at v5.16 37 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32 33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35#define ulong2long(a) (*(long *)(&(a))) 36#define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 37#define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 38 39/* Exported common interfaces */ 40void call_rcu(struct rcu_head *head, rcu_callback_t func); 41void rcu_barrier_tasks(void); 42void rcu_barrier_tasks_rude(void); 43void synchronize_rcu(void); 44 45#ifdef CONFIG_PREEMPT_RCU 46 47void __rcu_read_lock(void); 48void __rcu_read_unlock(void); 49 50/* 51 * Defined as a macro as it is a very low level header included from 52 * areas that don't even know about current. This gives the rcu_read_lock() 53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 55 */ 56#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 57 58#else /* #ifdef CONFIG_PREEMPT_RCU */ 59 60#ifdef CONFIG_TINY_RCU 61#define rcu_read_unlock_strict() do { } while (0) 62#else 63void rcu_read_unlock_strict(void); 64#endif 65 66static inline void __rcu_read_lock(void) 67{ 68 preempt_disable(); 69} 70 71static inline void __rcu_read_unlock(void) 72{ 73 preempt_enable(); 74 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 75 rcu_read_unlock_strict(); 76} 77 78static inline int rcu_preempt_depth(void) 79{ 80 return 0; 81} 82 83#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 84 85/* Internal to kernel */ 86void rcu_init(void); 87extern int rcu_scheduler_active __read_mostly; 88void rcu_sched_clock_irq(int user); 89void rcu_report_dead(unsigned int cpu); 90void rcutree_migrate_callbacks(int cpu); 91 92#ifdef CONFIG_TASKS_RCU_GENERIC 93void rcu_init_tasks_generic(void); 94#else 95static inline void rcu_init_tasks_generic(void) { } 96#endif 97 98#ifdef CONFIG_RCU_STALL_COMMON 99void rcu_sysrq_start(void); 100void rcu_sysrq_end(void); 101#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 102static inline void rcu_sysrq_start(void) { } 103static inline void rcu_sysrq_end(void) { } 104#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 105 106#ifdef CONFIG_NO_HZ_FULL 107void rcu_user_enter(void); 108void rcu_user_exit(void); 109#else 110static inline void rcu_user_enter(void) { } 111static inline void rcu_user_exit(void) { } 112#endif /* CONFIG_NO_HZ_FULL */ 113 114#ifdef CONFIG_RCU_NOCB_CPU 115void rcu_init_nohz(void); 116int rcu_nocb_cpu_offload(int cpu); 117int rcu_nocb_cpu_deoffload(int cpu); 118void rcu_nocb_flush_deferred_wakeup(void); 119#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 120static inline void rcu_init_nohz(void) { } 121static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 122static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 123static inline void rcu_nocb_flush_deferred_wakeup(void) { } 124#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 125 126/** 127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 128 * @a: Code that RCU needs to pay attention to. 129 * 130 * RCU read-side critical sections are forbidden in the inner idle loop, 131 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 132 * will happily ignore any such read-side critical sections. However, 133 * things like powertop need tracepoints in the inner idle loop. 134 * 135 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 136 * will tell RCU that it needs to pay attention, invoke its argument 137 * (in this example, calling the do_something_with_RCU() function), 138 * and then tell RCU to go back to ignoring this CPU. It is permissible 139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 140 * on the order of a million or so, even on 32-bit systems). It is 141 * not legal to block within RCU_NONIDLE(), nor is it permissible to 142 * transfer control either into or out of RCU_NONIDLE()'s statement. 143 */ 144#define RCU_NONIDLE(a) \ 145 do { \ 146 rcu_irq_enter_irqson(); \ 147 do { a; } while (0); \ 148 rcu_irq_exit_irqson(); \ 149 } while (0) 150 151/* 152 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 153 * This is a macro rather than an inline function to avoid #include hell. 154 */ 155#ifdef CONFIG_TASKS_RCU_GENERIC 156 157# ifdef CONFIG_TASKS_RCU 158# define rcu_tasks_classic_qs(t, preempt) \ 159 do { \ 160 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 161 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 162 } while (0) 163void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 164void synchronize_rcu_tasks(void); 165# else 166# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 167# define call_rcu_tasks call_rcu 168# define synchronize_rcu_tasks synchronize_rcu 169# endif 170 171# ifdef CONFIG_TASKS_TRACE_RCU 172# define