at v5.16 48 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34}; 35 36#ifdef CONFIG_HAVE_HW_BREAKPOINT 37#include <asm/hw_breakpoint.h> 38#endif 39 40#include <linux/list.h> 41#include <linux/mutex.h> 42#include <linux/rculist.h> 43#include <linux/rcupdate.h> 44#include <linux/spinlock.h> 45#include <linux/hrtimer.h> 46#include <linux/fs.h> 47#include <linux/pid_namespace.h> 48#include <linux/workqueue.h> 49#include <linux/ftrace.h> 50#include <linux/cpu.h> 51#include <linux/irq_work.h> 52#include <linux/static_key.h> 53#include <linux/jump_label_ratelimit.h> 54#include <linux/atomic.h> 55#include <linux/sysfs.h> 56#include <linux/perf_regs.h> 57#include <linux/cgroup.h> 58#include <linux/refcount.h> 59#include <linux/security.h> 60#include <linux/static_call.h> 61#include <asm/local.h> 62 63struct perf_callchain_entry { 64 __u64 nr; 65 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 66}; 67 68struct perf_callchain_entry_ctx { 69 struct perf_callchain_entry *entry; 70 u32 max_stack; 71 u32 nr; 72 short contexts; 73 bool contexts_maxed; 74}; 75 76typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 77 unsigned long off, unsigned long len); 78 79struct perf_raw_frag { 80 union { 81 struct perf_raw_frag *next; 82 unsigned long pad; 83 }; 84 perf_copy_f copy; 85 void *data; 86 u32 size; 87} __packed; 88 89struct perf_raw_record { 90 struct perf_raw_frag frag; 91 u32 size; 92}; 93 94/* 95 * branch stack layout: 96 * nr: number of taken branches stored in entries[] 97 * hw_idx: The low level index of raw branch records 98 * for the most recent branch. 99 * -1ULL means invalid/unknown. 100 * 101 * Note that nr can vary from sample to sample 102 * branches (to, from) are stored from most recent 103 * to least recent, i.e., entries[0] contains the most 104 * recent branch. 105 * The entries[] is an abstraction of raw branch records, 106 * which may not be stored in age order in HW, e.g. Intel LBR. 107 * The hw_idx is to expose the low level index of raw 108 * branch record for the most recent branch aka entries[0]. 109 * The hw_idx index is between -1 (unknown) and max depth, 110 * which can be retrieved in /sys/devices/cpu/caps/branches. 111 * For the architectures whose raw branch records are 112 * already stored in age order, the hw_idx should be 0. 113 */ 114struct perf_branch_stack { 115 __u64 nr; 116 __u64 hw_idx; 117 struct perf_branch_entry entries[]; 118}; 119 120struct task_struct; 121 122/* 123 * extra PMU register associated with an event 124 */ 125struct hw_perf_event_extra { 126 u64 config; /* register value */ 127 unsigned int reg; /* register address or index */ 128 int alloc; /* extra register already allocated */ 129 int idx; /* index in shared_regs->regs[] */ 130}; 131 132/** 133 * struct hw_perf_event - performance event hardware details: 134 */ 135struct hw_perf_event { 136#ifdef CONFIG_PERF_EVENTS 137 union { 138 struct { /* hardware */ 139 u64 config; 140 u64 last_tag; 141 unsigned long config_base; 142 unsigned long event_base; 143 int event_base_rdpmc; 144 int idx; 145 int last_cpu; 146 int flags; 147 148 struct hw_perf_event_extra extra_reg; 149 struct hw_perf_event_extra branch_reg; 150 }; 151 struct { /* software */ 152 struct hrtimer hrtimer; 153 }; 154 struct { /* tracepoint */ 155 /* for tp_event->class */ 156 struct list_head tp_list; 157 }; 158 struct { /* amd_power */ 159 u64 pwr_acc; 160 u64 ptsc; 161 }; 162#ifdef CONFIG_HAVE_HW_BREAKPOINT 163 struct { /* breakpoint */ 164 /* 165 * Crufty hack to avoid the chicken and egg 166 * problem hw_breakpoint has with context 167 * creation and event initalization. 168 */ 169 struct arch_hw_breakpoint info; 170 struct list_head bp_list; 171 }; 172#endif 173 struct { /* amd_iommu */ 174 u8 iommu_bank; 175 u8 iommu_cntr; 176 u16 padding; 177 u64 conf; 178 u64 conf1; 179 }; 180 }; 181 /* 182 * If the event is a per task event, this will point to the task in 183 * question. See the comment in perf_event_alloc(). 184 */ 185 struct task_struct *target; 186 187 /* 188 * PMU would store hardware filter configuration 189 * here. 190 */ 191 void *addr_filters; 192 193 /* Last sync'ed generation of filters */ 194 unsigned long addr_filters_gen; 195 196/* 197 * hw_perf_event::state flags; used to track the PERF_EF_* state. 