at v5.16 45 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15 16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 19#endif 20 21/* 22 * On almost all architectures and configurations, 0 can be used as the 23 * upper ceiling to free_pgtables(): on many architectures it has the same 24 * effect as using TASK_SIZE. However, there is one configuration which 25 * must impose a more careful limit, to avoid freeing kernel pgtables. 26 */ 27#ifndef USER_PGTABLES_CEILING 28#define USER_PGTABLES_CEILING 0UL 29#endif 30 31/* 32 * This defines the first usable user address. Platforms 33 * can override its value with custom FIRST_USER_ADDRESS 34 * defined in their respective <asm/pgtable.h>. 35 */ 36#ifndef FIRST_USER_ADDRESS 37#define FIRST_USER_ADDRESS 0UL 38#endif 39 40/* 41 * This defines the generic helper for accessing PMD page 42 * table page. Although platforms can still override this 43 * via their respective <asm/pgtable.h>. 44 */ 45#ifndef pmd_pgtable 46#define pmd_pgtable(pmd) pmd_page(pmd) 47#endif 48 49/* 50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 51 * 52 * The pXx_index() functions return the index of the entry in the page 53 * table page which would control the given virtual address 54 * 55 * As these functions may be used by the same code for different levels of 56 * the page table folding, they are always available, regardless of 57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 58 * because in such cases PTRS_PER_PxD equals 1. 59 */ 60 61static inline unsigned long pte_index(unsigned long address) 62{ 63 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 64} 65 66#ifndef pmd_index 67static inline unsigned long pmd_index(unsigned long address) 68{ 69 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 70} 71#define pmd_index pmd_index 72#endif 73 74#ifndef pud_index 75static inline unsigned long pud_index(unsigned long address) 76{ 77 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 78} 79#define pud_index pud_index 80#endif 81 82#ifndef pgd_index 83/* Must be a compile-time constant, so implement it as a macro */ 84#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 85#endif 86 87#ifndef pte_offset_kernel 88static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 89{ 90 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 91} 92#define pte_offset_kernel pte_offset_kernel 93#endif 94 95#if defined(CONFIG_HIGHPTE) 96#define pte_offset_map(dir, address) \ 97 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 98 pte_index((address))) 99#define pte_unmap(pte) kunmap_atomic((pte)) 100#else 101#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 102#define pte_unmap(pte) ((void)(pte)) /* NOP */ 103#endif 104 105/* Find an entry in the second-level page table.. */ 106#ifndef pmd_offset 107static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 108{ 109 return pud_pgtable(*pud) + pmd_index(address); 110} 111#define pmd_offset pmd_offset 112#endif 113 114#ifndef pud_offset 115static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 116{ 117 return p4d_pgtable(*p4d) + pud_index(address); 118} 119#define pud_offset pud_offset 120#endif 121 122static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 123{ 124 return (pgd + pgd_index(address)); 125}; 126 127/* 128 * a shortcut to get a pgd_t in a given mm 129 */ 130#ifndef pgd_offset 131#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 132#endif 133 134/* 135 * a shortcut which implies the use of the kernel's pgd, instead 136 * of a process's 137 */ 138#ifndef pgd_offset_k 139#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 140#endif 141 142/* 143 * In many cases it is known that a virtual address is mapped at PMD or PTE 144 * level, so instead of traversing all the page table levels, we can get a 145 * pointer to the PMD entry in user or kernel page table or translate a virtual 146 * address to the pointer in the PTE in the kernel page tables with simple 147 * helpers. 148 */ 149static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 150{ 151 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 152} 153 154static inline pmd_t *pmd_off_k(unsigned long va) 155{ 156 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 157} 158 159static inline pte_t *virt_to_kpte(unsigned long vaddr) 160{ 161 pmd_t *pmd = pmd_off_k(vaddr); 162 163 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 164} 165 166#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 167extern int ptep_set_access_flags(struct vm_area_struct *vma, 168 unsigned long address, pte_t *ptep, 169 pte_t entry, int dirty); 170#endif 171 172#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 173#ifdef CONFIG_TRANSPARENT_HUGEPAGE 174extern int pmdp_set_access_flags(struct vm_area_struct *vma, 175 unsigned long address, pmd_t *pmdp, 176 pmd_t entry, int dirty); 177extern int pudp_set_access_flags(struct vm_area_struct *vma, 178 unsigned long address, pud_t *pudp, 179 pud_t entry, int dirty); 180#else 181static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 182 unsigned long address, pmd_t *pmdp, 183 pmd_t entry, int dirty) 184{ 185 BUILD_BUG(); 186 return 0; 187} 188static inline int pudp_set_access_flags(struct vm_area_struct *vma, 189 unsigned long address, pud_t *pudp, 190 pud_t entry, int dirty) 191{ 192 BUILD_BUG(); 193 return 0; 194} 195#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 196#endif 197 198#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 199static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 200 unsigned long address, 201 pte_t *ptep) 202{ 203 pte_t pte = *ptep; 204 int r = 1; 205 if (!pte_young(pte)) 206 r = 0; 207 else 208 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 209 return r; 210} 211#endif 212 213#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 214#ifdef CONFIG_TRANSPARENT_HUGEPAGE 215static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 216 unsigned long address, 217 pmd_t *pmdp) 218{ 219 pmd_t pmd = *pmdp; 220 int r = 1; 221 if (!pmd_young(pmd)) 222 r = 0; 223 else 224 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 