rcu_tasks_trace_qs(t) \ 173 do { \ 174 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ 175 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ 176 smp_store_release(&(t)->trc_reader_checked, true); \ 177 smp_mb(); /* Readers partitioned by store. */ \ 178 } \ 179 } while (0) 180# else 181# define rcu_tasks_trace_qs(t) do { } while (0) 182# endif 183 184#define rcu_tasks_qs(t, preempt) \ 185do { \ 186 rcu_tasks_classic_qs((t), (preempt)); \ 187 rcu_tasks_trace_qs((t)); \ 188} while (0) 189 190# ifdef CONFIG_TASKS_RUDE_RCU 191void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 192void synchronize_rcu_tasks_rude(void); 193# endif 194 195#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 196void exit_tasks_rcu_start(void); 197void exit_tasks_rcu_finish(void); 198#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 199#define rcu_tasks_qs(t, preempt) do { } while (0) 200#define rcu_note_voluntary_context_switch(t) do { } while (0) 201#define call_rcu_tasks call_rcu 202#define synchronize_rcu_tasks synchronize_rcu 203static inline void exit_tasks_rcu_start(void) { } 204static inline void exit_tasks_rcu_finish(void) { } 205#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 206 207/** 208 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 209 * 210 * This macro resembles cond_resched(), except that it is defined to 211 * report potential quiescent states to RCU-tasks even if the cond_resched() 212 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 213 */ 214#define cond_resched_tasks_rcu_qs() \ 215do { \ 216 rcu_tasks_qs(current, false); \ 217 cond_resched(); \ 218} while (0) 219 220/* 221 * Infrastructure to implement the synchronize_() primitives in 222 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 223 */ 224 225#if defined(CONFIG_TREE_RCU) 226#include <linux/rcutree.h> 227#elif defined(CONFIG_TINY_RCU) 228#include <linux/rcutiny.h> 229#else 230#error "Unknown RCU implementation specified to kernel configuration" 231#endif 232 233/* 234 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 235 * are needed for dynamic initialization and destruction of rcu_head 236 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 237 * dynamic initialization and destruction of statically allocated rcu_head 238 * structures. However, rcu_head structures allocated dynamically in the 239 * heap don't need any initialization. 240 */ 241#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 242void init_rcu_head(struct rcu_head *head); 243void destroy_rcu_head(struct rcu_head *head); 244void init_rcu_head_on_stack(struct rcu_head *head); 245void destroy_rcu_head_on_stack(struct rcu_head *head); 246#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 247static inline void init_rcu_head(struct rcu_head *head) { } 248static inline void destroy_rcu_head(struct rcu_head *head) { } 249static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 250static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 251#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 252 253#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 254bool rcu_lockdep_current_cpu_online(void); 255#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 256static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 257#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 258 259extern struct lockdep_map rcu_lock_map; 260extern struct lockdep_map rcu_bh_lock_map; 261extern struct lockdep_map rcu_sched_lock_map; 262extern struct lockdep_map rcu_callback_map; 263 264#ifdef CONFIG_DEBUG_LOCK_ALLOC 265 266static inline void rcu_lock_acquire(struct lockdep_map *map) 267{ 268 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 269} 270 271static inline void rcu_lock_release(struct lockdep_map *map) 272{ 273 lock_release(map, _THIS_IP_); 274} 275 276int debug_lockdep_rcu_enabled(void); 277int rcu_read_lock_held(void); 278int rcu_read_lock_bh_held(void); 279int rcu_read_lock_sched_held(void); 280int rcu_read_lock_any_held(void); 281 282#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 283 284# define rcu_lock_acquire(a) do { } while (0) 285# define rcu_lock_release(a) do { } while (0) 286 287static inline int rcu_read_lock_held(void) 288{ 289 return 1; 290} 291 292static inline int rcu_read_lock_bh_held(void) 293{ 294 return 1; 295} 296 297static inline int rcu_read_lock_sched_held(void) 298{ 299 return !preemptible(); 300} 301 302static inline int rcu_read_lock_any_held(void) 303{ 304 return !preemptible(); 305} 306 307#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 308 309#ifdef CONFIG_PROVE_RCU 310 311/** 312 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 313 * @c: condition to check 314 * @s: