Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "net-sysfs.h"
155
156#define MAX_GRO_SKBS 8
157
158/* This should be increased if a protocol with a bigger head is added. */
159#define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161static DEFINE_SPINLOCK(ptype_lock);
162static DEFINE_SPINLOCK(offload_lock);
163struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164struct list_head ptype_all __read_mostly; /* Taps */
165static struct list_head offload_base __read_mostly;
166
167static int netif_rx_internal(struct sk_buff *skb);
168static int call_netdevice_notifiers_info(unsigned long val,
169 struct netdev_notifier_info *info);
170static int call_netdevice_notifiers_extack(unsigned long val,
171 struct net_device *dev,
172 struct netlink_ext_ack *extack);
173static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175/*
176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * semaphore.
178 *
179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180 *
181 * Writers must hold the rtnl semaphore while they loop through the
182 * dev_base_head list, and hold dev_base_lock for writing when they do the
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
185 *
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
189 *
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
192 * semaphore held.
193 */
194DEFINE_RWLOCK(dev_base_lock);
195EXPORT_SYMBOL(dev_base_lock);
196
197static DEFINE_MUTEX(ifalias_mutex);
198
199/* protects napi_hash addition/deletion and napi_gen_id */
200static DEFINE_SPINLOCK(napi_hash_lock);
201
202static unsigned int napi_gen_id = NR_CPUS;
203static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205static DECLARE_RWSEM(devnet_rename_sem);
206
207static inline void dev_base_seq_inc(struct net *net)
208{
209 while (++net->dev_base_seq == 0)
210 ;
211}
212
213static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214{
215 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218}
219
220static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221{
222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223}
224
225static inline void rps_lock(struct softnet_data *sd)
226{
227#ifdef CONFIG_RPS
228 spin_lock(&sd->input_pkt_queue.lock);
229#endif
230}
231
232static inline void rps_unlock(struct softnet_data *sd)
233{
234#ifdef CONFIG_RPS
235 spin_unlock(&sd->input_pkt_queue.lock);
236#endif
237}
238
239static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 const char *name)
241{
242 struct netdev_name_node *name_node;
243
244 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 if (!name_node)
246 return NULL;
247 INIT_HLIST_NODE(&name_node->hlist);
248 name_node->dev = dev;
249 name_node->name = name;
250 return name_node;
251}
252
253static struct netdev_name_node *
254netdev_name_node_head_alloc(struct net_device *dev)
255{
256 struct netdev_name_node *name_node;
257
258 name_node = netdev_name_node_alloc(dev, dev->name);
259 if (!name_node)
260 return NULL;
261 INIT_LIST_HEAD(&name_node->list);
262 return name_node;
263}
264
265static void netdev_name_node_free(struct netdev_name_node *name_node)
266{
267 kfree(name_node);
268}
269
270static void netdev_name_node_add(struct net *net,
271 struct netdev_name_node *name_node)
272{
273 hlist_add_head_rcu(&name_node->hlist,
274 dev_name_hash(net, name_node->name));
275}
276
277static void netdev_name_node_del(struct netdev_name_node *name_node)
278{
279 hlist_del_rcu(&name_node->hlist);
280}
281
282static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 const char *name)
284{
285 struct hlist_head *head = dev_name_hash(net, name);
286 struct netdev_name_node *name_node;
287
288 hlist_for_each_entry(name_node, head, hlist)
289 if (!strcmp(name_node->name, name))
290 return name_node;
291 return NULL;
292}
293
294static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 const char *name)
296{
297 struct hlist_head *head = dev_name_hash(net, name);
298 struct netdev_name_node *name_node;
299
300 hlist_for_each_entry_rcu(name_node, head, hlist)
301 if (!strcmp(name_node->name, name))
302 return name_node;
303 return NULL;
304}
305
306bool netdev_name_in_use(struct net *net, const char *name)
307{
308 return netdev_name_node_lookup(net, name);
309}
310EXPORT_SYMBOL(netdev_name_in_use);
311
312int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313{
314 struct netdev_name_node *name_node;
315 struct net *net = dev_net(dev);
316
317 name_node = netdev_name_node_lookup(net, name);
318 if (name_node)
319 return -EEXIST;
320 name_node = netdev_name_node_alloc(dev, name);
321 if (!name_node)
322 return -ENOMEM;
323 netdev_name_node_add(net, name_node);
324 /* The node that holds dev->name acts as a head of per-device list. */
325 list_add_tail(&name_node->list, &dev->name_node->list);
326
327 return 0;
328}
329EXPORT_SYMBOL(netdev_name_node_alt_create);
330
331static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332{
333 list_del(&name_node->list);
334 netdev_name_node_del(name_node);
335 kfree(name_node->name);
336 netdev_name_node_free(name_node);
337}
338
339int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340{
341 struct netdev_name_node *name_node;
342 struct net *net = dev_net(dev);
343
344 name_node = netdev_name_node_lookup(net, name);
345 if (!name_node)
346 return -ENOENT;
347 /* lookup might have found our primary name or a name belonging
348 * to another device.
349 */
350 if (name_node == dev->name_node || name_node->dev != dev)
351 return -EINVAL;
352
353 __netdev_name_node_alt_destroy(name_node);
354
355 return 0;
356}
357EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358
359static void netdev_name_node_alt_flush(struct net_device *dev)
360{
361 struct netdev_name_node *name_node, *tmp;
362
363 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364 __netdev_name_node_alt_destroy(name_node);
365}
366
367/* Device list insertion */
368static void list_netdevice(struct net_device *dev)
369{
370 struct net *net = dev_net(dev);
371
372 ASSERT_RTNL();
373
374 write_lock_bh(&dev_base_lock);
375 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376 netdev_name_node_add(net, dev->name_node);
377 hlist_add_head_rcu(&dev->index_hlist,
378 dev_index_hash(net, dev->ifindex));
379 write_unlock_bh(&dev_base_lock);
380
381 dev_base_seq_inc(net);
382}
383
384/* Device list removal
385 * caller must respect a RCU grace period before freeing/reusing dev
386 */
387static void unlist_netdevice(struct net_device *dev)
388{
389 ASSERT_RTNL();
390
391 /* Unlink dev from the device chain */
392 write_lock_bh(&dev_base_lock);
393 list_del_rcu(&dev->dev_list);
394 netdev_name_node_del(dev->name_node);
395 hlist_del_rcu(&dev->index_hlist);
396 write_unlock_bh(&dev_base_lock);
397
398 dev_base_seq_inc(dev_net(dev));
399}
400
401/*
402 * Our notifier list
403 */
404
405static RAW_NOTIFIER_HEAD(netdev_chain);
406
407/*
408 * Device drivers call our routines to queue packets here. We empty the
409 * queue in the local softnet handler.
410 */
411
412DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413EXPORT_PER_CPU_SYMBOL(softnet_data);
414
415#ifdef CONFIG_LOCKDEP
416/*
417 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418 * according to dev->type
419 */
420static const unsigned short netdev_lock_type[] = {
421 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436
437static const char *const netdev_lock_name[] = {
438 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453
454static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456
457static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458{
459 int i;
460
461 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462 if (netdev_lock_type[i] == dev_type)
463 return i;
464 /* the last key is used by default */
465 return ARRAY_SIZE(netdev_lock_type) - 1;
466}
467
468static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469 unsigned short dev_type)
470{
471 int i;
472
473 i = netdev_lock_pos(dev_type);
474 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475 netdev_lock_name[i]);
476}
477
478static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479{
480 int i;
481
482 i = netdev_lock_pos(dev->type);
483 lockdep_set_class_and_name(&dev->addr_list_lock,
484 &netdev_addr_lock_key[i],
485 netdev_lock_name[i]);
486}
487#else
488static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489 unsigned short dev_type)
490{
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495}
496#endif
497
498/*******************************************************************************
499 *
500 * Protocol management and registration routines
501 *
502 *******************************************************************************/
503
504
505/*
506 * Add a protocol ID to the list. Now that the input handler is
507 * smarter we can dispense with all the messy stuff that used to be
508 * here.
509 *
510 * BEWARE!!! Protocol handlers, mangling input packets,
511 * MUST BE last in hash buckets and checking protocol handlers
512 * MUST start from promiscuous ptype_all chain in net_bh.
513 * It is true now, do not change it.
514 * Explanation follows: if protocol handler, mangling packet, will
515 * be the first on list, it is not able to sense, that packet
516 * is cloned and should be copied-on-write, so that it will
517 * change it and subsequent readers will get broken packet.
518 * --ANK (980803)
519 */
520
521static inline struct list_head *ptype_head(const struct packet_type *pt)
522{
523 if (pt->type == htons(ETH_P_ALL))
524 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525 else
526 return pt->dev ? &pt->dev->ptype_specific :
527 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528}
529
530/**
531 * dev_add_pack - add packet handler
532 * @pt: packet type declaration
533 *
534 * Add a protocol handler to the networking stack. The passed &packet_type
535 * is linked into kernel lists and may not be freed until it has been
536 * removed from the kernel lists.
537 *
538 * This call does not sleep therefore it can not
539 * guarantee all CPU's that are in middle of receiving packets
540 * will see the new packet type (until the next received packet).
541 */
542
543void dev_add_pack(struct packet_type *pt)
544{
545 struct list_head *head = ptype_head(pt);
546
547 spin_lock(&ptype_lock);
548 list_add_rcu(&pt->list, head);
549 spin_unlock(&ptype_lock);
550}
551EXPORT_SYMBOL(dev_add_pack);
552
553/**
554 * __dev_remove_pack - remove packet handler
555 * @pt: packet type declaration
556 *
557 * Remove a protocol handler that was previously added to the kernel
558 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
559 * from the kernel lists and can be freed or reused once this function
560 * returns.
561 *
562 * The packet type might still be in use by receivers
563 * and must not be freed until after all the CPU's have gone
564 * through a quiescent state.
565 */
566void __dev_remove_pack(struct packet_type *pt)
567{
568 struct list_head *head = ptype_head(pt);
569 struct packet_type *pt1;
570
571 spin_lock(&ptype_lock);
572
573 list_for_each_entry(pt1, head, list) {
574 if (pt == pt1) {
575 list_del_rcu(&pt->list);
576 goto out;
577 }
578 }
579
580 pr_warn("dev_remove_pack: %p not found\n", pt);
581out:
582 spin_unlock(&ptype_lock);
583}
584EXPORT_SYMBOL(__dev_remove_pack);
585
586/**
587 * dev_remove_pack - remove packet handler
588 * @pt: packet type declaration
589 *
590 * Remove a protocol handler that was previously added to the kernel
591 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
592 * from the kernel lists and can be freed or reused once this function
593 * returns.
594 *
595 * This call sleeps to guarantee that no CPU is looking at the packet
596 * type after return.
597 */
598void dev_remove_pack(struct packet_type *pt)
599{
600 __dev_remove_pack(pt);
601
602 synchronize_net();
603}
604EXPORT_SYMBOL(dev_remove_pack);
605
606
607/**
608 * dev_add_offload - register offload handlers
609 * @po: protocol offload declaration
610 *
611 * Add protocol offload handlers to the networking stack. The passed
612 * &proto_offload is linked into kernel lists and may not be freed until
613 * it has been removed from the kernel lists.
614 *
615 * This call does not sleep therefore it can not
616 * guarantee all CPU's that are in middle of receiving packets
617 * will see the new offload handlers (until the next received packet).
618 */
619void dev_add_offload(struct packet_offload *po)
620{
621 struct packet_offload *elem;
622
623 spin_lock(&offload_lock);
624 list_for_each_entry(elem, &offload_base, list) {
625 if (po->priority < elem->priority)
626 break;
627 }
628 list_add_rcu(&po->list, elem->list.prev);
629 spin_unlock(&offload_lock);
630}
631EXPORT_SYMBOL(dev_add_offload);
632
633/**
634 * __dev_remove_offload - remove offload handler
635 * @po: packet offload declaration
636 *
637 * Remove a protocol offload handler that was previously added to the
638 * kernel offload handlers by dev_add_offload(). The passed &offload_type
639 * is removed from the kernel lists and can be freed or reused once this
640 * function returns.
641 *
642 * The packet type might still be in use by receivers
643 * and must not be freed until after all the CPU's have gone
644 * through a quiescent state.
645 */
646static void __dev_remove_offload(struct packet_offload *po)
647{
648 struct list_head *head = &offload_base;
649 struct packet_offload *po1;
650
651 spin_lock(&offload_lock);
652
653 list_for_each_entry(po1, head, list) {
654 if (po == po1) {
655 list_del_rcu(&po->list);
656 goto out;
657 }
658 }
659
660 pr_warn("dev_remove_offload: %p not found\n", po);
661out:
662 spin_unlock(&offload_lock);
663}
664
665/**
666 * dev_remove_offload - remove packet offload handler
667 * @po: packet offload declaration
668 *
669 * Remove a packet offload handler that was previously added to the kernel
670 * offload handlers by dev_add_offload(). The passed &offload_type is
671 * removed from the kernel lists and can be freed or reused once this
672 * function returns.
673 *
674 * This call sleeps to guarantee that no CPU is looking at the packet
675 * type after return.
676 */
677void dev_remove_offload(struct packet_offload *po)
678{
679 __dev_remove_offload(po);
680
681 synchronize_net();
682}
683EXPORT_SYMBOL(dev_remove_offload);
684
685/*******************************************************************************
686 *
687 * Device Interface Subroutines
688 *
689 *******************************************************************************/
690
691/**
692 * dev_get_iflink - get 'iflink' value of a interface
693 * @dev: targeted interface
694 *
695 * Indicates the ifindex the interface is linked to.
696 * Physical interfaces have the same 'ifindex' and 'iflink' values.
697 */
698
699int dev_get_iflink(const struct net_device *dev)
700{
701 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702 return dev->netdev_ops->ndo_get_iflink(dev);
703
704 return dev->ifindex;
705}
706EXPORT_SYMBOL(dev_get_iflink);
707
708/**
709 * dev_fill_metadata_dst - Retrieve tunnel egress information.
710 * @dev: targeted interface
711 * @skb: The packet.
712 *
713 * For better visibility of tunnel traffic OVS needs to retrieve
714 * egress tunnel information for a packet. Following API allows
715 * user to get this info.
716 */
717int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718{
719 struct ip_tunnel_info *info;
720
721 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
722 return -EINVAL;
723
724 info = skb_tunnel_info_unclone(skb);
725 if (!info)
726 return -ENOMEM;
727 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728 return -EINVAL;
729
730 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731}
732EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733
734static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735{
736 int k = stack->num_paths++;
737
738 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739 return NULL;
740
741 return &stack->path[k];
742}
743
744int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745 struct net_device_path_stack *stack)
746{
747 const struct net_device *last_dev;
748 struct net_device_path_ctx ctx = {
749 .dev = dev,
750 .daddr = daddr,
751 };
752 struct net_device_path *path;
753 int ret = 0;
754
755 stack->num_paths = 0;
756 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757 last_dev = ctx.dev;
758 path = dev_fwd_path(stack);
759 if (!path)
760 return -1;
761
762 memset(path, 0, sizeof(struct net_device_path));
763 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764 if (ret < 0)
765 return -1;
766
767 if (WARN_ON_ONCE(last_dev == ctx.dev))
768 return -1;
769 }
770 path = dev_fwd_path(stack);
771 if (!path)
772 return -1;
773 path->type = DEV_PATH_ETHERNET;
774 path->dev = ctx.dev;
775
776 return ret;
777}
778EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779
780/**
781 * __dev_get_by_name - find a device by its name
782 * @net: the applicable net namespace
783 * @name: name to find
784 *
785 * Find an interface by name. Must be called under RTNL semaphore
786 * or @dev_base_lock. If the name is found a pointer to the device
787 * is returned. If the name is not found then %NULL is returned. The
788 * reference counters are not incremented so the caller must be
789 * careful with locks.
790 */
791
792struct net_device *__dev_get_by_name(struct net *net, const char *name)
793{
794 struct netdev_name_node *node_name;
795
796 node_name = netdev_name_node_lookup(net, name);
797 return node_name ? node_name->dev : NULL;
798}
799EXPORT_SYMBOL(__dev_get_by_name);
800
801/**
802 * dev_get_by_name_rcu - find a device by its name
803 * @net: the applicable net namespace
804 * @name: name to find
805 *
806 * Find an interface by name.
807 * If the name is found a pointer to the device is returned.
808 * If the name is not found then %NULL is returned.
809 * The reference counters are not incremented so the caller must be
810 * careful with locks. The caller must hold RCU lock.
811 */
812
813struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814{
815 struct netdev_name_node *node_name;
816
817 node_name = netdev_name_node_lookup_rcu(net, name);
818 return node_name ? node_name->dev : NULL;
819}
820EXPORT_SYMBOL(dev_get_by_name_rcu);
821
822/**
823 * dev_get_by_name - find a device by its name
824 * @net: the applicable net namespace
825 * @name: name to find
826 *
827 * Find an interface by name. This can be called from any
828 * context and does its own locking. The returned handle has
829 * the usage count incremented and the caller must use dev_put() to
830 * release it when it is no longer needed. %NULL is returned if no
831 * matching device is found.
832 */
833
834struct net_device *dev_get_by_name(struct net *net, const char *name)
835{
836 struct net_device *dev;
837
838 rcu_read_lock();
839 dev = dev_get_by_name_rcu(net, name);
840 dev_hold(dev);
841 rcu_read_unlock();
842 return dev;
843}
844EXPORT_SYMBOL(dev_get_by_name);
845
846/**
847 * __dev_get_by_index - find a device by its ifindex
848 * @net: the applicable net namespace
849 * @ifindex: index of device
850 *
851 * Search for an interface by index. Returns %NULL if the device
852 * is not found or a pointer to the device. The device has not
853 * had its reference counter increased so the caller must be careful
854 * about locking. The caller must hold either the RTNL semaphore
855 * or @dev_base_lock.
856 */
857
858struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859{
860 struct net_device *dev;
861 struct hlist_head *head = dev_index_hash(net, ifindex);
862
863 hlist_for_each_entry(dev, head, index_hlist)
864 if (dev->ifindex == ifindex)
865 return dev;
866
867 return NULL;
868}
869EXPORT_SYMBOL(__dev_get_by_index);
870
871/**
872 * dev_get_by_index_rcu - find a device by its ifindex
873 * @net: the applicable net namespace
874 * @ifindex: index of device
875 *
876 * Search for an interface by index. Returns %NULL if the device
877 * is not found or a pointer to the device. The device has not
878 * had its reference counter increased so the caller must be careful
879 * about locking. The caller must hold RCU lock.
880 */
881
882struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883{
884 struct net_device *dev;
885 struct hlist_head *head = dev_index_hash(net, ifindex);
886
887 hlist_for_each_entry_rcu(dev, head, index_hlist)
888 if (dev->ifindex == ifindex)
889 return dev;
890
891 return NULL;
892}
893EXPORT_SYMBOL(dev_get_by_index_rcu);
894
895
896/**
897 * dev_get_by_index - find a device by its ifindex
898 * @net: the applicable net namespace
899 * @ifindex: index of device
900 *
901 * Search for an interface by index. Returns NULL if the device
902 * is not found or a pointer to the device. The device returned has
903 * had a reference added and the pointer is safe until the user calls
904 * dev_put to indicate they have finished with it.
905 */
906
907struct net_device *dev_get_by_index(struct net *net, int ifindex)
908{
909 struct net_device *dev;
910
911 rcu_read_lock();
912 dev = dev_get_by_index_rcu(net, ifindex);
913 dev_hold(dev);
914 rcu_read_unlock();
915 return dev;
916}
917EXPORT_SYMBOL(dev_get_by_index);
918
919/**
920 * dev_get_by_napi_id - find a device by napi_id
921 * @napi_id: ID of the NAPI struct
922 *
923 * Search for an interface by NAPI ID. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not had
925 * its reference counter increased so the caller must be careful
926 * about locking. The caller must hold RCU lock.
927 */
928
929struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930{
931 struct napi_struct *napi;
932
933 WARN_ON_ONCE(!rcu_read_lock_held());
934
935 if (napi_id < MIN_NAPI_ID)
936 return NULL;
937
938 napi = napi_by_id(napi_id);
939
940 return napi ? napi->dev : NULL;
941}
942EXPORT_SYMBOL(dev_get_by_napi_id);
943
944/**
945 * netdev_get_name - get a netdevice name, knowing its ifindex.
946 * @net: network namespace
947 * @name: a pointer to the buffer where the name will be stored.
948 * @ifindex: the ifindex of the interface to get the name from.
949 */
950int netdev_get_name(struct net *net, char *name, int ifindex)
951{
952 struct net_device *dev;
953 int ret;
954
955 down_read(&devnet_rename_sem);
956 rcu_read_lock();
957
958 dev = dev_get_by_index_rcu(net, ifindex);
959 if (!dev) {
960 ret = -ENODEV;
961 goto out;
962 }
963
964 strcpy(name, dev->name);
965
966 ret = 0;
967out:
968 rcu_read_unlock();
969 up_read(&devnet_rename_sem);
970 return ret;
971}
972
973/**
974 * dev_getbyhwaddr_rcu - find a device by its hardware address
975 * @net: the applicable net namespace
976 * @type: media type of device
977 * @ha: hardware address
978 *
979 * Search for an interface by MAC address. Returns NULL if the device
980 * is not found or a pointer to the device.
981 * The caller must hold RCU or RTNL.
982 * The returned device has not had its ref count increased
983 * and the caller must therefore be careful about locking
984 *
985 */
986
987struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988 const char *ha)
989{
990 struct net_device *dev;
991
992 for_each_netdev_rcu(net, dev)
993 if (dev->type == type &&
994 !memcmp(dev->dev_addr, ha, dev->addr_len))
995 return dev;
996
997 return NULL;
998}
999EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000
1001struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002{
1003 struct net_device *dev, *ret = NULL;
1004
1005 rcu_read_lock();
1006 for_each_netdev_rcu(net, dev)
1007 if (dev->type == type) {
1008 dev_hold(dev);
1009 ret = dev;
1010 break;
1011 }
1012 rcu_read_unlock();
1013 return ret;
1014}
1015EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016
1017/**
1018 * __dev_get_by_flags - find any device with given flags
1019 * @net: the applicable net namespace
1020 * @if_flags: IFF_* values
1021 * @mask: bitmask of bits in if_flags to check
1022 *
1023 * Search for any interface with the given flags. Returns NULL if a device
1024 * is not found or a pointer to the device. Must be called inside
1025 * rtnl_lock(), and result refcount is unchanged.
1026 */
1027
1028struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029 unsigned short mask)
1030{
1031 struct net_device *dev, *ret;
1032
1033 ASSERT_RTNL();
1034
1035 ret = NULL;
1036 for_each_netdev(net, dev) {
1037 if (((dev->flags ^ if_flags) & mask) == 0) {
1038 ret = dev;
1039 break;
1040 }
1041 }
1042 return ret;
1043}
1044EXPORT_SYMBOL(__dev_get_by_flags);
1045
1046/**
1047 * dev_valid_name - check if name is okay for network device
1048 * @name: name string
1049 *
1050 * Network device names need to be valid file names to
1051 * allow sysfs to work. We also disallow any kind of
1052 * whitespace.
1053 */
1054bool dev_valid_name(const char *name)
1055{
1056 if (*name == '\0')
1057 return false;
1058 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059 return false;
1060 if (!strcmp(name, ".") || !strcmp(name, ".."))
1061 return false;
1062
1063 while (*name) {
1064 if (*name == '/' || *name == ':' || isspace(*name))
1065 return false;
1066 name++;
1067 }
1068 return true;
1069}
1070EXPORT_SYMBOL(dev_valid_name);
1071
1072/**
1073 * __dev_alloc_name - allocate a name for a device
1074 * @net: network namespace to allocate the device name in
1075 * @name: name format string
1076 * @buf: scratch buffer and result name string
1077 *
1078 * Passed a format string - eg "lt%d" it will try and find a suitable
1079 * id. It scans list of devices to build up a free map, then chooses
1080 * the first empty slot. The caller must hold the dev_base or rtnl lock
1081 * while allocating the name and adding the device in order to avoid
1082 * duplicates.
1083 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084 * Returns the number of the unit assigned or a negative errno code.
1085 */
1086
1087static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088{
1089 int i = 0;
1090 const char *p;
1091 const int max_netdevices = 8*PAGE_SIZE;
1092 unsigned long *inuse;
1093 struct net_device *d;
1094
1095 if (!dev_valid_name(name))
1096 return -EINVAL;
1097
1098 p = strchr(name, '%');
1099 if (p) {
1100 /*
1101 * Verify the string as this thing may have come from
1102 * the user. There must be either one "%d" and no other "%"
1103 * characters.
1104 */
1105 if (p[1] != 'd' || strchr(p + 2, '%'))
1106 return -EINVAL;
1107
1108 /* Use one page as a bit array of possible slots */
1109 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110 if (!inuse)
1111 return -ENOMEM;
1112
1113 for_each_netdev(net, d) {
1114 struct netdev_name_node *name_node;
1115 list_for_each_entry(name_node, &d->name_node->list, list) {
1116 if (!sscanf(name_node->name, name, &i))
1117 continue;
1118 if (i < 0 || i >= max_netdevices)
1119 continue;
1120
1121 /* avoid cases where sscanf is not exact inverse of printf */
1122 snprintf(buf, IFNAMSIZ, name, i);
1123 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124 set_bit(i, inuse);
1125 }
1126 if (!sscanf(d->name, name, &i))
1127 continue;
1128 if (i < 0 || i >= max_netdevices)
1129 continue;
1130
1131 /* avoid cases where sscanf is not exact inverse of printf */
1132 snprintf(buf, IFNAMSIZ, name, i);
1133 if (!strncmp(buf, d->name, IFNAMSIZ))
1134 set_bit(i, inuse);
1135 }
1136
1137 i = find_first_zero_bit(inuse, max_netdevices);
1138 free_page((unsigned long) inuse);
1139 }
1140
1141 snprintf(buf, IFNAMSIZ, name, i);
1142 if (!netdev_name_in_use(net, buf))
1143 return i;
1144
1145 /* It is possible to run out of possible slots
1146 * when the name is long and there isn't enough space left
1147 * for the digits, or if all bits are used.
1148 */
1149 return -ENFILE;
1150}
1151
1152static int dev_alloc_name_ns(struct net *net,
1153 struct net_device *dev,
1154 const char *name)
1155{
1156 char buf[IFNAMSIZ];
1157 int ret;
1158
1159 BUG_ON(!net);
1160 ret = __dev_alloc_name(net, name, buf);
1161 if (ret >= 0)
1162 strlcpy(dev->name, buf, IFNAMSIZ);
1163 return ret;
1164}
1165
1166/**
1167 * dev_alloc_name - allocate a name for a device
1168 * @dev: device
1169 * @name: name format string
1170 *
1171 * Passed a format string - eg "lt%d" it will try and find a suitable
1172 * id. It scans list of devices to build up a free map, then chooses
1173 * the first empty slot. The caller must hold the dev_base or rtnl lock
1174 * while allocating the name and adding the device in order to avoid
1175 * duplicates.
1176 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177 * Returns the number of the unit assigned or a negative errno code.
1178 */
1179
1180int dev_alloc_name(struct net_device *dev, const char *name)
1181{
1182 return dev_alloc_name_ns(dev_net(dev), dev, name);
1183}
1184EXPORT_SYMBOL(dev_alloc_name);
1185
1186static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187 const char *name)
1188{
1189 BUG_ON(!net);
1190
1191 if (!dev_valid_name(name))
1192 return -EINVAL;
1193
1194 if (strchr(name, '%'))
1195 return dev_alloc_name_ns(net, dev, name);
1196 else if (netdev_name_in_use(net, name))
1197 return -EEXIST;
1198 else if (dev->name != name)
1199 strlcpy(dev->name, name, IFNAMSIZ);
1200
1201 return 0;
1202}
1203
1204/**
1205 * dev_change_name - change name of a device
1206 * @dev: device
1207 * @newname: name (or format string) must be at least IFNAMSIZ
1208 *
1209 * Change name of a device, can pass format strings "eth%d".
1210 * for wildcarding.
1211 */
1212int dev_change_name(struct net_device *dev, const char *newname)
1213{
1214 unsigned char old_assign_type;
1215 char oldname[IFNAMSIZ];
1216 int err = 0;
1217 int ret;
1218 struct net *net;
1219
1220 ASSERT_RTNL();
1221 BUG_ON(!dev_net(dev));
1222
1223 net = dev_net(dev);
1224
1225 /* Some auto-enslaved devices e.g. failover slaves are
1226 * special, as userspace might rename the device after
1227 * the interface had been brought up and running since
1228 * the point kernel initiated auto-enslavement. Allow
1229 * live name change even when these slave devices are
1230 * up and running.
1231 *
1232 * Typically, users of these auto-enslaving devices
1233 * don't actually care about slave name change, as
1234 * they are supposed to operate on master interface
1235 * directly.
1236 */
1237 if (dev->flags & IFF_UP &&
1238 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239 return -EBUSY;
1240
1241 down_write(&devnet_rename_sem);
1242
1243 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244 up_write(&devnet_rename_sem);
1245 return 0;
1246 }
1247
1248 memcpy(oldname, dev->name, IFNAMSIZ);
1249
1250 err = dev_get_valid_name(net, dev, newname);
1251 if (err < 0) {
1252 up_write(&devnet_rename_sem);
1253 return err;
1254 }
1255
1256 if (oldname[0] && !strchr(oldname, '%'))
1257 netdev_info(dev, "renamed from %s\n", oldname);
1258
1259 old_assign_type = dev->name_assign_type;
1260 dev->name_assign_type = NET_NAME_RENAMED;
1261
1262rollback:
1263 ret = device_rename(&dev->dev, dev->name);
1264 if (ret) {
1265 memcpy(dev->name, oldname, IFNAMSIZ);
1266 dev->name_assign_type = old_assign_type;
1267 up_write(&devnet_rename_sem);
1268 return ret;
1269 }
1270
1271 up_write(&devnet_rename_sem);
1272
1273 netdev_adjacent_rename_links(dev, oldname);
1274
1275 write_lock_bh(&dev_base_lock);
1276 netdev_name_node_del(dev->name_node);
1277 write_unlock_bh(&dev_base_lock);
1278
1279 synchronize_rcu();
1280
1281 write_lock_bh(&dev_base_lock);
1282 netdev_name_node_add(net, dev->name_node);
1283 write_unlock_bh(&dev_base_lock);
1284
1285 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286 ret = notifier_to_errno(ret);
1287
1288 if (ret) {
1289 /* err >= 0 after dev_alloc_name() or stores the first errno */
1290 if (err >= 0) {
1291 err = ret;
1292 down_write(&devnet_rename_sem);
1293 memcpy(dev->name, oldname, IFNAMSIZ);
1294 memcpy(oldname, newname, IFNAMSIZ);
1295 dev->name_assign_type = old_assign_type;
1296 old_assign_type = NET_NAME_RENAMED;
1297 goto rollback;
1298 } else {
1299 netdev_err(dev, "name change rollback failed: %d\n",
1300 ret);
1301 }
1302 }
1303
1304 return err;
1305}
1306
1307/**
1308 * dev_set_alias - change ifalias of a device
1309 * @dev: device
1310 * @alias: name up to IFALIASZ
1311 * @len: limit of bytes to copy from info
1312 *
1313 * Set ifalias for a device,
1314 */
1315int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316{
1317 struct dev_ifalias *new_alias = NULL;
1318
1319 if (len >= IFALIASZ)
1320 return -EINVAL;
1321
1322 if (len) {
1323 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324 if (!new_alias)
1325 return -ENOMEM;
1326
1327 memcpy(new_alias->ifalias, alias, len);
1328 new_alias->ifalias[len] = 0;
1329 }
1330
1331 mutex_lock(&ifalias_mutex);
1332 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333 mutex_is_locked(&ifalias_mutex));
1334 mutex_unlock(&ifalias_mutex);
1335
1336 if (new_alias)
1337 kfree_rcu(new_alias, rcuhead);
1338
1339 return len;
1340}
1341EXPORT_SYMBOL(dev_set_alias);
1342
1343/**
1344 * dev_get_alias - get ifalias of a device
1345 * @dev: device
1346 * @name: buffer to store name of ifalias
1347 * @len: size of buffer
1348 *
1349 * get ifalias for a device. Caller must make sure dev cannot go
1350 * away, e.g. rcu read lock or own a reference count to device.
1351 */
1352int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353{
1354 const struct dev_ifalias *alias;
1355 int ret = 0;
1356
1357 rcu_read_lock();
1358 alias = rcu_dereference(dev->ifalias);
1359 if (alias)
1360 ret = snprintf(name, len, "%s", alias->ifalias);
1361 rcu_read_unlock();
1362
1363 return ret;
1364}
1365
1366/**
1367 * netdev_features_change - device changes features
1368 * @dev: device to cause notification
1369 *
1370 * Called to indicate a device has changed features.
1371 */
1372void netdev_features_change(struct net_device *dev)
1373{
1374 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375}
1376EXPORT_SYMBOL(netdev_features_change);
1377
1378/**
1379 * netdev_state_change - device changes state
1380 * @dev: device to cause notification
1381 *
1382 * Called to indicate a device has changed state. This function calls
1383 * the notifier chains for netdev_chain and sends a NEWLINK message
1384 * to the routing socket.
1385 */
1386void netdev_state_change(struct net_device *dev)
1387{
1388 if (dev->flags & IFF_UP) {
1389 struct netdev_notifier_change_info change_info = {
1390 .info.dev = dev,
1391 };
1392
1393 call_netdevice_notifiers_info(NETDEV_CHANGE,
1394 &change_info.info);
1395 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396 }
1397}
1398EXPORT_SYMBOL(netdev_state_change);
1399
1400/**
1401 * __netdev_notify_peers - notify network peers about existence of @dev,
1402 * to be called when rtnl lock is already held.
1403 * @dev: network device
1404 *
1405 * Generate traffic such that interested network peers are aware of
1406 * @dev, such as by generating a gratuitous ARP. This may be used when
1407 * a device wants to inform the rest of the network about some sort of
1408 * reconfiguration such as a failover event or virtual machine
1409 * migration.
1410 */
1411void __netdev_notify_peers(struct net_device *dev)
1412{
1413 ASSERT_RTNL();
1414 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416}
1417EXPORT_SYMBOL(__netdev_notify_peers);
1418
1419/**
1420 * netdev_notify_peers - notify network peers about existence of @dev
1421 * @dev: network device
1422 *
1423 * Generate traffic such that interested network peers are aware of
1424 * @dev, such as by generating a gratuitous ARP. This may be used when
1425 * a device wants to inform the rest of the network about some sort of
1426 * reconfiguration such as a failover event or virtual machine
1427 * migration.
1428 */
1429void netdev_notify_peers(struct net_device *dev)
1430{
1431 rtnl_lock();
1432 __netdev_notify_peers(dev);
1433 rtnl_unlock();
1434}
1435EXPORT_SYMBOL(netdev_notify_peers);
1436
1437static int napi_threaded_poll(void *data);
1438
1439static int napi_kthread_create(struct napi_struct *n)
1440{
1441 int err = 0;
1442
1443 /* Create and wake up the kthread once to put it in
1444 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445 * warning and work with loadavg.
1446 */
1447 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448 n->dev->name, n->napi_id);
1449 if (IS_ERR(n->thread)) {
1450 err = PTR_ERR(n->thread);
1451 pr_err("kthread_run failed with err %d\n", err);
1452 n->thread = NULL;
1453 }
1454
1455 return err;
1456}
1457
1458static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459{
1460 const struct net_device_ops *ops = dev->netdev_ops;
1461 int ret;
1462
1463 ASSERT_RTNL();
1464
1465 if (!netif_device_present(dev)) {
1466 /* may be detached because parent is runtime-suspended */
1467 if (dev->dev.parent)
1468 pm_runtime_resume(dev->dev.parent);
1469 if (!netif_device_present(dev))
1470 return -ENODEV;
1471 }
1472
1473 /* Block netpoll from trying to do any rx path servicing.
1474 * If we don't do this there is a chance ndo_poll_controller
1475 * or ndo_poll may be running while we open the device
1476 */
1477 netpoll_poll_disable(dev);
1478
1479 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480 ret = notifier_to_errno(ret);
1481 if (ret)
1482 return ret;
1483
1484 set_bit(__LINK_STATE_START, &dev->state);
1485
1486 if (ops->ndo_validate_addr)
1487 ret = ops->ndo_validate_addr(dev);
1488
1489 if (!ret && ops->ndo_open)
1490 ret = ops->ndo_open(dev);
1491
1492 netpoll_poll_enable(dev);
1493
1494 if (ret)
1495 clear_bit(__LINK_STATE_START, &dev->state);
1496 else {
1497 dev->flags |= IFF_UP;
1498 dev_set_rx_mode(dev);
1499 dev_activate(dev);
1500 add_device_randomness(dev->dev_addr, dev->addr_len);
1501 }
1502
1503 return ret;
1504}
1505
1506/**
1507 * dev_open - prepare an interface for use.
1508 * @dev: device to open
1509 * @extack: netlink extended ack
1510 *
1511 * Takes a device from down to up state. The device's private open
1512 * function is invoked and then the multicast lists are loaded. Finally
1513 * the device is moved into the up state and a %NETDEV_UP message is
1514 * sent to the netdev notifier chain.
1515 *
1516 * Calling this function on an active interface is a nop. On a failure
1517 * a negative errno code is returned.
1518 */
1519int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520{
1521 int ret;
1522
1523 if (dev->flags & IFF_UP)
1524 return 0;
1525
1526 ret = __dev_open(dev, extack);
1527 if (ret < 0)
1528 return ret;
1529
1530 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531 call_netdevice_notifiers(NETDEV_UP, dev);
1532
1533 return ret;
1534}
1535EXPORT_SYMBOL(dev_open);
1536
1537static void __dev_close_many(struct list_head *head)
1538{
1539 struct net_device *dev;
1540
1541 ASSERT_RTNL();
1542 might_sleep();
1543
1544 list_for_each_entry(dev, head, close_list) {
1545 /* Temporarily disable netpoll until the interface is down */
1546 netpoll_poll_disable(dev);
1547
1548 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549
1550 clear_bit(__LINK_STATE_START, &dev->state);
1551
1552 /* Synchronize to scheduled poll. We cannot touch poll list, it
1553 * can be even on different cpu. So just clear netif_running().
1554 *
1555 * dev->stop() will invoke napi_disable() on all of it's
1556 * napi_struct instances on this device.
1557 */
1558 smp_mb__after_atomic(); /* Commit netif_running(). */
1559 }
1560
1561 dev_deactivate_many(head);
1562
1563 list_for_each_entry(dev, head, close_list) {
1564 const struct net_device_ops *ops = dev->netdev_ops;
1565
1566 /*
1567 * Call the device specific close. This cannot fail.
1568 * Only if device is UP
1569 *
1570 * We allow it to be called even after a DETACH hot-plug
1571 * event.
1572 */
1573 if (ops->ndo_stop)
1574 ops->ndo_stop(dev);
1575
1576 dev->flags &= ~IFF_UP;
1577 netpoll_poll_enable(dev);
1578 }
1579}
1580
1581static void __dev_close(struct net_device *dev)
1582{
1583 LIST_HEAD(single);
1584
1585 list_add(&dev->close_list, &single);
1586 __dev_close_many(&single);
1587 list_del(&single);
1588}
1589
1590void dev_close_many(struct list_head *head, bool unlink)
1591{
1592 struct net_device *dev, *tmp;
1593
1594 /* Remove the devices that don't need to be closed */
1595 list_for_each_entry_safe(dev, tmp, head, close_list)
1596 if (!(dev->flags & IFF_UP))
1597 list_del_init(&dev->close_list);
1598
1599 __dev_close_many(head);
1600
1601 list_for_each_entry_safe(dev, tmp, head, close_list) {
1602 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603 call_netdevice_notifiers(NETDEV_DOWN, dev);
1604 if (unlink)
1605 list_del_init(&dev->close_list);
1606 }
1607}
1608EXPORT_SYMBOL(dev_close_many);
1609
1610/**
1611 * dev_close - shutdown an interface.
1612 * @dev: device to shutdown
1613 *
1614 * This function moves an active device into down state. A
1615 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617 * chain.
1618 */
1619void dev_close(struct net_device *dev)
1620{
1621 if (dev->flags & IFF_UP) {
1622 LIST_HEAD(single);
1623
1624 list_add(&dev->close_list, &single);
1625 dev_close_many(&single, true);
1626 list_del(&single);
1627 }
1628}
1629EXPORT_SYMBOL(dev_close);
1630
1631
1632/**
1633 * dev_disable_lro - disable Large Receive Offload on a device
1634 * @dev: device
1635 *
1636 * Disable Large Receive Offload (LRO) on a net device. Must be
1637 * called under RTNL. This is needed if received packets may be
1638 * forwarded to another interface.