198 */ 199#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 200#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 201#define PERF_HES_ARCH 0x04 202 203 int state; 204 205 /* 206 * The last observed hardware counter value, updated with a 207 * local64_cmpxchg() such that pmu::read() can be called nested. 208 */ 209 local64_t prev_count; 210 211 /* 212 * The period to start the next sample with. 213 */ 214 u64 sample_period; 215 216 union { 217 struct { /* Sampling */ 218 /* 219 * The period we started this sample with. 220 */ 221 u64 last_period; 222 223 /* 224 * However much is left of the current period; 225 * note that this is a full 64bit value and 226 * allows for generation of periods longer 227 * than hardware might allow. 228 */ 229 local64_t period_left; 230 }; 231 struct { /* Topdown events counting for context switch */ 232 u64 saved_metric; 233 u64 saved_slots; 234 }; 235 }; 236 237 /* 238 * State for throttling the event, see __perf_event_overflow() and 239 * perf_adjust_freq_unthr_context(). 240 */ 241 u64 interrupts_seq; 242 u64 interrupts; 243 244 /* 245 * State for freq target events, see __perf_event_overflow() and 246 * perf_adjust_freq_unthr_context(). 247 */ 248 u64 freq_time_stamp; 249 u64 freq_count_stamp; 250#endif 251}; 252 253struct perf_event; 254 255/* 256 * Common implementation detail of pmu::{start,commit,cancel}_txn 257 */ 258#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 259#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 260 261/** 262 * pmu::capabilities flags 263 */ 264#define PERF_PMU_CAP_NO_INTERRUPT 0x0001 265#define PERF_PMU_CAP_NO_NMI 0x0002 266#define PERF_PMU_CAP_AUX_NO_SG 0x0004 267#define PERF_PMU_CAP_EXTENDED_REGS 0x0008 268#define PERF_PMU_CAP_EXCLUSIVE 0x0010 269#define PERF_PMU_CAP_ITRACE 0x0020 270#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 271#define PERF_PMU_CAP_NO_EXCLUDE 0x0080 272#define PERF_PMU_CAP_AUX_OUTPUT 0x0100 273#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 274 275struct perf_output_handle; 276 277/** 278 * struct pmu - generic performance monitoring unit 279 */ 280struct pmu { 281 struct list_head entry; 282 283 struct module *module; 284 struct device *dev; 285 const struct attribute_group **attr_groups; 286 const struct attribute_group **attr_update; 287 const char *name; 288 int type; 289 290 /* 291 * various common per-pmu feature flags 292 */ 293 int capabilities; 294 295 int __percpu *pmu_disable_count; 296 struct perf_cpu_context __percpu *pmu_cpu_context; 297 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 298 int task_ctx_nr; 299 int hrtimer_interval_ms; 300 301 /* number of address filters this PMU can do */ 302 unsigned int nr_addr_filters; 303 304 /* 305 * Fully disable/enable this PMU, can be used to protect from the PMI 306 * as well as for lazy/batch writing of the MSRs. 307 */ 308 void (*pmu_enable) (struct pmu *pmu); /* optional */ 309 void (*pmu_disable) (struct pmu *pmu); /* optional */ 310 311 /* 312 * Try and initialize the event for this PMU. 313 * 314 * Returns: 315 * -ENOENT -- @event is not for this PMU 316 * 317 * -ENODEV -- @event is for this PMU but PMU not present 318 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 319 * -EINVAL -- @event is for this PMU but @event is not valid 320 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 321 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 322 * 323 * 0 -- @event is for this PMU and valid 324 * 325 * Other error return values are allowed. 326 */ 327 int (*event_init) (struct perf_event *event); 328 329 /* 330 * Notification that the event was mapped or unmapped. Called 331 * in the context of the mapping task. 332 */ 333 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 334 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 335 336 /* 337 * Flags for ->add()/->del()/ ->start()/->stop(). There are 338 * matching hw_perf_event::state flags. 339 */ 340#define PERF_EF_START 0x01 /* start the counter when adding */ 341#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 342#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 343 344 /* 345 * Adds/Removes a counter to/from the PMU, can be done inside a 346 * transaction, see the ->*_txn() methods. 