informative message 315 */ 316#define RCU_LOCKDEP_WARN(c, s) \ 317 do { \ 318 static bool __section(".data.unlikely") __warned; \ 319 if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ 320 __warned = true; \ 321 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 322 } \ 323 } while (0) 324 325#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 326static inline void rcu_preempt_sleep_check(void) 327{ 328 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 329 "Illegal context switch in RCU read-side critical section"); 330} 331#else /* #ifdef CONFIG_PROVE_RCU */ 332static inline void rcu_preempt_sleep_check(void) { } 333#endif /* #else #ifdef CONFIG_PROVE_RCU */ 334 335#define rcu_sleep_check() \ 336 do { \ 337 rcu_preempt_sleep_check(); \ 338 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 339 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 340 "Illegal context switch in RCU-bh read-side critical section"); \ 341 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 342 "Illegal context switch in RCU-sched read-side critical section"); \ 343 } while (0) 344 345#else /* #ifdef CONFIG_PROVE_RCU */ 346 347#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 348#define rcu_sleep_check() do { } while (0) 349 350#endif /* #else #ifdef CONFIG_PROVE_RCU */ 351 352/* 353 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 354 * and rcu_assign_pointer(). Some of these could be folded into their 355 * callers, but they are left separate in order to ease introduction of 356 * multiple pointers markings to match different RCU implementations 357 * (e.g., __srcu), should this make sense in the future. 358 */ 359 360#ifdef __CHECKER__ 361#define rcu_check_sparse(p, space) \ 362 ((void)(((typeof(*p) space *)p) == p)) 363#else /* #ifdef __CHECKER__ */ 364#define rcu_check_sparse(p, space) 365#endif /* #else #ifdef __CHECKER__ */ 366 367/** 368 * unrcu_pointer - mark a pointer as not being RCU protected 369 * @p: pointer needing to lose its __rcu property 370 * 371 * Converts @p from an __rcu pointer to a __kernel pointer. 372 * This allows an __rcu pointer to be used with xchg() and friends. 373 */ 374#define unrcu_pointer(p) \ 375({ \ 376 typeof(*p) *_________p1 = (typeof(*p) *__force)(p); \ 377 rcu_check_sparse(p, __rcu); \ 378 ((typeof(*p) __force __kernel *)(_________p1)); \ 379}) 380 381#define __rcu_access_pointer(p, space) \ 382({ \ 383 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 384 rcu_check_sparse(p, space); \ 385 ((typeof(*p) __force __kernel *)(_________p1)); \ 386}) 387#define __rcu_dereference_check(p, c, space) \ 388({ \ 389 /* Dependency order vs. p above. */ \ 390 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 391 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 392 rcu_check_sparse(p, space); \ 393 ((typeof(*p) __force __kernel *)(________p1)); \ 394}) 395#define __rcu_dereference_protected(p, c, space) \ 396({ \ 397 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 398 rcu_check_sparse(p, space); \ 399 ((typeof(*p) __force __kernel *)(p)); \ 400}) 401#define rcu_dereference_raw(p) \ 402({ \ 403 /* Dependency order vs. p above. */ \ 404 typeof(p) ________p1 = READ_ONCE(p); \ 405 ((typeof(*p) __force __kernel *)(________p1)); \ 406}) 407 408/** 409 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 410 * @v: The value to statically initialize with. 411 */ 412#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 413 414/** 415 * rcu_assign_pointer() - assign to RCU-protected pointer 416 * @p: pointer to assign to 417 * @v: value to assign (publish) 418 * 419 * Assigns the specified value to the specified RCU-protected 420 * pointer, ensuring that any concurrent RCU readers will see 421 * any prior initialization. 422 * 423 * Inserts memory barriers on architectures that require them 424 * (which is most of them), and also prevents the compiler from 425 * reordering the code that initializes the structure after the pointer 426 * assignment. More importantly, this call documents which pointers 427 * will be dereferenced by RCU read-side code. 428 * 429 * In some special cases, you may use RCU_INIT_POINTER() instead 430 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 431 * to the fact that it does not constrain either the CPU or the compiler. 432 * That said, using RCU_INIT_POINTER() when you should have used 433 * rcu_assign_pointer() is a very bad thing that results in 434 * impossible-to-diagnose memory corruption. So please be careful. 435 * See the RCU_INIT_POINTER() comment header for details. 