Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#ifndef _UAPI__LINUX_BPF_H__
9#define _UAPI__LINUX_BPF_H__
10
11#include <linux/types.h>
12#include <linux/bpf_common.h>
13
14/* Extended instruction set based on top of classic BPF */
15
16/* instruction classes */
17#define BPF_JMP32 0x06 /* jmp mode in word width */
18#define BPF_ALU64 0x07 /* alu mode in double word width */
19
20/* ld/ldx fields */
21#define BPF_DW 0x18 /* double word (64-bit) */
22#define BPF_ATOMIC 0xc0 /* atomic memory ops - op type in immediate */
23#define BPF_XADD 0xc0 /* exclusive add - legacy name */
24
25/* alu/jmp fields */
26#define BPF_MOV 0xb0 /* mov reg to reg */
27#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
28
29/* change endianness of a register */
30#define BPF_END 0xd0 /* flags for endianness conversion: */
31#define BPF_TO_LE 0x00 /* convert to little-endian */
32#define BPF_TO_BE 0x08 /* convert to big-endian */
33#define BPF_FROM_LE BPF_TO_LE
34#define BPF_FROM_BE BPF_TO_BE
35
36/* jmp encodings */
37#define BPF_JNE 0x50 /* jump != */
38#define BPF_JLT 0xa0 /* LT is unsigned, '<' */
39#define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
40#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
41#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
42#define BPF_JSLT 0xc0 /* SLT is signed, '<' */
43#define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
44#define BPF_CALL 0x80 /* function call */
45#define BPF_EXIT 0x90 /* function return */
46
47/* atomic op type fields (stored in immediate) */
48#define BPF_FETCH 0x01 /* not an opcode on its own, used to build others */
49#define BPF_XCHG (0xe0 | BPF_FETCH) /* atomic exchange */
50#define BPF_CMPXCHG (0xf0 | BPF_FETCH) /* atomic compare-and-write */
51
52/* Register numbers */
53enum {
54 BPF_REG_0 = 0,
55 BPF_REG_1,
56 BPF_REG_2,
57 BPF_REG_3,
58 BPF_REG_4,
59 BPF_REG_5,
60 BPF_REG_6,
61 BPF_REG_7,
62 BPF_REG_8,
63 BPF_REG_9,
64 BPF_REG_10,
65 __MAX_BPF_REG,
66};
67
68/* BPF has 10 general purpose 64-bit registers and stack frame. */
69#define MAX_BPF_REG __MAX_BPF_REG
70
71struct bpf_insn {
72 __u8 code; /* opcode */
73 __u8 dst_reg:4; /* dest register */
74 __u8 src_reg:4; /* source register */
75 __s16 off; /* signed offset */
76 __s32 imm; /* signed immediate constant */
77};
78
79/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
80struct bpf_lpm_trie_key {
81 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
82 __u8 data[0]; /* Arbitrary size */
83};
84
85struct bpf_cgroup_storage_key {
86 __u64 cgroup_inode_id; /* cgroup inode id */
87 __u32 attach_type; /* program attach type (enum bpf_attach_type) */
88};
89
90union bpf_iter_link_info {
91 struct {
92 __u32 map_fd;
93 } map;
94};
95
96/* BPF syscall commands, see bpf(2) man-page for more details. */
97/**
98 * DOC: eBPF Syscall Preamble
99 *
100 * The operation to be performed by the **bpf**\ () system call is determined
101 * by the *cmd* argument. Each operation takes an accompanying argument,
102 * provided via *attr*, which is a pointer to a union of type *bpf_attr* (see
103 * below). The size argument is the size of the union pointed to by *attr*.
104 */
105/**
106 * DOC: eBPF Syscall Commands
107 *
108 * BPF_MAP_CREATE
109 * Description
110 * Create a map and return a file descriptor that refers to the
111 * map. The close-on-exec file descriptor flag (see **fcntl**\ (2))
112 * is automatically enabled for the new file descriptor.
113 *
114 * Applying **close**\ (2) to the file descriptor returned by
115 * **BPF_MAP_CREATE** will delete the map (but see NOTES).
116 *
117 * Return
118 * A new file descriptor (a nonnegative integer), or -1 if an
119 * error occurred (in which case, *errno* is set appropriately).
120 *
121 * BPF_MAP_LOOKUP_ELEM
122 * Description
123 * Look up an element with a given *key* in the map referred to
124 * by the file descriptor *map_fd*.
125 *
126 * The *flags* argument may be specified as one of the
127 * following:
128 *
129 * **BPF_F_LOCK**
130 * Look up the value of a spin-locked map without
131 * returning the lock. This must be specified if the
132 * elements contain a spinlock.
133 *
134 * Return
135 * Returns zero on success. On error, -1 is returned and *errno*
136 * is set appropriately.
137 *
138 * BPF_MAP_UPDATE_ELEM
139 * Description
140 * Create or update an element (key/value pair) in a specified map.
141 *
142 * The *flags* argument should be specified as one of the
143 * following:
144 *
145 * **BPF_ANY**
146 * Create a new element or update an existing element.
147 * **BPF_NOEXIST**
148 * Create a new element only if it did not exist.
149 * **BPF_EXIST**
150 * Update an existing element.
151 * **BPF_F_LOCK**
152 * Update a spin_lock-ed map element.
153 *
154 * Return
155 * Returns zero on success. On error, -1 is returned and *errno*
156 * is set appropriately.
157 *
158 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**,
159 * **E2BIG**, **EEXIST**, or **ENOENT**.
160 *
161 * **E2BIG**
162 * The number of elements in the map reached the
163 * *max_entries* limit specified at map creation time.
164 * **EEXIST**
165 * If *flags* specifies **BPF_NOEXIST** and the element
166 * with *key* already exists in the map.
167 * **ENOENT**
168 * If *flags* specifies **BPF_EXIST** and the element with
169 * *key* does not exist in the map.
170 *
171 * BPF_MAP_DELETE_ELEM
172 * Description
173 * Look up and delete an element by key in a specified map.
174 *
175 * Return
176 * Returns zero on success. On error, -1 is returned and *errno*
177 * is set appropriately.
178 *
179 * BPF_MAP_GET_NEXT_KEY
180 * Description
181 * Look up an element by key in a specified map and return the key
182 * of the next element. Can be used to iterate over all elements
183 * in the map.
184 *
185 * Return
186 * Returns zero on success. On error, -1 is returned and *errno*
187 * is set appropriately.
188 *
189 * The following cases can be used to iterate over all elements of
190 * the map:
191 *
192 * * If *key* is not found, the operation returns zero and sets
193 * the *next_key* pointer to the key of the first element.
194 * * If *key* is found, the operation returns zero and sets the
195 * *next_key* pointer to the key of the next element.
196 * * If *key* is the last element, returns -1 and *errno* is set
197 * to **ENOENT**.
198 *
199 * May set *errno* to **ENOMEM**, **EFAULT**, **EPERM**, or
200 * **EINVAL** on error.
201 *
202 * BPF_PROG_LOAD
203 * Description
204 * Verify and load an eBPF program, returning a new file
205 * descriptor associated with the program.
206 *
207 * Applying **close**\ (2) to the file descriptor returned by
208 * **BPF_PROG_LOAD** will unload the eBPF program (but see NOTES).
209 *
210 * The close-on-exec file descriptor flag (see **fcntl**\ (2)) is
211 * automatically enabled for the new file descriptor.
212 *
213 * Return
214 * A new file descriptor (a nonnegative integer), or -1 if an
215 * error occurred (in which case, *errno* is set appropriately).
216 *
217 * BPF_OBJ_PIN
218 * Description
219 * Pin an eBPF program or map referred by the specified *bpf_fd*
220 * to the provided *pathname* on the filesystem.
221 *
222 * The *pathname* argument must not contain a dot (".").
223 *
224 * On success, *pathname* retains a reference to the eBPF object,
225 * preventing deallocation of the object when the original
226 * *bpf_fd* is closed. This allow the eBPF object to live beyond
227 * **close**\ (\ *bpf_fd*\ ), and hence the lifetime of the parent
228 * process.
229 *
230 * Applying **unlink**\ (2) or similar calls to the *pathname*
231 * unpins the object from the filesystem, removing the reference.
232 * If no other file descriptors or filesystem nodes refer to the
233 * same object, it will be deallocated (see NOTES).
234 *
235 * The filesystem type for the parent directory of *pathname* must
236 * be **BPF_FS_MAGIC**.
237 *
238 * Return
239 * Returns zero on success. On error, -1 is returned and *errno*
240 * is set appropriately.
241 *
242 * BPF_OBJ_GET
243 * Description
244 * Open a file descriptor for the eBPF object pinned to the
245 * specified *pathname*.
246 *
247 * Return
248 * A new file descriptor (a nonnegative integer), or -1 if an
249 * error occurred (in which case, *errno* is set appropriately).
250 *
251 * BPF_PROG_ATTACH
252 * Description
253 * Attach an eBPF program to a *target_fd* at the specified
254 * *attach_type* hook.
255 *
256 * The *attach_type* specifies the eBPF attachment point to
257 * attach the program to, and must be one of *bpf_attach_type*
258 * (see below).
259 *
260 * The *attach_bpf_fd* must be a valid file descriptor for a
261 * loaded eBPF program of a cgroup, flow dissector, LIRC, sockmap
262 * or sock_ops type corresponding to the specified *attach_type*.
263 *
264 * The *target_fd* must be a valid file descriptor for a kernel
265 * object which depends on the attach type of *attach_bpf_fd*:
266 *
267 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
268 * **BPF_PROG_TYPE_CGROUP_SKB**,
269 * **BPF_PROG_TYPE_CGROUP_SOCK**,
270 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
271 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
272 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
273 * **BPF_PROG_TYPE_SOCK_OPS**
274 *
275 * Control Group v2 hierarchy with the eBPF controller
276 * enabled. Requires the kernel to be compiled with
277 * **CONFIG_CGROUP_BPF**.
278 *
279 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
280 *
281 * Network namespace (eg /proc/self/ns/net).
282 *
283 * **BPF_PROG_TYPE_LIRC_MODE2**
284 *
285 * LIRC device path (eg /dev/lircN). Requires the kernel
286 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
287 *
288 * **BPF_PROG_TYPE_SK_SKB**,
289 * **BPF_PROG_TYPE_SK_MSG**
290 *
291 * eBPF map of socket type (eg **BPF_MAP_TYPE_SOCKHASH**).
292 *
293 * Return
294 * Returns zero on success. On error, -1 is returned and *errno*
295 * is set appropriately.
296 *
297 * BPF_PROG_DETACH
298 * Description
299 * Detach the eBPF program associated with the *target_fd* at the
300 * hook specified by *attach_type*. The program must have been
301 * previously attached using **BPF_PROG_ATTACH**.
302 *
303 * Return
304 * Returns zero on success. On error, -1 is returned and *errno*
305 * is set appropriately.
306 *
307 * BPF_PROG_TEST_RUN
308 * Description
309 * Run the eBPF program associated with the *prog_fd* a *repeat*
310 * number of times against a provided program context *ctx_in* and
311 * data *data_in*, and return the modified program context
312 * *ctx_out*, *data_out* (for example, packet data), result of the
313 * execution *retval*, and *duration* of the test run.
314 *
315 * The sizes of the buffers provided as input and output
316 * parameters *ctx_in*, *ctx_out*, *data_in*, and *data_out* must
317 * be provided in the corresponding variables *ctx_size_in*,
318 * *ctx_size_out*, *data_size_in*, and/or *data_size_out*. If any
319 * of these parameters are not provided (ie set to NULL), the
320 * corresponding size field must be zero.
321 *
322 * Some program types have particular requirements:
323 *
324 * **BPF_PROG_TYPE_SK_LOOKUP**
325 * *data_in* and *data_out* must be NULL.
326 *
327 * **BPF_PROG_TYPE_RAW_TRACEPOINT**,
328 * **BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE**
329 *
330 * *ctx_out*, *data_in* and *data_out* must be NULL.
331 * *repeat* must be zero.
332 *
333 * Return
334 * Returns zero on success. On error, -1 is returned and *errno*
335 * is set appropriately.
336 *
337 * **ENOSPC**
338 * Either *data_size_out* or *ctx_size_out* is too small.
339 * **ENOTSUPP**
340 * This command is not supported by the program type of
341 * the program referred to by *prog_fd*.
342 *
343 * BPF_PROG_GET_NEXT_ID
344 * Description
345 * Fetch the next eBPF program currently loaded into the kernel.
346 *
347 * Looks for the eBPF program with an id greater than *start_id*
348 * and updates *next_id* on success. If no other eBPF programs
349 * remain with ids higher than *start_id*, returns -1 and sets
350 * *errno* to **ENOENT**.
351 *
352 * Return
353 * Returns zero on success. On error, or when no id remains, -1
354 * is returned and *errno* is set appropriately.
355 *
356 * BPF_MAP_GET_NEXT_ID
357 * Description
358 * Fetch the next eBPF map currently loaded into the kernel.
359 *
360 * Looks for the eBPF map with an id greater than *start_id*
361 * and updates *next_id* on success. If no other eBPF maps
362 * remain with ids higher than *start_id*, returns -1 and sets
363 * *errno* to **ENOENT**.
364 *
365 * Return
366 * Returns zero on success. On error, or when no id remains, -1
367 * is returned and *errno* is set appropriately.
368 *
369 * BPF_PROG_GET_FD_BY_ID
370 * Description
371 * Open a file descriptor for the eBPF program corresponding to
372 * *prog_id*.
373 *
374 * Return
375 * A new file descriptor (a nonnegative integer), or -1 if an
376 * error occurred (in which case, *errno* is set appropriately).
377 *
378 * BPF_MAP_GET_FD_BY_ID
379 * Description
380 * Open a file descriptor for the eBPF map corresponding to
381 * *map_id*.
382 *
383 * Return
384 * A new file descriptor (a nonnegative integer), or -1 if an
385 * error occurred (in which case, *errno* is set appropriately).
386 *
387 * BPF_OBJ_GET_INFO_BY_FD
388 * Description
389 * Obtain information about the eBPF object corresponding to
390 * *bpf_fd*.
391 *
392 * Populates up to *info_len* bytes of *info*, which will be in
393 * one of the following formats depending on the eBPF object type
394 * of *bpf_fd*:
395 *
396 * * **struct bpf_prog_info**
397 * * **struct bpf_map_info**
398 * * **struct bpf_btf_info**
399 * * **struct bpf_link_info**
400 *
401 * Return
402 * Returns zero on success. On error, -1 is returned and *errno*
403 * is set appropriately.
404 *
405 * BPF_PROG_QUERY
406 * Description
407 * Obtain information about eBPF programs associated with the
408 * specified *attach_type* hook.
409 *
410 * The *target_fd* must be a valid file descriptor for a kernel
411 * object which depends on the attach type of *attach_bpf_fd*:
412 *
413 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
414 * **BPF_PROG_TYPE_CGROUP_SKB**,
415 * **BPF_PROG_TYPE_CGROUP_SOCK**,
416 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
417 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
418 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
419 * **BPF_PROG_TYPE_SOCK_OPS**
420 *
421 * Control Group v2 hierarchy with the eBPF controller
422 * enabled. Requires the kernel to be compiled with
423 * **CONFIG_CGROUP_BPF**.
424 *
425 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
426 *
427 * Network namespace (eg /proc/self/ns/net).
428 *
429 * **BPF_PROG_TYPE_LIRC_MODE2**
430 *
431 * LIRC device path (eg /dev/lircN). Requires the kernel
432 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
433 *
434 * **BPF_PROG_QUERY** always fetches the number of programs
435 * attached and the *attach_flags* which were used to attach those
436 * programs. Additionally, if *prog_ids* is nonzero and the number
437 * of attached programs is less than *prog_cnt*, populates
438 * *prog_ids* with the eBPF program ids of the programs attached
439 * at *target_fd*.
440 *
441 * The following flags may alter the result:
442 *
443 * **BPF_F_QUERY_EFFECTIVE**
444 * Only return information regarding programs which are
445 * currently effective at the specified *target_fd*.
446 *
447 * Return
448 * Returns zero on success. On error, -1 is returned and *errno*
449 * is set appropriately.
450 *
451 * BPF_RAW_TRACEPOINT_OPEN
452 * Description
453 * Attach an eBPF program to a tracepoint *name* to access kernel
454 * internal arguments of the tracepoint in their raw form.
455 *
456 * The *prog_fd* must be a valid file descriptor associated with
457 * a loaded eBPF program of type **BPF_PROG_TYPE_RAW_TRACEPOINT**.
458 *
459 * No ABI guarantees are made about the content of tracepoint
460 * arguments exposed to the corresponding eBPF program.
461 *
462 * Applying **close**\ (2) to the file descriptor returned by
463 * **BPF_RAW_TRACEPOINT_OPEN** will delete the map (but see NOTES).
464 *
465 * Return
466 * A new file descriptor (a nonnegative integer), or -1 if an
467 * error occurred (in which case, *errno* is set appropriately).
468 *
469 * BPF_BTF_LOAD
470 * Description
471 * Verify and load BPF Type Format (BTF) metadata into the kernel,
472 * returning a new file descriptor associated with the metadata.
473 * BTF is described in more detail at
474 * https://www.kernel.org/doc/html/latest/bpf/btf.html.
475 *
476 * The *btf* parameter must point to valid memory providing
477 * *btf_size* bytes of BTF binary metadata.
478 *
479 * The returned file descriptor can be passed to other **bpf**\ ()
480 * subcommands such as **BPF_PROG_LOAD** or **BPF_MAP_CREATE** to
481 * associate the BTF with those objects.
482 *
483 * Similar to **BPF_PROG_LOAD**, **BPF_BTF_LOAD** has optional
484 * parameters to specify a *btf_log_buf*, *btf_log_size* and
485 * *btf_log_level* which allow the kernel to return freeform log
486 * output regarding the BTF verification process.
487 *
488 * Return
489 * A new file descriptor (a nonnegative integer), or -1 if an
490 * error occurred (in which case, *errno* is set appropriately).
491 *
492 * BPF_BTF_GET_FD_BY_ID
493 * Description
494 * Open a file descriptor for the BPF Type Format (BTF)
495 * corresponding to *btf_id*.
496 *
497 * Return
498 * A new file descriptor (a nonnegative integer), or -1 if an
499 * error occurred (in which case, *errno* is set appropriately).
500 *
501 * BPF_TASK_FD_QUERY
502 * Description
503 * Obtain information about eBPF programs associated with the
504 * target process identified by *pid* and *fd*.
505 *
506 * If the *pid* and *fd* are associated with a tracepoint, kprobe
507 * or uprobe perf event, then the *prog_id* and *fd_type* will
508 * be populated with the eBPF program id and file descriptor type
509 * of type **bpf_task_fd_type**. If associated with a kprobe or
510 * uprobe, the *probe_offset* and *probe_addr* will also be
511 * populated. Optionally, if *buf* is provided, then up to
512 * *buf_len* bytes of *buf* will be populated with the name of
513 * the tracepoint, kprobe or uprobe.
514 *
515 * The resulting *prog_id* may be introspected in deeper detail
516 * using **BPF_PROG_GET_FD_BY_ID** and **BPF_OBJ_GET_INFO_BY_FD**.
517 *
518 * Return
519 * Returns zero on success. On error, -1 is returned and *errno*
520 * is set appropriately.
521 *
522 * BPF_MAP_LOOKUP_AND_DELETE_ELEM
523 * Description
524 * Look up an element with the given *key* in the map referred to
525 * by the file descriptor *fd*, and if found, delete the element.
526 *
527 * For **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map
528 * types, the *flags* argument needs to be set to 0, but for other
529 * map types, it may be specified as:
530 *
531 * **BPF_F_LOCK**
532 * Look up and delete the value of a spin-locked map
533 * without returning the lock. This must be specified if
534 * the elements contain a spinlock.
535 *
536 * The **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map types
537 * implement this command as a "pop" operation, deleting the top
538 * element rather than one corresponding to *key*.
539 * The *key* and *key_len* parameters should be zeroed when
540 * issuing this operation for these map types.
541 *
542 * This command is only valid for the following map types:
543 * * **BPF_MAP_TYPE_QUEUE**
544 * * **BPF_MAP_TYPE_STACK**
545 * * **BPF_MAP_TYPE_HASH**
546 * * **BPF_MAP_TYPE_PERCPU_HASH**
547 * * **BPF_MAP_TYPE_LRU_HASH**
548 * * **BPF_MAP_TYPE_LRU_PERCPU_HASH**
549 *
550 * Return
551 * Returns zero on success. On error, -1 is returned and *errno*
552 * is set appropriately.
553 *
554 * BPF_MAP_FREEZE
555 * Description
556 * Freeze the permissions of the specified map.
557 *
558 * Write permissions may be frozen by passing zero *flags*.
559 * Upon success, no future syscall invocations may alter the
560 * map state of *map_fd*. Write operations from eBPF programs
561 * are still possible for a frozen map.
562 *
563 * Not supported for maps of type **BPF_MAP_TYPE_STRUCT_OPS**.
564 *
565 * Return
566 * Returns zero on success. On error, -1 is returned and *errno*
567 * is set appropriately.
568 *
569 * BPF_BTF_GET_NEXT_ID
570 * Description
571 * Fetch the next BPF Type Format (BTF) object currently loaded
572 * into the kernel.
573 *
574 * Looks for the BTF object with an id greater than *start_id*
575 * and updates *next_id* on success. If no other BTF objects
576 * remain with ids higher than *start_id*, returns -1 and sets
577 * *errno* to **ENOENT**.
578 *
579 * Return
580 * Returns zero on success. On error, or when no id remains, -1
581 * is returned and *errno* is set appropriately.
582 *
583 * BPF_MAP_LOOKUP_BATCH
584 * Description
585 * Iterate and fetch multiple elements in a map.
586 *
587 * Two opaque values are used to manage batch operations,
588 * *in_batch* and *out_batch*. Initially, *in_batch* must be set
589 * to NULL to begin the batched operation. After each subsequent
590 * **BPF_MAP_LOOKUP_BATCH**, the caller should pass the resultant
591 * *out_batch* as the *in_batch* for the next operation to
592 * continue iteration from the current point.
593 *
594 * The *keys* and *values* are output parameters which must point
595 * to memory large enough to hold *count* items based on the key
596 * and value size of the map *map_fd*. The *keys* buffer must be
597 * of *key_size* * *count*. The *values* buffer must be of
598 * *value_size* * *count*.
599 *
600 * The *elem_flags* argument may be specified as one of the
601 * following:
602 *
603 * **BPF_F_LOCK**
604 * Look up the value of a spin-locked map without
605 * returning the lock. This must be specified if the
606 * elements contain a spinlock.
607 *
608 * On success, *count* elements from the map are copied into the
609 * user buffer, with the keys copied into *keys* and the values
610 * copied into the corresponding indices in *values*.
611 *
612 * If an error is returned and *errno* is not **EFAULT**, *count*
613 * is set to the number of successfully processed elements.
614 *
615 * Return
616 * Returns zero on success. On error, -1 is returned and *errno*
617 * is set appropriately.
618 *
619 * May set *errno* to **ENOSPC** to indicate that *keys* or
620 * *values* is too small to dump an entire bucket during
621 * iteration of a hash-based map type.
622 *
623 * BPF_MAP_LOOKUP_AND_DELETE_BATCH
624 * Description
625 * Iterate and delete all elements in a map.
626 *
627 * This operation has the same behavior as
628 * **BPF_MAP_LOOKUP_BATCH** with two exceptions:
629 *
630 * * Every element that is successfully returned is also deleted
631 * from the map. This is at least *count* elements. Note that
632 * *count* is both an input and an output parameter.
633 * * Upon returning with *errno* set to **EFAULT**, up to
634 * *count* elements may be deleted without returning the keys
635 * and values of the deleted elements.
636 *
637 * Return
638 * Returns zero on success. On error, -1 is returned and *errno*
639 * is set appropriately.
640 *
641 * BPF_MAP_UPDATE_BATCH
642 * Description
643 * Update multiple elements in a map by *key*.
644 *
645 * The *keys* and *values* are input parameters which must point
646 * to memory large enough to hold *count* items based on the key
647 * and value size of the map *map_fd*. The *keys* buffer must be
648 * of *key_size* * *count*. The *values* buffer must be of
649 * *value_size* * *count*.
650 *
651 * Each element specified in *keys* is sequentially updated to the
652 * value in the corresponding index in *values*. The *in_batch*
653 * and *out_batch* parameters are ignored and should be zeroed.
654 *
655 * The *elem_flags* argument should be specified as one of the
656 * following:
657 *
658 * **BPF_ANY**
659 * Create new elements or update a existing elements.
660 * **BPF_NOEXIST**
661 * Create new elements only if they do not exist.
662 * **BPF_EXIST**
663 * Update existing elements.
664 * **BPF_F_LOCK**
665 * Update spin_lock-ed map elements. This must be
666 * specified if the map value contains a spinlock.
667 *
668 * On success, *count* elements from the map are updated.
669 *
670 * If an error is returned and *errno* is not **EFAULT**, *count*
671 * is set to the number of successfully processed elements.
672 *
673 * Return
674 * Returns zero on success. On error, -1 is returned and *errno*
675 * is set appropriately.
676 *
677 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**, or
678 * **E2BIG**. **E2BIG** indicates that the number of elements in
679 * the map reached the *max_entries* limit specified at map
680 * creation time.
681 *
682 * May set *errno* to one of the following error codes under
683 * specific circumstances:
684 *
685 * **EEXIST**
686 * If *flags* specifies **BPF_NOEXIST** and the element
687 * with *key* already exists in the map.
688 * **ENOENT**
689 * If *flags* specifies **BPF_EXIST** and the element with
690 * *key* does not exist in the map.
691 *
692 * BPF_MAP_DELETE_BATCH
693 * Description
694 * Delete multiple elements in a map by *key*.
695 *
696 * The *keys* parameter is an input parameter which must point
697 * to memory large enough to hold *count* items based on the key
698 * size of the map *map_fd*, that is, *key_size* * *count*.
699 *
700 * Each element specified in *keys* is sequentially deleted. The
701 * *in_batch*, *out_batch*, and *values* parameters are ignored
702 * and should be zeroed.
703 *
704 * The *elem_flags* argument may be specified as one of the
705 * following:
706 *
707 * **BPF_F_LOCK**
708 * Look up the value of a spin-locked map without
709 * returning the lock. This must be specified if the
710 * elements contain a spinlock.
711 *
712 * On success, *count* elements from the map are updated.
713 *
714 * If an error is returned and *errno* is not **EFAULT**, *count*
715 * is set to the number of successfully processed elements. If
716 * *errno* is **EFAULT**, up to *count* elements may be been
717 * deleted.
718 *
719 * Return
720 * Returns zero on success. On error, -1 is returned and *errno*
721 * is set appropriately.
722 *
723 * BPF_LINK_CREATE
724 * Description
725 * Attach an eBPF program to a *target_fd* at the specified
726 * *attach_type* hook and return a file descriptor handle for
727 * managing the link.
728 *
729 * Return
730 * A new file descriptor (a nonnegative integer), or -1 if an
731 * error occurred (in which case, *errno* is set appropriately).
732 *
733 * BPF_LINK_UPDATE
734 * Description
735 * Update the eBPF program in the specified *link_fd* to
736 * *new_prog_fd*.
737 *
738 * Return
739 * Returns zero on success. On error, -1 is returned and *errno*
740 * is set appropriately.
741 *
742 * BPF_LINK_GET_FD_BY_ID
743 * Description
744 * Open a file descriptor for the eBPF Link corresponding to
745 * *link_id*.
746 *
747 * Return
748 * A new file descriptor (a nonnegative integer), or -1 if an
749 * error occurred (in which case, *errno* is set appropriately).
750 *
751 * BPF_LINK_GET_NEXT_ID
752 * Description
753 * Fetch the next eBPF link currently loaded into the kernel.
754 *
755 * Looks for the eBPF link with an id greater than *start_id*
756 * and updates *next_id* on success. If no other eBPF links
757 * remain with ids higher than *start_id*, returns -1 and sets
758 * *errno* to **ENOENT**.
759 *
760 * Return
761 * Returns zero on success. On error, or when no id remains, -1
762 * is returned and *errno* is set appropriately.
763 *
764 * BPF_ENABLE_STATS
765 * Description
766 * Enable eBPF runtime statistics gathering.
767 *
768 * Runtime statistics gathering for the eBPF runtime is disabled
769 * by default to minimize the corresponding performance overhead.
770 * This command enables statistics globally.
771 *
772 * Multiple programs may independently enable statistics.
773 * After gathering the desired statistics, eBPF runtime statistics
774 * may be disabled again by calling **close**\ (2) for the file
775 * descriptor returned by this function. Statistics will only be
776 * disabled system-wide when all outstanding file descriptors
777 * returned by prior calls for this subcommand are closed.
778 *
779 * Return
780 * A new file descriptor (a nonnegative integer), or -1 if an
781 * error occurred (in which case, *errno* is set appropriately).
782 *
783 * BPF_ITER_CREATE
784 * Description
785 * Create an iterator on top of the specified *link_fd* (as
786 * previously created using **BPF_LINK_CREATE**) and return a
787 * file descriptor that can be used to trigger the iteration.
788 *
789 * If the resulting file descriptor is pinned to the filesystem
790 * using **BPF_OBJ_PIN**, then subsequent **read**\ (2) syscalls
791 * for that path will trigger the iterator to read kernel state
792 * using the eBPF program attached to *link_fd*.
793 *
794 * Return
795 * A new file descriptor (a nonnegative integer), or -1 if an
796 * error occurred (in which case, *errno* is set appropriately).
797 *
798 * BPF_LINK_DETACH
799 * Description
800 * Forcefully detach the specified *link_fd* from its
801 * corresponding attachment point.