347 * 348 * The add/del callbacks will reserve all hardware resources required 349 * to service the event, this includes any counter constraint 350 * scheduling etc. 351 * 352 * Called with IRQs disabled and the PMU disabled on the CPU the event 353 * is on. 354 * 355 * ->add() called without PERF_EF_START should result in the same state 356 * as ->add() followed by ->stop(). 357 * 358 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 359 * ->stop() that must deal with already being stopped without 360 * PERF_EF_UPDATE. 361 */ 362 int (*add) (struct perf_event *event, int flags); 363 void (*del) (struct perf_event *event, int flags); 364 365 /* 366 * Starts/Stops a counter present on the PMU. 367 * 368 * The PMI handler should stop the counter when perf_event_overflow() 369 * returns !0. ->start() will be used to continue. 370 * 371 * Also used to change the sample period. 372 * 373 * Called with IRQs disabled and the PMU disabled on the CPU the event 374 * is on -- will be called from NMI context with the PMU generates 375 * NMIs. 376 * 377 * ->stop() with PERF_EF_UPDATE will read the counter and update 378 * period/count values like ->read() would. 379 * 380 * ->start() with PERF_EF_RELOAD will reprogram the counter 381 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 382 */ 383 void (*start) (struct perf_event *event, int flags); 384 void (*stop) (struct perf_event *event, int flags); 385 386 /* 387 * Updates the counter value of the event. 388 * 389 * For sampling capable PMUs this will also update the software period 390 * hw_perf_event::period_left field. 391 */ 392 void (*read) (struct perf_event *event); 393 394 /* 395 * Group events scheduling is treated as a transaction, add 396 * group events as a whole and perform one schedulability test. 397 * If the test fails, roll back the whole group 398 * 399 * Start the transaction, after this ->add() doesn't need to 400 * do schedulability tests. 401 * 402 * Optional. 403 */ 404 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 405 /* 406 * If ->start_txn() disabled the ->add() schedulability test 407 * then ->commit_txn() is required to perform one. On success 408 * the transaction is closed. On error the transaction is kept 409 * open until ->cancel_txn() is called. 410 * 411 * Optional. 412 */ 413 int (*commit_txn) (struct pmu *pmu); 414 /* 415 * Will cancel the transaction, assumes ->del() is called 416 * for each successful ->add() during the transaction. 417 * 418 * Optional. 419 */ 420 void (*cancel_txn) (struct pmu *pmu); 421 422 /* 423 * Will return the value for perf_event_mmap_page::index for this event, 424 * if no implementation is provided it will default to: event->hw.idx + 1. 425 */ 426 int (*event_idx) (struct perf_event *event); /*optional */ 427 428 /* 429 * context-switches callback 430 */ 431 void (*sched_task) (struct perf_event_context *ctx, 432 bool sched_in); 433 434 /* 435 * Kmem cache of PMU specific data 436 */ 437 struct kmem_cache *task_ctx_cache; 438 439 /* 440 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 441 * can be synchronized using this function. See Intel LBR callstack support 442 * implementation and Perf core context switch handling callbacks for usage 443 * examples. 444 */ 445 void (*swap_task_ctx) (struct perf_event_context *prev, 446 struct perf_event_context *next); 447 /* optional */ 448 449 /* 450 * Set up pmu-private data structures for an AUX area 451 */ 452 void *(*setup_aux) (struct perf_event *event, void **pages, 453 int nr_pages, bool overwrite); 454 /* optional */ 455 456 /* 457 * Free pmu-private AUX data structures 458 */ 459 void (*free_aux) (void *aux); /* optional */ 460 461 /* 462 * Take a snapshot of the AUX buffer without touching the event 463 * state, so that preempting ->start()/->stop() callbacks does 464 * not interfere with their logic. Called in PMI context. 465 * 466 * Returns the size of AUX data copied to the output handle. 467 * 468 * Optional. 469 */ 470 long (*snapshot_aux) (struct perf_event *event, 471 struct perf_output_handle *handle, 472 unsigned long size); 473 474 /* 475 * Validate address range filters: make sure the HW supports the 476 * requested configuration and number of filters; return 0 if the 477 * supplied filters are valid, -errno otherwise. 478 * 479 * Runs in the context of the ioctl()ing process and is not serialized 480 * with the rest of the PMU callbacks. 