225 return r; 226} 227#else 228static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 229 unsigned long address, 230 pmd_t *pmdp) 231{ 232 BUILD_BUG(); 233 return 0; 234} 235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 236#endif 237 238#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 239int ptep_clear_flush_young(struct vm_area_struct *vma, 240 unsigned long address, pte_t *ptep); 241#endif 242 243#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 244#ifdef CONFIG_TRANSPARENT_HUGEPAGE 245extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 246 unsigned long address, pmd_t *pmdp); 247#else 248/* 249 * Despite relevant to THP only, this API is called from generic rmap code 250 * under PageTransHuge(), hence needs a dummy implementation for !THP 251 */ 252static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 253 unsigned long address, pmd_t *pmdp) 254{ 255 BUILD_BUG(); 256 return 0; 257} 258#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 259#endif 260 261#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 262static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 263 unsigned long address, 264 pte_t *ptep) 265{ 266 pte_t pte = *ptep; 267 pte_clear(mm, address, ptep); 268 return pte; 269} 270#endif 271 272#ifndef __HAVE_ARCH_PTEP_GET 273static inline pte_t ptep_get(pte_t *ptep) 274{ 275 return READ_ONCE(*ptep); 276} 277#endif 278 279#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 280/* 281 * WARNING: only to be used in the get_user_pages_fast() implementation. 282 * 283 * With get_user_pages_fast(), we walk down the pagetables without taking any 284 * locks. For this we would like to load the pointers atomically, but sometimes 285 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 286 * we do have is the guarantee that a PTE will only either go from not present 287 * to present, or present to not present or both -- it will not switch to a 288 * completely different present page without a TLB flush in between; something 289 * that we are blocking by holding interrupts off. 290 * 291 * Setting ptes from not present to present goes: 292 * 293 * ptep->pte_high = h; 294 * smp_wmb(); 295 * ptep->pte_low = l; 296 * 297 * And present to not present goes: 298 * 299 * ptep->pte_low = 0; 300 * smp_wmb(); 301 * ptep->pte_high = 0; 302 * 303 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 304 * We load pte_high *after* loading pte_low, which ensures we don't see an older 305 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 306 * picked up a changed pte high. We might have gotten rubbish values from 307 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 308 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 309 * operates on present ptes we're safe. 310 */ 311static inline pte_t ptep_get_lockless(pte_t *ptep) 312{ 313 pte_t pte; 314 315 do { 316 pte.pte_low = ptep->pte_low; 317 smp_rmb(); 318 pte.pte_high = ptep->pte_high; 319 smp_rmb(); 320 } while (unlikely(pte.pte_low != ptep->pte_low)); 321 322 return pte; 323} 324#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 325/* 326 * We require that the PTE can be read atomically. 327 */ 328static inline pte_t ptep_get_lockless(pte_t *ptep) 329{ 330 return ptep_get(ptep); 331} 332#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 333 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE 335#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 336static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 337 unsigned long address, 338 pmd_t *pmdp) 339{ 340 pmd_t pmd = *pmdp; 341 pmd_clear(pmdp); 342 return pmd; 343} 344#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 345#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 346static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 347 unsigned long address, 348 pud_t *pudp) 349{ 350 pud_t pud = *pudp; 351 352 pud_clear(pudp); 353 return pud; 354} 355#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 356#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 357 358#ifdef CONFIG_TRANSPARENT_HUGEPAGE 359#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 360static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 361 unsigned long address, pmd_t *pmdp, 362 int full) 363{ 364 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 365} 366#endif 367 368#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 369static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 370 unsigned long address, pud_t *pudp, 371 int full) 372{ 373 return pudp_huge_get_and_clear(mm, address, pudp); 374} 375#endif 376#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 377 378#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 379static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 380 unsigned long address, pte_t *ptep, 381 int full) 382{ 383 pte_t pte; 384 pte = ptep_get_and_clear(mm, address, ptep); 385 return pte; 386} 387#endif 388 389 390/* 391 * If two threads concurrently fault at the same page, the thread that 392 * won the race updates the PTE and its local TLB/Cache. The other thread 393 * gives up, simply does nothing, and continues; on architectures where 394 * software can update TLB, local TLB can be updated here to avoid next page 395 * fault. This function updates TLB only, do nothing with cache or others. 396 * It is the difference with function update_mmu_cache. 397 */ 398#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 399static inline void update_mmu_tlb(struct vm_area_struct *vma, 400 unsigned long address, pte_t *ptep) 401{ 402} 403#define __HAVE_ARCH_UPDATE_MMU_TLB 404#endif 405 406/* 407 * Some architectures may be able to avoid expensive synchronization 408 * primitives when modifications are made to PTE's which are already 409 * not present, or in the process of an address space destruction. 