802 *
803 * Return
804 * Returns zero on success. On error, -1 is returned and *errno*
805 * is set appropriately.
806 *
807 * BPF_PROG_BIND_MAP
808 * Description
809 * Bind a map to the lifetime of an eBPF program.
810 *
811 * The map identified by *map_fd* is bound to the program
812 * identified by *prog_fd* and only released when *prog_fd* is
813 * released. This may be used in cases where metadata should be
814 * associated with a program which otherwise does not contain any
815 * references to the map (for example, embedded in the eBPF
816 * program instructions).
817 *
818 * Return
819 * Returns zero on success. On error, -1 is returned and *errno*
820 * is set appropriately.
821 *
822 * NOTES
823 * eBPF objects (maps and programs) can be shared between processes.
824 *
825 * * After **fork**\ (2), the child inherits file descriptors
826 * referring to the same eBPF objects.
827 * * File descriptors referring to eBPF objects can be transferred over
828 * **unix**\ (7) domain sockets.
829 * * File descriptors referring to eBPF objects can be duplicated in the
830 * usual way, using **dup**\ (2) and similar calls.
831 * * File descriptors referring to eBPF objects can be pinned to the
832 * filesystem using the **BPF_OBJ_PIN** command of **bpf**\ (2).
833 *
834 * An eBPF object is deallocated only after all file descriptors referring
835 * to the object have been closed and no references remain pinned to the
836 * filesystem or attached (for example, bound to a program or device).
837 */
838enum bpf_cmd {
839 BPF_MAP_CREATE,
840 BPF_MAP_LOOKUP_ELEM,
841 BPF_MAP_UPDATE_ELEM,
842 BPF_MAP_DELETE_ELEM,
843 BPF_MAP_GET_NEXT_KEY,
844 BPF_PROG_LOAD,
845 BPF_OBJ_PIN,
846 BPF_OBJ_GET,
847 BPF_PROG_ATTACH,
848 BPF_PROG_DETACH,
849 BPF_PROG_TEST_RUN,
850 BPF_PROG_RUN = BPF_PROG_TEST_RUN,
851 BPF_PROG_GET_NEXT_ID,
852 BPF_MAP_GET_NEXT_ID,
853 BPF_PROG_GET_FD_BY_ID,
854 BPF_MAP_GET_FD_BY_ID,
855 BPF_OBJ_GET_INFO_BY_FD,
856 BPF_PROG_QUERY,
857 BPF_RAW_TRACEPOINT_OPEN,
858 BPF_BTF_LOAD,
859 BPF_BTF_GET_FD_BY_ID,
860 BPF_TASK_FD_QUERY,
861 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
862 BPF_MAP_FREEZE,
863 BPF_BTF_GET_NEXT_ID,
864 BPF_MAP_LOOKUP_BATCH,
865 BPF_MAP_LOOKUP_AND_DELETE_BATCH,
866 BPF_MAP_UPDATE_BATCH,
867 BPF_MAP_DELETE_BATCH,
868 BPF_LINK_CREATE,
869 BPF_LINK_UPDATE,
870 BPF_LINK_GET_FD_BY_ID,
871 BPF_LINK_GET_NEXT_ID,
872 BPF_ENABLE_STATS,
873 BPF_ITER_CREATE,
874 BPF_LINK_DETACH,
875 BPF_PROG_BIND_MAP,
876};
877
878enum bpf_map_type {
879 BPF_MAP_TYPE_UNSPEC,
880 BPF_MAP_TYPE_HASH,
881 BPF_MAP_TYPE_ARRAY,
882 BPF_MAP_TYPE_PROG_ARRAY,
883 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
884 BPF_MAP_TYPE_PERCPU_HASH,
885 BPF_MAP_TYPE_PERCPU_ARRAY,
886 BPF_MAP_TYPE_STACK_TRACE,
887 BPF_MAP_TYPE_CGROUP_ARRAY,
888 BPF_MAP_TYPE_LRU_HASH,
889 BPF_MAP_TYPE_LRU_PERCPU_HASH,
890 BPF_MAP_TYPE_LPM_TRIE,
891 BPF_MAP_TYPE_ARRAY_OF_MAPS,
892 BPF_MAP_TYPE_HASH_OF_MAPS,
893 BPF_MAP_TYPE_DEVMAP,
894 BPF_MAP_TYPE_SOCKMAP,
895 BPF_MAP_TYPE_CPUMAP,
896 BPF_MAP_TYPE_XSKMAP,
897 BPF_MAP_TYPE_SOCKHASH,
898 BPF_MAP_TYPE_CGROUP_STORAGE,
899 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
900 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
901 BPF_MAP_TYPE_QUEUE,
902 BPF_MAP_TYPE_STACK,
903 BPF_MAP_TYPE_SK_STORAGE,
904 BPF_MAP_TYPE_DEVMAP_HASH,
905 BPF_MAP_TYPE_STRUCT_OPS,
906 BPF_MAP_TYPE_RINGBUF,
907 BPF_MAP_TYPE_INODE_STORAGE,
908 BPF_MAP_TYPE_TASK_STORAGE,
909 BPF_MAP_TYPE_BLOOM_FILTER,
910};
911
912/* Note that tracing related programs such as
913 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
914 * are not subject to a stable API since kernel internal data
915 * structures can change from release to release and may
916 * therefore break existing tracing BPF programs. Tracing BPF
917 * programs correspond to /a/ specific kernel which is to be
918 * analyzed, and not /a/ specific kernel /and/ all future ones.
919 */
920enum bpf_prog_type {
921 BPF_PROG_TYPE_UNSPEC,
922 BPF_PROG_TYPE_SOCKET_FILTER,
923 BPF_PROG_TYPE_KPROBE,
924 BPF_PROG_TYPE_SCHED_CLS,
925 BPF_PROG_TYPE_SCHED_ACT,
926 BPF_PROG_TYPE_TRACEPOINT,
927 BPF_PROG_TYPE_XDP,
928 BPF_PROG_TYPE_PERF_EVENT,
929 BPF_PROG_TYPE_CGROUP_SKB,
930 BPF_PROG_TYPE_CGROUP_SOCK,
931 BPF_PROG_TYPE_LWT_IN,
932 BPF_PROG_TYPE_LWT_OUT,
933 BPF_PROG_TYPE_LWT_XMIT,
934 BPF_PROG_TYPE_SOCK_OPS,
935 BPF_PROG_TYPE_SK_SKB,
936 BPF_PROG_TYPE_CGROUP_DEVICE,
937 BPF_PROG_TYPE_SK_MSG,
938 BPF_PROG_TYPE_RAW_TRACEPOINT,
939 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
940 BPF_PROG_TYPE_LWT_SEG6LOCAL,
941 BPF_PROG_TYPE_LIRC_MODE2,
942 BPF_PROG_TYPE_SK_REUSEPORT,
943 BPF_PROG_TYPE_FLOW_DISSECTOR,
944 BPF_PROG_TYPE_CGROUP_SYSCTL,
945 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
946 BPF_PROG_TYPE_CGROUP_SOCKOPT,
947 BPF_PROG_TYPE_TRACING,
948 BPF_PROG_TYPE_STRUCT_OPS,
949 BPF_PROG_TYPE_EXT,
950 BPF_PROG_TYPE_LSM,
951 BPF_PROG_TYPE_SK_LOOKUP,
952 BPF_PROG_TYPE_SYSCALL, /* a program that can execute syscalls */
953};
954
955enum bpf_attach_type {
956 BPF_CGROUP_INET_INGRESS,
957 BPF_CGROUP_INET_EGRESS,
958 BPF_CGROUP_INET_SOCK_CREATE,
959 BPF_CGROUP_SOCK_OPS,
960 BPF_SK_SKB_STREAM_PARSER,
961 BPF_SK_SKB_STREAM_VERDICT,
962 BPF_CGROUP_DEVICE,
963 BPF_SK_MSG_VERDICT,
964 BPF_CGROUP_INET4_BIND,
965 BPF_CGROUP_INET6_BIND,
966 BPF_CGROUP_INET4_CONNECT,
967 BPF_CGROUP_INET6_CONNECT,
968 BPF_CGROUP_INET4_POST_BIND,
969 BPF_CGROUP_INET6_POST_BIND,
970 BPF_CGROUP_UDP4_SENDMSG,
971 BPF_CGROUP_UDP6_SENDMSG,
972 BPF_LIRC_MODE2,
973 BPF_FLOW_DISSECTOR,
974 BPF_CGROUP_SYSCTL,
975 BPF_CGROUP_UDP4_RECVMSG,
976 BPF_CGROUP_UDP6_RECVMSG,
977 BPF_CGROUP_GETSOCKOPT,
978 BPF_CGROUP_SETSOCKOPT,
979 BPF_TRACE_RAW_TP,
980 BPF_TRACE_FENTRY,
981 BPF_TRACE_FEXIT,
982 BPF_MODIFY_RETURN,
983 BPF_LSM_MAC,
984 BPF_TRACE_ITER,
985 BPF_CGROUP_INET4_GETPEERNAME,
986 BPF_CGROUP_INET6_GETPEERNAME,
987 BPF_CGROUP_INET4_GETSOCKNAME,
988 BPF_CGROUP_INET6_GETSOCKNAME,
989 BPF_XDP_DEVMAP,
990 BPF_CGROUP_INET_SOCK_RELEASE,
991 BPF_XDP_CPUMAP,
992 BPF_SK_LOOKUP,
993 BPF_XDP,
994 BPF_SK_SKB_VERDICT,
995 BPF_SK_REUSEPORT_SELECT,
996 BPF_SK_REUSEPORT_SELECT_OR_MIGRATE,
997 BPF_PERF_EVENT,
998 __MAX_BPF_ATTACH_TYPE
999};
1000
1001#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
1002
1003enum bpf_link_type {
1004 BPF_LINK_TYPE_UNSPEC = 0,
1005 BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
1006 BPF_LINK_TYPE_TRACING = 2,
1007 BPF_LINK_TYPE_CGROUP = 3,
1008 BPF_LINK_TYPE_ITER = 4,
1009 BPF_LINK_TYPE_NETNS = 5,
1010 BPF_LINK_TYPE_XDP = 6,
1011 BPF_LINK_TYPE_PERF_EVENT = 7,
1012
1013 MAX_BPF_LINK_TYPE,
1014};
1015
1016/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
1017 *
1018 * NONE(default): No further bpf programs allowed in the subtree.
1019 *
1020 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
1021 * the program in this cgroup yields to sub-cgroup program.
1022 *
1023 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
1024 * that cgroup program gets run in addition to the program in this cgroup.
1025 *
1026 * Only one program is allowed to be attached to a cgroup with
1027 * NONE or BPF_F_ALLOW_OVERRIDE flag.
1028 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
1029 * release old program and attach the new one. Attach flags has to match.
1030 *
1031 * Multiple programs are allowed to be attached to a cgroup with
1032 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
1033 * (those that were attached first, run first)
1034 * The programs of sub-cgroup are executed first, then programs of
1035 * this cgroup and then programs of parent cgroup.
1036 * When children program makes decision (like picking TCP CA or sock bind)
1037 * parent program has a chance to override it.
1038 *
1039 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
1040 * programs for a cgroup. Though it's possible to replace an old program at
1041 * any position by also specifying BPF_F_REPLACE flag and position itself in
1042 * replace_bpf_fd attribute. Old program at this position will be released.
1043 *
1044 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
1045 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
1046 * Ex1:
1047 * cgrp1 (MULTI progs A, B) ->
1048 * cgrp2 (OVERRIDE prog C) ->
1049 * cgrp3 (MULTI prog D) ->
1050 * cgrp4 (OVERRIDE prog E) ->
1051 * cgrp5 (NONE prog F)
1052 * the event in cgrp5 triggers execution of F,D,A,B in that order.
1053 * if prog F is detached, the execution is E,D,A,B
1054 * if prog F and D are detached, the execution is E,A,B
1055 * if prog F, E and D are detached, the execution is C,A,B
1056 *
1057 * All eligible programs are executed regardless of return code from
1058 * earlier programs.
1059 */
1060#define BPF_F_ALLOW_OVERRIDE (1U << 0)
1061#define BPF_F_ALLOW_MULTI (1U << 1)
1062#define BPF_F_REPLACE (1U << 2)
1063
1064/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
1065 * verifier will perform strict alignment checking as if the kernel
1066 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
1067 * and NET_IP_ALIGN defined to 2.
1068 */
1069#define BPF_F_STRICT_ALIGNMENT (1U << 0)
1070
1071/* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
1072 * verifier will allow any alignment whatsoever. On platforms
1073 * with strict alignment requirements for loads ands stores (such
1074 * as sparc and mips) the verifier validates that all loads and
1075 * stores provably follow this requirement. This flag turns that
1076 * checking and enforcement off.
1077 *
1078 * It is mostly used for testing when we want to validate the
1079 * context and memory access aspects of the verifier, but because
1080 * of an unaligned access the alignment check would trigger before
1081 * the one we are interested in.
1082 */
1083#define BPF_F_ANY_ALIGNMENT (1U << 1)
1084
1085/* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
1086 * Verifier does sub-register def/use analysis and identifies instructions whose
1087 * def only matters for low 32-bit, high 32-bit is never referenced later
1088 * through implicit zero extension. Therefore verifier notifies JIT back-ends
1089 * that it is safe to ignore clearing high 32-bit for these instructions. This
1090 * saves some back-ends a lot of code-gen. However such optimization is not
1091 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
1092 * hence hasn't used verifier's analysis result. But, we really want to have a
1093 * way to be able to verify the correctness of the described optimization on
1094 * x86_64 on which testsuites are frequently exercised.
1095 *
1096 * So, this flag is introduced. Once it is set, verifier will randomize high
1097 * 32-bit for those instructions who has been identified as safe to ignore them.
1098 * Then, if verifier is not doing correct analysis, such randomization will
1099 * regress tests to expose bugs.
1100 */
1101#define BPF_F_TEST_RND_HI32 (1U << 2)
1102
1103/* The verifier internal test flag. Behavior is undefined */
1104#define BPF_F_TEST_STATE_FREQ (1U << 3)
1105
1106/* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
1107 * restrict map and helper usage for such programs. Sleepable BPF programs can
1108 * only be attached to hooks where kernel execution context allows sleeping.
1109 * Such programs are allowed to use helpers that may sleep like
1110 * bpf_copy_from_user().
1111 */
1112#define BPF_F_SLEEPABLE (1U << 4)
1113
1114/* When BPF ldimm64's insn[0].src_reg != 0 then this can have
1115 * the following extensions:
1116 *
1117 * insn[0].src_reg: BPF_PSEUDO_MAP_[FD|IDX]
1118 * insn[0].imm: map fd or fd_idx
1119 * insn[1].imm: 0
1120 * insn[0].off: 0
1121 * insn[1].off: 0
1122 * ldimm64 rewrite: address of map
1123 * verifier type: CONST_PTR_TO_MAP
1124 */
1125#define BPF_PSEUDO_MAP_FD 1
1126#define BPF_PSEUDO_MAP_IDX 5
1127
1128/* insn[0].src_reg: BPF_PSEUDO_MAP_[IDX_]VALUE
1129 * insn[0].imm: map fd or fd_idx
1130 * insn[1].imm: offset into value
1131 * insn[0].off: 0
1132 * insn[1].off: 0
1133 * ldimm64 rewrite: address of map[0]+offset
1134 * verifier type: PTR_TO_MAP_VALUE
1135 */
1136#define BPF_PSEUDO_MAP_VALUE 2
1137#define BPF_PSEUDO_MAP_IDX_VALUE 6
1138
1139/* insn[0].src_reg: BPF_PSEUDO_BTF_ID
1140 * insn[0].imm: kernel btd id of VAR
1141 * insn[1].imm: 0
1142 * insn[0].off: 0
1143 * insn[1].off: 0
1144 * ldimm64 rewrite: address of the kernel variable
1145 * verifier type: PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
1146 * is struct/union.
1147 */
1148#define BPF_PSEUDO_BTF_ID 3
1149/* insn[0].src_reg: BPF_PSEUDO_FUNC
1150 * insn[0].imm: insn offset to the func
1151 * insn[1].imm: 0
1152 * insn[0].off: 0
1153 * insn[1].off: 0
1154 * ldimm64 rewrite: address of the function
1155 * verifier type: PTR_TO_FUNC.
1156 */
1157#define BPF_PSEUDO_FUNC 4
1158
1159/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
1160 * offset to another bpf function
1161 */
1162#define BPF_PSEUDO_CALL 1
1163/* when bpf_call->src_reg == BPF_PSEUDO_KFUNC_CALL,
1164 * bpf_call->imm == btf_id of a BTF_KIND_FUNC in the running kernel
1165 */
1166#define BPF_PSEUDO_KFUNC_CALL 2
1167
1168/* flags for BPF_MAP_UPDATE_ELEM command */
1169enum {
1170 BPF_ANY = 0, /* create new element or update existing */
1171 BPF_NOEXIST = 1, /* create new element if it didn't exist */
1172 BPF_EXIST = 2, /* update existing element */
1173 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */
1174};
1175
1176/* flags for BPF_MAP_CREATE command */
1177enum {
1178 BPF_F_NO_PREALLOC = (1U << 0),
1179/* Instead of having one common LRU list in the
1180 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
1181 * which can scale and perform better.
1182 * Note, the LRU nodes (including free nodes) cannot be moved
1183 * across different LRU lists.
1184 */
1185 BPF_F_NO_COMMON_LRU = (1U << 1),
1186/* Specify numa node during map creation */
1187 BPF_F_NUMA_NODE = (1U << 2),
1188
1189/* Flags for accessing BPF object from syscall side. */
1190 BPF_F_RDONLY = (1U << 3),
1191 BPF_F_WRONLY = (1U << 4),
1192
1193/* Flag for stack_map, store build_id+offset instead of pointer */
1194 BPF_F_STACK_BUILD_ID = (1U << 5),
1195
1196/* Zero-initialize hash function seed. This should only be used for testing. */
1197 BPF_F_ZERO_SEED = (1U << 6),
1198
1199/* Flags for accessing BPF object from program side. */
1200 BPF_F_RDONLY_PROG = (1U << 7),
1201 BPF_F_WRONLY_PROG = (1U << 8),
1202
1203/* Clone map from listener for newly accepted socket */
1204 BPF_F_CLONE = (1U << 9),
1205
1206/* Enable memory-mapping BPF map */
1207 BPF_F_MMAPABLE = (1U << 10),
1208
1209/* Share perf_event among processes */
1210 BPF_F_PRESERVE_ELEMS = (1U << 11),
1211
1212/* Create a map that is suitable to be an inner map with dynamic max entries */
1213 BPF_F_INNER_MAP = (1U << 12),
1214};
1215
1216/* Flags for BPF_PROG_QUERY. */
1217
1218/* Query effective (directly attached + inherited from ancestor cgroups)
1219 * programs that will be executed for events within a cgroup.
1220 * attach_flags with this flag are returned only for directly attached programs.
1221 */
1222#define BPF_F_QUERY_EFFECTIVE (1U << 0)
1223
1224/* Flags for BPF_PROG_TEST_RUN */
1225
1226/* If set, run the test on the cpu specified by bpf_attr.test.cpu */
1227#define BPF_F_TEST_RUN_ON_CPU (1U << 0)
1228
1229/* type for BPF_ENABLE_STATS */
1230enum bpf_stats_type {
1231 /* enabled run_time_ns and run_cnt */
1232 BPF_STATS_RUN_TIME = 0,
1233};
1234
1235enum bpf_stack_build_id_status {
1236 /* user space need an empty entry to identify end of a trace */
1237 BPF_STACK_BUILD_ID_EMPTY = 0,
1238 /* with valid build_id and offset */
1239 BPF_STACK_BUILD_ID_VALID = 1,
1240 /* couldn't get build_id, fallback to ip */
1241 BPF_STACK_BUILD_ID_IP = 2,
1242};
1243
1244#define BPF_BUILD_ID_SIZE 20
1245struct bpf_stack_build_id {
1246 __s32 status;
1247 unsigned char build_id[BPF_BUILD_ID_SIZE];
1248 union {
1249 __u64 offset;
1250 __u64 ip;
1251 };
1252};
1253
1254#define BPF_OBJ_NAME_LEN 16U
1255
1256union bpf_attr {
1257 struct { /* anonymous struct used by BPF_MAP_CREATE command */
1258 __u32 map_type; /* one of enum bpf_map_type */
1259 __u32 key_size; /* size of key in bytes */
1260 __u32 value_size; /* size of value in bytes */
1261 __u32 max_entries; /* max number of entries in a map */
1262 __u32 map_flags; /* BPF_MAP_CREATE related
1263 * flags defined above.
1264 */
1265 __u32 inner_map_fd; /* fd pointing to the inner map */
1266 __u32 numa_node; /* numa node (effective only if
1267 * BPF_F_NUMA_NODE is set).
1268 */
1269 char map_name[BPF_OBJ_NAME_LEN];
1270 __u32 map_ifindex; /* ifindex of netdev to create on */
1271 __u32 btf_fd; /* fd pointing to a BTF type data */
1272 __u32 btf_key_type_id; /* BTF type_id of the key */
1273 __u32 btf_value_type_id; /* BTF type_id of the value */
1274 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
1275 * struct stored as the
1276 * map value
1277 */
1278 /* Any per-map-type extra fields
1279 *
1280 * BPF_MAP_TYPE_BLOOM_FILTER - the lowest 4 bits indicate the
1281 * number of hash functions (if 0, the bloom filter will default
1282 * to using 5 hash functions).
1283 */
1284 __u64 map_extra;
1285 };
1286
1287 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
1288 __u32 map_fd;
1289 __aligned_u64 key;
1290 union {
1291 __aligned_u64 value;
1292 __aligned_u64 next_key;
1293 };
1294 __u64 flags;
1295 };
1296
1297 struct { /* struct used by BPF_MAP_*_BATCH commands */
1298 __aligned_u64 in_batch; /* start batch,
1299 * NULL to start from beginning
1300 */
1301 __aligned_u64 out_batch; /* output: next start batch */
1302 __aligned_u64 keys;
1303 __aligned_u64 values;
1304 __u32 count; /* input/output:
1305 * input: # of key/value
1306 * elements
1307 * output: # of filled elements
1308 */
1309 __u32 map_fd;
1310 __u64 elem_flags;
1311 __u64 flags;
1312 } batch;
1313
1314 struct { /* anonymous struct used by BPF_PROG_LOAD command */
1315 __u32 prog_type; /* one of enum bpf_prog_type */
1316 __u32 insn_cnt;
1317 __aligned_u64 insns;
1318 __aligned_u64 license;
1319 __u32 log_level; /* verbosity level of verifier */
1320 __u32 log_size; /* size of user buffer */
1321 __aligned_u64 log_buf; /* user supplied buffer */
1322 __u32 kern_version; /* not used */
1323 __u32 prog_flags;
1324 char prog_name[BPF_OBJ_NAME_LEN];
1325 __u32 prog_ifindex; /* ifindex of netdev to prep for */
1326 /* For some prog types expected attach type must be known at
1327 * load time to verify attach type specific parts of prog
1328 * (context accesses, allowed helpers, etc).
1329 */
1330 __u32 expected_attach_type;
1331 __u32 prog_btf_fd; /* fd pointing to BTF type data */
1332 __u32 func_info_rec_size; /* userspace bpf_func_info size */
1333 __aligned_u64 func_info; /* func info */
1334 __u32 func_info_cnt; /* number of bpf_func_info records */
1335 __u32 line_info_rec_size; /* userspace bpf_line_info size */
1336 __aligned_u64 line_info; /* line info */
1337 __u32 line_info_cnt; /* number of bpf_line_info records */
1338 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1339 union {
1340 /* valid prog_fd to attach to bpf prog */
1341 __u32 attach_prog_fd;
1342 /* or valid module BTF object fd or 0 to attach to vmlinux */
1343 __u32 attach_btf_obj_fd;
1344 };
1345 __u32 :32; /* pad */
1346 __aligned_u64 fd_array; /* array of FDs */
1347 };
1348
1349 struct { /* anonymous struct used by BPF_OBJ_* commands */
1350 __aligned_u64 pathname;
1351 __u32 bpf_fd;
1352 __u32 file_flags;
1353 };
1354
1355 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
1356 __u32 target_fd; /* container object to attach to */
1357 __u32 attach_bpf_fd; /* eBPF program to attach */
1358 __u32 attach_type;
1359 __u32 attach_flags;
1360 __u32 replace_bpf_fd; /* previously attached eBPF
1361 * program to replace if
1362 * BPF_F_REPLACE is used
1363 */
1364 };
1365
1366 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
1367 __u32 prog_fd;
1368 __u32 retval;
1369 __u32 data_size_in; /* input: len of data_in */
1370 __u32 data_size_out; /* input/output: len of data_out
1371 * returns ENOSPC if data_out
1372 * is too small.
1373 */
1374 __aligned_u64 data_in;
1375 __aligned_u64 data_out;
1376 __u32 repeat;
1377 __u32 duration;
1378 __u32 ctx_size_in; /* input: len of ctx_in */
1379 __u32 ctx_size_out; /* input/output: len of ctx_out
1380 * returns ENOSPC if ctx_out
1381 * is too small.
1382 */
1383 __aligned_u64 ctx_in;
1384 __aligned_u64 ctx_out;
1385 __u32 flags;
1386 __u32 cpu;
1387 } test;
1388
1389 struct { /* anonymous struct used by BPF_*_GET_*_ID */
1390 union {
1391 __u32 start_id;
1392 __u32 prog_id;
1393 __u32 map_id;
1394 __u32 btf_id;
1395 __u32 link_id;
1396 };
1397 __u32 next_id;
1398 __u32 open_flags;
1399 };
1400
1401 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
1402 __u32 bpf_fd;
1403 __u32 info_len;
1404 __aligned_u64 info;
1405 } info;
1406
1407 struct { /* anonymous struct used by BPF_PROG_QUERY command */
1408 __u32 target_fd; /* container object to query */
1409 __u32 attach_type;
1410 __u32 query_flags;
1411 __u32 attach_flags;
1412 __aligned_u64 prog_ids;
1413 __u32 prog_cnt;
1414 } query;
1415
1416 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
1417 __u64 name;
1418 __u32 prog_fd;
1419 } raw_tracepoint;
1420
1421 struct { /* anonymous struct for BPF_BTF_LOAD */
1422 __aligned_u64 btf;
1423 __aligned_u64 btf_log_buf;
1424 __u32 btf_size;
1425 __u32 btf_log_size;
1426 __u32 btf_log_level;
1427 };
1428
1429 struct {
1430 __u32 pid; /* input: pid */
1431 __u32 fd; /* input: fd */
1432 __u32 flags; /* input: flags */
1433 __u32 buf_len; /* input/output: buf len */
1434 __aligned_u64 buf; /* input/output:
1435 * tp_name for tracepoint
1436 * symbol for kprobe
1437 * filename for uprobe
1438 */
1439 __u32 prog_id; /* output: prod_id */
1440 __u32 fd_type; /* output: BPF_FD_TYPE_* */
1441 __u64 probe_offset; /* output: probe_offset */
1442 __u64 probe_addr; /* output: probe_addr */
1443 } task_fd_query;
1444
1445 struct { /* struct used by BPF_LINK_CREATE command */
1446 __u32 prog_fd; /* eBPF program to attach */
1447 union {
1448 __u32 target_fd; /* object to attach to */
1449 __u32 target_ifindex; /* target ifindex */
1450 };
1451 __u32 attach_type; /* attach type */
1452 __u32 flags; /* extra flags */
1453 union {
1454 __u32 target_btf_id; /* btf_id of target to attach to */
1455 struct {
1456 __aligned_u64 iter_info; /* extra bpf_iter_link_info */
1457 __u32 iter_info_len; /* iter_info length */
1458 };
1459 struct {
1460 /* black box user-provided value passed through
1461 * to BPF program at the execution time and
1462 * accessible through bpf_get_attach_cookie() BPF helper
1463 */
1464 __u64 bpf_cookie;
1465 } perf_event;
1466 };
1467 } link_create;
1468
1469 struct { /* struct used by BPF_LINK_UPDATE command */
1470 __u32 link_fd; /* link fd */
1471 /* new program fd to update link with */
1472 __u32 new_prog_fd;
1473 __u32 flags; /* extra flags */
1474 /* expected link's program fd; is specified only if
1475 * BPF_F_REPLACE flag is set in flags */
1476 __u32 old_prog_fd;
1477 } link_update;
1478
1479 struct {
1480 __u32 link_fd;
1481 } link_detach;
1482
1483 struct { /* struct used by BPF_ENABLE_STATS command */
1484 __u32 type;
1485 } enable_stats;
1486
1487 struct { /* struct used by BPF_ITER_CREATE command */
1488 __u32 link_fd;
1489 __u32 flags;
1490 } iter_create;
1491
1492 struct { /* struct used by BPF_PROG_BIND_MAP command */
1493 __u32 prog_fd;
1494 __u32 map_fd;
1495 __u32 flags; /* extra flags */
1496 } prog_bind_map;
1497
1498} __attribute__((aligned(8)));
1499
1500/* The description below is an attempt at providing documentation to eBPF
1501 * developers about the multiple available eBPF helper functions. It can be
1502 * parsed and used to produce a manual page. The workflow is the following,
1503 * and requires the rst2man utility:
1504 *
1505 * $ ./scripts/bpf_doc.py \
1506 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
1507 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
1508 * $ man /tmp/bpf-helpers.7
1509 *
1510 * Note that in order to produce this external documentation, some RST
1511 * formatting is used in the descriptions to get "bold" and "italics" in
1512 * manual pages. Also note that the few trailing white spaces are
1513 * intentional, removing them would break paragraphs for rst2man.