481 */ 482 int (*addr_filters_validate) (struct list_head *filters); 483 /* optional */ 484 485 /* 486 * Synchronize address range filter configuration: 487 * translate hw-agnostic filters into hardware configuration in 488 * event::hw::addr_filters. 489 * 490 * Runs as a part of filter sync sequence that is done in ->start() 491 * callback by calling perf_event_addr_filters_sync(). 492 * 493 * May (and should) traverse event::addr_filters::list, for which its 494 * caller provides necessary serialization. 495 */ 496 void (*addr_filters_sync) (struct perf_event *event); 497 /* optional */ 498 499 /* 500 * Check if event can be used for aux_output purposes for 501 * events of this PMU. 502 * 503 * Runs from perf_event_open(). Should return 0 for "no match" 504 * or non-zero for "match". 505 */ 506 int (*aux_output_match) (struct perf_event *event); 507 /* optional */ 508 509 /* 510 * Filter events for PMU-specific reasons. 511 */ 512 int (*filter_match) (struct perf_event *event); /* optional */ 513 514 /* 515 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 516 */ 517 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 518}; 519 520enum perf_addr_filter_action_t { 521 PERF_ADDR_FILTER_ACTION_STOP = 0, 522 PERF_ADDR_FILTER_ACTION_START, 523 PERF_ADDR_FILTER_ACTION_FILTER, 524}; 525 526/** 527 * struct perf_addr_filter - address range filter definition 528 * @entry: event's filter list linkage 529 * @path: object file's path for file-based filters 530 * @offset: filter range offset 531 * @size: filter range size (size==0 means single address trigger) 532 * @action: filter/start/stop 533 * 534 * This is a hardware-agnostic filter configuration as specified by the user. 535 */ 536struct perf_addr_filter { 537 struct list_head entry; 538 struct path path; 539 unsigned long offset; 540 unsigned long size; 541 enum perf_addr_filter_action_t action; 542}; 543 544/** 545 * struct perf_addr_filters_head - container for address range filters 546 * @list: list of filters for this event 547 * @lock: spinlock that serializes accesses to the @list and event's 548 * (and its children's) filter generations. 549 * @nr_file_filters: number of file-based filters 550 * 551 * A child event will use parent's @list (and therefore @lock), so they are 552 * bundled together; see perf_event_addr_filters(). 553 */ 554struct perf_addr_filters_head { 555 struct list_head list; 556 raw_spinlock_t lock; 557 unsigned int nr_file_filters; 558}; 559 560struct perf_addr_filter_range { 561 unsigned long start; 562 unsigned long size; 563}; 564 565/** 566 * enum perf_event_state - the states of an event: 567 */ 568enum perf_event_state { 569 PERF_EVENT_STATE_DEAD = -4, 570 PERF_EVENT_STATE_EXIT = -3, 571 PERF_EVENT_STATE_ERROR = -2, 572 PERF_EVENT_STATE_OFF = -1, 573 PERF_EVENT_STATE_INACTIVE = 0, 574 PERF_EVENT_STATE_ACTIVE = 1, 575}; 576 577struct file; 578struct perf_sample_data; 579 580typedef void (*perf_overflow_handler_t)(struct perf_event *, 581 struct perf_sample_data *, 582 struct pt_regs *regs); 583 584/* 585 * Event capabilities. For event_caps and groups caps. 586 * 587 * PERF_EV_CAP_SOFTWARE: Is a software event. 588 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 589 * from any CPU in the package where it is active. 590 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 591 * cannot be a group leader. If an event with this flag is detached from the 592 * group it is scheduled out and moved into an unrecoverable ERROR state. 593 */ 594#define PERF_EV_CAP_SOFTWARE BIT(0) 595#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 596#define PERF_EV_CAP_SIBLING BIT(2) 597 598#define SWEVENT_HLIST_BITS 8 599#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 600 601struct swevent_hlist { 602 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 603 struct rcu_head rcu_head; 604}; 605 606#define PERF_ATTACH_CONTEXT 0x01 607#define PERF_ATTACH_GROUP 0x02 608#define PERF_ATTACH_TASK 0x04 609#define PERF_ATTACH_TASK_DATA 0x08 610#define PERF_ATTACH_ITRACE 0x10 611#define PERF_ATTACH_SCHED_CB 0x20 612#define PERF_ATTACH_CHILD 0x40 613 614struct perf_cgroup; 615struct perf_buffer; 616 617struct pmu_event_list { 618 raw_spinlock_t lock; 619 struct list_head list; 620}; 621 622#define for_each_sibling_event(sibling, event) \ 623 if ((event)->group_leader == (event)) \ 624 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 625 626/** 627 * struct perf_event - performance event kernel representation: 628 */ 629struct perf_event { 630#ifdef CONFIG_PERF_EVENTS 631 /* 632 * entry onto perf_event_context::event_list; 633 * modifications require ctx->lock 634 * RCU safe iterations. 