436 * 437 * Note that rcu_assign_pointer() evaluates each of its arguments only 438 * once, appearances notwithstanding. One of the "extra" evaluations 439 * is in typeof() and the other visible only to sparse (__CHECKER__), 440 * neither of which actually execute the argument. As with most cpp 441 * macros, this execute-arguments-only-once property is important, so 442 * please be careful when making changes to rcu_assign_pointer() and the 443 * other macros that it invokes. 444 */ 445#define rcu_assign_pointer(p, v) \ 446do { \ 447 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 448 rcu_check_sparse(p, __rcu); \ 449 \ 450 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 451 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 452 else \ 453 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 454} while (0) 455 456/** 457 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 458 * @rcu_ptr: RCU pointer, whose old value is returned 459 * @ptr: regular pointer 460 * @c: the lockdep conditions under which the dereference will take place 461 * 462 * Perform a replacement, where @rcu_ptr is an RCU-annotated 463 * pointer and @c is the lockdep argument that is passed to the 464 * rcu_dereference_protected() call used to read that pointer. The old 465 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 466 */ 467#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 468({ \ 469 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 470 rcu_assign_pointer((rcu_ptr), (ptr)); \ 471 __tmp; \ 472}) 473 474/** 475 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 476 * @p: The pointer to read 477 * 478 * Return the value of the specified RCU-protected pointer, but omit the 479 * lockdep checks for being in an RCU read-side critical section. This is 480 * useful when the value of this pointer is accessed, but the pointer is 481 * not dereferenced, for example, when testing an RCU-protected pointer 482 * against NULL. Although rcu_access_pointer() may also be used in cases 483 * where update-side locks prevent the value of the pointer from changing, 484 * you should instead use rcu_dereference_protected() for this use case. 485 * 486 * It is also permissible to use rcu_access_pointer() when read-side 487 * access to the pointer was removed at least one grace period ago, as 488 * is the case in the context of the RCU callback that is freeing up 489 * the data, or after a synchronize_rcu() returns. This can be useful 490 * when tearing down multi-linked structures after a grace period 491 * has elapsed. 492 */ 493#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 494 495/** 496 * rcu_dereference_check() - rcu_dereference with debug checking 497 * @p: The pointer to read, prior to dereferencing 498 * @c: The conditions under which the dereference will take place 499 * 500 * Do an rcu_dereference(), but check that the conditions under which the 501 * dereference will take place are correct. Typically the conditions 502 * indicate the various locking conditions that should be held at that 503 * point. The check should return true if the conditions are satisfied. 504 * An implicit check for being in an RCU read-side critical section 505 * (rcu_read_lock()) is included. 506 * 507 * For example: 508 * 509 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 510 * 511 * could be used to indicate to lockdep that foo->bar may only be dereferenced 512 * if either rcu_read_lock() is held, or that the lock required to replace 513 * the bar struct at foo->bar is held. 514 * 515 * Note that the list of conditions may also include indications of when a lock 516 * need not be held, for example during initialisation or destruction of the 517 * target struct: 518 * 519 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 520 * atomic_read(&foo->usage) == 0); 521 * 522 * Inserts memory barriers on architectures that require them 523 * (currently only the Alpha), prevents the compiler from refetching 524 * (and from merging fetches), and, more importantly, documents exactly 525 * which pointers are protected by RCU and checks that the pointer is 526 * annotated as __rcu. 527 */ 528#define rcu_dereference_check(p, c) \ 529 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 530 531/** 532 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 533 * @p: The pointer to read, prior to dereferencing 534 * @c: The conditions under which the dereference will take place 535 * 536 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 537 * please note that starting in v5.0 kernels, vanilla RCU grace periods 538 * wait for local_bh_disable() regions of code in addition to regions of 539 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 540 * that synchronize_rcu(), call_rcu, and friends all take not only 541 * rcu_read_lock() but also rcu_read_lock_bh() into account. 