1514 *
1515 * Start of BPF helper function descriptions:
1516 *
1517 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
1518 * Description
1519 * Perform a lookup in *map* for an entry associated to *key*.
1520 * Return
1521 * Map value associated to *key*, or **NULL** if no entry was
1522 * found.
1523 *
1524 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
1525 * Description
1526 * Add or update the value of the entry associated to *key* in
1527 * *map* with *value*. *flags* is one of:
1528 *
1529 * **BPF_NOEXIST**
1530 * The entry for *key* must not exist in the map.
1531 * **BPF_EXIST**
1532 * The entry for *key* must already exist in the map.
1533 * **BPF_ANY**
1534 * No condition on the existence of the entry for *key*.
1535 *
1536 * Flag value **BPF_NOEXIST** cannot be used for maps of types
1537 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
1538 * elements always exist), the helper would return an error.
1539 * Return
1540 * 0 on success, or a negative error in case of failure.
1541 *
1542 * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
1543 * Description
1544 * Delete entry with *key* from *map*.
1545 * Return
1546 * 0 on success, or a negative error in case of failure.
1547 *
1548 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
1549 * Description
1550 * For tracing programs, safely attempt to read *size* bytes from
1551 * kernel space address *unsafe_ptr* and store the data in *dst*.
1552 *
1553 * Generally, use **bpf_probe_read_user**\ () or
1554 * **bpf_probe_read_kernel**\ () instead.
1555 * Return
1556 * 0 on success, or a negative error in case of failure.
1557 *
1558 * u64 bpf_ktime_get_ns(void)
1559 * Description
1560 * Return the time elapsed since system boot, in nanoseconds.
1561 * Does not include time the system was suspended.
1562 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
1563 * Return
1564 * Current *ktime*.
1565 *
1566 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
1567 * Description
1568 * This helper is a "printk()-like" facility for debugging. It
1569 * prints a message defined by format *fmt* (of size *fmt_size*)
1570 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
1571 * available. It can take up to three additional **u64**
1572 * arguments (as an eBPF helpers, the total number of arguments is
1573 * limited to five).
1574 *
1575 * Each time the helper is called, it appends a line to the trace.
1576 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
1577 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
1578 * The format of the trace is customizable, and the exact output
1579 * one will get depends on the options set in
1580 * *\/sys/kernel/debug/tracing/trace_options* (see also the
1581 * *README* file under the same directory). However, it usually
1582 * defaults to something like:
1583 *
1584 * ::
1585 *
1586 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
1587 *
1588 * In the above:
1589 *
1590 * * ``telnet`` is the name of the current task.
1591 * * ``470`` is the PID of the current task.
1592 * * ``001`` is the CPU number on which the task is
1593 * running.
1594 * * In ``.N..``, each character refers to a set of
1595 * options (whether irqs are enabled, scheduling
1596 * options, whether hard/softirqs are running, level of
1597 * preempt_disabled respectively). **N** means that
1598 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
1599 * are set.
1600 * * ``419421.045894`` is a timestamp.
1601 * * ``0x00000001`` is a fake value used by BPF for the
1602 * instruction pointer register.
1603 * * ``<formatted msg>`` is the message formatted with
1604 * *fmt*.
1605 *
1606 * The conversion specifiers supported by *fmt* are similar, but
1607 * more limited than for printk(). They are **%d**, **%i**,
1608 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
1609 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
1610 * of field, padding with zeroes, etc.) is available, and the
1611 * helper will return **-EINVAL** (but print nothing) if it
1612 * encounters an unknown specifier.
1613 *
1614 * Also, note that **bpf_trace_printk**\ () is slow, and should
1615 * only be used for debugging purposes. For this reason, a notice
1616 * block (spanning several lines) is printed to kernel logs and
1617 * states that the helper should not be used "for production use"
1618 * the first time this helper is used (or more precisely, when
1619 * **trace_printk**\ () buffers are allocated). For passing values
1620 * to user space, perf events should be preferred.
1621 * Return
1622 * The number of bytes written to the buffer, or a negative error
1623 * in case of failure.
1624 *
1625 * u32 bpf_get_prandom_u32(void)
1626 * Description
1627 * Get a pseudo-random number.
1628 *
1629 * From a security point of view, this helper uses its own
1630 * pseudo-random internal state, and cannot be used to infer the
1631 * seed of other random functions in the kernel. However, it is
1632 * essential to note that the generator used by the helper is not
1633 * cryptographically secure.
1634 * Return
1635 * A random 32-bit unsigned value.
1636 *
1637 * u32 bpf_get_smp_processor_id(void)
1638 * Description
1639 * Get the SMP (symmetric multiprocessing) processor id. Note that
1640 * all programs run with migration disabled, which means that the
1641 * SMP processor id is stable during all the execution of the
1642 * program.
1643 * Return
1644 * The SMP id of the processor running the program.
1645 *
1646 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
1647 * Description
1648 * Store *len* bytes from address *from* into the packet
1649 * associated to *skb*, at *offset*. *flags* are a combination of
1650 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
1651 * checksum for the packet after storing the bytes) and
1652 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
1653 * **->swhash** and *skb*\ **->l4hash** to 0).
1654 *
1655 * A call to this helper is susceptible to change the underlying
1656 * packet buffer. Therefore, at load time, all checks on pointers
1657 * previously done by the verifier are invalidated and must be
1658 * performed again, if the helper is used in combination with
1659 * direct packet access.
1660 * Return
1661 * 0 on success, or a negative error in case of failure.
1662 *
1663 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
1664 * Description
1665 * Recompute the layer 3 (e.g. IP) checksum for the packet
1666 * associated to *skb*. Computation is incremental, so the helper
1667 * must know the former value of the header field that was
1668 * modified (*from*), the new value of this field (*to*), and the
1669 * number of bytes (2 or 4) for this field, stored in *size*.
1670 * Alternatively, it is possible to store the difference between
1671 * the previous and the new values of the header field in *to*, by
1672 * setting *from* and *size* to 0. For both methods, *offset*
1673 * indicates the location of the IP checksum within the packet.
1674 *
1675 * This helper works in combination with **bpf_csum_diff**\ (),
1676 * which does not update the checksum in-place, but offers more
1677 * flexibility and can handle sizes larger than 2 or 4 for the
1678 * checksum to update.
1679 *
1680 * A call to this helper is susceptible to change the underlying
1681 * packet buffer. Therefore, at load time, all checks on pointers
1682 * previously done by the verifier are invalidated and must be
1683 * performed again, if the helper is used in combination with
1684 * direct packet access.
1685 * Return
1686 * 0 on success, or a negative error in case of failure.
1687 *
1688 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
1689 * Description
1690 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
1691 * packet associated to *skb*. Computation is incremental, so the
1692 * helper must know the former value of the header field that was
1693 * modified (*from*), the new value of this field (*to*), and the
1694 * number of bytes (2 or 4) for this field, stored on the lowest
1695 * four bits of *flags*. Alternatively, it is possible to store
1696 * the difference between the previous and the new values of the
1697 * header field in *to*, by setting *from* and the four lowest
1698 * bits of *flags* to 0. For both methods, *offset* indicates the
1699 * location of the IP checksum within the packet. In addition to
1700 * the size of the field, *flags* can be added (bitwise OR) actual
1701 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
1702 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
1703 * for updates resulting in a null checksum the value is set to
1704 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
1705 * the checksum is to be computed against a pseudo-header.
1706 *
1707 * This helper works in combination with **bpf_csum_diff**\ (),
1708 * which does not update the checksum in-place, but offers more
1709 * flexibility and can handle sizes larger than 2 or 4 for the
1710 * checksum to update.
1711 *
1712 * A call to this helper is susceptible to change the underlying
1713 * packet buffer. Therefore, at load time, all checks on pointers
1714 * previously done by the verifier are invalidated and must be
1715 * performed again, if the helper is used in combination with
1716 * direct packet access.
1717 * Return
1718 * 0 on success, or a negative error in case of failure.
1719 *
1720 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
1721 * Description
1722 * This special helper is used to trigger a "tail call", or in
1723 * other words, to jump into another eBPF program. The same stack
1724 * frame is used (but values on stack and in registers for the
1725 * caller are not accessible to the callee). This mechanism allows
1726 * for program chaining, either for raising the maximum number of
1727 * available eBPF instructions, or to execute given programs in
1728 * conditional blocks. For security reasons, there is an upper
1729 * limit to the number of successive tail calls that can be
1730 * performed.
1731 *
1732 * Upon call of this helper, the program attempts to jump into a
1733 * program referenced at index *index* in *prog_array_map*, a
1734 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
1735 * *ctx*, a pointer to the context.
1736 *
1737 * If the call succeeds, the kernel immediately runs the first
1738 * instruction of the new program. This is not a function call,
1739 * and it never returns to the previous program. If the call
1740 * fails, then the helper has no effect, and the caller continues
1741 * to run its subsequent instructions. A call can fail if the
1742 * destination program for the jump does not exist (i.e. *index*
1743 * is superior to the number of entries in *prog_array_map*), or
1744 * if the maximum number of tail calls has been reached for this
1745 * chain of programs. This limit is defined in the kernel by the
1746 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
1747 * which is currently set to 32.
1748 * Return
1749 * 0 on success, or a negative error in case of failure.
1750 *
1751 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
1752 * Description
1753 * Clone and redirect the packet associated to *skb* to another
1754 * net device of index *ifindex*. Both ingress and egress
1755 * interfaces can be used for redirection. The **BPF_F_INGRESS**
1756 * value in *flags* is used to make the distinction (ingress path
1757 * is selected if the flag is present, egress path otherwise).
1758 * This is the only flag supported for now.
1759 *
1760 * In comparison with **bpf_redirect**\ () helper,
1761 * **bpf_clone_redirect**\ () has the associated cost of
1762 * duplicating the packet buffer, but this can be executed out of
1763 * the eBPF program. Conversely, **bpf_redirect**\ () is more
1764 * efficient, but it is handled through an action code where the
1765 * redirection happens only after the eBPF program has returned.
1766 *
1767 * A call to this helper is susceptible to change the underlying
1768 * packet buffer. Therefore, at load time, all checks on pointers
1769 * previously done by the verifier are invalidated and must be
1770 * performed again, if the helper is used in combination with
1771 * direct packet access.
1772 * Return
1773 * 0 on success, or a negative error in case of failure.
1774 *
1775 * u64 bpf_get_current_pid_tgid(void)
1776 * Return
1777 * A 64-bit integer containing the current tgid and pid, and
1778 * created as such:
1779 * *current_task*\ **->tgid << 32 \|**
1780 * *current_task*\ **->pid**.
1781 *
1782 * u64 bpf_get_current_uid_gid(void)
1783 * Return
1784 * A 64-bit integer containing the current GID and UID, and
1785 * created as such: *current_gid* **<< 32 \|** *current_uid*.
1786 *
1787 * long bpf_get_current_comm(void *buf, u32 size_of_buf)
1788 * Description
1789 * Copy the **comm** attribute of the current task into *buf* of
1790 * *size_of_buf*. The **comm** attribute contains the name of
1791 * the executable (excluding the path) for the current task. The
1792 * *size_of_buf* must be strictly positive. On success, the
1793 * helper makes sure that the *buf* is NUL-terminated. On failure,
1794 * it is filled with zeroes.
1795 * Return
1796 * 0 on success, or a negative error in case of failure.
1797 *
1798 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
1799 * Description
1800 * Retrieve the classid for the current task, i.e. for the net_cls
1801 * cgroup to which *skb* belongs.
1802 *
1803 * This helper can be used on TC egress path, but not on ingress.
1804 *
1805 * The net_cls cgroup provides an interface to tag network packets
1806 * based on a user-provided identifier for all traffic coming from
1807 * the tasks belonging to the related cgroup. See also the related
1808 * kernel documentation, available from the Linux sources in file
1809 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
1810 *
1811 * The Linux kernel has two versions for cgroups: there are
1812 * cgroups v1 and cgroups v2. Both are available to users, who can
1813 * use a mixture of them, but note that the net_cls cgroup is for
1814 * cgroup v1 only. This makes it incompatible with BPF programs
1815 * run on cgroups, which is a cgroup-v2-only feature (a socket can
1816 * only hold data for one version of cgroups at a time).
1817 *
1818 * This helper is only available is the kernel was compiled with
1819 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
1820 * "**y**" or to "**m**".
1821 * Return
1822 * The classid, or 0 for the default unconfigured classid.
1823 *
1824 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
1825 * Description
1826 * Push a *vlan_tci* (VLAN tag control information) of protocol
1827 * *vlan_proto* to the packet associated to *skb*, then update
1828 * the checksum. Note that if *vlan_proto* is different from
1829 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
1830 * be **ETH_P_8021Q**.
1831 *
1832 * A call to this helper is susceptible to change the underlying
1833 * packet buffer. Therefore, at load time, all checks on pointers
1834 * previously done by the verifier are invalidated and must be
1835 * performed again, if the helper is used in combination with
1836 * direct packet access.
1837 * Return
1838 * 0 on success, or a negative error in case of failure.
1839 *
1840 * long bpf_skb_vlan_pop(struct sk_buff *skb)
1841 * Description
1842 * Pop a VLAN header from the packet associated to *skb*.
1843 *
1844 * A call to this helper is susceptible to change the underlying
1845 * packet buffer. Therefore, at load time, all checks on pointers
1846 * previously done by the verifier are invalidated and must be
1847 * performed again, if the helper is used in combination with
1848 * direct packet access.
1849 * Return
1850 * 0 on success, or a negative error in case of failure.
1851 *
1852 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1853 * Description
1854 * Get tunnel metadata. This helper takes a pointer *key* to an
1855 * empty **struct bpf_tunnel_key** of **size**, that will be
1856 * filled with tunnel metadata for the packet associated to *skb*.
1857 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
1858 * indicates that the tunnel is based on IPv6 protocol instead of
1859 * IPv4.
1860 *
1861 * The **struct bpf_tunnel_key** is an object that generalizes the
1862 * principal parameters used by various tunneling protocols into a
1863 * single struct. This way, it can be used to easily make a
1864 * decision based on the contents of the encapsulation header,
1865 * "summarized" in this struct. In particular, it holds the IP
1866 * address of the remote end (IPv4 or IPv6, depending on the case)
1867 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
1868 * this struct exposes the *key*\ **->tunnel_id**, which is
1869 * generally mapped to a VNI (Virtual Network Identifier), making
1870 * it programmable together with the **bpf_skb_set_tunnel_key**\
1871 * () helper.
1872 *
1873 * Let's imagine that the following code is part of a program
1874 * attached to the TC ingress interface, on one end of a GRE
1875 * tunnel, and is supposed to filter out all messages coming from
1876 * remote ends with IPv4 address other than 10.0.0.1:
1877 *
1878 * ::
1879 *
1880 * int ret;
1881 * struct bpf_tunnel_key key = {};
1882 *
1883 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
1884 * if (ret < 0)
1885 * return TC_ACT_SHOT; // drop packet
1886 *
1887 * if (key.remote_ipv4 != 0x0a000001)
1888 * return TC_ACT_SHOT; // drop packet
1889 *
1890 * return TC_ACT_OK; // accept packet
1891 *
1892 * This interface can also be used with all encapsulation devices
1893 * that can operate in "collect metadata" mode: instead of having
1894 * one network device per specific configuration, the "collect
1895 * metadata" mode only requires a single device where the
1896 * configuration can be extracted from this helper.
1897 *
1898 * This can be used together with various tunnels such as VXLan,
1899 * Geneve, GRE or IP in IP (IPIP).
1900 * Return
1901 * 0 on success, or a negative error in case of failure.
1902 *
1903 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1904 * Description
1905 * Populate tunnel metadata for packet associated to *skb.* The
1906 * tunnel metadata is set to the contents of *key*, of *size*. The
1907 * *flags* can be set to a combination of the following values:
1908 *
1909 * **BPF_F_TUNINFO_IPV6**
1910 * Indicate that the tunnel is based on IPv6 protocol
1911 * instead of IPv4.
1912 * **BPF_F_ZERO_CSUM_TX**
1913 * For IPv4 packets, add a flag to tunnel metadata
1914 * indicating that checksum computation should be skipped
1915 * and checksum set to zeroes.
1916 * **BPF_F_DONT_FRAGMENT**
1917 * Add a flag to tunnel metadata indicating that the
1918 * packet should not be fragmented.
1919 * **BPF_F_SEQ_NUMBER**
1920 * Add a flag to tunnel metadata indicating that a
1921 * sequence number should be added to tunnel header before
1922 * sending the packet. This flag was added for GRE
1923 * encapsulation, but might be used with other protocols
1924 * as well in the future.
1925 *
1926 * Here is a typical usage on the transmit path:
1927 *
1928 * ::
1929 *
1930 * struct bpf_tunnel_key key;
1931 * populate key ...
1932 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
1933 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
1934 *
1935 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
1936 * helper for additional information.
1937 * Return
1938 * 0 on success, or a negative error in case of failure.
1939 *
1940 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1941 * Description
1942 * Read the value of a perf event counter. This helper relies on a
1943 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1944 * the perf event counter is selected when *map* is updated with
1945 * perf event file descriptors. The *map* is an array whose size
1946 * is the number of available CPUs, and each cell contains a value
1947 * relative to one CPU. The value to retrieve is indicated by
1948 * *flags*, that contains the index of the CPU to look up, masked
1949 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1950 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1951 * current CPU should be retrieved.
1952 *
1953 * Note that before Linux 4.13, only hardware perf event can be
1954 * retrieved.
1955 *
1956 * Also, be aware that the newer helper
1957 * **bpf_perf_event_read_value**\ () is recommended over
1958 * **bpf_perf_event_read**\ () in general. The latter has some ABI
1959 * quirks where error and counter value are used as a return code
1960 * (which is wrong to do since ranges may overlap). This issue is
1961 * fixed with **bpf_perf_event_read_value**\ (), which at the same
1962 * time provides more features over the **bpf_perf_event_read**\
1963 * () interface. Please refer to the description of
1964 * **bpf_perf_event_read_value**\ () for details.
1965 * Return
1966 * The value of the perf event counter read from the map, or a
1967 * negative error code in case of failure.
1968 *
1969 * long bpf_redirect(u32 ifindex, u64 flags)
1970 * Description
1971 * Redirect the packet to another net device of index *ifindex*.
1972 * This helper is somewhat similar to **bpf_clone_redirect**\
1973 * (), except that the packet is not cloned, which provides
1974 * increased performance.
1975 *
1976 * Except for XDP, both ingress and egress interfaces can be used
1977 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
1978 * to make the distinction (ingress path is selected if the flag
1979 * is present, egress path otherwise). Currently, XDP only
1980 * supports redirection to the egress interface, and accepts no
1981 * flag at all.
1982 *
1983 * The same effect can also be attained with the more generic
1984 * **bpf_redirect_map**\ (), which uses a BPF map to store the
1985 * redirect target instead of providing it directly to the helper.
1986 * Return
1987 * For XDP, the helper returns **XDP_REDIRECT** on success or
1988 * **XDP_ABORTED** on error. For other program types, the values
1989 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1990 * error.
1991 *
1992 * u32 bpf_get_route_realm(struct sk_buff *skb)
1993 * Description
1994 * Retrieve the realm or the route, that is to say the
1995 * **tclassid** field of the destination for the *skb*. The
1996 * identifier retrieved is a user-provided tag, similar to the
1997 * one used with the net_cls cgroup (see description for
1998 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
1999 * held by a route (a destination entry), not by a task.
2000 *
2001 * Retrieving this identifier works with the clsact TC egress hook
2002 * (see also **tc-bpf(8)**), or alternatively on conventional
2003 * classful egress qdiscs, but not on TC ingress path. In case of
2004 * clsact TC egress hook, this has the advantage that, internally,
2005 * the destination entry has not been dropped yet in the transmit
2006 * path. Therefore, the destination entry does not need to be
2007 * artificially held via **netif_keep_dst**\ () for a classful
2008 * qdisc until the *skb* is freed.
2009 *
2010 * This helper is available only if the kernel was compiled with
2011 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
2012 * Return
2013 * The realm of the route for the packet associated to *skb*, or 0
2014 * if none was found.
2015 *
2016 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2017 * Description
2018 * Write raw *data* blob into a special BPF perf event held by
2019 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2020 * event must have the following attributes: **PERF_SAMPLE_RAW**
2021 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2022 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2023 *
2024 * The *flags* are used to indicate the index in *map* for which
2025 * the value must be put, masked with **BPF_F_INDEX_MASK**.
2026 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2027 * to indicate that the index of the current CPU core should be
2028 * used.
2029 *
2030 * The value to write, of *size*, is passed through eBPF stack and
2031 * pointed by *data*.
2032 *
2033 * The context of the program *ctx* needs also be passed to the
2034 * helper.
2035 *
2036 * On user space, a program willing to read the values needs to
2037 * call **perf_event_open**\ () on the perf event (either for
2038 * one or for all CPUs) and to store the file descriptor into the
2039 * *map*. This must be done before the eBPF program can send data
2040 * into it. An example is available in file
2041 * *samples/bpf/trace_output_user.c* in the Linux kernel source
2042 * tree (the eBPF program counterpart is in
2043 * *samples/bpf/trace_output_kern.c*).
2044 *
2045 * **bpf_perf_event_output**\ () achieves better performance
2046 * than **bpf_trace_printk**\ () for sharing data with user
2047 * space, and is much better suitable for streaming data from eBPF
2048 * programs.
2049 *
2050 * Note that this helper is not restricted to tracing use cases
2051 * and can be used with programs attached to TC or XDP as well,
2052 * where it allows for passing data to user space listeners. Data
2053 * can be:
2054 *
2055 * * Only custom structs,
2056 * * Only the packet payload, or
2057 * * A combination of both.
2058 * Return
2059 * 0 on success, or a negative error in case of failure.
2060 *
2061 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
2062 * Description
2063 * This helper was provided as an easy way to load data from a
2064 * packet. It can be used to load *len* bytes from *offset* from
2065 * the packet associated to *skb*, into the buffer pointed by
2066 * *to*.
2067 *
2068 * Since Linux 4.7, usage of this helper has mostly been replaced
2069 * by "direct packet access", enabling packet data to be
2070 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
2071 * pointing respectively to the first byte of packet data and to
2072 * the byte after the last byte of packet data. However, it
2073 * remains useful if one wishes to read large quantities of data
2074 * at once from a packet into the eBPF stack.
2075 * Return
2076 * 0 on success, or a negative error in case of failure.
2077 *
2078 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
2079 * Description
2080 * Walk a user or a kernel stack and return its id. To achieve
2081 * this, the helper needs *ctx*, which is a pointer to the context
2082 * on which the tracing program is executed, and a pointer to a
2083 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
2084 *
2085 * The last argument, *flags*, holds the number of stack frames to
2086 * skip (from 0 to 255), masked with
2087 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2088 * a combination of the following flags:
2089 *
2090 * **BPF_F_USER_STACK**
2091 * Collect a user space stack instead of a kernel stack.
2092 * **BPF_F_FAST_STACK_CMP**
2093 * Compare stacks by hash only.
2094 * **BPF_F_REUSE_STACKID**
2095 * If two different stacks hash into the same *stackid*,
2096 * discard the old one.
2097 *
2098 * The stack id retrieved is a 32 bit long integer handle which
2099 * can be further combined with other data (including other stack
2100 * ids) and used as a key into maps. This can be useful for
2101 * generating a variety of graphs (such as flame graphs or off-cpu
2102 * graphs).
2103 *
2104 * For walking a stack, this helper is an improvement over
2105 * **bpf_probe_read**\ (), which can be used with unrolled loops
2106 * but is not efficient and consumes a lot of eBPF instructions.
2107 * Instead, **bpf_get_stackid**\ () can collect up to
2108 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
2109 * this limit can be controlled with the **sysctl** program, and
2110 * that it should be manually increased in order to profile long
2111 * user stacks (such as stacks for Java programs). To do so, use:
2112 *
2113 * ::
2114 *
2115 * # sysctl kernel.perf_event_max_stack=<new value>
2116 * Return
2117 * The positive or null stack id on success, or a negative error
2118 * in case of failure.
2119 *
2120 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
2121 * Description
2122 * Compute a checksum difference, from the raw buffer pointed by
2123 * *from*, of length *from_size* (that must be a multiple of 4),
2124 * towards the raw buffer pointed by *to*, of size *to_size*
2125 * (same remark). An optional *seed* can be added to the value
2126 * (this can be cascaded, the seed may come from a previous call
2127 * to the helper).
2128 *
2129 * This is flexible enough to be used in several ways:
2130 *
2131 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
2132 * checksum, it can be used when pushing new data.
2133 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
2134 * checksum, it can be used when removing data from a packet.
2135 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
2136 * can be used to compute a diff. Note that *from_size* and
2137 * *to_size* do not need to be equal.
2138 *
2139 * This helper can be used in combination with
2140 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
2141 * which one can feed in the difference computed with
2142 * **bpf_csum_diff**\ ().
2143 * Return
2144 * The checksum result, or a negative error code in case of
2145 * failure.
2146 *
2147 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2148 * Description
2149 * Retrieve tunnel options metadata for the packet associated to
2150 * *skb*, and store the raw tunnel option data to the buffer *opt*
2151 * of *size*.
2152 *
2153 * This helper can be used with encapsulation devices that can
2154 * operate in "collect metadata" mode (please refer to the related
2155 * note in the description of **bpf_skb_get_tunnel_key**\ () for
2156 * more details). A particular example where this can be used is
2157 * in combination with the Geneve encapsulation protocol, where it
2158 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
2159 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
2160 * the eBPF program. This allows for full customization of these
2161 * headers.
2162 * Return
2163 * The size of the option data retrieved.
2164 *
2165 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2166 * Description
2167 * Set tunnel options metadata for the packet associated to *skb*
2168 * to the option data contained in the raw buffer *opt* of *size*.
2169 *
2170 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
2171 * helper for additional information.
2172 * Return
2173 * 0 on success, or a negative error in case of failure.
2174 *
2175 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
2176 * Description
2177 * Change the protocol of the *skb* to *proto*. Currently
2178 * supported are transition from IPv4 to IPv6, and from IPv6 to
2179 * IPv4. The helper takes care of the groundwork for the
2180 * transition, including resizing the socket buffer. The eBPF
2181 * program is expected to fill the new headers, if any, via
2182 * **skb_store_bytes**\ () and to recompute the checksums with
2183 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
2184 * (). The main case for this helper is to perform NAT64
2185 * operations out of an eBPF program.
2186 *
2187 * Internally, the GSO type is marked as dodgy so that headers are
2188 * checked and segments are recalculated by the GSO/GRO engine.
2189 * The size for GSO target is adapted as well.
2190 *
2191 * All values for *flags* are reserved for future usage, and must
2192 * be left at zero.
2193 *
2194 * A call to this helper is susceptible to change the underlying
2195 * packet buffer. Therefore, at load time, all checks on pointers
2196 * previously done by the verifier are invalidated and must be
2197 * performed again, if the helper is used in combination with
2198 * direct packet access.
2199 * Return
2200 * 0 on success, or a negative error in case of failure.
2201 *
2202 * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
2203 * Description
2204 * Change the packet type for the packet associated to *skb*. This
2205 * comes down to setting *skb*\ **->pkt_type** to *type*, except
2206 * the eBPF program does not have a write access to *skb*\
2207 * **->pkt_type** beside this helper. Using a helper here allows
2208 * for graceful handling of errors.
2209 *
2210 * The major use case is to change incoming *skb*s to
2211 * **PACKET_HOST** in a programmatic way instead of having to
2212 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
2213 * example.
2214 *
2215 * Note that *type* only allows certain values. At this time, they
2216 * are:
2217 *
2218 * **PACKET_HOST**
2219 * Packet is for us.
2220 * **PACKET_BROADCAST**
2221 * Send packet to all.
2222 * **PACKET_MULTICAST**
2223 * Send packet to group.
2224 * **PACKET_OTHERHOST**
2225 * Send packet to someone else.
2226 * Return
2227 * 0 on success, or a negative error in case of failure.
2228 *
2229 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
2230 * Description
2231 * Check whether *skb* is a descendant of the cgroup2 held by
2232 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2233 * Return
2234 * The return value depends on the result of the test, and can be:
2235 *
2236 * * 0, if the *skb* failed the cgroup2 descendant test.
2237 * * 1, if the *skb* succeeded the cgroup2 descendant test.
2238 * * A negative error code, if an error occurred.
2239 *
2240 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
2241 * Description
2242 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
2243 * not set, in particular if the hash was cleared due to mangling,
2244 * recompute this hash. Later accesses to the hash can be done
2245 * directly with *skb*\ **->hash**.
2246 *
2247 * Calling **bpf_set_hash_invalid**\ (), changing a packet
2248 * prototype with **bpf_skb_change_proto**\ (), or calling
2249 * **bpf_skb_store_bytes**\ () with the
2250 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
2251 * the hash and to trigger a new computation for the next call to
2252 * **bpf_get_hash_recalc**\ ().
2253 * Return
2254 * The 32-bit hash.
2255 *
2256 * u64 bpf_get_current_task(void)
2257 * Return
2258 * A pointer to the current task struct.
2259 *
2260 * long bpf_probe_write_user(void *dst, const void *src, u32 len)
2261 * Description
2262 * Attempt in a safe way to write *len* bytes from the buffer
2263 * *src* to *dst* in memory. It only works for threads that are in
2264 * user context, and *dst* must be a valid user space address.
2265 *
2266 * This helper should not be used to implement any kind of
2267 * security mechanism because of TOC-TOU attacks, but rather to
2268 * debug, divert, and manipulate execution of semi-cooperative
2269 * processes.
2270 *
2271 * Keep in mind that this feature is meant for experiments, and it
2272 * has a risk of crashing the system and running programs.