1639 */
1640void dev_disable_lro(struct net_device *dev)
1641{
1642 struct net_device *lower_dev;
1643 struct list_head *iter;
1644
1645 dev->wanted_features &= ~NETIF_F_LRO;
1646 netdev_update_features(dev);
1647
1648 if (unlikely(dev->features & NETIF_F_LRO))
1649 netdev_WARN(dev, "failed to disable LRO!\n");
1650
1651 netdev_for_each_lower_dev(dev, lower_dev, iter)
1652 dev_disable_lro(lower_dev);
1653}
1654EXPORT_SYMBOL(dev_disable_lro);
1655
1656/**
1657 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658 * @dev: device
1659 *
1660 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1661 * called under RTNL. This is needed if Generic XDP is installed on
1662 * the device.
1663 */
1664static void dev_disable_gro_hw(struct net_device *dev)
1665{
1666 dev->wanted_features &= ~NETIF_F_GRO_HW;
1667 netdev_update_features(dev);
1668
1669 if (unlikely(dev->features & NETIF_F_GRO_HW))
1670 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671}
1672
1673const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674{
1675#define N(val) \
1676 case NETDEV_##val: \
1677 return "NETDEV_" __stringify(val);
1678 switch (cmd) {
1679 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688 N(PRE_CHANGEADDR)
1689 }
1690#undef N
1691 return "UNKNOWN_NETDEV_EVENT";
1692}
1693EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694
1695static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696 struct net_device *dev)
1697{
1698 struct netdev_notifier_info info = {
1699 .dev = dev,
1700 };
1701
1702 return nb->notifier_call(nb, val, &info);
1703}
1704
1705static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706 struct net_device *dev)
1707{
1708 int err;
1709
1710 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711 err = notifier_to_errno(err);
1712 if (err)
1713 return err;
1714
1715 if (!(dev->flags & IFF_UP))
1716 return 0;
1717
1718 call_netdevice_notifier(nb, NETDEV_UP, dev);
1719 return 0;
1720}
1721
1722static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723 struct net_device *dev)
1724{
1725 if (dev->flags & IFF_UP) {
1726 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 dev);
1728 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 }
1730 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731}
1732
1733static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734 struct net *net)
1735{
1736 struct net_device *dev;
1737 int err;
1738
1739 for_each_netdev(net, dev) {
1740 err = call_netdevice_register_notifiers(nb, dev);
1741 if (err)
1742 goto rollback;
1743 }
1744 return 0;
1745
1746rollback:
1747 for_each_netdev_continue_reverse(net, dev)
1748 call_netdevice_unregister_notifiers(nb, dev);
1749 return err;
1750}
1751
1752static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753 struct net *net)
1754{
1755 struct net_device *dev;
1756
1757 for_each_netdev(net, dev)
1758 call_netdevice_unregister_notifiers(nb, dev);
1759}
1760
1761static int dev_boot_phase = 1;
1762
1763/**
1764 * register_netdevice_notifier - register a network notifier block
1765 * @nb: notifier
1766 *
1767 * Register a notifier to be called when network device events occur.
1768 * The notifier passed is linked into the kernel structures and must
1769 * not be reused until it has been unregistered. A negative errno code
1770 * is returned on a failure.
1771 *
1772 * When registered all registration and up events are replayed
1773 * to the new notifier to allow device to have a race free
1774 * view of the network device list.
1775 */
1776
1777int register_netdevice_notifier(struct notifier_block *nb)
1778{
1779 struct net *net;
1780 int err;
1781
1782 /* Close race with setup_net() and cleanup_net() */
1783 down_write(&pernet_ops_rwsem);
1784 rtnl_lock();
1785 err = raw_notifier_chain_register(&netdev_chain, nb);
1786 if (err)
1787 goto unlock;
1788 if (dev_boot_phase)
1789 goto unlock;
1790 for_each_net(net) {
1791 err = call_netdevice_register_net_notifiers(nb, net);
1792 if (err)
1793 goto rollback;
1794 }
1795
1796unlock:
1797 rtnl_unlock();
1798 up_write(&pernet_ops_rwsem);
1799 return err;
1800
1801rollback:
1802 for_each_net_continue_reverse(net)
1803 call_netdevice_unregister_net_notifiers(nb, net);
1804
1805 raw_notifier_chain_unregister(&netdev_chain, nb);
1806 goto unlock;
1807}
1808EXPORT_SYMBOL(register_netdevice_notifier);
1809
1810/**
1811 * unregister_netdevice_notifier - unregister a network notifier block
1812 * @nb: notifier
1813 *
1814 * Unregister a notifier previously registered by
1815 * register_netdevice_notifier(). The notifier is unlinked into the
1816 * kernel structures and may then be reused. A negative errno code
1817 * is returned on a failure.
1818 *
1819 * After unregistering unregister and down device events are synthesized
1820 * for all devices on the device list to the removed notifier to remove
1821 * the need for special case cleanup code.
1822 */
1823
1824int unregister_netdevice_notifier(struct notifier_block *nb)
1825{
1826 struct net *net;
1827 int err;
1828
1829 /* Close race with setup_net() and cleanup_net() */
1830 down_write(&pernet_ops_rwsem);
1831 rtnl_lock();
1832 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833 if (err)
1834 goto unlock;
1835
1836 for_each_net(net)
1837 call_netdevice_unregister_net_notifiers(nb, net);
1838
1839unlock:
1840 rtnl_unlock();
1841 up_write(&pernet_ops_rwsem);
1842 return err;
1843}
1844EXPORT_SYMBOL(unregister_netdevice_notifier);
1845
1846static int __register_netdevice_notifier_net(struct net *net,
1847 struct notifier_block *nb,
1848 bool ignore_call_fail)
1849{
1850 int err;
1851
1852 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853 if (err)
1854 return err;
1855 if (dev_boot_phase)
1856 return 0;
1857
1858 err = call_netdevice_register_net_notifiers(nb, net);
1859 if (err && !ignore_call_fail)
1860 goto chain_unregister;
1861
1862 return 0;
1863
1864chain_unregister:
1865 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866 return err;
1867}
1868
1869static int __unregister_netdevice_notifier_net(struct net *net,
1870 struct notifier_block *nb)
1871{
1872 int err;
1873
1874 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875 if (err)
1876 return err;
1877
1878 call_netdevice_unregister_net_notifiers(nb, net);
1879 return 0;
1880}
1881
1882/**
1883 * register_netdevice_notifier_net - register a per-netns network notifier block
1884 * @net: network namespace
1885 * @nb: notifier
1886 *
1887 * Register a notifier to be called when network device events occur.
1888 * The notifier passed is linked into the kernel structures and must
1889 * not be reused until it has been unregistered. A negative errno code
1890 * is returned on a failure.
1891 *
1892 * When registered all registration and up events are replayed
1893 * to the new notifier to allow device to have a race free
1894 * view of the network device list.
1895 */
1896
1897int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898{
1899 int err;
1900
1901 rtnl_lock();
1902 err = __register_netdevice_notifier_net(net, nb, false);
1903 rtnl_unlock();
1904 return err;
1905}
1906EXPORT_SYMBOL(register_netdevice_notifier_net);
1907
1908/**
1909 * unregister_netdevice_notifier_net - unregister a per-netns
1910 * network notifier block
1911 * @net: network namespace
1912 * @nb: notifier
1913 *
1914 * Unregister a notifier previously registered by
1915 * register_netdevice_notifier(). The notifier is unlinked into the
1916 * kernel structures and may then be reused. A negative errno code
1917 * is returned on a failure.
1918 *
1919 * After unregistering unregister and down device events are synthesized
1920 * for all devices on the device list to the removed notifier to remove
1921 * the need for special case cleanup code.
1922 */
1923
1924int unregister_netdevice_notifier_net(struct net *net,
1925 struct notifier_block *nb)
1926{
1927 int err;
1928
1929 rtnl_lock();
1930 err = __unregister_netdevice_notifier_net(net, nb);
1931 rtnl_unlock();
1932 return err;
1933}
1934EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935
1936int register_netdevice_notifier_dev_net(struct net_device *dev,
1937 struct notifier_block *nb,
1938 struct netdev_net_notifier *nn)
1939{
1940 int err;
1941
1942 rtnl_lock();
1943 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944 if (!err) {
1945 nn->nb = nb;
1946 list_add(&nn->list, &dev->net_notifier_list);
1947 }
1948 rtnl_unlock();
1949 return err;
1950}
1951EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952
1953int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954 struct notifier_block *nb,
1955 struct netdev_net_notifier *nn)
1956{
1957 int err;
1958
1959 rtnl_lock();
1960 list_del(&nn->list);
1961 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962 rtnl_unlock();
1963 return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966
1967static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968 struct net *net)
1969{
1970 struct netdev_net_notifier *nn;
1971
1972 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974 __register_netdevice_notifier_net(net, nn->nb, true);
1975 }
1976}
1977
1978/**
1979 * call_netdevice_notifiers_info - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @info: notifier information data
1982 *
1983 * Call all network notifier blocks. Parameters and return value
1984 * are as for raw_notifier_call_chain().
1985 */
1986
1987static int call_netdevice_notifiers_info(unsigned long val,
1988 struct netdev_notifier_info *info)
1989{
1990 struct net *net = dev_net(info->dev);
1991 int ret;
1992
1993 ASSERT_RTNL();
1994
1995 /* Run per-netns notifier block chain first, then run the global one.
1996 * Hopefully, one day, the global one is going to be removed after
1997 * all notifier block registrators get converted to be per-netns.
1998 */
1999 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000 if (ret & NOTIFY_STOP_MASK)
2001 return ret;
2002 return raw_notifier_call_chain(&netdev_chain, val, info);
2003}
2004
2005static int call_netdevice_notifiers_extack(unsigned long val,
2006 struct net_device *dev,
2007 struct netlink_ext_ack *extack)
2008{
2009 struct netdev_notifier_info info = {
2010 .dev = dev,
2011 .extack = extack,
2012 };
2013
2014 return call_netdevice_notifiers_info(val, &info);
2015}
2016
2017/**
2018 * call_netdevice_notifiers - call all network notifier blocks
2019 * @val: value passed unmodified to notifier function
2020 * @dev: net_device pointer passed unmodified to notifier function
2021 *
2022 * Call all network notifier blocks. Parameters and return value
2023 * are as for raw_notifier_call_chain().
2024 */
2025
2026int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027{
2028 return call_netdevice_notifiers_extack(val, dev, NULL);
2029}
2030EXPORT_SYMBOL(call_netdevice_notifiers);
2031
2032/**
2033 * call_netdevice_notifiers_mtu - call all network notifier blocks
2034 * @val: value passed unmodified to notifier function
2035 * @dev: net_device pointer passed unmodified to notifier function
2036 * @arg: additional u32 argument passed to the notifier function
2037 *
2038 * Call all network notifier blocks. Parameters and return value
2039 * are as for raw_notifier_call_chain().
2040 */
2041static int call_netdevice_notifiers_mtu(unsigned long val,
2042 struct net_device *dev, u32 arg)
2043{
2044 struct netdev_notifier_info_ext info = {
2045 .info.dev = dev,
2046 .ext.mtu = arg,
2047 };
2048
2049 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050
2051 return call_netdevice_notifiers_info(val, &info.info);
2052}
2053
2054#ifdef CONFIG_NET_INGRESS
2055static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056
2057void net_inc_ingress_queue(void)
2058{
2059 static_branch_inc(&ingress_needed_key);
2060}
2061EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062
2063void net_dec_ingress_queue(void)
2064{
2065 static_branch_dec(&ingress_needed_key);
2066}
2067EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068#endif
2069
2070#ifdef CONFIG_NET_EGRESS
2071static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072
2073void net_inc_egress_queue(void)
2074{
2075 static_branch_inc(&egress_needed_key);
2076}
2077EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078
2079void net_dec_egress_queue(void)
2080{
2081 static_branch_dec(&egress_needed_key);
2082}
2083EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084#endif
2085
2086static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087#ifdef CONFIG_JUMP_LABEL
2088static atomic_t netstamp_needed_deferred;
2089static atomic_t netstamp_wanted;
2090static void netstamp_clear(struct work_struct *work)
2091{
2092 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093 int wanted;
2094
2095 wanted = atomic_add_return(deferred, &netstamp_wanted);
2096 if (wanted > 0)
2097 static_branch_enable(&netstamp_needed_key);
2098 else
2099 static_branch_disable(&netstamp_needed_key);
2100}
2101static DECLARE_WORK(netstamp_work, netstamp_clear);
2102#endif
2103
2104void net_enable_timestamp(void)
2105{
2106#ifdef CONFIG_JUMP_LABEL
2107 int wanted;
2108
2109 while (1) {
2110 wanted = atomic_read(&netstamp_wanted);
2111 if (wanted <= 0)
2112 break;
2113 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114 return;
2115 }
2116 atomic_inc(&netstamp_needed_deferred);
2117 schedule_work(&netstamp_work);
2118#else
2119 static_branch_inc(&netstamp_needed_key);
2120#endif
2121}
2122EXPORT_SYMBOL(net_enable_timestamp);
2123
2124void net_disable_timestamp(void)
2125{
2126#ifdef CONFIG_JUMP_LABEL
2127 int wanted;
2128
2129 while (1) {
2130 wanted = atomic_read(&netstamp_wanted);
2131 if (wanted <= 1)
2132 break;
2133 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134 return;
2135 }
2136 atomic_dec(&netstamp_needed_deferred);
2137 schedule_work(&netstamp_work);
2138#else
2139 static_branch_dec(&netstamp_needed_key);
2140#endif
2141}
2142EXPORT_SYMBOL(net_disable_timestamp);
2143
2144static inline void net_timestamp_set(struct sk_buff *skb)
2145{
2146 skb->tstamp = 0;
2147 if (static_branch_unlikely(&netstamp_needed_key))
2148 __net_timestamp(skb);
2149}
2150
2151#define net_timestamp_check(COND, SKB) \
2152 if (static_branch_unlikely(&netstamp_needed_key)) { \
2153 if ((COND) && !(SKB)->tstamp) \
2154 __net_timestamp(SKB); \
2155 } \
2156
2157bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158{
2159 return __is_skb_forwardable(dev, skb, true);
2160}
2161EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162
2163static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164 bool check_mtu)
2165{
2166 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167
2168 if (likely(!ret)) {
2169 skb->protocol = eth_type_trans(skb, dev);
2170 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171 }
2172
2173 return ret;
2174}
2175
2176int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177{
2178 return __dev_forward_skb2(dev, skb, true);
2179}
2180EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181
2182/**
2183 * dev_forward_skb - loopback an skb to another netif
2184 *
2185 * @dev: destination network device
2186 * @skb: buffer to forward
2187 *
2188 * return values:
2189 * NET_RX_SUCCESS (no congestion)
2190 * NET_RX_DROP (packet was dropped, but freed)
2191 *
2192 * dev_forward_skb can be used for injecting an skb from the
2193 * start_xmit function of one device into the receive queue
2194 * of another device.
2195 *
2196 * The receiving device may be in another namespace, so
2197 * we have to clear all information in the skb that could
2198 * impact namespace isolation.
2199 */
2200int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201{
2202 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203}
2204EXPORT_SYMBOL_GPL(dev_forward_skb);
2205
2206int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207{
2208 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209}
2210
2211static inline int deliver_skb(struct sk_buff *skb,
2212 struct packet_type *pt_prev,
2213 struct net_device *orig_dev)
2214{
2215 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216 return -ENOMEM;
2217 refcount_inc(&skb->users);
2218 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219}
2220
2221static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222 struct packet_type **pt,
2223 struct net_device *orig_dev,
2224 __be16 type,
2225 struct list_head *ptype_list)
2226{
2227 struct packet_type *ptype, *pt_prev = *pt;
2228
2229 list_for_each_entry_rcu(ptype, ptype_list, list) {
2230 if (ptype->type != type)
2231 continue;
2232 if (pt_prev)
2233 deliver_skb(skb, pt_prev, orig_dev);
2234 pt_prev = ptype;
2235 }
2236 *pt = pt_prev;
2237}
2238
2239static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240{
2241 if (!ptype->af_packet_priv || !skb->sk)
2242 return false;
2243
2244 if (ptype->id_match)
2245 return ptype->id_match(ptype, skb->sk);
2246 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247 return true;
2248
2249 return false;
2250}
2251
2252/**
2253 * dev_nit_active - return true if any network interface taps are in use
2254 *
2255 * @dev: network device to check for the presence of taps
2256 */
2257bool dev_nit_active(struct net_device *dev)
2258{
2259 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260}
2261EXPORT_SYMBOL_GPL(dev_nit_active);
2262
2263/*
2264 * Support routine. Sends outgoing frames to any network
2265 * taps currently in use.
2266 */
2267
2268void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269{
2270 struct packet_type *ptype;
2271 struct sk_buff *skb2 = NULL;
2272 struct packet_type *pt_prev = NULL;
2273 struct list_head *ptype_list = &ptype_all;
2274
2275 rcu_read_lock();
2276again:
2277 list_for_each_entry_rcu(ptype, ptype_list, list) {
2278 if (ptype->ignore_outgoing)
2279 continue;
2280
2281 /* Never send packets back to the socket
2282 * they originated from - MvS (miquels@drinkel.ow.org)
2283 */
2284 if (skb_loop_sk(ptype, skb))
2285 continue;
2286
2287 if (pt_prev) {
2288 deliver_skb(skb2, pt_prev, skb->dev);
2289 pt_prev = ptype;
2290 continue;
2291 }
2292
2293 /* need to clone skb, done only once */
2294 skb2 = skb_clone(skb, GFP_ATOMIC);
2295 if (!skb2)
2296 goto out_unlock;
2297
2298 net_timestamp_set(skb2);
2299
2300 /* skb->nh should be correctly
2301 * set by sender, so that the second statement is
2302 * just protection against buggy protocols.
2303 */
2304 skb_reset_mac_header(skb2);
2305
2306 if (skb_network_header(skb2) < skb2->data ||
2307 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309 ntohs(skb2->protocol),
2310 dev->name);
2311 skb_reset_network_header(skb2);
2312 }
2313
2314 skb2->transport_header = skb2->network_header;
2315 skb2->pkt_type = PACKET_OUTGOING;
2316 pt_prev = ptype;
2317 }
2318
2319 if (ptype_list == &ptype_all) {
2320 ptype_list = &dev->ptype_all;
2321 goto again;
2322 }
2323out_unlock:
2324 if (pt_prev) {
2325 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327 else
2328 kfree_skb(skb2);
2329 }
2330 rcu_read_unlock();
2331}
2332EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333
2334/**
2335 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336 * @dev: Network device
2337 * @txq: number of queues available
2338 *
2339 * If real_num_tx_queues is changed the tc mappings may no longer be
2340 * valid. To resolve this verify the tc mapping remains valid and if
2341 * not NULL the mapping. With no priorities mapping to this
2342 * offset/count pair it will no longer be used. In the worst case TC0
2343 * is invalid nothing can be done so disable priority mappings. If is
2344 * expected that drivers will fix this mapping if they can before
2345 * calling netif_set_real_num_tx_queues.
2346 */
2347static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348{
2349 int i;
2350 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351
2352 /* If TC0 is invalidated disable TC mapping */
2353 if (tc->offset + tc->count > txq) {
2354 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355 dev->num_tc = 0;
2356 return;
2357 }
2358
2359 /* Invalidated prio to tc mappings set to TC0 */
2360 for (i = 1; i < TC_BITMASK + 1; i++) {
2361 int q = netdev_get_prio_tc_map(dev, i);
2362
2363 tc = &dev->tc_to_txq[q];
2364 if (tc->offset + tc->count > txq) {
2365 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366 i, q);
2367 netdev_set_prio_tc_map(dev, i, 0);
2368 }
2369 }
2370}
2371
2372int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373{
2374 if (dev->num_tc) {
2375 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376 int i;
2377
2378 /* walk through the TCs and see if it falls into any of them */
2379 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380 if ((txq - tc->offset) < tc->count)
2381 return i;
2382 }
2383
2384 /* didn't find it, just return -1 to indicate no match */
2385 return -1;
2386 }
2387
2388 return 0;
2389}
2390EXPORT_SYMBOL(netdev_txq_to_tc);
2391
2392#ifdef CONFIG_XPS
2393static struct static_key xps_needed __read_mostly;
2394static struct static_key xps_rxqs_needed __read_mostly;
2395static DEFINE_MUTEX(xps_map_mutex);
2396#define xmap_dereference(P) \
2397 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398
2399static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400 struct xps_dev_maps *old_maps, int tci, u16 index)
2401{
2402 struct xps_map *map = NULL;
2403 int pos;
2404
2405 if (dev_maps)
2406 map = xmap_dereference(dev_maps->attr_map[tci]);
2407 if (!map)
2408 return false;
2409
2410 for (pos = map->len; pos--;) {
2411 if (map->queues[pos] != index)
2412 continue;
2413
2414 if (map->len > 1) {
2415 map->queues[pos] = map->queues[--map->len];
2416 break;
2417 }
2418
2419 if (old_maps)
2420 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422 kfree_rcu(map, rcu);
2423 return false;
2424 }
2425
2426 return true;
2427}
2428
2429static bool remove_xps_queue_cpu(struct net_device *dev,
2430 struct xps_dev_maps *dev_maps,
2431 int cpu, u16 offset, u16 count)
2432{
2433 int num_tc = dev_maps->num_tc;
2434 bool active = false;
2435 int tci;
2436
2437 for (tci = cpu * num_tc; num_tc--; tci++) {
2438 int i, j;
2439
2440 for (i = count, j = offset; i--; j++) {
2441 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442 break;
2443 }
2444
2445 active |= i < 0;
2446 }
2447
2448 return active;
2449}
2450
2451static void reset_xps_maps(struct net_device *dev,
2452 struct xps_dev_maps *dev_maps,
2453 enum xps_map_type type)
2454{
2455 static_key_slow_dec_cpuslocked(&xps_needed);
2456 if (type == XPS_RXQS)
2457 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458
2459 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460
2461 kfree_rcu(dev_maps, rcu);
2462}
2463
2464static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465 u16 offset, u16 count)
2466{
2467 struct xps_dev_maps *dev_maps;
2468 bool active = false;
2469 int i, j;
2470
2471 dev_maps = xmap_dereference(dev->xps_maps[type]);
2472 if (!dev_maps)
2473 return;
2474
2475 for (j = 0; j < dev_maps->nr_ids; j++)
2476 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477 if (!active)
2478 reset_xps_maps(dev, dev_maps, type);
2479
2480 if (type == XPS_CPUS) {
2481 for (i = offset + (count - 1); count--; i--)
2482 netdev_queue_numa_node_write(
2483 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484 }
2485}
2486
2487static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488 u16 count)
2489{
2490 if (!static_key_false(&xps_needed))
2491 return;
2492
2493 cpus_read_lock();
2494 mutex_lock(&xps_map_mutex);
2495
2496 if (static_key_false(&xps_rxqs_needed))
2497 clean_xps_maps(dev, XPS_RXQS, offset, count);
2498
2499 clean_xps_maps(dev, XPS_CPUS, offset, count);
2500
2501 mutex_unlock(&xps_map_mutex);
2502 cpus_read_unlock();
2503}
2504
2505static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506{
2507 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508}
2509
2510static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511 u16 index, bool is_rxqs_map)
2512{
2513 struct xps_map *new_map;
2514 int alloc_len = XPS_MIN_MAP_ALLOC;
2515 int i, pos;
2516
2517 for (pos = 0; map && pos < map->len; pos++) {
2518 if (map->queues[pos] != index)
2519 continue;
2520 return map;
2521 }
2522
2523 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524 if (map) {
2525 if (pos < map->alloc_len)
2526 return map;
2527
2528 alloc_len = map->alloc_len * 2;
2529 }
2530
2531 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532 * map
2533 */
2534 if (is_rxqs_map)
2535 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536 else
2537 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538 cpu_to_node(attr_index));
2539 if (!new_map)
2540 return NULL;
2541
2542 for (i = 0; i < pos; i++)
2543 new_map->queues[i] = map->queues[i];
2544 new_map->alloc_len = alloc_len;
2545 new_map->len = pos;
2546
2547 return new_map;
2548}
2549
2550/* Copy xps maps at a given index */
2551static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552 struct xps_dev_maps *new_dev_maps, int index,
2553 int tc, bool skip_tc)
2554{
2555 int i, tci = index * dev_maps->num_tc;
2556 struct xps_map *map;
2557
2558 /* copy maps belonging to foreign traffic classes */
2559 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560 if (i == tc && skip_tc)
2561 continue;
2562
2563 /* fill in the new device map from the old device map */
2564 map = xmap_dereference(dev_maps->attr_map[tci]);
2565 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566 }
2567}
2568
2569/* Must be called under cpus_read_lock */
2570int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571 u16 index, enum xps_map_type type)
2572{
2573 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574 const unsigned long *online_mask = NULL;
2575 bool active = false, copy = false;
2576 int i, j, tci, numa_node_id = -2;
2577 int maps_sz, num_tc = 1, tc = 0;
2578 struct xps_map *map, *new_map;
2579 unsigned int nr_ids;
2580
2581 if (dev->num_tc) {
2582 /* Do not allow XPS on subordinate device directly */
2583 num_tc = dev->num_tc;
2584 if (num_tc < 0)
2585 return -EINVAL;
2586
2587 /* If queue belongs to subordinate dev use its map */
2588 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589
2590 tc = netdev_txq_to_tc(dev, index);
2591 if (tc < 0)
2592 return -EINVAL;
2593 }
2594
2595 mutex_lock(&xps_map_mutex);
2596
2597 dev_maps = xmap_dereference(dev->xps_maps[type]);
2598 if (type == XPS_RXQS) {
2599 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600 nr_ids = dev->num_rx_queues;
2601 } else {
2602 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603 if (num_possible_cpus() > 1)
2604 online_mask = cpumask_bits(cpu_online_mask);
2605 nr_ids = nr_cpu_ids;
2606 }
2607
2608 if (maps_sz < L1_CACHE_BYTES)
2609 maps_sz = L1_CACHE_BYTES;
2610
2611 /* The old dev_maps could be larger or smaller than the one we're
2612 * setting up now, as dev->num_tc or nr_ids could have been updated in
2613 * between. We could try to be smart, but let's be safe instead and only
2614 * copy foreign traffic classes if the two map sizes match.
2615 */
2616 if (dev_maps &&
2617 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618 copy = true;
2619
2620 /* allocate memory for queue storage */
2621 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622 j < nr_ids;) {
2623 if (!new_dev_maps) {
2624 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625 if (!new_dev_maps) {
2626 mutex_unlock(&xps_map_mutex);
2627 return -ENOMEM;
2628 }
2629
2630 new_dev_maps->nr_ids = nr_ids;
2631 new_dev_maps->num_tc = num_tc;
2632 }
2633
2634 tci = j * num_tc + tc;
2635 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636
2637 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638 if (!map)
2639 goto error;
2640
2641 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642 }
2643
2644 if (!new_dev_maps)
2645 goto out_no_new_maps;
2646
2647 if (!dev_maps) {
2648 /* Increment static keys at most once per type */
2649 static_key_slow_inc_cpuslocked(&xps_needed);
2650 if (type == XPS_RXQS)
2651 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652 }
2653
2654 for (j = 0; j < nr_ids; j++) {
2655 bool skip_tc = false;
2656
2657 tci = j * num_tc + tc;
2658 if (netif_attr_test_mask(j, mask, nr_ids) &&
2659 netif_attr_test_online(j, online_mask, nr_ids)) {
2660 /* add tx-queue to CPU/rx-queue maps */
2661 int pos = 0;
2662
2663 skip_tc = true;
2664
2665 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666 while ((pos < map->len) && (map->queues[pos] != index))
2667 pos++;
2668
2669 if (pos == map->len)
2670 map->queues[map->len++] = index;
2671#ifdef CONFIG_NUMA
2672 if (type == XPS_CPUS) {
2673 if (numa_node_id == -2)
2674 numa_node_id = cpu_to_node(j);
2675 else if (numa_node_id != cpu_to_node(j))
2676 numa_node_id = -1;
2677 }
2678#endif
2679 }
2680
2681 if (copy)
2682 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683 skip_tc);
2684 }
2685
2686 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687
2688 /* Cleanup old maps */
2689 if (!dev_maps)
2690 goto out_no_old_maps;
2691
2692 for (j = 0; j < dev_maps->nr_ids; j++) {
2693 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694 map = xmap_dereference(dev_maps->attr_map[tci]);
2695 if (!map)
2696 continue;
2697
2698 if (copy) {
2699 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 if (map == new_map)
2701 continue;
2702 }
2703
2704 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705 kfree_rcu(map, rcu);
2706 }
2707 }
2708
2709 old_dev_maps = dev_maps;
2710
2711out_no_old_maps:
2712 dev_maps = new_dev_maps;
2713 active = true;
2714
2715out_no_new_maps:
2716 if (type == XPS_CPUS)
2717 /* update Tx queue numa node */
2718 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719 (numa_node_id >= 0) ?
2720 numa_node_id : NUMA_NO_NODE);
2721
2722 if (!dev_maps)
2723 goto out_no_maps;
2724
2725 /* removes tx-queue from unused CPUs/rx-queues */
2726 for (j = 0; j < dev_maps->nr_ids; j++) {
2727 tci = j * dev_maps->num_tc;
2728
2729 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730 if (i == tc &&
2731 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733 continue;
2734
2735 active |= remove_xps_queue(dev_maps,
2736 copy ? old_dev_maps : NULL,
2737 tci, index);
2738 }
2739 }
2740
2741 if (old_dev_maps)
2742 kfree_rcu(old_dev_maps, rcu);
2743
2744 /* free map if not active */
2745 if (!active)
2746 reset_xps_maps(dev, dev_maps, type);
2747
2748out_no_maps:
2749 mutex_unlock(&xps_map_mutex);
2750
2751 return 0;
2752error:
2753 /* remove any maps that we added */
2754 for (j = 0; j < nr_ids; j++) {
2755 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757 map = copy ?
2758 xmap_dereference(dev_maps->attr_map[tci]) :
2759 NULL;
2760 if (new_map && new_map != map)
2761 kfree(new_map);
2762 }
2763 }
2764
2765 mutex_unlock(&xps_map_mutex);
2766
2767 kfree(new_dev_maps);
2768 return -ENOMEM;
2769}
2770EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771
2772int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773 u16 index)
2774{
2775 int ret;
2776
2777 cpus_read_lock();
2778 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779 cpus_read_unlock();
2780
2781 return ret;
2782}
2783EXPORT_SYMBOL(netif_set_xps_queue);
2784
2785#endif
2786static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787{
2788 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789
2790 /* Unbind any subordinate channels */
2791 while (txq-- != &dev->_tx[0]) {
2792 if (txq->sb_dev)
2793 netdev_unbind_sb_channel(dev, txq->sb_dev);
2794 }
2795}
2796
2797void netdev_reset_tc(struct net_device *dev)
2798{
2799#ifdef CONFIG_XPS
2800 netif_reset_xps_queues_gt(dev, 0);
2801#endif
2802 netdev_unbind_all_sb_channels(dev);
2803
2804 /* Reset TC configuration of device */
2805 dev->num_tc = 0;
2806 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808}
2809EXPORT_SYMBOL(netdev_reset_tc);
2810
2811int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812{
2813 if (tc >= dev->num_tc)
2814 return -EINVAL;
2815
2816#ifdef CONFIG_XPS
2817 netif_reset_xps_queues(dev, offset, count);
2818#endif
2819 dev->tc_to_txq[tc].count = count;
2820 dev->tc_to_txq[tc].offset = offset;
2821 return 0;
2822}
2823EXPORT_SYMBOL(netdev_set_tc_queue);
2824
2825int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826{
2827 if (num_tc > TC_MAX_QUEUE)
2828 return -EINVAL;
2829
2830#ifdef CONFIG_XPS
2831 netif_reset_xps_queues_gt(dev, 0);
2832#endif
2833 netdev_unbind_all_sb_channels(dev);
2834
2835 dev->num_tc = num_tc;
2836 return 0;
2837}
2838EXPORT_SYMBOL(netdev_set_num_tc);
2839
2840void netdev_unbind_sb_channel(struct net_device *dev,
2841 struct net_device *sb_dev)
2842{
2843 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844
2845#ifdef CONFIG_XPS
2846 netif_reset_xps_queues_gt(sb_dev, 0);
2847#endif
2848 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850
2851 while (txq-- != &dev->_tx[0]) {
2852 if (txq->sb_dev == sb_dev)
2853 txq->sb_dev = NULL;
2854 }
2855}
2856EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857
2858int netdev_bind_sb_channel_queue(struct net_device *dev,
2859 struct net_device *sb_dev,
2860 u8 tc, u16 count, u16 offset)
2861{
2862 /* Make certain the sb_dev and dev are already configured */
2863 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864 return -EINVAL;
2865
2866 /* We cannot hand out queues we don't have */
2867 if ((offset + count) > dev->real_num_tx_queues)
2868 return -EINVAL;
2869
2870 /* Record the mapping */
2871 sb_dev->tc_to_txq[tc].count = count;
2872 sb_dev->tc_to_txq[tc].offset = offset;
2873
2874 /* Provide a way for Tx queue to find the tc_to_txq map or
2875 * XPS map for itself.
2876 */
2877 while (count--)
2878 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879
2880 return 0;
2881}
2882EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883
2884int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885{
2886 /* Do not use a multiqueue device to represent a subordinate channel */
2887 if (netif_is_multiqueue(dev))
2888 return -ENODEV;
2889
2890 /* We allow channels 1 - 32767 to be used for subordinate channels.
2891 * Channel 0 is meant to be "native" mode and used only to represent
2892 * the main root device. We allow writing 0 to reset the device back
2893 * to normal mode after being used as a subordinate channel.
2894 */
2895 if (channel > S16_MAX)
2896 return -EINVAL;
2897
2898 dev->num_tc = -channel;
2899
2900 return 0;
2901}
2902EXPORT_SYMBOL(netdev_set_sb_channel);
2903
2904/*
2905 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907 */
2908int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909{
2910 bool disabling;
2911 int rc;
2912
2913 disabling = txq < dev->real_num_tx_queues;
2914
2915 if (txq < 1 || txq > dev->num_tx_queues)
2916 return -EINVAL;
2917
2918 if (dev->reg_state == NETREG_REGISTERED ||
2919 dev->reg_state == NETREG_UNREGISTERING) {
2920 ASSERT_RTNL();
2921
2922 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923 txq);
2924 if (rc)
2925 return rc;
2926
2927 if (dev->num_tc)
2928 netif_setup_tc(dev, txq);
2929
2930 dev_qdisc_change_real_num_tx(dev, txq);
2931
2932 dev->real_num_tx_queues = txq;
2933
2934 if (disabling) {
2935 synchronize_net();
2936 qdisc_reset_all_tx_gt(dev, txq);
2937#ifdef CONFIG_XPS
2938 netif_reset_xps_queues_gt(dev, txq);
2939#endif
2940 }
2941 } else {
2942 dev->real_num_tx_queues = txq;
2943 }
2944
2945 return 0;
2946}
2947EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948
2949#ifdef CONFIG_SYSFS
2950/**
2951 * netif_set_real_num_rx_queues - set actual number of RX queues used
2952 * @dev: Network device
2953 * @rxq: Actual number of RX queues
2954 *
2955 * This must be called either with the rtnl_lock held or before
2956 * registration of the net device. Returns 0 on success, or a
2957 * negative error code. If called before registration, it always
2958 * succeeds.
2959 */
2960int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961{
2962 int rc;
2963
2964 if (rxq < 1 || rxq > dev->num_rx_queues)
2965 return -EINVAL;
2966
2967 if (dev->reg_state == NETREG_REGISTERED) {
2968 ASSERT_RTNL();
2969
2970 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971 rxq);
2972 if (rc)
2973 return rc;
2974 }
2975
2976 dev->real_num_rx_queues = rxq;
2977 return 0;
2978}
2979EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980#endif
2981
2982/**
2983 * netif_set_real_num_queues - set actual number of RX and TX queues used
2984 * @dev: Network device
2985 * @txq: Actual number of TX queues
2986 * @rxq: Actual number of RX queues
2987 *
2988 * Set the real number of both TX and RX queues.
2989 * Does nothing if the number of queues is already correct.
2990 */
2991int netif_set_real_num_queues(struct net_device *dev,
2992 unsigned int txq, unsigned int rxq)
2993{
2994 unsigned int old_rxq = dev->real_num_rx_queues;
2995 int err;
2996
2997 if (txq < 1 || txq > dev->num_tx_queues ||
2998 rxq < 1 || rxq > dev->num_rx_queues)
2999 return -EINVAL;
3000
3001 /* Start from increases, so the error path only does decreases -
3002 * decreases can't fail.
3003 */
3004 if (rxq > dev->real_num_rx_queues) {
3005 err = netif_set_real_num_rx_queues(dev, rxq);
3006 if (err)
3007 return err;
3008 }
3009 if (txq > dev->real_num_tx_queues) {
3010 err = netif_set_real_num_tx_queues(dev, txq);
3011 if (err)
3012 goto undo_rx;
3013 }
3014 if (rxq < dev->real_num_rx_queues)
3015 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016 if (txq < dev->real_num_tx_queues)
3017 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018
3019 return 0;
3020undo_rx:
3021 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022 return err;
3023}
3024EXPORT_SYMBOL(netif_set_real_num_queues);
3025
3026/**
3027 * netif_get_num_default_rss_queues - default number of RSS queues
3028 *
3029 * This routine should set an upper limit on the number of RSS queues
3030 * used by default by multiqueue devices.
3031 */
3032int netif_get_num_default_rss_queues(void)
3033{
3034 return is_kdump_kernel() ?
3035 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036}
3037EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038
3039static void __netif_reschedule(struct Qdisc *q)
3040{
3041 struct softnet_data *sd;
3042 unsigned long flags;
3043
3044 local_irq_save(flags);
3045 sd = this_cpu_ptr(&softnet_data);
3046 q->next_sched = NULL;
3047 *sd->output_queue_tailp = q;
3048 sd->output_queue_tailp = &q->next_sched;
3049 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050 local_irq_restore(flags);
3051}
3052
3053void __netif_schedule(struct Qdisc *q)
3054{
3055 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056 __netif_reschedule(q);
3057}
3058EXPORT_SYMBOL(__netif_schedule);
3059
3060struct dev_kfree_skb_cb {
3061 enum skb_free_reason reason;
3062};
3063
3064static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065{
3066 return (struct dev_kfree_skb_cb *)skb->cb;
3067}
3068
3069void netif_schedule_queue(struct netdev_queue *txq)
3070{
3071 rcu_read_lock();
3072 if (!netif_xmit_stopped(txq)) {
3073 struct Qdisc *q = rcu_dereference(txq->qdisc);
3074
3075 __netif_schedule(q);
3076 }
3077 rcu_read_unlock();
3078}
3079EXPORT_SYMBOL(netif_schedule_queue);
3080
3081void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082{
3083 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084 struct Qdisc *q;
3085
3086 rcu_read_lock();
3087 q = rcu_dereference(dev_queue->qdisc);
3088 __netif_schedule(q);
3089 rcu_read_unlock();
3090 }
3091}
3092EXPORT_SYMBOL(netif_tx_wake_queue);
3093
3094void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095{
3096 unsigned long flags;
3097
3098 if (unlikely(!skb))
3099 return;
3100
3101 if (likely(refcount_read(&skb->users) == 1)) {
3102 smp_rmb();
3103 refcount_set(&skb->users, 0);
3104 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3105 return;
3106 }
3107 get_kfree_skb_cb(skb)->reason = reason;
3108 local_irq_save(flags);
3109 skb->next = __this_cpu_read(softnet_data.completion_queue);
3110 __this_cpu_write(softnet_data.completion_queue, skb);
3111 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 local_irq_restore(flags);
3113}
3114EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115
3116void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117{
3118 if (in_hardirq() || irqs_disabled())
3119 __dev_kfree_skb_irq(skb, reason);
3120 else
3121 dev_kfree_skb(skb);
3122}
3123EXPORT_SYMBOL(__dev_kfree_skb_any);
3124
3125
3126/**
3127 * netif_device_detach - mark device as removed
3128 * @dev: network device
3129 *
3130 * Mark device as removed from system and therefore no longer available.
3131 */
3132void netif_device_detach(struct net_device *dev)
3133{
3134 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135 netif_running(dev)) {
3136 netif_tx_stop_all_queues(dev);
3137 }
3138}
3139EXPORT_SYMBOL(netif_device_detach);
3140
3141/**
3142 * netif_device_attach - mark device as attached
3143 * @dev: network device
3144 *
3145 * Mark device as attached from system and restart if needed.
3146 */
3147void netif_device_attach(struct net_device *dev)
3148{
3149 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 netif_running(dev)) {
3151 netif_tx_wake_all_queues(dev);
3152 __netdev_watchdog_up(dev);
3153 }
3154}
3155EXPORT_SYMBOL(netif_device_attach);
3156
3157/*
3158 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159 * to be used as a distribution range.