542 */ 543#define rcu_dereference_bh_check(p, c) \ 544 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 545 546/** 547 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 548 * @p: The pointer to read, prior to dereferencing 549 * @c: The conditions under which the dereference will take place 550 * 551 * This is the RCU-sched counterpart to rcu_dereference_check(). 552 * However, please note that starting in v5.0 kernels, vanilla RCU grace 553 * periods wait for preempt_disable() regions of code in addition to 554 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 555 * This means that synchronize_rcu(), call_rcu, and friends all take not 556 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 557 */ 558#define rcu_dereference_sched_check(p, c) \ 559 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 560 __rcu) 561 562/* 563 * The tracing infrastructure traces RCU (we want that), but unfortunately 564 * some of the RCU checks causes tracing to lock up the system. 565 * 566 * The no-tracing version of rcu_dereference_raw() must not call 567 * rcu_read_lock_held(). 568 */ 569#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) 570 571/** 572 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 573 * @p: The pointer to read, prior to dereferencing 574 * @c: The conditions under which the dereference will take place 575 * 576 * Return the value of the specified RCU-protected pointer, but omit 577 * the READ_ONCE(). This is useful in cases where update-side locks 578 * prevent the value of the pointer from changing. Please note that this 579 * primitive does *not* prevent the compiler from repeating this reference 580 * or combining it with other references, so it should not be used without 581 * protection of appropriate locks. 582 * 583 * This function is only for update-side use. Using this function 584 * when protected only by rcu_read_lock() will result in infrequent 585 * but very ugly failures. 586 */ 587#define rcu_dereference_protected(p, c) \ 588 __rcu_dereference_protected((p), (c), __rcu) 589 590 591/** 592 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 593 * @p: The pointer to read, prior to dereferencing 594 * 595 * This is a simple wrapper around rcu_dereference_check(). 596 */ 597#define rcu_dereference(p) rcu_dereference_check(p, 0) 598 599/** 600 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 601 * @p: The pointer to read, prior to dereferencing 602 * 603 * Makes rcu_dereference_check() do the dirty work. 604 */ 605#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 606 607/** 608 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 609 * @p: The pointer to read, prior to dereferencing 610 * 611 * Makes rcu_dereference_check() do the dirty work. 612 */ 613#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 614 615/** 616 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 617 * @p: The pointer to hand off 618 * 619 * This is simply an identity function, but it documents where a pointer 620 * is handed off from RCU to some other synchronization mechanism, for 621 * example, reference counting or locking. In C11, it would map to 622 * kill_dependency(). It could be used as follows:: 623 * 624 * rcu_read_lock(); 625 * p = rcu_dereference(gp); 626 * long_lived = is_long_lived(p); 627 * if (long_lived) { 628 * if (!atomic_inc_not_zero(p->refcnt)) 629 * long_lived = false; 630 * else 631 * p = rcu_pointer_handoff(p); 632 * } 633 * rcu_read_unlock(); 634 */ 635#define rcu_pointer_handoff(p) (p) 636 637/** 638 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 639 * 640 * When synchronize_rcu() is invoked on one CPU while other CPUs 641 * are within RCU read-side critical sections, then the 642 * synchronize_rcu() is guaranteed to block until after all the other 643 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 644 * on one CPU while other CPUs are within RCU read-side critical 645 * sections, invocation of the corresponding RCU callback is deferred 646 * until after the all the other CPUs exit their critical sections. 647 * 648 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 649 * wait for regions of code with preemption disabled, including regions of 650 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 651 * define synchronize_sched(), only code enclosed within rcu_read_lock() 652 * and rcu_read_unlock() are guaranteed to be waited for. 653 * 654 * Note, however, that RCU callbacks are permitted to run concurrently 655 * with new RCU read-side critical sections. One way that this can happen 656 * is via the following sequence of events: (1) CPU 0 enters an RCU 657 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 658 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 659 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 660 * callback is invoked. This is legal, because the RCU read-side critical 661 * section that was running concurrently with the call_rcu() (and which 662 * therefore might be referencing something that the corresponding RCU 663 * callback would free up) has completed before the corresponding 664 * RCU callback is invoked. 