2273 * Therefore, when an eBPF program using this helper is attached,
2274 * a warning including PID and process name is printed to kernel
2275 * logs.
2276 * Return
2277 * 0 on success, or a negative error in case of failure.
2278 *
2279 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
2280 * Description
2281 * Check whether the probe is being run is the context of a given
2282 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
2283 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2284 * Return
2285 * The return value depends on the result of the test, and can be:
2286 *
2287 * * 0, if current task belongs to the cgroup2.
2288 * * 1, if current task does not belong to the cgroup2.
2289 * * A negative error code, if an error occurred.
2290 *
2291 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
2292 * Description
2293 * Resize (trim or grow) the packet associated to *skb* to the
2294 * new *len*. The *flags* are reserved for future usage, and must
2295 * be left at zero.
2296 *
2297 * The basic idea is that the helper performs the needed work to
2298 * change the size of the packet, then the eBPF program rewrites
2299 * the rest via helpers like **bpf_skb_store_bytes**\ (),
2300 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
2301 * and others. This helper is a slow path utility intended for
2302 * replies with control messages. And because it is targeted for
2303 * slow path, the helper itself can afford to be slow: it
2304 * implicitly linearizes, unclones and drops offloads from the
2305 * *skb*.
2306 *
2307 * A call to this helper is susceptible to change the underlying
2308 * packet buffer. Therefore, at load time, all checks on pointers
2309 * previously done by the verifier are invalidated and must be
2310 * performed again, if the helper is used in combination with
2311 * direct packet access.
2312 * Return
2313 * 0 on success, or a negative error in case of failure.
2314 *
2315 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
2316 * Description
2317 * Pull in non-linear data in case the *skb* is non-linear and not
2318 * all of *len* are part of the linear section. Make *len* bytes
2319 * from *skb* readable and writable. If a zero value is passed for
2320 * *len*, then the whole length of the *skb* is pulled.
2321 *
2322 * This helper is only needed for reading and writing with direct
2323 * packet access.
2324 *
2325 * For direct packet access, testing that offsets to access
2326 * are within packet boundaries (test on *skb*\ **->data_end**) is
2327 * susceptible to fail if offsets are invalid, or if the requested
2328 * data is in non-linear parts of the *skb*. On failure the
2329 * program can just bail out, or in the case of a non-linear
2330 * buffer, use a helper to make the data available. The
2331 * **bpf_skb_load_bytes**\ () helper is a first solution to access
2332 * the data. Another one consists in using **bpf_skb_pull_data**
2333 * to pull in once the non-linear parts, then retesting and
2334 * eventually access the data.
2335 *
2336 * At the same time, this also makes sure the *skb* is uncloned,
2337 * which is a necessary condition for direct write. As this needs
2338 * to be an invariant for the write part only, the verifier
2339 * detects writes and adds a prologue that is calling
2340 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
2341 * the very beginning in case it is indeed cloned.
2342 *
2343 * A call to this helper is susceptible to change the underlying
2344 * packet buffer. Therefore, at load time, all checks on pointers
2345 * previously done by the verifier are invalidated and must be
2346 * performed again, if the helper is used in combination with
2347 * direct packet access.
2348 * Return
2349 * 0 on success, or a negative error in case of failure.
2350 *
2351 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
2352 * Description
2353 * Add the checksum *csum* into *skb*\ **->csum** in case the
2354 * driver has supplied a checksum for the entire packet into that
2355 * field. Return an error otherwise. This helper is intended to be
2356 * used in combination with **bpf_csum_diff**\ (), in particular
2357 * when the checksum needs to be updated after data has been
2358 * written into the packet through direct packet access.
2359 * Return
2360 * The checksum on success, or a negative error code in case of
2361 * failure.
2362 *
2363 * void bpf_set_hash_invalid(struct sk_buff *skb)
2364 * Description
2365 * Invalidate the current *skb*\ **->hash**. It can be used after
2366 * mangling on headers through direct packet access, in order to
2367 * indicate that the hash is outdated and to trigger a
2368 * recalculation the next time the kernel tries to access this
2369 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
2370 *
2371 * long bpf_get_numa_node_id(void)
2372 * Description
2373 * Return the id of the current NUMA node. The primary use case
2374 * for this helper is the selection of sockets for the local NUMA
2375 * node, when the program is attached to sockets using the
2376 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
2377 * but the helper is also available to other eBPF program types,
2378 * similarly to **bpf_get_smp_processor_id**\ ().
2379 * Return
2380 * The id of current NUMA node.
2381 *
2382 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
2383 * Description
2384 * Grows headroom of packet associated to *skb* and adjusts the
2385 * offset of the MAC header accordingly, adding *len* bytes of
2386 * space. It automatically extends and reallocates memory as
2387 * required.
2388 *
2389 * This helper can be used on a layer 3 *skb* to push a MAC header
2390 * for redirection into a layer 2 device.
2391 *
2392 * All values for *flags* are reserved for future usage, and must
2393 * be left at zero.
2394 *
2395 * A call to this helper is susceptible to change the underlying
2396 * packet buffer. Therefore, at load time, all checks on pointers
2397 * previously done by the verifier are invalidated and must be
2398 * performed again, if the helper is used in combination with
2399 * direct packet access.
2400 * Return
2401 * 0 on success, or a negative error in case of failure.
2402 *
2403 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
2404 * Description
2405 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
2406 * it is possible to use a negative value for *delta*. This helper
2407 * can be used to prepare the packet for pushing or popping
2408 * headers.
2409 *
2410 * A call to this helper is susceptible to change the underlying
2411 * packet buffer. Therefore, at load time, all checks on pointers
2412 * previously done by the verifier are invalidated and must be
2413 * performed again, if the helper is used in combination with
2414 * direct packet access.
2415 * Return
2416 * 0 on success, or a negative error in case of failure.
2417 *
2418 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
2419 * Description
2420 * Copy a NUL terminated string from an unsafe kernel address
2421 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
2422 * more details.
2423 *
2424 * Generally, use **bpf_probe_read_user_str**\ () or
2425 * **bpf_probe_read_kernel_str**\ () instead.
2426 * Return
2427 * On success, the strictly positive length of the string,
2428 * including the trailing NUL character. On error, a negative
2429 * value.
2430 *
2431 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
2432 * Description
2433 * If the **struct sk_buff** pointed by *skb* has a known socket,
2434 * retrieve the cookie (generated by the kernel) of this socket.
2435 * If no cookie has been set yet, generate a new cookie. Once
2436 * generated, the socket cookie remains stable for the life of the
2437 * socket. This helper can be useful for monitoring per socket
2438 * networking traffic statistics as it provides a global socket
2439 * identifier that can be assumed unique.
2440 * Return
2441 * A 8-byte long unique number on success, or 0 if the socket
2442 * field is missing inside *skb*.
2443 *
2444 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
2445 * Description
2446 * Equivalent to bpf_get_socket_cookie() helper that accepts
2447 * *skb*, but gets socket from **struct bpf_sock_addr** context.
2448 * Return
2449 * A 8-byte long unique number.
2450 *
2451 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
2452 * Description
2453 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2454 * *skb*, but gets socket from **struct bpf_sock_ops** context.
2455 * Return
2456 * A 8-byte long unique number.
2457 *
2458 * u64 bpf_get_socket_cookie(struct sock *sk)
2459 * Description
2460 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2461 * *sk*, but gets socket from a BTF **struct sock**. This helper
2462 * also works for sleepable programs.
2463 * Return
2464 * A 8-byte long unique number or 0 if *sk* is NULL.
2465 *
2466 * u32 bpf_get_socket_uid(struct sk_buff *skb)
2467 * Return
2468 * The owner UID of the socket associated to *skb*. If the socket
2469 * is **NULL**, or if it is not a full socket (i.e. if it is a
2470 * time-wait or a request socket instead), **overflowuid** value
2471 * is returned (note that **overflowuid** might also be the actual
2472 * UID value for the socket).
2473 *
2474 * long bpf_set_hash(struct sk_buff *skb, u32 hash)
2475 * Description
2476 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
2477 * to value *hash*.
2478 * Return
2479 * 0
2480 *
2481 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2482 * Description
2483 * Emulate a call to **setsockopt()** on the socket associated to
2484 * *bpf_socket*, which must be a full socket. The *level* at
2485 * which the option resides and the name *optname* of the option
2486 * must be specified, see **setsockopt(2)** for more information.
2487 * The option value of length *optlen* is pointed by *optval*.
2488 *
2489 * *bpf_socket* should be one of the following:
2490 *
2491 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2492 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
2493 * and **BPF_CGROUP_INET6_CONNECT**.
2494 *
2495 * This helper actually implements a subset of **setsockopt()**.
2496 * It supports the following *level*\ s:
2497 *
2498 * * **SOL_SOCKET**, which supports the following *optname*\ s:
2499 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
2500 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
2501 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**.
2502 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
2503 * **TCP_CONGESTION**, **TCP_BPF_IW**,
2504 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
2505 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
2506 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**.
2507 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2508 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
2509 * Return
2510 * 0 on success, or a negative error in case of failure.
2511 *
2512 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
2513 * Description
2514 * Grow or shrink the room for data in the packet associated to
2515 * *skb* by *len_diff*, and according to the selected *mode*.
2516 *
2517 * By default, the helper will reset any offloaded checksum
2518 * indicator of the skb to CHECKSUM_NONE. This can be avoided
2519 * by the following flag:
2520 *
2521 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
2522 * checksum data of the skb to CHECKSUM_NONE.
2523 *
2524 * There are two supported modes at this time:
2525 *
2526 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
2527 * (room space is added or removed below the layer 2 header).
2528 *
2529 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
2530 * (room space is added or removed below the layer 3 header).
2531 *
2532 * The following flags are supported at this time:
2533 *
2534 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
2535 * Adjusting mss in this way is not allowed for datagrams.
2536 *
2537 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
2538 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
2539 * Any new space is reserved to hold a tunnel header.
2540 * Configure skb offsets and other fields accordingly.
2541 *
2542 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
2543 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
2544 * Use with ENCAP_L3 flags to further specify the tunnel type.
2545 *
2546 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
2547 * Use with ENCAP_L3/L4 flags to further specify the tunnel
2548 * type; *len* is the length of the inner MAC header.
2549 *
2550 * * **BPF_F_ADJ_ROOM_ENCAP_L2_ETH**:
2551 * Use with BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the
2552 * L2 type as Ethernet.
2553 *
2554 * A call to this helper is susceptible to change the underlying
2555 * packet buffer. Therefore, at load time, all checks on pointers
2556 * previously done by the verifier are invalidated and must be
2557 * performed again, if the helper is used in combination with
2558 * direct packet access.
2559 * Return
2560 * 0 on success, or a negative error in case of failure.
2561 *
2562 * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
2563 * Description
2564 * Redirect the packet to the endpoint referenced by *map* at
2565 * index *key*. Depending on its type, this *map* can contain
2566 * references to net devices (for forwarding packets through other
2567 * ports), or to CPUs (for redirecting XDP frames to another CPU;
2568 * but this is only implemented for native XDP (with driver
2569 * support) as of this writing).
2570 *
2571 * The lower two bits of *flags* are used as the return code if
2572 * the map lookup fails. This is so that the return value can be
2573 * one of the XDP program return codes up to **XDP_TX**, as chosen
2574 * by the caller. The higher bits of *flags* can be set to
2575 * BPF_F_BROADCAST or BPF_F_EXCLUDE_INGRESS as defined below.
2576 *
2577 * With BPF_F_BROADCAST the packet will be broadcasted to all the
2578 * interfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress
2579 * interface will be excluded when do broadcasting.
2580 *
2581 * See also **bpf_redirect**\ (), which only supports redirecting
2582 * to an ifindex, but doesn't require a map to do so.
2583 * Return
2584 * **XDP_REDIRECT** on success, or the value of the two lower bits
2585 * of the *flags* argument on error.
2586 *
2587 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
2588 * Description
2589 * Redirect the packet to the socket referenced by *map* (of type
2590 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2591 * egress interfaces can be used for redirection. The
2592 * **BPF_F_INGRESS** value in *flags* is used to make the
2593 * distinction (ingress path is selected if the flag is present,
2594 * egress path otherwise). This is the only flag supported for now.
2595 * Return
2596 * **SK_PASS** on success, or **SK_DROP** on error.
2597 *
2598 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2599 * Description
2600 * Add an entry to, or update a *map* referencing sockets. The
2601 * *skops* is used as a new value for the entry associated to
2602 * *key*. *flags* is one of:
2603 *
2604 * **BPF_NOEXIST**
2605 * The entry for *key* must not exist in the map.
2606 * **BPF_EXIST**
2607 * The entry for *key* must already exist in the map.
2608 * **BPF_ANY**
2609 * No condition on the existence of the entry for *key*.
2610 *
2611 * If the *map* has eBPF programs (parser and verdict), those will
2612 * be inherited by the socket being added. If the socket is
2613 * already attached to eBPF programs, this results in an error.
2614 * Return
2615 * 0 on success, or a negative error in case of failure.
2616 *
2617 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
2618 * Description
2619 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
2620 * *delta* (which can be positive or negative). Note that this
2621 * operation modifies the address stored in *xdp_md*\ **->data**,
2622 * so the latter must be loaded only after the helper has been
2623 * called.
2624 *
2625 * The use of *xdp_md*\ **->data_meta** is optional and programs
2626 * are not required to use it. The rationale is that when the
2627 * packet is processed with XDP (e.g. as DoS filter), it is
2628 * possible to push further meta data along with it before passing
2629 * to the stack, and to give the guarantee that an ingress eBPF
2630 * program attached as a TC classifier on the same device can pick
2631 * this up for further post-processing. Since TC works with socket
2632 * buffers, it remains possible to set from XDP the **mark** or
2633 * **priority** pointers, or other pointers for the socket buffer.
2634 * Having this scratch space generic and programmable allows for
2635 * more flexibility as the user is free to store whatever meta
2636 * data they need.
2637 *
2638 * A call to this helper is susceptible to change the underlying
2639 * packet buffer. Therefore, at load time, all checks on pointers
2640 * previously done by the verifier are invalidated and must be
2641 * performed again, if the helper is used in combination with
2642 * direct packet access.
2643 * Return
2644 * 0 on success, or a negative error in case of failure.
2645 *
2646 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
2647 * Description
2648 * Read the value of a perf event counter, and store it into *buf*
2649 * of size *buf_size*. This helper relies on a *map* of type
2650 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
2651 * counter is selected when *map* is updated with perf event file
2652 * descriptors. The *map* is an array whose size is the number of
2653 * available CPUs, and each cell contains a value relative to one
2654 * CPU. The value to retrieve is indicated by *flags*, that
2655 * contains the index of the CPU to look up, masked with
2656 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
2657 * **BPF_F_CURRENT_CPU** to indicate that the value for the
2658 * current CPU should be retrieved.
2659 *
2660 * This helper behaves in a way close to
2661 * **bpf_perf_event_read**\ () helper, save that instead of
2662 * just returning the value observed, it fills the *buf*
2663 * structure. This allows for additional data to be retrieved: in
2664 * particular, the enabled and running times (in *buf*\
2665 * **->enabled** and *buf*\ **->running**, respectively) are
2666 * copied. In general, **bpf_perf_event_read_value**\ () is
2667 * recommended over **bpf_perf_event_read**\ (), which has some
2668 * ABI issues and provides fewer functionalities.
2669 *
2670 * These values are interesting, because hardware PMU (Performance
2671 * Monitoring Unit) counters are limited resources. When there are
2672 * more PMU based perf events opened than available counters,
2673 * kernel will multiplex these events so each event gets certain
2674 * percentage (but not all) of the PMU time. In case that
2675 * multiplexing happens, the number of samples or counter value
2676 * will not reflect the case compared to when no multiplexing
2677 * occurs. This makes comparison between different runs difficult.
2678 * Typically, the counter value should be normalized before
2679 * comparing to other experiments. The usual normalization is done
2680 * as follows.
2681 *
2682 * ::
2683 *
2684 * normalized_counter = counter * t_enabled / t_running
2685 *
2686 * Where t_enabled is the time enabled for event and t_running is
2687 * the time running for event since last normalization. The
2688 * enabled and running times are accumulated since the perf event
2689 * open. To achieve scaling factor between two invocations of an
2690 * eBPF program, users can use CPU id as the key (which is
2691 * typical for perf array usage model) to remember the previous
2692 * value and do the calculation inside the eBPF program.
2693 * Return
2694 * 0 on success, or a negative error in case of failure.
2695 *
2696 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
2697 * Description
2698 * For en eBPF program attached to a perf event, retrieve the
2699 * value of the event counter associated to *ctx* and store it in
2700 * the structure pointed by *buf* and of size *buf_size*. Enabled
2701 * and running times are also stored in the structure (see
2702 * description of helper **bpf_perf_event_read_value**\ () for
2703 * more details).
2704 * Return
2705 * 0 on success, or a negative error in case of failure.
2706 *
2707 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2708 * Description
2709 * Emulate a call to **getsockopt()** on the socket associated to
2710 * *bpf_socket*, which must be a full socket. The *level* at
2711 * which the option resides and the name *optname* of the option
2712 * must be specified, see **getsockopt(2)** for more information.
2713 * The retrieved value is stored in the structure pointed by
2714 * *opval* and of length *optlen*.
2715 *
2716 * *bpf_socket* should be one of the following:
2717 *
2718 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2719 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
2720 * and **BPF_CGROUP_INET6_CONNECT**.
2721 *
2722 * This helper actually implements a subset of **getsockopt()**.
2723 * It supports the following *level*\ s:
2724 *
2725 * * **IPPROTO_TCP**, which supports *optname*
2726 * **TCP_CONGESTION**.
2727 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2728 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
2729 * Return
2730 * 0 on success, or a negative error in case of failure.
2731 *
2732 * long bpf_override_return(struct pt_regs *regs, u64 rc)
2733 * Description
2734 * Used for error injection, this helper uses kprobes to override
2735 * the return value of the probed function, and to set it to *rc*.
2736 * The first argument is the context *regs* on which the kprobe
2737 * works.
2738 *
2739 * This helper works by setting the PC (program counter)
2740 * to an override function which is run in place of the original
2741 * probed function. This means the probed function is not run at
2742 * all. The replacement function just returns with the required
2743 * value.
2744 *
2745 * This helper has security implications, and thus is subject to
2746 * restrictions. It is only available if the kernel was compiled
2747 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
2748 * option, and in this case it only works on functions tagged with
2749 * **ALLOW_ERROR_INJECTION** in the kernel code.
2750 *
2751 * Also, the helper is only available for the architectures having
2752 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
2753 * x86 architecture is the only one to support this feature.
2754 * Return
2755 * 0
2756 *
2757 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
2758 * Description
2759 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
2760 * for the full TCP socket associated to *bpf_sock_ops* to
2761 * *argval*.
2762 *
2763 * The primary use of this field is to determine if there should
2764 * be calls to eBPF programs of type
2765 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
2766 * code. A program of the same type can change its value, per
2767 * connection and as necessary, when the connection is
2768 * established. This field is directly accessible for reading, but
2769 * this helper must be used for updates in order to return an
2770 * error if an eBPF program tries to set a callback that is not
2771 * supported in the current kernel.
2772 *
2773 * *argval* is a flag array which can combine these flags:
2774 *
2775 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
2776 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
2777 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
2778 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
2779 *
2780 * Therefore, this function can be used to clear a callback flag by
2781 * setting the appropriate bit to zero. e.g. to disable the RTO
2782 * callback:
2783 *
2784 * **bpf_sock_ops_cb_flags_set(bpf_sock,**
2785 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
2786 *
2787 * Here are some examples of where one could call such eBPF
2788 * program:
2789 *
2790 * * When RTO fires.
2791 * * When a packet is retransmitted.
2792 * * When the connection terminates.
2793 * * When a packet is sent.
2794 * * When a packet is received.
2795 * Return
2796 * Code **-EINVAL** if the socket is not a full TCP socket;
2797 * otherwise, a positive number containing the bits that could not
2798 * be set is returned (which comes down to 0 if all bits were set
2799 * as required).
2800 *
2801 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
2802 * Description
2803 * This helper is used in programs implementing policies at the
2804 * socket level. If the message *msg* is allowed to pass (i.e. if
2805 * the verdict eBPF program returns **SK_PASS**), redirect it to
2806 * the socket referenced by *map* (of type
2807 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2808 * egress interfaces can be used for redirection. The
2809 * **BPF_F_INGRESS** value in *flags* is used to make the
2810 * distinction (ingress path is selected if the flag is present,
2811 * egress path otherwise). This is the only flag supported for now.
2812 * Return
2813 * **SK_PASS** on success, or **SK_DROP** on error.
2814 *
2815 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
2816 * Description
2817 * For socket policies, apply the verdict of the eBPF program to
2818 * the next *bytes* (number of bytes) of message *msg*.
2819 *
2820 * For example, this helper can be used in the following cases:
2821 *
2822 * * A single **sendmsg**\ () or **sendfile**\ () system call
2823 * contains multiple logical messages that the eBPF program is
2824 * supposed to read and for which it should apply a verdict.
2825 * * An eBPF program only cares to read the first *bytes* of a
2826 * *msg*. If the message has a large payload, then setting up
2827 * and calling the eBPF program repeatedly for all bytes, even
2828 * though the verdict is already known, would create unnecessary
2829 * overhead.
2830 *
2831 * When called from within an eBPF program, the helper sets a
2832 * counter internal to the BPF infrastructure, that is used to
2833 * apply the last verdict to the next *bytes*. If *bytes* is
2834 * smaller than the current data being processed from a
2835 * **sendmsg**\ () or **sendfile**\ () system call, the first
2836 * *bytes* will be sent and the eBPF program will be re-run with
2837 * the pointer for start of data pointing to byte number *bytes*
2838 * **+ 1**. If *bytes* is larger than the current data being
2839 * processed, then the eBPF verdict will be applied to multiple
2840 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
2841 * consumed.
2842 *
2843 * Note that if a socket closes with the internal counter holding
2844 * a non-zero value, this is not a problem because data is not
2845 * being buffered for *bytes* and is sent as it is received.
2846 * Return
2847 * 0
2848 *
2849 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
2850 * Description
2851 * For socket policies, prevent the execution of the verdict eBPF
2852 * program for message *msg* until *bytes* (byte number) have been
2853 * accumulated.
2854 *
2855 * This can be used when one needs a specific number of bytes
2856 * before a verdict can be assigned, even if the data spans
2857 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
2858 * case would be a user calling **sendmsg**\ () repeatedly with
2859 * 1-byte long message segments. Obviously, this is bad for
2860 * performance, but it is still valid. If the eBPF program needs
2861 * *bytes* bytes to validate a header, this helper can be used to
2862 * prevent the eBPF program to be called again until *bytes* have
2863 * been accumulated.
2864 * Return
2865 * 0
2866 *
2867 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
2868 * Description
2869 * For socket policies, pull in non-linear data from user space
2870 * for *msg* and set pointers *msg*\ **->data** and *msg*\
2871 * **->data_end** to *start* and *end* bytes offsets into *msg*,
2872 * respectively.
2873 *
2874 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2875 * *msg* it can only parse data that the (**data**, **data_end**)
2876 * pointers have already consumed. For **sendmsg**\ () hooks this
2877 * is likely the first scatterlist element. But for calls relying
2878 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
2879 * be the range (**0**, **0**) because the data is shared with
2880 * user space and by default the objective is to avoid allowing
2881 * user space to modify data while (or after) eBPF verdict is
2882 * being decided. This helper can be used to pull in data and to
2883 * set the start and end pointer to given values. Data will be
2884 * copied if necessary (i.e. if data was not linear and if start
2885 * and end pointers do not point to the same chunk).
2886 *
2887 * A call to this helper is susceptible to change the underlying
2888 * packet buffer. Therefore, at load time, all checks on pointers
2889 * previously done by the verifier are invalidated and must be
2890 * performed again, if the helper is used in combination with
2891 * direct packet access.
2892 *
2893 * All values for *flags* are reserved for future usage, and must
2894 * be left at zero.
2895 * Return
2896 * 0 on success, or a negative error in case of failure.
2897 *
2898 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
2899 * Description
2900 * Bind the socket associated to *ctx* to the address pointed by
2901 * *addr*, of length *addr_len*. This allows for making outgoing
2902 * connection from the desired IP address, which can be useful for
2903 * example when all processes inside a cgroup should use one
2904 * single IP address on a host that has multiple IP configured.
2905 *
2906 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
2907 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
2908 * **AF_INET6**). It's advised to pass zero port (**sin_port**
2909 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
2910 * behavior and lets the kernel efficiently pick up an unused
2911 * port as long as 4-tuple is unique. Passing non-zero port might
2912 * lead to degraded performance.
2913 * Return
2914 * 0 on success, or a negative error in case of failure.
2915 *
2916 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
2917 * Description
2918 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
2919 * possible to both shrink and grow the packet tail.
2920 * Shrink done via *delta* being a negative integer.
2921 *
2922 * A call to this helper is susceptible to change the underlying
2923 * packet buffer. Therefore, at load time, all checks on pointers
2924 * previously done by the verifier are invalidated and must be
2925 * performed again, if the helper is used in combination with
2926 * direct packet access.
2927 * Return
2928 * 0 on success, or a negative error in case of failure.
2929 *
2930 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
2931 * Description
2932 * Retrieve the XFRM state (IP transform framework, see also
2933 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
2934 *
2935 * The retrieved value is stored in the **struct bpf_xfrm_state**
2936 * pointed by *xfrm_state* and of length *size*.
2937 *
2938 * All values for *flags* are reserved for future usage, and must
2939 * be left at zero.
2940 *
2941 * This helper is available only if the kernel was compiled with
2942 * **CONFIG_XFRM** configuration option.
2943 * Return
2944 * 0 on success, or a negative error in case of failure.
2945 *
2946 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
2947 * Description
2948 * Return a user or a kernel stack in bpf program provided buffer.
2949 * To achieve this, the helper needs *ctx*, which is a pointer
2950 * to the context on which the tracing program is executed.
2951 * To store the stacktrace, the bpf program provides *buf* with
2952 * a nonnegative *size*.
2953 *
2954 * The last argument, *flags*, holds the number of stack frames to
2955 * skip (from 0 to 255), masked with
2956 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2957 * the following flags:
2958 *
2959 * **BPF_F_USER_STACK**
2960 * Collect a user space stack instead of a kernel stack.
2961 * **BPF_F_USER_BUILD_ID**
2962 * Collect buildid+offset instead of ips for user stack,
2963 * only valid if **BPF_F_USER_STACK** is also specified.
2964 *
2965 * **bpf_get_stack**\ () can collect up to
2966 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
2967 * to sufficient large buffer size. Note that
2968 * this limit can be controlled with the **sysctl** program, and
2969 * that it should be manually increased in order to profile long
2970 * user stacks (such as stacks for Java programs). To do so, use:
2971 *
2972 * ::
2973 *
2974 * # sysctl kernel.perf_event_max_stack=<new value>
2975 * Return
2976 * A non-negative value equal to or less than *size* on success,
2977 * or a negative error in case of failure.
2978 *
2979 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2980 * Description
2981 * This helper is similar to **bpf_skb_load_bytes**\ () in that
2982 * it provides an easy way to load *len* bytes from *offset*
2983 * from the packet associated to *skb*, into the buffer pointed
2984 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2985 * a fifth argument *start_header* exists in order to select a
2986 * base offset to start from. *start_header* can be one of:
2987 *
2988 * **BPF_HDR_START_MAC**
2989 * Base offset to load data from is *skb*'s mac header.
2990 * **BPF_HDR_START_NET**
2991 * Base offset to load data from is *skb*'s network header.
2992 *
2993 * In general, "direct packet access" is the preferred method to
2994 * access packet data, however, this helper is in particular useful
2995 * in socket filters where *skb*\ **->data** does not always point
2996 * to the start of the mac header and where "direct packet access"
2997 * is not available.
2998 * Return
2999 * 0 on success, or a negative error in case of failure.
3000 *
3001 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
3002 * Description
3003 * Do FIB lookup in kernel tables using parameters in *params*.
3004 * If lookup is successful and result shows packet is to be
3005 * forwarded, the neighbor tables are searched for the nexthop.
3006 * If successful (ie., FIB lookup shows forwarding and nexthop
3007 * is resolved), the nexthop address is returned in ipv4_dst
3008 * or ipv6_dst based on family, smac is set to mac address of
3009 * egress device, dmac is set to nexthop mac address, rt_metric
3010 * is set to metric from route (IPv4/IPv6 only), and ifindex
3011 * is set to the device index of the nexthop from the FIB lookup.
3012 *
3013 * *plen* argument is the size of the passed in struct.
3014 * *flags* argument can be a combination of one or more of the
3015 * following values:
3016 *
3017 * **BPF_FIB_LOOKUP_DIRECT**
3018 * Do a direct table lookup vs full lookup using FIB
3019 * rules.
3020 * **BPF_FIB_LOOKUP_OUTPUT**
3021 * Perform lookup from an egress perspective (default is
3022 * ingress).
3023 *
3024 * *ctx* is either **struct xdp_md** for XDP programs or
3025 * **struct sk_buff** tc cls_act programs.
3026 * Return
3027 * * < 0 if any input argument is invalid
3028 * * 0 on success (packet is forwarded, nexthop neighbor exists)
3029 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
3030 * packet is not forwarded or needs assist from full stack
3031 *
3032 * If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then the MTU
3033 * was exceeded and output params->mtu_result contains the MTU.
3034 *
3035 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
3036 * Description
3037 * Add an entry to, or update a sockhash *map* referencing sockets.
3038 * The *skops* is used as a new value for the entry associated to
3039 * *key*. *flags* is one of:
3040 *
3041 * **BPF_NOEXIST**
3042 * The entry for *key* must not exist in the map.