410 */ 411#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 412static inline void pte_clear_not_present_full(struct mm_struct *mm, 413 unsigned long address, 414 pte_t *ptep, 415 int full) 416{ 417 pte_clear(mm, address, ptep); 418} 419#endif 420 421#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 422extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 423 unsigned long address, 424 pte_t *ptep); 425#endif 426 427#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 428extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 429 unsigned long address, 430 pmd_t *pmdp); 431extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 432 unsigned long address, 433 pud_t *pudp); 434#endif 435 436#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 437struct mm_struct; 438static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 439{ 440 pte_t old_pte = *ptep; 441 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 442} 443#endif 444 445/* 446 * On some architectures hardware does not set page access bit when accessing 447 * memory page, it is responsibility of software setting this bit. It brings 448 * out extra page fault penalty to track page access bit. For optimization page 449 * access bit can be set during all page fault flow on these arches. 450 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 451 * where software maintains page access bit. 452 */ 453#ifndef pte_sw_mkyoung 454static inline pte_t pte_sw_mkyoung(pte_t pte) 455{ 456 return pte; 457} 458#define pte_sw_mkyoung pte_sw_mkyoung 459#endif 460 461#ifndef pte_savedwrite 462#define pte_savedwrite pte_write 463#endif 464 465#ifndef pte_mk_savedwrite 466#define pte_mk_savedwrite pte_mkwrite 467#endif 468 469#ifndef pte_clear_savedwrite 470#define pte_clear_savedwrite pte_wrprotect 471#endif 472 473#ifndef pmd_savedwrite 474#define pmd_savedwrite pmd_write 475#endif 476 477#ifndef pmd_mk_savedwrite 478#define pmd_mk_savedwrite pmd_mkwrite 479#endif 480 481#ifndef pmd_clear_savedwrite 482#define pmd_clear_savedwrite pmd_wrprotect 483#endif 484 485#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 486#ifdef CONFIG_TRANSPARENT_HUGEPAGE 487static inline void pmdp_set_wrprotect(struct mm_struct *mm, 488 unsigned long address, pmd_t *pmdp) 489{ 490 pmd_t old_pmd = *pmdp; 491 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 492} 493#else 494static inline void pmdp_set_wrprotect(struct mm_struct *mm, 495 unsigned long address, pmd_t *pmdp) 496{ 497 BUILD_BUG(); 498} 499#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 500#endif 501#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 502#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 503static inline void pudp_set_wrprotect(struct mm_struct *mm, 504 unsigned long address, pud_t *pudp) 505{ 506 pud_t old_pud = *pudp; 507 508 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 509} 510#else 511static inline void pudp_set_wrprotect(struct mm_struct *mm, 512 unsigned long address, pud_t *pudp) 513{ 514 BUILD_BUG(); 515} 516#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 517#endif 518 519#ifndef pmdp_collapse_flush 520#ifdef CONFIG_TRANSPARENT_HUGEPAGE 521extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 522 unsigned long address, pmd_t *pmdp); 523#else 524static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 525 unsigned long address, 526 pmd_t *pmdp) 527{ 528 BUILD_BUG(); 529 return *pmdp; 530} 531#define pmdp_collapse_flush pmdp_collapse_flush 532#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 533#endif 534 535#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 536extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 537 pgtable_t pgtable); 538#endif 539 540#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 541extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 542#endif 543 544#ifdef CONFIG_TRANSPARENT_HUGEPAGE 545/* 546 * This is an implementation of pmdp_establish() that is only suitable for an 547 * architecture that doesn't have hardware dirty/accessed bits. In this case we 548 * can't race with CPU which sets these bits and non-atomic approach is fine. 549 */ 550static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 551 unsigned long address, pmd_t *pmdp, pmd_t pmd) 552{ 553 pmd_t old_pmd = *pmdp; 554 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 555 return old_pmd; 556} 557#endif 558 559#ifndef __HAVE_ARCH_PMDP_INVALIDATE 560extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 561 pmd_t *pmdp); 562#endif 563 564#ifndef __HAVE_ARCH_PTE_SAME 565static inline int pte_same(pte_t pte_a, pte_t pte_b) 566{ 567 return pte_val(pte_a) == pte_val(pte_b); 568} 569#endif 570 571#ifndef __HAVE_ARCH_PTE_UNUSED 572/* 573 * Some architectures provide facilities to virtualization guests 574 * so that they can flag allocated pages as unused. This allows the 575 * host to transparently reclaim unused pages. This function returns 576 * whether the pte's page is unused. 577 */ 578static inline int pte_unused(pte_t pte) 579{ 580 return 0; 581} 582#endif 583 584#ifndef pte_access_permitted 585#define pte_access_permitted(pte, write) \ 586 (pte_present(pte) && (!(write) || pte_write(pte))) 587#endif 588 589#ifndef pmd_access_permitted 590#define pmd_access_permitted(pmd, write) \ 591 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 592#endif 593 594#ifndef pud_access_permitted 595#define pud_access_permitted(pud, write) \ 596 (pud_present(pud) && (!