3160 */
3161static u16 skb_tx_hash(const struct net_device *dev,
3162 const struct net_device *sb_dev,
3163 struct sk_buff *skb)
3164{
3165 u32 hash;
3166 u16 qoffset = 0;
3167 u16 qcount = dev->real_num_tx_queues;
3168
3169 if (dev->num_tc) {
3170 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171
3172 qoffset = sb_dev->tc_to_txq[tc].offset;
3173 qcount = sb_dev->tc_to_txq[tc].count;
3174 if (unlikely(!qcount)) {
3175 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3176 sb_dev->name, qoffset, tc);
3177 qoffset = 0;
3178 qcount = dev->real_num_tx_queues;
3179 }
3180 }
3181
3182 if (skb_rx_queue_recorded(skb)) {
3183 hash = skb_get_rx_queue(skb);
3184 if (hash >= qoffset)
3185 hash -= qoffset;
3186 while (unlikely(hash >= qcount))
3187 hash -= qcount;
3188 return hash + qoffset;
3189 }
3190
3191 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3192}
3193
3194static void skb_warn_bad_offload(const struct sk_buff *skb)
3195{
3196 static const netdev_features_t null_features;
3197 struct net_device *dev = skb->dev;
3198 const char *name = "";
3199
3200 if (!net_ratelimit())
3201 return;
3202
3203 if (dev) {
3204 if (dev->dev.parent)
3205 name = dev_driver_string(dev->dev.parent);
3206 else
3207 name = netdev_name(dev);
3208 }
3209 skb_dump(KERN_WARNING, skb, false);
3210 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3211 name, dev ? &dev->features : &null_features,
3212 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3213}
3214
3215/*
3216 * Invalidate hardware checksum when packet is to be mangled, and
3217 * complete checksum manually on outgoing path.
3218 */
3219int skb_checksum_help(struct sk_buff *skb)
3220{
3221 __wsum csum;
3222 int ret = 0, offset;
3223
3224 if (skb->ip_summed == CHECKSUM_COMPLETE)
3225 goto out_set_summed;
3226
3227 if (unlikely(skb_is_gso(skb))) {
3228 skb_warn_bad_offload(skb);
3229 return -EINVAL;
3230 }
3231
3232 /* Before computing a checksum, we should make sure no frag could
3233 * be modified by an external entity : checksum could be wrong.
3234 */
3235 if (skb_has_shared_frag(skb)) {
3236 ret = __skb_linearize(skb);
3237 if (ret)
3238 goto out;
3239 }
3240
3241 offset = skb_checksum_start_offset(skb);
3242 BUG_ON(offset >= skb_headlen(skb));
3243 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3244
3245 offset += skb->csum_offset;
3246 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3247
3248 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249 if (ret)
3250 goto out;
3251
3252 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253out_set_summed:
3254 skb->ip_summed = CHECKSUM_NONE;
3255out:
3256 return ret;
3257}
3258EXPORT_SYMBOL(skb_checksum_help);
3259
3260int skb_crc32c_csum_help(struct sk_buff *skb)
3261{
3262 __le32 crc32c_csum;
3263 int ret = 0, offset, start;
3264
3265 if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 goto out;
3267
3268 if (unlikely(skb_is_gso(skb)))
3269 goto out;
3270
3271 /* Before computing a checksum, we should make sure no frag could
3272 * be modified by an external entity : checksum could be wrong.
3273 */
3274 if (unlikely(skb_has_shared_frag(skb))) {
3275 ret = __skb_linearize(skb);
3276 if (ret)
3277 goto out;
3278 }
3279 start = skb_checksum_start_offset(skb);
3280 offset = start + offsetof(struct sctphdr, checksum);
3281 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282 ret = -EINVAL;
3283 goto out;
3284 }
3285
3286 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287 if (ret)
3288 goto out;
3289
3290 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291 skb->len - start, ~(__u32)0,
3292 crc32c_csum_stub));
3293 *(__le32 *)(skb->data + offset) = crc32c_csum;
3294 skb->ip_summed = CHECKSUM_NONE;
3295 skb->csum_not_inet = 0;
3296out:
3297 return ret;
3298}
3299
3300__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301{
3302 __be16 type = skb->protocol;
3303
3304 /* Tunnel gso handlers can set protocol to ethernet. */
3305 if (type == htons(ETH_P_TEB)) {
3306 struct ethhdr *eth;
3307
3308 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309 return 0;
3310
3311 eth = (struct ethhdr *)skb->data;
3312 type = eth->h_proto;
3313 }
3314
3315 return __vlan_get_protocol(skb, type, depth);
3316}
3317
3318/**
3319 * skb_mac_gso_segment - mac layer segmentation handler.
3320 * @skb: buffer to segment
3321 * @features: features for the output path (see dev->features)
3322 */
3323struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324 netdev_features_t features)
3325{
3326 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327 struct packet_offload *ptype;
3328 int vlan_depth = skb->mac_len;
3329 __be16 type = skb_network_protocol(skb, &vlan_depth);
3330
3331 if (unlikely(!type))
3332 return ERR_PTR(-EINVAL);
3333
3334 __skb_pull(skb, vlan_depth);
3335
3336 rcu_read_lock();
3337 list_for_each_entry_rcu(ptype, &offload_base, list) {
3338 if (ptype->type == type && ptype->callbacks.gso_segment) {
3339 segs = ptype->callbacks.gso_segment(skb, features);
3340 break;
3341 }
3342 }
3343 rcu_read_unlock();
3344
3345 __skb_push(skb, skb->data - skb_mac_header(skb));
3346
3347 return segs;
3348}
3349EXPORT_SYMBOL(skb_mac_gso_segment);
3350
3351
3352/* openvswitch calls this on rx path, so we need a different check.
3353 */
3354static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355{
3356 if (tx_path)
3357 return skb->ip_summed != CHECKSUM_PARTIAL &&
3358 skb->ip_summed != CHECKSUM_UNNECESSARY;
3359
3360 return skb->ip_summed == CHECKSUM_NONE;
3361}
3362
3363/**
3364 * __skb_gso_segment - Perform segmentation on skb.
3365 * @skb: buffer to segment
3366 * @features: features for the output path (see dev->features)
3367 * @tx_path: whether it is called in TX path
3368 *
3369 * This function segments the given skb and returns a list of segments.
3370 *
3371 * It may return NULL if the skb requires no segmentation. This is
3372 * only possible when GSO is used for verifying header integrity.
3373 *
3374 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375 */
3376struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377 netdev_features_t features, bool tx_path)
3378{
3379 struct sk_buff *segs;
3380
3381 if (unlikely(skb_needs_check(skb, tx_path))) {
3382 int err;
3383
3384 /* We're going to init ->check field in TCP or UDP header */
3385 err = skb_cow_head(skb, 0);
3386 if (err < 0)
3387 return ERR_PTR(err);
3388 }
3389
3390 /* Only report GSO partial support if it will enable us to
3391 * support segmentation on this frame without needing additional
3392 * work.
3393 */
3394 if (features & NETIF_F_GSO_PARTIAL) {
3395 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396 struct net_device *dev = skb->dev;
3397
3398 partial_features |= dev->features & dev->gso_partial_features;
3399 if (!skb_gso_ok(skb, features | partial_features))
3400 features &= ~NETIF_F_GSO_PARTIAL;
3401 }
3402
3403 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405
3406 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407 SKB_GSO_CB(skb)->encap_level = 0;
3408
3409 skb_reset_mac_header(skb);
3410 skb_reset_mac_len(skb);
3411
3412 segs = skb_mac_gso_segment(skb, features);
3413
3414 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415 skb_warn_bad_offload(skb);
3416
3417 return segs;
3418}
3419EXPORT_SYMBOL(__skb_gso_segment);
3420
3421/* Take action when hardware reception checksum errors are detected. */
3422#ifdef CONFIG_BUG
3423static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424{
3425 netdev_err(dev, "hw csum failure\n");
3426 skb_dump(KERN_ERR, skb, true);
3427 dump_stack();
3428}
3429
3430void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431{
3432 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433}
3434EXPORT_SYMBOL(netdev_rx_csum_fault);
3435#endif
3436
3437/* XXX: check that highmem exists at all on the given machine. */
3438static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439{
3440#ifdef CONFIG_HIGHMEM
3441 int i;
3442
3443 if (!(dev->features & NETIF_F_HIGHDMA)) {
3444 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446
3447 if (PageHighMem(skb_frag_page(frag)))
3448 return 1;
3449 }
3450 }
3451#endif
3452 return 0;
3453}
3454
3455/* If MPLS offload request, verify we are testing hardware MPLS features
3456 * instead of standard features for the netdev.
3457 */
3458#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460 netdev_features_t features,
3461 __be16 type)
3462{
3463 if (eth_p_mpls(type))
3464 features &= skb->dev->mpls_features;
3465
3466 return features;
3467}
3468#else
3469static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470 netdev_features_t features,
3471 __be16 type)
3472{
3473 return features;
3474}
3475#endif
3476
3477static netdev_features_t harmonize_features(struct sk_buff *skb,
3478 netdev_features_t features)
3479{
3480 __be16 type;
3481
3482 type = skb_network_protocol(skb, NULL);
3483 features = net_mpls_features(skb, features, type);
3484
3485 if (skb->ip_summed != CHECKSUM_NONE &&
3486 !can_checksum_protocol(features, type)) {
3487 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488 }
3489 if (illegal_highdma(skb->dev, skb))
3490 features &= ~NETIF_F_SG;
3491
3492 return features;
3493}
3494
3495netdev_features_t passthru_features_check(struct sk_buff *skb,
3496 struct net_device *dev,
3497 netdev_features_t features)
3498{
3499 return features;
3500}
3501EXPORT_SYMBOL(passthru_features_check);
3502
3503static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504 struct net_device *dev,
3505 netdev_features_t features)
3506{
3507 return vlan_features_check(skb, features);
3508}
3509
3510static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511 struct net_device *dev,
3512 netdev_features_t features)
3513{
3514 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515
3516 if (gso_segs > dev->gso_max_segs)
3517 return features & ~NETIF_F_GSO_MASK;
3518
3519 if (!skb_shinfo(skb)->gso_type) {
3520 skb_warn_bad_offload(skb);
3521 return features & ~NETIF_F_GSO_MASK;
3522 }
3523
3524 /* Support for GSO partial features requires software
3525 * intervention before we can actually process the packets
3526 * so we need to strip support for any partial features now
3527 * and we can pull them back in after we have partially
3528 * segmented the frame.
3529 */
3530 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531 features &= ~dev->gso_partial_features;
3532
3533 /* Make sure to clear the IPv4 ID mangling feature if the
3534 * IPv4 header has the potential to be fragmented.
3535 */
3536 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537 struct iphdr *iph = skb->encapsulation ?
3538 inner_ip_hdr(skb) : ip_hdr(skb);
3539
3540 if (!(iph->frag_off & htons(IP_DF)))
3541 features &= ~NETIF_F_TSO_MANGLEID;
3542 }
3543
3544 return features;
3545}
3546
3547netdev_features_t netif_skb_features(struct sk_buff *skb)
3548{
3549 struct net_device *dev = skb->dev;
3550 netdev_features_t features = dev->features;
3551
3552 if (skb_is_gso(skb))
3553 features = gso_features_check(skb, dev, features);
3554
3555 /* If encapsulation offload request, verify we are testing
3556 * hardware encapsulation features instead of standard
3557 * features for the netdev
3558 */
3559 if (skb->encapsulation)
3560 features &= dev->hw_enc_features;
3561
3562 if (skb_vlan_tagged(skb))
3563 features = netdev_intersect_features(features,
3564 dev->vlan_features |
3565 NETIF_F_HW_VLAN_CTAG_TX |
3566 NETIF_F_HW_VLAN_STAG_TX);
3567
3568 if (dev->netdev_ops->ndo_features_check)
3569 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570 features);
3571 else
3572 features &= dflt_features_check(skb, dev, features);
3573
3574 return harmonize_features(skb, features);
3575}
3576EXPORT_SYMBOL(netif_skb_features);
3577
3578static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579 struct netdev_queue *txq, bool more)
3580{
3581 unsigned int len;
3582 int rc;
3583
3584 if (dev_nit_active(dev))
3585 dev_queue_xmit_nit(skb, dev);
3586
3587 len = skb->len;
3588 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589 trace_net_dev_start_xmit(skb, dev);
3590 rc = netdev_start_xmit(skb, dev, txq, more);
3591 trace_net_dev_xmit(skb, rc, dev, len);
3592
3593 return rc;
3594}
3595
3596struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 struct netdev_queue *txq, int *ret)
3598{
3599 struct sk_buff *skb = first;
3600 int rc = NETDEV_TX_OK;
3601
3602 while (skb) {
3603 struct sk_buff *next = skb->next;
3604
3605 skb_mark_not_on_list(skb);
3606 rc = xmit_one(skb, dev, txq, next != NULL);
3607 if (unlikely(!dev_xmit_complete(rc))) {
3608 skb->next = next;
3609 goto out;
3610 }
3611
3612 skb = next;
3613 if (netif_tx_queue_stopped(txq) && skb) {
3614 rc = NETDEV_TX_BUSY;
3615 break;
3616 }
3617 }
3618
3619out:
3620 *ret = rc;
3621 return skb;
3622}
3623
3624static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 netdev_features_t features)
3626{
3627 if (skb_vlan_tag_present(skb) &&
3628 !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 skb = __vlan_hwaccel_push_inside(skb);
3630 return skb;
3631}
3632
3633int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 const netdev_features_t features)
3635{
3636 if (unlikely(skb_csum_is_sctp(skb)))
3637 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 skb_crc32c_csum_help(skb);
3639
3640 if (features & NETIF_F_HW_CSUM)
3641 return 0;
3642
3643 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 switch (skb->csum_offset) {
3645 case offsetof(struct tcphdr, check):
3646 case offsetof(struct udphdr, check):
3647 return 0;
3648 }
3649 }
3650
3651 return skb_checksum_help(skb);
3652}
3653EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656{
3657 netdev_features_t features;
3658
3659 features = netif_skb_features(skb);
3660 skb = validate_xmit_vlan(skb, features);
3661 if (unlikely(!skb))
3662 goto out_null;
3663
3664 skb = sk_validate_xmit_skb(skb, dev);
3665 if (unlikely(!skb))
3666 goto out_null;
3667
3668 if (netif_needs_gso(skb, features)) {
3669 struct sk_buff *segs;
3670
3671 segs = skb_gso_segment(skb, features);
3672 if (IS_ERR(segs)) {
3673 goto out_kfree_skb;
3674 } else if (segs) {
3675 consume_skb(skb);
3676 skb = segs;
3677 }
3678 } else {
3679 if (skb_needs_linearize(skb, features) &&
3680 __skb_linearize(skb))
3681 goto out_kfree_skb;
3682
3683 /* If packet is not checksummed and device does not
3684 * support checksumming for this protocol, complete
3685 * checksumming here.
3686 */
3687 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 if (skb->encapsulation)
3689 skb_set_inner_transport_header(skb,
3690 skb_checksum_start_offset(skb));
3691 else
3692 skb_set_transport_header(skb,
3693 skb_checksum_start_offset(skb));
3694 if (skb_csum_hwoffload_help(skb, features))
3695 goto out_kfree_skb;
3696 }
3697 }
3698
3699 skb = validate_xmit_xfrm(skb, features, again);
3700
3701 return skb;
3702
3703out_kfree_skb:
3704 kfree_skb(skb);
3705out_null:
3706 atomic_long_inc(&dev->tx_dropped);
3707 return NULL;
3708}
3709
3710struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711{
3712 struct sk_buff *next, *head = NULL, *tail;
3713
3714 for (; skb != NULL; skb = next) {
3715 next = skb->next;
3716 skb_mark_not_on_list(skb);
3717
3718 /* in case skb wont be segmented, point to itself */
3719 skb->prev = skb;
3720
3721 skb = validate_xmit_skb(skb, dev, again);
3722 if (!skb)
3723 continue;
3724
3725 if (!head)
3726 head = skb;
3727 else
3728 tail->next = skb;
3729 /* If skb was segmented, skb->prev points to
3730 * the last segment. If not, it still contains skb.
3731 */
3732 tail = skb->prev;
3733 }
3734 return head;
3735}
3736EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738static void qdisc_pkt_len_init(struct sk_buff *skb)
3739{
3740 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742 qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744 /* To get more precise estimation of bytes sent on wire,
3745 * we add to pkt_len the headers size of all segments
3746 */
3747 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 unsigned int hdr_len;
3749 u16 gso_segs = shinfo->gso_segs;
3750
3751 /* mac layer + network layer */
3752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754 /* + transport layer */
3755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 const struct tcphdr *th;
3757 struct tcphdr _tcphdr;
3758
3759 th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 sizeof(_tcphdr), &_tcphdr);
3761 if (likely(th))
3762 hdr_len += __tcp_hdrlen(th);
3763 } else {
3764 struct udphdr _udphdr;
3765
3766 if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 sizeof(_udphdr), &_udphdr))
3768 hdr_len += sizeof(struct udphdr);
3769 }
3770
3771 if (shinfo->gso_type & SKB_GSO_DODGY)
3772 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 shinfo->gso_size);
3774
3775 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 }
3777}
3778
3779static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 struct sk_buff **to_free,
3781 struct netdev_queue *txq)
3782{
3783 int rc;
3784
3785 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 if (rc == NET_XMIT_SUCCESS)
3787 trace_qdisc_enqueue(q, txq, skb);
3788 return rc;
3789}
3790
3791static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 struct net_device *dev,
3793 struct netdev_queue *txq)
3794{
3795 spinlock_t *root_lock = qdisc_lock(q);
3796 struct sk_buff *to_free = NULL;
3797 bool contended;
3798 int rc;
3799
3800 qdisc_calculate_pkt_len(skb, q);
3801
3802 if (q->flags & TCQ_F_NOLOCK) {
3803 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 qdisc_run_begin(q)) {
3805 /* Retest nolock_qdisc_is_empty() within the protection
3806 * of q->seqlock to protect from racing with requeuing.
3807 */
3808 if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 __qdisc_run(q);
3811 qdisc_run_end(q);
3812
3813 goto no_lock_out;
3814 }
3815
3816 qdisc_bstats_cpu_update(q, skb);
3817 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 !nolock_qdisc_is_empty(q))
3819 __qdisc_run(q);
3820
3821 qdisc_run_end(q);
3822 return NET_XMIT_SUCCESS;
3823 }
3824
3825 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 qdisc_run(q);
3827
3828no_lock_out:
3829 if (unlikely(to_free))
3830 kfree_skb_list(to_free);
3831 return rc;
3832 }
3833
3834 /*
3835 * Heuristic to force contended enqueues to serialize on a
3836 * separate lock before trying to get qdisc main lock.
3837 * This permits qdisc->running owner to get the lock more
3838 * often and dequeue packets faster.
3839 */
3840 contended = qdisc_is_running(q);
3841 if (unlikely(contended))
3842 spin_lock(&q->busylock);
3843
3844 spin_lock(root_lock);
3845 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846 __qdisc_drop(skb, &to_free);
3847 rc = NET_XMIT_DROP;
3848 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849 qdisc_run_begin(q)) {
3850 /*
3851 * This is a work-conserving queue; there are no old skbs
3852 * waiting to be sent out; and the qdisc is not running -
3853 * xmit the skb directly.
3854 */
3855
3856 qdisc_bstats_update(q, skb);
3857
3858 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859 if (unlikely(contended)) {
3860 spin_unlock(&q->busylock);
3861 contended = false;
3862 }
3863 __qdisc_run(q);
3864 }
3865
3866 qdisc_run_end(q);
3867 rc = NET_XMIT_SUCCESS;
3868 } else {
3869 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870 if (qdisc_run_begin(q)) {
3871 if (unlikely(contended)) {
3872 spin_unlock(&q->busylock);
3873 contended = false;
3874 }
3875 __qdisc_run(q);
3876 qdisc_run_end(q);
3877 }
3878 }
3879 spin_unlock(root_lock);
3880 if (unlikely(to_free))
3881 kfree_skb_list(to_free);
3882 if (unlikely(contended))
3883 spin_unlock(&q->busylock);
3884 return rc;
3885}
3886
3887#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888static void skb_update_prio(struct sk_buff *skb)
3889{
3890 const struct netprio_map *map;
3891 const struct sock *sk;
3892 unsigned int prioidx;
3893
3894 if (skb->priority)
3895 return;
3896 map = rcu_dereference_bh(skb->dev->priomap);
3897 if (!map)
3898 return;
3899 sk = skb_to_full_sk(skb);
3900 if (!sk)
3901 return;
3902
3903 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905 if (prioidx < map->priomap_len)
3906 skb->priority = map->priomap[prioidx];
3907}
3908#else
3909#define skb_update_prio(skb)
3910#endif
3911
3912/**
3913 * dev_loopback_xmit - loop back @skb
3914 * @net: network namespace this loopback is happening in
3915 * @sk: sk needed to be a netfilter okfn
3916 * @skb: buffer to transmit
3917 */
3918int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919{
3920 skb_reset_mac_header(skb);
3921 __skb_pull(skb, skb_network_offset(skb));
3922 skb->pkt_type = PACKET_LOOPBACK;
3923 if (skb->ip_summed == CHECKSUM_NONE)
3924 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925 WARN_ON(!skb_dst(skb));
3926 skb_dst_force(skb);
3927 netif_rx_ni(skb);
3928 return 0;
3929}
3930EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932#ifdef CONFIG_NET_EGRESS
3933static struct sk_buff *
3934sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935{
3936#ifdef CONFIG_NET_CLS_ACT
3937 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938 struct tcf_result cl_res;
3939
3940 if (!miniq)
3941 return skb;
3942
3943 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944 tc_skb_cb(skb)->mru = 0;
3945 tc_skb_cb(skb)->post_ct = false;
3946 mini_qdisc_bstats_cpu_update(miniq, skb);
3947
3948 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949 case TC_ACT_OK:
3950 case TC_ACT_RECLASSIFY:
3951 skb->tc_index = TC_H_MIN(cl_res.classid);
3952 break;
3953 case TC_ACT_SHOT:
3954 mini_qdisc_qstats_cpu_drop(miniq);
3955 *ret = NET_XMIT_DROP;
3956 kfree_skb(skb);
3957 return NULL;
3958 case TC_ACT_STOLEN:
3959 case TC_ACT_QUEUED:
3960 case TC_ACT_TRAP:
3961 *ret = NET_XMIT_SUCCESS;
3962 consume_skb(skb);
3963 return NULL;
3964 case TC_ACT_REDIRECT:
3965 /* No need to push/pop skb's mac_header here on egress! */
3966 skb_do_redirect(skb);
3967 *ret = NET_XMIT_SUCCESS;
3968 return NULL;
3969 default:
3970 break;
3971 }
3972#endif /* CONFIG_NET_CLS_ACT */
3973
3974 return skb;
3975}
3976#endif /* CONFIG_NET_EGRESS */
3977
3978#ifdef CONFIG_XPS
3979static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3980 struct xps_dev_maps *dev_maps, unsigned int tci)
3981{
3982 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3983 struct xps_map *map;
3984 int queue_index = -1;
3985
3986 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3987 return queue_index;
3988
3989 tci *= dev_maps->num_tc;
3990 tci += tc;
3991
3992 map = rcu_dereference(dev_maps->attr_map[tci]);
3993 if (map) {
3994 if (map->len == 1)
3995 queue_index = map->queues[0];
3996 else
3997 queue_index = map->queues[reciprocal_scale(
3998 skb_get_hash(skb), map->len)];
3999 if (unlikely(queue_index >= dev->real_num_tx_queues))
4000 queue_index = -1;
4001 }
4002 return queue_index;
4003}
4004#endif
4005
4006static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4007 struct sk_buff *skb)
4008{
4009#ifdef CONFIG_XPS
4010 struct xps_dev_maps *dev_maps;
4011 struct sock *sk = skb->sk;
4012 int queue_index = -1;
4013
4014 if (!static_key_false(&xps_needed))
4015 return -1;
4016
4017 rcu_read_lock();
4018 if (!static_key_false(&xps_rxqs_needed))
4019 goto get_cpus_map;
4020
4021 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4022 if (dev_maps) {
4023 int tci = sk_rx_queue_get(sk);
4024
4025 if (tci >= 0)
4026 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027 tci);
4028 }
4029
4030get_cpus_map:
4031 if (queue_index < 0) {
4032 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4033 if (dev_maps) {
4034 unsigned int tci = skb->sender_cpu - 1;
4035
4036 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4037 tci);
4038 }
4039 }
4040 rcu_read_unlock();
4041
4042 return queue_index;
4043#else
4044 return -1;
4045#endif
4046}
4047
4048u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4049 struct net_device *sb_dev)
4050{
4051 return 0;
4052}
4053EXPORT_SYMBOL(dev_pick_tx_zero);
4054
4055u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4056 struct net_device *sb_dev)
4057{
4058 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4059}
4060EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4061
4062u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4063 struct net_device *sb_dev)
4064{
4065 struct sock *sk = skb->sk;
4066 int queue_index = sk_tx_queue_get(sk);
4067
4068 sb_dev = sb_dev ? : dev;
4069
4070 if (queue_index < 0 || skb->ooo_okay ||
4071 queue_index >= dev->real_num_tx_queues) {
4072 int new_index = get_xps_queue(dev, sb_dev, skb);
4073
4074 if (new_index < 0)
4075 new_index = skb_tx_hash(dev, sb_dev, skb);
4076
4077 if (queue_index != new_index && sk &&
4078 sk_fullsock(sk) &&
4079 rcu_access_pointer(sk->sk_dst_cache))
4080 sk_tx_queue_set(sk, new_index);
4081
4082 queue_index = new_index;
4083 }
4084
4085 return queue_index;
4086}
4087EXPORT_SYMBOL(netdev_pick_tx);
4088
4089struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4090 struct sk_buff *skb,
4091 struct net_device *sb_dev)
4092{
4093 int queue_index = 0;
4094
4095#ifdef CONFIG_XPS
4096 u32 sender_cpu = skb->sender_cpu - 1;
4097
4098 if (sender_cpu >= (u32)NR_CPUS)
4099 skb->sender_cpu = raw_smp_processor_id() + 1;
4100#endif
4101
4102 if (dev->real_num_tx_queues != 1) {
4103 const struct net_device_ops *ops = dev->netdev_ops;
4104
4105 if (ops->ndo_select_queue)
4106 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4107 else
4108 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4109
4110 queue_index = netdev_cap_txqueue(dev, queue_index);
4111 }
4112
4113 skb_set_queue_mapping(skb, queue_index);
4114 return netdev_get_tx_queue(dev, queue_index);
4115}
4116
4117/**
4118 * __dev_queue_xmit - transmit a buffer
4119 * @skb: buffer to transmit
4120 * @sb_dev: suboordinate device used for L2 forwarding offload
4121 *
4122 * Queue a buffer for transmission to a network device. The caller must
4123 * have set the device and priority and built the buffer before calling
4124 * this function. The function can be called from an interrupt.
4125 *
4126 * A negative errno code is returned on a failure. A success does not
4127 * guarantee the frame will be transmitted as it may be dropped due
4128 * to congestion or traffic shaping.
4129 *
4130 * -----------------------------------------------------------------------------------
4131 * I notice this method can also return errors from the queue disciplines,
4132 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4133 * be positive.
4134 *
4135 * Regardless of the return value, the skb is consumed, so it is currently
4136 * difficult to retry a send to this method. (You can bump the ref count
4137 * before sending to hold a reference for retry if you are careful.)
4138 *
4139 * When calling this method, interrupts MUST be enabled. This is because
4140 * the BH enable code must have IRQs enabled so that it will not deadlock.
4141 * --BLG
4142 */
4143static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4144{
4145 struct net_device *dev = skb->dev;
4146 struct netdev_queue *txq;
4147 struct Qdisc *q;
4148 int rc = -ENOMEM;
4149 bool again = false;
4150
4151 skb_reset_mac_header(skb);
4152
4153 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4154 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4155
4156 /* Disable soft irqs for various locks below. Also
4157 * stops preemption for RCU.
4158 */
4159 rcu_read_lock_bh();
4160
4161 skb_update_prio(skb);
4162
4163 qdisc_pkt_len_init(skb);
4164#ifdef CONFIG_NET_CLS_ACT
4165 skb->tc_at_ingress = 0;
4166#endif
4167#ifdef CONFIG_NET_EGRESS
4168 if (static_branch_unlikely(&egress_needed_key)) {
4169 if (nf_hook_egress_active()) {
4170 skb = nf_hook_egress(skb, &rc, dev);
4171 if (!skb)
4172 goto out;
4173 }
4174 nf_skip_egress(skb, true);
4175 skb = sch_handle_egress(skb, &rc, dev);
4176 if (!skb)
4177 goto out;
4178 nf_skip_egress(skb, false);
4179 }
4180#endif
4181 /* If device/qdisc don't need skb->dst, release it right now while
4182 * its hot in this cpu cache.
4183 */
4184 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4185 skb_dst_drop(skb);
4186 else
4187 skb_dst_force(skb);
4188
4189 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4190 q = rcu_dereference_bh(txq->qdisc);
4191
4192 trace_net_dev_queue(skb);
4193 if (q->enqueue) {
4194 rc = __dev_xmit_skb(skb, q, dev, txq);
4195 goto out;
4196 }
4197
4198 /* The device has no queue. Common case for software devices:
4199 * loopback, all the sorts of tunnels...
4200
4201 * Really, it is unlikely that netif_tx_lock protection is necessary
4202 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4203 * counters.)
4204 * However, it is possible, that they rely on protection
4205 * made by us here.
4206
4207 * Check this and shot the lock. It is not prone from deadlocks.
4208 *Either shot noqueue qdisc, it is even simpler 8)
4209 */
4210 if (dev->flags & IFF_UP) {
4211 int cpu = smp_processor_id(); /* ok because BHs are off */
4212
4213 /* Other cpus might concurrently change txq->xmit_lock_owner
4214 * to -1 or to their cpu id, but not to our id.
4215 */
4216 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4217 if (dev_xmit_recursion())
4218 goto recursion_alert;
4219
4220 skb = validate_xmit_skb(skb, dev, &again);
4221 if (!skb)
4222 goto out;
4223
4224 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4225 HARD_TX_LOCK(dev, txq, cpu);
4226
4227 if (!netif_xmit_stopped(txq)) {
4228 dev_xmit_recursion_inc();
4229 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4230 dev_xmit_recursion_dec();
4231 if (dev_xmit_complete(rc)) {
4232 HARD_TX_UNLOCK(dev, txq);
4233 goto out;
4234 }
4235 }
4236 HARD_TX_UNLOCK(dev, txq);
4237 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4238 dev->name);
4239 } else {
4240 /* Recursion is detected! It is possible,
4241 * unfortunately
4242 */
4243recursion_alert:
4244 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4245 dev->name);
4246 }
4247 }
4248
4249 rc = -ENETDOWN;
4250 rcu_read_unlock_bh();
4251
4252 atomic_long_inc(&dev->tx_dropped);
4253 kfree_skb_list(skb);
4254 return rc;
4255out:
4256 rcu_read_unlock_bh();
4257 return rc;
4258}
4259
4260int dev_queue_xmit(struct sk_buff *skb)
4261{
4262 return __dev_queue_xmit(skb, NULL);
4263}
4264EXPORT_SYMBOL(dev_queue_xmit);
4265
4266int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4267{
4268 return __dev_queue_xmit(skb, sb_dev);
4269}
4270EXPORT_SYMBOL(dev_queue_xmit_accel);
4271
4272int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4273{
4274 struct net_device *dev = skb->dev;
4275 struct sk_buff *orig_skb = skb;
4276 struct netdev_queue *txq;
4277 int ret = NETDEV_TX_BUSY;
4278 bool again = false;
4279
4280 if (unlikely(!netif_running(dev) ||
4281 !netif_carrier_ok(dev)))
4282 goto drop;
4283
4284 skb = validate_xmit_skb_list(skb, dev, &again);
4285 if (skb != orig_skb)
4286 goto drop;
4287
4288 skb_set_queue_mapping(skb, queue_id);
4289 txq = skb_get_tx_queue(dev, skb);
4290 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4291
4292 local_bh_disable();
4293
4294 dev_xmit_recursion_inc();
4295 HARD_TX_LOCK(dev, txq, smp_processor_id());
4296 if (!netif_xmit_frozen_or_drv_stopped(txq))
4297 ret = netdev_start_xmit(skb, dev, txq, false);
4298 HARD_TX_UNLOCK(dev, txq);
4299 dev_xmit_recursion_dec();
4300
4301 local_bh_enable();
4302 return ret;
4303drop:
4304 atomic_long_inc(&dev->tx_dropped);
4305 kfree_skb_list(skb);
4306 return NET_XMIT_DROP;
4307}
4308EXPORT_SYMBOL(__dev_direct_xmit);
4309
4310/*************************************************************************
4311 * Receiver routines
4312 *************************************************************************/
4313
4314int netdev_max_backlog __read_mostly = 1000;
4315EXPORT_SYMBOL(netdev_max_backlog);
4316
4317int netdev_tstamp_prequeue __read_mostly = 1;
4318int netdev_budget __read_mostly = 300;
4319/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4320unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4321int weight_p __read_mostly = 64; /* old backlog weight */
4322int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4323int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4324int dev_rx_weight __read_mostly = 64;
4325int dev_tx_weight __read_mostly = 64;
4326/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4327int gro_normal_batch __read_mostly = 8;
4328
4329/* Called with irq disabled */
4330static inline void ____napi_schedule(struct softnet_data *sd,
4331 struct napi_struct *napi)
4332{
4333 struct task_struct *thread;
4334
4335 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4336 /* Paired with smp_mb__before_atomic() in
4337 * napi_enable()/dev_set_threaded().
4338 * Use READ_ONCE() to guarantee a complete
4339 * read on napi->thread. Only call
4340 * wake_up_process() when it's not NULL.
4341 */
4342 thread = READ_ONCE(napi->thread);
4343 if (thread) {
4344 /* Avoid doing set_bit() if the thread is in
4345 * INTERRUPTIBLE state, cause napi_thread_wait()
4346 * makes sure to proceed with napi polling
4347 * if the thread is explicitly woken from here.
4348 */
4349 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4350 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4351 wake_up_process(thread);
4352 return;
4353 }
4354 }
4355
4356 list_add_tail(&napi->poll_list, &sd->poll_list);
4357 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4358}
4359
4360#ifdef CONFIG_RPS
4361
4362/* One global table that all flow-based protocols share. */
4363struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4364EXPORT_SYMBOL(rps_sock_flow_table);
4365u32 rps_cpu_mask __read_mostly;
4366EXPORT_SYMBOL(rps_cpu_mask);
4367
4368struct static_key_false rps_needed __read_mostly;
4369EXPORT_SYMBOL(rps_needed);
4370struct static_key_false rfs_needed __read_mostly;
4371EXPORT_SYMBOL(rfs_needed);
4372
4373static struct rps_dev_flow *
4374set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4375 struct rps_dev_flow *rflow, u16 next_cpu)
4376{
4377 if (next_cpu < nr_cpu_ids) {
4378#ifdef CONFIG_RFS_ACCEL
4379 struct netdev_rx_queue *rxqueue;
4380 struct rps_dev_flow_table *flow_table;
4381 struct rps_dev_flow *old_rflow;
4382 u32 flow_id;
4383 u16 rxq_index;
4384 int rc;
4385
4386 /* Should we steer this flow to a different hardware queue? */
4387 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4388 !(dev->features & NETIF_F_NTUPLE))
4389 goto out;
4390 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4391 if (rxq_index == skb_get_rx_queue(skb))
4392 goto out;
4393
4394 rxqueue = dev->_rx + rxq_index;
4395 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4396 if (!flow_table)
4397 goto out;
4398 flow_id = skb_get_hash(skb) & flow_table->mask;
4399 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4400 rxq_index, flow_id);
4401 if (rc < 0)
4402 goto out;
4403 old_rflow = rflow;
4404 rflow = &flow_table->flows[flow_id];
4405 rflow->filter = rc;
4406 if (old_rflow->filter == rflow->filter)
4407 old_rflow->filter = RPS_NO_FILTER;
4408 out:
4409#endif
4410 rflow->last_qtail =
4411 per_cpu(softnet_data, next_cpu).input_queue_head;
4412 }
4413
4414 rflow->cpu = next_cpu;
4415 return rflow;
4416}
4417
4418/*
4419 * get_rps_cpu is called from netif_receive_skb and returns the target
4420 * CPU from the RPS map of the receiving queue for a given skb.
4421 * rcu_read_lock must be held on entry.
4422 */
4423static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4424 struct rps_dev_flow **rflowp)
4425{
4426 const struct rps_sock_flow_table *sock_flow_table;
4427 struct netdev_rx_queue *rxqueue = dev->_rx;
4428 struct rps_dev_flow_table *flow_table;
4429 struct rps_map *map;
4430 int cpu = -1;
4431 u32 tcpu;
4432 u32 hash;
4433
4434 if (skb_rx_queue_recorded(skb)) {
4435 u16 index = skb_get_rx_queue(skb);
4436
4437 if (unlikely(index >= dev->real_num_rx_queues)) {
4438 WARN_ONCE(dev->real_num_rx_queues > 1,
4439 "%s received packet on queue %u, but number "
4440 "of RX queues is %u\n",
4441 dev->name, index, dev->real_num_rx_queues);
4442 goto done;
4443 }
4444 rxqueue += index;
4445 }
4446
4447 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4448
4449 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4450 map = rcu_dereference(rxqueue->rps_map);
4451 if (!flow_table && !map)
4452 goto done;
4453
4454 skb_reset_network_header(skb);
4455 hash = skb_get_hash(skb);
4456 if (!hash)
4457 goto done;
4458
4459 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4460 if (flow_table && sock_flow_table) {
4461 struct rps_dev_flow *rflow;
4462 u32 next_cpu;
4463 u32 ident;
4464
4465 /* First check into global flow table if there is a match */
4466 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4467 if ((ident ^ hash) & ~rps_cpu_mask)
4468 goto try_rps;
4469
4470 next_cpu = ident & rps_cpu_mask;
4471
4472 /* OK, now we know there is a match,
4473 * we can look at the local (per receive queue) flow table
4474 */
4475 rflow = &flow_table->flows[hash & flow_table->mask];
4476 tcpu = rflow->cpu;
4477
4478 /*
4479 * If the desired CPU (where last recvmsg was done) is
4480 * different from current CPU (one in the rx-queue flow
4481 * table entry), switch if one of the following holds:
4482 * - Current CPU is unset (>= nr_cpu_ids).
4483 * - Current CPU is offline.
4484 * - The current CPU's queue tail has advanced beyond the
4485 * last packet that was enqueued using this table entry.
4486 * This guarantees that all previous packets for the flow
4487 * have been dequeued, thus preserving in order delivery.
4488 */
4489 if (unlikely(tcpu != next_cpu) &&
4490 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4491 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4492 rflow->last_qtail)) >= 0)) {
4493 tcpu = next_cpu;
4494 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4495 }
4496
4497 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4498 *rflowp = rflow;
4499 cpu = tcpu;
4500 goto done;
4501 }
4502 }
4503
4504try_rps:
4505
4506 if (map) {
4507 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4508 if (cpu_online(tcpu)) {
4509 cpu = tcpu;
4510 goto done;
4511 }
4512 }
4513
4514done:
4515 return cpu;
4516}
4517
4518#ifdef CONFIG_RFS_ACCEL
4519
4520/**
4521 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4522 * @dev: Device on which the filter was set
4523 * @rxq_index: RX queue index
4524 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4525 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4526 *
4527 * Drivers that implement ndo_rx_flow_steer() should periodically call
4528 * this function for each installed filter and remove the filters for
4529 * which it returns %true.