3043 * **BPF_EXIST**
3044 * The entry for *key* must already exist in the map.
3045 * **BPF_ANY**
3046 * No condition on the existence of the entry for *key*.
3047 *
3048 * If the *map* has eBPF programs (parser and verdict), those will
3049 * be inherited by the socket being added. If the socket is
3050 * already attached to eBPF programs, this results in an error.
3051 * Return
3052 * 0 on success, or a negative error in case of failure.
3053 *
3054 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
3055 * Description
3056 * This helper is used in programs implementing policies at the
3057 * socket level. If the message *msg* is allowed to pass (i.e. if
3058 * the verdict eBPF program returns **SK_PASS**), redirect it to
3059 * the socket referenced by *map* (of type
3060 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3061 * egress interfaces can be used for redirection. The
3062 * **BPF_F_INGRESS** value in *flags* is used to make the
3063 * distinction (ingress path is selected if the flag is present,
3064 * egress path otherwise). This is the only flag supported for now.
3065 * Return
3066 * **SK_PASS** on success, or **SK_DROP** on error.
3067 *
3068 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
3069 * Description
3070 * This helper is used in programs implementing policies at the
3071 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
3072 * if the verdict eBPF program returns **SK_PASS**), redirect it
3073 * to the socket referenced by *map* (of type
3074 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3075 * egress interfaces can be used for redirection. The
3076 * **BPF_F_INGRESS** value in *flags* is used to make the
3077 * distinction (ingress path is selected if the flag is present,
3078 * egress otherwise). This is the only flag supported for now.
3079 * Return
3080 * **SK_PASS** on success, or **SK_DROP** on error.
3081 *
3082 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
3083 * Description
3084 * Encapsulate the packet associated to *skb* within a Layer 3
3085 * protocol header. This header is provided in the buffer at
3086 * address *hdr*, with *len* its size in bytes. *type* indicates
3087 * the protocol of the header and can be one of:
3088 *
3089 * **BPF_LWT_ENCAP_SEG6**
3090 * IPv6 encapsulation with Segment Routing Header
3091 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
3092 * the IPv6 header is computed by the kernel.
3093 * **BPF_LWT_ENCAP_SEG6_INLINE**
3094 * Only works if *skb* contains an IPv6 packet. Insert a
3095 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
3096 * the IPv6 header.
3097 * **BPF_LWT_ENCAP_IP**
3098 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
3099 * must be IPv4 or IPv6, followed by zero or more
3100 * additional headers, up to **LWT_BPF_MAX_HEADROOM**
3101 * total bytes in all prepended headers. Please note that
3102 * if **skb_is_gso**\ (*skb*) is true, no more than two
3103 * headers can be prepended, and the inner header, if
3104 * present, should be either GRE or UDP/GUE.
3105 *
3106 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
3107 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
3108 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
3109 * **BPF_PROG_TYPE_LWT_XMIT**.
3110 *
3111 * A call to this helper is susceptible to change the underlying
3112 * packet buffer. Therefore, at load time, all checks on pointers
3113 * previously done by the verifier are invalidated and must be
3114 * performed again, if the helper is used in combination with
3115 * direct packet access.
3116 * Return
3117 * 0 on success, or a negative error in case of failure.
3118 *
3119 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
3120 * Description
3121 * Store *len* bytes from address *from* into the packet
3122 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
3123 * inside the outermost IPv6 Segment Routing Header can be
3124 * modified through this helper.
3125 *
3126 * A call to this helper is susceptible to change the underlying
3127 * packet buffer. Therefore, at load time, all checks on pointers
3128 * previously done by the verifier are invalidated and must be
3129 * performed again, if the helper is used in combination with
3130 * direct packet access.
3131 * Return
3132 * 0 on success, or a negative error in case of failure.
3133 *
3134 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
3135 * Description
3136 * Adjust the size allocated to TLVs in the outermost IPv6
3137 * Segment Routing Header contained in the packet associated to
3138 * *skb*, at position *offset* by *delta* bytes. Only offsets
3139 * after the segments are accepted. *delta* can be as well
3140 * positive (growing) as negative (shrinking).
3141 *
3142 * A call to this helper is susceptible to change the underlying
3143 * packet buffer. Therefore, at load time, all checks on pointers
3144 * previously done by the verifier are invalidated and must be
3145 * performed again, if the helper is used in combination with
3146 * direct packet access.
3147 * Return
3148 * 0 on success, or a negative error in case of failure.
3149 *
3150 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
3151 * Description
3152 * Apply an IPv6 Segment Routing action of type *action* to the
3153 * packet associated to *skb*. Each action takes a parameter
3154 * contained at address *param*, and of length *param_len* bytes.
3155 * *action* can be one of:
3156 *
3157 * **SEG6_LOCAL_ACTION_END_X**
3158 * End.X action: Endpoint with Layer-3 cross-connect.
3159 * Type of *param*: **struct in6_addr**.
3160 * **SEG6_LOCAL_ACTION_END_T**
3161 * End.T action: Endpoint with specific IPv6 table lookup.
3162 * Type of *param*: **int**.
3163 * **SEG6_LOCAL_ACTION_END_B6**
3164 * End.B6 action: Endpoint bound to an SRv6 policy.
3165 * Type of *param*: **struct ipv6_sr_hdr**.
3166 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
3167 * End.B6.Encap action: Endpoint bound to an SRv6
3168 * encapsulation policy.
3169 * Type of *param*: **struct ipv6_sr_hdr**.
3170 *
3171 * A call to this helper is susceptible to change the underlying
3172 * packet buffer. Therefore, at load time, all checks on pointers
3173 * previously done by the verifier are invalidated and must be
3174 * performed again, if the helper is used in combination with
3175 * direct packet access.
3176 * Return
3177 * 0 on success, or a negative error in case of failure.
3178 *
3179 * long bpf_rc_repeat(void *ctx)
3180 * Description
3181 * This helper is used in programs implementing IR decoding, to
3182 * report a successfully decoded repeat key message. This delays
3183 * the generation of a key up event for previously generated
3184 * key down event.
3185 *
3186 * Some IR protocols like NEC have a special IR message for
3187 * repeating last button, for when a button is held down.
3188 *
3189 * The *ctx* should point to the lirc sample as passed into
3190 * the program.
3191 *
3192 * This helper is only available is the kernel was compiled with
3193 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3194 * "**y**".
3195 * Return
3196 * 0
3197 *
3198 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
3199 * Description
3200 * This helper is used in programs implementing IR decoding, to
3201 * report a successfully decoded key press with *scancode*,
3202 * *toggle* value in the given *protocol*. The scancode will be
3203 * translated to a keycode using the rc keymap, and reported as
3204 * an input key down event. After a period a key up event is
3205 * generated. This period can be extended by calling either
3206 * **bpf_rc_keydown**\ () again with the same values, or calling
3207 * **bpf_rc_repeat**\ ().
3208 *
3209 * Some protocols include a toggle bit, in case the button was
3210 * released and pressed again between consecutive scancodes.
3211 *
3212 * The *ctx* should point to the lirc sample as passed into
3213 * the program.
3214 *
3215 * The *protocol* is the decoded protocol number (see
3216 * **enum rc_proto** for some predefined values).
3217 *
3218 * This helper is only available is the kernel was compiled with
3219 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3220 * "**y**".
3221 * Return
3222 * 0
3223 *
3224 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
3225 * Description
3226 * Return the cgroup v2 id of the socket associated with the *skb*.
3227 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
3228 * helper for cgroup v1 by providing a tag resp. identifier that
3229 * can be matched on or used for map lookups e.g. to implement
3230 * policy. The cgroup v2 id of a given path in the hierarchy is
3231 * exposed in user space through the f_handle API in order to get
3232 * to the same 64-bit id.
3233 *
3234 * This helper can be used on TC egress path, but not on ingress,
3235 * and is available only if the kernel was compiled with the
3236 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
3237 * Return
3238 * The id is returned or 0 in case the id could not be retrieved.
3239 *
3240 * u64 bpf_get_current_cgroup_id(void)
3241 * Return
3242 * A 64-bit integer containing the current cgroup id based
3243 * on the cgroup within which the current task is running.
3244 *
3245 * void *bpf_get_local_storage(void *map, u64 flags)
3246 * Description
3247 * Get the pointer to the local storage area.
3248 * The type and the size of the local storage is defined
3249 * by the *map* argument.
3250 * The *flags* meaning is specific for each map type,
3251 * and has to be 0 for cgroup local storage.
3252 *
3253 * Depending on the BPF program type, a local storage area
3254 * can be shared between multiple instances of the BPF program,
3255 * running simultaneously.
3256 *
3257 * A user should care about the synchronization by himself.
3258 * For example, by using the **BPF_ATOMIC** instructions to alter
3259 * the shared data.
3260 * Return
3261 * A pointer to the local storage area.
3262 *
3263 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
3264 * Description
3265 * Select a **SO_REUSEPORT** socket from a
3266 * **BPF_MAP_TYPE_REUSEPORT_SOCKARRAY** *map*.
3267 * It checks the selected socket is matching the incoming
3268 * request in the socket buffer.
3269 * Return
3270 * 0 on success, or a negative error in case of failure.
3271 *
3272 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
3273 * Description
3274 * Return id of cgroup v2 that is ancestor of cgroup associated
3275 * with the *skb* at the *ancestor_level*. The root cgroup is at
3276 * *ancestor_level* zero and each step down the hierarchy
3277 * increments the level. If *ancestor_level* == level of cgroup
3278 * associated with *skb*, then return value will be same as that
3279 * of **bpf_skb_cgroup_id**\ ().
3280 *
3281 * The helper is useful to implement policies based on cgroups
3282 * that are upper in hierarchy than immediate cgroup associated
3283 * with *skb*.
3284 *
3285 * The format of returned id and helper limitations are same as in
3286 * **bpf_skb_cgroup_id**\ ().
3287 * Return
3288 * The id is returned or 0 in case the id could not be retrieved.
3289 *
3290 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3291 * Description
3292 * Look for TCP socket matching *tuple*, optionally in a child
3293 * network namespace *netns*. The return value must be checked,
3294 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3295 *
3296 * The *ctx* should point to the context of the program, such as
3297 * the skb or socket (depending on the hook in use). This is used
3298 * to determine the base network namespace for the lookup.
3299 *
3300 * *tuple_size* must be one of:
3301 *
3302 * **sizeof**\ (*tuple*\ **->ipv4**)
3303 * Look for an IPv4 socket.
3304 * **sizeof**\ (*tuple*\ **->ipv6**)
3305 * Look for an IPv6 socket.
3306 *
3307 * If the *netns* is a negative signed 32-bit integer, then the
3308 * socket lookup table in the netns associated with the *ctx*
3309 * will be used. For the TC hooks, this is the netns of the device
3310 * in the skb. For socket hooks, this is the netns of the socket.
3311 * If *netns* is any other signed 32-bit value greater than or
3312 * equal to zero then it specifies the ID of the netns relative to
3313 * the netns associated with the *ctx*. *netns* values beyond the
3314 * range of 32-bit integers are reserved for future use.
3315 *
3316 * All values for *flags* are reserved for future usage, and must
3317 * be left at zero.
3318 *
3319 * This helper is available only if the kernel was compiled with
3320 * **CONFIG_NET** configuration option.
3321 * Return
3322 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3323 * For sockets with reuseport option, the **struct bpf_sock**
3324 * result is from *reuse*\ **->socks**\ [] using the hash of the
3325 * tuple.
3326 *
3327 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3328 * Description
3329 * Look for UDP socket matching *tuple*, optionally in a child
3330 * network namespace *netns*. The return value must be checked,
3331 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3332 *
3333 * The *ctx* should point to the context of the program, such as
3334 * the skb or socket (depending on the hook in use). This is used
3335 * to determine the base network namespace for the lookup.
3336 *
3337 * *tuple_size* must be one of:
3338 *
3339 * **sizeof**\ (*tuple*\ **->ipv4**)
3340 * Look for an IPv4 socket.
3341 * **sizeof**\ (*tuple*\ **->ipv6**)
3342 * Look for an IPv6 socket.
3343 *
3344 * If the *netns* is a negative signed 32-bit integer, then the
3345 * socket lookup table in the netns associated with the *ctx*
3346 * will be used. For the TC hooks, this is the netns of the device
3347 * in the skb. For socket hooks, this is the netns of the socket.
3348 * If *netns* is any other signed 32-bit value greater than or
3349 * equal to zero then it specifies the ID of the netns relative to
3350 * the netns associated with the *ctx*. *netns* values beyond the
3351 * range of 32-bit integers are reserved for future use.
3352 *
3353 * All values for *flags* are reserved for future usage, and must
3354 * be left at zero.
3355 *
3356 * This helper is available only if the kernel was compiled with
3357 * **CONFIG_NET** configuration option.
3358 * Return
3359 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3360 * For sockets with reuseport option, the **struct bpf_sock**
3361 * result is from *reuse*\ **->socks**\ [] using the hash of the
3362 * tuple.
3363 *
3364 * long bpf_sk_release(void *sock)
3365 * Description
3366 * Release the reference held by *sock*. *sock* must be a
3367 * non-**NULL** pointer that was returned from
3368 * **bpf_sk_lookup_xxx**\ ().
3369 * Return
3370 * 0 on success, or a negative error in case of failure.
3371 *
3372 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
3373 * Description
3374 * Push an element *value* in *map*. *flags* is one of:
3375 *
3376 * **BPF_EXIST**
3377 * If the queue/stack is full, the oldest element is
3378 * removed to make room for this.
3379 * Return
3380 * 0 on success, or a negative error in case of failure.
3381 *
3382 * long bpf_map_pop_elem(struct bpf_map *map, void *value)
3383 * Description
3384 * Pop an element from *map*.
3385 * Return
3386 * 0 on success, or a negative error in case of failure.
3387 *
3388 * long bpf_map_peek_elem(struct bpf_map *map, void *value)
3389 * Description
3390 * Get an element from *map* without removing it.
3391 * Return
3392 * 0 on success, or a negative error in case of failure.
3393 *
3394 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3395 * Description
3396 * For socket policies, insert *len* bytes into *msg* at offset
3397 * *start*.
3398 *
3399 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3400 * *msg* it may want to insert metadata or options into the *msg*.
3401 * This can later be read and used by any of the lower layer BPF
3402 * hooks.
3403 *
3404 * This helper may fail if under memory pressure (a malloc
3405 * fails) in these cases BPF programs will get an appropriate
3406 * error and BPF programs will need to handle them.
3407 * Return
3408 * 0 on success, or a negative error in case of failure.
3409 *
3410 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3411 * Description
3412 * Will remove *len* bytes from a *msg* starting at byte *start*.
3413 * This may result in **ENOMEM** errors under certain situations if
3414 * an allocation and copy are required due to a full ring buffer.
3415 * However, the helper will try to avoid doing the allocation
3416 * if possible. Other errors can occur if input parameters are
3417 * invalid either due to *start* byte not being valid part of *msg*
3418 * payload and/or *pop* value being to large.
3419 * Return
3420 * 0 on success, or a negative error in case of failure.
3421 *
3422 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
3423 * Description
3424 * This helper is used in programs implementing IR decoding, to
3425 * report a successfully decoded pointer movement.
3426 *
3427 * The *ctx* should point to the lirc sample as passed into
3428 * the program.
3429 *
3430 * This helper is only available is the kernel was compiled with
3431 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3432 * "**y**".
3433 * Return
3434 * 0
3435 *
3436 * long bpf_spin_lock(struct bpf_spin_lock *lock)
3437 * Description
3438 * Acquire a spinlock represented by the pointer *lock*, which is
3439 * stored as part of a value of a map. Taking the lock allows to
3440 * safely update the rest of the fields in that value. The
3441 * spinlock can (and must) later be released with a call to
3442 * **bpf_spin_unlock**\ (\ *lock*\ ).
3443 *
3444 * Spinlocks in BPF programs come with a number of restrictions
3445 * and constraints:
3446 *
3447 * * **bpf_spin_lock** objects are only allowed inside maps of
3448 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
3449 * list could be extended in the future).
3450 * * BTF description of the map is mandatory.
3451 * * The BPF program can take ONE lock at a time, since taking two
3452 * or more could cause dead locks.
3453 * * Only one **struct bpf_spin_lock** is allowed per map element.
3454 * * When the lock is taken, calls (either BPF to BPF or helpers)
3455 * are not allowed.
3456 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
3457 * allowed inside a spinlock-ed region.
3458 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
3459 * the lock, on all execution paths, before it returns.
3460 * * The BPF program can access **struct bpf_spin_lock** only via
3461 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
3462 * helpers. Loading or storing data into the **struct
3463 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
3464 * * To use the **bpf_spin_lock**\ () helper, the BTF description
3465 * of the map value must be a struct and have **struct
3466 * bpf_spin_lock** *anyname*\ **;** field at the top level.
3467 * Nested lock inside another struct is not allowed.
3468 * * The **struct bpf_spin_lock** *lock* field in a map value must
3469 * be aligned on a multiple of 4 bytes in that value.
3470 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
3471 * the **bpf_spin_lock** field to user space.
3472 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
3473 * a BPF program, do not update the **bpf_spin_lock** field.
3474 * * **bpf_spin_lock** cannot be on the stack or inside a
3475 * networking packet (it can only be inside of a map values).
3476 * * **bpf_spin_lock** is available to root only.
3477 * * Tracing programs and socket filter programs cannot use
3478 * **bpf_spin_lock**\ () due to insufficient preemption checks
3479 * (but this may change in the future).
3480 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
3481 * Return
3482 * 0
3483 *
3484 * long bpf_spin_unlock(struct bpf_spin_lock *lock)
3485 * Description
3486 * Release the *lock* previously locked by a call to
3487 * **bpf_spin_lock**\ (\ *lock*\ ).
3488 * Return
3489 * 0
3490 *
3491 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
3492 * Description
3493 * This helper gets a **struct bpf_sock** pointer such
3494 * that all the fields in this **bpf_sock** can be accessed.
3495 * Return
3496 * A **struct bpf_sock** pointer on success, or **NULL** in
3497 * case of failure.
3498 *
3499 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
3500 * Description
3501 * This helper gets a **struct bpf_tcp_sock** pointer from a
3502 * **struct bpf_sock** pointer.
3503 * Return
3504 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
3505 * case of failure.
3506 *
3507 * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
3508 * Description
3509 * Set ECN (Explicit Congestion Notification) field of IP header
3510 * to **CE** (Congestion Encountered) if current value is **ECT**
3511 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
3512 * and IPv4.
3513 * Return
3514 * 1 if the **CE** flag is set (either by the current helper call
3515 * or because it was already present), 0 if it is not set.
3516 *
3517 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
3518 * Description
3519 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
3520 * **bpf_sk_release**\ () is unnecessary and not allowed.
3521 * Return
3522 * A **struct bpf_sock** pointer on success, or **NULL** in
3523 * case of failure.
3524 *
3525 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3526 * Description
3527 * Look for TCP socket matching *tuple*, optionally in a child
3528 * network namespace *netns*. The return value must be checked,
3529 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3530 *
3531 * This function is identical to **bpf_sk_lookup_tcp**\ (), except
3532 * that it also returns timewait or request sockets. Use
3533 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
3534 * full structure.
3535 *
3536 * This helper is available only if the kernel was compiled with
3537 * **CONFIG_NET** configuration option.
3538 * Return
3539 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3540 * For sockets with reuseport option, the **struct bpf_sock**
3541 * result is from *reuse*\ **->socks**\ [] using the hash of the
3542 * tuple.
3543 *
3544 * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3545 * Description
3546 * Check whether *iph* and *th* contain a valid SYN cookie ACK for
3547 * the listening socket in *sk*.
3548 *
3549 * *iph* points to the start of the IPv4 or IPv6 header, while
3550 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
3551 * **sizeof**\ (**struct ip6hdr**).
3552 *
3553 * *th* points to the start of the TCP header, while *th_len*
3554 * contains **sizeof**\ (**struct tcphdr**).
3555 * Return
3556 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
3557 * error otherwise.
3558 *
3559 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
3560 * Description
3561 * Get name of sysctl in /proc/sys/ and copy it into provided by
3562 * program buffer *buf* of size *buf_len*.
3563 *
3564 * The buffer is always NUL terminated, unless it's zero-sized.
3565 *
3566 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
3567 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
3568 * only (e.g. "tcp_mem").
3569 * Return
3570 * Number of character copied (not including the trailing NUL).
3571 *
3572 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3573 * truncated name in this case).
3574 *
3575 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3576 * Description
3577 * Get current value of sysctl as it is presented in /proc/sys
3578 * (incl. newline, etc), and copy it as a string into provided
3579 * by program buffer *buf* of size *buf_len*.
3580 *
3581 * The whole value is copied, no matter what file position user
3582 * space issued e.g. sys_read at.
3583 *
3584 * The buffer is always NUL terminated, unless it's zero-sized.
3585 * Return
3586 * Number of character copied (not including the trailing NUL).
3587 *
3588 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3589 * truncated name in this case).
3590 *
3591 * **-EINVAL** if current value was unavailable, e.g. because
3592 * sysctl is uninitialized and read returns -EIO for it.
3593 *
3594 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3595 * Description
3596 * Get new value being written by user space to sysctl (before
3597 * the actual write happens) and copy it as a string into
3598 * provided by program buffer *buf* of size *buf_len*.
3599 *
3600 * User space may write new value at file position > 0.
3601 *
3602 * The buffer is always NUL terminated, unless it's zero-sized.
3603 * Return
3604 * Number of character copied (not including the trailing NUL).
3605 *
3606 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3607 * truncated name in this case).
3608 *
3609 * **-EINVAL** if sysctl is being read.
3610 *
3611 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
3612 * Description
3613 * Override new value being written by user space to sysctl with
3614 * value provided by program in buffer *buf* of size *buf_len*.
3615 *
3616 * *buf* should contain a string in same form as provided by user
3617 * space on sysctl write.
3618 *
3619 * User space may write new value at file position > 0. To override
3620 * the whole sysctl value file position should be set to zero.
3621 * Return
3622 * 0 on success.
3623 *
3624 * **-E2BIG** if the *buf_len* is too big.
3625 *
3626 * **-EINVAL** if sysctl is being read.
3627 *
3628 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
3629 * Description
3630 * Convert the initial part of the string from buffer *buf* of
3631 * size *buf_len* to a long integer according to the given base
3632 * and save the result in *res*.
3633 *
3634 * The string may begin with an arbitrary amount of white space
3635 * (as determined by **isspace**\ (3)) followed by a single
3636 * optional '**-**' sign.
3637 *
3638 * Five least significant bits of *flags* encode base, other bits
3639 * are currently unused.
3640 *
3641 * Base must be either 8, 10, 16 or 0 to detect it automatically
3642 * similar to user space **strtol**\ (3).
3643 * Return
3644 * Number of characters consumed on success. Must be positive but
3645 * no more than *buf_len*.
3646 *
3647 * **-EINVAL** if no valid digits were found or unsupported base
3648 * was provided.
3649 *
3650 * **-ERANGE** if resulting value was out of range.
3651 *
3652 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
3653 * Description
3654 * Convert the initial part of the string from buffer *buf* of
3655 * size *buf_len* to an unsigned long integer according to the
3656 * given base and save the result in *res*.
3657 *
3658 * The string may begin with an arbitrary amount of white space
3659 * (as determined by **isspace**\ (3)).
3660 *
3661 * Five least significant bits of *flags* encode base, other bits
3662 * are currently unused.
3663 *
3664 * Base must be either 8, 10, 16 or 0 to detect it automatically
3665 * similar to user space **strtoul**\ (3).
3666 * Return
3667 * Number of characters consumed on success. Must be positive but
3668 * no more than *buf_len*.
3669 *
3670 * **-EINVAL** if no valid digits were found or unsupported base
3671 * was provided.
3672 *
3673 * **-ERANGE** if resulting value was out of range.
3674 *
3675 * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
3676 * Description
3677 * Get a bpf-local-storage from a *sk*.
3678 *
3679 * Logically, it could be thought of getting the value from
3680 * a *map* with *sk* as the **key**. From this
3681 * perspective, the usage is not much different from
3682 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
3683 * helper enforces the key must be a full socket and the map must
3684 * be a **BPF_MAP_TYPE_SK_STORAGE** also.
3685 *
3686 * Underneath, the value is stored locally at *sk* instead of
3687 * the *map*. The *map* is used as the bpf-local-storage
3688 * "type". The bpf-local-storage "type" (i.e. the *map*) is
3689 * searched against all bpf-local-storages residing at *sk*.
3690 *
3691 * *sk* is a kernel **struct sock** pointer for LSM program.
3692 * *sk* is a **struct bpf_sock** pointer for other program types.
3693 *
3694 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
3695 * used such that a new bpf-local-storage will be
3696 * created if one does not exist. *value* can be used
3697 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
3698 * the initial value of a bpf-local-storage. If *value* is
3699 * **NULL**, the new bpf-local-storage will be zero initialized.
3700 * Return
3701 * A bpf-local-storage pointer is returned on success.
3702 *
3703 * **NULL** if not found or there was an error in adding
3704 * a new bpf-local-storage.
3705 *
3706 * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
3707 * Description
3708 * Delete a bpf-local-storage from a *sk*.
3709 * Return
3710 * 0 on success.
3711 *
3712 * **-ENOENT** if the bpf-local-storage cannot be found.
3713 * **-EINVAL** if sk is not a fullsock (e.g. a request_sock).
3714 *
3715 * long bpf_send_signal(u32 sig)
3716 * Description
3717 * Send signal *sig* to the process of the current task.
3718 * The signal may be delivered to any of this process's threads.
3719 * Return
3720 * 0 on success or successfully queued.
3721 *
3722 * **-EBUSY** if work queue under nmi is full.
3723 *
3724 * **-EINVAL** if *sig* is invalid.
3725 *
3726 * **-EPERM** if no permission to send the *sig*.
3727 *
3728 * **-EAGAIN** if bpf program can try again.
3729 *
3730 * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3731 * Description
3732 * Try to issue a SYN cookie for the packet with corresponding
3733 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
3734 *
3735 * *iph* points to the start of the IPv4 or IPv6 header, while
3736 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
3737 * **sizeof**\ (**struct ip6hdr**).
3738 *
3739 * *th* points to the start of the TCP header, while *th_len*
3740 * contains the length of the TCP header.
3741 * Return
3742 * On success, lower 32 bits hold the generated SYN cookie in
3743 * followed by 16 bits which hold the MSS value for that cookie,
3744 * and the top 16 bits are unused.
3745 *
3746 * On failure, the returned value is one of the following:
3747 *
3748 * **-EINVAL** SYN cookie cannot be issued due to error
3749 *
3750 * **-ENOENT** SYN cookie should not be issued (no SYN flood)
3751 *
3752 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies
3753 *
3754 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6
3755 *
3756 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3757 * Description
3758 * Write raw *data* blob into a special BPF perf event held by
3759 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3760 * event must have the following attributes: **PERF_SAMPLE_RAW**
3761 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3762 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3763 *
3764 * The *flags* are used to indicate the index in *map* for which
3765 * the value must be put, masked with **BPF_F_INDEX_MASK**.
3766 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3767 * to indicate that the index of the current CPU core should be
3768 * used.
3769 *
3770 * The value to write, of *size*, is passed through eBPF stack and
3771 * pointed by *data*.
3772 *
3773 * *ctx* is a pointer to in-kernel struct sk_buff.
3774 *
3775 * This helper is similar to **bpf_perf_event_output**\ () but
3776 * restricted to raw_tracepoint bpf programs.
3777 * Return
3778 * 0 on success, or a negative error in case of failure.
3779 *
3780 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
3781 * Description
3782 * Safely attempt to read *size* bytes from user space address
3783 * *unsafe_ptr* and store the data in *dst*.
3784 * Return
3785 * 0 on success, or a negative error in case of failure.
3786 *
3787 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
3788 * Description
3789 * Safely attempt to read *size* bytes from kernel space address
3790 * *unsafe_ptr* and store the data in *dst*.
3791 * Return
3792 * 0 on success, or a negative error in case of failure.
3793 *
3794 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
3795 * Description
3796 * Copy a NUL terminated string from an unsafe user address
3797 * *unsafe_ptr* to *dst*. The *size* should include the
3798 * terminating NUL byte. In case the string length is smaller than
3799 * *size*, the target is not padded with further NUL bytes. If the
3800 * string length is larger than *size*, just *size*-1 bytes are
3801 * copied and the last byte is set to NUL.
3802 *
3803 * On success, returns the number of bytes that were written,
3804 * including the terminal NUL. This makes this helper useful in
3805 * tracing programs for reading strings, and more importantly to
3806 * get its length at runtime. See the following snippet:
3807 *
3808 * ::
3809 *
3810 * SEC("kprobe/sys_open")
3811 * void bpf_sys_open(struct pt_regs *ctx)
3812 * {
3813 * char buf[PATHLEN]; // PATHLEN is defined to 256
3814 * int res = bpf_probe_read_user_str(buf, sizeof(buf),
3815 * ctx->di);
3816 *
3817 * // Consume buf, for example push it to
3818 * // userspace via bpf_perf_event_output(); we
3819 * // can use res (the string length) as event
3820 * // size, after checking its boundaries.
3821 * }
3822 *
3823 * In comparison, using **bpf_probe_read_user**\ () helper here
3824 * instead to read the string would require to estimate the length
3825 * at compile time, and would often result in copying more memory
3826 * than necessary.
3827 *
3828 * Another useful use case is when parsing individual process
3829 * arguments or individual environment variables navigating
3830 * *current*\ **->mm->arg_start** and *current*\
3831 * **->mm->env_start**: using this helper and the return value,
3832 * one can quickly iterate at the right offset of the memory area.
3833 * Return
3834 * On success, the strictly positive length of the output string,
3835 * including the trailing NUL character. On error, a negative
3836 * value.
