Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/dma-mapping.h>
12#include <linux/genalloc.h>
13#include <linux/highmem.h>
14#include <linux/vmalloc.h>
15#ifdef CONFIG_X86
16#include <asm/set_memory.h>
17#endif
18#include <sound/memalloc.h>
19#include "memalloc_local.h"
20
21static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
22
23/* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */
24static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab,
25 gfp_t default_gfp)
26{
27 if (!dmab->dev.dev)
28 return default_gfp;
29 else
30 return (__force gfp_t)(unsigned long)dmab->dev.dev;
31}
32
33static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
34{
35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
36
37 if (WARN_ON_ONCE(!ops || !ops->alloc))
38 return NULL;
39 return ops->alloc(dmab, size);
40}
41
42/**
43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
44 * type and direction
45 * @type: the DMA buffer type
46 * @device: the device pointer
47 * @dir: DMA direction
48 * @size: the buffer size to allocate
49 * @dmab: buffer allocation record to store the allocated data
50 *
51 * Calls the memory-allocator function for the corresponding
52 * buffer type.
53 *
54 * Return: Zero if the buffer with the given size is allocated successfully,
55 * otherwise a negative value on error.
56 */
57int snd_dma_alloc_dir_pages(int type, struct device *device,
58 enum dma_data_direction dir, size_t size,
59 struct snd_dma_buffer *dmab)
60{
61 if (WARN_ON(!size))
62 return -ENXIO;
63 if (WARN_ON(!dmab))
64 return -ENXIO;
65
66 size = PAGE_ALIGN(size);
67 dmab->dev.type = type;
68 dmab->dev.dev = device;
69 dmab->dev.dir = dir;
70 dmab->bytes = 0;
71 dmab->addr = 0;
72 dmab->private_data = NULL;
73 dmab->area = __snd_dma_alloc_pages(dmab, size);
74 if (!dmab->area)
75 return -ENOMEM;
76 dmab->bytes = size;
77 return 0;
78}
79EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
80
81/**
82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
83 * @type: the DMA buffer type
84 * @device: the device pointer
85 * @size: the buffer size to allocate
86 * @dmab: buffer allocation record to store the allocated data
87 *
88 * Calls the memory-allocator function for the corresponding
89 * buffer type. When no space is left, this function reduces the size and
90 * tries to allocate again. The size actually allocated is stored in
91 * res_size argument.
92 *
93 * Return: Zero if the buffer with the given size is allocated successfully,
94 * otherwise a negative value on error.
95 */
96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
97 struct snd_dma_buffer *dmab)
98{
99 int err;
100
101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
102 if (err != -ENOMEM)
103 return err;
104 if (size <= PAGE_SIZE)
105 return -ENOMEM;
106 size >>= 1;
107 size = PAGE_SIZE << get_order(size);
108 }
109 if (! dmab->area)
110 return -ENOMEM;
111 return 0;
112}
113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115/**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
121void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122{
123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125 if (ops && ops->free)
126 ops->free(dmab);
127}
128EXPORT_SYMBOL(snd_dma_free_pages);
129
130/* called by devres */
131static void __snd_release_pages(struct device *dev, void *res)
132{
133 snd_dma_free_pages(res);
134}
135
136/**
137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
138 * @dev: the device pointer
139 * @type: the DMA buffer type
140 * @dir: DMA direction
141 * @size: the buffer size to allocate
142 *
143 * Allocate buffer pages depending on the given type and manage using devres.
144 * The pages will be released automatically at the device removal.
145 *
146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
148 * SNDRV_DMA_TYPE_VMALLOC type.
149 *
150 * The function returns the snd_dma_buffer object at success, or NULL if failed.