4530 */
4531bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4532 u32 flow_id, u16 filter_id)
4533{
4534 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4535 struct rps_dev_flow_table *flow_table;
4536 struct rps_dev_flow *rflow;
4537 bool expire = true;
4538 unsigned int cpu;
4539
4540 rcu_read_lock();
4541 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4542 if (flow_table && flow_id <= flow_table->mask) {
4543 rflow = &flow_table->flows[flow_id];
4544 cpu = READ_ONCE(rflow->cpu);
4545 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4546 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4547 rflow->last_qtail) <
4548 (int)(10 * flow_table->mask)))
4549 expire = false;
4550 }
4551 rcu_read_unlock();
4552 return expire;
4553}
4554EXPORT_SYMBOL(rps_may_expire_flow);
4555
4556#endif /* CONFIG_RFS_ACCEL */
4557
4558/* Called from hardirq (IPI) context */
4559static void rps_trigger_softirq(void *data)
4560{
4561 struct softnet_data *sd = data;
4562
4563 ____napi_schedule(sd, &sd->backlog);
4564 sd->received_rps++;
4565}
4566
4567#endif /* CONFIG_RPS */
4568
4569/*
4570 * Check if this softnet_data structure is another cpu one
4571 * If yes, queue it to our IPI list and return 1
4572 * If no, return 0
4573 */
4574static int rps_ipi_queued(struct softnet_data *sd)
4575{
4576#ifdef CONFIG_RPS
4577 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4578
4579 if (sd != mysd) {
4580 sd->rps_ipi_next = mysd->rps_ipi_list;
4581 mysd->rps_ipi_list = sd;
4582
4583 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584 return 1;
4585 }
4586#endif /* CONFIG_RPS */
4587 return 0;
4588}
4589
4590#ifdef CONFIG_NET_FLOW_LIMIT
4591int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4592#endif
4593
4594static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4595{
4596#ifdef CONFIG_NET_FLOW_LIMIT
4597 struct sd_flow_limit *fl;
4598 struct softnet_data *sd;
4599 unsigned int old_flow, new_flow;
4600
4601 if (qlen < (netdev_max_backlog >> 1))
4602 return false;
4603
4604 sd = this_cpu_ptr(&softnet_data);
4605
4606 rcu_read_lock();
4607 fl = rcu_dereference(sd->flow_limit);
4608 if (fl) {
4609 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4610 old_flow = fl->history[fl->history_head];
4611 fl->history[fl->history_head] = new_flow;
4612
4613 fl->history_head++;
4614 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4615
4616 if (likely(fl->buckets[old_flow]))
4617 fl->buckets[old_flow]--;
4618
4619 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4620 fl->count++;
4621 rcu_read_unlock();
4622 return true;
4623 }
4624 }
4625 rcu_read_unlock();
4626#endif
4627 return false;
4628}
4629
4630/*
4631 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4632 * queue (may be a remote CPU queue).
4633 */
4634static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4635 unsigned int *qtail)
4636{
4637 struct softnet_data *sd;
4638 unsigned long flags;
4639 unsigned int qlen;
4640
4641 sd = &per_cpu(softnet_data, cpu);
4642
4643 local_irq_save(flags);
4644
4645 rps_lock(sd);
4646 if (!netif_running(skb->dev))
4647 goto drop;
4648 qlen = skb_queue_len(&sd->input_pkt_queue);
4649 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4650 if (qlen) {
4651enqueue:
4652 __skb_queue_tail(&sd->input_pkt_queue, skb);
4653 input_queue_tail_incr_save(sd, qtail);
4654 rps_unlock(sd);
4655 local_irq_restore(flags);
4656 return NET_RX_SUCCESS;
4657 }
4658
4659 /* Schedule NAPI for backlog device
4660 * We can use non atomic operation since we own the queue lock
4661 */
4662 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4663 if (!rps_ipi_queued(sd))
4664 ____napi_schedule(sd, &sd->backlog);
4665 }
4666 goto enqueue;
4667 }
4668
4669drop:
4670 sd->dropped++;
4671 rps_unlock(sd);
4672
4673 local_irq_restore(flags);
4674
4675 atomic_long_inc(&skb->dev->rx_dropped);
4676 kfree_skb(skb);
4677 return NET_RX_DROP;
4678}
4679
4680static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4681{
4682 struct net_device *dev = skb->dev;
4683 struct netdev_rx_queue *rxqueue;
4684
4685 rxqueue = dev->_rx;
4686
4687 if (skb_rx_queue_recorded(skb)) {
4688 u16 index = skb_get_rx_queue(skb);
4689
4690 if (unlikely(index >= dev->real_num_rx_queues)) {
4691 WARN_ONCE(dev->real_num_rx_queues > 1,
4692 "%s received packet on queue %u, but number "
4693 "of RX queues is %u\n",
4694 dev->name, index, dev->real_num_rx_queues);
4695
4696 return rxqueue; /* Return first rxqueue */
4697 }
4698 rxqueue += index;
4699 }
4700 return rxqueue;
4701}
4702
4703u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4704 struct bpf_prog *xdp_prog)
4705{
4706 void *orig_data, *orig_data_end, *hard_start;
4707 struct netdev_rx_queue *rxqueue;
4708 bool orig_bcast, orig_host;
4709 u32 mac_len, frame_sz;
4710 __be16 orig_eth_type;
4711 struct ethhdr *eth;
4712 u32 metalen, act;
4713 int off;
4714
4715 /* The XDP program wants to see the packet starting at the MAC
4716 * header.
4717 */
4718 mac_len = skb->data - skb_mac_header(skb);
4719 hard_start = skb->data - skb_headroom(skb);
4720
4721 /* SKB "head" area always have tailroom for skb_shared_info */
4722 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4723 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4724
4725 rxqueue = netif_get_rxqueue(skb);
4726 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4727 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4728 skb_headlen(skb) + mac_len, true);
4729
4730 orig_data_end = xdp->data_end;
4731 orig_data = xdp->data;
4732 eth = (struct ethhdr *)xdp->data;
4733 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4734 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4735 orig_eth_type = eth->h_proto;
4736
4737 act = bpf_prog_run_xdp(xdp_prog, xdp);
4738
4739 /* check if bpf_xdp_adjust_head was used */
4740 off = xdp->data - orig_data;
4741 if (off) {
4742 if (off > 0)
4743 __skb_pull(skb, off);
4744 else if (off < 0)
4745 __skb_push(skb, -off);
4746
4747 skb->mac_header += off;
4748 skb_reset_network_header(skb);
4749 }
4750
4751 /* check if bpf_xdp_adjust_tail was used */
4752 off = xdp->data_end - orig_data_end;
4753 if (off != 0) {
4754 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4755 skb->len += off; /* positive on grow, negative on shrink */
4756 }
4757
4758 /* check if XDP changed eth hdr such SKB needs update */
4759 eth = (struct ethhdr *)xdp->data;
4760 if ((orig_eth_type != eth->h_proto) ||
4761 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4762 skb->dev->dev_addr)) ||
4763 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4764 __skb_push(skb, ETH_HLEN);
4765 skb->pkt_type = PACKET_HOST;
4766 skb->protocol = eth_type_trans(skb, skb->dev);
4767 }
4768
4769 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4770 * before calling us again on redirect path. We do not call do_redirect
4771 * as we leave that up to the caller.
4772 *
4773 * Caller is responsible for managing lifetime of skb (i.e. calling
4774 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4775 */
4776 switch (act) {
4777 case XDP_REDIRECT:
4778 case XDP_TX:
4779 __skb_push(skb, mac_len);
4780 break;
4781 case XDP_PASS:
4782 metalen = xdp->data - xdp->data_meta;
4783 if (metalen)
4784 skb_metadata_set(skb, metalen);
4785 break;
4786 }
4787
4788 return act;
4789}
4790
4791static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4792 struct xdp_buff *xdp,
4793 struct bpf_prog *xdp_prog)
4794{
4795 u32 act = XDP_DROP;
4796
4797 /* Reinjected packets coming from act_mirred or similar should
4798 * not get XDP generic processing.
4799 */
4800 if (skb_is_redirected(skb))
4801 return XDP_PASS;
4802
4803 /* XDP packets must be linear and must have sufficient headroom
4804 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4805 * native XDP provides, thus we need to do it here as well.
4806 */
4807 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4808 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4809 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4810 int troom = skb->tail + skb->data_len - skb->end;
4811
4812 /* In case we have to go down the path and also linearize,
4813 * then lets do the pskb_expand_head() work just once here.
4814 */
4815 if (pskb_expand_head(skb,
4816 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4817 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4818 goto do_drop;
4819 if (skb_linearize(skb))
4820 goto do_drop;
4821 }
4822
4823 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4824 switch (act) {
4825 case XDP_REDIRECT:
4826 case XDP_TX:
4827 case XDP_PASS:
4828 break;
4829 default:
4830 bpf_warn_invalid_xdp_action(act);
4831 fallthrough;
4832 case XDP_ABORTED:
4833 trace_xdp_exception(skb->dev, xdp_prog, act);
4834 fallthrough;
4835 case XDP_DROP:
4836 do_drop:
4837 kfree_skb(skb);
4838 break;
4839 }
4840
4841 return act;
4842}
4843
4844/* When doing generic XDP we have to bypass the qdisc layer and the
4845 * network taps in order to match in-driver-XDP behavior.
4846 */
4847void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4848{
4849 struct net_device *dev = skb->dev;
4850 struct netdev_queue *txq;
4851 bool free_skb = true;
4852 int cpu, rc;
4853
4854 txq = netdev_core_pick_tx(dev, skb, NULL);
4855 cpu = smp_processor_id();
4856 HARD_TX_LOCK(dev, txq, cpu);
4857 if (!netif_xmit_stopped(txq)) {
4858 rc = netdev_start_xmit(skb, dev, txq, 0);
4859 if (dev_xmit_complete(rc))
4860 free_skb = false;
4861 }
4862 HARD_TX_UNLOCK(dev, txq);
4863 if (free_skb) {
4864 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4865 kfree_skb(skb);
4866 }
4867}
4868
4869static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4870
4871int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4872{
4873 if (xdp_prog) {
4874 struct xdp_buff xdp;
4875 u32 act;
4876 int err;
4877
4878 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4879 if (act != XDP_PASS) {
4880 switch (act) {
4881 case XDP_REDIRECT:
4882 err = xdp_do_generic_redirect(skb->dev, skb,
4883 &xdp, xdp_prog);
4884 if (err)
4885 goto out_redir;
4886 break;
4887 case XDP_TX:
4888 generic_xdp_tx(skb, xdp_prog);
4889 break;
4890 }
4891 return XDP_DROP;
4892 }
4893 }
4894 return XDP_PASS;
4895out_redir:
4896 kfree_skb(skb);
4897 return XDP_DROP;
4898}
4899EXPORT_SYMBOL_GPL(do_xdp_generic);
4900
4901static int netif_rx_internal(struct sk_buff *skb)
4902{
4903 int ret;
4904
4905 net_timestamp_check(netdev_tstamp_prequeue, skb);
4906
4907 trace_netif_rx(skb);
4908
4909#ifdef CONFIG_RPS
4910 if (static_branch_unlikely(&rps_needed)) {
4911 struct rps_dev_flow voidflow, *rflow = &voidflow;
4912 int cpu;
4913
4914 preempt_disable();
4915 rcu_read_lock();
4916
4917 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4918 if (cpu < 0)
4919 cpu = smp_processor_id();
4920
4921 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4922
4923 rcu_read_unlock();
4924 preempt_enable();
4925 } else
4926#endif
4927 {
4928 unsigned int qtail;
4929
4930 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4931 put_cpu();
4932 }
4933 return ret;
4934}
4935
4936/**
4937 * netif_rx - post buffer to the network code
4938 * @skb: buffer to post
4939 *
4940 * This function receives a packet from a device driver and queues it for
4941 * the upper (protocol) levels to process. It always succeeds. The buffer
4942 * may be dropped during processing for congestion control or by the
4943 * protocol layers.
4944 *
4945 * return values:
4946 * NET_RX_SUCCESS (no congestion)
4947 * NET_RX_DROP (packet was dropped)
4948 *
4949 */
4950
4951int netif_rx(struct sk_buff *skb)
4952{
4953 int ret;
4954
4955 trace_netif_rx_entry(skb);
4956
4957 ret = netif_rx_internal(skb);
4958 trace_netif_rx_exit(ret);
4959
4960 return ret;
4961}
4962EXPORT_SYMBOL(netif_rx);
4963
4964int netif_rx_ni(struct sk_buff *skb)
4965{
4966 int err;
4967
4968 trace_netif_rx_ni_entry(skb);
4969
4970 preempt_disable();
4971 err = netif_rx_internal(skb);
4972 if (local_softirq_pending())
4973 do_softirq();
4974 preempt_enable();
4975 trace_netif_rx_ni_exit(err);
4976
4977 return err;
4978}
4979EXPORT_SYMBOL(netif_rx_ni);
4980
4981int netif_rx_any_context(struct sk_buff *skb)
4982{
4983 /*
4984 * If invoked from contexts which do not invoke bottom half
4985 * processing either at return from interrupt or when softrqs are
4986 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4987 * directly.
4988 */
4989 if (in_interrupt())
4990 return netif_rx(skb);
4991 else
4992 return netif_rx_ni(skb);
4993}
4994EXPORT_SYMBOL(netif_rx_any_context);
4995
4996static __latent_entropy void net_tx_action(struct softirq_action *h)
4997{
4998 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4999
5000 if (sd->completion_queue) {
5001 struct sk_buff *clist;
5002
5003 local_irq_disable();
5004 clist = sd->completion_queue;
5005 sd->completion_queue = NULL;
5006 local_irq_enable();
5007
5008 while (clist) {
5009 struct sk_buff *skb = clist;
5010
5011 clist = clist->next;
5012
5013 WARN_ON(refcount_read(&skb->users));
5014 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5015 trace_consume_skb(skb);
5016 else
5017 trace_kfree_skb(skb, net_tx_action);
5018
5019 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5020 __kfree_skb(skb);
5021 else
5022 __kfree_skb_defer(skb);
5023 }
5024 }
5025
5026 if (sd->output_queue) {
5027 struct Qdisc *head;
5028
5029 local_irq_disable();
5030 head = sd->output_queue;
5031 sd->output_queue = NULL;
5032 sd->output_queue_tailp = &sd->output_queue;
5033 local_irq_enable();
5034
5035 rcu_read_lock();
5036
5037 while (head) {
5038 struct Qdisc *q = head;
5039 spinlock_t *root_lock = NULL;
5040
5041 head = head->next_sched;
5042
5043 /* We need to make sure head->next_sched is read
5044 * before clearing __QDISC_STATE_SCHED
5045 */
5046 smp_mb__before_atomic();
5047
5048 if (!(q->flags & TCQ_F_NOLOCK)) {
5049 root_lock = qdisc_lock(q);
5050 spin_lock(root_lock);
5051 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5052 &q->state))) {
5053 /* There is a synchronize_net() between
5054 * STATE_DEACTIVATED flag being set and
5055 * qdisc_reset()/some_qdisc_is_busy() in
5056 * dev_deactivate(), so we can safely bail out
5057 * early here to avoid data race between
5058 * qdisc_deactivate() and some_qdisc_is_busy()
5059 * for lockless qdisc.
5060 */
5061 clear_bit(__QDISC_STATE_SCHED, &q->state);
5062 continue;
5063 }
5064
5065 clear_bit(__QDISC_STATE_SCHED, &q->state);
5066 qdisc_run(q);
5067 if (root_lock)
5068 spin_unlock(root_lock);
5069 }
5070
5071 rcu_read_unlock();
5072 }
5073
5074 xfrm_dev_backlog(sd);
5075}
5076
5077#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5078/* This hook is defined here for ATM LANE */
5079int (*br_fdb_test_addr_hook)(struct net_device *dev,
5080 unsigned char *addr) __read_mostly;
5081EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5082#endif
5083
5084static inline struct sk_buff *
5085sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5086 struct net_device *orig_dev, bool *another)
5087{
5088#ifdef CONFIG_NET_CLS_ACT
5089 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5090 struct tcf_result cl_res;
5091
5092 /* If there's at least one ingress present somewhere (so
5093 * we get here via enabled static key), remaining devices
5094 * that are not configured with an ingress qdisc will bail
5095 * out here.
5096 */
5097 if (!miniq)
5098 return skb;
5099
5100 if (*pt_prev) {
5101 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5102 *pt_prev = NULL;
5103 }
5104
5105 qdisc_skb_cb(skb)->pkt_len = skb->len;
5106 tc_skb_cb(skb)->mru = 0;
5107 tc_skb_cb(skb)->post_ct = false;
5108 skb->tc_at_ingress = 1;
5109 mini_qdisc_bstats_cpu_update(miniq, skb);
5110
5111 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5112 case TC_ACT_OK:
5113 case TC_ACT_RECLASSIFY:
5114 skb->tc_index = TC_H_MIN(cl_res.classid);
5115 break;
5116 case TC_ACT_SHOT:
5117 mini_qdisc_qstats_cpu_drop(miniq);
5118 kfree_skb(skb);
5119 return NULL;
5120 case TC_ACT_STOLEN:
5121 case TC_ACT_QUEUED:
5122 case TC_ACT_TRAP:
5123 consume_skb(skb);
5124 return NULL;
5125 case TC_ACT_REDIRECT:
5126 /* skb_mac_header check was done by cls/act_bpf, so
5127 * we can safely push the L2 header back before
5128 * redirecting to another netdev
5129 */
5130 __skb_push(skb, skb->mac_len);
5131 if (skb_do_redirect(skb) == -EAGAIN) {
5132 __skb_pull(skb, skb->mac_len);
5133 *another = true;
5134 break;
5135 }
5136 return NULL;
5137 case TC_ACT_CONSUMED:
5138 return NULL;
5139 default:
5140 break;
5141 }
5142#endif /* CONFIG_NET_CLS_ACT */
5143 return skb;
5144}
5145
5146/**
5147 * netdev_is_rx_handler_busy - check if receive handler is registered
5148 * @dev: device to check
5149 *
5150 * Check if a receive handler is already registered for a given device.
5151 * Return true if there one.
5152 *
5153 * The caller must hold the rtnl_mutex.
5154 */
5155bool netdev_is_rx_handler_busy(struct net_device *dev)
5156{
5157 ASSERT_RTNL();
5158 return dev && rtnl_dereference(dev->rx_handler);
5159}
5160EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5161
5162/**
5163 * netdev_rx_handler_register - register receive handler
5164 * @dev: device to register a handler for
5165 * @rx_handler: receive handler to register
5166 * @rx_handler_data: data pointer that is used by rx handler
5167 *
5168 * Register a receive handler for a device. This handler will then be
5169 * called from __netif_receive_skb. A negative errno code is returned
5170 * on a failure.
5171 *
5172 * The caller must hold the rtnl_mutex.
5173 *
5174 * For a general description of rx_handler, see enum rx_handler_result.
5175 */
5176int netdev_rx_handler_register(struct net_device *dev,
5177 rx_handler_func_t *rx_handler,
5178 void *rx_handler_data)
5179{
5180 if (netdev_is_rx_handler_busy(dev))
5181 return -EBUSY;
5182
5183 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5184 return -EINVAL;
5185
5186 /* Note: rx_handler_data must be set before rx_handler */
5187 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5188 rcu_assign_pointer(dev->rx_handler, rx_handler);
5189
5190 return 0;
5191}
5192EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5193
5194/**
5195 * netdev_rx_handler_unregister - unregister receive handler
5196 * @dev: device to unregister a handler from
5197 *
5198 * Unregister a receive handler from a device.
5199 *
5200 * The caller must hold the rtnl_mutex.
5201 */
5202void netdev_rx_handler_unregister(struct net_device *dev)
5203{
5204
5205 ASSERT_RTNL();
5206 RCU_INIT_POINTER(dev->rx_handler, NULL);
5207 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5208 * section has a guarantee to see a non NULL rx_handler_data
5209 * as well.
5210 */
5211 synchronize_net();
5212 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5213}
5214EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5215
5216/*
5217 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5218 * the special handling of PFMEMALLOC skbs.
5219 */
5220static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5221{
5222 switch (skb->protocol) {
5223 case htons(ETH_P_ARP):
5224 case htons(ETH_P_IP):
5225 case htons(ETH_P_IPV6):
5226 case htons(ETH_P_8021Q):
5227 case htons(ETH_P_8021AD):
5228 return true;
5229 default:
5230 return false;
5231 }
5232}
5233
5234static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5235 int *ret, struct net_device *orig_dev)
5236{
5237 if (nf_hook_ingress_active(skb)) {
5238 int ingress_retval;
5239
5240 if (*pt_prev) {
5241 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5242 *pt_prev = NULL;
5243 }
5244
5245 rcu_read_lock();
5246 ingress_retval = nf_hook_ingress(skb);
5247 rcu_read_unlock();
5248 return ingress_retval;
5249 }
5250 return 0;
5251}
5252
5253static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5254 struct packet_type **ppt_prev)
5255{
5256 struct packet_type *ptype, *pt_prev;
5257 rx_handler_func_t *rx_handler;
5258 struct sk_buff *skb = *pskb;
5259 struct net_device *orig_dev;
5260 bool deliver_exact = false;
5261 int ret = NET_RX_DROP;
5262 __be16 type;
5263
5264 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5265
5266 trace_netif_receive_skb(skb);
5267
5268 orig_dev = skb->dev;
5269
5270 skb_reset_network_header(skb);
5271 if (!skb_transport_header_was_set(skb))
5272 skb_reset_transport_header(skb);
5273 skb_reset_mac_len(skb);
5274
5275 pt_prev = NULL;
5276
5277another_round:
5278 skb->skb_iif = skb->dev->ifindex;
5279
5280 __this_cpu_inc(softnet_data.processed);
5281
5282 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5283 int ret2;
5284
5285 migrate_disable();
5286 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5287 migrate_enable();
5288
5289 if (ret2 != XDP_PASS) {
5290 ret = NET_RX_DROP;
5291 goto out;
5292 }
5293 }
5294
5295 if (eth_type_vlan(skb->protocol)) {
5296 skb = skb_vlan_untag(skb);
5297 if (unlikely(!skb))
5298 goto out;
5299 }
5300
5301 if (skb_skip_tc_classify(skb))
5302 goto skip_classify;
5303
5304 if (pfmemalloc)
5305 goto skip_taps;
5306
5307 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5308 if (pt_prev)
5309 ret = deliver_skb(skb, pt_prev, orig_dev);
5310 pt_prev = ptype;
5311 }
5312
5313 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5314 if (pt_prev)
5315 ret = deliver_skb(skb, pt_prev, orig_dev);
5316 pt_prev = ptype;
5317 }
5318
5319skip_taps:
5320#ifdef CONFIG_NET_INGRESS
5321 if (static_branch_unlikely(&ingress_needed_key)) {
5322 bool another = false;
5323
5324 nf_skip_egress(skb, true);
5325 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5326 &another);
5327 if (another)
5328 goto another_round;
5329 if (!skb)
5330 goto out;
5331
5332 nf_skip_egress(skb, false);
5333 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5334 goto out;
5335 }
5336#endif
5337 skb_reset_redirect(skb);
5338skip_classify:
5339 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5340 goto drop;
5341
5342 if (skb_vlan_tag_present(skb)) {
5343 if (pt_prev) {
5344 ret = deliver_skb(skb, pt_prev, orig_dev);
5345 pt_prev = NULL;
5346 }
5347 if (vlan_do_receive(&skb))
5348 goto another_round;
5349 else if (unlikely(!skb))
5350 goto out;
5351 }
5352
5353 rx_handler = rcu_dereference(skb->dev->rx_handler);
5354 if (rx_handler) {
5355 if (pt_prev) {
5356 ret = deliver_skb(skb, pt_prev, orig_dev);
5357 pt_prev = NULL;
5358 }
5359 switch (rx_handler(&skb)) {
5360 case RX_HANDLER_CONSUMED:
5361 ret = NET_RX_SUCCESS;
5362 goto out;
5363 case RX_HANDLER_ANOTHER:
5364 goto another_round;
5365 case RX_HANDLER_EXACT:
5366 deliver_exact = true;
5367 break;
5368 case RX_HANDLER_PASS:
5369 break;
5370 default:
5371 BUG();
5372 }
5373 }
5374
5375 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5376check_vlan_id:
5377 if (skb_vlan_tag_get_id(skb)) {
5378 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5379 * find vlan device.
5380 */
5381 skb->pkt_type = PACKET_OTHERHOST;
5382 } else if (eth_type_vlan(skb->protocol)) {
5383 /* Outer header is 802.1P with vlan 0, inner header is
5384 * 802.1Q or 802.1AD and vlan_do_receive() above could
5385 * not find vlan dev for vlan id 0.
5386 */
5387 __vlan_hwaccel_clear_tag(skb);
5388 skb = skb_vlan_untag(skb);
5389 if (unlikely(!skb))
5390 goto out;
5391 if (vlan_do_receive(&skb))
5392 /* After stripping off 802.1P header with vlan 0
5393 * vlan dev is found for inner header.
5394 */
5395 goto another_round;
5396 else if (unlikely(!skb))
5397 goto out;
5398 else
5399 /* We have stripped outer 802.1P vlan 0 header.
5400 * But could not find vlan dev.
5401 * check again for vlan id to set OTHERHOST.
5402 */
5403 goto check_vlan_id;
5404 }
5405 /* Note: we might in the future use prio bits
5406 * and set skb->priority like in vlan_do_receive()
5407 * For the time being, just ignore Priority Code Point
5408 */
5409 __vlan_hwaccel_clear_tag(skb);
5410 }
5411
5412 type = skb->protocol;
5413
5414 /* deliver only exact match when indicated */
5415 if (likely(!deliver_exact)) {
5416 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5417 &ptype_base[ntohs(type) &
5418 PTYPE_HASH_MASK]);
5419 }
5420
5421 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5422 &orig_dev->ptype_specific);
5423
5424 if (unlikely(skb->dev != orig_dev)) {
5425 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5426 &skb->dev->ptype_specific);
5427 }
5428
5429 if (pt_prev) {
5430 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5431 goto drop;
5432 *ppt_prev = pt_prev;
5433 } else {
5434drop:
5435 if (!deliver_exact)
5436 atomic_long_inc(&skb->dev->rx_dropped);
5437 else
5438 atomic_long_inc(&skb->dev->rx_nohandler);
5439 kfree_skb(skb);
5440 /* Jamal, now you will not able to escape explaining
5441 * me how you were going to use this. :-)
5442 */
5443 ret = NET_RX_DROP;
5444 }
5445
5446out:
5447 /* The invariant here is that if *ppt_prev is not NULL
5448 * then skb should also be non-NULL.
5449 *
5450 * Apparently *ppt_prev assignment above holds this invariant due to
5451 * skb dereferencing near it.
5452 */
5453 *pskb = skb;
5454 return ret;
5455}
5456
5457static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5458{
5459 struct net_device *orig_dev = skb->dev;
5460 struct packet_type *pt_prev = NULL;
5461 int ret;
5462
5463 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5464 if (pt_prev)
5465 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5466 skb->dev, pt_prev, orig_dev);
5467 return ret;
5468}
5469
5470/**
5471 * netif_receive_skb_core - special purpose version of netif_receive_skb
5472 * @skb: buffer to process
5473 *
5474 * More direct receive version of netif_receive_skb(). It should
5475 * only be used by callers that have a need to skip RPS and Generic XDP.
5476 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5477 *
5478 * This function may only be called from softirq context and interrupts
5479 * should be enabled.
5480 *
5481 * Return values (usually ignored):
5482 * NET_RX_SUCCESS: no congestion
5483 * NET_RX_DROP: packet was dropped
5484 */
5485int netif_receive_skb_core(struct sk_buff *skb)
5486{
5487 int ret;
5488
5489 rcu_read_lock();
5490 ret = __netif_receive_skb_one_core(skb, false);
5491 rcu_read_unlock();
5492
5493 return ret;
5494}
5495EXPORT_SYMBOL(netif_receive_skb_core);
5496
5497static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5498 struct packet_type *pt_prev,
5499 struct net_device *orig_dev)
5500{
5501 struct sk_buff *skb, *next;
5502
5503 if (!pt_prev)
5504 return;
5505 if (list_empty(head))
5506 return;
5507 if (pt_prev->list_func != NULL)
5508 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5509 ip_list_rcv, head, pt_prev, orig_dev);
5510 else
5511 list_for_each_entry_safe(skb, next, head, list) {
5512 skb_list_del_init(skb);
5513 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5514 }
5515}
5516
5517static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5518{
5519 /* Fast-path assumptions:
5520 * - There is no RX handler.
5521 * - Only one packet_type matches.
5522 * If either of these fails, we will end up doing some per-packet
5523 * processing in-line, then handling the 'last ptype' for the whole
5524 * sublist. This can't cause out-of-order delivery to any single ptype,
5525 * because the 'last ptype' must be constant across the sublist, and all
5526 * other ptypes are handled per-packet.
5527 */
5528 /* Current (common) ptype of sublist */
5529 struct packet_type *pt_curr = NULL;
5530 /* Current (common) orig_dev of sublist */
5531 struct net_device *od_curr = NULL;
5532 struct list_head sublist;
5533 struct sk_buff *skb, *next;
5534
5535 INIT_LIST_HEAD(&sublist);
5536 list_for_each_entry_safe(skb, next, head, list) {
5537 struct net_device *orig_dev = skb->dev;
5538 struct packet_type *pt_prev = NULL;
5539
5540 skb_list_del_init(skb);
5541 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5542 if (!pt_prev)
5543 continue;
5544 if (pt_curr != pt_prev || od_curr != orig_dev) {
5545 /* dispatch old sublist */
5546 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5547 /* start new sublist */
5548 INIT_LIST_HEAD(&sublist);
5549 pt_curr = pt_prev;
5550 od_curr = orig_dev;
5551 }
5552 list_add_tail(&skb->list, &sublist);
5553 }
5554
5555 /* dispatch final sublist */
5556 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5557}
5558
5559static int __netif_receive_skb(struct sk_buff *skb)
5560{
5561 int ret;
5562
5563 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5564 unsigned int noreclaim_flag;
5565
5566 /*
5567 * PFMEMALLOC skbs are special, they should
5568 * - be delivered to SOCK_MEMALLOC sockets only
5569 * - stay away from userspace
5570 * - have bounded memory usage
5571 *
5572 * Use PF_MEMALLOC as this saves us from propagating the allocation
5573 * context down to all allocation sites.
5574 */
5575 noreclaim_flag = memalloc_noreclaim_save();
5576 ret = __netif_receive_skb_one_core(skb, true);
5577 memalloc_noreclaim_restore(noreclaim_flag);
5578 } else
5579 ret = __netif_receive_skb_one_core(skb, false);
5580
5581 return ret;
5582}
5583
5584static void __netif_receive_skb_list(struct list_head *head)
5585{
5586 unsigned long noreclaim_flag = 0;
5587 struct sk_buff *skb, *next;
5588 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5589
5590 list_for_each_entry_safe(skb, next, head, list) {
5591 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5592 struct list_head sublist;
5593
5594 /* Handle the previous sublist */
5595 list_cut_before(&sublist, head, &skb->list);
5596 if (!list_empty(&sublist))
5597 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5598 pfmemalloc = !pfmemalloc;
5599 /* See comments in __netif_receive_skb */
5600 if (pfmemalloc)
5601 noreclaim_flag = memalloc_noreclaim_save();
5602 else
5603 memalloc_noreclaim_restore(noreclaim_flag);
5604 }
5605 }
5606 /* Handle the remaining sublist */
5607 if (!list_empty(head))
5608 __netif_receive_skb_list_core(head, pfmemalloc);
5609 /* Restore pflags */
5610 if (pfmemalloc)
5611 memalloc_noreclaim_restore(noreclaim_flag);
5612}
5613
5614static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5615{
5616 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5617 struct bpf_prog *new = xdp->prog;
5618 int ret = 0;
5619
5620 switch (xdp->command) {
5621 case XDP_SETUP_PROG:
5622 rcu_assign_pointer(dev->xdp_prog, new);
5623 if (old)
5624 bpf_prog_put(old);
5625
5626 if (old && !new) {
5627 static_branch_dec(&generic_xdp_needed_key);
5628 } else if (new && !old) {
5629 static_branch_inc(&generic_xdp_needed_key);
5630 dev_disable_lro(dev);
5631 dev_disable_gro_hw(dev);
5632 }
5633 break;
5634
5635 default:
5636 ret = -EINVAL;
5637 break;
5638 }
5639
5640 return ret;
5641}
5642
5643static int netif_receive_skb_internal(struct sk_buff *skb)
5644{
5645 int ret;
5646
5647 net_timestamp_check(netdev_tstamp_prequeue, skb);
5648
5649 if (skb_defer_rx_timestamp(skb))
5650 return NET_RX_SUCCESS;
5651
5652 rcu_read_lock();
5653#ifdef CONFIG_RPS
5654 if (static_branch_unlikely(&rps_needed)) {
5655 struct rps_dev_flow voidflow, *rflow = &voidflow;
5656 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5657
5658 if (cpu >= 0) {
5659 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5660 rcu_read_unlock();
5661 return ret;
5662 }
5663 }
5664#endif
5665 ret = __netif_receive_skb(skb);
5666 rcu_read_unlock();
5667 return ret;
5668}
5669
5670static void netif_receive_skb_list_internal(struct list_head *head)
5671{
5672 struct sk_buff *skb, *next;
5673 struct list_head sublist;
5674
5675 INIT_LIST_HEAD(&sublist);
5676 list_for_each_entry_safe(skb, next, head, list) {
5677 net_timestamp_check(netdev_tstamp_prequeue, skb);
5678 skb_list_del_init(skb);
5679 if (!skb_defer_rx_timestamp(skb))
5680 list_add_tail(&skb->list, &sublist);
5681 }
5682 list_splice_init(&sublist, head);
5683
5684 rcu_read_lock();
5685#ifdef CONFIG_RPS
5686 if (static_branch_unlikely(&rps_needed)) {
5687 list_for_each_entry_safe(skb, next, head, list) {
5688 struct rps_dev_flow voidflow, *rflow = &voidflow;
5689 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5690
5691 if (cpu >= 0) {
5692 /* Will be handled, remove from list */
5693 skb_list_del_init(skb);
5694 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5695 }
5696 }
5697 }
5698#endif
5699 __netif_receive_skb_list(head);
5700 rcu_read_unlock();
5701}
5702
5703/**
5704 * netif_receive_skb - process receive buffer from network
5705 * @skb: buffer to process
5706 *
5707 * netif_receive_skb() is the main receive data processing function.
5708 * It always succeeds. The buffer may be dropped during processing
5709 * for congestion control or by the protocol layers.
5710 *
5711 * This function may only be called from softirq context and interrupts
5712 * should be enabled.
5713 *
5714 * Return values (usually ignored):
5715 * NET_RX_SUCCESS: no congestion
5716 * NET_RX_DROP: packet was dropped
5717 */
5718int netif_receive_skb(struct sk_buff *skb)
5719{
5720 int ret;
5721
5722 trace_netif_receive_skb_entry(skb);
5723
5724 ret = netif_receive_skb_internal(skb);
5725 trace_netif_receive_skb_exit(ret);
5726
5727 return ret;
5728}
5729EXPORT_SYMBOL(netif_receive_skb);
5730
5731/**
5732 * netif_receive_skb_list - process many receive buffers from network
5733 * @head: list of skbs to process.
5734 *
5735 * Since return value of netif_receive_skb() is normally ignored, and
5736 * wouldn't be meaningful for a list, this function returns void.
5737 *
5738 * This function may only be called from softirq context and interrupts
5739 * should be enabled.
5740 */
5741void netif_receive_skb_list(struct list_head *head)
5742{
5743 struct sk_buff *skb;
5744
5745 if (list_empty(head))
5746 return;
5747 if (trace_netif_receive_skb_list_entry_enabled()) {
5748 list_for_each_entry(skb, head, list)
5749 trace_netif_receive_skb_list_entry(skb);
5750 }
5751 netif_receive_skb_list_internal(head);
5752 trace_netif_receive_skb_list_exit(0);
5753}
5754EXPORT_SYMBOL(netif_receive_skb_list);
5755
5756static DEFINE_PER_CPU(struct work_struct, flush_works);
5757
5758/* Network device is going away, flush any packets still pending */
5759static void flush_backlog(struct work_struct *work)
5760{
5761 struct sk_buff *skb, *tmp;
5762 struct softnet_data *sd;
5763
5764 local_bh_disable();
5765 sd = this_cpu_ptr(&softnet_data);
5766
5767 local_irq_disable();
5768 rps_lock(sd);
5769 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5770 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5771 __skb_unlink(skb, &sd->input_pkt_queue);
5772 dev_kfree_skb_irq(skb);
5773 input_queue_head_incr(sd);
5774 }
5775 }
5776 rps_unlock(sd);
5777 local_irq_enable();
5778
5779 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5780 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5781 __skb_unlink(skb, &sd->process_queue);
5782 kfree_skb(skb);
5783 input_queue_head_incr(sd);
5784 }
5785 }
5786 local_bh_enable();
5787}
5788
5789static bool flush_required(int cpu)
5790{
5791#if IS_ENABLED(CONFIG_RPS)
5792 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5793 bool do_flush;
5794
5795 local_irq_disable();
5796 rps_lock(sd);
5797
5798 /* as insertion into process_queue happens with the rps lock held,
5799 * process_queue access may race only with dequeue
5800 */
5801 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5802 !skb_queue_empty_lockless(&sd->process_queue);
5803 rps_unlock(sd);
5804 local_irq_enable();
5805
5806 return do_flush;
5807#endif
5808 /* without RPS we can't safely check input_pkt_queue: during a
5809 * concurrent remote skb_queue_splice() we can detect as empty both
5810 * input_pkt_queue and process_queue even if the latter could end-up
5811 * containing a lot of packets.
5812 */
5813 return true;
5814}
5815
5816static void flush_all_backlogs(void)
5817{
5818 static cpumask_t flush_cpus;
5819 unsigned int cpu;
5820
5821 /* since we are under rtnl lock protection we can use static data
5822 * for the cpumask and avoid allocating on stack the possibly
5823 * large mask
5824 */
5825 ASSERT_RTNL();
5826
5827 cpus_read_lock();
5828
5829 cpumask_clear(&flush_cpus);
5830 for_each_online_cpu(cpu) {
5831 if (flush_required(cpu)) {
5832 queue_work_on(cpu, system_highpri_wq,
5833 per_cpu_ptr(&flush_works, cpu));
5834 cpumask_set_cpu(cpu, &flush_cpus);
5835 }
5836 }
5837
5838 /* we can have in flight packet[s] on the cpus we are not flushing,
5839 * synchronize_net() in unregister_netdevice_many() will take care of
5840 * them
5841 */
5842 for_each_cpu(cpu, &flush_cpus)
5843 flush_work(per_cpu_ptr(&flush_works, cpu));
5844
5845 cpus_read_unlock();
5846}
5847
5848/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5849static void gro_normal_list(struct napi_struct *napi)
5850{
5851 if (!napi->rx_count)
5852 return;
5853 netif_receive_skb_list_internal(&napi->rx_list);
5854 INIT_LIST_HEAD(&napi->rx_list);
5855 napi->rx_count = 0;
5856}
5857
5858/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5859 * pass the whole batch up to the stack.
5860 */
5861static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5862{
5863 list_add_tail(&skb->list, &napi->rx_list);
5864 napi->rx_count += segs;
5865 if (napi->rx_count >= gro_normal_batch)
5866 gro_normal_list(napi);
5867}
5868
5869static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5870{
5871 struct packet_offload *ptype;
5872 __be16 type = skb->protocol;
5873 struct list_head *head = &offload_base;
5874 int err = -ENOENT;
5875
5876 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5877
5878 if (NAPI_GRO_CB(skb)->count == 1) {
5879 skb_shinfo(skb)->gso_size = 0;
5880 goto out;
5881 }
5882
5883 rcu_read_lock();
5884 list_for_each_entry_rcu(ptype, head, list) {
5885 if (ptype->type != type || !ptype->callbacks.gro_complete)
5886 continue;
5887
5888 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5889 ipv6_gro_complete, inet_gro_complete,
5890 skb, 0);
5891 break;
5892 }
5893 rcu_read_unlock();
5894
5895 if (err) {
5896 WARN_ON(&ptype->list == head);
5897 kfree_skb(skb);
5898 return;
5899 }
5900
5901out:
5902 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5903}
5904
5905static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5906 bool flush_old)
5907{
5908 struct list_head *head = &napi->gro_hash[index].list;
5909 struct sk_buff *skb, *p;
5910
5911 list_for_each_entry_safe_reverse(skb, p, head, list) {
5912 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5913 return;
5914 skb_list_del_init(skb);
5915 napi_gro_complete(napi, skb);
5916 napi->gro_hash[index].count--;
5917 }
5918
5919 if (!napi->gro_hash[index].count)
5920 __clear_bit(index, &napi->gro_bitmask);
5921}
5922
5923/* napi->gro_hash[].list contains packets ordered by age.
5924 * youngest packets at the head of it.
5925 * Complete skbs in reverse order to reduce latencies.