635 */ 636 struct list_head event_entry; 637 638 /* 639 * Locked for modification by both ctx->mutex and ctx->lock; holding 640 * either sufficies for read. 641 */ 642 struct list_head sibling_list; 643 struct list_head active_list; 644 /* 645 * Node on the pinned or flexible tree located at the event context; 646 */ 647 struct rb_node group_node; 648 u64 group_index; 649 /* 650 * We need storage to track the entries in perf_pmu_migrate_context; we 651 * cannot use the event_entry because of RCU and we want to keep the 652 * group in tact which avoids us using the other two entries. 653 */ 654 struct list_head migrate_entry; 655 656 struct hlist_node hlist_entry; 657 struct list_head active_entry; 658 int nr_siblings; 659 660 /* Not serialized. Only written during event initialization. */ 661 int event_caps; 662 /* The cumulative AND of all event_caps for events in this group. */ 663 int group_caps; 664 665 struct perf_event *group_leader; 666 struct pmu *pmu; 667 void *pmu_private; 668 669 enum perf_event_state state; 670 unsigned int attach_state; 671 local64_t count; 672 atomic64_t child_count; 673 674 /* 675 * These are the total time in nanoseconds that the event 676 * has been enabled (i.e. eligible to run, and the task has 677 * been scheduled in, if this is a per-task event) 678 * and running (scheduled onto the CPU), respectively. 679 */ 680 u64 total_time_enabled; 681 u64 total_time_running; 682 u64 tstamp; 683 684 /* 685 * timestamp shadows the actual context timing but it can 686 * be safely used in NMI interrupt context. It reflects the 687 * context time as it was when the event was last scheduled in, 688 * or when ctx_sched_in failed to schedule the event because we 689 * run out of PMC. 690 * 691 * ctx_time already accounts for ctx->timestamp. Therefore to 692 * compute ctx_time for a sample, simply add perf_clock(). 693 */ 694 u64 shadow_ctx_time; 695 696 struct perf_event_attr attr; 697 u16 header_size; 698 u16 id_header_size; 699 u16 read_size; 700 struct hw_perf_event hw; 701 702 struct perf_event_context *ctx; 703 atomic_long_t refcount; 704 705 /* 706 * These accumulate total time (in nanoseconds) that children 707 * events have been enabled and running, respectively. 708 */ 709 atomic64_t child_total_time_enabled; 710 atomic64_t child_total_time_running; 711 712 /* 713 * Protect attach/detach and child_list: 714 */ 715 struct mutex child_mutex; 716 struct list_head child_list; 717 struct perf_event *parent; 718 719 int oncpu; 720 int cpu; 721 722 struct list_head owner_entry; 723 struct task_struct *owner; 724 725 /* mmap bits */ 726 struct mutex mmap_mutex; 727 atomic_t mmap_count; 728 729 struct perf_buffer *rb; 730 struct list_head rb_entry; 731 unsigned long rcu_batches; 732 int rcu_pending; 733 734 /* poll related */ 735 wait_queue_head_t waitq; 736 struct fasync_struct *fasync; 737 738 /* delayed work for NMIs and such */ 739 int pending_wakeup; 740 int pending_kill; 741 int pending_disable; 742 unsigned long pending_addr; /* SIGTRAP */ 743 struct irq_work pending; 744 745 atomic_t event_limit; 746 747 /* address range filters */ 748 struct perf_addr_filters_head addr_filters; 749 /* vma address array for file-based filders */ 750 struct perf_addr_filter_range *addr_filter_ranges; 751 unsigned long addr_filters_gen; 752 753 /* for aux_output events */ 754 struct perf_event *aux_event; 755 756 void (*destroy)(struct perf_event *); 757 struct rcu_head rcu_head; 758 759 struct pid_namespace *ns; 760 u64 id; 761 762 u64 (*clock)(void); 763 perf_overflow_handler_t overflow_handler; 764 void *overflow_handler_context; 765#ifdef CONFIG_BPF_SYSCALL 766 perf_overflow_handler_t orig_overflow_handler; 767 struct bpf_prog *prog; 768 u64 bpf_cookie; 769#endif 770 771#ifdef CONFIG_EVENT_TRACING 772 struct trace_event_call *tp_event; 773 struct event_filter *filter; 774#ifdef CONFIG_FUNCTION_TRACER 775 struct ftrace_ops ftrace_ops; 776#endif 777#endif 778 779#ifdef