665 * 666 * RCU read-side critical sections may be nested. Any deferred actions 667 * will be deferred until the outermost RCU read-side critical section 668 * completes. 669 * 670 * You can avoid reading and understanding the next paragraph by 671 * following this rule: don't put anything in an rcu_read_lock() RCU 672 * read-side critical section that would block in a !PREEMPTION kernel. 673 * But if you want the full story, read on! 674 * 675 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 676 * it is illegal to block while in an RCU read-side critical section. 677 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 678 * kernel builds, RCU read-side critical sections may be preempted, 679 * but explicit blocking is illegal. Finally, in preemptible RCU 680 * implementations in real-time (with -rt patchset) kernel builds, RCU 681 * read-side critical sections may be preempted and they may also block, but 682 * only when acquiring spinlocks that are subject to priority inheritance. 683 */ 684static __always_inline void rcu_read_lock(void) 685{ 686 __rcu_read_lock(); 687 __acquire(RCU); 688 rcu_lock_acquire(&rcu_lock_map); 689 RCU_LOCKDEP_WARN(!rcu_is_watching(), 690 "rcu_read_lock() used illegally while idle"); 691} 692 693/* 694 * So where is rcu_write_lock()? It does not exist, as there is no 695 * way for writers to lock out RCU readers. This is a feature, not 696 * a bug -- this property is what provides RCU's performance benefits. 697 * Of course, writers must coordinate with each other. The normal 698 * spinlock primitives work well for this, but any other technique may be 699 * used as well. RCU does not care how the writers keep out of each 700 * others' way, as long as they do so. 701 */ 702 703/** 704 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 705 * 706 * In almost all situations, rcu_read_unlock() is immune from deadlock. 707 * In recent kernels that have consolidated synchronize_sched() and 708 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 709 * also extends to the scheduler's runqueue and priority-inheritance 710 * spinlocks, courtesy of the quiescent-state deferral that is carried 711 * out when rcu_read_unlock() is invoked with interrupts disabled. 712 * 713 * See rcu_read_lock() for more information. 714 */ 715static inline void rcu_read_unlock(void) 716{ 717 RCU_LOCKDEP_WARN(!rcu_is_watching(), 718 "rcu_read_unlock() used illegally while idle"); 719 __release(RCU); 720 __rcu_read_unlock(); 721 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 722} 723 724/** 725 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 726 * 727 * This is equivalent to rcu_read_lock(), but also disables softirqs. 728 * Note that anything else that disables softirqs can also serve as an RCU 729 * read-side critical section. However, please note that this equivalence 730 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 731 * rcu_read_lock_bh() were unrelated. 732 * 733 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 734 * must occur in the same context, for example, it is illegal to invoke 735 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 736 * was invoked from some other task. 737 */ 738static inline void rcu_read_lock_bh(void) 739{ 740 local_bh_disable(); 741 __acquire(RCU_BH); 742 rcu_lock_acquire(&rcu_bh_lock_map); 743 RCU_LOCKDEP_WARN(!rcu_is_watching(), 744 "rcu_read_lock_bh() used illegally while idle"); 745} 746 747/** 748 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 749 * 750 * See rcu_read_lock_bh() for more information. 751 */ 752static inline void rcu_read_unlock_bh(void) 753{ 754 RCU_LOCKDEP_WARN(!rcu_is_watching(), 755 "rcu_read_unlock_bh() used illegally while idle"); 756 rcu_lock_release(&rcu_bh_lock_map); 757 __release(RCU_BH); 758 local_bh_enable(); 759} 760 761/** 762 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 763 * 764 * This is equivalent to rcu_read_lock(), but also disables preemption. 765 * Read-side critical sections can also be introduced by anything else that 766 * disables preemption, including local_irq_disable() and friends. However, 767 * please note that the equivalence to rcu_read_lock() applies only to 768 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 769 * were unrelated. 