5926 */
5927void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5928{
5929 unsigned long bitmask = napi->gro_bitmask;
5930 unsigned int i, base = ~0U;
5931
5932 while ((i = ffs(bitmask)) != 0) {
5933 bitmask >>= i;
5934 base += i;
5935 __napi_gro_flush_chain(napi, base, flush_old);
5936 }
5937}
5938EXPORT_SYMBOL(napi_gro_flush);
5939
5940static void gro_list_prepare(const struct list_head *head,
5941 const struct sk_buff *skb)
5942{
5943 unsigned int maclen = skb->dev->hard_header_len;
5944 u32 hash = skb_get_hash_raw(skb);
5945 struct sk_buff *p;
5946
5947 list_for_each_entry(p, head, list) {
5948 unsigned long diffs;
5949
5950 NAPI_GRO_CB(p)->flush = 0;
5951
5952 if (hash != skb_get_hash_raw(p)) {
5953 NAPI_GRO_CB(p)->same_flow = 0;
5954 continue;
5955 }
5956
5957 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5958 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5959 if (skb_vlan_tag_present(p))
5960 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5961 diffs |= skb_metadata_differs(p, skb);
5962 if (maclen == ETH_HLEN)
5963 diffs |= compare_ether_header(skb_mac_header(p),
5964 skb_mac_header(skb));
5965 else if (!diffs)
5966 diffs = memcmp(skb_mac_header(p),
5967 skb_mac_header(skb),
5968 maclen);
5969
5970 /* in most common scenarions 'slow_gro' is 0
5971 * otherwise we are already on some slower paths
5972 * either skip all the infrequent tests altogether or
5973 * avoid trying too hard to skip each of them individually
5974 */
5975 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5976#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5977 struct tc_skb_ext *skb_ext;
5978 struct tc_skb_ext *p_ext;
5979#endif
5980
5981 diffs |= p->sk != skb->sk;
5982 diffs |= skb_metadata_dst_cmp(p, skb);
5983 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5984
5985#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5986 skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5987 p_ext = skb_ext_find(p, TC_SKB_EXT);
5988
5989 diffs |= (!!p_ext) ^ (!!skb_ext);
5990 if (!diffs && unlikely(skb_ext))
5991 diffs |= p_ext->chain ^ skb_ext->chain;
5992#endif
5993 }
5994
5995 NAPI_GRO_CB(p)->same_flow = !diffs;
5996 }
5997}
5998
5999static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6000{
6001 const struct skb_shared_info *pinfo = skb_shinfo(skb);
6002 const skb_frag_t *frag0 = &pinfo->frags[0];
6003
6004 NAPI_GRO_CB(skb)->data_offset = 0;
6005 NAPI_GRO_CB(skb)->frag0 = NULL;
6006 NAPI_GRO_CB(skb)->frag0_len = 0;
6007
6008 if (!skb_headlen(skb) && pinfo->nr_frags &&
6009 !PageHighMem(skb_frag_page(frag0)) &&
6010 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6011 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6012 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6013 skb_frag_size(frag0),
6014 skb->end - skb->tail);
6015 }
6016}
6017
6018static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6019{
6020 struct skb_shared_info *pinfo = skb_shinfo(skb);
6021
6022 BUG_ON(skb->end - skb->tail < grow);
6023
6024 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6025
6026 skb->data_len -= grow;
6027 skb->tail += grow;
6028
6029 skb_frag_off_add(&pinfo->frags[0], grow);
6030 skb_frag_size_sub(&pinfo->frags[0], grow);
6031
6032 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6033 skb_frag_unref(skb, 0);
6034 memmove(pinfo->frags, pinfo->frags + 1,
6035 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6036 }
6037}
6038
6039static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6040{
6041 struct sk_buff *oldest;
6042
6043 oldest = list_last_entry(head, struct sk_buff, list);
6044
6045 /* We are called with head length >= MAX_GRO_SKBS, so this is
6046 * impossible.
6047 */
6048 if (WARN_ON_ONCE(!oldest))
6049 return;
6050
6051 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6052 * SKB to the chain.
6053 */
6054 skb_list_del_init(oldest);
6055 napi_gro_complete(napi, oldest);
6056}
6057
6058static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6059{
6060 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6061 struct gro_list *gro_list = &napi->gro_hash[bucket];
6062 struct list_head *head = &offload_base;
6063 struct packet_offload *ptype;
6064 __be16 type = skb->protocol;
6065 struct sk_buff *pp = NULL;
6066 enum gro_result ret;
6067 int same_flow;
6068 int grow;
6069
6070 if (netif_elide_gro(skb->dev))
6071 goto normal;
6072
6073 gro_list_prepare(&gro_list->list, skb);
6074
6075 rcu_read_lock();
6076 list_for_each_entry_rcu(ptype, head, list) {
6077 if (ptype->type != type || !ptype->callbacks.gro_receive)
6078 continue;
6079
6080 skb_set_network_header(skb, skb_gro_offset(skb));
6081 skb_reset_mac_len(skb);
6082 NAPI_GRO_CB(skb)->same_flow = 0;
6083 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6084 NAPI_GRO_CB(skb)->free = 0;
6085 NAPI_GRO_CB(skb)->encap_mark = 0;
6086 NAPI_GRO_CB(skb)->recursion_counter = 0;
6087 NAPI_GRO_CB(skb)->is_fou = 0;
6088 NAPI_GRO_CB(skb)->is_atomic = 1;
6089 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6090
6091 /* Setup for GRO checksum validation */
6092 switch (skb->ip_summed) {
6093 case CHECKSUM_COMPLETE:
6094 NAPI_GRO_CB(skb)->csum = skb->csum;
6095 NAPI_GRO_CB(skb)->csum_valid = 1;
6096 NAPI_GRO_CB(skb)->csum_cnt = 0;
6097 break;
6098 case CHECKSUM_UNNECESSARY:
6099 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6100 NAPI_GRO_CB(skb)->csum_valid = 0;
6101 break;
6102 default:
6103 NAPI_GRO_CB(skb)->csum_cnt = 0;
6104 NAPI_GRO_CB(skb)->csum_valid = 0;
6105 }
6106
6107 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6108 ipv6_gro_receive, inet_gro_receive,
6109 &gro_list->list, skb);
6110 break;
6111 }
6112 rcu_read_unlock();
6113
6114 if (&ptype->list == head)
6115 goto normal;
6116
6117 if (PTR_ERR(pp) == -EINPROGRESS) {
6118 ret = GRO_CONSUMED;
6119 goto ok;
6120 }
6121
6122 same_flow = NAPI_GRO_CB(skb)->same_flow;
6123 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6124
6125 if (pp) {
6126 skb_list_del_init(pp);
6127 napi_gro_complete(napi, pp);
6128 gro_list->count--;
6129 }
6130
6131 if (same_flow)
6132 goto ok;
6133
6134 if (NAPI_GRO_CB(skb)->flush)
6135 goto normal;
6136
6137 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6138 gro_flush_oldest(napi, &gro_list->list);
6139 else
6140 gro_list->count++;
6141
6142 NAPI_GRO_CB(skb)->count = 1;
6143 NAPI_GRO_CB(skb)->age = jiffies;
6144 NAPI_GRO_CB(skb)->last = skb;
6145 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6146 list_add(&skb->list, &gro_list->list);
6147 ret = GRO_HELD;
6148
6149pull:
6150 grow = skb_gro_offset(skb) - skb_headlen(skb);
6151 if (grow > 0)
6152 gro_pull_from_frag0(skb, grow);
6153ok:
6154 if (gro_list->count) {
6155 if (!test_bit(bucket, &napi->gro_bitmask))
6156 __set_bit(bucket, &napi->gro_bitmask);
6157 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6158 __clear_bit(bucket, &napi->gro_bitmask);
6159 }
6160
6161 return ret;
6162
6163normal:
6164 ret = GRO_NORMAL;
6165 goto pull;
6166}
6167
6168struct packet_offload *gro_find_receive_by_type(__be16 type)
6169{
6170 struct list_head *offload_head = &offload_base;
6171 struct packet_offload *ptype;
6172
6173 list_for_each_entry_rcu(ptype, offload_head, list) {
6174 if (ptype->type != type || !ptype->callbacks.gro_receive)
6175 continue;
6176 return ptype;
6177 }
6178 return NULL;
6179}
6180EXPORT_SYMBOL(gro_find_receive_by_type);
6181
6182struct packet_offload *gro_find_complete_by_type(__be16 type)
6183{
6184 struct list_head *offload_head = &offload_base;
6185 struct packet_offload *ptype;
6186
6187 list_for_each_entry_rcu(ptype, offload_head, list) {
6188 if (ptype->type != type || !ptype->callbacks.gro_complete)
6189 continue;
6190 return ptype;
6191 }
6192 return NULL;
6193}
6194EXPORT_SYMBOL(gro_find_complete_by_type);
6195
6196static gro_result_t napi_skb_finish(struct napi_struct *napi,
6197 struct sk_buff *skb,
6198 gro_result_t ret)
6199{
6200 switch (ret) {
6201 case GRO_NORMAL:
6202 gro_normal_one(napi, skb, 1);
6203 break;
6204
6205 case GRO_MERGED_FREE:
6206 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6207 napi_skb_free_stolen_head(skb);
6208 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6209 __kfree_skb(skb);
6210 else
6211 __kfree_skb_defer(skb);
6212 break;
6213
6214 case GRO_HELD:
6215 case GRO_MERGED:
6216 case GRO_CONSUMED:
6217 break;
6218 }
6219
6220 return ret;
6221}
6222
6223gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6224{
6225 gro_result_t ret;
6226
6227 skb_mark_napi_id(skb, napi);
6228 trace_napi_gro_receive_entry(skb);
6229
6230 skb_gro_reset_offset(skb, 0);
6231
6232 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6233 trace_napi_gro_receive_exit(ret);
6234
6235 return ret;
6236}
6237EXPORT_SYMBOL(napi_gro_receive);
6238
6239static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6240{
6241 if (unlikely(skb->pfmemalloc)) {
6242 consume_skb(skb);
6243 return;
6244 }
6245 __skb_pull(skb, skb_headlen(skb));
6246 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6247 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6248 __vlan_hwaccel_clear_tag(skb);
6249 skb->dev = napi->dev;
6250 skb->skb_iif = 0;
6251
6252 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6253 skb->pkt_type = PACKET_HOST;
6254
6255 skb->encapsulation = 0;
6256 skb_shinfo(skb)->gso_type = 0;
6257 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6258 if (unlikely(skb->slow_gro)) {
6259 skb_orphan(skb);
6260 skb_ext_reset(skb);
6261 nf_reset_ct(skb);
6262 skb->slow_gro = 0;
6263 }
6264
6265 napi->skb = skb;
6266}
6267
6268struct sk_buff *napi_get_frags(struct napi_struct *napi)
6269{
6270 struct sk_buff *skb = napi->skb;
6271
6272 if (!skb) {
6273 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6274 if (skb) {
6275 napi->skb = skb;
6276 skb_mark_napi_id(skb, napi);
6277 }
6278 }
6279 return skb;
6280}
6281EXPORT_SYMBOL(napi_get_frags);
6282
6283static gro_result_t napi_frags_finish(struct napi_struct *napi,
6284 struct sk_buff *skb,
6285 gro_result_t ret)
6286{
6287 switch (ret) {
6288 case GRO_NORMAL:
6289 case GRO_HELD:
6290 __skb_push(skb, ETH_HLEN);
6291 skb->protocol = eth_type_trans(skb, skb->dev);
6292 if (ret == GRO_NORMAL)
6293 gro_normal_one(napi, skb, 1);
6294 break;
6295
6296 case GRO_MERGED_FREE:
6297 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6298 napi_skb_free_stolen_head(skb);
6299 else
6300 napi_reuse_skb(napi, skb);
6301 break;
6302
6303 case GRO_MERGED:
6304 case GRO_CONSUMED:
6305 break;
6306 }
6307
6308 return ret;
6309}
6310
6311/* Upper GRO stack assumes network header starts at gro_offset=0
6312 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6313 * We copy ethernet header into skb->data to have a common layout.
6314 */
6315static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6316{
6317 struct sk_buff *skb = napi->skb;
6318 const struct ethhdr *eth;
6319 unsigned int hlen = sizeof(*eth);
6320
6321 napi->skb = NULL;
6322
6323 skb_reset_mac_header(skb);
6324 skb_gro_reset_offset(skb, hlen);
6325
6326 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6327 eth = skb_gro_header_slow(skb, hlen, 0);
6328 if (unlikely(!eth)) {
6329 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6330 __func__, napi->dev->name);
6331 napi_reuse_skb(napi, skb);
6332 return NULL;
6333 }
6334 } else {
6335 eth = (const struct ethhdr *)skb->data;
6336 gro_pull_from_frag0(skb, hlen);
6337 NAPI_GRO_CB(skb)->frag0 += hlen;
6338 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6339 }
6340 __skb_pull(skb, hlen);
6341
6342 /*
6343 * This works because the only protocols we care about don't require
6344 * special handling.
6345 * We'll fix it up properly in napi_frags_finish()
6346 */
6347 skb->protocol = eth->h_proto;
6348
6349 return skb;
6350}
6351
6352gro_result_t napi_gro_frags(struct napi_struct *napi)
6353{
6354 gro_result_t ret;
6355 struct sk_buff *skb = napi_frags_skb(napi);
6356
6357 trace_napi_gro_frags_entry(skb);
6358
6359 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6360 trace_napi_gro_frags_exit(ret);
6361
6362 return ret;
6363}
6364EXPORT_SYMBOL(napi_gro_frags);
6365
6366/* Compute the checksum from gro_offset and return the folded value
6367 * after adding in any pseudo checksum.
6368 */
6369__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6370{
6371 __wsum wsum;
6372 __sum16 sum;
6373
6374 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6375
6376 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6377 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6378 /* See comments in __skb_checksum_complete(). */
6379 if (likely(!sum)) {
6380 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6381 !skb->csum_complete_sw)
6382 netdev_rx_csum_fault(skb->dev, skb);
6383 }
6384
6385 NAPI_GRO_CB(skb)->csum = wsum;
6386 NAPI_GRO_CB(skb)->csum_valid = 1;
6387
6388 return sum;
6389}
6390EXPORT_SYMBOL(__skb_gro_checksum_complete);
6391
6392static void net_rps_send_ipi(struct softnet_data *remsd)
6393{
6394#ifdef CONFIG_RPS
6395 while (remsd) {
6396 struct softnet_data *next = remsd->rps_ipi_next;
6397
6398 if (cpu_online(remsd->cpu))
6399 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6400 remsd = next;
6401 }
6402#endif
6403}
6404
6405/*
6406 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6407 * Note: called with local irq disabled, but exits with local irq enabled.
6408 */
6409static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6410{
6411#ifdef CONFIG_RPS
6412 struct softnet_data *remsd = sd->rps_ipi_list;
6413
6414 if (remsd) {
6415 sd->rps_ipi_list = NULL;
6416
6417 local_irq_enable();
6418
6419 /* Send pending IPI's to kick RPS processing on remote cpus. */
6420 net_rps_send_ipi(remsd);
6421 } else
6422#endif
6423 local_irq_enable();
6424}
6425
6426static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6427{
6428#ifdef CONFIG_RPS
6429 return sd->rps_ipi_list != NULL;
6430#else
6431 return false;
6432#endif
6433}
6434
6435static int process_backlog(struct napi_struct *napi, int quota)
6436{
6437 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6438 bool again = true;
6439 int work = 0;
6440
6441 /* Check if we have pending ipi, its better to send them now,
6442 * not waiting net_rx_action() end.
6443 */
6444 if (sd_has_rps_ipi_waiting(sd)) {
6445 local_irq_disable();
6446 net_rps_action_and_irq_enable(sd);
6447 }
6448
6449 napi->weight = dev_rx_weight;
6450 while (again) {
6451 struct sk_buff *skb;
6452
6453 while ((skb = __skb_dequeue(&sd->process_queue))) {
6454 rcu_read_lock();
6455 __netif_receive_skb(skb);
6456 rcu_read_unlock();
6457 input_queue_head_incr(sd);
6458 if (++work >= quota)
6459 return work;
6460
6461 }
6462
6463 local_irq_disable();
6464 rps_lock(sd);
6465 if (skb_queue_empty(&sd->input_pkt_queue)) {
6466 /*
6467 * Inline a custom version of __napi_complete().
6468 * only current cpu owns and manipulates this napi,
6469 * and NAPI_STATE_SCHED is the only possible flag set
6470 * on backlog.
6471 * We can use a plain write instead of clear_bit(),
6472 * and we dont need an smp_mb() memory barrier.
6473 */
6474 napi->state = 0;
6475 again = false;
6476 } else {
6477 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6478 &sd->process_queue);
6479 }
6480 rps_unlock(sd);
6481 local_irq_enable();
6482 }
6483
6484 return work;
6485}
6486
6487/**
6488 * __napi_schedule - schedule for receive
6489 * @n: entry to schedule
6490 *
6491 * The entry's receive function will be scheduled to run.
6492 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6493 */
6494void __napi_schedule(struct napi_struct *n)
6495{
6496 unsigned long flags;
6497
6498 local_irq_save(flags);
6499 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6500 local_irq_restore(flags);
6501}
6502EXPORT_SYMBOL(__napi_schedule);
6503
6504/**
6505 * napi_schedule_prep - check if napi can be scheduled
6506 * @n: napi context
6507 *
6508 * Test if NAPI routine is already running, and if not mark
6509 * it as running. This is used as a condition variable to
6510 * insure only one NAPI poll instance runs. We also make
6511 * sure there is no pending NAPI disable.
6512 */
6513bool napi_schedule_prep(struct napi_struct *n)
6514{
6515 unsigned long val, new;
6516
6517 do {
6518 val = READ_ONCE(n->state);
6519 if (unlikely(val & NAPIF_STATE_DISABLE))
6520 return false;
6521 new = val | NAPIF_STATE_SCHED;
6522
6523 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6524 * This was suggested by Alexander Duyck, as compiler
6525 * emits better code than :
6526 * if (val & NAPIF_STATE_SCHED)
6527 * new |= NAPIF_STATE_MISSED;
6528 */
6529 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6530 NAPIF_STATE_MISSED;
6531 } while (cmpxchg(&n->state, val, new) != val);
6532
6533 return !(val & NAPIF_STATE_SCHED);
6534}
6535EXPORT_SYMBOL(napi_schedule_prep);
6536
6537/**
6538 * __napi_schedule_irqoff - schedule for receive
6539 * @n: entry to schedule
6540 *
6541 * Variant of __napi_schedule() assuming hard irqs are masked.
6542 *
6543 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6544 * because the interrupt disabled assumption might not be true
6545 * due to force-threaded interrupts and spinlock substitution.
6546 */
6547void __napi_schedule_irqoff(struct napi_struct *n)
6548{
6549 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6550 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6551 else
6552 __napi_schedule(n);
6553}
6554EXPORT_SYMBOL(__napi_schedule_irqoff);
6555
6556bool napi_complete_done(struct napi_struct *n, int work_done)
6557{
6558 unsigned long flags, val, new, timeout = 0;
6559 bool ret = true;
6560
6561 /*
6562 * 1) Don't let napi dequeue from the cpu poll list
6563 * just in case its running on a different cpu.
6564 * 2) If we are busy polling, do nothing here, we have
6565 * the guarantee we will be called later.
6566 */
6567 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6568 NAPIF_STATE_IN_BUSY_POLL)))
6569 return false;
6570
6571 if (work_done) {
6572 if (n->gro_bitmask)
6573 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6574 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6575 }
6576 if (n->defer_hard_irqs_count > 0) {
6577 n->defer_hard_irqs_count--;
6578 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6579 if (timeout)
6580 ret = false;
6581 }
6582 if (n->gro_bitmask) {
6583 /* When the NAPI instance uses a timeout and keeps postponing
6584 * it, we need to bound somehow the time packets are kept in
6585 * the GRO layer
6586 */
6587 napi_gro_flush(n, !!timeout);
6588 }
6589
6590 gro_normal_list(n);
6591
6592 if (unlikely(!list_empty(&n->poll_list))) {
6593 /* If n->poll_list is not empty, we need to mask irqs */
6594 local_irq_save(flags);
6595 list_del_init(&n->poll_list);
6596 local_irq_restore(flags);
6597 }
6598
6599 do {
6600 val = READ_ONCE(n->state);
6601
6602 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6603
6604 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6605 NAPIF_STATE_SCHED_THREADED |
6606 NAPIF_STATE_PREFER_BUSY_POLL);
6607
6608 /* If STATE_MISSED was set, leave STATE_SCHED set,
6609 * because we will call napi->poll() one more time.
6610 * This C code was suggested by Alexander Duyck to help gcc.
6611 */
6612 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6613 NAPIF_STATE_SCHED;
6614 } while (cmpxchg(&n->state, val, new) != val);
6615
6616 if (unlikely(val & NAPIF_STATE_MISSED)) {
6617 __napi_schedule(n);
6618 return false;
6619 }
6620
6621 if (timeout)
6622 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6623 HRTIMER_MODE_REL_PINNED);
6624 return ret;
6625}
6626EXPORT_SYMBOL(napi_complete_done);
6627
6628/* must be called under rcu_read_lock(), as we dont take a reference */
6629static struct napi_struct *napi_by_id(unsigned int napi_id)
6630{
6631 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6632 struct napi_struct *napi;
6633
6634 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6635 if (napi->napi_id == napi_id)
6636 return napi;
6637
6638 return NULL;
6639}
6640
6641#if defined(CONFIG_NET_RX_BUSY_POLL)
6642
6643static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6644{
6645 if (!skip_schedule) {
6646 gro_normal_list(napi);
6647 __napi_schedule(napi);
6648 return;
6649 }
6650
6651 if (napi->gro_bitmask) {
6652 /* flush too old packets
6653 * If HZ < 1000, flush all packets.
6654 */
6655 napi_gro_flush(napi, HZ >= 1000);
6656 }
6657
6658 gro_normal_list(napi);
6659 clear_bit(NAPI_STATE_SCHED, &napi->state);
6660}
6661
6662static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6663 u16 budget)
6664{
6665 bool skip_schedule = false;
6666 unsigned long timeout;
6667 int rc;
6668
6669 /* Busy polling means there is a high chance device driver hard irq
6670 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6671 * set in napi_schedule_prep().
6672 * Since we are about to call napi->poll() once more, we can safely
6673 * clear NAPI_STATE_MISSED.
6674 *
6675 * Note: x86 could use a single "lock and ..." instruction
6676 * to perform these two clear_bit()
6677 */
6678 clear_bit(NAPI_STATE_MISSED, &napi->state);
6679 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6680
6681 local_bh_disable();
6682
6683 if (prefer_busy_poll) {
6684 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6685 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6686 if (napi->defer_hard_irqs_count && timeout) {
6687 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6688 skip_schedule = true;
6689 }
6690 }
6691
6692 /* All we really want here is to re-enable device interrupts.
6693 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6694 */
6695 rc = napi->poll(napi, budget);
6696 /* We can't gro_normal_list() here, because napi->poll() might have
6697 * rearmed the napi (napi_complete_done()) in which case it could
6698 * already be running on another CPU.
6699 */
6700 trace_napi_poll(napi, rc, budget);
6701 netpoll_poll_unlock(have_poll_lock);
6702 if (rc == budget)
6703 __busy_poll_stop(napi, skip_schedule);
6704 local_bh_enable();
6705}
6706
6707void napi_busy_loop(unsigned int napi_id,
6708 bool (*loop_end)(void *, unsigned long),
6709 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6710{
6711 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6712 int (*napi_poll)(struct napi_struct *napi, int budget);
6713 void *have_poll_lock = NULL;
6714 struct napi_struct *napi;
6715
6716restart:
6717 napi_poll = NULL;
6718
6719 rcu_read_lock();
6720
6721 napi = napi_by_id(napi_id);
6722 if (!napi)
6723 goto out;
6724
6725 preempt_disable();
6726 for (;;) {
6727 int work = 0;
6728
6729 local_bh_disable();
6730 if (!napi_poll) {
6731 unsigned long val = READ_ONCE(napi->state);
6732
6733 /* If multiple threads are competing for this napi,
6734 * we avoid dirtying napi->state as much as we can.
6735 */
6736 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6737 NAPIF_STATE_IN_BUSY_POLL)) {
6738 if (prefer_busy_poll)
6739 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6740 goto count;
6741 }
6742 if (cmpxchg(&napi->state, val,
6743 val | NAPIF_STATE_IN_BUSY_POLL |
6744 NAPIF_STATE_SCHED) != val) {
6745 if (prefer_busy_poll)
6746 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6747 goto count;
6748 }
6749 have_poll_lock = netpoll_poll_lock(napi);
6750 napi_poll = napi->poll;
6751 }
6752 work = napi_poll(napi, budget);
6753 trace_napi_poll(napi, work, budget);
6754 gro_normal_list(napi);
6755count:
6756 if (work > 0)
6757 __NET_ADD_STATS(dev_net(napi->dev),
6758 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6759 local_bh_enable();
6760
6761 if (!loop_end || loop_end(loop_end_arg, start_time))
6762 break;
6763
6764 if (unlikely(need_resched())) {
6765 if (napi_poll)
6766 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6767 preempt_enable();
6768 rcu_read_unlock();
6769 cond_resched();
6770 if (loop_end(loop_end_arg, start_time))
6771 return;
6772 goto restart;
6773 }
6774 cpu_relax();
6775 }
6776 if (napi_poll)
6777 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6778 preempt_enable();
6779out:
6780 rcu_read_unlock();
6781}
6782EXPORT_SYMBOL(napi_busy_loop);
6783
6784#endif /* CONFIG_NET_RX_BUSY_POLL */
6785
6786static void napi_hash_add(struct napi_struct *napi)
6787{
6788 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6789 return;
6790
6791 spin_lock(&napi_hash_lock);
6792
6793 /* 0..NR_CPUS range is reserved for sender_cpu use */
6794 do {
6795 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6796 napi_gen_id = MIN_NAPI_ID;
6797 } while (napi_by_id(napi_gen_id));
6798 napi->napi_id = napi_gen_id;
6799
6800 hlist_add_head_rcu(&napi->napi_hash_node,
6801 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6802
6803 spin_unlock(&napi_hash_lock);
6804}
6805
6806/* Warning : caller is responsible to make sure rcu grace period
6807 * is respected before freeing memory containing @napi
6808 */
6809static void napi_hash_del(struct napi_struct *napi)
6810{
6811 spin_lock(&napi_hash_lock);
6812
6813 hlist_del_init_rcu(&napi->napi_hash_node);
6814
6815 spin_unlock(&napi_hash_lock);
6816}
6817
6818static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6819{
6820 struct napi_struct *napi;
6821
6822 napi = container_of(timer, struct napi_struct, timer);
6823
6824 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6825 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6826 */
6827 if (!napi_disable_pending(napi) &&
6828 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6829 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6830 __napi_schedule_irqoff(napi);
6831 }
6832
6833 return HRTIMER_NORESTART;
6834}
6835
6836static void init_gro_hash(struct napi_struct *napi)
6837{
6838 int i;
6839
6840 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6841 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6842 napi->gro_hash[i].count = 0;
6843 }
6844 napi->gro_bitmask = 0;
6845}
6846
6847int dev_set_threaded(struct net_device *dev, bool threaded)
6848{
6849 struct napi_struct *napi;
6850 int err = 0;
6851
6852 if (dev->threaded == threaded)
6853 return 0;
6854
6855 if (threaded) {
6856 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6857 if (!napi->thread) {
6858 err = napi_kthread_create(napi);
6859 if (err) {
6860 threaded = false;
6861 break;
6862 }
6863 }
6864 }
6865 }
6866
6867 dev->threaded = threaded;
6868
6869 /* Make sure kthread is created before THREADED bit
6870 * is set.
6871 */
6872 smp_mb__before_atomic();
6873
6874 /* Setting/unsetting threaded mode on a napi might not immediately
6875 * take effect, if the current napi instance is actively being
6876 * polled. In this case, the switch between threaded mode and
6877 * softirq mode will happen in the next round of napi_schedule().
6878 * This should not cause hiccups/stalls to the live traffic.
6879 */
6880 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6881 if (threaded)
6882 set_bit(NAPI_STATE_THREADED, &napi->state);
6883 else
6884 clear_bit(NAPI_STATE_THREADED, &napi->state);
6885 }
6886
6887 return err;
6888}
6889EXPORT_SYMBOL(dev_set_threaded);
6890
6891void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6892 int (*poll)(struct napi_struct *, int), int weight)
6893{
6894 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6895 return;
6896
6897 INIT_LIST_HEAD(&napi->poll_list);
6898 INIT_HLIST_NODE(&napi->napi_hash_node);
6899 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6900 napi->timer.function = napi_watchdog;
6901 init_gro_hash(napi);
6902 napi->skb = NULL;
6903 INIT_LIST_HEAD(&napi->rx_list);
6904 napi->rx_count = 0;
6905 napi->poll = poll;
6906 if (weight > NAPI_POLL_WEIGHT)
6907 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6908 weight);
6909 napi->weight = weight;
6910 napi->dev = dev;
6911#ifdef CONFIG_NETPOLL
6912 napi->poll_owner = -1;
6913#endif
6914 set_bit(NAPI_STATE_SCHED, &napi->state);
6915 set_bit(NAPI_STATE_NPSVC, &napi->state);
6916 list_add_rcu(&napi->dev_list, &dev->napi_list);
6917 napi_hash_add(napi);
6918 /* Create kthread for this napi if dev->threaded is set.
6919 * Clear dev->threaded if kthread creation failed so that
6920 * threaded mode will not be enabled in napi_enable().
6921 */
6922 if (dev->threaded && napi_kthread_create(napi))
6923 dev->threaded = 0;
6924}
6925EXPORT_SYMBOL(netif_napi_add);
6926
6927void napi_disable(struct napi_struct *n)
6928{
6929 unsigned long val, new;
6930
6931 might_sleep();
6932 set_bit(NAPI_STATE_DISABLE, &n->state);
6933
6934 for ( ; ; ) {
6935 val = READ_ONCE(n->state);
6936 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6937 usleep_range(20, 200);
6938 continue;
6939 }
6940
6941 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6942 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6943
6944 if (cmpxchg(&n->state, val, new) == val)
6945 break;
6946 }
6947
6948 hrtimer_cancel(&n->timer);
6949
6950 clear_bit(NAPI_STATE_DISABLE, &n->state);
6951}
6952EXPORT_SYMBOL(napi_disable);
6953
6954/**
6955 * napi_enable - enable NAPI scheduling
6956 * @n: NAPI context
6957 *
6958 * Resume NAPI from being scheduled on this context.
6959 * Must be paired with napi_disable.
6960 */
6961void napi_enable(struct napi_struct *n)
6962{
6963 unsigned long val, new;
6964
6965 do {
6966 val = READ_ONCE(n->state);
6967 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6968
6969 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6970 if (n->dev->threaded && n->thread)
6971 new |= NAPIF_STATE_THREADED;
6972 } while (cmpxchg(&n->state, val, new) != val);
6973}
6974EXPORT_SYMBOL(napi_enable);
6975
6976static void flush_gro_hash(struct napi_struct *napi)
6977{
6978 int i;
6979
6980 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6981 struct sk_buff *skb, *n;
6982
6983 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6984 kfree_skb(skb);
6985 napi->gro_hash[i].count = 0;
6986 }
6987}
6988
6989/* Must be called in process context */
6990void __netif_napi_del(struct napi_struct *napi)
6991{
6992 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6993 return;
6994
6995 napi_hash_del(napi);
6996 list_del_rcu(&napi->dev_list);
6997 napi_free_frags(napi);
6998
6999 flush_gro_hash(napi);
7000 napi->gro_bitmask = 0;
7001
7002 if (napi->thread) {
7003 kthread_stop(napi->thread);
7004 napi->thread = NULL;
7005 }
7006}
7007EXPORT_SYMBOL(__netif_napi_del);
7008
7009static int __napi_poll(struct napi_struct *n, bool *repoll)
7010{
7011 int work, weight;
7012
7013 weight = n->weight;
7014
7015 /* This NAPI_STATE_SCHED test is for avoiding a race
7016 * with netpoll's poll_napi(). Only the entity which
7017 * obtains the lock and sees NAPI_STATE_SCHED set will
7018 * actually make the ->poll() call. Therefore we avoid
7019 * accidentally calling ->poll() when NAPI is not scheduled.
7020 */
7021 work = 0;
7022 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7023 work = n->poll(n, weight);
7024 trace_napi_poll(n, work, weight);
7025 }
7026
7027 if (unlikely(work > weight))
7028 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7029 n->poll, work, weight);
7030
7031 if (likely(work < weight))
7032 return work;
7033
7034 /* Drivers must not modify the NAPI state if they
7035 * consume the entire weight. In such cases this code
7036 * still "owns" the NAPI instance and therefore can
7037 * move the instance around on the list at-will.
7038 */
7039 if (unlikely(napi_disable_pending(n))) {
7040 napi_complete(n);
7041 return work;
7042 }
7043
7044 /* The NAPI context has more processing work, but busy-polling
7045 * is preferred. Exit early.
7046 */
7047 if (napi_prefer_busy_poll(n)) {
7048 if (napi_complete_done(n, work)) {
7049 /* If timeout is not set, we need to make sure
7050 * that the NAPI is re-scheduled.
7051 */
7052 napi_schedule(n);
7053 }
7054 return work;
7055 }
7056
7057 if (n->gro_bitmask) {
7058 /* flush too old packets
7059 * If HZ < 1000, flush all packets.
7060 */
7061 napi_gro_flush(n, HZ >= 1000);
7062 }
7063
7064 gro_normal_list(n);
7065
7066 /* Some drivers may have called napi_schedule
7067 * prior to exhausting their budget.
7068 */
7069 if (unlikely(!list_empty(&n->poll_list))) {
7070 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7071 n->dev ? n->dev->name : "backlog");
7072 return work;
7073 }
7074
7075 *repoll = true;
7076
7077 return work;
7078}
7079
7080static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7081{
7082 bool do_repoll = false;
7083 void *have;
7084 int work;
7085
7086 list_del_init(&n->poll_list);
7087
7088 have = netpoll_poll_lock(n);
7089
7090 work = __napi_poll(n, &do_repoll);
7091
7092 if (do_repoll)
7093 list_add_tail(&n->poll_list, repoll);
7094
7095 netpoll_poll_unlock(have);
7096
7097 return work;
7098}
7099
7100static int napi_thread_wait(struct napi_struct *napi)
7101{
7102 bool woken = false;
7103
7104 set_current_state(TASK_INTERRUPTIBLE);
7105
7106 while (!kthread_should_stop()) {
7107 /* Testing SCHED_THREADED bit here to make sure the current
7108 * kthread owns this napi and could poll on this napi.
7109 * Testing SCHED bit is not enough because SCHED bit might be
7110 * set by some other busy poll thread or by napi_disable().
7111 */
7112 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7113 WARN_ON(!list_empty(&napi->poll_list));
7114 __set_current_state(TASK_RUNNING);
7115 return 0;
7116 }
7117
7118 schedule();
7119 /* woken being true indicates this thread owns this napi. */
7120 woken = true;
7121 set_current_state(TASK_INTERRUPTIBLE);
7122 }
7123 __set_current_state(TASK_RUNNING);
7124
7125 return -1;
7126}
7127
7128static int napi_threaded_poll(void *data)
7129{
7130 struct napi_struct *napi = data;
7131 void *have;
7132
7133 while (!napi_thread_wait(napi)) {
7134 for (;;) {
7135 bool repoll = false;
7136
7137 local_bh_disable();
7138
7139 have = netpoll_poll_lock(napi);
7140 __napi_poll(napi, &repoll);
7141 netpoll_poll_unlock(have);
7142
7143 local_bh_enable();
7144
7145 if (!repoll)
7146 break;
7147
7148 cond_resched();
7149 }
7150 }
7151 return 0;
7152}
7153
7154static __latent_entropy void net_rx_action(struct softirq_action *h)
7155{
7156 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7157 unsigned long time_limit = jiffies +
7158 usecs_to_jiffies(netdev_budget_usecs);
7159 int budget = netdev_budget;
7160 LIST_HEAD(list);
7161 LIST_HEAD(repoll);
7162
7163 local_irq_disable();
7164 list_splice_init(&sd->poll_list, &list);
7165 local_irq_enable();
7166
7167 for (;;) {
7168 struct napi_struct *n;
7169
7170 if (list_empty(&list)) {
7171 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7172 return;
7173 break;
7174 }
7175
7176 n = list_first_entry(&list, struct napi_struct, poll_list);
7177 budget -= napi_poll(n, &repoll);
7178
7179 /* If softirq window is exhausted then punt.
7180 * Allow this to run for 2 jiffies since which will allow
7181 * an average latency of 1.5/HZ.
7182 */
7183 if (unlikely(budget <= 0 ||
7184 time_after_eq(jiffies, time_limit))) {
7185 sd->time_squeeze++;
7186 break;
7187 }
7188 }
7189
7190 local_irq_disable();
7191
7192 list_splice_tail_init(&sd->poll_list, &list);
7193 list_splice_tail(&repoll, &list);
7194 list_splice(&list, &sd->poll_list);
7195 if (!list_empty(&sd->poll_list))
7196 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7197
7198 net_rps_action_and_irq_enable(sd);
7199}
7200
7201struct netdev_adjacent {
7202 struct net_device *dev;
7203
7204 /* upper master flag, there can only be one master device per list */
7205 bool master;
7206
7207 /* lookup ignore flag */
7208 bool ignore;
7209
7210 /* counter for the number of times this device was added to us */
7211 u16 ref_nr;
7212
7213 /* private field for the users */
7214 void *private;
7215
7216 struct list_head list;
7217 struct rcu_head rcu;
7218};
7219
7220static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7221 struct list_head *adj_list)
7222{
7223 struct netdev_adjacent *adj;
7224
7225 list_for_each_entry(adj, adj_list, list) {
7226 if (adj->dev == adj_dev)
7227 return adj;
7228 }
7229 return NULL;
7230}
7231
7232static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7233 struct netdev_nested_priv *priv)
7234{
7235 struct net_device *dev = (struct net_device *)priv->data;
7236
7237 return upper_dev == dev;
7238}
7239
7240/**
7241 * netdev_has_upper_dev - Check if device is linked to an upper device
7242 * @dev: device
7243 * @upper_dev: upper device to check
7244 *
7245 * Find out if a device is linked to specified upper device and return true
7246 * in case it is. Note that this checks only immediate upper device,
7247 * not through a complete stack of devices. The caller must hold the RTNL lock.
7248 */
7249bool netdev_has_upper_dev(struct net_device *dev,
7250 struct net_device *upper_dev)
7251{
7252 struct netdev_nested_priv priv = {
7253 .data = (void *)upper_dev,
7254 };
7255
7256 ASSERT_RTNL();
7257
7258 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7259 &priv);
7260}
7261EXPORT_SYMBOL(netdev_has_upper_dev);
7262
7263/**
7264 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7265 * @dev: device
7266 * @upper_dev: upper device to check
7267 *
7268 * Find out if a device is linked to specified upper device and return true
7269 * in case it is. Note that this checks the entire upper device chain.
7270 * The caller must hold rcu lock.
7271 */
7272
7273bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7274 struct net_device *upper_dev)
7275{
7276 struct netdev_nested_priv priv = {
7277 .data = (void *)upper_dev,
7278 };
7279
7280 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7281 &priv);
7282}
7283EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7284
7285/**
7286 * netdev_has_any_upper_dev - Check if device is linked to some device
7287 * @dev: device
7288 *
7289 * Find out if a device is linked to an upper device and return true in case
7290 * it is. The caller must hold the RTNL lock.
7291 */
7292bool netdev_has_any_upper_dev(struct net_device *dev)
7293{
7294 ASSERT_RTNL();
7295
7296 return !list_empty(&dev->adj_list.upper);
7297}
7298EXPORT_SYMBOL(netdev_has_any_upper_dev);
7299
7300/**
7301 * netdev_master_upper_dev_get - Get master upper device
7302 * @dev: device
7303 *
7304 * Find a master upper device and return pointer to it or NULL in case
7305 * it's not there. The caller must hold the RTNL lock.
7306 */
7307struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7308{
7309 struct netdev_adjacent *upper;
7310
7311 ASSERT_RTNL();
7312
7313 if (list_empty(&dev->adj_list.upper))
7314 return NULL;
7315
7316 upper = list_first_entry(&dev->adj_list.upper,
7317 struct netdev_adjacent, list);
7318 if (likely(upper->master))
7319 return upper->dev;
7320 return NULL;
7321}
7322EXPORT_SYMBOL(netdev_master_upper_dev_get);
7323
7324static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7325{
7326 struct netdev_adjacent *upper;
7327
7328 ASSERT_RTNL();
7329
7330 if (list_empty(&dev->adj_list.upper))
7331 return NULL;
7332
7333 upper = list_first_entry(&dev->adj_list.upper,
7334 struct netdev_adjacent, list);
7335 if (likely(upper->master) && !upper->ignore)
7336 return upper->dev;
7337 return NULL;
7338}
7339
7340/**
7341 * netdev_has_any_lower_dev - Check if device is linked to some device
7342 * @dev: device
7343 *
7344 * Find out if a device is linked to a lower device and return true in case
7345 * it is. The caller must hold the RTNL lock.
7346 */
7347static bool netdev_has_any_lower_dev(struct net_device *dev)
7348{
7349 ASSERT_RTNL();
7350
7351 return !list_empty(&dev->adj_list.lower);
7352}
7353
7354void *netdev_adjacent_get_private(struct list_head *adj_list)
7355{
7356 struct netdev_adjacent *adj;
7357
7358 adj = list_entry(adj_list, struct netdev_adjacent, list);
7359
7360 return adj->private;
7361}
7362EXPORT_SYMBOL(netdev_adjacent_get_private);
7363
7364/**
7365 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7366 * @dev: device
7367 * @iter: list_head ** of the current position
7368 *
7369 * Gets the next device from the dev's upper list, starting from iter
7370 * position. The caller must hold RCU read lock.