151 */
152struct snd_dma_buffer *
153snd_devm_alloc_dir_pages(struct device *dev, int type,
154 enum dma_data_direction dir, size_t size)
155{
156 struct snd_dma_buffer *dmab;
157 int err;
158
159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
160 type == SNDRV_DMA_TYPE_VMALLOC))
161 return NULL;
162
163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
164 if (!dmab)
165 return NULL;
166
167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
168 if (err < 0) {
169 devres_free(dmab);
170 return NULL;
171 }
172
173 devres_add(dev, dmab);
174 return dmab;
175}
176EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
177
178/**
179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
180 * @dmab: buffer allocation information
181 * @area: VM area information
182 */
183int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
184 struct vm_area_struct *area)
185{
186 const struct snd_malloc_ops *ops;
187
188 if (!dmab)
189 return -ENOENT;
190 ops = snd_dma_get_ops(dmab);
191 if (ops && ops->mmap)
192 return ops->mmap(dmab, area);
193 else
194 return -ENOENT;
195}
196EXPORT_SYMBOL(snd_dma_buffer_mmap);
197
198#ifdef CONFIG_HAS_DMA
199/**
200 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
201 * @dmab: buffer allocation information
202 * @mode: sync mode
203 */
204void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
205 enum snd_dma_sync_mode mode)
206{
207 const struct snd_malloc_ops *ops;
208
209 if (!dmab || !dmab->dev.need_sync)
210 return;
211 ops = snd_dma_get_ops(dmab);
212 if (ops && ops->sync)
213 ops->sync(dmab, mode);
214}
215EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
216#endif /* CONFIG_HAS_DMA */
217
218/**
219 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
220 * @dmab: buffer allocation information
221 * @offset: offset in the ring buffer
222 */
223dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
224{
225 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
226
227 if (ops && ops->get_addr)
228 return ops->get_addr(dmab, offset);
229 else
230 return dmab->addr + offset;
231}
232EXPORT_SYMBOL(snd_sgbuf_get_addr);
233
234/**
235 * snd_sgbuf_get_page - return the physical page at the corresponding offset
236 * @dmab: buffer allocation information
237 * @offset: offset in the ring buffer
238 */
239struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
240{
241 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
242
243 if (ops && ops->get_page)
244 return ops->get_page(dmab, offset);
245 else
246 return virt_to_page(dmab->area + offset);
247}
248EXPORT_SYMBOL(snd_sgbuf_get_page);
249
250/**
251 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
252 * on sg-buffer
253 * @dmab: buffer allocation information
254 * @ofs: offset in the ring buffer
255 * @size: the requested size
256 */
257unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
258 unsigned int ofs, unsigned int size)
259{
260 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
261
262 if (ops && ops->get_chunk_size)
263 return ops->get_chunk_size(dmab, ofs, size);
264 else
265 return size;
266}
267EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
268
269/*
270 * Continuous pages allocator
271 */
272static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
273{
274 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL);
275 void *p = alloc_pages_exact(size, gfp);
276
277 if (p)
278 dmab->addr = page_to_phys(virt_to_page(p));
279 return p;
280}
281
282static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
283{
284 free_pages_exact(dmab->area, dmab->bytes);
285}
286
287static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
288 struct vm_area_struct *area)
289{
290 return remap_pfn_range(area, area->vm_start,
291 dmab->addr >> PAGE_SHIFT,
292 area->vm_end - area->vm_start,
293 area->vm_page_prot);
294}
295
296static const struct snd_malloc_ops snd_dma_continuous_ops = {
297 .alloc = snd_dma_continuous_alloc,
298 .free = snd_dma_continuous_free,
299 .mmap = snd_dma_continuous_mmap,
300};
301
302/*
303 * VMALLOC allocator
304 */
305static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
306{
307 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM);
308
309 return __vmalloc(size, gfp);
310}
311
312static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
313{
314 vfree(dmab->area);
315}
316
317static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
318 struct vm_area_struct *area)
319{
320 return remap_vmalloc_range(area, dmab->area, 0);
321}
322
323#define get_vmalloc_page_addr(dmab, offset) \
324 page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
325
326static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
327 size_t offset)
328{
329 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
330}
331
332static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
333 size_t offset)
334{
335 return vmalloc_to_page(dmab->area + offset);
336}
337
338static unsigned int
339snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
340 unsigned int ofs, unsigned int size)
341{
342 unsigned int start, end;
343 unsigned long addr;
344
345 start = ALIGN_DOWN(ofs, PAGE_SIZE);
346 end = ofs + size - 1; /* the last byte address */
347 /* check page continuity */
348 addr = get_vmalloc_page_addr(dmab, start);
349 for (;;) {
350 start += PAGE_SIZE;
351 if (start > end)
352 break;
353 addr += PAGE_SIZE;
354 if (get_vmalloc_page_addr(dmab, start) != addr)
355 return start - ofs;
356 }
357 /* ok, all on continuous pages */
358 return size;
359}
360
361static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
362 .alloc = snd_dma_vmalloc_alloc,
363 .free = snd_dma_vmalloc_free,
364 .mmap = snd_dma_vmalloc_mmap,
365 .get_addr = snd_dma_vmalloc_get_addr,
366 .get_page = snd_dma_vmalloc_get_page,
367 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
368};
369
370#ifdef CONFIG_HAS_DMA
371/*
372 * IRAM allocator
373 */
374#ifdef CONFIG_GENERIC_ALLOCATOR
375static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
376{
377 struct device *dev = dmab->dev.dev;
378 struct gen_pool *pool;
379 void *p;
380
381 if (dev->of_node) {
382 pool = of_gen_pool_get(dev->of_node, "iram", 0);
383 /* Assign the pool into private_data field */
384 dmab->private_data = pool;
385
386 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
387 if (p)
388 return p;
389 }
390
391 /* Internal memory might have limited size and no enough space,
392 * so if we fail to malloc, try to fetch memory traditionally.