3837 *
3838 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
3839 * Description
3840 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
3841 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
3842 * Return
3843 * On success, the strictly positive length of the string, including
3844 * the trailing NUL character. On error, a negative value.
3845 *
3846 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
3847 * Description
3848 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
3849 * *rcv_nxt* is the ack_seq to be sent out.
3850 * Return
3851 * 0 on success, or a negative error in case of failure.
3852 *
3853 * long bpf_send_signal_thread(u32 sig)
3854 * Description
3855 * Send signal *sig* to the thread corresponding to the current task.
3856 * Return
3857 * 0 on success or successfully queued.
3858 *
3859 * **-EBUSY** if work queue under nmi is full.
3860 *
3861 * **-EINVAL** if *sig* is invalid.
3862 *
3863 * **-EPERM** if no permission to send the *sig*.
3864 *
3865 * **-EAGAIN** if bpf program can try again.
3866 *
3867 * u64 bpf_jiffies64(void)
3868 * Description
3869 * Obtain the 64bit jiffies
3870 * Return
3871 * The 64 bit jiffies
3872 *
3873 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
3874 * Description
3875 * For an eBPF program attached to a perf event, retrieve the
3876 * branch records (**struct perf_branch_entry**) associated to *ctx*
3877 * and store it in the buffer pointed by *buf* up to size
3878 * *size* bytes.
3879 * Return
3880 * On success, number of bytes written to *buf*. On error, a
3881 * negative value.
3882 *
3883 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
3884 * instead return the number of bytes required to store all the
3885 * branch entries. If this flag is set, *buf* may be NULL.
3886 *
3887 * **-EINVAL** if arguments invalid or **size** not a multiple
3888 * of **sizeof**\ (**struct perf_branch_entry**\ ).
3889 *
3890 * **-ENOENT** if architecture does not support branch records.
3891 *
3892 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
3893 * Description
3894 * Returns 0 on success, values for *pid* and *tgid* as seen from the current
3895 * *namespace* will be returned in *nsdata*.
3896 * Return
3897 * 0 on success, or one of the following in case of failure:
3898 *
3899 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number
3900 * with nsfs of current task, or if dev conversion to dev_t lost high bits.
3901 *
3902 * **-ENOENT** if pidns does not exists for the current task.
3903 *
3904 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3905 * Description
3906 * Write raw *data* blob into a special BPF perf event held by
3907 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3908 * event must have the following attributes: **PERF_SAMPLE_RAW**
3909 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3910 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3911 *
3912 * The *flags* are used to indicate the index in *map* for which
3913 * the value must be put, masked with **BPF_F_INDEX_MASK**.
3914 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3915 * to indicate that the index of the current CPU core should be
3916 * used.
3917 *
3918 * The value to write, of *size*, is passed through eBPF stack and
3919 * pointed by *data*.
3920 *
3921 * *ctx* is a pointer to in-kernel struct xdp_buff.
3922 *
3923 * This helper is similar to **bpf_perf_eventoutput**\ () but
3924 * restricted to raw_tracepoint bpf programs.
3925 * Return
3926 * 0 on success, or a negative error in case of failure.
3927 *
3928 * u64 bpf_get_netns_cookie(void *ctx)
3929 * Description
3930 * Retrieve the cookie (generated by the kernel) of the network
3931 * namespace the input *ctx* is associated with. The network
3932 * namespace cookie remains stable for its lifetime and provides
3933 * a global identifier that can be assumed unique. If *ctx* is
3934 * NULL, then the helper returns the cookie for the initial
3935 * network namespace. The cookie itself is very similar to that
3936 * of **bpf_get_socket_cookie**\ () helper, but for network
3937 * namespaces instead of sockets.
3938 * Return
3939 * A 8-byte long opaque number.
3940 *
3941 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
3942 * Description
3943 * Return id of cgroup v2 that is ancestor of the cgroup associated
3944 * with the current task at the *ancestor_level*. The root cgroup
3945 * is at *ancestor_level* zero and each step down the hierarchy
3946 * increments the level. If *ancestor_level* == level of cgroup
3947 * associated with the current task, then return value will be the
3948 * same as that of **bpf_get_current_cgroup_id**\ ().
3949 *
3950 * The helper is useful to implement policies based on cgroups
3951 * that are upper in hierarchy than immediate cgroup associated
3952 * with the current task.
3953 *
3954 * The format of returned id and helper limitations are same as in
3955 * **bpf_get_current_cgroup_id**\ ().
3956 * Return
3957 * The id is returned or 0 in case the id could not be retrieved.
3958 *
3959 * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
3960 * Description
3961 * Helper is overloaded depending on BPF program type. This
3962 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and
3963 * **BPF_PROG_TYPE_SCHED_ACT** programs.
3964 *
3965 * Assign the *sk* to the *skb*. When combined with appropriate
3966 * routing configuration to receive the packet towards the socket,
3967 * will cause *skb* to be delivered to the specified socket.
3968 * Subsequent redirection of *skb* via **bpf_redirect**\ (),
3969 * **bpf_clone_redirect**\ () or other methods outside of BPF may
3970 * interfere with successful delivery to the socket.
3971 *
3972 * This operation is only valid from TC ingress path.
3973 *
3974 * The *flags* argument must be zero.
3975 * Return
3976 * 0 on success, or a negative error in case of failure:
3977 *
3978 * **-EINVAL** if specified *flags* are not supported.
3979 *
3980 * **-ENOENT** if the socket is unavailable for assignment.
3981 *
3982 * **-ENETUNREACH** if the socket is unreachable (wrong netns).
3983 *
3984 * **-EOPNOTSUPP** if the operation is not supported, for example
3985 * a call from outside of TC ingress.
3986 *
3987 * **-ESOCKTNOSUPPORT** if the socket type is not supported
3988 * (reuseport).
3989 *
3990 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
3991 * Description
3992 * Helper is overloaded depending on BPF program type. This
3993 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
3994 *
3995 * Select the *sk* as a result of a socket lookup.
3996 *
3997 * For the operation to succeed passed socket must be compatible
3998 * with the packet description provided by the *ctx* object.
3999 *
4000 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
4001 * be an exact match. While IP family (**AF_INET** or
4002 * **AF_INET6**) must be compatible, that is IPv6 sockets
4003 * that are not v6-only can be selected for IPv4 packets.
4004 *
4005 * Only TCP listeners and UDP unconnected sockets can be
4006 * selected. *sk* can also be NULL to reset any previous
4007 * selection.
4008 *
4009 * *flags* argument can combination of following values:
4010 *
4011 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous
4012 * socket selection, potentially done by a BPF program
4013 * that ran before us.
4014 *
4015 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
4016 * load-balancing within reuseport group for the socket
4017 * being selected.
4018 *
4019 * On success *ctx->sk* will point to the selected socket.
4020 *
4021 * Return
4022 * 0 on success, or a negative errno in case of failure.
4023 *
4024 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is
4025 * not compatible with packet family (*ctx->family*).
4026 *
4027 * * **-EEXIST** if socket has been already selected,
4028 * potentially by another program, and
4029 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
4030 *
4031 * * **-EINVAL** if unsupported flags were specified.
4032 *
4033 * * **-EPROTOTYPE** if socket L4 protocol
4034 * (*sk->protocol*) doesn't match packet protocol
4035 * (*ctx->protocol*).
4036 *
4037 * * **-ESOCKTNOSUPPORT** if socket is not in allowed
4038 * state (TCP listening or UDP unconnected).
4039 *
4040 * u64 bpf_ktime_get_boot_ns(void)
4041 * Description
4042 * Return the time elapsed since system boot, in nanoseconds.
4043 * Does include the time the system was suspended.
4044 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
4045 * Return
4046 * Current *ktime*.
4047 *
4048 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4049 * Description
4050 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
4051 * out the format string.
4052 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for
4053 * the format string itself. The *data* and *data_len* are format string
4054 * arguments. The *data* are a **u64** array and corresponding format string
4055 * values are stored in the array. For strings and pointers where pointees
4056 * are accessed, only the pointer values are stored in the *data* array.
4057 * The *data_len* is the size of *data* in bytes - must be a multiple of 8.
4058 *
4059 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
4060 * Reading kernel memory may fail due to either invalid address or
4061 * valid address but requiring a major memory fault. If reading kernel memory
4062 * fails, the string for **%s** will be an empty string, and the ip
4063 * address for **%p{i,I}{4,6}** will be 0. Not returning error to
4064 * bpf program is consistent with what **bpf_trace_printk**\ () does for now.
4065 * Return
4066 * 0 on success, or a negative error in case of failure:
4067 *
4068 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again
4069 * by returning 1 from bpf program.
4070 *
4071 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
4072 *
4073 * **-E2BIG** if *fmt* contains too many format specifiers.
4074 *
4075 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4076 *
4077 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
4078 * Description
4079 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
4080 * The *m* represents the seq_file. The *data* and *len* represent the
4081 * data to write in bytes.
4082 * Return
4083 * 0 on success, or a negative error in case of failure:
4084 *
4085 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4086 *
4087 * u64 bpf_sk_cgroup_id(void *sk)
4088 * Description
4089 * Return the cgroup v2 id of the socket *sk*.
4090 *
4091 * *sk* must be a non-**NULL** pointer to a socket, e.g. one
4092 * returned from **bpf_sk_lookup_xxx**\ (),
4093 * **bpf_sk_fullsock**\ (), etc. The format of returned id is
4094 * same as in **bpf_skb_cgroup_id**\ ().
4095 *
4096 * This helper is available only if the kernel was compiled with
4097 * the **CONFIG_SOCK_CGROUP_DATA** configuration option.
4098 * Return
4099 * The id is returned or 0 in case the id could not be retrieved.
4100 *
4101 * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
4102 * Description
4103 * Return id of cgroup v2 that is ancestor of cgroup associated
4104 * with the *sk* at the *ancestor_level*. The root cgroup is at
4105 * *ancestor_level* zero and each step down the hierarchy
4106 * increments the level. If *ancestor_level* == level of cgroup
4107 * associated with *sk*, then return value will be same as that
4108 * of **bpf_sk_cgroup_id**\ ().
4109 *
4110 * The helper is useful to implement policies based on cgroups
4111 * that are upper in hierarchy than immediate cgroup associated
4112 * with *sk*.
4113 *
4114 * The format of returned id and helper limitations are same as in
4115 * **bpf_sk_cgroup_id**\ ().
4116 * Return
4117 * The id is returned or 0 in case the id could not be retrieved.
4118 *
4119 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
4120 * Description
4121 * Copy *size* bytes from *data* into a ring buffer *ringbuf*.
4122 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4123 * of new data availability is sent.
4124 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4125 * of new data availability is sent unconditionally.
4126 * If **0** is specified in *flags*, an adaptive notification
4127 * of new data availability is sent.
4128 *
4129 * An adaptive notification is a notification sent whenever the user-space
4130 * process has caught up and consumed all available payloads. In case the user-space
4131 * process is still processing a previous payload, then no notification is needed
4132 * as it will process the newly added payload automatically.
4133 * Return
4134 * 0 on success, or a negative error in case of failure.
4135 *
4136 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
4137 * Description
4138 * Reserve *size* bytes of payload in a ring buffer *ringbuf*.
4139 * *flags* must be 0.
4140 * Return
4141 * Valid pointer with *size* bytes of memory available; NULL,
4142 * otherwise.
4143 *
4144 * void bpf_ringbuf_submit(void *data, u64 flags)
4145 * Description
4146 * Submit reserved ring buffer sample, pointed to by *data*.
4147 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4148 * of new data availability is sent.
4149 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4150 * of new data availability is sent unconditionally.
4151 * If **0** is specified in *flags*, an adaptive notification
4152 * of new data availability is sent.
4153 *
4154 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4155 * Return
4156 * Nothing. Always succeeds.
4157 *
4158 * void bpf_ringbuf_discard(void *data, u64 flags)
4159 * Description
4160 * Discard reserved ring buffer sample, pointed to by *data*.
4161 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4162 * of new data availability is sent.
4163 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4164 * of new data availability is sent unconditionally.
4165 * If **0** is specified in *flags*, an adaptive notification
4166 * of new data availability is sent.
4167 *
4168 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4169 * Return
4170 * Nothing. Always succeeds.
4171 *
4172 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
4173 * Description
4174 * Query various characteristics of provided ring buffer. What
4175 * exactly is queries is determined by *flags*:
4176 *
4177 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
4178 * * **BPF_RB_RING_SIZE**: The size of ring buffer.
4179 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around).
4180 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
4181 *
4182 * Data returned is just a momentary snapshot of actual values
4183 * and could be inaccurate, so this facility should be used to
4184 * power heuristics and for reporting, not to make 100% correct
4185 * calculation.
4186 * Return
4187 * Requested value, or 0, if *flags* are not recognized.
4188 *
4189 * long bpf_csum_level(struct sk_buff *skb, u64 level)
4190 * Description
4191 * Change the skbs checksum level by one layer up or down, or
4192 * reset it entirely to none in order to have the stack perform
4193 * checksum validation. The level is applicable to the following
4194 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
4195 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
4196 * through **bpf_skb_adjust_room**\ () helper with passing in
4197 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call
4198 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
4199 * the UDP header is removed. Similarly, an encap of the latter
4200 * into the former could be accompanied by a helper call to
4201 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
4202 * skb is still intended to be processed in higher layers of the
4203 * stack instead of just egressing at tc.
4204 *
4205 * There are three supported level settings at this time:
4206 *
4207 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
4208 * with CHECKSUM_UNNECESSARY.
4209 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
4210 * with CHECKSUM_UNNECESSARY.
4211 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
4212 * sets CHECKSUM_NONE to force checksum validation by the stack.
4213 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
4214 * skb->csum_level.
4215 * Return
4216 * 0 on success, or a negative error in case of failure. In the
4217 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
4218 * is returned or the error code -EACCES in case the skb is not
4219 * subject to CHECKSUM_UNNECESSARY.
4220 *
4221 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
4222 * Description
4223 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
4224 * Return
4225 * *sk* if casting is valid, or **NULL** otherwise.
4226 *
4227 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
4228 * Description
4229 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
4230 * Return
4231 * *sk* if casting is valid, or **NULL** otherwise.
4232 *
4233 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
4234 * Description
4235 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
4236 * Return
4237 * *sk* if casting is valid, or **NULL** otherwise.
4238 *
4239 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
4240 * Description
4241 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
4242 * Return
4243 * *sk* if casting is valid, or **NULL** otherwise.
4244 *
4245 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
4246 * Description
4247 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
4248 * Return
4249 * *sk* if casting is valid, or **NULL** otherwise.
4250 *
4251 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
4252 * Description
4253 * Return a user or a kernel stack in bpf program provided buffer.
4254 * To achieve this, the helper needs *task*, which is a valid
4255 * pointer to **struct task_struct**. To store the stacktrace, the
4256 * bpf program provides *buf* with a nonnegative *size*.
4257 *
4258 * The last argument, *flags*, holds the number of stack frames to
4259 * skip (from 0 to 255), masked with
4260 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
4261 * the following flags:
4262 *
4263 * **BPF_F_USER_STACK**
4264 * Collect a user space stack instead of a kernel stack.
4265 * **BPF_F_USER_BUILD_ID**
4266 * Collect buildid+offset instead of ips for user stack,
4267 * only valid if **BPF_F_USER_STACK** is also specified.
4268 *
4269 * **bpf_get_task_stack**\ () can collect up to
4270 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
4271 * to sufficient large buffer size. Note that
4272 * this limit can be controlled with the **sysctl** program, and
4273 * that it should be manually increased in order to profile long
4274 * user stacks (such as stacks for Java programs). To do so, use:
4275 *
4276 * ::
4277 *
4278 * # sysctl kernel.perf_event_max_stack=<new value>
4279 * Return
4280 * A non-negative value equal to or less than *size* on success,
4281 * or a negative error in case of failure.
4282 *
4283 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
4284 * Description
4285 * Load header option. Support reading a particular TCP header
4286 * option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
4287 *
4288 * If *flags* is 0, it will search the option from the
4289 * *skops*\ **->skb_data**. The comment in **struct bpf_sock_ops**
4290 * has details on what skb_data contains under different
4291 * *skops*\ **->op**.
4292 *
4293 * The first byte of the *searchby_res* specifies the
4294 * kind that it wants to search.
4295 *
4296 * If the searching kind is an experimental kind
4297 * (i.e. 253 or 254 according to RFC6994). It also
4298 * needs to specify the "magic" which is either
4299 * 2 bytes or 4 bytes. It then also needs to
4300 * specify the size of the magic by using
4301 * the 2nd byte which is "kind-length" of a TCP
4302 * header option and the "kind-length" also
4303 * includes the first 2 bytes "kind" and "kind-length"
4304 * itself as a normal TCP header option also does.
4305 *
4306 * For example, to search experimental kind 254 with
4307 * 2 byte magic 0xeB9F, the searchby_res should be
4308 * [ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
4309 *
4310 * To search for the standard window scale option (3),
4311 * the *searchby_res* should be [ 3, 0, 0, .... 0 ].
4312 * Note, kind-length must be 0 for regular option.
4313 *
4314 * Searching for No-Op (0) and End-of-Option-List (1) are
4315 * not supported.
4316 *
4317 * *len* must be at least 2 bytes which is the minimal size
4318 * of a header option.
4319 *
4320 * Supported flags:
4321 *
4322 * * **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
4323 * saved_syn packet or the just-received syn packet.
4324 *
4325 * Return
4326 * > 0 when found, the header option is copied to *searchby_res*.
4327 * The return value is the total length copied. On failure, a
4328 * negative error code is returned:
4329 *
4330 * **-EINVAL** if a parameter is invalid.
4331 *
4332 * **-ENOMSG** if the option is not found.
4333 *
4334 * **-ENOENT** if no syn packet is available when
4335 * **BPF_LOAD_HDR_OPT_TCP_SYN** is used.
4336 *
4337 * **-ENOSPC** if there is not enough space. Only *len* number of
4338 * bytes are copied.
4339 *
4340 * **-EFAULT** on failure to parse the header options in the
4341 * packet.
4342 *
4343 * **-EPERM** if the helper cannot be used under the current
4344 * *skops*\ **->op**.
4345 *
4346 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
4347 * Description
4348 * Store header option. The data will be copied
4349 * from buffer *from* with length *len* to the TCP header.
4350 *
4351 * The buffer *from* should have the whole option that
4352 * includes the kind, kind-length, and the actual
4353 * option data. The *len* must be at least kind-length
4354 * long. The kind-length does not have to be 4 byte
4355 * aligned. The kernel will take care of the padding
4356 * and setting the 4 bytes aligned value to th->doff.
4357 *
4358 * This helper will check for duplicated option
4359 * by searching the same option in the outgoing skb.
4360 *
4361 * This helper can only be called during
4362 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4363 *
4364 * Return
4365 * 0 on success, or negative error in case of failure:
4366 *
4367 * **-EINVAL** If param is invalid.
4368 *
4369 * **-ENOSPC** if there is not enough space in the header.
4370 * Nothing has been written
4371 *
4372 * **-EEXIST** if the option already exists.
4373 *
4374 * **-EFAULT** on failrue to parse the existing header options.
4375 *
4376 * **-EPERM** if the helper cannot be used under the current
4377 * *skops*\ **->op**.
4378 *
4379 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
4380 * Description
4381 * Reserve *len* bytes for the bpf header option. The
4382 * space will be used by **bpf_store_hdr_opt**\ () later in
4383 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4384 *
4385 * If **bpf_reserve_hdr_opt**\ () is called multiple times,
4386 * the total number of bytes will be reserved.
4387 *
4388 * This helper can only be called during
4389 * **BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
4390 *
4391 * Return
4392 * 0 on success, or negative error in case of failure:
4393 *
4394 * **-EINVAL** if a parameter is invalid.
4395 *
4396 * **-ENOSPC** if there is not enough space in the header.
4397 *
4398 * **-EPERM** if the helper cannot be used under the current
4399 * *skops*\ **->op**.
4400 *
4401 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
4402 * Description
4403 * Get a bpf_local_storage from an *inode*.
4404 *
4405 * Logically, it could be thought of as getting the value from
4406 * a *map* with *inode* as the **key**. From this
4407 * perspective, the usage is not much different from
4408 * **bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
4409 * helper enforces the key must be an inode and the map must also
4410 * be a **BPF_MAP_TYPE_INODE_STORAGE**.
4411 *
4412 * Underneath, the value is stored locally at *inode* instead of
4413 * the *map*. The *map* is used as the bpf-local-storage
4414 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4415 * searched against all bpf_local_storage residing at *inode*.
4416 *
4417 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4418 * used such that a new bpf_local_storage will be
4419 * created if one does not exist. *value* can be used
4420 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4421 * the initial value of a bpf_local_storage. If *value* is
4422 * **NULL**, the new bpf_local_storage will be zero initialized.
4423 * Return
4424 * A bpf_local_storage pointer is returned on success.
4425 *
4426 * **NULL** if not found or there was an error in adding
4427 * a new bpf_local_storage.
4428 *
4429 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
4430 * Description
4431 * Delete a bpf_local_storage from an *inode*.
4432 * Return
4433 * 0 on success.
4434 *
4435 * **-ENOENT** if the bpf_local_storage cannot be found.
4436 *
4437 * long bpf_d_path(struct path *path, char *buf, u32 sz)
4438 * Description
4439 * Return full path for given **struct path** object, which
4440 * needs to be the kernel BTF *path* object. The path is
4441 * returned in the provided buffer *buf* of size *sz* and
4442 * is zero terminated.
4443 *
4444 * Return
4445 * On success, the strictly positive length of the string,
4446 * including the trailing NUL character. On error, a negative
4447 * value.
4448 *
4449 * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
4450 * Description
4451 * Read *size* bytes from user space address *user_ptr* and store
4452 * the data in *dst*. This is a wrapper of **copy_from_user**\ ().
4453 * Return
4454 * 0 on success, or a negative error in case of failure.
4455 *
4456 * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
4457 * Description
4458 * Use BTF to store a string representation of *ptr*->ptr in *str*,
4459 * using *ptr*->type_id. This value should specify the type
4460 * that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
4461 * can be used to look up vmlinux BTF type ids. Traversing the
4462 * data structure using BTF, the type information and values are
4463 * stored in the first *str_size* - 1 bytes of *str*. Safe copy of
4464 * the pointer data is carried out to avoid kernel crashes during
4465 * operation. Smaller types can use string space on the stack;
4466 * larger programs can use map data to store the string
4467 * representation.
4468 *
4469 * The string can be subsequently shared with userspace via
4470 * bpf_perf_event_output() or ring buffer interfaces.
4471 * bpf_trace_printk() is to be avoided as it places too small
4472 * a limit on string size to be useful.
4473 *
4474 * *flags* is a combination of
4475 *
4476 * **BTF_F_COMPACT**
4477 * no formatting around type information
4478 * **BTF_F_NONAME**
4479 * no struct/union member names/types
4480 * **BTF_F_PTR_RAW**
4481 * show raw (unobfuscated) pointer values;
4482 * equivalent to printk specifier %px.
4483 * **BTF_F_ZERO**
4484 * show zero-valued struct/union members; they
4485 * are not displayed by default
4486 *
4487 * Return
4488 * The number of bytes that were written (or would have been
4489 * written if output had to be truncated due to string size),
4490 * or a negative error in cases of failure.
4491 *
4492 * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
4493 * Description
4494 * Use BTF to write to seq_write a string representation of
4495 * *ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
4496 * *flags* are identical to those used for bpf_snprintf_btf.
4497 * Return
4498 * 0 on success or a negative error in case of failure.
4499 *
4500 * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
4501 * Description
4502 * See **bpf_get_cgroup_classid**\ () for the main description.
4503 * This helper differs from **bpf_get_cgroup_classid**\ () in that
4504 * the cgroup v1 net_cls class is retrieved only from the *skb*'s
4505 * associated socket instead of the current process.
4506 * Return
4507 * The id is returned or 0 in case the id could not be retrieved.
4508 *
4509 * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
4510 * Description
4511 * Redirect the packet to another net device of index *ifindex*
4512 * and fill in L2 addresses from neighboring subsystem. This helper
4513 * is somewhat similar to **bpf_redirect**\ (), except that it
4514 * populates L2 addresses as well, meaning, internally, the helper
4515 * relies on the neighbor lookup for the L2 address of the nexthop.
4516 *
4517 * The helper will perform a FIB lookup based on the skb's
4518 * networking header to get the address of the next hop, unless
4519 * this is supplied by the caller in the *params* argument. The
4520 * *plen* argument indicates the len of *params* and should be set
4521 * to 0 if *params* is NULL.
4522 *
4523 * The *flags* argument is reserved and must be 0. The helper is
4524 * currently only supported for tc BPF program types, and enabled
4525 * for IPv4 and IPv6 protocols.
4526 * Return
4527 * The helper returns **TC_ACT_REDIRECT** on success or
4528 * **TC_ACT_SHOT** on error.
4529 *
4530 * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
4531 * Description
4532 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4533 * pointer to the percpu kernel variable on *cpu*. A ksym is an
4534 * extern variable decorated with '__ksym'. For ksym, there is a
4535 * global var (either static or global) defined of the same name
4536 * in the kernel. The ksym is percpu if the global var is percpu.
4537 * The returned pointer points to the global percpu var on *cpu*.
4538 *
4539 * bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
4540 * kernel, except that bpf_per_cpu_ptr() may return NULL. This
4541 * happens if *cpu* is larger than nr_cpu_ids. The caller of
4542 * bpf_per_cpu_ptr() must check the returned value.
4543 * Return
4544 * A pointer pointing to the kernel percpu variable on *cpu*, or
4545 * NULL, if *cpu* is invalid.
4546 *
4547 * void *bpf_this_cpu_ptr(const void *percpu_ptr)
4548 * Description
4549 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4550 * pointer to the percpu kernel variable on this cpu. See the
4551 * description of 'ksym' in **bpf_per_cpu_ptr**\ ().
4552 *
4553 * bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
4554 * the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
4555 * never return NULL.
4556 * Return
4557 * A pointer pointing to the kernel percpu variable on this cpu.
4558 *
4559 * long bpf_redirect_peer(u32 ifindex, u64 flags)
4560 * Description
4561 * Redirect the packet to another net device of index *ifindex*.
4562 * This helper is somewhat similar to **bpf_redirect**\ (), except
4563 * that the redirection happens to the *ifindex*' peer device and
4564 * the netns switch takes place from ingress to ingress without
4565 * going through the CPU's backlog queue.
4566 *
4567 * The *flags* argument is reserved and must be 0. The helper is
4568 * currently only supported for tc BPF program types at the ingress
4569 * hook and for veth device types. The peer device must reside in a
4570 * different network namespace.
4571 * Return
4572 * The helper returns **TC_ACT_REDIRECT** on success or
4573 * **TC_ACT_SHOT** on error.
4574 *
4575 * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
4576 * Description
4577 * Get a bpf_local_storage from the *task*.
4578 *
4579 * Logically, it could be thought of as getting the value from
4580 * a *map* with *task* as the **key**. From this
4581 * perspective, the usage is not much different from
4582 * **bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
4583 * helper enforces the key must be an task_struct and the map must also
4584 * be a **BPF_MAP_TYPE_TASK_STORAGE**.
4585 *
4586 * Underneath, the value is stored locally at *task* instead of
4587 * the *map*. The *map* is used as the bpf-local-storage
4588 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4589 * searched against all bpf_local_storage residing at *task*.
4590 *
4591 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4592 * used such that a new bpf_local_storage will be
4593 * created if one does not exist. *value* can be used
4594 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4595 * the initial value of a bpf_local_storage. If *value* is
4596 * **NULL**, the new bpf_local_storage will be zero initialized.
4597 * Return
4598 * A bpf_local_storage pointer is returned on success.
4599 *
4600 * **NULL** if not found or there was an error in adding
4601 * a new bpf_local_storage.
4602 *
4603 * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
4604 * Description
4605 * Delete a bpf_local_storage from a *task*.
4606 * Return
4607 * 0 on success.
4608 *
4609 * **-ENOENT** if the bpf_local_storage cannot be found.
4610 *
4611 * struct task_struct *bpf_get_current_task_btf(void)
4612 * Description
4613 * Return a BTF pointer to the "current" task.
4614 * This pointer can also be used in helpers that accept an
4615 * *ARG_PTR_TO_BTF_ID* of type *task_struct*.
4616 * Return
4617 * Pointer to the current task.
4618 *
4619 * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
4620 * Description
4621 * Set or clear certain options on *bprm*:
4622 *
4623 * **BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
4624 * which sets the **AT_SECURE** auxv for glibc. The bit
4625 * is cleared if the flag is not specified.
4626 * Return
4627 * **-EINVAL** if invalid *flags* are passed, zero otherwise.
4628 *
4629 * u64 bpf_ktime_get_coarse_ns(void)
4630 * Description
4631 * Return a coarse-grained version of the time elapsed since
4632 * system boot, in nanoseconds. Does not include time the system
4633 * was suspended.
4634 *
4635 * See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
4636 * Return
4637 * Current *ktime*.
4638 *
4639 * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
4640 * Description
4641 * Returns the stored IMA hash of the *inode* (if it's avaialable).
4642 * If the hash is larger than *size*, then only *size*
4643 * bytes will be copied to *dst*
4644 * Return
4645 * The **hash_algo** is returned on success,
4646 * **-EOPNOTSUP** if IMA is disabled or **-EINVAL** if
4647 * invalid arguments are passed.
4648 *
4649 * struct socket *bpf_sock_from_file(struct file *file)
4650 * Description
4651 * If the given file represents a socket, returns the associated
4652 * socket.
4653 * Return
4654 * A pointer to a struct socket on success or NULL if the file is
4655 * not a socket.