770 * 771 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 772 * must occur in the same context, for example, it is illegal to invoke 773 * rcu_read_unlock_sched() from process context if the matching 774 * rcu_read_lock_sched() was invoked from an NMI handler. 775 */ 776static inline void rcu_read_lock_sched(void) 777{ 778 preempt_disable(); 779 __acquire(RCU_SCHED); 780 rcu_lock_acquire(&rcu_sched_lock_map); 781 RCU_LOCKDEP_WARN(!rcu_is_watching(), 782 "rcu_read_lock_sched() used illegally while idle"); 783} 784 785/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 786static inline notrace void rcu_read_lock_sched_notrace(void) 787{ 788 preempt_disable_notrace(); 789 __acquire(RCU_SCHED); 790} 791 792/** 793 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 794 * 795 * See rcu_read_lock_sched() for more information. 796 */ 797static inline void rcu_read_unlock_sched(void) 798{ 799 RCU_LOCKDEP_WARN(!rcu_is_watching(), 800 "rcu_read_unlock_sched() used illegally while idle"); 801 rcu_lock_release(&rcu_sched_lock_map); 802 __release(RCU_SCHED); 803 preempt_enable(); 804} 805 806/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 807static inline notrace void rcu_read_unlock_sched_notrace(void) 808{ 809 __release(RCU_SCHED); 810 preempt_enable_notrace(); 811} 812 813/** 814 * RCU_INIT_POINTER() - initialize an RCU protected pointer 815 * @p: The pointer to be initialized. 816 * @v: The value to initialized the pointer to. 817 * 818 * Initialize an RCU-protected pointer in special cases where readers 819 * do not need ordering constraints on the CPU or the compiler. These 820 * special cases are: 821 * 822 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 823 * 2. The caller has taken whatever steps are required to prevent 824 * RCU readers from concurrently accessing this pointer *or* 825 * 3. The referenced data structure has already been exposed to 826 * readers either at compile time or via rcu_assign_pointer() *and* 827 * 828 * a. You have not made *any* reader-visible changes to 829 * this structure since then *or* 830 * b. It is OK for readers accessing this structure from its 831 * new location to see the old state of the structure. (For 832 * example, the changes were to statistical counters or to 833 * other state where exact synchronization is not required.) 834 * 835 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 836 * result in impossible-to-diagnose memory corruption. As in the structures 837 * will look OK in crash dumps, but any concurrent RCU readers might 838 * see pre-initialized values of the referenced data structure. So 839 * please be very careful how you use RCU_INIT_POINTER()!!! 840 * 841 * If you are creating an RCU-protected linked structure that is accessed 842 * by a single external-to-structure RCU-protected pointer, then you may 843 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 844 * pointers, but you must use rcu_assign_pointer() to initialize the 845 * external-to-structure pointer *after* you have completely initialized 846 * the reader-accessible portions of the linked structure. 847 * 848 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 849 * ordering guarantees for either the CPU or the compiler. 850 */ 851#define RCU_INIT_POINTER(p, v) \ 852 do { \ 853 rcu_check_sparse(p, __rcu); \ 854 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 855 } while (0) 856 857/** 858 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 859 * @p: The pointer to be initialized. 860 * @v: The value to initialized the pointer to. 861 * 862 * GCC-style initialization for an RCU-protected pointer in a structure field. 863 */ 864#define RCU_POINTER_INITIALIZER(p, v) \ 865 .p = RCU_INITIALIZER(v) 866 867/* 868 * Does the specified offset indicate that the corresponding rcu_head 869 * structure can be handled by kvfree_rcu()? 870 */ 871#define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 872 873/** 874 * kfree_rcu() - kfree an object after a grace period. 875 * @ptr: pointer to kfree for both single- and double-argument invocations. 876 * @rhf: the name of the struct rcu_head within the type of @ptr, 877 * but only for double-argument invocations. 878 * 879 * Many rcu callbacks functions just call kfree() on the base structure. 880 * These functions are trivial, but their size adds up, and furthermore 881 * when they are used in a kernel module, that module must invoke the 882 * high-latency rcu_barrier() function at module-unload time. 883 * 884 * The kfree_rcu() function handles this issue. Rather than encoding a 885 * function address in the embedded rcu_head structure, kfree_rcu() instead 886 * encodes the offset of the rcu_head structure within the base structure. 