7371 */
7372struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7373 struct list_head **iter)
7374{
7375 struct netdev_adjacent *upper;
7376
7377 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7378
7379 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7380
7381 if (&upper->list == &dev->adj_list.upper)
7382 return NULL;
7383
7384 *iter = &upper->list;
7385
7386 return upper->dev;
7387}
7388EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7389
7390static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7391 struct list_head **iter,
7392 bool *ignore)
7393{
7394 struct netdev_adjacent *upper;
7395
7396 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7397
7398 if (&upper->list == &dev->adj_list.upper)
7399 return NULL;
7400
7401 *iter = &upper->list;
7402 *ignore = upper->ignore;
7403
7404 return upper->dev;
7405}
7406
7407static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7408 struct list_head **iter)
7409{
7410 struct netdev_adjacent *upper;
7411
7412 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7413
7414 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7415
7416 if (&upper->list == &dev->adj_list.upper)
7417 return NULL;
7418
7419 *iter = &upper->list;
7420
7421 return upper->dev;
7422}
7423
7424static int __netdev_walk_all_upper_dev(struct net_device *dev,
7425 int (*fn)(struct net_device *dev,
7426 struct netdev_nested_priv *priv),
7427 struct netdev_nested_priv *priv)
7428{
7429 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7430 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7431 int ret, cur = 0;
7432 bool ignore;
7433
7434 now = dev;
7435 iter = &dev->adj_list.upper;
7436
7437 while (1) {
7438 if (now != dev) {
7439 ret = fn(now, priv);
7440 if (ret)
7441 return ret;
7442 }
7443
7444 next = NULL;
7445 while (1) {
7446 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7447 if (!udev)
7448 break;
7449 if (ignore)
7450 continue;
7451
7452 next = udev;
7453 niter = &udev->adj_list.upper;
7454 dev_stack[cur] = now;
7455 iter_stack[cur++] = iter;
7456 break;
7457 }
7458
7459 if (!next) {
7460 if (!cur)
7461 return 0;
7462 next = dev_stack[--cur];
7463 niter = iter_stack[cur];
7464 }
7465
7466 now = next;
7467 iter = niter;
7468 }
7469
7470 return 0;
7471}
7472
7473int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7474 int (*fn)(struct net_device *dev,
7475 struct netdev_nested_priv *priv),
7476 struct netdev_nested_priv *priv)
7477{
7478 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7479 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7480 int ret, cur = 0;
7481
7482 now = dev;
7483 iter = &dev->adj_list.upper;
7484
7485 while (1) {
7486 if (now != dev) {
7487 ret = fn(now, priv);
7488 if (ret)
7489 return ret;
7490 }
7491
7492 next = NULL;
7493 while (1) {
7494 udev = netdev_next_upper_dev_rcu(now, &iter);
7495 if (!udev)
7496 break;
7497
7498 next = udev;
7499 niter = &udev->adj_list.upper;
7500 dev_stack[cur] = now;
7501 iter_stack[cur++] = iter;
7502 break;
7503 }
7504
7505 if (!next) {
7506 if (!cur)
7507 return 0;
7508 next = dev_stack[--cur];
7509 niter = iter_stack[cur];
7510 }
7511
7512 now = next;
7513 iter = niter;
7514 }
7515
7516 return 0;
7517}
7518EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7519
7520static bool __netdev_has_upper_dev(struct net_device *dev,
7521 struct net_device *upper_dev)
7522{
7523 struct netdev_nested_priv priv = {
7524 .flags = 0,
7525 .data = (void *)upper_dev,
7526 };
7527
7528 ASSERT_RTNL();
7529
7530 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7531 &priv);
7532}
7533
7534/**
7535 * netdev_lower_get_next_private - Get the next ->private from the
7536 * lower neighbour list
7537 * @dev: device
7538 * @iter: list_head ** of the current position
7539 *
7540 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7541 * list, starting from iter position. The caller must hold either hold the
7542 * RTNL lock or its own locking that guarantees that the neighbour lower
7543 * list will remain unchanged.
7544 */
7545void *netdev_lower_get_next_private(struct net_device *dev,
7546 struct list_head **iter)
7547{
7548 struct netdev_adjacent *lower;
7549
7550 lower = list_entry(*iter, struct netdev_adjacent, list);
7551
7552 if (&lower->list == &dev->adj_list.lower)
7553 return NULL;
7554
7555 *iter = lower->list.next;
7556
7557 return lower->private;
7558}
7559EXPORT_SYMBOL(netdev_lower_get_next_private);
7560
7561/**
7562 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7563 * lower neighbour list, RCU
7564 * variant
7565 * @dev: device
7566 * @iter: list_head ** of the current position
7567 *
7568 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7569 * list, starting from iter position. The caller must hold RCU read lock.
7570 */
7571void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7572 struct list_head **iter)
7573{
7574 struct netdev_adjacent *lower;
7575
7576 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7577
7578 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7579
7580 if (&lower->list == &dev->adj_list.lower)
7581 return NULL;
7582
7583 *iter = &lower->list;
7584
7585 return lower->private;
7586}
7587EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7588
7589/**
7590 * netdev_lower_get_next - Get the next device from the lower neighbour
7591 * list
7592 * @dev: device
7593 * @iter: list_head ** of the current position
7594 *
7595 * Gets the next netdev_adjacent from the dev's lower neighbour
7596 * list, starting from iter position. The caller must hold RTNL lock or
7597 * its own locking that guarantees that the neighbour lower
7598 * list will remain unchanged.
7599 */
7600void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7601{
7602 struct netdev_adjacent *lower;
7603
7604 lower = list_entry(*iter, struct netdev_adjacent, list);
7605
7606 if (&lower->list == &dev->adj_list.lower)
7607 return NULL;
7608
7609 *iter = lower->list.next;
7610
7611 return lower->dev;
7612}
7613EXPORT_SYMBOL(netdev_lower_get_next);
7614
7615static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7616 struct list_head **iter)
7617{
7618 struct netdev_adjacent *lower;
7619
7620 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7621
7622 if (&lower->list == &dev->adj_list.lower)
7623 return NULL;
7624
7625 *iter = &lower->list;
7626
7627 return lower->dev;
7628}
7629
7630static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7631 struct list_head **iter,
7632 bool *ignore)
7633{
7634 struct netdev_adjacent *lower;
7635
7636 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7637
7638 if (&lower->list == &dev->adj_list.lower)
7639 return NULL;
7640
7641 *iter = &lower->list;
7642 *ignore = lower->ignore;
7643
7644 return lower->dev;
7645}
7646
7647int netdev_walk_all_lower_dev(struct net_device *dev,
7648 int (*fn)(struct net_device *dev,
7649 struct netdev_nested_priv *priv),
7650 struct netdev_nested_priv *priv)
7651{
7652 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7653 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7654 int ret, cur = 0;
7655
7656 now = dev;
7657 iter = &dev->adj_list.lower;
7658
7659 while (1) {
7660 if (now != dev) {
7661 ret = fn(now, priv);
7662 if (ret)
7663 return ret;
7664 }
7665
7666 next = NULL;
7667 while (1) {
7668 ldev = netdev_next_lower_dev(now, &iter);
7669 if (!ldev)
7670 break;
7671
7672 next = ldev;
7673 niter = &ldev->adj_list.lower;
7674 dev_stack[cur] = now;
7675 iter_stack[cur++] = iter;
7676 break;
7677 }
7678
7679 if (!next) {
7680 if (!cur)
7681 return 0;
7682 next = dev_stack[--cur];
7683 niter = iter_stack[cur];
7684 }
7685
7686 now = next;
7687 iter = niter;
7688 }
7689
7690 return 0;
7691}
7692EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7693
7694static int __netdev_walk_all_lower_dev(struct net_device *dev,
7695 int (*fn)(struct net_device *dev,
7696 struct netdev_nested_priv *priv),
7697 struct netdev_nested_priv *priv)
7698{
7699 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7700 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7701 int ret, cur = 0;
7702 bool ignore;
7703
7704 now = dev;
7705 iter = &dev->adj_list.lower;
7706
7707 while (1) {
7708 if (now != dev) {
7709 ret = fn(now, priv);
7710 if (ret)
7711 return ret;
7712 }
7713
7714 next = NULL;
7715 while (1) {
7716 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7717 if (!ldev)
7718 break;
7719 if (ignore)
7720 continue;
7721
7722 next = ldev;
7723 niter = &ldev->adj_list.lower;
7724 dev_stack[cur] = now;
7725 iter_stack[cur++] = iter;
7726 break;
7727 }
7728
7729 if (!next) {
7730 if (!cur)
7731 return 0;
7732 next = dev_stack[--cur];
7733 niter = iter_stack[cur];
7734 }
7735
7736 now = next;
7737 iter = niter;
7738 }
7739
7740 return 0;
7741}
7742
7743struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7744 struct list_head **iter)
7745{
7746 struct netdev_adjacent *lower;
7747
7748 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7749 if (&lower->list == &dev->adj_list.lower)
7750 return NULL;
7751
7752 *iter = &lower->list;
7753
7754 return lower->dev;
7755}
7756EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7757
7758static u8 __netdev_upper_depth(struct net_device *dev)
7759{
7760 struct net_device *udev;
7761 struct list_head *iter;
7762 u8 max_depth = 0;
7763 bool ignore;
7764
7765 for (iter = &dev->adj_list.upper,
7766 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7767 udev;
7768 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7769 if (ignore)
7770 continue;
7771 if (max_depth < udev->upper_level)
7772 max_depth = udev->upper_level;
7773 }
7774
7775 return max_depth;
7776}
7777
7778static u8 __netdev_lower_depth(struct net_device *dev)
7779{
7780 struct net_device *ldev;
7781 struct list_head *iter;
7782 u8 max_depth = 0;
7783 bool ignore;
7784
7785 for (iter = &dev->adj_list.lower,
7786 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7787 ldev;
7788 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7789 if (ignore)
7790 continue;
7791 if (max_depth < ldev->lower_level)
7792 max_depth = ldev->lower_level;
7793 }
7794
7795 return max_depth;
7796}
7797
7798static int __netdev_update_upper_level(struct net_device *dev,
7799 struct netdev_nested_priv *__unused)
7800{
7801 dev->upper_level = __netdev_upper_depth(dev) + 1;
7802 return 0;
7803}
7804
7805static int __netdev_update_lower_level(struct net_device *dev,
7806 struct netdev_nested_priv *priv)
7807{
7808 dev->lower_level = __netdev_lower_depth(dev) + 1;
7809
7810#ifdef CONFIG_LOCKDEP
7811 if (!priv)
7812 return 0;
7813
7814 if (priv->flags & NESTED_SYNC_IMM)
7815 dev->nested_level = dev->lower_level - 1;
7816 if (priv->flags & NESTED_SYNC_TODO)
7817 net_unlink_todo(dev);
7818#endif
7819 return 0;
7820}
7821
7822int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7823 int (*fn)(struct net_device *dev,
7824 struct netdev_nested_priv *priv),
7825 struct netdev_nested_priv *priv)
7826{
7827 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7828 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7829 int ret, cur = 0;
7830
7831 now = dev;
7832 iter = &dev->adj_list.lower;
7833
7834 while (1) {
7835 if (now != dev) {
7836 ret = fn(now, priv);
7837 if (ret)
7838 return ret;
7839 }
7840
7841 next = NULL;
7842 while (1) {
7843 ldev = netdev_next_lower_dev_rcu(now, &iter);
7844 if (!ldev)
7845 break;
7846
7847 next = ldev;
7848 niter = &ldev->adj_list.lower;
7849 dev_stack[cur] = now;
7850 iter_stack[cur++] = iter;
7851 break;
7852 }
7853
7854 if (!next) {
7855 if (!cur)
7856 return 0;
7857 next = dev_stack[--cur];
7858 niter = iter_stack[cur];
7859 }
7860
7861 now = next;
7862 iter = niter;
7863 }
7864
7865 return 0;
7866}
7867EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7868
7869/**
7870 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7871 * lower neighbour list, RCU
7872 * variant
7873 * @dev: device
7874 *
7875 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7876 * list. The caller must hold RCU read lock.
7877 */
7878void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7879{
7880 struct netdev_adjacent *lower;
7881
7882 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7883 struct netdev_adjacent, list);
7884 if (lower)
7885 return lower->private;
7886 return NULL;
7887}
7888EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7889
7890/**
7891 * netdev_master_upper_dev_get_rcu - Get master upper device
7892 * @dev: device
7893 *
7894 * Find a master upper device and return pointer to it or NULL in case
7895 * it's not there. The caller must hold the RCU read lock.
7896 */
7897struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7898{
7899 struct netdev_adjacent *upper;
7900
7901 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7902 struct netdev_adjacent, list);
7903 if (upper && likely(upper->master))
7904 return upper->dev;
7905 return NULL;
7906}
7907EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7908
7909static int netdev_adjacent_sysfs_add(struct net_device *dev,
7910 struct net_device *adj_dev,
7911 struct list_head *dev_list)
7912{
7913 char linkname[IFNAMSIZ+7];
7914
7915 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7916 "upper_%s" : "lower_%s", adj_dev->name);
7917 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7918 linkname);
7919}
7920static void netdev_adjacent_sysfs_del(struct net_device *dev,
7921 char *name,
7922 struct list_head *dev_list)
7923{
7924 char linkname[IFNAMSIZ+7];
7925
7926 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7927 "upper_%s" : "lower_%s", name);
7928 sysfs_remove_link(&(dev->dev.kobj), linkname);
7929}
7930
7931static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7932 struct net_device *adj_dev,
7933 struct list_head *dev_list)
7934{
7935 return (dev_list == &dev->adj_list.upper ||
7936 dev_list == &dev->adj_list.lower) &&
7937 net_eq(dev_net(dev), dev_net(adj_dev));
7938}
7939
7940static int __netdev_adjacent_dev_insert(struct net_device *dev,
7941 struct net_device *adj_dev,
7942 struct list_head *dev_list,
7943 void *private, bool master)
7944{
7945 struct netdev_adjacent *adj;
7946 int ret;
7947
7948 adj = __netdev_find_adj(adj_dev, dev_list);
7949
7950 if (adj) {
7951 adj->ref_nr += 1;
7952 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7953 dev->name, adj_dev->name, adj->ref_nr);
7954
7955 return 0;
7956 }
7957
7958 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7959 if (!adj)
7960 return -ENOMEM;
7961
7962 adj->dev = adj_dev;
7963 adj->master = master;
7964 adj->ref_nr = 1;
7965 adj->private = private;
7966 adj->ignore = false;
7967 dev_hold(adj_dev);
7968
7969 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7970 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7971
7972 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7973 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7974 if (ret)
7975 goto free_adj;
7976 }
7977
7978 /* Ensure that master link is always the first item in list. */
7979 if (master) {
7980 ret = sysfs_create_link(&(dev->dev.kobj),
7981 &(adj_dev->dev.kobj), "master");
7982 if (ret)
7983 goto remove_symlinks;
7984
7985 list_add_rcu(&adj->list, dev_list);
7986 } else {
7987 list_add_tail_rcu(&adj->list, dev_list);
7988 }
7989
7990 return 0;
7991
7992remove_symlinks:
7993 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7994 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7995free_adj:
7996 kfree(adj);
7997 dev_put(adj_dev);
7998
7999 return ret;
8000}
8001
8002static void __netdev_adjacent_dev_remove(struct net_device *dev,
8003 struct net_device *adj_dev,
8004 u16 ref_nr,
8005 struct list_head *dev_list)
8006{
8007 struct netdev_adjacent *adj;
8008
8009 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8010 dev->name, adj_dev->name, ref_nr);
8011
8012 adj = __netdev_find_adj(adj_dev, dev_list);
8013
8014 if (!adj) {
8015 pr_err("Adjacency does not exist for device %s from %s\n",
8016 dev->name, adj_dev->name);
8017 WARN_ON(1);
8018 return;
8019 }
8020
8021 if (adj->ref_nr > ref_nr) {
8022 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8023 dev->name, adj_dev->name, ref_nr,
8024 adj->ref_nr - ref_nr);
8025 adj->ref_nr -= ref_nr;
8026 return;
8027 }
8028
8029 if (adj->master)
8030 sysfs_remove_link(&(dev->dev.kobj), "master");
8031
8032 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8033 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8034
8035 list_del_rcu(&adj->list);
8036 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8037 adj_dev->name, dev->name, adj_dev->name);
8038 dev_put(adj_dev);
8039 kfree_rcu(adj, rcu);
8040}
8041
8042static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8043 struct net_device *upper_dev,
8044 struct list_head *up_list,
8045 struct list_head *down_list,
8046 void *private, bool master)
8047{
8048 int ret;
8049
8050 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8051 private, master);
8052 if (ret)
8053 return ret;
8054
8055 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8056 private, false);
8057 if (ret) {
8058 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8059 return ret;
8060 }
8061
8062 return 0;
8063}
8064
8065static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8066 struct net_device *upper_dev,
8067 u16 ref_nr,
8068 struct list_head *up_list,
8069 struct list_head *down_list)
8070{
8071 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8072 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8073}
8074
8075static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8076 struct net_device *upper_dev,
8077 void *private, bool master)
8078{
8079 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8080 &dev->adj_list.upper,
8081 &upper_dev->adj_list.lower,
8082 private, master);
8083}
8084
8085static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8086 struct net_device *upper_dev)
8087{
8088 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8089 &dev->adj_list.upper,
8090 &upper_dev->adj_list.lower);
8091}
8092
8093static int __netdev_upper_dev_link(struct net_device *dev,
8094 struct net_device *upper_dev, bool master,
8095 void *upper_priv, void *upper_info,
8096 struct netdev_nested_priv *priv,
8097 struct netlink_ext_ack *extack)
8098{
8099 struct netdev_notifier_changeupper_info changeupper_info = {
8100 .info = {
8101 .dev = dev,
8102 .extack = extack,
8103 },
8104 .upper_dev = upper_dev,
8105 .master = master,
8106 .linking = true,
8107 .upper_info = upper_info,
8108 };
8109 struct net_device *master_dev;
8110 int ret = 0;
8111
8112 ASSERT_RTNL();
8113
8114 if (dev == upper_dev)
8115 return -EBUSY;
8116
8117 /* To prevent loops, check if dev is not upper device to upper_dev. */
8118 if (__netdev_has_upper_dev(upper_dev, dev))
8119 return -EBUSY;
8120
8121 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8122 return -EMLINK;
8123
8124 if (!master) {
8125 if (__netdev_has_upper_dev(dev, upper_dev))
8126 return -EEXIST;
8127 } else {
8128 master_dev = __netdev_master_upper_dev_get(dev);
8129 if (master_dev)
8130 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8131 }
8132
8133 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8134 &changeupper_info.info);
8135 ret = notifier_to_errno(ret);
8136 if (ret)
8137 return ret;
8138
8139 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8140 master);
8141 if (ret)
8142 return ret;
8143
8144 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8145 &changeupper_info.info);
8146 ret = notifier_to_errno(ret);
8147 if (ret)
8148 goto rollback;
8149
8150 __netdev_update_upper_level(dev, NULL);
8151 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8152
8153 __netdev_update_lower_level(upper_dev, priv);
8154 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8155 priv);
8156
8157 return 0;
8158
8159rollback:
8160 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8161
8162 return ret;
8163}
8164
8165/**
8166 * netdev_upper_dev_link - Add a link to the upper device
8167 * @dev: device
8168 * @upper_dev: new upper device
8169 * @extack: netlink extended ack
8170 *
8171 * Adds a link to device which is upper to this one. The caller must hold
8172 * the RTNL lock. On a failure a negative errno code is returned.
8173 * On success the reference counts are adjusted and the function
8174 * returns zero.
8175 */
8176int netdev_upper_dev_link(struct net_device *dev,
8177 struct net_device *upper_dev,
8178 struct netlink_ext_ack *extack)
8179{
8180 struct netdev_nested_priv priv = {
8181 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8182 .data = NULL,
8183 };
8184
8185 return __netdev_upper_dev_link(dev, upper_dev, false,
8186 NULL, NULL, &priv, extack);
8187}
8188EXPORT_SYMBOL(netdev_upper_dev_link);
8189
8190/**
8191 * netdev_master_upper_dev_link - Add a master link to the upper device
8192 * @dev: device
8193 * @upper_dev: new upper device
8194 * @upper_priv: upper device private
8195 * @upper_info: upper info to be passed down via notifier
8196 * @extack: netlink extended ack
8197 *
8198 * Adds a link to device which is upper to this one. In this case, only
8199 * one master upper device can be linked, although other non-master devices
8200 * might be linked as well. The caller must hold the RTNL lock.
8201 * On a failure a negative errno code is returned. On success the reference
8202 * counts are adjusted and the function returns zero.
8203 */
8204int netdev_master_upper_dev_link(struct net_device *dev,
8205 struct net_device *upper_dev,
8206 void *upper_priv, void *upper_info,
8207 struct netlink_ext_ack *extack)
8208{
8209 struct netdev_nested_priv priv = {
8210 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8211 .data = NULL,
8212 };
8213
8214 return __netdev_upper_dev_link(dev, upper_dev, true,
8215 upper_priv, upper_info, &priv, extack);
8216}
8217EXPORT_SYMBOL(netdev_master_upper_dev_link);
8218
8219static void __netdev_upper_dev_unlink(struct net_device *dev,
8220 struct net_device *upper_dev,
8221 struct netdev_nested_priv *priv)
8222{
8223 struct netdev_notifier_changeupper_info changeupper_info = {
8224 .info = {
8225 .dev = dev,
8226 },
8227 .upper_dev = upper_dev,
8228 .linking = false,
8229 };
8230
8231 ASSERT_RTNL();
8232
8233 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8234
8235 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8236 &changeupper_info.info);
8237
8238 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8239
8240 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8241 &changeupper_info.info);
8242
8243 __netdev_update_upper_level(dev, NULL);
8244 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8245
8246 __netdev_update_lower_level(upper_dev, priv);
8247 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8248 priv);
8249}
8250
8251/**
8252 * netdev_upper_dev_unlink - Removes a link to upper device
8253 * @dev: device
8254 * @upper_dev: new upper device
8255 *
8256 * Removes a link to device which is upper to this one. The caller must hold
8257 * the RTNL lock.
8258 */
8259void netdev_upper_dev_unlink(struct net_device *dev,
8260 struct net_device *upper_dev)
8261{
8262 struct netdev_nested_priv priv = {
8263 .flags = NESTED_SYNC_TODO,
8264 .data = NULL,
8265 };
8266
8267 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8268}
8269EXPORT_SYMBOL(netdev_upper_dev_unlink);
8270
8271static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8272 struct net_device *lower_dev,
8273 bool val)
8274{
8275 struct netdev_adjacent *adj;
8276
8277 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8278 if (adj)
8279 adj->ignore = val;
8280
8281 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8282 if (adj)
8283 adj->ignore = val;
8284}
8285
8286static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8287 struct net_device *lower_dev)
8288{
8289 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8290}
8291
8292static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8293 struct net_device *lower_dev)
8294{
8295 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8296}
8297
8298int netdev_adjacent_change_prepare(struct net_device *old_dev,
8299 struct net_device *new_dev,
8300 struct net_device *dev,
8301 struct netlink_ext_ack *extack)
8302{
8303 struct netdev_nested_priv priv = {
8304 .flags = 0,
8305 .data = NULL,
8306 };
8307 int err;
8308
8309 if (!new_dev)
8310 return 0;
8311
8312 if (old_dev && new_dev != old_dev)
8313 netdev_adjacent_dev_disable(dev, old_dev);
8314 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8315 extack);
8316 if (err) {
8317 if (old_dev && new_dev != old_dev)
8318 netdev_adjacent_dev_enable(dev, old_dev);
8319 return err;
8320 }
8321
8322 return 0;
8323}
8324EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8325
8326void netdev_adjacent_change_commit(struct net_device *old_dev,
8327 struct net_device *new_dev,
8328 struct net_device *dev)
8329{
8330 struct netdev_nested_priv priv = {
8331 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8332 .data = NULL,
8333 };
8334
8335 if (!new_dev || !old_dev)
8336 return;
8337
8338 if (new_dev == old_dev)
8339 return;
8340
8341 netdev_adjacent_dev_enable(dev, old_dev);
8342 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8343}
8344EXPORT_SYMBOL(netdev_adjacent_change_commit);
8345
8346void netdev_adjacent_change_abort(struct net_device *old_dev,
8347 struct net_device *new_dev,
8348 struct net_device *dev)
8349{
8350 struct netdev_nested_priv priv = {
8351 .flags = 0,
8352 .data = NULL,
8353 };
8354
8355 if (!new_dev)
8356 return;
8357
8358 if (old_dev && new_dev != old_dev)
8359 netdev_adjacent_dev_enable(dev, old_dev);
8360
8361 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8362}
8363EXPORT_SYMBOL(netdev_adjacent_change_abort);
8364
8365/**
8366 * netdev_bonding_info_change - Dispatch event about slave change
8367 * @dev: device
8368 * @bonding_info: info to dispatch
8369 *
8370 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8371 * The caller must hold the RTNL lock.
8372 */
8373void netdev_bonding_info_change(struct net_device *dev,
8374 struct netdev_bonding_info *bonding_info)
8375{
8376 struct netdev_notifier_bonding_info info = {
8377 .info.dev = dev,
8378 };
8379
8380 memcpy(&info.bonding_info, bonding_info,
8381 sizeof(struct netdev_bonding_info));
8382 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8383 &info.info);
8384}
8385EXPORT_SYMBOL(netdev_bonding_info_change);
8386
8387/**
8388 * netdev_get_xmit_slave - Get the xmit slave of master device
8389 * @dev: device
8390 * @skb: The packet
8391 * @all_slaves: assume all the slaves are active
8392 *
8393 * The reference counters are not incremented so the caller must be
8394 * careful with locks. The caller must hold RCU lock.
8395 * %NULL is returned if no slave is found.
8396 */
8397
8398struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8399 struct sk_buff *skb,
8400 bool all_slaves)
8401{
8402 const struct net_device_ops *ops = dev->netdev_ops;
8403
8404 if (!ops->ndo_get_xmit_slave)
8405 return NULL;
8406 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8407}
8408EXPORT_SYMBOL(netdev_get_xmit_slave);
8409
8410static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8411 struct sock *sk)
8412{
8413 const struct net_device_ops *ops = dev->netdev_ops;
8414
8415 if (!ops->ndo_sk_get_lower_dev)
8416 return NULL;
8417 return ops->ndo_sk_get_lower_dev(dev, sk);
8418}
8419
8420/**
8421 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8422 * @dev: device
8423 * @sk: the socket
8424 *
8425 * %NULL is returned if no lower device is found.
8426 */
8427
8428struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8429 struct sock *sk)
8430{
8431 struct net_device *lower;
8432
8433 lower = netdev_sk_get_lower_dev(dev, sk);
8434 while (lower) {
8435 dev = lower;
8436 lower = netdev_sk_get_lower_dev(dev, sk);
8437 }
8438
8439 return dev;
8440}
8441EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8442
8443static void netdev_adjacent_add_links(struct net_device *dev)
8444{
8445 struct netdev_adjacent *iter;
8446
8447 struct net *net = dev_net(dev);
8448
8449 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8450 if (!net_eq(net, dev_net(iter->dev)))
8451 continue;
8452 netdev_adjacent_sysfs_add(iter->dev, dev,
8453 &iter->dev->adj_list.lower);
8454 netdev_adjacent_sysfs_add(dev, iter->dev,
8455 &dev->adj_list.upper);
8456 }
8457
8458 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8459 if (!net_eq(net, dev_net(iter->dev)))
8460 continue;
8461 netdev_adjacent_sysfs_add(iter->dev, dev,
8462 &iter->dev->adj_list.upper);
8463 netdev_adjacent_sysfs_add(dev, iter->dev,
8464 &dev->adj_list.lower);
8465 }
8466}
8467
8468static void netdev_adjacent_del_links(struct net_device *dev)
8469{
8470 struct netdev_adjacent *iter;
8471
8472 struct net *net = dev_net(dev);
8473
8474 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8475 if (!net_eq(net, dev_net(iter->dev)))
8476 continue;
8477 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8478 &iter->dev->adj_list.lower);
8479 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8480 &dev->adj_list.upper);
8481 }
8482
8483 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8484 if (!net_eq(net, dev_net(iter->dev)))
8485 continue;
8486 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8487 &iter->dev->adj_list.upper);
8488 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8489 &dev->adj_list.lower);
8490 }
8491}
8492
8493void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8494{
8495 struct netdev_adjacent *iter;
8496
8497 struct net *net = dev_net(dev);
8498
8499 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8500 if (!net_eq(net, dev_net(iter->dev)))
8501 continue;
8502 netdev_adjacent_sysfs_del(iter->dev, oldname,
8503 &iter->dev->adj_list.lower);
8504 netdev_adjacent_sysfs_add(iter->dev, dev,
8505 &iter->dev->adj_list.lower);
8506 }
8507
8508 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8509 if (!net_eq(net, dev_net(iter->dev)))
8510 continue;
8511 netdev_adjacent_sysfs_del(iter->dev, oldname,
8512 &iter->dev->adj_list.upper);
8513 netdev_adjacent_sysfs_add(iter->dev, dev,
8514 &iter->dev->adj_list.upper);
8515 }
8516}
8517
8518void *netdev_lower_dev_get_private(struct net_device *dev,
8519 struct net_device *lower_dev)
8520{
8521 struct netdev_adjacent *lower;
8522
8523 if (!lower_dev)
8524 return NULL;
8525 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8526 if (!lower)
8527 return NULL;
8528
8529 return lower->private;
8530}
8531EXPORT_SYMBOL(netdev_lower_dev_get_private);
8532
8533
8534/**
8535 * netdev_lower_state_changed - Dispatch event about lower device state change
8536 * @lower_dev: device
8537 * @lower_state_info: state to dispatch
8538 *
8539 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8540 * The caller must hold the RTNL lock.
8541 */
8542void netdev_lower_state_changed(struct net_device *lower_dev,
8543 void *lower_state_info)
8544{
8545 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8546 .info.dev = lower_dev,
8547 };
8548
8549 ASSERT_RTNL();
8550 changelowerstate_info.lower_state_info = lower_state_info;
8551 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8552 &changelowerstate_info.info);
8553}
8554EXPORT_SYMBOL(netdev_lower_state_changed);
8555
8556static void dev_change_rx_flags(struct net_device *dev, int flags)
8557{
8558 const struct net_device_ops *ops = dev->netdev_ops;
8559
8560 if (ops->ndo_change_rx_flags)
8561 ops->ndo_change_rx_flags(dev, flags);
8562}
8563
8564static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8565{
8566 unsigned int old_flags = dev->flags;
8567 kuid_t uid;
8568 kgid_t gid;
8569
8570 ASSERT_RTNL();
8571
8572 dev->flags |= IFF_PROMISC;
8573 dev->promiscuity += inc;
8574 if (dev->promiscuity == 0) {
8575 /*
8576 * Avoid overflow.
8577 * If inc causes overflow, untouch promisc and return error.
8578 */
8579 if (inc < 0)
8580 dev->flags &= ~IFF_PROMISC;
8581 else {
8582 dev->promiscuity -= inc;
8583 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8584 return -EOVERFLOW;
8585 }
8586 }
8587 if (dev->flags != old_flags) {
8588 pr_info("device %s %s promiscuous mode\n",
8589 dev->name,
8590 dev->flags & IFF_PROMISC ? "entered" : "left");
8591 if (audit_enabled) {
8592 current_uid_gid(&uid, &gid);
8593 audit_log(audit_context(), GFP_ATOMIC,
8594 AUDIT_ANOM_PROMISCUOUS,
8595 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8596 dev->name, (dev->flags & IFF_PROMISC),
8597 (old_flags & IFF_PROMISC),
8598 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8599 from_kuid(&init_user_ns, uid),
8600 from_kgid(&init_user_ns, gid),
8601 audit_get_sessionid(current));
8602 }
8603
8604 dev_change_rx_flags(dev, IFF_PROMISC);
8605 }
8606 if (notify)
8607 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8608 return 0;
8609}
8610
8611/**
8612 * dev_set_promiscuity - update promiscuity count on a device
8613 * @dev: device
8614 * @inc: modifier
8615 *
8616 * Add or remove promiscuity from a device. While the count in the device
8617 * remains above zero the interface remains promiscuous. Once it hits zero
8618 * the device reverts back to normal filtering operation. A negative inc
8619 * value is used to drop promiscuity on the device.
8620 * Return 0 if successful or a negative errno code on error.
8621 */
8622int dev_set_promiscuity(struct net_device *dev, int inc)
8623{
8624 unsigned int old_flags = dev->flags;
8625 int err;
8626
8627 err = __dev_set_promiscuity(dev, inc, true);
8628 if (err < 0)
8629 return err;
8630 if (dev->flags != old_flags)
8631 dev_set_rx_mode(dev);
8632 return err;
8633}
8634EXPORT_SYMBOL(dev_set_promiscuity);
8635
8636static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8637{
8638 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8639
8640 ASSERT_RTNL();
8641
8642 dev->flags |= IFF_ALLMULTI;
8643 dev->allmulti += inc;
8644 if (dev->allmulti == 0) {
8645 /*
8646 * Avoid overflow.
8647 * If inc causes overflow, untouch allmulti and return error.
8648 */
8649 if (inc < 0)
8650 dev->flags &= ~IFF_ALLMULTI;
8651 else {
8652 dev->allmulti -= inc;
8653 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8654 return -EOVERFLOW;
8655 }
8656 }
8657 if (dev->flags ^ old_flags) {
8658 dev_change_rx_flags(dev, IFF_ALLMULTI);
8659 dev_set_rx_mode(dev);
8660 if (notify)
8661 __dev_notify_flags(dev, old_flags,
8662 dev->gflags ^ old_gflags);
8663 }
8664 return 0;
8665}
8666
8667/**
8668 * dev_set_allmulti - update allmulti count on a device
8669 * @dev: device
8670 * @inc: modifier
8671 *
8672 * Add or remove reception of all multicast frames to a device. While the
8673 * count in the device remains above zero the interface remains listening
8674 * to all interfaces. Once it hits zero the device reverts back to normal
8675 * filtering operation. A negative @inc value is used to drop the counter
8676 * when releasing a resource needing all multicasts.
8677 * Return 0 if successful or a negative errno code on error.
8678 */
8679
8680int dev_set_allmulti(struct net_device *dev, int inc)
8681{
8682 return __dev_set_allmulti(dev, inc, true);
8683}
8684EXPORT_SYMBOL(dev_set_allmulti);
8685
8686/*
8687 * Upload unicast and multicast address lists to device and
8688 * configure RX filtering. When the device doesn't support unicast
8689 * filtering it is put in promiscuous mode while unicast addresses
8690 * are present.
8691 */
8692void __dev_set_rx_mode(struct net_device *dev)
8693{
8694 const struct net_device_ops *ops = dev->netdev_ops;
8695
8696 /* dev_open will call this function so the list will stay sane. */
8697 if (!(dev->flags&IFF_UP))
8698 return;
8699
8700 if (!netif_device_present(dev))
8701 return;
8702
8703 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8704 /* Unicast addresses changes may only happen under the rtnl,
8705 * therefore calling __dev_set_promiscuity here is safe.
8706 */
8707 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8708 __dev_set_promiscuity(dev, 1, false);
8709 dev->uc_promisc = true;
8710 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8711 __dev_set_promiscuity(dev, -1, false);
8712 dev->uc_promisc = false;
8713 }
8714 }
8715
8716 if (ops->ndo_set_rx_mode)
8717 ops->ndo_set_rx_mode(dev);
8718}
8719
8720void dev_set_rx_mode(struct net_device *dev)
8721{
8722 netif_addr_lock_bh(dev);
8723 __dev_set_rx_mode(dev);
8724 netif_addr_unlock_bh(dev);
8725}
8726
8727/**
8728 * dev_get_flags - get flags reported to userspace
8729 * @dev: device
8730 *
8731 * Get the combination of flag bits exported through APIs to userspace.
8732 */
8733unsigned int dev_get_flags(const struct net_device *dev)
8734{
8735 unsigned int flags;
8736
8737 flags = (dev->flags & ~(IFF_PROMISC |
8738 IFF_ALLMULTI |
8739 IFF_RUNNING |
8740 IFF_LOWER_UP |
8741 IFF_DORMANT)) |
8742 (dev->gflags & (IFF_PROMISC |
8743 IFF_ALLMULTI));
8744
8745 if (netif_running(dev)) {
8746 if (netif_oper_up(dev))
8747 flags |= IFF_RUNNING;
8748 if (netif_carrier_ok(dev))
8749 flags |= IFF_LOWER_UP;
8750 if (netif_dormant(dev))
8751 flags |= IFF_DORMANT;
8752 }
8753
8754 return flags;
8755}
8756EXPORT_SYMBOL(dev_get_flags);
8757
8758int __dev_change_flags(struct net_device *dev, unsigned int flags,
8759 struct netlink_ext_ack *extack)
8760{
8761 unsigned int old_flags = dev->flags;
8762 int ret;
8763
8764 ASSERT_RTNL();
8765
8766 /*
8767 * Set the flags on our device.
8768 */
8769
8770 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8771 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8772 IFF_AUTOMEDIA)) |
8773 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8774 IFF_ALLMULTI));
8775
8776 /*
8777 * Load in the correct multicast list now the flags have changed.
8778 */
8779
8780 if ((old_flags ^ flags) & IFF_MULTICAST)
8781 dev_change_rx_flags(dev, IFF_MULTICAST);
8782
8783 dev_set_rx_mode(dev);
8784
8785 /*
8786 * Have we downed the interface. We handle IFF_UP ourselves
8787 * according to user attempts to set it, rather than blindly
8788 * setting it.
8789 */
8790
8791 ret = 0;
8792 if ((old_flags ^ flags) & IFF_UP) {
8793 if (old_flags & IFF_UP)
8794 __dev_close(dev);
8795 else
8796 ret = __dev_open(dev, extack);
8797 }
8798
8799 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8800 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8801 unsigned int old_flags = dev->flags;
8802
8803 dev->gflags ^= IFF_PROMISC;
8804
8805 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8806 if (dev->flags != old_flags)
8807 dev_set_rx_mode(dev);
8808 }
8809
8810 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8811 * is important. Some (broken) drivers set IFF_PROMISC, when
8812 * IFF_ALLMULTI is requested not asking us and not reporting.
8813 */
8814 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8815 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8816
8817 dev->gflags ^= IFF_ALLMULTI;
8818 __dev_set_allmulti(dev, inc, false);
8819 }
8820
8821 return ret;
8822}
8823
8824void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8825 unsigned int gchanges)
8826{
8827 unsigned int changes = dev->flags ^ old_flags;
8828
8829 if (gchanges)
8830 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8831
8832 if (changes & IFF_UP) {
8833 if (dev->flags & IFF_UP)
8834 call_netdevice_notifiers(NETDEV_UP, dev);
8835 else
8836 call_netdevice_notifiers(NETDEV_DOWN, dev);
8837 }
8838
8839 if (dev->flags & IFF_UP &&
8840 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8841 struct netdev_notifier_change_info change_info = {
8842 .info = {
8843 .dev = dev,
8844 },
8845 .flags_changed = changes,
8846 };
8847
8848 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8849 }
8850}
8851
8852/**
8853 * dev_change_flags - change device settings
8854 * @dev: device
8855 * @flags: device state flags
8856 * @extack: netlink extended ack
8857 *
8858 * Change settings on device based state flags. The flags are
8859 * in the userspace exported format.
8860 */
8861int dev_change_flags(struct net_device *dev, unsigned int flags,
8862 struct netlink_ext_ack *extack)
8863{
8864 int ret;
8865 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8866
8867 ret = __dev_change_flags(dev, flags, extack);
8868 if (ret < 0)
8869 return ret;
8870
8871 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8872 __dev_notify_flags(dev, old_flags, changes);
8873 return ret;
8874}
8875EXPORT_SYMBOL(dev_change_flags);
8876
8877int __dev_set_mtu(struct net_device *dev, int new_mtu)
8878{
8879 const struct net_device_ops *ops = dev->netdev_ops;
8880
8881 if (ops->ndo_change_mtu)
8882 return ops->ndo_change_mtu(dev, new_mtu);
8883
8884 /* Pairs with all the lockless reads of dev->mtu in the stack */
8885 WRITE_ONCE(dev->mtu, new_mtu);
8886 return 0;
8887}
8888EXPORT_SYMBOL(__dev_set_mtu);
8889
8890int dev_validate_mtu(struct net_device *dev, int new_mtu,
8891 struct netlink_ext_ack *extack)
8892{
8893 /* MTU must be positive, and in range */
8894 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8895 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8896 return -EINVAL;
8897 }
8898
8899 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8900 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8901 return -EINVAL;
8902 }
8903 return 0;
8904}
8905
8906/**
8907 * dev_set_mtu_ext - Change maximum transfer unit
8908 * @dev: device
8909 * @new_mtu: new transfer unit
8910 * @extack: netlink extended ack
8911 *
8912 * Change the maximum transfer size of the network device.