4656 *
4657 * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
4658 * Description
4659 * Check packet size against exceeding MTU of net device (based
4660 * on *ifindex*). This helper will likely be used in combination
4661 * with helpers that adjust/change the packet size.
4662 *
4663 * The argument *len_diff* can be used for querying with a planned
4664 * size change. This allows to check MTU prior to changing packet
4665 * ctx. Providing an *len_diff* adjustment that is larger than the
4666 * actual packet size (resulting in negative packet size) will in
4667 * principle not exceed the MTU, why it is not considered a
4668 * failure. Other BPF-helpers are needed for performing the
4669 * planned size change, why the responsability for catch a negative
4670 * packet size belong in those helpers.
4671 *
4672 * Specifying *ifindex* zero means the MTU check is performed
4673 * against the current net device. This is practical if this isn't
4674 * used prior to redirect.
4675 *
4676 * On input *mtu_len* must be a valid pointer, else verifier will
4677 * reject BPF program. If the value *mtu_len* is initialized to
4678 * zero then the ctx packet size is use. When value *mtu_len* is
4679 * provided as input this specify the L3 length that the MTU check
4680 * is done against. Remember XDP and TC length operate at L2, but
4681 * this value is L3 as this correlate to MTU and IP-header tot_len
4682 * values which are L3 (similar behavior as bpf_fib_lookup).
4683 *
4684 * The Linux kernel route table can configure MTUs on a more
4685 * specific per route level, which is not provided by this helper.
4686 * For route level MTU checks use the **bpf_fib_lookup**\ ()
4687 * helper.
4688 *
4689 * *ctx* is either **struct xdp_md** for XDP programs or
4690 * **struct sk_buff** for tc cls_act programs.
4691 *
4692 * The *flags* argument can be a combination of one or more of the
4693 * following values:
4694 *
4695 * **BPF_MTU_CHK_SEGS**
4696 * This flag will only works for *ctx* **struct sk_buff**.
4697 * If packet context contains extra packet segment buffers
4698 * (often knows as GSO skb), then MTU check is harder to
4699 * check at this point, because in transmit path it is
4700 * possible for the skb packet to get re-segmented
4701 * (depending on net device features). This could still be
4702 * a MTU violation, so this flag enables performing MTU
4703 * check against segments, with a different violation
4704 * return code to tell it apart. Check cannot use len_diff.
4705 *
4706 * On return *mtu_len* pointer contains the MTU value of the net
4707 * device. Remember the net device configured MTU is the L3 size,
4708 * which is returned here and XDP and TC length operate at L2.
4709 * Helper take this into account for you, but remember when using
4710 * MTU value in your BPF-code.
4711 *
4712 * Return
4713 * * 0 on success, and populate MTU value in *mtu_len* pointer.
4714 *
4715 * * < 0 if any input argument is invalid (*mtu_len* not updated)
4716 *
4717 * MTU violations return positive values, but also populate MTU
4718 * value in *mtu_len* pointer, as this can be needed for
4719 * implementing PMTU handing:
4720 *
4721 * * **BPF_MTU_CHK_RET_FRAG_NEEDED**
4722 * * **BPF_MTU_CHK_RET_SEGS_TOOBIG**
4723 *
4724 * long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void *callback_ctx, u64 flags)
4725 * Description
4726 * For each element in **map**, call **callback_fn** function with
4727 * **map**, **callback_ctx** and other map-specific parameters.
4728 * The **callback_fn** should be a static function and
4729 * the **callback_ctx** should be a pointer to the stack.
4730 * The **flags** is used to control certain aspects of the helper.
4731 * Currently, the **flags** must be 0.
4732 *
4733 * The following are a list of supported map types and their
4734 * respective expected callback signatures:
4735 *
4736 * BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
4737 * BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PERCPU_HASH,
4738 * BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PERCPU_ARRAY
4739 *
4740 * long (\*callback_fn)(struct bpf_map \*map, const void \*key, void \*value, void \*ctx);
4741 *
4742 * For per_cpu maps, the map_value is the value on the cpu where the
4743 * bpf_prog is running.
4744 *
4745 * If **callback_fn** return 0, the helper will continue to the next
4746 * element. If return value is 1, the helper will skip the rest of
4747 * elements and return. Other return values are not used now.
4748 *
4749 * Return
4750 * The number of traversed map elements for success, **-EINVAL** for
4751 * invalid **flags**.
4752 *
4753 * long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)
4754 * Description
4755 * Outputs a string into the **str** buffer of size **str_size**
4756 * based on a format string stored in a read-only map pointed by
4757 * **fmt**.
4758 *
4759 * Each format specifier in **fmt** corresponds to one u64 element
4760 * in the **data** array. For strings and pointers where pointees
4761 * are accessed, only the pointer values are stored in the *data*
4762 * array. The *data_len* is the size of *data* in bytes - must be
4763 * a multiple of 8.
4764 *
4765 * Formats **%s** and **%p{i,I}{4,6}** require to read kernel
4766 * memory. Reading kernel memory may fail due to either invalid
4767 * address or valid address but requiring a major memory fault. If
4768 * reading kernel memory fails, the string for **%s** will be an
4769 * empty string, and the ip address for **%p{i,I}{4,6}** will be 0.
4770 * Not returning error to bpf program is consistent with what
4771 * **bpf_trace_printk**\ () does for now.
4772 *
4773 * Return
4774 * The strictly positive length of the formatted string, including
4775 * the trailing zero character. If the return value is greater than
4776 * **str_size**, **str** contains a truncated string, guaranteed to
4777 * be zero-terminated except when **str_size** is 0.
4778 *
4779 * Or **-EBUSY** if the per-CPU memory copy buffer is busy.
4780 *
4781 * long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)
4782 * Description
4783 * Execute bpf syscall with given arguments.
4784 * Return
4785 * A syscall result.
4786 *
4787 * long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)
4788 * Description
4789 * Find BTF type with given name and kind in vmlinux BTF or in module's BTFs.
4790 * Return
4791 * Returns btf_id and btf_obj_fd in lower and upper 32 bits.
4792 *
4793 * long bpf_sys_close(u32 fd)
4794 * Description
4795 * Execute close syscall for given FD.
4796 * Return
4797 * A syscall result.
4798 *
4799 * long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)
4800 * Description
4801 * Initialize the timer.
4802 * First 4 bits of *flags* specify clockid.
4803 * Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
4804 * All other bits of *flags* are reserved.
4805 * The verifier will reject the program if *timer* is not from
4806 * the same *map*.
4807 * Return
4808 * 0 on success.
4809 * **-EBUSY** if *timer* is already initialized.
4810 * **-EINVAL** if invalid *flags* are passed.
4811 * **-EPERM** if *timer* is in a map that doesn't have any user references.
4812 * The user space should either hold a file descriptor to a map with timers
4813 * or pin such map in bpffs. When map is unpinned or file descriptor is
4814 * closed all timers in the map will be cancelled and freed.
4815 *
4816 * long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)
4817 * Description
4818 * Configure the timer to call *callback_fn* static function.
4819 * Return
4820 * 0 on success.
4821 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
4822 * **-EPERM** if *timer* is in a map that doesn't have any user references.
4823 * The user space should either hold a file descriptor to a map with timers
4824 * or pin such map in bpffs. When map is unpinned or file descriptor is
4825 * closed all timers in the map will be cancelled and freed.
4826 *
4827 * long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)
4828 * Description
4829 * Set timer expiration N nanoseconds from the current time. The
4830 * configured callback will be invoked in soft irq context on some cpu
4831 * and will not repeat unless another bpf_timer_start() is made.
4832 * In such case the next invocation can migrate to a different cpu.
4833 * Since struct bpf_timer is a field inside map element the map
4834 * owns the timer. The bpf_timer_set_callback() will increment refcnt
4835 * of BPF program to make sure that callback_fn code stays valid.
4836 * When user space reference to a map reaches zero all timers
4837 * in a map are cancelled and corresponding program's refcnts are
4838 * decremented. This is done to make sure that Ctrl-C of a user
4839 * process doesn't leave any timers running. If map is pinned in
4840 * bpffs the callback_fn can re-arm itself indefinitely.
4841 * bpf_map_update/delete_elem() helpers and user space sys_bpf commands
4842 * cancel and free the timer in the given map element.
4843 * The map can contain timers that invoke callback_fn-s from different
4844 * programs. The same callback_fn can serve different timers from
4845 * different maps if key/value layout matches across maps.
4846 * Every bpf_timer_set_callback() can have different callback_fn.
4847 *
4848 * Return
4849 * 0 on success.
4850 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier
4851 * or invalid *flags* are passed.
4852 *
4853 * long bpf_timer_cancel(struct bpf_timer *timer)
4854 * Description
4855 * Cancel the timer and wait for callback_fn to finish if it was running.
4856 * Return
4857 * 0 if the timer was not active.
4858 * 1 if the timer was active.
4859 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
4860 * **-EDEADLK** if callback_fn tried to call bpf_timer_cancel() on its
4861 * own timer which would have led to a deadlock otherwise.
4862 *
4863 * u64 bpf_get_func_ip(void *ctx)
4864 * Description
4865 * Get address of the traced function (for tracing and kprobe programs).
4866 * Return
4867 * Address of the traced function.
4868 *
4869 * u64 bpf_get_attach_cookie(void *ctx)
4870 * Description
4871 * Get bpf_cookie value provided (optionally) during the program
4872 * attachment. It might be different for each individual
4873 * attachment, even if BPF program itself is the same.
4874 * Expects BPF program context *ctx* as a first argument.
4875 *
4876 * Supported for the following program types:
4877 * - kprobe/uprobe;
4878 * - tracepoint;
4879 * - perf_event.
4880 * Return
4881 * Value specified by user at BPF link creation/attachment time
4882 * or 0, if it was not specified.
4883 *
4884 * long bpf_task_pt_regs(struct task_struct *task)
4885 * Description
4886 * Get the struct pt_regs associated with **task**.
4887 * Return
4888 * A pointer to struct pt_regs.
4889 *
4890 * long bpf_get_branch_snapshot(void *entries, u32 size, u64 flags)
4891 * Description
4892 * Get branch trace from hardware engines like Intel LBR. The
4893 * hardware engine is stopped shortly after the helper is
4894 * called. Therefore, the user need to filter branch entries
4895 * based on the actual use case. To capture branch trace
4896 * before the trigger point of the BPF program, the helper
4897 * should be called at the beginning of the BPF program.
4898 *
4899 * The data is stored as struct perf_branch_entry into output
4900 * buffer *entries*. *size* is the size of *entries* in bytes.
4901 * *flags* is reserved for now and must be zero.
4902 *
4903 * Return
4904 * On success, number of bytes written to *buf*. On error, a
4905 * negative value.
4906 *
4907 * **-EINVAL** if *flags* is not zero.
4908 *
4909 * **-ENOENT** if architecture does not support branch records.
4910 *
4911 * long bpf_trace_vprintk(const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4912 * Description
4913 * Behaves like **bpf_trace_printk**\ () helper, but takes an array of u64
4914 * to format and can handle more format args as a result.
4915 *
4916 * Arguments are to be used as in **bpf_seq_printf**\ () helper.
4917 * Return
4918 * The number of bytes written to the buffer, or a negative error
4919 * in case of failure.
4920 *
4921 * struct unix_sock *bpf_skc_to_unix_sock(void *sk)
4922 * Description
4923 * Dynamically cast a *sk* pointer to a *unix_sock* pointer.
4924 * Return
4925 * *sk* if casting is valid, or **NULL** otherwise.
4926 *
4927 * long bpf_kallsyms_lookup_name(const char *name, int name_sz, int flags, u64 *res)
4928 * Description
4929 * Get the address of a kernel symbol, returned in *res*. *res* is
4930 * set to 0 if the symbol is not found.
4931 * Return
4932 * On success, zero. On error, a negative value.
4933 *
4934 * **-EINVAL** if *flags* is not zero.
4935 *
4936 * **-EINVAL** if string *name* is not the same size as *name_sz*.
4937 *
4938 * **-ENOENT** if symbol is not found.
4939 *
4940 * **-EPERM** if caller does not have permission to obtain kernel address.
4941 */
4942#define __BPF_FUNC_MAPPER(FN) \
4943 FN(unspec), \
4944 FN(map_lookup_elem), \
4945 FN(map_update_elem), \
4946 FN(map_delete_elem), \
4947 FN(probe_read), \
4948 FN(ktime_get_ns), \
4949 FN(trace_printk), \
4950 FN(get_prandom_u32), \
4951 FN(get_smp_processor_id), \
4952 FN(skb_store_bytes), \
4953 FN(l3_csum_replace), \
4954 FN(l4_csum_replace), \
4955 FN(tail_call), \
4956 FN(clone_redirect), \
4957 FN(get_current_pid_tgid), \
4958 FN(get_current_uid_gid), \
4959 FN(get_current_comm), \
4960 FN(get_cgroup_classid), \
4961 FN(skb_vlan_push), \
4962 FN(skb_vlan_pop), \
4963 FN(skb_get_tunnel_key), \
4964 FN(skb_set_tunnel_key), \
4965 FN(perf_event_read), \
4966 FN(redirect), \
4967 FN(get_route_realm), \
4968 FN(perf_event_output), \
4969 FN(skb_load_bytes), \
4970 FN(get_stackid), \
4971 FN(csum_diff), \
4972 FN(skb_get_tunnel_opt), \
4973 FN(skb_set_tunnel_opt), \
4974 FN(skb_change_proto), \
4975 FN(skb_change_type), \
4976 FN(skb_under_cgroup), \
4977 FN(get_hash_recalc), \
4978 FN(get_current_task), \
4979 FN(probe_write_user), \
4980 FN(current_task_under_cgroup), \
4981 FN(skb_change_tail), \
4982 FN(skb_pull_data), \
4983 FN(csum_update), \
4984 FN(set_hash_invalid), \
4985 FN(get_numa_node_id), \
4986 FN(skb_change_head), \
4987 FN(xdp_adjust_head), \
4988 FN(probe_read_str), \
4989 FN(get_socket_cookie), \
4990 FN(get_socket_uid), \
4991 FN(set_hash), \
4992 FN(setsockopt), \
4993 FN(skb_adjust_room), \
4994 FN(redirect_map), \
4995 FN(sk_redirect_map), \
4996 FN(sock_map_update), \
4997 FN(xdp_adjust_meta), \
4998 FN(perf_event_read_value), \
4999 FN(perf_prog_read_value), \
5000 FN(getsockopt), \
5001 FN(override_return), \
5002 FN(sock_ops_cb_flags_set), \
5003 FN(msg_redirect_map), \
5004 FN(msg_apply_bytes), \
5005 FN(msg_cork_bytes), \
5006 FN(msg_pull_data), \
5007 FN(bind), \
5008 FN(xdp_adjust_tail), \
5009 FN(skb_get_xfrm_state), \
5010 FN(get_stack), \
5011 FN(skb_load_bytes_relative), \
5012 FN(fib_lookup), \
5013 FN(sock_hash_update), \
5014 FN(msg_redirect_hash), \
5015 FN(sk_redirect_hash), \
5016 FN(lwt_push_encap), \
5017 FN(lwt_seg6_store_bytes), \
5018 FN(lwt_seg6_adjust_srh), \
5019 FN(lwt_seg6_action), \
5020 FN(rc_repeat), \
5021 FN(rc_keydown), \
5022 FN(skb_cgroup_id), \
5023 FN(get_current_cgroup_id), \
5024 FN(get_local_storage), \
5025 FN(sk_select_reuseport), \
5026 FN(skb_ancestor_cgroup_id), \
5027 FN(sk_lookup_tcp), \
5028 FN(sk_lookup_udp), \
5029 FN(sk_release), \
5030 FN(map_push_elem), \
5031 FN(map_pop_elem), \
5032 FN(map_peek_elem), \
5033 FN(msg_push_data), \
5034 FN(msg_pop_data), \
5035 FN(rc_pointer_rel), \
5036 FN(spin_lock), \
5037 FN(spin_unlock), \
5038 FN(sk_fullsock), \
5039 FN(tcp_sock), \
5040 FN(skb_ecn_set_ce), \
5041 FN(get_listener_sock), \
5042 FN(skc_lookup_tcp), \
5043 FN(tcp_check_syncookie), \
5044 FN(sysctl_get_name), \
5045 FN(sysctl_get_current_value), \
5046 FN(sysctl_get_new_value), \
5047 FN(sysctl_set_new_value), \
5048 FN(strtol), \
5049 FN(strtoul), \
5050 FN(sk_storage_get), \
5051 FN(sk_storage_delete), \
5052 FN(send_signal), \
5053 FN(tcp_gen_syncookie), \
5054 FN(skb_output), \
5055 FN(probe_read_user), \
5056 FN(probe_read_kernel), \
5057 FN(probe_read_user_str), \
5058 FN(probe_read_kernel_str), \
5059 FN(tcp_send_ack), \
5060 FN(send_signal_thread), \
5061 FN(jiffies64), \
5062 FN(read_branch_records), \
5063 FN(get_ns_current_pid_tgid), \
5064 FN(xdp_output), \
5065 FN(get_netns_cookie), \
5066 FN(get_current_ancestor_cgroup_id), \
5067 FN(sk_assign), \
5068 FN(ktime_get_boot_ns), \
5069 FN(seq_printf), \
5070 FN(seq_write), \
5071 FN(sk_cgroup_id), \
5072 FN(sk_ancestor_cgroup_id), \
5073 FN(ringbuf_output), \
5074 FN(ringbuf_reserve), \
5075 FN(ringbuf_submit), \
5076 FN(ringbuf_discard), \
5077 FN(ringbuf_query), \
5078 FN(csum_level), \
5079 FN(skc_to_tcp6_sock), \
5080 FN(skc_to_tcp_sock), \
5081 FN(skc_to_tcp_timewait_sock), \
5082 FN(skc_to_tcp_request_sock), \
5083 FN(skc_to_udp6_sock), \
5084 FN(get_task_stack), \
5085 FN(load_hdr_opt), \
5086 FN(store_hdr_opt), \
5087 FN(reserve_hdr_opt), \
5088 FN(inode_storage_get), \
5089 FN(inode_storage_delete), \
5090 FN(d_path), \
5091 FN(copy_from_user), \
5092 FN(snprintf_btf), \
5093 FN(seq_printf_btf), \
5094 FN(skb_cgroup_classid), \
5095 FN(redirect_neigh), \
5096 FN(per_cpu_ptr), \
5097 FN(this_cpu_ptr), \
5098 FN(redirect_peer), \
5099 FN(task_storage_get), \
5100 FN(task_storage_delete), \
5101 FN(get_current_task_btf), \
5102 FN(bprm_opts_set), \
5103 FN(ktime_get_coarse_ns), \
5104 FN(ima_inode_hash), \
5105 FN(sock_from_file), \
5106 FN(check_mtu), \
5107 FN(for_each_map_elem), \
5108 FN(snprintf), \
5109 FN(sys_bpf), \
5110 FN(btf_find_by_name_kind), \
5111 FN(sys_close), \
5112 FN(timer_init), \
5113 FN(timer_set_callback), \
5114 FN(timer_start), \
5115 FN(timer_cancel), \
5116 FN(get_func_ip), \
5117 FN(get_attach_cookie), \
5118 FN(task_pt_regs), \
5119 FN(get_branch_snapshot), \
5120 FN(trace_vprintk), \
5121 FN(skc_to_unix_sock), \
5122 FN(kallsyms_lookup_name), \
5123 /* */
5124
5125/* integer value in 'imm' field of BPF_CALL instruction selects which helper
5126 * function eBPF program intends to call
5127 */
5128#define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
5129enum bpf_func_id {
5130 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
5131 __BPF_FUNC_MAX_ID,
5132};
5133#undef __BPF_ENUM_FN
5134
5135/* All flags used by eBPF helper functions, placed here. */
5136
5137/* BPF_FUNC_skb_store_bytes flags. */
5138enum {
5139 BPF_F_RECOMPUTE_CSUM = (1ULL << 0),
5140 BPF_F_INVALIDATE_HASH = (1ULL << 1),
5141};
5142
5143/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
5144 * First 4 bits are for passing the header field size.
5145 */
5146enum {
5147 BPF_F_HDR_FIELD_MASK = 0xfULL,
5148};
5149
5150/* BPF_FUNC_l4_csum_replace flags. */
5151enum {
5152 BPF_F_PSEUDO_HDR = (1ULL << 4),
5153 BPF_F_MARK_MANGLED_0 = (1ULL << 5),
5154 BPF_F_MARK_ENFORCE = (1ULL << 6),
5155};
5156
5157/* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
5158enum {
5159 BPF_F_INGRESS = (1ULL << 0),
5160};
5161
5162/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
5163enum {
5164 BPF_F_TUNINFO_IPV6 = (1ULL << 0),
5165};
5166
5167/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
5168enum {
5169 BPF_F_SKIP_FIELD_MASK = 0xffULL,
5170 BPF_F_USER_STACK = (1ULL << 8),
5171/* flags used by BPF_FUNC_get_stackid only. */
5172 BPF_F_FAST_STACK_CMP = (1ULL << 9),
5173 BPF_F_REUSE_STACKID = (1ULL << 10),
5174/* flags used by BPF_FUNC_get_stack only. */
5175 BPF_F_USER_BUILD_ID = (1ULL << 11),
5176};
5177
5178/* BPF_FUNC_skb_set_tunnel_key flags. */
5179enum {
5180 BPF_F_ZERO_CSUM_TX = (1ULL << 1),
5181 BPF_F_DONT_FRAGMENT = (1ULL << 2),
5182 BPF_F_SEQ_NUMBER = (1ULL << 3),
5183};
5184
5185/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
5186 * BPF_FUNC_perf_event_read_value flags.
5187 */
5188enum {
5189 BPF_F_INDEX_MASK = 0xffffffffULL,
5190 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
5191/* BPF_FUNC_perf_event_output for sk_buff input context. */
5192 BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
5193};
5194
5195/* Current network namespace */
5196enum {
5197 BPF_F_CURRENT_NETNS = (-1L),
5198};
5199
5200/* BPF_FUNC_csum_level level values. */
5201enum {
5202 BPF_CSUM_LEVEL_QUERY,
5203 BPF_CSUM_LEVEL_INC,
5204 BPF_CSUM_LEVEL_DEC,
5205 BPF_CSUM_LEVEL_RESET,
5206};
5207
5208/* BPF_FUNC_skb_adjust_room flags. */
5209enum {
5210 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0),
5211 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1),
5212 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2),
5213 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3),
5214 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4),
5215 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5),
5216 BPF_F_ADJ_ROOM_ENCAP_L2_ETH = (1ULL << 6),
5217};
5218
5219enum {
5220 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff,
5221 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56,
5222};
5223
5224#define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \
5225 BPF_ADJ_ROOM_ENCAP_L2_MASK) \
5226 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
5227
5228/* BPF_FUNC_sysctl_get_name flags. */
5229enum {
5230 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0),
5231};
5232
5233/* BPF_FUNC_<kernel_obj>_storage_get flags */
5234enum {
5235 BPF_LOCAL_STORAGE_GET_F_CREATE = (1ULL << 0),
5236 /* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
5237 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
5238 */
5239 BPF_SK_STORAGE_GET_F_CREATE = BPF_LOCAL_STORAGE_GET_F_CREATE,
5240};
5241
5242/* BPF_FUNC_read_branch_records flags. */
5243enum {
5244 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0),
5245};
5246
5247/* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
5248 * BPF_FUNC_bpf_ringbuf_output flags.
5249 */
5250enum {
5251 BPF_RB_NO_WAKEUP = (1ULL << 0),
5252 BPF_RB_FORCE_WAKEUP = (1ULL << 1),
5253};
5254
5255/* BPF_FUNC_bpf_ringbuf_query flags */
5256enum {
5257 BPF_RB_AVAIL_DATA = 0,
5258 BPF_RB_RING_SIZE = 1,
5259 BPF_RB_CONS_POS = 2,
5260 BPF_RB_PROD_POS = 3,
5261};
5262
5263/* BPF ring buffer constants */
5264enum {
5265 BPF_RINGBUF_BUSY_BIT = (1U << 31),
5266 BPF_RINGBUF_DISCARD_BIT = (1U << 30),
5267 BPF_RINGBUF_HDR_SZ = 8,
5268};
5269
5270/* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
5271enum {
5272 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0),
5273 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1),
5274};
5275
5276/* Mode for BPF_FUNC_skb_adjust_room helper. */
5277enum bpf_adj_room_mode {
5278 BPF_ADJ_ROOM_NET,
5279 BPF_ADJ_ROOM_MAC,
5280};
5281
5282/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
5283enum bpf_hdr_start_off {
5284 BPF_HDR_START_MAC,
5285 BPF_HDR_START_NET,
5286};
5287
5288/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
5289enum bpf_lwt_encap_mode {
5290 BPF_LWT_ENCAP_SEG6,
5291 BPF_LWT_ENCAP_SEG6_INLINE,
5292 BPF_LWT_ENCAP_IP,
5293};
5294
5295/* Flags for bpf_bprm_opts_set helper */
5296enum {
5297 BPF_F_BPRM_SECUREEXEC = (1ULL << 0),
5298};
5299
5300/* Flags for bpf_redirect_map helper */
5301enum {
5302 BPF_F_BROADCAST = (1ULL << 3),
5303 BPF_F_EXCLUDE_INGRESS = (1ULL << 4),
5304};
5305
5306#define __bpf_md_ptr(type, name) \
5307union { \
5308 type name; \
5309 __u64 :64; \
5310} __attribute__((aligned(8)))
5311
5312/* user accessible mirror of in-kernel sk_buff.
5313 * new fields can only be added to the end of this structure
5314 */
5315struct __sk_buff {
5316 __u32 len;
5317 __u32 pkt_type;
5318 __u32 mark;
5319 __u32 queue_mapping;
5320 __u32 protocol;
5321 __u32 vlan_present;
5322 __u32 vlan_tci;
5323 __u32 vlan_proto;
5324 __u32 priority;
5325 __u32 ingress_ifindex;
5326 __u32 ifindex;
5327 __u32 tc_index;
5328 __u32 cb[5];
5329 __u32 hash;
5330 __u32 tc_classid;
5331 __u32 data;
5332 __u32 data_end;
5333 __u32 napi_id;
5334
5335 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
5336 __u32 family;
5337 __u32 remote_ip4; /* Stored in network byte order */
5338 __u32 local_ip4; /* Stored in network byte order */
5339 __u32 remote_ip6[4]; /* Stored in network byte order */
5340 __u32 local_ip6[4]; /* Stored in network byte order */
5341 __u32 remote_port; /* Stored in network byte order */
5342 __u32 local_port; /* stored in host byte order */
5343 /* ... here. */
5344
5345 __u32 data_meta;
5346 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
5347 __u64 tstamp;
5348 __u32 wire_len;
5349 __u32 gso_segs;
5350 __bpf_md_ptr(struct bpf_sock *, sk);
5351 __u32 gso_size;
5352 __u32 :32; /* Padding, future use. */
5353 __u64 hwtstamp;
5354};
5355
5356struct bpf_tunnel_key {
5357 __u32 tunnel_id;
5358 union {
5359 __u32 remote_ipv4;
5360 __u32 remote_ipv6[4];
5361 };
5362 __u8 tunnel_tos;
5363 __u8 tunnel_ttl;
5364 __u16 tunnel_ext; /* Padding, future use. */
5365 __u32 tunnel_label;
5366};
5367
5368/* user accessible mirror of in-kernel xfrm_state.
5369 * new fields can only be added to the end of this structure
5370 */
5371struct bpf_xfrm_state {
5372 __u32 reqid;
5373 __u32 spi; /* Stored in network byte order */
5374 __u16 family;
5375 __u16 ext; /* Padding, future use. */
5376 union {
5377 __u32 remote_ipv4; /* Stored in network byte order */
5378 __u32 remote_ipv6[4]; /* Stored in network byte order */
5379 };
5380};
5381
5382/* Generic BPF return codes which all BPF program types may support.
5383 * The values are binary compatible with their TC_ACT_* counter-part to
5384 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
5385 * programs.
5386 *
5387 * XDP is handled seprately, see XDP_*.
5388 */
5389enum bpf_ret_code {
5390 BPF_OK = 0,
5391 /* 1 reserved */
5392 BPF_DROP = 2,
5393 /* 3-6 reserved */
5394 BPF_REDIRECT = 7,
5395 /* >127 are reserved for prog type specific return codes.
5396 *
5397 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
5398 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
5399 * changed and should be routed based on its new L3 header.
5400 * (This is an L3 redirect, as opposed to L2 redirect
5401 * represented by BPF_REDIRECT above).
5402 */
5403 BPF_LWT_REROUTE = 128,
5404};
5405
5406struct bpf_sock {
5407 __u32 bound_dev_if;
5408 __u32 family;
5409 __u32 type;
5410 __u32 protocol;
5411 __u32 mark;
5412 __u32 priority;
5413 /* IP address also allows 1 and 2 bytes access */
5414 __u32 src_ip4;
5415 __u32 src_ip6[4];
5416 __u32 src_port; /* host byte order */
5417 __u32 dst_port; /* network byte order */
5418 __u32 dst_ip4;
5419 __u32 dst_ip6[4];
5420 __u32 state;
5421 __s32 rx_queue_mapping;
5422};
5423
5424struct bpf_tcp_sock {
5425 __u32 snd_cwnd; /* Sending congestion window */
5426 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
5427 __u32 rtt_min;
5428 __u32 snd_ssthresh; /* Slow start size threshold */
5429 __u32 rcv_nxt; /* What we want to receive next */
5430 __u32 snd_nxt; /* Next sequence we send */
5431 __u32 snd_una; /* First byte we want an ack for */
5432 __u32 mss_cache; /* Cached effective mss, not including SACKS */
5433 __u32 ecn_flags; /* ECN status bits. */
5434 __u32 rate_delivered; /* saved rate sample: packets delivered */
5435 __u32 rate_interval_us; /* saved rate sample: time elapsed */
5436 __u32 packets_out; /* Packets which are "in flight" */
5437 __u32 retrans_out; /* Retransmitted packets out */
5438 __u32 total_retrans; /* Total retransmits for entire connection */
5439 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
5440 * total number of segments in.