(write) || pud_write(pud))) 597#endif 598 599#ifndef p4d_access_permitted 600#define p4d_access_permitted(p4d, write) \ 601 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 602#endif 603 604#ifndef pgd_access_permitted 605#define pgd_access_permitted(pgd, write) \ 606 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 607#endif 608 609#ifndef __HAVE_ARCH_PMD_SAME 610static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 611{ 612 return pmd_val(pmd_a) == pmd_val(pmd_b); 613} 614 615static inline int pud_same(pud_t pud_a, pud_t pud_b) 616{ 617 return pud_val(pud_a) == pud_val(pud_b); 618} 619#endif 620 621#ifndef __HAVE_ARCH_P4D_SAME 622static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 623{ 624 return p4d_val(p4d_a) == p4d_val(p4d_b); 625} 626#endif 627 628#ifndef __HAVE_ARCH_PGD_SAME 629static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 630{ 631 return pgd_val(pgd_a) == pgd_val(pgd_b); 632} 633#endif 634 635/* 636 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 637 * TLB flush will be required as a result of the "set". For example, use 638 * in scenarios where it is known ahead of time that the routine is 639 * setting non-present entries, or re-setting an existing entry to the 640 * same value. Otherwise, use the typical "set" helpers and flush the 641 * TLB. 642 */ 643#define set_pte_safe(ptep, pte) \ 644({ \ 645 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 646 set_pte(ptep, pte); \ 647}) 648 649#define set_pmd_safe(pmdp, pmd) \ 650({ \ 651 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 652 set_pmd(pmdp, pmd); \ 653}) 654 655#define set_pud_safe(pudp, pud) \ 656({ \ 657 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 658 set_pud(pudp, pud); \ 659}) 660 661#define set_p4d_safe(p4dp, p4d) \ 662({ \ 663 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 664 set_p4d(p4dp, p4d); \ 665}) 666 667#define set_pgd_safe(pgdp, pgd) \ 668({ \ 669 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 670 set_pgd(pgdp, pgd); \ 671}) 672 673#ifndef __HAVE_ARCH_DO_SWAP_PAGE 674/* 675 * Some architectures support metadata associated with a page. When a 676 * page is being swapped out, this metadata must be saved so it can be 677 * restored when the page is swapped back in. SPARC M7 and newer 678 * processors support an ADI (Application Data Integrity) tag for the 679 * page as metadata for the page. arch_do_swap_page() can restore this 680 * metadata when a page is swapped back in. 681 */ 682static inline void arch_do_swap_page(struct mm_struct *mm, 683 struct vm_area_struct *vma, 684 unsigned long addr, 685 pte_t pte, pte_t oldpte) 686{ 687 688} 689#endif 690 691#ifndef __HAVE_ARCH_UNMAP_ONE 692/* 693 * Some architectures support metadata associated with a page. When a 694 * page is being swapped out, this metadata must be saved so it can be 695 * restored when the page is swapped back in. SPARC M7 and newer 696 * processors support an ADI (Application Data Integrity) tag for the 697 * page as metadata for the page. arch_unmap_one() can save this 698 * metadata on a swap-out of a page. 699 */ 700static inline int arch_unmap_one(struct mm_struct *mm, 701 struct vm_area_struct *vma, 702 unsigned long addr, 703 pte_t orig_pte) 704{ 705 return 0; 706} 707#endif 708 709/* 710 * Allow architectures to preserve additional metadata associated with 711 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 712 * prototypes must be defined in the arch-specific asm/pgtable.h file. 713 */ 714#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 715static inline int arch_prepare_to_swap(struct page *page) 716{ 717 return 0; 718} 719#endif 720 721#ifndef __HAVE_ARCH_SWAP_INVALIDATE 722static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 723{ 724} 725 726static inline void arch_swap_invalidate_area(int type) 727{ 728} 729#endif 730 731#ifndef __HAVE_ARCH_SWAP_RESTORE 732static inline void arch_swap_restore(swp_entry_t entry, struct page *page) 733{ 734} 735#endif 736 737#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 738#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 739#endif 740 741#ifndef __HAVE_ARCH_MOVE_PTE 742#define move_pte(pte, prot, old_addr, new_addr) (pte) 743#endif 744 745#ifndef pte_accessible 746# define pte_accessible(mm, pte) ((void)(pte), 1) 747#endif 748 749#ifndef flush_tlb_fix_spurious_fault 750#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 751#endif 752 753/* 754 * When walking page tables, get the address of the next boundary, 755 * or the end address of the range if that comes earlier. Although no 756 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 757 */ 758 759#define pgd_addr_end(addr, end) \ 760({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 761 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 762}) 763 764#ifndef p4d_addr_end 765#define p4d_addr_end(addr, end) \ 766({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 767 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 768}) 769#endif 770 771#ifndef pud_addr_end 772#define pud_addr_end(addr, end) \ 773({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 774 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 775}) 776#endif 777 778#ifndef pmd_addr_end 779#define pmd_addr_end(addr, end) \ 780({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 781 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 782}) 783#endif 784 785/* 786 * When walking page tables, we usually want to skip any p?d_none entries; 787 * and any p?d_bad entries - reporting the error before resetting to none. 788 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 789 */ 790void pgd_clear_bad(pgd_t *); 791 792#ifndef __PAGETABLE_P4D_FOLDED 793void p4d_clear_bad(p4d_t *); 794#else 795#define p4d_clear_bad(p4d) do { } while (0) 796#endif 797 798#ifndef __PAGETABLE_PUD_FOLDED 799void pud_clear_bad(pud_t *); 800#else 801#define pud_clear_bad(p4d) do { } while (0) 802#endif 803 804void pmd_clear_bad(pmd_t *); 805 806static inline int pgd_none_or_clear_bad(pgd_t *pgd) 807{ 808 if (pgd_none(*pgd)) 809 return 1; 810 if (unlikely(pgd_bad(*pgd))) { 811 pgd_clear_bad(pgd); 812 return 1; 813 } 814 return 0; 815} 816 817static inline int p4d_none_or_clear_bad(p4d_t *p4d) 818{ 819 if (p4d_none(*p4d)) 820 return 1; 821 if (unlikely(p4d_bad(*p4d))) { 822 p4d_clear_bad(p4d); 823 return 1; 824 } 825 return 0; 826} 827 828static inline int pud_none_or_clear_bad(pud_t *pud) 829{ 830 if (pud_none(*pud)) 831 return 1; 832 if (unlikely(pud_bad(*pud))) { 833 pud_clear_bad(pud); 834 return 1; 835 } 836 return 0; 837} 838 839static inline int pmd_none_or_clear_bad(pmd_t *pmd) 840{ 841 if (pmd_none(*pmd)) 842 return 1; 843 if (unlikely(pmd_bad(*pmd))) { 844 pmd_clear_bad(pmd); 845 return 1; 846 } 847 return 0; 848} 849 850static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 851 unsigned long addr, 852 pte_t *ptep) 853{ 854 /* 855 * Get the current pte state, but zero it out to make it 856 * non-present, preventing the hardware from asynchronously 857 * updating it. 858 */ 859 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 860} 861 862static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 863 unsigned long addr, 864 pte_t *ptep, pte_t pte) 865{ 866 /* 867 * The pte is non-present, so there's no hardware state to 868 * preserve. 