393 */
394 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
395 return __snd_dma_alloc_pages(dmab, size);
396}
397
398static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
399{
400 struct gen_pool *pool = dmab->private_data;
401
402 if (pool && dmab->area)
403 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
404}
405
406static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
407 struct vm_area_struct *area)
408{
409 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
410 return remap_pfn_range(area, area->vm_start,
411 dmab->addr >> PAGE_SHIFT,
412 area->vm_end - area->vm_start,
413 area->vm_page_prot);
414}
415
416static const struct snd_malloc_ops snd_dma_iram_ops = {
417 .alloc = snd_dma_iram_alloc,
418 .free = snd_dma_iram_free,
419 .mmap = snd_dma_iram_mmap,
420};
421#endif /* CONFIG_GENERIC_ALLOCATOR */
422
423#define DEFAULT_GFP \
424 (GFP_KERNEL | \
425 __GFP_COMP | /* compound page lets parts be mapped */ \
426 __GFP_NORETRY | /* don't trigger OOM-killer */ \
427 __GFP_NOWARN) /* no stack trace print - this call is non-critical */
428
429/*
430 * Coherent device pages allocator
431 */
432static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
433{
434 void *p;
435
436 p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
437#ifdef CONFIG_X86
438 if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
439 set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT);
440#endif
441 return p;
442}
443
444static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
445{
446#ifdef CONFIG_X86
447 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
448 set_memory_wb((unsigned long)dmab->area,
449 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT);
450#endif
451 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
452}
453
454static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
455 struct vm_area_struct *area)
456{
457#ifdef CONFIG_X86
458 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
459 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
460#endif
461 return dma_mmap_coherent(dmab->dev.dev, area,
462 dmab->area, dmab->addr, dmab->bytes);
463}
464
465static const struct snd_malloc_ops snd_dma_dev_ops = {
466 .alloc = snd_dma_dev_alloc,
467 .free = snd_dma_dev_free,
468 .mmap = snd_dma_dev_mmap,
469};
470
471/*
472 * Write-combined pages
473 */
474#ifdef CONFIG_X86
475/* On x86, share the same ops as the standard dev ops */
476#define snd_dma_wc_ops snd_dma_dev_ops
477#else /* CONFIG_X86 */
478static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
479{
480 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
481}
482
483static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
484{
485 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
486}
487
488static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
489 struct vm_area_struct *area)
490{
491 return dma_mmap_wc(dmab->dev.dev, area,
492 dmab->area, dmab->addr, dmab->bytes);
493}
494
495static const struct snd_malloc_ops snd_dma_wc_ops = {
496 .alloc = snd_dma_wc_alloc,
497 .free = snd_dma_wc_free,
498 .mmap = snd_dma_wc_mmap,
499};
500#endif /* CONFIG_X86 */
501
502/*
503 * Non-contiguous pages allocator
504 */
505static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
506{
507 struct sg_table *sgt;
508 void *p;
509
510 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
511 DEFAULT_GFP, 0);
512 if (!sgt)
513 return NULL;
514 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir);
515 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
516 if (p)
517 dmab->private_data = sgt;
518 else
519 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
520 return p;
521}
522
523static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
524{
525 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
526 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
527 dmab->dev.dir);
528}
529
530static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
531 struct vm_area_struct *area)
532{
533 return dma_mmap_noncontiguous(dmab->dev.dev, area,
534 dmab->bytes, dmab->private_data);
535}
536
537static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
538 enum snd_dma_sync_mode mode)
539{
540 if (mode == SNDRV_DMA_SYNC_CPU) {
541 if (dmab->dev.dir == DMA_TO_DEVICE)
542 return;
543 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
544 dmab->dev.dir);
545 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
546 } else {
547 if (dmab->dev.dir == DMA_FROM_DEVICE)
548 return;
549 flush_kernel_vmap_range(dmab->area, dmab->bytes);
