ops */ 476#define snd_dma_wc_ops snd_dma_dev_ops 477#else /* CONFIG_X86 */ 478static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 479{ 480 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 481} 482 483static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 484{ 485 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 486} 487 488static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 489 struct vm_area_struct *area) 490{ 491 return dma_mmap_wc(dmab->dev.dev, area, 492 dmab->area, dmab->addr, dmab->bytes); 493} 494 495static const struct snd_malloc_ops snd_dma_wc_ops = { 496 .alloc = snd_dma_wc_alloc, 497 .free = snd_dma_wc_free, 498 .mmap = snd_dma_wc_mmap, 499}; 500#endif /* CONFIG_X86 */ 501 502/* 503 * Non-contiguous pages allocator 504 */ 505static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 506{ 507 struct sg_table *sgt; 508 void *p; 509 510 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 511 DEFAULT_GFP, 0); 512 if (!sgt) 513 return NULL; 514 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir); 515 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 516 if (p) 517 dmab->private_data = sgt; 518 else 519 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 520 return p; 521} 522 523static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 524{ 525 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 526 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 527 dmab->dev.dir); 528} 529 530static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 531 struct vm_area_struct *area) 532{ 533 return dma_mmap_noncontiguous(dmab->dev.dev, area, 534 dmab->bytes, dmab->private_data); 535} 536 537static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 538 enum snd_dma_sync_mode mode) 539{ 540 if (mode == SNDRV_DMA_SYNC_CPU) { 541 if (dmab->dev.dir == DMA_TO_DEVICE) 542 return; 543 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 544 dmab->dev.dir); 545 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 546 } else { 547 if (dmab->dev.dir == DMA_FROM_DEVICE) 548 return; 549 flush_kernel_vmap_range(dmab->area, dmab->bytes); 550 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 551 dmab->dev.dir); 552 } 553} 554 555static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab, 556 struct sg_page_iter *piter, 557 size_t offset) 558{ 559 struct sg_table *sgt = dmab->private_data; 560 561 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents, 562 offset >> PAGE_SHIFT); 563} 564 565static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab, 566 size_t offset) 567{ 568 struct sg_dma_page_iter iter; 569 570 snd_dma_noncontig_iter_set(dmab, &iter.base, offset); 571 __sg_page_iter_dma_next(&iter); 572 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE; 573} 574 575static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab, 576 size_t offset) 577{ 578 struct sg_page_iter iter; 579 580 snd_dma_noncontig_iter_set(dmab, &iter, offset); 581 __sg_page_iter_next(&iter); 582 return sg_page_iter_page(&iter); 583} 584 585static unsigned int 586snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab, 587 unsigned int ofs, unsigned int size) 588{ 589 struct sg_dma_page_iter iter; 590 unsigned int start, end; 591 unsigned long addr; 592 593 start = ALIGN_DOWN(ofs, PAGE_SIZE); 594 end = ofs + size - 1; /* the last byte address */ 595 snd_dma_noncontig_iter_set(dmab, &iter.base, start); 596 if (!__sg_page_iter_dma_next(&iter)) 597 return 0; 598 /* check page continuity */ 599 addr = sg_page_iter_dma_address(&iter); 600 for (;;) { 601 start += PAGE_SIZE; 602 if (start > end) 603 break; 604 addr += PAGE_SIZE; 605 if (!__sg_page_iter_dma_next(&iter) || 606 sg_page_iter_dma_address(&iter) != addr) 607 return start - ofs; 608 } 609 /* ok, all on continuous pages */ 610 return size; 611} 612 613static const struct snd_malloc_ops snd_dma_noncontig_ops = { 614 .alloc = snd_dma_noncontig_alloc, 615 .free = snd_dma_noncontig_free, 616 .mmap = snd_dma_noncontig_mmap, 617 .sync = snd_dma_noncontig_sync, 618 .get_addr = snd_dma_noncontig_get_addr, 619 .get_page = snd_dma_noncontig_get_page, 620 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 621}; 622 623/* 624 * Non-coherent pages allocator 625 */ 626static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 627{ 628 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir); 629 return dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 630 dmab->dev.dir, DEFAULT_GFP); 631} 632 633static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 634{ 635 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 636 dmab->addr, dmab->dev.dir); 637} 638 639static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 640 struct vm_area_struct *area) 641{ 642 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 643 return dma_mmap_pages(dmab->dev.dev, area, 644 area->vm_end - area->vm_start, 645 virt_to_page(dmab->area)); 646} 647 648static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 649 enum snd_dma_sync_mode mode) 650{ 651 if (mode == SNDRV_DMA_SYNC_CPU) { 652 if (dmab->dev.dir != DMA_TO_DEVICE) 653 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 654 dmab->bytes, dmab->dev.dir); 655 } else { 656 if (dmab->dev.dir != DMA_FROM_DEVICE) 657 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 658 dmab->bytes, dmab->dev.dir); 659 } 660} 661 662static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 663 .alloc = snd_dma_noncoherent_alloc, 664 .free = snd_dma_noncoherent_free, 665 .mmap = snd_dma_noncoherent_mmap, 666 .sync = snd_dma_noncoherent_sync, 667}; 668 669#endif /* CONFIG_HAS_DMA */ 670 671/* 672 * Entry points 673 */ 674static const struct snd_malloc_ops *dma_ops[] = { 675 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 676 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 677#ifdef CONFIG_HAS_DMA 678 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 679 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 680 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 681 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 682#ifdef CONFIG_GENERIC_ALLOCATOR 683 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 684#endif /* CONFIG_GENERIC_ALLOCATOR */ 685#endif /* CONFIG_HAS_DMA */ 686#ifdef CONFIG_SND_DMA_SGBUF 687 [SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops, 688 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops, 689#endif 690}; 691 692static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 693{ 694 if (WARN_ON_ONCE(!dmab)) 695 return NULL; 696 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 697 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 698 return NULL; 699 return dma_ops[dmab->dev.type]; 700}