869 */ 870 set_pte_at(vma->vm_mm, addr, ptep, pte); 871} 872 873#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 874/* 875 * Start a pte protection read-modify-write transaction, which 876 * protects against asynchronous hardware modifications to the pte. 877 * The intention is not to prevent the hardware from making pte 878 * updates, but to prevent any updates it may make from being lost. 879 * 880 * This does not protect against other software modifications of the 881 * pte; the appropriate pte lock must be held over the transaction. 882 * 883 * Note that this interface is intended to be batchable, meaning that 884 * ptep_modify_prot_commit may not actually update the pte, but merely 885 * queue the update to be done at some later time. The update must be 886 * actually committed before the pte lock is released, however. 887 */ 888static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 889 unsigned long addr, 890 pte_t *ptep) 891{ 892 return __ptep_modify_prot_start(vma, addr, ptep); 893} 894 895/* 896 * Commit an update to a pte, leaving any hardware-controlled bits in 897 * the PTE unmodified. 898 */ 899static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 900 unsigned long addr, 901 pte_t *ptep, pte_t old_pte, pte_t pte) 902{ 903 __ptep_modify_prot_commit(vma, addr, ptep, pte); 904} 905#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 906#endif /* CONFIG_MMU */ 907 908/* 909 * No-op macros that just return the current protection value. Defined here 910 * because these macros can be used even if CONFIG_MMU is not defined. 911 */ 912 913#ifndef pgprot_nx 914#define pgprot_nx(prot) (prot) 915#endif 916 917#ifndef pgprot_noncached 918#define pgprot_noncached(prot) (prot) 919#endif 920 921#ifndef pgprot_writecombine 922#define pgprot_writecombine pgprot_noncached 923#endif 924 925#ifndef pgprot_writethrough 926#define pgprot_writethrough pgprot_noncached 927#endif 928 929#ifndef pgprot_device 930#define pgprot_device pgprot_noncached 931#endif 932 933#ifndef pgprot_mhp 934#define pgprot_mhp(prot) (prot) 935#endif 936 937#ifdef CONFIG_MMU 938#ifndef pgprot_modify 939#define pgprot_modify pgprot_modify 940static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 941{ 942 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 943 newprot = pgprot_noncached(newprot); 944 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 945 newprot = pgprot_writecombine(newprot); 946 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 947 newprot = pgprot_device(newprot); 948 return newprot; 949} 950#endif 951#endif /* CONFIG_MMU */ 952 953#ifndef pgprot_encrypted 954#define pgprot_encrypted(prot) (prot) 955#endif 956 957#ifndef pgprot_decrypted 958#define pgprot_decrypted(prot) (prot) 959#endif 960 961/* 962 * A facility to provide lazy MMU batching. This allows PTE updates and 963 * page invalidations to be delayed until a call to leave lazy MMU mode 964 * is issued. Some architectures may benefit from doing this, and it is 965 * beneficial for both shadow and direct mode hypervisors, which may batch 966 * the PTE updates which happen during this window. Note that using this 967 * interface requires that read hazards be removed from the code. A read 968 * hazard could result in the direct mode hypervisor case, since the actual 969 * write to the page tables may not yet have taken place, so reads though 970 * a raw PTE pointer after it has been modified are not guaranteed to be 971 * up to date. This mode can only be entered and left under the protection of 972 * the page table locks for all page tables which may be modified. In the UP 973 * case, this is required so that preemption is disabled, and in the SMP case, 974 * it must synchronize the delayed page table writes properly on other CPUs. 975 */ 976#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 977#define arch_enter_lazy_mmu_mode() do {} while (0) 978#define arch_leave_lazy_mmu_mode() do {} while (0) 979#define arch_flush_lazy_mmu_mode() do {} while (0) 980#endif 981 982/* 983 * A facility to provide batching of the reload of page tables and 984 * other process state with the actual context switch code for 985 * paravirtualized guests. By convention, only one of the batched 986 * update (lazy) modes (CPU, MMU) should be active at any given time, 987 * entry should never be nested, and entry and exits should always be 988 * paired. This is for sanity of maintaining and reasoning about the 989 * kernel code. In this case, the exit (end of the context switch) is 990 * in architecture-specific code, and so doesn't need a generic 991 * definition. 992 */ 993#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 994#define arch_start_context_switch(prev) do {} while (0) 995#endif 996 997#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 998#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 999static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1000{ 1001 return pmd; 1002} 1003 1004static inline int pmd_swp_soft_dirty(pmd_t pmd) 1005{ 1006 return 0; 1007} 1008 1009static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1010{ 1011 return pmd; 1012} 1013#endif 1014#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1015static inline int pte_soft_dirty(pte_t pte) 1016{ 1017 return 0; 1018} 1019 1020static inline int pmd_soft_dirty(pmd_t pmd) 1021{ 1022 return 0; 1023} 1024 1025static inline pte_t pte_mksoft_dirty(pte_t pte) 1026{ 1027 return pte; 1028} 1029 1030static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1031{ 1032 return pmd; 1033} 1034 1035static inline pte_t pte_clear_soft_dirty(pte_t pte) 1036{ 1037 return pte; 1038} 1039 1040static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1041{ 1042 return pmd; 1043} 1044 