887 * Because the functions are not allowed in the low-order 4096 bytes of 888 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 889 * If the offset is larger than 4095 bytes, a compile-time error will 890 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 891 * either fall back to use of call_rcu() or rearrange the structure to 892 * position the rcu_head structure into the first 4096 bytes. 893 * 894 * Note that the allowable offset might decrease in the future, for example, 895 * to allow something like kmem_cache_free_rcu(). 896 * 897 * The BUILD_BUG_ON check must not involve any function calls, hence the 898 * checks are done in macros here. 899 */ 900#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf) 901 902/** 903 * kvfree_rcu() - kvfree an object after a grace period. 904 * 905 * This macro consists of one or two arguments and it is 906 * based on whether an object is head-less or not. If it 907 * has a head then a semantic stays the same as it used 908 * to be before: 909 * 910 * kvfree_rcu(ptr, rhf); 911 * 912 * where @ptr is a pointer to kvfree(), @rhf is the name 913 * of the rcu_head structure within the type of @ptr. 914 * 915 * When it comes to head-less variant, only one argument 916 * is passed and that is just a pointer which has to be 917 * freed after a grace period. Therefore the semantic is 918 * 919 * kvfree_rcu(ptr); 920 * 921 * where @ptr is a pointer to kvfree(). 922 * 923 * Please note, head-less way of freeing is permitted to 924 * use from a context that has to follow might_sleep() 925 * annotation. Otherwise, please switch and embed the 926 * rcu_head structure within the type of @ptr. 927 */ 928#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 929 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 930 931#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 932#define kvfree_rcu_arg_2(ptr, rhf) \ 933do { \ 934 typeof (ptr) ___p = (ptr); \ 935 \ 936 if (___p) { \ 937 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 938 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ 939 (offsetof(typeof(*(ptr)), rhf))); \ 940 } \ 941} while (0) 942 943#define kvfree_rcu_arg_1(ptr) \ 944do { \ 945 typeof(ptr) ___p = (ptr); \ 946 \ 947 if (___p) \ 948 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 949} while (0) 950 951/* 952 * Place this after a lock-acquisition primitive to guarantee that 953 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 954 * if the UNLOCK and LOCK are executed by the same CPU or if the 955 * UNLOCK and LOCK operate on the same lock variable. 956 */ 957#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 958#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 959#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 960#define smp_mb__after_unlock_lock() do { } while (0) 961#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 962 963 964/* Has the specified rcu_head structure been handed to call_rcu()? */ 965 966/** 967 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 968 * @rhp: The rcu_head structure to initialize. 969 * 970 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 971 * given rcu_head structure has already been passed to call_rcu(), then 972 * you must also invoke this rcu_head_init() function on it just after 973 * allocating that structure. Calls to this function must not race with 974 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 975 */ 976static inline void rcu_head_init(struct rcu_head *rhp) 977{ 978 rhp->func = (rcu_callback_t)~0L; 979} 980 981/** 982 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 983 * @rhp: The rcu_head structure to test. 984 * @f: The function passed to call_rcu() along with @rhp. 985 * 986 * Returns @true if the @rhp has been passed to call_rcu() with @func, 987 * and @false otherwise. Emits a warning in any other case, including 988 * the case where @rhp has already been invoked after a grace period. 989 * Calls to this function must not race with callback invocation. One way 990 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 991 * in an RCU read-side critical section that includes a read-side fetch 992 * of the pointer to the structure containing @rhp. 993 */ 994static inline bool 995rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 996{ 997 rcu_callback_t func = READ_ONCE(rhp->func); 998 999 if (func == f) 1000 return true; 1001 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1002 return false; 1003} 1004 1005/* kernel/ksysfs.c definitions */ 1006extern int rcu_expedited; 1007extern int rcu_normal; 1008 1009#endif /* __LINUX_RCUPDATE_H */