CONFIG_CGROUP_PERF 780 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 781#endif 782 783#ifdef CONFIG_SECURITY 784 void *security; 785#endif 786 struct list_head sb_list; 787#endif /* CONFIG_PERF_EVENTS */ 788}; 789 790 791struct perf_event_groups { 792 struct rb_root tree; 793 u64 index; 794}; 795 796/** 797 * struct perf_event_context - event context structure 798 * 799 * Used as a container for task events and CPU events as well: 800 */ 801struct perf_event_context { 802 struct pmu *pmu; 803 /* 804 * Protect the states of the events in the list, 805 * nr_active, and the list: 806 */ 807 raw_spinlock_t lock; 808 /* 809 * Protect the list of events. Locking either mutex or lock 810 * is sufficient to ensure the list doesn't change; to change 811 * the list you need to lock both the mutex and the spinlock. 812 */ 813 struct mutex mutex; 814 815 struct list_head active_ctx_list; 816 struct perf_event_groups pinned_groups; 817 struct perf_event_groups flexible_groups; 818 struct list_head event_list; 819 820 struct list_head pinned_active; 821 struct list_head flexible_active; 822 823 int nr_events; 824 int nr_active; 825 int is_active; 826 int nr_stat; 827 int nr_freq; 828 int rotate_disable; 829 /* 830 * Set when nr_events != nr_active, except tolerant to events not 831 * necessary to be active due to scheduling constraints, such as cgroups. 832 */ 833 int rotate_necessary; 834 refcount_t refcount; 835 struct task_struct *task; 836 837 /* 838 * Context clock, runs when context enabled. 839 */ 840 u64 time; 841 u64 timestamp; 842 843 /* 844 * These fields let us detect when two contexts have both 845 * been cloned (inherited) from a common ancestor. 846 */ 847 struct perf_event_context *parent_ctx; 848 u64 parent_gen; 849 u64 generation; 850 int pin_count; 851#ifdef CONFIG_CGROUP_PERF 852 int nr_cgroups; /* cgroup evts */ 853#endif 854 void *task_ctx_data; /* pmu specific data */ 855 struct rcu_head rcu_head; 856}; 857 858/* 859 * Number of contexts where an event can trigger: 860 * task, softirq, hardirq, nmi. 861 */ 862#define PERF_NR_CONTEXTS 4 863 864/** 865 * struct perf_event_cpu_context - per cpu event context structure 866 */ 867struct perf_cpu_context { 868 struct perf_event_context ctx; 869 struct perf_event_context *task_ctx; 870 int active_oncpu; 871 int exclusive; 872 873 raw_spinlock_t hrtimer_lock; 874 struct hrtimer hrtimer; 875 ktime_t hrtimer_interval; 876 unsigned int hrtimer_active; 877 878#ifdef CONFIG_CGROUP_PERF 879 struct perf_cgroup *cgrp; 880 struct list_head cgrp_cpuctx_entry; 881#endif 882 883 struct list_head sched_cb_entry; 884 int sched_cb_usage; 885 886 int online; 887 /* 888 * Per-CPU storage for iterators used in visit_groups_merge. The default 889 * storage is of size 2 to hold the CPU and any CPU event iterators. 890 */ 891 int heap_size; 892 struct perf_event **heap; 893 struct perf_event *heap_default[2]; 894}; 895 896struct perf_output_handle { 897 struct perf_event *event; 898 struct perf_buffer *rb; 899 unsigned long wakeup; 900 unsigned long size; 901 u64 aux_flags; 902 union { 903 void *addr; 904 unsigned long head; 905 }; 906 int page; 907}; 908 909struct bpf_perf_event_data_kern { 910 bpf_user_pt_regs_t *regs; 911 struct perf_sample_data *data; 912 struct perf_event *event; 913}; 914 915#ifdef CONFIG_CGROUP_PERF 916 917/* 918 * perf_cgroup_info keeps track of time_enabled for a cgroup. 919 * This is a per-cpu dynamically allocated data structure. 920 */ 921struct perf_cgroup_info { 922 u64 time; 923 u64 timestamp; 924}; 925 926struct perf_cgroup { 927 struct cgroup_subsys_state css; 928 struct perf_cgroup_info __percpu *info; 929}; 930 931/* 932 * Must ensure cgroup is pinned (css_get) before calling 933 * this function. In other words, we cannot call this function 934 * if there is no cgroup event for the current CPU context. 