1045static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1046{ 1047 return pte; 1048} 1049 1050static inline int pte_swp_soft_dirty(pte_t pte) 1051{ 1052 return 0; 1053} 1054 1055static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1056{ 1057 return pte; 1058} 1059 1060static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1061{ 1062 return pmd; 1063} 1064 1065static inline int pmd_swp_soft_dirty(pmd_t pmd) 1066{ 1067 return 0; 1068} 1069 1070static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1071{ 1072 return pmd; 1073} 1074#endif 1075 1076#ifndef __HAVE_PFNMAP_TRACKING 1077/* 1078 * Interfaces that can be used by architecture code to keep track of 1079 * memory type of pfn mappings specified by the remap_pfn_range, 1080 * vmf_insert_pfn. 1081 */ 1082 1083/* 1084 * track_pfn_remap is called when a _new_ pfn mapping is being established 1085 * by remap_pfn_range() for physical range indicated by pfn and size. 1086 */ 1087static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1088 unsigned long pfn, unsigned long addr, 1089 unsigned long size) 1090{ 1091 return 0; 1092} 1093 1094/* 1095 * track_pfn_insert is called when a _new_ single pfn is established 1096 * by vmf_insert_pfn(). 1097 */ 1098static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1099 pfn_t pfn) 1100{ 1101} 1102 1103/* 1104 * track_pfn_copy is called when vma that is covering the pfnmap gets 1105 * copied through copy_page_range(). 1106 */ 1107static inline int track_pfn_copy(struct vm_area_struct *vma) 1108{ 1109 return 0; 1110} 1111 1112/* 1113 * untrack_pfn is called while unmapping a pfnmap for a region. 1114 * untrack can be called for a specific region indicated by pfn and size or 1115 * can be for the entire vma (in which case pfn, size are zero). 1116 */ 1117static inline void untrack_pfn(struct vm_area_struct *vma, 1118 unsigned long pfn, unsigned long size) 1119{ 1120} 1121 1122/* 1123 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1124 */ 1125static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1126{ 1127} 1128#else 1129extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1130 unsigned long pfn, unsigned long addr, 1131 unsigned long size); 1132extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1133 pfn_t pfn); 1134extern int track_pfn_copy(struct vm_area_struct *vma); 1135extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1136 unsigned long size); 1137extern void untrack_pfn_moved(struct vm_area_struct *vma); 1138#endif 1139 1140#ifdef CONFIG_MMU 1141#ifdef __HAVE_COLOR_ZERO_PAGE 1142static inline int is_zero_pfn(unsigned long pfn) 1143{ 1144 extern unsigned long zero_pfn; 1145 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1146 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1147} 1148 1149#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1150 1151#else 1152static inline int is_zero_pfn(unsigned long pfn) 1153{ 1154 extern unsigned long zero_pfn; 1155 return pfn == zero_pfn; 1156} 1157 1158static inline unsigned long my_zero_pfn(unsigned long addr) 1159{ 1160 extern unsigned long zero_pfn; 1161 return zero_pfn; 1162} 1163#endif 1164#else 1165static inline int is_zero_pfn(unsigned long pfn) 1166{ 1167 return 0; 1168} 1169 1170static inline unsigned long my_zero_pfn(unsigned long addr) 1171{ 1172 return 0; 1173} 1174#endif /* CONFIG_MMU */ 1175 1176#ifdef CONFIG_MMU 1177 1178#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1179static inline int pmd_trans_huge(pmd_t pmd) 1180{ 1181 return 0; 1182} 1183#ifndef pmd_write 1184static inline int pmd_write(pmd_t pmd) 1185{ 1186 BUG(); 1187 return 0; 1188} 1189#endif /* pmd_write */ 1190#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1191 1192#ifndef pud_write 1193static inline int pud_write(pud_t pud) 1194{ 1195 BUG(); 1196 return 0; 1197} 1198#endif /* pud_write */ 1199 1200#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1201static inline int pmd_devmap(pmd_t pmd) 1202{ 1203 return 0; 1204} 1205static inline int pud_devmap(pud_t pud) 1206{ 1207 return 0; 1208} 1209static inline int pgd_devmap(pgd_t pgd) 1210{ 1211 return 0; 1212} 1213#endif 1214 1215#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1216 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1217 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 1218static inline int pud_trans_huge(pud_t pud) 1219{ 1220 return 0; 1221} 1222#endif 1223 1224/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1225static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1226{ 1227 pud_t pudval = READ_ONCE(*pud); 1228 1229 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1230 return 1; 1231 if (unlikely(pud_bad(pudval))) { 1232 pud_clear_bad(pud); 1233 return 1; 1234 } 1235 return 0; 1236} 1237 1238/* See pmd_trans_unstable for discussion. */ 1239static inline int pud_trans_unstable(pud_t *pud) 1240{ 1241#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1242 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1243 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1244#else 1245 return 0; 1246#endif 1247} 1248 1249#ifndef pmd_read_atomic 1250static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 1251{ 1252 /* 1253 * Depend on compiler for an atomic pmd read. NOTE: this is 1254 * only going to work, if the pmdval_t isn't larger than 1255 * an unsigned long. 1256 */ 1257 return *pmdp; 1258} 1259#endif 1260 1261#ifndef arch_needs_pgtable_deposit 1262#define arch_needs_pgtable_deposit() (false) 1263#endif 1264/* 1265 * This function is meant to be used by sites walking pagetables with 1266 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1267 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1268 * into a null pmd and the transhuge page fault can convert a null pmd 1269 * into an hugepmd or into a regular pmd (if the hugepage allocation 1270 * fails). While holding the mmap_lock in read mode the pmd becomes 1271 * stable and stops changing under us only if it's not null and not a 1272 * transhuge pmd. When those races occurs and this function makes a 1273 * difference vs the standard pmd_none_or_clear_bad, the result is 1274 * undefined so behaving like if the pmd was none is safe (because it 1275 * can return none anyway). The compiler level barrier() is critically 1276 * important to compute the two checks atomically on the same pmdval. 