8913 */
8914int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8915 struct netlink_ext_ack *extack)
8916{
8917 int err, orig_mtu;
8918
8919 if (new_mtu == dev->mtu)
8920 return 0;
8921
8922 err = dev_validate_mtu(dev, new_mtu, extack);
8923 if (err)
8924 return err;
8925
8926 if (!netif_device_present(dev))
8927 return -ENODEV;
8928
8929 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8930 err = notifier_to_errno(err);
8931 if (err)
8932 return err;
8933
8934 orig_mtu = dev->mtu;
8935 err = __dev_set_mtu(dev, new_mtu);
8936
8937 if (!err) {
8938 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8939 orig_mtu);
8940 err = notifier_to_errno(err);
8941 if (err) {
8942 /* setting mtu back and notifying everyone again,
8943 * so that they have a chance to revert changes.
8944 */
8945 __dev_set_mtu(dev, orig_mtu);
8946 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8947 new_mtu);
8948 }
8949 }
8950 return err;
8951}
8952
8953int dev_set_mtu(struct net_device *dev, int new_mtu)
8954{
8955 struct netlink_ext_ack extack;
8956 int err;
8957
8958 memset(&extack, 0, sizeof(extack));
8959 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8960 if (err && extack._msg)
8961 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8962 return err;
8963}
8964EXPORT_SYMBOL(dev_set_mtu);
8965
8966/**
8967 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8968 * @dev: device
8969 * @new_len: new tx queue length
8970 */
8971int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8972{
8973 unsigned int orig_len = dev->tx_queue_len;
8974 int res;
8975
8976 if (new_len != (unsigned int)new_len)
8977 return -ERANGE;
8978
8979 if (new_len != orig_len) {
8980 dev->tx_queue_len = new_len;
8981 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8982 res = notifier_to_errno(res);
8983 if (res)
8984 goto err_rollback;
8985 res = dev_qdisc_change_tx_queue_len(dev);
8986 if (res)
8987 goto err_rollback;
8988 }
8989
8990 return 0;
8991
8992err_rollback:
8993 netdev_err(dev, "refused to change device tx_queue_len\n");
8994 dev->tx_queue_len = orig_len;
8995 return res;
8996}
8997
8998/**
8999 * dev_set_group - Change group this device belongs to
9000 * @dev: device
9001 * @new_group: group this device should belong to
9002 */
9003void dev_set_group(struct net_device *dev, int new_group)
9004{
9005 dev->group = new_group;
9006}
9007EXPORT_SYMBOL(dev_set_group);
9008
9009/**
9010 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9011 * @dev: device
9012 * @addr: new address
9013 * @extack: netlink extended ack
9014 */
9015int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9016 struct netlink_ext_ack *extack)
9017{
9018 struct netdev_notifier_pre_changeaddr_info info = {
9019 .info.dev = dev,
9020 .info.extack = extack,
9021 .dev_addr = addr,
9022 };
9023 int rc;
9024
9025 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9026 return notifier_to_errno(rc);
9027}
9028EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9029
9030/**
9031 * dev_set_mac_address - Change Media Access Control Address
9032 * @dev: device
9033 * @sa: new address
9034 * @extack: netlink extended ack
9035 *
9036 * Change the hardware (MAC) address of the device
9037 */
9038int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9039 struct netlink_ext_ack *extack)
9040{
9041 const struct net_device_ops *ops = dev->netdev_ops;
9042 int err;
9043
9044 if (!ops->ndo_set_mac_address)
9045 return -EOPNOTSUPP;
9046 if (sa->sa_family != dev->type)
9047 return -EINVAL;
9048 if (!netif_device_present(dev))
9049 return -ENODEV;
9050 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9051 if (err)
9052 return err;
9053 err = ops->ndo_set_mac_address(dev, sa);
9054 if (err)
9055 return err;
9056 dev->addr_assign_type = NET_ADDR_SET;
9057 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9058 add_device_randomness(dev->dev_addr, dev->addr_len);
9059 return 0;
9060}
9061EXPORT_SYMBOL(dev_set_mac_address);
9062
9063static DECLARE_RWSEM(dev_addr_sem);
9064
9065int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9066 struct netlink_ext_ack *extack)
9067{
9068 int ret;
9069
9070 down_write(&dev_addr_sem);
9071 ret = dev_set_mac_address(dev, sa, extack);
9072 up_write(&dev_addr_sem);
9073 return ret;
9074}
9075EXPORT_SYMBOL(dev_set_mac_address_user);
9076
9077int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9078{
9079 size_t size = sizeof(sa->sa_data);
9080 struct net_device *dev;
9081 int ret = 0;
9082
9083 down_read(&dev_addr_sem);
9084 rcu_read_lock();
9085
9086 dev = dev_get_by_name_rcu(net, dev_name);
9087 if (!dev) {
9088 ret = -ENODEV;
9089 goto unlock;
9090 }
9091 if (!dev->addr_len)
9092 memset(sa->sa_data, 0, size);
9093 else
9094 memcpy(sa->sa_data, dev->dev_addr,
9095 min_t(size_t, size, dev->addr_len));
9096 sa->sa_family = dev->type;
9097
9098unlock:
9099 rcu_read_unlock();
9100 up_read(&dev_addr_sem);
9101 return ret;
9102}
9103EXPORT_SYMBOL(dev_get_mac_address);
9104
9105/**
9106 * dev_change_carrier - Change device carrier
9107 * @dev: device
9108 * @new_carrier: new value
9109 *
9110 * Change device carrier
9111 */
9112int dev_change_carrier(struct net_device *dev, bool new_carrier)
9113{
9114 const struct net_device_ops *ops = dev->netdev_ops;
9115
9116 if (!ops->ndo_change_carrier)
9117 return -EOPNOTSUPP;
9118 if (!netif_device_present(dev))
9119 return -ENODEV;
9120 return ops->ndo_change_carrier(dev, new_carrier);
9121}
9122EXPORT_SYMBOL(dev_change_carrier);
9123
9124/**
9125 * dev_get_phys_port_id - Get device physical port ID
9126 * @dev: device
9127 * @ppid: port ID
9128 *
9129 * Get device physical port ID
9130 */
9131int dev_get_phys_port_id(struct net_device *dev,
9132 struct netdev_phys_item_id *ppid)
9133{
9134 const struct net_device_ops *ops = dev->netdev_ops;
9135
9136 if (!ops->ndo_get_phys_port_id)
9137 return -EOPNOTSUPP;
9138 return ops->ndo_get_phys_port_id(dev, ppid);
9139}
9140EXPORT_SYMBOL(dev_get_phys_port_id);
9141
9142/**
9143 * dev_get_phys_port_name - Get device physical port name
9144 * @dev: device
9145 * @name: port name
9146 * @len: limit of bytes to copy to name
9147 *
9148 * Get device physical port name
9149 */
9150int dev_get_phys_port_name(struct net_device *dev,
9151 char *name, size_t len)
9152{
9153 const struct net_device_ops *ops = dev->netdev_ops;
9154 int err;
9155
9156 if (ops->ndo_get_phys_port_name) {
9157 err = ops->ndo_get_phys_port_name(dev, name, len);
9158 if (err != -EOPNOTSUPP)
9159 return err;
9160 }
9161 return devlink_compat_phys_port_name_get(dev, name, len);
9162}
9163EXPORT_SYMBOL(dev_get_phys_port_name);
9164
9165/**
9166 * dev_get_port_parent_id - Get the device's port parent identifier
9167 * @dev: network device
9168 * @ppid: pointer to a storage for the port's parent identifier
9169 * @recurse: allow/disallow recursion to lower devices
9170 *
9171 * Get the devices's port parent identifier
9172 */
9173int dev_get_port_parent_id(struct net_device *dev,
9174 struct netdev_phys_item_id *ppid,
9175 bool recurse)
9176{
9177 const struct net_device_ops *ops = dev->netdev_ops;
9178 struct netdev_phys_item_id first = { };
9179 struct net_device *lower_dev;
9180 struct list_head *iter;
9181 int err;
9182
9183 if (ops->ndo_get_port_parent_id) {
9184 err = ops->ndo_get_port_parent_id(dev, ppid);
9185 if (err != -EOPNOTSUPP)
9186 return err;
9187 }
9188
9189 err = devlink_compat_switch_id_get(dev, ppid);
9190 if (!recurse || err != -EOPNOTSUPP)
9191 return err;
9192
9193 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9194 err = dev_get_port_parent_id(lower_dev, ppid, true);
9195 if (err)
9196 break;
9197 if (!first.id_len)
9198 first = *ppid;
9199 else if (memcmp(&first, ppid, sizeof(*ppid)))
9200 return -EOPNOTSUPP;
9201 }
9202
9203 return err;
9204}
9205EXPORT_SYMBOL(dev_get_port_parent_id);
9206
9207/**
9208 * netdev_port_same_parent_id - Indicate if two network devices have
9209 * the same port parent identifier
9210 * @a: first network device
9211 * @b: second network device
9212 */
9213bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9214{
9215 struct netdev_phys_item_id a_id = { };
9216 struct netdev_phys_item_id b_id = { };
9217
9218 if (dev_get_port_parent_id(a, &a_id, true) ||
9219 dev_get_port_parent_id(b, &b_id, true))
9220 return false;
9221
9222 return netdev_phys_item_id_same(&a_id, &b_id);
9223}
9224EXPORT_SYMBOL(netdev_port_same_parent_id);
9225
9226/**
9227 * dev_change_proto_down - update protocol port state information
9228 * @dev: device
9229 * @proto_down: new value
9230 *
9231 * This info can be used by switch drivers to set the phys state of the
9232 * port.
9233 */
9234int dev_change_proto_down(struct net_device *dev, bool proto_down)
9235{
9236 const struct net_device_ops *ops = dev->netdev_ops;
9237
9238 if (!ops->ndo_change_proto_down)
9239 return -EOPNOTSUPP;
9240 if (!netif_device_present(dev))
9241 return -ENODEV;
9242 return ops->ndo_change_proto_down(dev, proto_down);
9243}
9244EXPORT_SYMBOL(dev_change_proto_down);
9245
9246/**
9247 * dev_change_proto_down_generic - generic implementation for
9248 * ndo_change_proto_down that sets carrier according to
9249 * proto_down.
9250 *
9251 * @dev: device
9252 * @proto_down: new value
9253 */
9254int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9255{
9256 if (proto_down)
9257 netif_carrier_off(dev);
9258 else
9259 netif_carrier_on(dev);
9260 dev->proto_down = proto_down;
9261 return 0;
9262}
9263EXPORT_SYMBOL(dev_change_proto_down_generic);
9264
9265/**
9266 * dev_change_proto_down_reason - proto down reason
9267 *
9268 * @dev: device
9269 * @mask: proto down mask
9270 * @value: proto down value
9271 */
9272void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9273 u32 value)
9274{
9275 int b;
9276
9277 if (!mask) {
9278 dev->proto_down_reason = value;
9279 } else {
9280 for_each_set_bit(b, &mask, 32) {
9281 if (value & (1 << b))
9282 dev->proto_down_reason |= BIT(b);
9283 else
9284 dev->proto_down_reason &= ~BIT(b);
9285 }
9286 }
9287}
9288EXPORT_SYMBOL(dev_change_proto_down_reason);
9289
9290struct bpf_xdp_link {
9291 struct bpf_link link;
9292 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9293 int flags;
9294};
9295
9296static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9297{
9298 if (flags & XDP_FLAGS_HW_MODE)
9299 return XDP_MODE_HW;
9300 if (flags & XDP_FLAGS_DRV_MODE)
9301 return XDP_MODE_DRV;
9302 if (flags & XDP_FLAGS_SKB_MODE)
9303 return XDP_MODE_SKB;
9304 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9305}
9306
9307static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9308{
9309 switch (mode) {
9310 case XDP_MODE_SKB:
9311 return generic_xdp_install;
9312 case XDP_MODE_DRV:
9313 case XDP_MODE_HW:
9314 return dev->netdev_ops->ndo_bpf;
9315 default:
9316 return NULL;
9317 }
9318}
9319
9320static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9321 enum bpf_xdp_mode mode)
9322{
9323 return dev->xdp_state[mode].link;
9324}
9325
9326static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9327 enum bpf_xdp_mode mode)
9328{
9329 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9330
9331 if (link)
9332 return link->link.prog;
9333 return dev->xdp_state[mode].prog;
9334}
9335
9336u8 dev_xdp_prog_count(struct net_device *dev)
9337{
9338 u8 count = 0;
9339 int i;
9340
9341 for (i = 0; i < __MAX_XDP_MODE; i++)
9342 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9343 count++;
9344 return count;
9345}
9346EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9347
9348u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9349{
9350 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9351
9352 return prog ? prog->aux->id : 0;
9353}
9354
9355static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9356 struct bpf_xdp_link *link)
9357{
9358 dev->xdp_state[mode].link = link;
9359 dev->xdp_state[mode].prog = NULL;
9360}
9361
9362static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9363 struct bpf_prog *prog)
9364{
9365 dev->xdp_state[mode].link = NULL;
9366 dev->xdp_state[mode].prog = prog;
9367}
9368
9369static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9370 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9371 u32 flags, struct bpf_prog *prog)
9372{
9373 struct netdev_bpf xdp;
9374 int err;
9375
9376 memset(&xdp, 0, sizeof(xdp));
9377 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9378 xdp.extack = extack;
9379 xdp.flags = flags;
9380 xdp.prog = prog;
9381
9382 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9383 * "moved" into driver), so they don't increment it on their own, but
9384 * they do decrement refcnt when program is detached or replaced.
9385 * Given net_device also owns link/prog, we need to bump refcnt here
9386 * to prevent drivers from underflowing it.
9387 */
9388 if (prog)
9389 bpf_prog_inc(prog);
9390 err = bpf_op(dev, &xdp);
9391 if (err) {
9392 if (prog)
9393 bpf_prog_put(prog);
9394 return err;
9395 }
9396
9397 if (mode != XDP_MODE_HW)
9398 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9399
9400 return 0;
9401}
9402
9403static void dev_xdp_uninstall(struct net_device *dev)
9404{
9405 struct bpf_xdp_link *link;
9406 struct bpf_prog *prog;
9407 enum bpf_xdp_mode mode;
9408 bpf_op_t bpf_op;
9409
9410 ASSERT_RTNL();
9411
9412 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9413 prog = dev_xdp_prog(dev, mode);
9414 if (!prog)
9415 continue;
9416
9417 bpf_op = dev_xdp_bpf_op(dev, mode);
9418 if (!bpf_op)
9419 continue;
9420
9421 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9422
9423 /* auto-detach link from net device */
9424 link = dev_xdp_link(dev, mode);
9425 if (link)
9426 link->dev = NULL;
9427 else
9428 bpf_prog_put(prog);
9429
9430 dev_xdp_set_link(dev, mode, NULL);
9431 }
9432}
9433
9434static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9435 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9436 struct bpf_prog *old_prog, u32 flags)
9437{
9438 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9439 struct bpf_prog *cur_prog;
9440 struct net_device *upper;
9441 struct list_head *iter;
9442 enum bpf_xdp_mode mode;
9443 bpf_op_t bpf_op;
9444 int err;
9445
9446 ASSERT_RTNL();
9447
9448 /* either link or prog attachment, never both */
9449 if (link && (new_prog || old_prog))
9450 return -EINVAL;
9451 /* link supports only XDP mode flags */
9452 if (link && (flags & ~XDP_FLAGS_MODES)) {
9453 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9454 return -EINVAL;
9455 }
9456 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9457 if (num_modes > 1) {
9458 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9459 return -EINVAL;
9460 }
9461 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9462 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9463 NL_SET_ERR_MSG(extack,
9464 "More than one program loaded, unset mode is ambiguous");
9465 return -EINVAL;
9466 }
9467 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9468 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9469 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9470 return -EINVAL;
9471 }
9472
9473 mode = dev_xdp_mode(dev, flags);
9474 /* can't replace attached link */
9475 if (dev_xdp_link(dev, mode)) {
9476 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9477 return -EBUSY;
9478 }
9479
9480 /* don't allow if an upper device already has a program */
9481 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9482 if (dev_xdp_prog_count(upper) > 0) {
9483 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9484 return -EEXIST;
9485 }
9486 }
9487
9488 cur_prog = dev_xdp_prog(dev, mode);
9489 /* can't replace attached prog with link */
9490 if (link && cur_prog) {
9491 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9492 return -EBUSY;
9493 }
9494 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9495 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9496 return -EEXIST;
9497 }
9498
9499 /* put effective new program into new_prog */
9500 if (link)
9501 new_prog = link->link.prog;
9502
9503 if (new_prog) {
9504 bool offload = mode == XDP_MODE_HW;
9505 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9506 ? XDP_MODE_DRV : XDP_MODE_SKB;
9507
9508 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9509 NL_SET_ERR_MSG(extack, "XDP program already attached");
9510 return -EBUSY;
9511 }
9512 if (!offload && dev_xdp_prog(dev, other_mode)) {
9513 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9514 return -EEXIST;
9515 }
9516 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9517 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9518 return -EINVAL;
9519 }
9520 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9521 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9522 return -EINVAL;
9523 }
9524 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9525 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9526 return -EINVAL;
9527 }
9528 }
9529
9530 /* don't call drivers if the effective program didn't change */
9531 if (new_prog != cur_prog) {
9532 bpf_op = dev_xdp_bpf_op(dev, mode);
9533 if (!bpf_op) {
9534 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9535 return -EOPNOTSUPP;
9536 }
9537
9538 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9539 if (err)
9540 return err;
9541 }
9542
9543 if (link)
9544 dev_xdp_set_link(dev, mode, link);
9545 else
9546 dev_xdp_set_prog(dev, mode, new_prog);
9547 if (cur_prog)
9548 bpf_prog_put(cur_prog);
9549
9550 return 0;
9551}
9552
9553static int dev_xdp_attach_link(struct net_device *dev,
9554 struct netlink_ext_ack *extack,
9555 struct bpf_xdp_link *link)
9556{
9557 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9558}
9559
9560static int dev_xdp_detach_link(struct net_device *dev,
9561 struct netlink_ext_ack *extack,
9562 struct bpf_xdp_link *link)
9563{
9564 enum bpf_xdp_mode mode;
9565 bpf_op_t bpf_op;
9566
9567 ASSERT_RTNL();
9568
9569 mode = dev_xdp_mode(dev, link->flags);
9570 if (dev_xdp_link(dev, mode) != link)
9571 return -EINVAL;
9572
9573 bpf_op = dev_xdp_bpf_op(dev, mode);
9574 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9575 dev_xdp_set_link(dev, mode, NULL);
9576 return 0;
9577}
9578
9579static void bpf_xdp_link_release(struct bpf_link *link)
9580{
9581 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9582
9583 rtnl_lock();
9584
9585 /* if racing with net_device's tear down, xdp_link->dev might be
9586 * already NULL, in which case link was already auto-detached
9587 */
9588 if (xdp_link->dev) {
9589 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9590 xdp_link->dev = NULL;
9591 }
9592
9593 rtnl_unlock();
9594}
9595
9596static int bpf_xdp_link_detach(struct bpf_link *link)
9597{
9598 bpf_xdp_link_release(link);
9599 return 0;
9600}
9601
9602static void bpf_xdp_link_dealloc(struct bpf_link *link)
9603{
9604 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9605
9606 kfree(xdp_link);
9607}
9608
9609static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9610 struct seq_file *seq)
9611{
9612 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9613 u32 ifindex = 0;
9614
9615 rtnl_lock();
9616 if (xdp_link->dev)
9617 ifindex = xdp_link->dev->ifindex;
9618 rtnl_unlock();
9619
9620 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9621}
9622
9623static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9624 struct bpf_link_info *info)
9625{
9626 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9627 u32 ifindex = 0;
9628
9629 rtnl_lock();
9630 if (xdp_link->dev)
9631 ifindex = xdp_link->dev->ifindex;
9632 rtnl_unlock();
9633
9634 info->xdp.ifindex = ifindex;
9635 return 0;
9636}
9637
9638static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9639 struct bpf_prog *old_prog)
9640{
9641 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9642 enum bpf_xdp_mode mode;
9643 bpf_op_t bpf_op;
9644 int err = 0;
9645
9646 rtnl_lock();
9647
9648 /* link might have been auto-released already, so fail */
9649 if (!xdp_link->dev) {
9650 err = -ENOLINK;
9651 goto out_unlock;
9652 }
9653
9654 if (old_prog && link->prog != old_prog) {
9655 err = -EPERM;
9656 goto out_unlock;
9657 }
9658 old_prog = link->prog;
9659 if (old_prog == new_prog) {
9660 /* no-op, don't disturb drivers */
9661 bpf_prog_put(new_prog);
9662 goto out_unlock;
9663 }
9664
9665 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9666 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9667 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9668 xdp_link->flags, new_prog);
9669 if (err)
9670 goto out_unlock;
9671
9672 old_prog = xchg(&link->prog, new_prog);
9673 bpf_prog_put(old_prog);
9674
9675out_unlock:
9676 rtnl_unlock();
9677 return err;
9678}
9679
9680static const struct bpf_link_ops bpf_xdp_link_lops = {
9681 .release = bpf_xdp_link_release,
9682 .dealloc = bpf_xdp_link_dealloc,
9683 .detach = bpf_xdp_link_detach,
9684 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9685 .fill_link_info = bpf_xdp_link_fill_link_info,
9686 .update_prog = bpf_xdp_link_update,
9687};
9688
9689int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9690{
9691 struct net *net = current->nsproxy->net_ns;
9692 struct bpf_link_primer link_primer;
9693 struct bpf_xdp_link *link;
9694 struct net_device *dev;
9695 int err, fd;
9696
9697 rtnl_lock();
9698 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9699 if (!dev) {
9700 rtnl_unlock();
9701 return -EINVAL;
9702 }
9703
9704 link = kzalloc(sizeof(*link), GFP_USER);
9705 if (!link) {
9706 err = -ENOMEM;
9707 goto unlock;
9708 }
9709
9710 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9711 link->dev = dev;
9712 link->flags = attr->link_create.flags;
9713
9714 err = bpf_link_prime(&link->link, &link_primer);
9715 if (err) {
9716 kfree(link);
9717 goto unlock;
9718 }
9719
9720 err = dev_xdp_attach_link(dev, NULL, link);
9721 rtnl_unlock();
9722
9723 if (err) {
9724 link->dev = NULL;
9725 bpf_link_cleanup(&link_primer);
9726 goto out_put_dev;
9727 }
9728
9729 fd = bpf_link_settle(&link_primer);
9730 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9731 dev_put(dev);
9732 return fd;
9733
9734unlock:
9735 rtnl_unlock();
9736
9737out_put_dev:
9738 dev_put(dev);
9739 return err;
9740}
9741
9742/**
9743 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9744 * @dev: device
9745 * @extack: netlink extended ack
9746 * @fd: new program fd or negative value to clear
9747 * @expected_fd: old program fd that userspace expects to replace or clear
9748 * @flags: xdp-related flags
9749 *
9750 * Set or clear a bpf program for a device
9751 */
9752int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9753 int fd, int expected_fd, u32 flags)
9754{
9755 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9756 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9757 int err;
9758
9759 ASSERT_RTNL();
9760
9761 if (fd >= 0) {
9762 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9763 mode != XDP_MODE_SKB);
9764 if (IS_ERR(new_prog))
9765 return PTR_ERR(new_prog);
9766 }
9767
9768 if (expected_fd >= 0) {
9769 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9770 mode != XDP_MODE_SKB);
9771 if (IS_ERR(old_prog)) {
9772 err = PTR_ERR(old_prog);
9773 old_prog = NULL;
9774 goto err_out;
9775 }
9776 }
9777
9778 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9779
9780err_out:
9781 if (err && new_prog)
9782 bpf_prog_put(new_prog);
9783 if (old_prog)
9784 bpf_prog_put(old_prog);
9785 return err;
9786}
9787
9788/**
9789 * dev_new_index - allocate an ifindex
9790 * @net: the applicable net namespace
9791 *
9792 * Returns a suitable unique value for a new device interface
9793 * number. The caller must hold the rtnl semaphore or the
9794 * dev_base_lock to be sure it remains unique.
9795 */
9796static int dev_new_index(struct net *net)
9797{
9798 int ifindex = net->ifindex;
9799
9800 for (;;) {
9801 if (++ifindex <= 0)
9802 ifindex = 1;
9803 if (!__dev_get_by_index(net, ifindex))
9804 return net->ifindex = ifindex;
9805 }
9806}
9807
9808/* Delayed registration/unregisteration */
9809static LIST_HEAD(net_todo_list);
9810DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9811
9812static void net_set_todo(struct net_device *dev)
9813{
9814 list_add_tail(&dev->todo_list, &net_todo_list);
9815 dev_net(dev)->dev_unreg_count++;
9816}
9817
9818static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9819 struct net_device *upper, netdev_features_t features)
9820{
9821 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822 netdev_features_t feature;
9823 int feature_bit;
9824
9825 for_each_netdev_feature(upper_disables, feature_bit) {
9826 feature = __NETIF_F_BIT(feature_bit);
9827 if (!(upper->wanted_features & feature)
9828 && (features & feature)) {
9829 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9830 &feature, upper->name);
9831 features &= ~feature;
9832 }
9833 }
9834
9835 return features;
9836}
9837
9838static void netdev_sync_lower_features(struct net_device *upper,
9839 struct net_device *lower, netdev_features_t features)
9840{
9841 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9842 netdev_features_t feature;
9843 int feature_bit;
9844
9845 for_each_netdev_feature(upper_disables, feature_bit) {
9846 feature = __NETIF_F_BIT(feature_bit);
9847 if (!(features & feature) && (lower->features & feature)) {
9848 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9849 &feature, lower->name);
9850 lower->wanted_features &= ~feature;
9851 __netdev_update_features(lower);
9852
9853 if (unlikely(lower->features & feature))
9854 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9855 &feature, lower->name);
9856 else
9857 netdev_features_change(lower);
9858 }
9859 }
9860}
9861
9862static netdev_features_t netdev_fix_features(struct net_device *dev,
9863 netdev_features_t features)
9864{
9865 /* Fix illegal checksum combinations */
9866 if ((features & NETIF_F_HW_CSUM) &&
9867 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9868 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9869 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9870 }
9871
9872 /* TSO requires that SG is present as well. */
9873 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9874 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9875 features &= ~NETIF_F_ALL_TSO;
9876 }
9877
9878 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9879 !(features & NETIF_F_IP_CSUM)) {
9880 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9881 features &= ~NETIF_F_TSO;
9882 features &= ~NETIF_F_TSO_ECN;
9883 }
9884
9885 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9886 !(features & NETIF_F_IPV6_CSUM)) {
9887 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9888 features &= ~NETIF_F_TSO6;
9889 }
9890
9891 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9892 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9893 features &= ~NETIF_F_TSO_MANGLEID;
9894
9895 /* TSO ECN requires that TSO is present as well. */
9896 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9897 features &= ~NETIF_F_TSO_ECN;
9898
9899 /* Software GSO depends on SG. */
9900 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9901 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9902 features &= ~NETIF_F_GSO;
9903 }
9904
9905 /* GSO partial features require GSO partial be set */
9906 if ((features & dev->gso_partial_features) &&
9907 !(features & NETIF_F_GSO_PARTIAL)) {
9908 netdev_dbg(dev,
9909 "Dropping partially supported GSO features since no GSO partial.\n");
9910 features &= ~dev->gso_partial_features;
9911 }
9912
9913 if (!(features & NETIF_F_RXCSUM)) {
9914 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9915 * successfully merged by hardware must also have the
9916 * checksum verified by hardware. If the user does not
9917 * want to enable RXCSUM, logically, we should disable GRO_HW.
9918 */
9919 if (features & NETIF_F_GRO_HW) {
9920 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9921 features &= ~NETIF_F_GRO_HW;
9922 }
9923 }
9924
9925 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9926 if (features & NETIF_F_RXFCS) {
9927 if (features & NETIF_F_LRO) {
9928 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9929 features &= ~NETIF_F_LRO;
9930 }
9931
9932 if (features & NETIF_F_GRO_HW) {
9933 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9934 features &= ~NETIF_F_GRO_HW;
9935 }
9936 }
9937
9938 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9939 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9940 features &= ~NETIF_F_LRO;
9941 }
9942
9943 if (features & NETIF_F_HW_TLS_TX) {
9944 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9945 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9946 bool hw_csum = features & NETIF_F_HW_CSUM;
9947
9948 if (!ip_csum && !hw_csum) {
9949 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9950 features &= ~NETIF_F_HW_TLS_TX;
9951 }
9952 }
9953
9954 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9955 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9956 features &= ~NETIF_F_HW_TLS_RX;
9957 }
9958
9959 return features;
9960}
9961
9962int __netdev_update_features(struct net_device *dev)
9963{
9964 struct net_device *upper, *lower;
9965 netdev_features_t features;
9966 struct list_head *iter;
9967 int err = -1;
9968
9969 ASSERT_RTNL();
9970
9971 features = netdev_get_wanted_features(dev);
9972
9973 if (dev->netdev_ops->ndo_fix_features)
9974 features = dev->netdev_ops->ndo_fix_features(dev, features);
9975
9976 /* driver might be less strict about feature dependencies */
9977 features = netdev_fix_features(dev, features);
9978
9979 /* some features can't be enabled if they're off on an upper device */
9980 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9981 features = netdev_sync_upper_features(dev, upper, features);
9982
9983 if (dev->features == features)
9984 goto sync_lower;
9985
9986 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9987 &dev->features, &features);
9988
9989 if (dev->netdev_ops->ndo_set_features)
9990 err = dev->netdev_ops->ndo_set_features(dev, features);
9991 else
9992 err = 0;
9993
9994 if (unlikely(err < 0)) {
9995 netdev_err(dev,
9996 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9997 err, &features, &dev->features);
9998 /* return non-0 since some features might have changed and
9999 * it's better to fire a spurious notification than miss it
10000 */
10001 return -1;
10002 }
10003
10004sync_lower:
10005 /* some features must be disabled on lower devices when disabled
10006 * on an upper device (think: bonding master or bridge)
10007 */
10008 netdev_for_each_lower_dev(dev, lower, iter)
10009 netdev_sync_lower_features(dev, lower, features);
10010
10011 if (!err) {
10012 netdev_features_t diff = features ^ dev->features;
10013
10014 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10015 /* udp_tunnel_{get,drop}_rx_info both need
10016 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10017 * device, or they won't do anything.
10018 * Thus we need to update dev->features
10019 * *before* calling udp_tunnel_get_rx_info,
10020 * but *after* calling udp_tunnel_drop_rx_info.
10021 */
10022 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10023 dev->features = features;
10024 udp_tunnel_get_rx_info(dev);
10025 } else {
10026 udp_tunnel_drop_rx_info(dev);
10027 }
10028 }
10029
10030 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10031 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10032 dev->features = features;
10033 err |= vlan_get_rx_ctag_filter_info(dev);
10034 } else {
10035 vlan_drop_rx_ctag_filter_info(dev);
10036 }
10037 }
10038
10039 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10040 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10041 dev->features = features;
10042 err |= vlan_get_rx_stag_filter_info(dev);
10043 } else {
10044 vlan_drop_rx_stag_filter_info(dev);
10045 }
10046 }
10047
10048 dev->features = features;
10049 }
10050
10051 return err < 0 ? 0 : 1;
10052}
10053
10054/**
10055 * netdev_update_features - recalculate device features
10056 * @dev: the device to check
10057 *
10058 * Recalculate dev->features set and send notifications if it
10059 * has changed. Should be called after driver or hardware dependent
10060 * conditions might have changed that influence the features.
10061 */
10062void netdev_update_features(struct net_device *dev)
10063{
10064 if (__netdev_update_features(dev))
10065 netdev_features_change(dev);
10066}
10067EXPORT_SYMBOL(netdev_update_features);
10068
10069/**
10070 * netdev_change_features - recalculate device features
10071 * @dev: the device to check
10072 *
10073 * Recalculate dev->features set and send notifications even
10074 * if they have not changed. Should be called instead of
10075 * netdev_update_features() if also dev->vlan_features might
10076 * have changed to allow the changes to be propagated to stacked
10077 * VLAN devices.
10078 */
10079void netdev_change_features(struct net_device *dev)
10080{
10081 __netdev_update_features(dev);
10082 netdev_features_change(dev);
10083}
10084EXPORT_SYMBOL(netdev_change_features);
10085
10086/**
10087 * netif_stacked_transfer_operstate - transfer operstate
10088 * @rootdev: the root or lower level device to transfer state from
10089 * @dev: the device to transfer operstate to
10090 *
10091 * Transfer operational state from root to device. This is normally
10092 * called when a stacking relationship exists between the root
10093 * device and the device(a leaf device).
10094 */
10095void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10096 struct net_device *dev)
10097{
10098 if (rootdev->operstate == IF_OPER_DORMANT)
10099 netif_dormant_on(dev);
10100 else
10101 netif_dormant_off(dev);
10102
10103 if (rootdev->operstate == IF_OPER_TESTING)
10104 netif_testing_on(dev);
10105 else
10106 netif_testing_off(dev);
10107
10108 if (netif_carrier_ok(rootdev))
10109 netif_carrier_on(dev);
10110 else
10111 netif_carrier_off(dev);
10112}
10113EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10114
10115static int netif_alloc_rx_queues(struct net_device *dev)
10116{
10117 unsigned int i, count = dev->num_rx_queues;
10118 struct netdev_rx_queue *rx;
10119 size_t sz = count * sizeof(*rx);
10120 int err = 0;
10121
10122 BUG_ON(count < 1);
10123
10124 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10125 if (!rx)
10126 return -ENOMEM;
10127
10128 dev->_rx = rx;
10129
10130 for (i = 0; i < count; i++) {
10131 rx[i].dev = dev;
10132
10133 /* XDP RX-queue setup */
10134 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10135 if (err < 0)
10136 goto err_rxq_info;
10137 }
10138 return 0;
10139
10140err_rxq_info:
10141 /* Rollback successful reg's and free other resources */
10142 while (i--)
10143 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10144 kvfree(dev->_rx);
10145 dev->_rx = NULL;
10146 return err;
10147}
10148
10149static void netif_free_rx_queues(struct net_device *dev)
10150{
10151 unsigned int i, count = dev->num_rx_queues;
10152
10153 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10154 if (!dev->_rx)
10155 return;
10156
10157 for (i = 0; i < count; i++)
10158 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10159
10160 kvfree(dev->_rx);
10161}
10162
10163static void netdev_init_one_queue(struct net_device *dev,
10164 struct netdev_queue *queue, void *_unused)
10165{
10166 /* Initialize queue lock */
10167 spin_lock_init(&queue->_xmit_lock);
10168 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10169 queue->xmit_lock_owner = -1;
10170 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10171 queue->dev = dev;
10172#ifdef CONFIG_BQL
10173 dql_init(&queue->dql, HZ);
10174#endif
10175}
10176
10177static void netif_free_tx_queues(struct net_device *dev)
10178{
10179 kvfree(dev->_tx);
10180}
10181
10182static int netif_alloc_netdev_queues(struct net_device *dev)
10183{
10184 unsigned int count = dev->num_tx_queues;
10185 struct netdev_queue *tx;
10186 size_t sz = count * sizeof(*tx);
10187
10188 if (count < 1 || count > 0xffff)
10189 return -EINVAL;
10190
10191 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10192 if (!tx)
10193 return -ENOMEM;
10194
10195 dev->_tx = tx;
10196
10197 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10198 spin_lock_init(&dev->tx_global_lock);
10199
10200 return 0;
10201}
10202
10203void netif_tx_stop_all_queues(struct net_device *dev)
10204{
10205 unsigned int i;
10206
10207 for (i = 0; i < dev->num_tx_queues; i++) {
10208 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10209
10210 netif_tx_stop_queue(txq);
10211 }
10212}
10213EXPORT_SYMBOL(netif_tx_stop_all_queues);
10214
10215/**
10216 * register_netdevice - register a network device
10217 * @dev: device to register
10218 *
10219 * Take a completed network device structure and add it to the kernel
10220 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10221 * chain. 0 is returned on success. A negative errno code is returned
10222 * on a failure to set up the device, or if the name is a duplicate.
10223 *
10224 * Callers must hold the rtnl semaphore. You may want
10225 * register_netdev() instead of this.
10226 *
10227 * BUGS:
10228 * The locking appears insufficient to guarantee two parallel registers
10229 * will not get the same name.
10230 */
10231
10232int register_netdevice(struct net_device *dev)
10233{
10234 int ret;
10235 struct net *net = dev_net(dev);
10236
10237 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10238 NETDEV_FEATURE_COUNT);
10239 BUG_ON(dev_boot_phase);
10240 ASSERT_RTNL();
10241
10242 might_sleep();
10243
10244 /* When net_device's are persistent, this will be fatal. */
10245 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10246 BUG_ON(!net);
10247
10248 ret = ethtool_check_ops(dev->ethtool_ops);
10249 if (ret)
10250 return ret;
10251
10252 spin_lock_init(&dev->addr_list_lock);
10253 netdev_set_addr_lockdep_class(dev);
10254
10255 ret = dev_get_valid_name(net, dev, dev->name);
10256 if (ret < 0)
10257 goto out;
10258
10259 ret = -ENOMEM;
10260 dev->name_node = netdev_name_node_head_alloc(dev);
10261 if (!dev->name_node)
10262 goto out;
10263
10264 /* Init, if this function is available */
10265 if (dev->netdev_ops->ndo_init) {
10266 ret = dev->netdev_ops->ndo_init(dev);
10267 if (ret) {
10268 if (ret > 0)
10269 ret = -EIO;
10270 goto err_free_name;
10271 }
10272 }
10273
10274 if (((dev->hw_features | dev->features) &
10275 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10276 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10277 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10278 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10279 ret = -EINVAL;
10280 goto err_uninit;
10281 }
10282
10283 ret = -EBUSY;
10284 if (!dev->ifindex)
10285 dev->ifindex = dev_new_index(net);
10286 else if (__dev_get_by_index(net, dev->ifindex))
10287 goto err_uninit;
10288
10289 /* Transfer changeable features to wanted_features and enable
10290 * software offloads (GSO and GRO).
10291 */
10292 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10293 dev->features |= NETIF_F_SOFT_FEATURES;
10294
10295 if (dev->udp_tunnel_nic_info) {
10296 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10297 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10298 }
10299
10300 dev->wanted_features = dev->features & dev->hw_features;
10301
10302 if (!(dev->flags & IFF_LOOPBACK))
10303 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10304
10305 /* If IPv4 TCP segmentation offload is supported we should also
10306 * allow the device to enable segmenting the frame with the option
10307 * of ignoring a static IP ID value. This doesn't enable the
10308 * feature itself but allows the user to enable it later.
10309 */
10310 if (dev->hw_features & NETIF_F_TSO)
10311 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10312 if (dev->vlan_features & NETIF_F_TSO)
10313 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10314 if (dev->mpls_features & NETIF_F_TSO)
10315 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10316 if (dev->hw_enc_features & NETIF_F_TSO)
10317 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10318
10319 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10320 */
10321 dev->vlan_features |= NETIF_F_HIGHDMA;
10322
10323 /* Make NETIF_F_SG inheritable to tunnel devices.
10324 */
10325 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10326
10327 /* Make NETIF_F_SG inheritable to MPLS.
10328 */
10329 dev->mpls_features |= NETIF_F_SG;
10330
10331 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10332 ret = notifier_to_errno(ret);
10333 if (ret)
10334 goto err_uninit;
10335
10336 ret = netdev_register_kobject(dev);
10337 if (ret) {
10338 dev->reg_state = NETREG_UNREGISTERED;
10339 goto err_uninit;
10340 }
10341 dev->reg_state = NETREG_REGISTERED;
10342
10343 __netdev_update_features(dev);
10344
10345 /*
10346 * Default initial state at registry is that the
10347 * device is present.
10348 */
10349
10350 set_bit(__LINK_STATE_PRESENT, &dev->state);
10351
10352 linkwatch_init_dev(dev);
10353
10354 dev_init_scheduler(dev);
10355 dev_hold(dev);
10356 list_netdevice(dev);
10357 add_device_randomness(dev->dev_addr, dev->addr_len);
10358
10359 /* If the device has permanent device address, driver should
10360 * set dev_addr and also addr_assign_type should be set to
10361 * NET_ADDR_PERM (default value).
10362 */
10363 if (dev->addr_assign_type == NET_ADDR_PERM)
10364 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10365
10366 /* Notify protocols, that a new device appeared. */
10367 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10368 ret = notifier_to_errno(ret);
10369 if (ret) {
10370 /* Expect explicit free_netdev() on failure */
10371 dev->needs_free_netdev = false;
10372 unregister_netdevice_queue(dev, NULL);
10373 goto out;
10374 }
10375 /*
10376 * Prevent userspace races by waiting until the network
10377 * device is fully setup before sending notifications.