550 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
551 dmab->dev.dir);
552 }
553}
554
555static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
556 struct sg_page_iter *piter,
557 size_t offset)
558{
559 struct sg_table *sgt = dmab->private_data;
560
561 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
562 offset >> PAGE_SHIFT);
563}
564
565static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
566 size_t offset)
567{
568 struct sg_dma_page_iter iter;
569
570 snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
571 __sg_page_iter_dma_next(&iter);
572 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
573}
574
575static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
576 size_t offset)
577{
578 struct sg_page_iter iter;
579
580 snd_dma_noncontig_iter_set(dmab, &iter, offset);
581 __sg_page_iter_next(&iter);
582 return sg_page_iter_page(&iter);
583}
584
585static unsigned int
586snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
587 unsigned int ofs, unsigned int size)
588{
589 struct sg_dma_page_iter iter;
590 unsigned int start, end;
591 unsigned long addr;
592
593 start = ALIGN_DOWN(ofs, PAGE_SIZE);
594 end = ofs + size - 1; /* the last byte address */
595 snd_dma_noncontig_iter_set(dmab, &iter.base, start);
596 if (!__sg_page_iter_dma_next(&iter))
597 return 0;
598 /* check page continuity */
599 addr = sg_page_iter_dma_address(&iter);
600 for (;;) {
601 start += PAGE_SIZE;
602 if (start > end)
603 break;
604 addr += PAGE_SIZE;
605 if (!__sg_page_iter_dma_next(&iter) ||
606 sg_page_iter_dma_address(&iter) != addr)
607 return start - ofs;
608 }
609 /* ok, all on continuous pages */
610 return size;
611}
612
613static const struct snd_malloc_ops snd_dma_noncontig_ops = {
614 .alloc = snd_dma_noncontig_alloc,
615 .free = snd_dma_noncontig_free,
616 .mmap = snd_dma_noncontig_mmap,
617 .sync = snd_dma_noncontig_sync,
618 .get_addr = snd_dma_noncontig_get_addr,
619 .get_page = snd_dma_noncontig_get_page,
620 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
621};
622
623/*
624 * Non-coherent pages allocator
625 */
626static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
627{
628 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir);
629 return dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
630 dmab->dev.dir, DEFAULT_GFP);
631}
632
633static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
634{
635 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
636 dmab->addr, dmab->dev.dir);
637}
638
639static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
640 struct vm_area_struct *area)
641{
642 area->vm_page_prot = vm_get_page_prot(area->vm_flags);
643 return dma_mmap_pages(dmab->dev.dev, area,
644 area->vm_end - area->vm_start,
645 virt_to_page(dmab->area));
646}
647
648static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
649 enum snd_dma_sync_mode mode)
650{
651 if (mode == SNDRV_DMA_SYNC_CPU) {
652 if (dmab->dev.dir != DMA_TO_DEVICE)
653 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
654 dmab->bytes, dmab->dev.dir);
655 } else {
656 if (dmab->dev.dir != DMA_FROM_DEVICE)
657 dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
658 dmab->bytes, dmab->dev.dir);
659 }
660}
661
662static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
663 .alloc = snd_dma_noncoherent_alloc,
664 .free = snd_dma_noncoherent_free,
665 .mmap = snd_dma_noncoherent_mmap,
666 .sync = snd_dma_noncoherent_sync,
667};
668
669#endif /* CONFIG_HAS_DMA */
670
671/*
672 * Entry points
673 */
674static const struct snd_malloc_ops *dma_ops[] = {
675 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
676 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
677#ifdef CONFIG_HAS_DMA
678 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
679 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
680 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
681 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
682#ifdef CONFIG_GENERIC_ALLOCATOR
683 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
684#endif /* CONFIG_GENERIC_ALLOCATOR */
685#endif /* CONFIG_HAS_DMA */
686#ifdef CONFIG_SND_DMA_SGBUF
687 [SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
688 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops,
689#endif
690};
691
692static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
693{
694 if (WARN_ON_ONCE(!dmab))
695 return NULL;
696 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
697 dmab->dev.type >= ARRAY_SIZE(dma_ops)))
698 return NULL;
699 return dma_ops[dmab->dev.type];
700}