1277 * 1278 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1279 * care of reading the pmd atomically to avoid SMP race conditions 1280 * against pmd_populate() when the mmap_lock is hold for reading by the 1281 * caller (a special atomic read not done by "gcc" as in the generic 1282 * version above, is also needed when THP is disabled because the page 1283 * fault can populate the pmd from under us). 1284 */ 1285static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1286{ 1287 pmd_t pmdval = pmd_read_atomic(pmd); 1288 /* 1289 * The barrier will stabilize the pmdval in a register or on 1290 * the stack so that it will stop changing under the code. 1291 * 1292 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1293 * pmd_read_atomic is allowed to return a not atomic pmdval 1294 * (for example pointing to an hugepage that has never been 1295 * mapped in the pmd). The below checks will only care about 1296 * the low part of the pmd with 32bit PAE x86 anyway, with the 1297 * exception of pmd_none(). So the important thing is that if 1298 * the low part of the pmd is found null, the high part will 1299 * be also null or the pmd_none() check below would be 1300 * confused. 1301 */ 1302#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1303 barrier(); 1304#endif 1305 /* 1306 * !pmd_present() checks for pmd migration entries 1307 * 1308 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1309 * But using that requires moving current function and pmd_trans_unstable() 1310 * to linux/swapops.h to resolve dependency, which is too much code move. 1311 * 1312 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1313 * because !pmd_present() pages can only be under migration not swapped 1314 * out. 1315 * 1316 * pmd_none() is preserved for future condition checks on pmd migration 1317 * entries and not confusing with this function name, although it is 1318 * redundant with !pmd_present(). 1319 */ 1320 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1321 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1322 return 1; 1323 if (unlikely(pmd_bad(pmdval))) { 1324 pmd_clear_bad(pmd); 1325 return 1; 1326 } 1327 return 0; 1328} 1329 1330/* 1331 * This is a noop if Transparent Hugepage Support is not built into 1332 * the kernel. Otherwise it is equivalent to 1333 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1334 * places that already verified the pmd is not none and they want to 1335 * walk ptes while holding the mmap sem in read mode (write mode don't 1336 * need this). If THP is not enabled, the pmd can't go away under the 1337 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1338 * run a pmd_trans_unstable before walking the ptes after 1339 * split_huge_pmd returns (because it may have run when the pmd become 1340 * null, but then a page fault can map in a THP and not a regular page). 1341 */ 1342static inline int pmd_trans_unstable(pmd_t *pmd) 1343{ 1344#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1345 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1346#else 1347 return 0; 1348#endif 1349} 1350 1351/* 1352 * the ordering of these checks is important for pmds with _page_devmap set. 1353 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check 1354 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly 1355 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 1356 */ 1357static inline int pmd_devmap_trans_unstable(pmd_t *pmd) 1358{ 1359 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 1360} 1361 1362#ifndef CONFIG_NUMA_BALANCING 1363/* 1364 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1365 * the only case the kernel cares is for NUMA balancing and is only ever set 1366 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1367 * _PAGE_PROTNONE so by default, implement the helper as "always no". It 1368 * is the responsibility of the caller to distinguish between PROT_NONE 1369 * protections and NUMA hinting fault protections. 1370 */ 1371static inline int pte_protnone(pte_t pte) 1372{ 1373 return 0; 1374} 1375 1376static inline int pmd_protnone(pmd_t pmd) 1377{ 1378 return 0; 1379} 1380#endif /* CONFIG_NUMA_BALANCING */ 1381 1382#endif /* CONFIG_MMU */ 1383 1384#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1385 1386#ifndef __PAGETABLE_P4D_FOLDED 1387int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1388int p4d_clear_huge(p4d_t *p4d); 1389#else 1390static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1391{ 1392 return 0; 1393} 1394static inline int p4d_clear_huge(p4d_t *p4d) 1395{ 1396 return 0; 1397} 1398#endif /* !__PAGETABLE_P4D_FOLDED */ 1399 1400int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1401int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1402int pud_clear_huge(pud_t *pud); 1403int pmd_clear_huge(pmd_t *pmd); 1404int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1405int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1406int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1407#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1408static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1409{ 1410 return 0; 1411} 1412static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1413{ 1414 return 0; 1415} 1416static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1417{ 1418 return 0; 1419} 1420static inline int p4d_clear_huge(p4d_t *p4d) 1421{ 1422 return 0; 1423} 1424static inline int pud_clear_huge(pud_t *pud) 1425{ 1426 return 0; 1427} 1428static inline int pmd_clear_huge(pmd_t *pmd) 1429{ 1430 return 0; 1431} 1432static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1433{ 1434 return 0; 1435} 1436static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1437{ 1438 return 0; 1439} 1440static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1441{ 1442 return 0; 1443} 1444#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1445 1446#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1447#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1448/* 1449 * ARCHes with special requirements for evicting THP backing TLB entries can 1450 * implement this. Otherwise also, it can help optimize normal TLB flush in 1451 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1452 * entire TLB if flush span is greater than a threshold, which will 1453 * likely be true for a single huge page. Thus a single THP flush will 1454 * invalidate the entire TLB which is not desirable. 