10378 */
10379 if (!dev->rtnl_link_ops ||
10380 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10381 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10382
10383out:
10384 return ret;
10385
10386err_uninit:
10387 if (dev->netdev_ops->ndo_uninit)
10388 dev->netdev_ops->ndo_uninit(dev);
10389 if (dev->priv_destructor)
10390 dev->priv_destructor(dev);
10391err_free_name:
10392 netdev_name_node_free(dev->name_node);
10393 goto out;
10394}
10395EXPORT_SYMBOL(register_netdevice);
10396
10397/**
10398 * init_dummy_netdev - init a dummy network device for NAPI
10399 * @dev: device to init
10400 *
10401 * This takes a network device structure and initialize the minimum
10402 * amount of fields so it can be used to schedule NAPI polls without
10403 * registering a full blown interface. This is to be used by drivers
10404 * that need to tie several hardware interfaces to a single NAPI
10405 * poll scheduler due to HW limitations.
10406 */
10407int init_dummy_netdev(struct net_device *dev)
10408{
10409 /* Clear everything. Note we don't initialize spinlocks
10410 * are they aren't supposed to be taken by any of the
10411 * NAPI code and this dummy netdev is supposed to be
10412 * only ever used for NAPI polls
10413 */
10414 memset(dev, 0, sizeof(struct net_device));
10415
10416 /* make sure we BUG if trying to hit standard
10417 * register/unregister code path
10418 */
10419 dev->reg_state = NETREG_DUMMY;
10420
10421 /* NAPI wants this */
10422 INIT_LIST_HEAD(&dev->napi_list);
10423
10424 /* a dummy interface is started by default */
10425 set_bit(__LINK_STATE_PRESENT, &dev->state);
10426 set_bit(__LINK_STATE_START, &dev->state);
10427
10428 /* napi_busy_loop stats accounting wants this */
10429 dev_net_set(dev, &init_net);
10430
10431 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10432 * because users of this 'device' dont need to change
10433 * its refcount.
10434 */
10435
10436 return 0;
10437}
10438EXPORT_SYMBOL_GPL(init_dummy_netdev);
10439
10440
10441/**
10442 * register_netdev - register a network device
10443 * @dev: device to register
10444 *
10445 * Take a completed network device structure and add it to the kernel
10446 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10447 * chain. 0 is returned on success. A negative errno code is returned
10448 * on a failure to set up the device, or if the name is a duplicate.
10449 *
10450 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10451 * and expands the device name if you passed a format string to
10452 * alloc_netdev.
10453 */
10454int register_netdev(struct net_device *dev)
10455{
10456 int err;
10457
10458 if (rtnl_lock_killable())
10459 return -EINTR;
10460 err = register_netdevice(dev);
10461 rtnl_unlock();
10462 return err;
10463}
10464EXPORT_SYMBOL(register_netdev);
10465
10466int netdev_refcnt_read(const struct net_device *dev)
10467{
10468#ifdef CONFIG_PCPU_DEV_REFCNT
10469 int i, refcnt = 0;
10470
10471 for_each_possible_cpu(i)
10472 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10473 return refcnt;
10474#else
10475 return refcount_read(&dev->dev_refcnt);
10476#endif
10477}
10478EXPORT_SYMBOL(netdev_refcnt_read);
10479
10480int netdev_unregister_timeout_secs __read_mostly = 10;
10481
10482#define WAIT_REFS_MIN_MSECS 1
10483#define WAIT_REFS_MAX_MSECS 250
10484/**
10485 * netdev_wait_allrefs - wait until all references are gone.
10486 * @dev: target net_device
10487 *
10488 * This is called when unregistering network devices.
10489 *
10490 * Any protocol or device that holds a reference should register
10491 * for netdevice notification, and cleanup and put back the
10492 * reference if they receive an UNREGISTER event.
10493 * We can get stuck here if buggy protocols don't correctly
10494 * call dev_put.
10495 */
10496static void netdev_wait_allrefs(struct net_device *dev)
10497{
10498 unsigned long rebroadcast_time, warning_time;
10499 int wait = 0, refcnt;
10500
10501 linkwatch_forget_dev(dev);
10502
10503 rebroadcast_time = warning_time = jiffies;
10504 refcnt = netdev_refcnt_read(dev);
10505
10506 while (refcnt != 1) {
10507 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10508 rtnl_lock();
10509
10510 /* Rebroadcast unregister notification */
10511 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10512
10513 __rtnl_unlock();
10514 rcu_barrier();
10515 rtnl_lock();
10516
10517 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10518 &dev->state)) {
10519 /* We must not have linkwatch events
10520 * pending on unregister. If this
10521 * happens, we simply run the queue
10522 * unscheduled, resulting in a noop
10523 * for this device.
10524 */
10525 linkwatch_run_queue();
10526 }
10527
10528 __rtnl_unlock();
10529
10530 rebroadcast_time = jiffies;
10531 }
10532
10533 if (!wait) {
10534 rcu_barrier();
10535 wait = WAIT_REFS_MIN_MSECS;
10536 } else {
10537 msleep(wait);
10538 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10539 }
10540
10541 refcnt = netdev_refcnt_read(dev);
10542
10543 if (refcnt != 1 &&
10544 time_after(jiffies, warning_time +
10545 netdev_unregister_timeout_secs * HZ)) {
10546 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10547 dev->name, refcnt);
10548 warning_time = jiffies;
10549 }
10550 }
10551}
10552
10553/* The sequence is:
10554 *
10555 * rtnl_lock();
10556 * ...
10557 * register_netdevice(x1);
10558 * register_netdevice(x2);
10559 * ...
10560 * unregister_netdevice(y1);
10561 * unregister_netdevice(y2);
10562 * ...
10563 * rtnl_unlock();
10564 * free_netdev(y1);
10565 * free_netdev(y2);
10566 *
10567 * We are invoked by rtnl_unlock().
10568 * This allows us to deal with problems:
10569 * 1) We can delete sysfs objects which invoke hotplug
10570 * without deadlocking with linkwatch via keventd.
10571 * 2) Since we run with the RTNL semaphore not held, we can sleep
10572 * safely in order to wait for the netdev refcnt to drop to zero.
10573 *
10574 * We must not return until all unregister events added during
10575 * the interval the lock was held have been completed.
10576 */
10577void netdev_run_todo(void)
10578{
10579 struct list_head list;
10580#ifdef CONFIG_LOCKDEP
10581 struct list_head unlink_list;
10582
10583 list_replace_init(&net_unlink_list, &unlink_list);
10584
10585 while (!list_empty(&unlink_list)) {
10586 struct net_device *dev = list_first_entry(&unlink_list,
10587 struct net_device,
10588 unlink_list);
10589 list_del_init(&dev->unlink_list);
10590 dev->nested_level = dev->lower_level - 1;
10591 }
10592#endif
10593
10594 /* Snapshot list, allow later requests */
10595 list_replace_init(&net_todo_list, &list);
10596
10597 __rtnl_unlock();
10598
10599
10600 /* Wait for rcu callbacks to finish before next phase */
10601 if (!list_empty(&list))
10602 rcu_barrier();
10603
10604 while (!list_empty(&list)) {
10605 struct net_device *dev
10606 = list_first_entry(&list, struct net_device, todo_list);
10607 list_del(&dev->todo_list);
10608
10609 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10610 pr_err("network todo '%s' but state %d\n",
10611 dev->name, dev->reg_state);
10612 dump_stack();
10613 continue;
10614 }
10615
10616 dev->reg_state = NETREG_UNREGISTERED;
10617
10618 netdev_wait_allrefs(dev);
10619
10620 /* paranoia */
10621 BUG_ON(netdev_refcnt_read(dev) != 1);
10622 BUG_ON(!list_empty(&dev->ptype_all));
10623 BUG_ON(!list_empty(&dev->ptype_specific));
10624 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10625 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10626#if IS_ENABLED(CONFIG_DECNET)
10627 WARN_ON(dev->dn_ptr);
10628#endif
10629 if (dev->priv_destructor)
10630 dev->priv_destructor(dev);
10631 if (dev->needs_free_netdev)
10632 free_netdev(dev);
10633
10634 /* Report a network device has been unregistered */
10635 rtnl_lock();
10636 dev_net(dev)->dev_unreg_count--;
10637 __rtnl_unlock();
10638 wake_up(&netdev_unregistering_wq);
10639
10640 /* Free network device */
10641 kobject_put(&dev->dev.kobj);
10642 }
10643}
10644
10645/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10646 * all the same fields in the same order as net_device_stats, with only
10647 * the type differing, but rtnl_link_stats64 may have additional fields
10648 * at the end for newer counters.
10649 */
10650void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10651 const struct net_device_stats *netdev_stats)
10652{
10653#if BITS_PER_LONG == 64
10654 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10655 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10656 /* zero out counters that only exist in rtnl_link_stats64 */
10657 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10658 sizeof(*stats64) - sizeof(*netdev_stats));
10659#else
10660 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10661 const unsigned long *src = (const unsigned long *)netdev_stats;
10662 u64 *dst = (u64 *)stats64;
10663
10664 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10665 for (i = 0; i < n; i++)
10666 dst[i] = src[i];
10667 /* zero out counters that only exist in rtnl_link_stats64 */
10668 memset((char *)stats64 + n * sizeof(u64), 0,
10669 sizeof(*stats64) - n * sizeof(u64));
10670#endif
10671}
10672EXPORT_SYMBOL(netdev_stats_to_stats64);
10673
10674/**
10675 * dev_get_stats - get network device statistics
10676 * @dev: device to get statistics from
10677 * @storage: place to store stats
10678 *
10679 * Get network statistics from device. Return @storage.
10680 * The device driver may provide its own method by setting
10681 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10682 * otherwise the internal statistics structure is used.
10683 */
10684struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10685 struct rtnl_link_stats64 *storage)
10686{
10687 const struct net_device_ops *ops = dev->netdev_ops;
10688
10689 if (ops->ndo_get_stats64) {
10690 memset(storage, 0, sizeof(*storage));
10691 ops->ndo_get_stats64(dev, storage);
10692 } else if (ops->ndo_get_stats) {
10693 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10694 } else {
10695 netdev_stats_to_stats64(storage, &dev->stats);
10696 }
10697 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10698 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10699 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10700 return storage;
10701}
10702EXPORT_SYMBOL(dev_get_stats);
10703
10704/**
10705 * dev_fetch_sw_netstats - get per-cpu network device statistics
10706 * @s: place to store stats
10707 * @netstats: per-cpu network stats to read from
10708 *
10709 * Read per-cpu network statistics and populate the related fields in @s.
10710 */
10711void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10712 const struct pcpu_sw_netstats __percpu *netstats)
10713{
10714 int cpu;
10715
10716 for_each_possible_cpu(cpu) {
10717 const struct pcpu_sw_netstats *stats;
10718 struct pcpu_sw_netstats tmp;
10719 unsigned int start;
10720
10721 stats = per_cpu_ptr(netstats, cpu);
10722 do {
10723 start = u64_stats_fetch_begin_irq(&stats->syncp);
10724 tmp.rx_packets = stats->rx_packets;
10725 tmp.rx_bytes = stats->rx_bytes;
10726 tmp.tx_packets = stats->tx_packets;
10727 tmp.tx_bytes = stats->tx_bytes;
10728 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10729
10730 s->rx_packets += tmp.rx_packets;
10731 s->rx_bytes += tmp.rx_bytes;
10732 s->tx_packets += tmp.tx_packets;
10733 s->tx_bytes += tmp.tx_bytes;
10734 }
10735}
10736EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10737
10738/**
10739 * dev_get_tstats64 - ndo_get_stats64 implementation
10740 * @dev: device to get statistics from
10741 * @s: place to store stats
10742 *
10743 * Populate @s from dev->stats and dev->tstats. Can be used as
10744 * ndo_get_stats64() callback.
10745 */
10746void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10747{
10748 netdev_stats_to_stats64(s, &dev->stats);
10749 dev_fetch_sw_netstats(s, dev->tstats);
10750}
10751EXPORT_SYMBOL_GPL(dev_get_tstats64);
10752
10753struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10754{
10755 struct netdev_queue *queue = dev_ingress_queue(dev);
10756
10757#ifdef CONFIG_NET_CLS_ACT
10758 if (queue)
10759 return queue;
10760 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10761 if (!queue)
10762 return NULL;
10763 netdev_init_one_queue(dev, queue, NULL);
10764 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10765 queue->qdisc_sleeping = &noop_qdisc;
10766 rcu_assign_pointer(dev->ingress_queue, queue);
10767#endif
10768 return queue;
10769}
10770
10771static const struct ethtool_ops default_ethtool_ops;
10772
10773void netdev_set_default_ethtool_ops(struct net_device *dev,
10774 const struct ethtool_ops *ops)
10775{
10776 if (dev->ethtool_ops == &default_ethtool_ops)
10777 dev->ethtool_ops = ops;
10778}
10779EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10780
10781void netdev_freemem(struct net_device *dev)
10782{
10783 char *addr = (char *)dev - dev->padded;
10784
10785 kvfree(addr);
10786}
10787
10788/**
10789 * alloc_netdev_mqs - allocate network device
10790 * @sizeof_priv: size of private data to allocate space for
10791 * @name: device name format string
10792 * @name_assign_type: origin of device name
10793 * @setup: callback to initialize device
10794 * @txqs: the number of TX subqueues to allocate
10795 * @rxqs: the number of RX subqueues to allocate
10796 *
10797 * Allocates a struct net_device with private data area for driver use
10798 * and performs basic initialization. Also allocates subqueue structs
10799 * for each queue on the device.
10800 */
10801struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10802 unsigned char name_assign_type,
10803 void (*setup)(struct net_device *),
10804 unsigned int txqs, unsigned int rxqs)
10805{
10806 struct net_device *dev;
10807 unsigned int alloc_size;
10808 struct net_device *p;
10809
10810 BUG_ON(strlen(name) >= sizeof(dev->name));
10811
10812 if (txqs < 1) {
10813 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10814 return NULL;
10815 }
10816
10817 if (rxqs < 1) {
10818 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10819 return NULL;
10820 }
10821
10822 alloc_size = sizeof(struct net_device);
10823 if (sizeof_priv) {
10824 /* ensure 32-byte alignment of private area */
10825 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10826 alloc_size += sizeof_priv;
10827 }
10828 /* ensure 32-byte alignment of whole construct */
10829 alloc_size += NETDEV_ALIGN - 1;
10830
10831 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10832 if (!p)
10833 return NULL;
10834
10835 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10836 dev->padded = (char *)dev - (char *)p;
10837
10838#ifdef CONFIG_PCPU_DEV_REFCNT
10839 dev->pcpu_refcnt = alloc_percpu(int);
10840 if (!dev->pcpu_refcnt)
10841 goto free_dev;
10842 dev_hold(dev);
10843#else
10844 refcount_set(&dev->dev_refcnt, 1);
10845#endif
10846
10847 if (dev_addr_init(dev))
10848 goto free_pcpu;
10849
10850 dev_mc_init(dev);
10851 dev_uc_init(dev);
10852
10853 dev_net_set(dev, &init_net);
10854
10855 dev->gso_max_size = GSO_MAX_SIZE;
10856 dev->gso_max_segs = GSO_MAX_SEGS;
10857 dev->upper_level = 1;
10858 dev->lower_level = 1;
10859#ifdef CONFIG_LOCKDEP
10860 dev->nested_level = 0;
10861 INIT_LIST_HEAD(&dev->unlink_list);
10862#endif
10863
10864 INIT_LIST_HEAD(&dev->napi_list);
10865 INIT_LIST_HEAD(&dev->unreg_list);
10866 INIT_LIST_HEAD(&dev->close_list);
10867 INIT_LIST_HEAD(&dev->link_watch_list);
10868 INIT_LIST_HEAD(&dev->adj_list.upper);
10869 INIT_LIST_HEAD(&dev->adj_list.lower);
10870 INIT_LIST_HEAD(&dev->ptype_all);
10871 INIT_LIST_HEAD(&dev->ptype_specific);
10872 INIT_LIST_HEAD(&dev->net_notifier_list);
10873#ifdef CONFIG_NET_SCHED
10874 hash_init(dev->qdisc_hash);
10875#endif
10876 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10877 setup(dev);
10878
10879 if (!dev->tx_queue_len) {
10880 dev->priv_flags |= IFF_NO_QUEUE;
10881 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10882 }
10883
10884 dev->num_tx_queues = txqs;
10885 dev->real_num_tx_queues = txqs;
10886 if (netif_alloc_netdev_queues(dev))
10887 goto free_all;
10888
10889 dev->num_rx_queues = rxqs;
10890 dev->real_num_rx_queues = rxqs;
10891 if (netif_alloc_rx_queues(dev))
10892 goto free_all;
10893
10894 strcpy(dev->name, name);
10895 dev->name_assign_type = name_assign_type;
10896 dev->group = INIT_NETDEV_GROUP;
10897 if (!dev->ethtool_ops)
10898 dev->ethtool_ops = &default_ethtool_ops;
10899
10900 nf_hook_netdev_init(dev);
10901
10902 return dev;
10903
10904free_all:
10905 free_netdev(dev);
10906 return NULL;
10907
10908free_pcpu:
10909#ifdef CONFIG_PCPU_DEV_REFCNT
10910 free_percpu(dev->pcpu_refcnt);
10911free_dev:
10912#endif
10913 netdev_freemem(dev);
10914 return NULL;
10915}
10916EXPORT_SYMBOL(alloc_netdev_mqs);
10917
10918/**
10919 * free_netdev - free network device
10920 * @dev: device
10921 *
10922 * This function does the last stage of destroying an allocated device
10923 * interface. The reference to the device object is released. If this
10924 * is the last reference then it will be freed.Must be called in process
10925 * context.
10926 */
10927void free_netdev(struct net_device *dev)
10928{
10929 struct napi_struct *p, *n;
10930
10931 might_sleep();
10932
10933 /* When called immediately after register_netdevice() failed the unwind
10934 * handling may still be dismantling the device. Handle that case by
10935 * deferring the free.
10936 */
10937 if (dev->reg_state == NETREG_UNREGISTERING) {
10938 ASSERT_RTNL();
10939 dev->needs_free_netdev = true;
10940 return;
10941 }
10942
10943 netif_free_tx_queues(dev);
10944 netif_free_rx_queues(dev);
10945
10946 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10947
10948 /* Flush device addresses */
10949 dev_addr_flush(dev);
10950
10951 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10952 netif_napi_del(p);
10953
10954#ifdef CONFIG_PCPU_DEV_REFCNT
10955 free_percpu(dev->pcpu_refcnt);
10956 dev->pcpu_refcnt = NULL;
10957#endif
10958 free_percpu(dev->xdp_bulkq);
10959 dev->xdp_bulkq = NULL;
10960
10961 /* Compatibility with error handling in drivers */
10962 if (dev->reg_state == NETREG_UNINITIALIZED) {
10963 netdev_freemem(dev);
10964 return;
10965 }
10966
10967 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10968 dev->reg_state = NETREG_RELEASED;
10969
10970 /* will free via device release */
10971 put_device(&dev->dev);
10972}
10973EXPORT_SYMBOL(free_netdev);
10974
10975/**
10976 * synchronize_net - Synchronize with packet receive processing
10977 *
10978 * Wait for packets currently being received to be done.
10979 * Does not block later packets from starting.
10980 */
10981void synchronize_net(void)
10982{
10983 might_sleep();
10984 if (rtnl_is_locked())
10985 synchronize_rcu_expedited();
10986 else
10987 synchronize_rcu();
10988}
10989EXPORT_SYMBOL(synchronize_net);
10990
10991/**
10992 * unregister_netdevice_queue - remove device from the kernel
10993 * @dev: device
10994 * @head: list
10995 *
10996 * This function shuts down a device interface and removes it
10997 * from the kernel tables.
10998 * If head not NULL, device is queued to be unregistered later.
10999 *
11000 * Callers must hold the rtnl semaphore. You may want
11001 * unregister_netdev() instead of this.
11002 */
11003
11004void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11005{
11006 ASSERT_RTNL();
11007
11008 if (head) {
11009 list_move_tail(&dev->unreg_list, head);
11010 } else {
11011 LIST_HEAD(single);
11012
11013 list_add(&dev->unreg_list, &single);
11014 unregister_netdevice_many(&single);
11015 }
11016}
11017EXPORT_SYMBOL(unregister_netdevice_queue);
11018
11019/**
11020 * unregister_netdevice_many - unregister many devices
11021 * @head: list of devices
11022 *
11023 * Note: As most callers use a stack allocated list_head,
11024 * we force a list_del() to make sure stack wont be corrupted later.
11025 */
11026void unregister_netdevice_many(struct list_head *head)
11027{
11028 struct net_device *dev, *tmp;
11029 LIST_HEAD(close_head);
11030
11031 BUG_ON(dev_boot_phase);
11032 ASSERT_RTNL();
11033
11034 if (list_empty(head))
11035 return;
11036
11037 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11038 /* Some devices call without registering
11039 * for initialization unwind. Remove those
11040 * devices and proceed with the remaining.
11041 */
11042 if (dev->reg_state == NETREG_UNINITIALIZED) {
11043 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11044 dev->name, dev);
11045
11046 WARN_ON(1);
11047 list_del(&dev->unreg_list);
11048 continue;
11049 }
11050 dev->dismantle = true;
11051 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11052 }
11053
11054 /* If device is running, close it first. */
11055 list_for_each_entry(dev, head, unreg_list)
11056 list_add_tail(&dev->close_list, &close_head);
11057 dev_close_many(&close_head, true);
11058
11059 list_for_each_entry(dev, head, unreg_list) {
11060 /* And unlink it from device chain. */
11061 unlist_netdevice(dev);
11062
11063 dev->reg_state = NETREG_UNREGISTERING;
11064 }
11065 flush_all_backlogs();
11066
11067 synchronize_net();
11068
11069 list_for_each_entry(dev, head, unreg_list) {
11070 struct sk_buff *skb = NULL;
11071
11072 /* Shutdown queueing discipline. */
11073 dev_shutdown(dev);
11074
11075 dev_xdp_uninstall(dev);
11076
11077 /* Notify protocols, that we are about to destroy
11078 * this device. They should clean all the things.
11079 */
11080 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11081
11082 if (!dev->rtnl_link_ops ||
11083 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11084 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11085 GFP_KERNEL, NULL, 0);
11086
11087 /*
11088 * Flush the unicast and multicast chains
11089 */
11090 dev_uc_flush(dev);
11091 dev_mc_flush(dev);
11092
11093 netdev_name_node_alt_flush(dev);
11094 netdev_name_node_free(dev->name_node);
11095
11096 if (dev->netdev_ops->ndo_uninit)
11097 dev->netdev_ops->ndo_uninit(dev);
11098
11099 if (skb)
11100 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11101
11102 /* Notifier chain MUST detach us all upper devices. */
11103 WARN_ON(netdev_has_any_upper_dev(dev));
11104 WARN_ON(netdev_has_any_lower_dev(dev));
11105
11106 /* Remove entries from kobject tree */
11107 netdev_unregister_kobject(dev);
11108#ifdef CONFIG_XPS
11109 /* Remove XPS queueing entries */
11110 netif_reset_xps_queues_gt(dev, 0);
11111#endif
11112 }
11113
11114 synchronize_net();
11115
11116 list_for_each_entry(dev, head, unreg_list) {
11117 dev_put(dev);
11118 net_set_todo(dev);
11119 }
11120
11121 list_del(head);
11122}
11123EXPORT_SYMBOL(unregister_netdevice_many);
11124
11125/**
11126 * unregister_netdev - remove device from the kernel
11127 * @dev: device
11128 *
11129 * This function shuts down a device interface and removes it
11130 * from the kernel tables.
11131 *
11132 * This is just a wrapper for unregister_netdevice that takes
11133 * the rtnl semaphore. In general you want to use this and not
11134 * unregister_netdevice.
11135 */
11136void unregister_netdev(struct net_device *dev)
11137{
11138 rtnl_lock();
11139 unregister_netdevice(dev);
11140 rtnl_unlock();
11141}
11142EXPORT_SYMBOL(unregister_netdev);
11143
11144/**
11145 * __dev_change_net_namespace - move device to different nethost namespace
11146 * @dev: device
11147 * @net: network namespace
11148 * @pat: If not NULL name pattern to try if the current device name
11149 * is already taken in the destination network namespace.
11150 * @new_ifindex: If not zero, specifies device index in the target
11151 * namespace.
11152 *
11153 * This function shuts down a device interface and moves it
11154 * to a new network namespace. On success 0 is returned, on
11155 * a failure a netagive errno code is returned.
11156 *
11157 * Callers must hold the rtnl semaphore.
11158 */
11159
11160int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11161 const char *pat, int new_ifindex)
11162{
11163 struct net *net_old = dev_net(dev);
11164 int err, new_nsid;
11165
11166 ASSERT_RTNL();
11167
11168 /* Don't allow namespace local devices to be moved. */
11169 err = -EINVAL;
11170 if (dev->features & NETIF_F_NETNS_LOCAL)
11171 goto out;
11172
11173 /* Ensure the device has been registrered */
11174 if (dev->reg_state != NETREG_REGISTERED)
11175 goto out;
11176
11177 /* Get out if there is nothing todo */
11178 err = 0;
11179 if (net_eq(net_old, net))
11180 goto out;
11181
11182 /* Pick the destination device name, and ensure
11183 * we can use it in the destination network namespace.
11184 */
11185 err = -EEXIST;
11186 if (netdev_name_in_use(net, dev->name)) {
11187 /* We get here if we can't use the current device name */
11188 if (!pat)
11189 goto out;
11190 err = dev_get_valid_name(net, dev, pat);
11191 if (err < 0)
11192 goto out;
11193 }
11194
11195 /* Check that new_ifindex isn't used yet. */
11196 err = -EBUSY;
11197 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11198 goto out;
11199
11200 /*
11201 * And now a mini version of register_netdevice unregister_netdevice.
11202 */
11203
11204 /* If device is running close it first. */
11205 dev_close(dev);
11206
11207 /* And unlink it from device chain */
11208 unlist_netdevice(dev);
11209
11210 synchronize_net();
11211
11212 /* Shutdown queueing discipline. */
11213 dev_shutdown(dev);
11214
11215 /* Notify protocols, that we are about to destroy
11216 * this device. They should clean all the things.
11217 *
11218 * Note that dev->reg_state stays at NETREG_REGISTERED.
11219 * This is wanted because this way 8021q and macvlan know
11220 * the device is just moving and can keep their slaves up.
11221 */
11222 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11223 rcu_barrier();
11224
11225 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11226 /* If there is an ifindex conflict assign a new one */
11227 if (!new_ifindex) {
11228 if (__dev_get_by_index(net, dev->ifindex))
11229 new_ifindex = dev_new_index(net);
11230 else
11231 new_ifindex = dev->ifindex;
11232 }
11233
11234 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11235 new_ifindex);
11236
11237 /*
11238 * Flush the unicast and multicast chains
11239 */
11240 dev_uc_flush(dev);
11241 dev_mc_flush(dev);
11242
11243 /* Send a netdev-removed uevent to the old namespace */
11244 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11245 netdev_adjacent_del_links(dev);
11246
11247 /* Move per-net netdevice notifiers that are following the netdevice */
11248 move_netdevice_notifiers_dev_net(dev, net);
11249
11250 /* Actually switch the network namespace */
11251 dev_net_set(dev, net);
11252 dev->ifindex = new_ifindex;
11253
11254 /* Send a netdev-add uevent to the new namespace */
11255 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11256 netdev_adjacent_add_links(dev);
11257
11258 /* Fixup kobjects */
11259 err = device_rename(&dev->dev, dev->name);
11260 WARN_ON(err);
11261
11262 /* Adapt owner in case owning user namespace of target network
11263 * namespace is different from the original one.
11264 */
11265 err = netdev_change_owner(dev, net_old, net);
11266 WARN_ON(err);
11267
11268 /* Add the device back in the hashes */
11269 list_netdevice(dev);
11270
11271 /* Notify protocols, that a new device appeared. */
11272 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11273
11274 /*
11275 * Prevent userspace races by waiting until the network
11276 * device is fully setup before sending notifications.
11277 */
11278 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11279
11280 synchronize_net();
11281 err = 0;
11282out:
11283 return err;
11284}
11285EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11286
11287static int dev_cpu_dead(unsigned int oldcpu)
11288{
11289 struct sk_buff **list_skb;
11290 struct sk_buff *skb;
11291 unsigned int cpu;
11292 struct softnet_data *sd, *oldsd, *remsd = NULL;
11293
11294 local_irq_disable();
11295 cpu = smp_processor_id();
11296 sd = &per_cpu(softnet_data, cpu);
11297 oldsd = &per_cpu(softnet_data, oldcpu);
11298
11299 /* Find end of our completion_queue. */
11300 list_skb = &sd->completion_queue;
11301 while (*list_skb)
11302 list_skb = &(*list_skb)->next;
11303 /* Append completion queue from offline CPU. */
11304 *list_skb = oldsd->completion_queue;
11305 oldsd->completion_queue = NULL;
11306
11307 /* Append output queue from offline CPU. */
11308 if (oldsd->output_queue) {
11309 *sd->output_queue_tailp = oldsd->output_queue;
11310 sd->output_queue_tailp = oldsd->output_queue_tailp;
11311 oldsd->output_queue = NULL;
11312 oldsd->output_queue_tailp = &oldsd->output_queue;
11313 }
11314 /* Append NAPI poll list from offline CPU, with one exception :
11315 * process_backlog() must be called by cpu owning percpu backlog.
11316 * We properly handle process_queue & input_pkt_queue later.
11317 */
11318 while (!list_empty(&oldsd->poll_list)) {
11319 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11320 struct napi_struct,
11321 poll_list);
11322
11323 list_del_init(&napi->poll_list);
11324 if (napi->poll == process_backlog)
11325 napi->state = 0;
11326 else
11327 ____napi_schedule(sd, napi);
11328 }
11329
11330 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11331 local_irq_enable();
11332
11333#ifdef CONFIG_RPS
11334 remsd = oldsd->rps_ipi_list;
11335 oldsd->rps_ipi_list = NULL;
11336#endif
11337 /* send out pending IPI's on offline CPU */
11338 net_rps_send_ipi(remsd);
11339
11340 /* Process offline CPU's input_pkt_queue */
11341 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11342 netif_rx_ni(skb);
11343 input_queue_head_incr(oldsd);
11344 }
11345 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11346 netif_rx_ni(skb);
11347 input_queue_head_incr(oldsd);
11348 }
11349
11350 return 0;
11351}
11352
11353/**
11354 * netdev_increment_features - increment feature set by one
11355 * @all: current feature set
11356 * @one: new feature set
11357 * @mask: mask feature set
11358 *
11359 * Computes a new feature set after adding a device with feature set
11360 * @one to the master device with current feature set @all. Will not
11361 * enable anything that is off in @mask. Returns the new feature set.
11362 */
11363netdev_features_t netdev_increment_features(netdev_features_t all,
11364 netdev_features_t one, netdev_features_t mask)
11365{
11366 if (mask & NETIF_F_HW_CSUM)
11367 mask |= NETIF_F_CSUM_MASK;
11368 mask |= NETIF_F_VLAN_CHALLENGED;
11369
11370 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11371 all &= one | ~NETIF_F_ALL_FOR_ALL;
11372
11373 /* If one device supports hw checksumming, set for all. */
11374 if (all & NETIF_F_HW_CSUM)
11375 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11376
11377 return all;
11378}
11379EXPORT_SYMBOL(netdev_increment_features);
11380
11381static struct hlist_head * __net_init netdev_create_hash(void)
11382{
11383 int i;
11384 struct hlist_head *hash;
11385
11386 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11387 if (hash != NULL)
11388 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11389 INIT_HLIST_HEAD(&hash[i]);
11390
11391 return hash;
11392}
11393
11394/* Initialize per network namespace state */
11395static int __net_init netdev_init(struct net *net)
11396{
11397 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11398 8 * sizeof_field(struct napi_struct, gro_bitmask));
11399
11400 if (net != &init_net)
11401 INIT_LIST_HEAD(&net->dev_base_head);
11402
11403 net->dev_name_head = netdev_create_hash();
11404 if (net->dev_name_head == NULL)
11405 goto err_name;
11406
11407 net->dev_index_head = netdev_create_hash();
11408 if (net->dev_index_head == NULL)
11409 goto err_idx;
11410
11411 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11412
11413 return 0;
11414
11415err_idx:
11416 kfree(net->dev_name_head);
11417err_name:
11418 return -ENOMEM;
11419}
11420
11421/**
11422 * netdev_drivername - network driver for the device
11423 * @dev: network device
11424 *
11425 * Determine network driver for device.
11426 */
11427const char *netdev_drivername(const struct net_device *dev)
11428{
11429 const struct device_driver *driver;
11430 const struct device *parent;
11431 const char *empty = "";
11432
11433 parent = dev->dev.parent;
11434 if (!parent)
11435 return empty;
11436
11437 driver = parent->driver;
11438 if (driver && driver->name)
11439 return driver->name;
11440 return empty;
11441}
11442
11443static void __netdev_printk(const char *level, const struct net_device *dev,
11444 struct va_format *vaf)
11445{
11446 if (dev && dev->dev.parent) {
11447 dev_printk_emit(level[1] - '0',
11448 dev->dev.parent,
11449 "%s %s %s%s: %pV",
11450 dev_driver_string(dev->dev.parent),
11451 dev_name(dev->dev.parent),
11452 netdev_name(dev), netdev_reg_state(dev),
11453 vaf);
11454 } else if (dev) {
11455 printk("%s%s%s: %pV",
11456 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11457 } else {
11458 printk("%s(NULL net_device): %pV", level, vaf);
11459 }
11460}
11461
11462void netdev_printk(const char *level, const struct net_device *dev,
11463 const char *format, ...)
11464{
11465 struct va_format vaf;
11466 va_list args;
11467
11468 va_start(args, format);
11469
11470 vaf.fmt = format;
11471 vaf.va = &args;
11472
11473 __netdev_printk(level, dev, &vaf);
11474
11475 va_end(args);
11476}
11477EXPORT_SYMBOL(netdev_printk);
11478
11479#define define_netdev_printk_level(func, level) \
11480void func(const struct net_device *dev, const char *fmt, ...) \
11481{ \
11482 struct va_format vaf; \
11483 va_list args; \
11484 \
11485 va_start(args, fmt); \
11486 \
11487 vaf.fmt = fmt; \
11488 vaf.va = &args; \
11489 \
11490 __netdev_printk(level, dev, &vaf); \
11491 \
11492 va_end(args); \
11493} \
11494EXPORT_SYMBOL(func);
11495
11496define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11497define_netdev_printk_level(netdev_alert, KERN_ALERT);
11498define_netdev_printk_level(netdev_crit, KERN_CRIT);
11499define_netdev_printk_level(netdev_err, KERN_ERR);
11500define_netdev_printk_level(netdev_warn, KERN_WARNING);
11501define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11502define_netdev_printk_level(netdev_info, KERN_INFO);
11503
11504static void __net_exit netdev_exit(struct net *net)
11505{
11506 kfree(net->dev_name_head);
11507 kfree(net->dev_index_head);
11508 if (net != &init_net)
11509 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11510}
11511
11512static struct pernet_operations __net_initdata netdev_net_ops = {
11513 .init = netdev_init,
11514 .exit = netdev_exit,
11515};
11516
11517static void __net_exit default_device_exit(struct net *net)
11518{
11519 struct net_device *dev, *aux;
11520 /*
11521 * Push all migratable network devices back to the
11522 * initial network namespace
11523 */
11524 rtnl_lock();
11525 for_each_netdev_safe(net, dev, aux) {
11526 int err;
11527 char fb_name[IFNAMSIZ];
11528
11529 /* Ignore unmoveable devices (i.e. loopback) */
11530 if (dev->features & NETIF_F_NETNS_LOCAL)
11531 continue;
11532
11533 /* Leave virtual devices for the generic cleanup */
11534 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11535 continue;
11536
11537 /* Push remaining network devices to init_net */
11538 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11539 if (netdev_name_in_use(&init_net, fb_name))
11540 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11541 err = dev_change_net_namespace(dev, &init_net, fb_name);
11542 if (err) {
11543 pr_emerg("%s: failed to move %s to init_net: %d\n",
11544 __func__, dev->name, err);
11545 BUG();
11546 }
11547 }
11548 rtnl_unlock();
11549}
11550
11551static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11552{
11553 /* Return with the rtnl_lock held when there are no network
11554 * devices unregistering in any network namespace in net_list.
11555 */
11556 struct net *net;
11557 bool unregistering;
11558 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11559
11560 add_wait_queue(&netdev_unregistering_wq, &wait);
11561 for (;;) {
11562 unregistering = false;
11563 rtnl_lock();
11564 list_for_each_entry(net, net_list, exit_list) {
11565 if (net->dev_unreg_count > 0) {
11566 unregistering = true;
11567 break;
11568 }
11569 }
11570 if (!unregistering)
11571 break;
11572 __rtnl_unlock();
11573
11574 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11575 }
11576 remove_wait_queue(&netdev_unregistering_wq, &wait);
11577}
11578
11579static void __net_exit default_device_exit_batch(struct list_head *net_list)
11580{
11581 /* At exit all network devices most be removed from a network
11582 * namespace. Do this in the reverse order of registration.
11583 * Do this across as many network namespaces as possible to
11584 * improve batching efficiency.
11585 */
11586 struct net_device *dev;
11587 struct net *net;
11588 LIST_HEAD(dev_kill_list);
11589
11590 /* To prevent network device cleanup code from dereferencing
11591 * loopback devices or network devices that have been freed
11592 * wait here for all pending unregistrations to complete,
11593 * before unregistring the loopback device and allowing the
11594 * network namespace be freed.
11595 *
11596 * The netdev todo list containing all network devices
11597 * unregistrations that happen in default_device_exit_batch
11598 * will run in the rtnl_unlock() at the end of
11599 * default_device_exit_batch.
11600 */
11601 rtnl_lock_unregistering(net_list);
11602 list_for_each_entry(net, net_list, exit_list) {
11603 for_each_netdev_reverse(net, dev) {
11604 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11605 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11606 else
11607 unregister_netdevice_queue(dev, &dev_kill_list);
11608 }
11609 }
11610 unregister_netdevice_many(&dev_kill_list);
11611 rtnl_unlock();
11612}
11613
11614static struct pernet_operations __net_initdata default_device_ops = {
11615 .exit = default_device_exit,
11616 .exit_batch = default_device_exit_batch,
11617};
11618
11619/*
11620 * Initialize the DEV module. At boot time this walks the device list and
11621 * unhooks any devices that fail to initialise (normally hardware not
11622 * present) and leaves us with a valid list of present and active devices.
11623 *
11624 */
11625
11626/*
11627 * This is called single threaded during boot, so no need
11628 * to take the rtnl semaphore.
11629 */
11630static int __init net_dev_init(void)
11631{
11632 int i, rc = -ENOMEM;
11633
11634 BUG_ON(!dev_boot_phase);
11635
11636 if (dev_proc_init())
11637 goto out;
11638
11639 if (netdev_kobject_init())
11640 goto out;
11641
11642 INIT_LIST_HEAD(&ptype_all);
11643 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11644 INIT_LIST_HEAD(&ptype_base[i]);
11645
11646 INIT_LIST_HEAD(&offload_base);
11647
11648 if (register_pernet_subsys(&netdev_net_ops))
11649 goto out;
11650
11651 /*
11652 * Initialise the packet receive queues.
11653 */
11654
11655 for_each_possible_cpu(i) {
11656 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11657 struct softnet_data *sd = &per_cpu(softnet_data, i);
11658
11659 INIT_WORK(flush, flush_backlog);
11660
11661 skb_queue_head_init(&sd->input_pkt_queue);
11662 skb_queue_head_init(&sd->process_queue);
11663#ifdef CONFIG_XFRM_OFFLOAD
11664 skb_queue_head_init(&sd->xfrm_backlog);
11665#endif
11666 INIT_LIST_HEAD(&sd->poll_list);
11667 sd->output_queue_tailp = &sd->output_queue;
11668#ifdef CONFIG_RPS
11669 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11670 sd->cpu = i;
11671#endif
11672
11673 init_gro_hash(&sd->backlog);
11674 sd->backlog.poll = process_backlog;
11675 sd->backlog.weight = weight_p;
11676 }
11677
11678 dev_boot_phase = 0;
11679
11680 /* The loopback device is special if any other network devices
11681 * is present in a network namespace the loopback device must
11682 * be present. Since we now dynamically allocate and free the
11683 * loopback device ensure this invariant is maintained by
11684 * keeping the loopback device as the first device on the
11685 * list of network devices. Ensuring the loopback devices
11686 * is the first device that appears and the last network device
11687 * that disappears.
11688 */
11689 if (register_pernet_device(&loopback_net_ops))
11690 goto out;
11691
11692 if (register_pernet_device(&default_device_ops))
11693 goto out;
11694
11695 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11696 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11697
11698 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11699 NULL, dev_cpu_dead);
11700 WARN_ON(rc < 0);
11701 rc = 0;
11702out:
11703 return rc;
11704}
11705
11706subsys_initcall(net_dev_init);