5441 */
5442 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
5443 * total number of data segments in.
5444 */
5445 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
5446 * The total number of segments sent.
5447 */
5448 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
5449 * total number of data segments sent.
5450 */
5451 __u32 lost_out; /* Lost packets */
5452 __u32 sacked_out; /* SACK'd packets */
5453 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
5454 * sum(delta(rcv_nxt)), or how many bytes
5455 * were acked.
5456 */
5457 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
5458 * sum(delta(snd_una)), or how many bytes
5459 * were acked.
5460 */
5461 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups
5462 * total number of DSACK blocks received
5463 */
5464 __u32 delivered; /* Total data packets delivered incl. rexmits */
5465 __u32 delivered_ce; /* Like the above but only ECE marked packets */
5466 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */
5467};
5468
5469struct bpf_sock_tuple {
5470 union {
5471 struct {
5472 __be32 saddr;
5473 __be32 daddr;
5474 __be16 sport;
5475 __be16 dport;
5476 } ipv4;
5477 struct {
5478 __be32 saddr[4];
5479 __be32 daddr[4];
5480 __be16 sport;
5481 __be16 dport;
5482 } ipv6;
5483 };
5484};
5485
5486struct bpf_xdp_sock {
5487 __u32 queue_id;
5488};
5489
5490#define XDP_PACKET_HEADROOM 256
5491
5492/* User return codes for XDP prog type.
5493 * A valid XDP program must return one of these defined values. All other
5494 * return codes are reserved for future use. Unknown return codes will
5495 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
5496 */
5497enum xdp_action {
5498 XDP_ABORTED = 0,
5499 XDP_DROP,
5500 XDP_PASS,
5501 XDP_TX,
5502 XDP_REDIRECT,
5503};
5504
5505/* user accessible metadata for XDP packet hook
5506 * new fields must be added to the end of this structure
5507 */
5508struct xdp_md {
5509 __u32 data;
5510 __u32 data_end;
5511 __u32 data_meta;
5512 /* Below access go through struct xdp_rxq_info */
5513 __u32 ingress_ifindex; /* rxq->dev->ifindex */
5514 __u32 rx_queue_index; /* rxq->queue_index */
5515
5516 __u32 egress_ifindex; /* txq->dev->ifindex */
5517};
5518
5519/* DEVMAP map-value layout
5520 *
5521 * The struct data-layout of map-value is a configuration interface.
5522 * New members can only be added to the end of this structure.
5523 */
5524struct bpf_devmap_val {
5525 __u32 ifindex; /* device index */
5526 union {
5527 int fd; /* prog fd on map write */
5528 __u32 id; /* prog id on map read */
5529 } bpf_prog;
5530};
5531
5532/* CPUMAP map-value layout
5533 *
5534 * The struct data-layout of map-value is a configuration interface.
5535 * New members can only be added to the end of this structure.
5536 */
5537struct bpf_cpumap_val {
5538 __u32 qsize; /* queue size to remote target CPU */
5539 union {
5540 int fd; /* prog fd on map write */
5541 __u32 id; /* prog id on map read */
5542 } bpf_prog;
5543};
5544
5545enum sk_action {
5546 SK_DROP = 0,
5547 SK_PASS,
5548};
5549
5550/* user accessible metadata for SK_MSG packet hook, new fields must
5551 * be added to the end of this structure
5552 */
5553struct sk_msg_md {
5554 __bpf_md_ptr(void *, data);
5555 __bpf_md_ptr(void *, data_end);
5556
5557 __u32 family;
5558 __u32 remote_ip4; /* Stored in network byte order */
5559 __u32 local_ip4; /* Stored in network byte order */
5560 __u32 remote_ip6[4]; /* Stored in network byte order */
5561 __u32 local_ip6[4]; /* Stored in network byte order */
5562 __u32 remote_port; /* Stored in network byte order */
5563 __u32 local_port; /* stored in host byte order */
5564 __u32 size; /* Total size of sk_msg */
5565
5566 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
5567};
5568
5569struct sk_reuseport_md {
5570 /*
5571 * Start of directly accessible data. It begins from
5572 * the tcp/udp header.
5573 */
5574 __bpf_md_ptr(void *, data);
5575 /* End of directly accessible data */
5576 __bpf_md_ptr(void *, data_end);
5577 /*
5578 * Total length of packet (starting from the tcp/udp header).
5579 * Note that the directly accessible bytes (data_end - data)
5580 * could be less than this "len". Those bytes could be
5581 * indirectly read by a helper "bpf_skb_load_bytes()".
5582 */
5583 __u32 len;
5584 /*
5585 * Eth protocol in the mac header (network byte order). e.g.
5586 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
5587 */
5588 __u32 eth_protocol;
5589 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
5590 __u32 bind_inany; /* Is sock bound to an INANY address? */
5591 __u32 hash; /* A hash of the packet 4 tuples */
5592 /* When reuse->migrating_sk is NULL, it is selecting a sk for the
5593 * new incoming connection request (e.g. selecting a listen sk for
5594 * the received SYN in the TCP case). reuse->sk is one of the sk
5595 * in the reuseport group. The bpf prog can use reuse->sk to learn
5596 * the local listening ip/port without looking into the skb.
5597 *
5598 * When reuse->migrating_sk is not NULL, reuse->sk is closed and
5599 * reuse->migrating_sk is the socket that needs to be migrated
5600 * to another listening socket. migrating_sk could be a fullsock
5601 * sk that is fully established or a reqsk that is in-the-middle
5602 * of 3-way handshake.
5603 */
5604 __bpf_md_ptr(struct bpf_sock *, sk);
5605 __bpf_md_ptr(struct bpf_sock *, migrating_sk);
5606};
5607
5608#define BPF_TAG_SIZE 8
5609
5610struct bpf_prog_info {
5611 __u32 type;
5612 __u32 id;
5613 __u8 tag[BPF_TAG_SIZE];
5614 __u32 jited_prog_len;
5615 __u32 xlated_prog_len;
5616 __aligned_u64 jited_prog_insns;
5617 __aligned_u64 xlated_prog_insns;
5618 __u64 load_time; /* ns since boottime */
5619 __u32 created_by_uid;
5620 __u32 nr_map_ids;
5621 __aligned_u64 map_ids;
5622 char name[BPF_OBJ_NAME_LEN];
5623 __u32 ifindex;
5624 __u32 gpl_compatible:1;
5625 __u32 :31; /* alignment pad */
5626 __u64 netns_dev;
5627 __u64 netns_ino;
5628 __u32 nr_jited_ksyms;
5629 __u32 nr_jited_func_lens;
5630 __aligned_u64 jited_ksyms;
5631 __aligned_u64 jited_func_lens;
5632 __u32 btf_id;
5633 __u32 func_info_rec_size;
5634 __aligned_u64 func_info;
5635 __u32 nr_func_info;
5636 __u32 nr_line_info;
5637 __aligned_u64 line_info;
5638 __aligned_u64 jited_line_info;
5639 __u32 nr_jited_line_info;
5640 __u32 line_info_rec_size;
5641 __u32 jited_line_info_rec_size;
5642 __u32 nr_prog_tags;
5643 __aligned_u64 prog_tags;
5644 __u64 run_time_ns;
5645 __u64 run_cnt;
5646 __u64 recursion_misses;
5647 __u32 verified_insns;
5648} __attribute__((aligned(8)));
5649
5650struct bpf_map_info {
5651 __u32 type;
5652 __u32 id;
5653 __u32 key_size;
5654 __u32 value_size;
5655 __u32 max_entries;
5656 __u32 map_flags;
5657 char name[BPF_OBJ_NAME_LEN];
5658 __u32 ifindex;
5659 __u32 btf_vmlinux_value_type_id;
5660 __u64 netns_dev;
5661 __u64 netns_ino;
5662 __u32 btf_id;
5663 __u32 btf_key_type_id;
5664 __u32 btf_value_type_id;
5665 __u32 :32; /* alignment pad */
5666 __u64 map_extra;
5667} __attribute__((aligned(8)));
5668
5669struct bpf_btf_info {
5670 __aligned_u64 btf;
5671 __u32 btf_size;
5672 __u32 id;
5673 __aligned_u64 name;
5674 __u32 name_len;
5675 __u32 kernel_btf;
5676} __attribute__((aligned(8)));
5677
5678struct bpf_link_info {
5679 __u32 type;
5680 __u32 id;
5681 __u32 prog_id;
5682 union {
5683 struct {
5684 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
5685 __u32 tp_name_len; /* in/out: tp_name buffer len */
5686 } raw_tracepoint;
5687 struct {
5688 __u32 attach_type;
5689 __u32 target_obj_id; /* prog_id for PROG_EXT, otherwise btf object id */
5690 __u32 target_btf_id; /* BTF type id inside the object */
5691 } tracing;
5692 struct {
5693 __u64 cgroup_id;
5694 __u32 attach_type;
5695 } cgroup;
5696 struct {
5697 __aligned_u64 target_name; /* in/out: target_name buffer ptr */
5698 __u32 target_name_len; /* in/out: target_name buffer len */
5699 union {
5700 struct {
5701 __u32 map_id;
5702 } map;
5703 };
5704 } iter;
5705 struct {
5706 __u32 netns_ino;
5707 __u32 attach_type;
5708 } netns;
5709 struct {
5710 __u32 ifindex;
5711 } xdp;
5712 };
5713} __attribute__((aligned(8)));
5714
5715/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
5716 * by user and intended to be used by socket (e.g. to bind to, depends on
5717 * attach type).
5718 */
5719struct bpf_sock_addr {
5720 __u32 user_family; /* Allows 4-byte read, but no write. */
5721 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
5722 * Stored in network byte order.
5723 */
5724 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
5725 * Stored in network byte order.
5726 */
5727 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write.
5728 * Stored in network byte order
5729 */
5730 __u32 family; /* Allows 4-byte read, but no write */
5731 __u32 type; /* Allows 4-byte read, but no write */
5732 __u32 protocol; /* Allows 4-byte read, but no write */
5733 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write.
5734 * Stored in network byte order.
5735 */
5736 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
5737 * Stored in network byte order.
5738 */
5739 __bpf_md_ptr(struct bpf_sock *, sk);
5740};
5741
5742/* User bpf_sock_ops struct to access socket values and specify request ops
5743 * and their replies.
5744 * Some of this fields are in network (bigendian) byte order and may need
5745 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
5746 * New fields can only be added at the end of this structure
5747 */
5748struct bpf_sock_ops {
5749 __u32 op;
5750 union {
5751 __u32 args[4]; /* Optionally passed to bpf program */
5752 __u32 reply; /* Returned by bpf program */
5753 __u32 replylong[4]; /* Optionally returned by bpf prog */
5754 };
5755 __u32 family;
5756 __u32 remote_ip4; /* Stored in network byte order */
5757 __u32 local_ip4; /* Stored in network byte order */
5758 __u32 remote_ip6[4]; /* Stored in network byte order */
5759 __u32 local_ip6[4]; /* Stored in network byte order */
5760 __u32 remote_port; /* Stored in network byte order */
5761 __u32 local_port; /* stored in host byte order */
5762 __u32 is_fullsock; /* Some TCP fields are only valid if
5763 * there is a full socket. If not, the
5764 * fields read as zero.
5765 */
5766 __u32 snd_cwnd;
5767 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
5768 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
5769 __u32 state;
5770 __u32 rtt_min;
5771 __u32 snd_ssthresh;
5772 __u32 rcv_nxt;
5773 __u32 snd_nxt;
5774 __u32 snd_una;
5775 __u32 mss_cache;
5776 __u32 ecn_flags;
5777 __u32 rate_delivered;
5778 __u32 rate_interval_us;
5779 __u32 packets_out;
5780 __u32 retrans_out;
5781 __u32 total_retrans;
5782 __u32 segs_in;
5783 __u32 data_segs_in;
5784 __u32 segs_out;
5785 __u32 data_segs_out;
5786 __u32 lost_out;
5787 __u32 sacked_out;
5788 __u32 sk_txhash;
5789 __u64 bytes_received;
5790 __u64 bytes_acked;
5791 __bpf_md_ptr(struct bpf_sock *, sk);
5792 /* [skb_data, skb_data_end) covers the whole TCP header.
5793 *
5794 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
5795 * BPF_SOCK_OPS_HDR_OPT_LEN_CB: Not useful because the
5796 * header has not been written.
5797 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
5798 * been written so far.
5799 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: The SYNACK that concludes
5800 * the 3WHS.
5801 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
5802 * the 3WHS.
5803 *
5804 * bpf_load_hdr_opt() can also be used to read a particular option.
5805 */
5806 __bpf_md_ptr(void *, skb_data);
5807 __bpf_md_ptr(void *, skb_data_end);
5808 __u32 skb_len; /* The total length of a packet.
5809 * It includes the header, options,
5810 * and payload.
5811 */
5812 __u32 skb_tcp_flags; /* tcp_flags of the header. It provides
5813 * an easy way to check for tcp_flags
5814 * without parsing skb_data.
5815 *
5816 * In particular, the skb_tcp_flags
5817 * will still be available in
5818 * BPF_SOCK_OPS_HDR_OPT_LEN even though
5819 * the outgoing header has not
5820 * been written yet.
5821 */
5822};
5823
5824/* Definitions for bpf_sock_ops_cb_flags */
5825enum {
5826 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0),
5827 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1),
5828 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2),
5829 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3),
5830 /* Call bpf for all received TCP headers. The bpf prog will be
5831 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
5832 *
5833 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
5834 * for the header option related helpers that will be useful
5835 * to the bpf programs.
5836 *
5837 * It could be used at the client/active side (i.e. connect() side)
5838 * when the server told it that the server was in syncookie
5839 * mode and required the active side to resend the bpf-written
5840 * options. The active side can keep writing the bpf-options until
5841 * it received a valid packet from the server side to confirm
5842 * the earlier packet (and options) has been received. The later
5843 * example patch is using it like this at the active side when the
5844 * server is in syncookie mode.
5845 *
5846 * The bpf prog will usually turn this off in the common cases.
5847 */
5848 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG = (1<<4),
5849 /* Call bpf when kernel has received a header option that
5850 * the kernel cannot handle. The bpf prog will be called under
5851 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
5852 *
5853 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
5854 * for the header option related helpers that will be useful
5855 * to the bpf programs.
5856 */
5857 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
5858 /* Call bpf when the kernel is writing header options for the
5859 * outgoing packet. The bpf prog will first be called
5860 * to reserve space in a skb under
5861 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB. Then
5862 * the bpf prog will be called to write the header option(s)
5863 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
5864 *
5865 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
5866 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
5867 * related helpers that will be useful to the bpf programs.
5868 *
5869 * The kernel gets its chance to reserve space and write
5870 * options first before the BPF program does.
5871 */
5872 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
5873/* Mask of all currently supported cb flags */
5874 BPF_SOCK_OPS_ALL_CB_FLAGS = 0x7F,
5875};
5876
5877/* List of known BPF sock_ops operators.
5878 * New entries can only be added at the end
5879 */
5880enum {
5881 BPF_SOCK_OPS_VOID,
5882 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
5883 * -1 if default value should be used
5884 */
5885 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
5886 * window (in packets) or -1 if default
5887 * value should be used
5888 */
5889 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
5890 * active connection is initialized
5891 */
5892 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
5893 * active connection is
5894 * established
5895 */
5896 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
5897 * passive connection is
5898 * established
5899 */
5900 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
5901 * needs ECN
5902 */
5903 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
5904 * based on the path and may be
5905 * dependent on the congestion control
5906 * algorithm. In general it indicates
5907 * a congestion threshold. RTTs above
5908 * this indicate congestion
5909 */
5910 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
5911 * Arg1: value of icsk_retransmits
5912 * Arg2: value of icsk_rto
5913 * Arg3: whether RTO has expired
5914 */
5915 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
5916 * Arg1: sequence number of 1st byte
5917 * Arg2: # segments
5918 * Arg3: return value of
5919 * tcp_transmit_skb (0 => success)
5920 */
5921 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
5922 * Arg1: old_state
5923 * Arg2: new_state
5924 */
5925 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
5926 * socket transition to LISTEN state.
5927 */
5928 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT.
5929 */
5930 BPF_SOCK_OPS_PARSE_HDR_OPT_CB, /* Parse the header option.
5931 * It will be called to handle
5932 * the packets received at
5933 * an already established
5934 * connection.
5935 *
5936 * sock_ops->skb_data:
5937 * Referring to the received skb.
5938 * It covers the TCP header only.
5939 *
5940 * bpf_load_hdr_opt() can also
5941 * be used to search for a
5942 * particular option.
5943 */
5944 BPF_SOCK_OPS_HDR_OPT_LEN_CB, /* Reserve space for writing the
5945 * header option later in
5946 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
5947 * Arg1: bool want_cookie. (in
5948 * writing SYNACK only)
5949 *
5950 * sock_ops->skb_data:
5951 * Not available because no header has
5952 * been written yet.
5953 *
5954 * sock_ops->skb_tcp_flags:
5955 * The tcp_flags of the
5956 * outgoing skb. (e.g. SYN, ACK, FIN).
5957 *
5958 * bpf_reserve_hdr_opt() should
5959 * be used to reserve space.
5960 */
5961 BPF_SOCK_OPS_WRITE_HDR_OPT_CB, /* Write the header options
5962 * Arg1: bool want_cookie. (in
5963 * writing SYNACK only)
5964 *
5965 * sock_ops->skb_data:
5966 * Referring to the outgoing skb.
5967 * It covers the TCP header
5968 * that has already been written
5969 * by the kernel and the
5970 * earlier bpf-progs.
5971 *
5972 * sock_ops->skb_tcp_flags:
5973 * The tcp_flags of the outgoing
5974 * skb. (e.g. SYN, ACK, FIN).
5975 *
5976 * bpf_store_hdr_opt() should
5977 * be used to write the
5978 * option.
5979 *
5980 * bpf_load_hdr_opt() can also
5981 * be used to search for a
5982 * particular option that
5983 * has already been written
5984 * by the kernel or the
5985 * earlier bpf-progs.
5986 */
5987};
5988
5989/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
5990 * changes between the TCP and BPF versions. Ideally this should never happen.
5991 * If it does, we need to add code to convert them before calling
5992 * the BPF sock_ops function.
5993 */
5994enum {
5995 BPF_TCP_ESTABLISHED = 1,
5996 BPF_TCP_SYN_SENT,
5997 BPF_TCP_SYN_RECV,
5998 BPF_TCP_FIN_WAIT1,
5999 BPF_TCP_FIN_WAIT2,
6000 BPF_TCP_TIME_WAIT,
6001 BPF_TCP_CLOSE,
6002 BPF_TCP_CLOSE_WAIT,
6003 BPF_TCP_LAST_ACK,
6004 BPF_TCP_LISTEN,
6005 BPF_TCP_CLOSING, /* Now a valid state */
6006 BPF_TCP_NEW_SYN_RECV,
6007
6008 BPF_TCP_MAX_STATES /* Leave at the end! */
6009};
6010
6011enum {
6012 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */
6013 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */
6014 TCP_BPF_DELACK_MAX = 1003, /* Max delay ack in usecs */
6015 TCP_BPF_RTO_MIN = 1004, /* Min delay ack in usecs */
6016 /* Copy the SYN pkt to optval
6017 *
6018 * BPF_PROG_TYPE_SOCK_OPS only. It is similar to the
6019 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
6020 * to only getting from the saved_syn. It can either get the
6021 * syn packet from:
6022 *
6023 * 1. the just-received SYN packet (only available when writing the
6024 * SYNACK). It will be useful when it is not necessary to
6025 * save the SYN packet for latter use. It is also the only way
6026 * to get the SYN during syncookie mode because the syn
6027 * packet cannot be saved during syncookie.
6028 *
6029 * OR
6030 *
6031 * 2. the earlier saved syn which was done by
6032 * bpf_setsockopt(TCP_SAVE_SYN).
6033 *
6034 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
6035 * SYN packet is obtained.
6036 *
6037 * If the bpf-prog does not need the IP[46] header, the
6038 * bpf-prog can avoid parsing the IP header by using
6039 * TCP_BPF_SYN. Otherwise, the bpf-prog can get both
6040 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
6041 *
6042 * >0: Total number of bytes copied
6043 * -ENOSPC: Not enough space in optval. Only optlen number of
6044 * bytes is copied.
6045 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
6046 * is not saved by setsockopt(TCP_SAVE_SYN).
6047 */
6048 TCP_BPF_SYN = 1005, /* Copy the TCP header */
6049 TCP_BPF_SYN_IP = 1006, /* Copy the IP[46] and TCP header */
6050 TCP_BPF_SYN_MAC = 1007, /* Copy the MAC, IP[46], and TCP header */
6051};
6052
6053enum {
6054 BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
6055};
6056
6057/* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
6058 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6059 */
6060enum {
6061 BPF_WRITE_HDR_TCP_CURRENT_MSS = 1, /* Kernel is finding the
6062 * total option spaces
6063 * required for an established
6064 * sk in order to calculate the
6065 * MSS. No skb is actually
6066 * sent.
6067 */
6068 BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2, /* Kernel is in syncookie mode
6069 * when sending a SYN.
6070 */
6071};
6072
6073struct bpf_perf_event_value {
6074 __u64 counter;
6075 __u64 enabled;
6076 __u64 running;
6077};
6078
6079enum {
6080 BPF_DEVCG_ACC_MKNOD = (1ULL << 0),
6081 BPF_DEVCG_ACC_READ = (1ULL << 1),
6082 BPF_DEVCG_ACC_WRITE = (1ULL << 2),
6083};
6084
6085enum {
6086 BPF_DEVCG_DEV_BLOCK = (1ULL << 0),
6087 BPF_DEVCG_DEV_CHAR = (1ULL << 1),
6088};
6089
6090struct bpf_cgroup_dev_ctx {
6091 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
6092 __u32 access_type;
6093 __u32 major;
6094 __u32 minor;
6095};
6096
6097struct bpf_raw_tracepoint_args {
6098 __u64 args[0];
6099};
6100
6101/* DIRECT: Skip the FIB rules and go to FIB table associated with device
6102 * OUTPUT: Do lookup from egress perspective; default is ingress
6103 */
6104enum {
6105 BPF_FIB_LOOKUP_DIRECT = (1U << 0),
6106 BPF_FIB_LOOKUP_OUTPUT = (1U << 1),
6107};
6108
6109enum {
6110 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
6111 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
6112 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
6113 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
6114 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
6115 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
6116 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
6117 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
6118 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
6119};
6120
6121struct bpf_fib_lookup {
6122 /* input: network family for lookup (AF_INET, AF_INET6)
6123 * output: network family of egress nexthop
6124 */
6125 __u8 family;
6126
6127 /* set if lookup is to consider L4 data - e.g., FIB rules */
6128 __u8 l4_protocol;
6129 __be16 sport;
6130 __be16 dport;
6131
6132 union { /* used for MTU check */
6133 /* input to lookup */
6134 __u16 tot_len; /* L3 length from network hdr (iph->tot_len) */
6135
6136 /* output: MTU value */
6137 __u16 mtu_result;
6138 };
6139 /* input: L3 device index for lookup
6140 * output: device index from FIB lookup
6141 */
6142 __u32 ifindex;
6143
6144 union {
6145 /* inputs to lookup */
6146 __u8 tos; /* AF_INET */
6147 __be32 flowinfo; /* AF_INET6, flow_label + priority */
6148
6149 /* output: metric of fib result (IPv4/IPv6 only) */
6150 __u32 rt_metric;
6151 };
6152
6153 union {
6154 __be32 ipv4_src;
6155 __u32 ipv6_src[4]; /* in6_addr; network order */
6156 };
6157
6158 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
6159 * network header. output: bpf_fib_lookup sets to gateway address
6160 * if FIB lookup returns gateway route
6161 */
6162 union {
6163 __be32 ipv4_dst;
6164 __u32 ipv6_dst[4]; /* in6_addr; network order */
6165 };
6166
6167 /* output */
6168 __be16 h_vlan_proto;
6169 __be16 h_vlan_TCI;
6170 __u8 smac[6]; /* ETH_ALEN */
6171 __u8 dmac[6]; /* ETH_ALEN */
6172};
6173
6174struct bpf_redir_neigh {
6175 /* network family for lookup (AF_INET, AF_INET6) */
6176 __u32 nh_family;
6177 /* network address of nexthop; skips fib lookup to find gateway */
6178 union {
6179 __be32 ipv4_nh;
6180 __u32 ipv6_nh[4]; /* in6_addr; network order */
6181 };
6182};
6183
6184/* bpf_check_mtu flags*/
6185enum bpf_check_mtu_flags {
6186 BPF_MTU_CHK_SEGS = (1U << 0),
6187};
6188
6189enum bpf_check_mtu_ret {
6190 BPF_MTU_CHK_RET_SUCCESS, /* check and lookup successful */
6191 BPF_MTU_CHK_RET_FRAG_NEEDED, /* fragmentation required to fwd */
6192 BPF_MTU_CHK_RET_SEGS_TOOBIG, /* GSO re-segmentation needed to fwd */
6193};
6194
6195enum bpf_task_fd_type {
6196 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
6197 BPF_FD_TYPE_TRACEPOINT, /* tp name */
6198 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
6199 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
6200 BPF_FD_TYPE_UPROBE, /* filename + offset */
6201 BPF_FD_TYPE_URETPROBE, /* filename + offset */
6202};
6203
6204enum {
6205 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0),
6206 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1),
6207 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2),
6208};
6209
6210struct bpf_flow_keys {
6211 __u16 nhoff;
6212 __u16 thoff;
6213 __u16 addr_proto; /* ETH_P_* of valid addrs */
6214 __u8 is_frag;
6215 __u8 is_first_frag;
6216 __u8 is_encap;
6217 __u8 ip_proto;
6218 __be16 n_proto;
6219 __be16 sport;
6220 __be16 dport;
6221 union {
6222 struct {
6223 __be32 ipv4_src;
6224 __be32 ipv4_dst;
6225 };
6226 struct {
6227 __u32 ipv6_src[4]; /* in6_addr; network order */
6228 __u32 ipv6_dst[4]; /* in6_addr; network order */
6229 };
6230 };
6231 __u32 flags;
6232 __be32 flow_label;
6233};
6234
6235struct bpf_func_info {
6236 __u32 insn_off;
6237 __u32 type_id;
6238};
6239
6240#define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
6241#define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
6242
6243struct bpf_line_info {
6244 __u32 insn_off;
6245 __u32 file_name_off;
6246 __u32 line_off;
6247 __u32 line_col;
6248};
6249
6250struct bpf_spin_lock {
6251 __u32 val;
6252};
6253
6254struct bpf_timer {
6255 __u64 :64;
6256 __u64 :64;
6257} __attribute__((aligned(8)));
6258
6259struct bpf_sysctl {
6260 __u32 write; /* Sysctl is being read (= 0) or written (= 1).
6261 * Allows 1,2,4-byte read, but no write.
6262 */
6263 __u32 file_pos; /* Sysctl file position to read from, write to.
6264 * Allows 1,2,4-byte read an 4-byte write.
6265 */
6266};
6267
6268struct bpf_sockopt {
6269 __bpf_md_ptr(struct bpf_sock *, sk);
6270 __bpf_md_ptr(void *, optval);
6271 __bpf_md_ptr(void *, optval_end);
6272
6273 __s32 level;
6274 __s32 optname;
6275 __s32 optlen;
6276 __s32 retval;
6277};
6278
6279struct bpf_pidns_info {
6280 __u32 pid;
6281 __u32 tgid;
6282};
6283
6284/* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
6285struct bpf_sk_lookup {
6286 union {
6287 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
6288 __u64 cookie; /* Non-zero if socket was selected in PROG_TEST_RUN */
6289 };
6290
6291 __u32 family; /* Protocol family (AF_INET, AF_INET6) */
6292 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
6293 __u32 remote_ip4; /* Network byte order */
6294 __u32 remote_ip6[4]; /* Network byte order */
6295 __u32 remote_port; /* Network byte order */
6296 __u32 local_ip4; /* Network byte order */
6297 __u32 local_ip6[4]; /* Network byte order */
6298 __u32 local_port; /* Host byte order */
6299};
6300
6301/*
6302 * struct btf_ptr is used for typed pointer representation; the
6303 * type id is used to render the pointer data as the appropriate type
6304 * via the bpf_snprintf_btf() helper described above. A flags field -
6305 * potentially to specify additional details about the BTF pointer
6306 * (rather than its mode of display) - is included for future use.
6307 * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
6308 */
6309struct btf_ptr {
6310 void *ptr;
6311 __u32 type_id;
6312 __u32 flags; /* BTF ptr flags; unused at present. */
6313};
6314
6315/*
6316 * Flags to control bpf_snprintf_btf() behaviour.
6317 * - BTF_F_COMPACT: no formatting around type information
6318 * - BTF_F_NONAME: no struct/union member names/types
6319 * - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
6320 * equivalent to %px.
6321 * - BTF_F_ZERO: show zero-valued struct/union members; they
6322 * are not displayed by default
6323 */
6324enum {
6325 BTF_F_COMPACT = (1ULL << 0),
6326 BTF_F_NONAME = (1ULL << 1),
6327 BTF_F_PTR_RAW = (1ULL << 2),
6328 BTF_F_ZERO = (1ULL << 3),
6329};
6330
6331#endif /* _UAPI__LINUX_BPF_H__ */