1455 * e.g. see arch/arc: flush_pmd_tlb_range 1456 */ 1457#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1458#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1459#else 1460#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1461#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1462#endif 1463#endif 1464 1465struct file; 1466int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1467 unsigned long size, pgprot_t *vma_prot); 1468 1469#ifndef CONFIG_X86_ESPFIX64 1470static inline void init_espfix_bsp(void) { } 1471#endif 1472 1473extern void __init pgtable_cache_init(void); 1474 1475#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1476static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1477{ 1478 return true; 1479} 1480 1481static inline bool arch_has_pfn_modify_check(void) 1482{ 1483 return false; 1484} 1485#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1486 1487/* 1488 * Architecture PAGE_KERNEL_* fallbacks 1489 * 1490 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1491 * because they really don't support them, or the port needs to be updated to 1492 * reflect the required functionality. Below are a set of relatively safe 1493 * fallbacks, as best effort, which we can count on in lieu of the architectures 1494 * not defining them on their own yet. 1495 */ 1496 1497#ifndef PAGE_KERNEL_RO 1498# define PAGE_KERNEL_RO PAGE_KERNEL 1499#endif 1500 1501#ifndef PAGE_KERNEL_EXEC 1502# define PAGE_KERNEL_EXEC PAGE_KERNEL 1503#endif 1504 1505/* 1506 * Page Table Modification bits for pgtbl_mod_mask. 1507 * 1508 * These are used by the p?d_alloc_track*() set of functions an in the generic 1509 * vmalloc/ioremap code to track at which page-table levels entries have been 1510 * modified. Based on that the code can better decide when vmalloc and ioremap 1511 * mapping changes need to be synchronized to other page-tables in the system. 1512 */ 1513#define __PGTBL_PGD_MODIFIED 0 1514#define __PGTBL_P4D_MODIFIED 1 1515#define __PGTBL_PUD_MODIFIED 2 1516#define __PGTBL_PMD_MODIFIED 3 1517#define __PGTBL_PTE_MODIFIED 4 1518 1519#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1520#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1521#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1522#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1523#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1524 1525/* Page-Table Modification Mask */ 1526typedef unsigned int pgtbl_mod_mask; 1527 1528#endif /* !__ASSEMBLY__ */ 1529 1530#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1531#ifdef CONFIG_PHYS_ADDR_T_64BIT 1532/* 1533 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1534 * with physical address space extension, but falls back to 1535 * BITS_PER_LONG otherwise. 1536 */ 1537#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1538#else 1539#define MAX_POSSIBLE_PHYSMEM_BITS 32 1540#endif 1541#endif 1542 1543#ifndef has_transparent_hugepage 1544#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1545#define has_transparent_hugepage() 1 1546#else 1547#define has_transparent_hugepage() 0 1548#endif 1549#endif 1550 1551/* 1552 * On some architectures it depends on the mm if the p4d/pud or pmd 1553 * layer of the page table hierarchy is folded or not. 1554 */ 1555#ifndef mm_p4d_folded 1556#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1557#endif 1558 1559#ifndef mm_pud_folded 1560#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1561#endif 1562 1563#ifndef mm_pmd_folded 1564#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1565#endif 1566 1567#ifndef p4d_offset_lockless 1568#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1569#endif 1570#ifndef pud_offset_lockless 1571#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1572#endif 1573#ifndef pmd_offset_lockless 1574#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1575#endif 1576 1577/* 1578 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1579 * This differs from p?d_huge() by the fact that they are always available (if 1580 * the architecture supports large pages at the appropriate level) even 1581 * if CONFIG_HUGETLB_PAGE is not defined. 1582 * Only meaningful when called on a valid entry. 1583 */ 1584#ifndef pgd_leaf 1585#define pgd_leaf(x) 0 1586#endif 1587#ifndef p4d_leaf 1588#define p4d_leaf(x) 0 1589#endif 1590#ifndef pud_leaf 1591#define pud_leaf(x) 0 1592#endif 1593#ifndef pmd_leaf 1594#define pmd_leaf(x) 0 1595#endif 1596 1597#ifndef pgd_leaf_size 1598#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1599#endif 1600#ifndef p4d_leaf_size 1601#define p4d_leaf_size(x) P4D_SIZE 1602#endif 1603#ifndef pud_leaf_size 1604#define pud_leaf_size(x) PUD_SIZE 1605#endif 1606#ifndef pmd_leaf_size 1607#define pmd_leaf_size(x) PMD_SIZE 1608#endif 1609#ifndef pte_leaf_size 1610#define pte_leaf_size(x) PAGE_SIZE 1611#endif 1612 1613/* 1614 * Some architectures have MMUs that are configurable or selectable at boot 1615 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1616 * helps to have a static maximum value. 1617 */ 1618 1619#ifndef MAX_PTRS_PER_PTE 1620#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1621#endif 1622 1623#ifndef MAX_PTRS_PER_PMD 1624#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1625#endif 1626 1627#ifndef MAX_PTRS_PER_PUD 1628#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1629#endif 1630 1631#ifndef MAX_PTRS_PER_P4D 1632#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1633#endif 1634 1635#endif /* _LINUX_PGTABLE_H */