935 */ 936static inline struct perf_cgroup * 937perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 938{ 939 return container_of(task_css_check(task, perf_event_cgrp_id, 940 ctx ? lockdep_is_held(&ctx->lock) 941 : true), 942 struct perf_cgroup, css); 943} 944#endif /* CONFIG_CGROUP_PERF */ 945 946#ifdef CONFIG_PERF_EVENTS 947 948extern void *perf_aux_output_begin(struct perf_output_handle *handle, 949 struct perf_event *event); 950extern void perf_aux_output_end(struct perf_output_handle *handle, 951 unsigned long size); 952extern int perf_aux_output_skip(struct perf_output_handle *handle, 953 unsigned long size); 954extern void *perf_get_aux(struct perf_output_handle *handle); 955extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 956extern void perf_event_itrace_started(struct perf_event *event); 957 958extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 959extern void perf_pmu_unregister(struct pmu *pmu); 960 961extern void __perf_event_task_sched_in(struct task_struct *prev, 962 struct task_struct *task); 963extern void __perf_event_task_sched_out(struct task_struct *prev, 964 struct task_struct *next); 965extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 966extern void perf_event_exit_task(struct task_struct *child); 967extern void perf_event_free_task(struct task_struct *task); 968extern void perf_event_delayed_put(struct task_struct *task); 969extern struct file *perf_event_get(unsigned int fd); 970extern const struct perf_event *perf_get_event(struct file *file); 971extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 972extern void perf_event_print_debug(void); 973extern void perf_pmu_disable(struct pmu *pmu); 974extern void perf_pmu_enable(struct pmu *pmu); 975extern void perf_sched_cb_dec(struct pmu *pmu); 976extern void perf_sched_cb_inc(struct pmu *pmu); 977extern int perf_event_task_disable(void); 978extern int perf_event_task_enable(void); 979 980extern void perf_pmu_resched(struct pmu *pmu); 981 982extern int perf_event_refresh(struct perf_event *event, int refresh); 983extern void perf_event_update_userpage(struct perf_event *event); 984extern int perf_event_release_kernel(struct perf_event *event); 985extern struct perf_event * 986perf_event_create_kernel_counter(struct perf_event_attr *attr, 987 int cpu, 988 struct task_struct *task, 989 perf_overflow_handler_t callback, 990 void *context); 991extern void perf_pmu_migrate_context(struct pmu *pmu, 992 int src_cpu, int dst_cpu); 993int perf_event_read_local(struct perf_event *event, u64 *value, 994 u64 *enabled, u64 *running); 995extern u64 perf_event_read_value(struct perf_event *event, 996 u64 *enabled, u64 *running); 997 998 999struct perf_sample_data { 1000 /* 1001 * Fields set by perf_sample_data_init(), group so as to 1002 * minimize the cachelines touched. 1003 */ 1004 u64 addr; 1005 struct perf_raw_record *raw; 1006 struct perf_branch_stack *br_stack; 1007 u64 period; 1008 union perf_sample_weight weight; 1009 u64 txn; 1010 union perf_mem_data_src data_src; 1011 1012 /* 1013 * The other fields, optionally {set,used} by 1014 * perf_{prepare,output}_sample(). 1015 */ 1016 u64 type; 1017 u64 ip; 1018 struct { 1019 u32 pid; 1020 u32 tid; 1021 } tid_entry; 1022 u64 time; 1023 u64 id; 1024 u64 stream_id; 1025 struct { 1026 u32 cpu; 1027 u32 reserved; 1028 } cpu_entry; 1029 struct perf_callchain_entry *callchain; 1030 u64 aux_size; 1031 1032 struct perf_regs regs_user; 1033 struct perf_regs regs_intr; 1034 u64 stack_user_size; 1035 1036 u64 phys_addr; 1037 u64 cgroup; 1038 u64 data_page_size; 1039 u64 code_page_size; 1040} ____cacheline_aligned; 1041 1042/* default value for data source */ 1043#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1044 PERF_MEM_S(LVL, NA) |\ 1045 PERF_MEM_S(SNOOP, NA) |\ 1046 PERF_MEM_S(LOCK, NA) |\ 1047 PERF_MEM_S(TLB, NA)) 1048 1049static inline void perf_sample_data_init(struct perf_sample_data *data, 1050 u64 addr, u64 period) 1051{ 1052 /* remaining struct members initialized in perf_prepare_sample() */ 1053 data->addr = addr; 1054 data->raw = NULL; 1055 data->br_stack = NULL; 1056 data->period = period; 1057 data->weight.full = 0; 1058 data->data_src.val = PERF_MEM_NA; 1059 data->txn = 0; 1060} 1061 1062extern void perf_output_sample(struct perf_output_handle *handle, 1063 struct perf_event_header *header, 1064 struct perf_sample_data *data, 1065 struct perf_event *event); 1066extern void perf_prepare_sample(struct perf_event_header *header, 1067 struct perf_sample_data *data, 1068 struct perf_event *event, 1069 struct pt_regs *regs); 1070 1071extern int perf_event_overflow(struct perf_event *event, 1072 struct perf_sample_data *data, 1073 struct pt_regs *regs); 1074 1075extern void perf_event_output_forward(struct perf_event *event, 1076 struct perf_sample_data *data, 1077 struct pt_regs *regs); 1078extern void perf_event_output_backward(struct perf_event *event, 1079 struct perf_sample_data *data, 1080 struct pt_regs *regs); 1081extern int perf_event_output(struct perf_event *event, 1082 struct perf_sample_data *data, 1083 struct pt_regs *regs); 1084 1085static inline bool 1086is_default_overflow_handler(struct perf_event *event) 1087{ 1088 if (likely(event->overflow_handler == perf_event_output_forward)) 1089 return true; 1090 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1091 return true; 1092 return false; 1093} 1094 1095extern void 1096perf_event_header__init_id(struct perf_event_header *header, 1097 struct perf_sample_data *data, 1098 struct perf_event *event); 1099extern void 1100perf_event__output_id_sample(struct perf_event *event, 1101 struct perf_output_handle *handle, 1102 struct perf_sample_data *sample); 1103 1104extern void 1105perf_log_lost_samples(struct perf_event *event, u64 lost); 1106 1107static inline bool event_has_any_exclude_flag(struct perf_event *event) 1108{ 1109 struct perf_event_attr *attr = &event->attr; 1110 1111 return attr->exclude_idle || attr->exclude_user || 1112 attr->exclude_kernel || attr->exclude_hv || 1113 attr->exclude_guest || attr->exclude_host; 1114} 1115 1116static inline bool is_sampling_event(struct perf_event *event) 1117{ 1118 return event->attr.sample_period != 0; 1119} 1120 1121/* 1122 * Return 1 for a software event, 0 for a hardware event 1123 */ 1124static inline int is_software_event(struct perf_event *event) 1125{ 1126 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1127} 1128 1129/* 1130 * Return 1 for event in sw context, 0 for event in hw context 1131 */ 1132static inline int in_software_context(struct perf_event *event) 1133{ 1134 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1135} 1136 1137static inline int is_exclusive_pmu(struct pmu *pmu) 1138{ 1139 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1140} 1141 1142extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1143 1144extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1145extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1146 1147#ifndef perf_arch_fetch_caller_regs 1148static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1149#endif 1150 1151/* 1152 * When generating a perf sample in-line, instead of from an interrupt / 1153 * exception, we lack a pt_regs. This is typically used from software events 1154 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1155 * 1156 * We typically don't need a full set, but (for x86) do require: 1157 * - ip for PERF_SAMPLE_IP 1158 * - cs for user_mode() tests 1159 * - sp for PERF_SAMPLE_CALLCHAIN 1160 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1161 * 1162 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1163 * things like PERF_SAMPLE_REGS_INTR. 1164 */ 1165static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1166{ 1167 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1168} 1169 1170static __always_inline void 1171perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1172{ 1173 if (static_key_false(&perf_swevent_enabled[event_id])) 1174 __perf_sw_event(event_id, nr, regs, addr); 1175} 1176 1177DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1178 1179/* 1180 * 'Special' version for the scheduler, it hard assumes no recursion, 1181 * which is guaranteed by us not actually scheduling inside other swevents 1182 * because those disable preemption. 1183 */ 1184static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1185{ 1186 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1187 1188 perf_fetch_caller_regs(regs); 1189 ___perf_sw_event(event_id, nr, regs, addr); 1190} 1191 1192extern struct static_key_false perf_sched_events; 1193 1194static __always_inline bool __perf_sw_enabled(int swevt) 1195{ 1196 return static_key_false(&perf_swevent_enabled[swevt]); 1197} 1198 1199static inline void perf_event_task_migrate(struct task_struct *task) 1200{ 1201 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1202 task->sched_migrated = 1; 1203} 1204 1205static inline void perf_event_task_sched_in(struct task_struct *prev, 1206 struct task_struct *task) 1207{ 1208 if (static_branch_unlikely(&perf_sched_events)) 1209 __perf_event_task_sched_in(prev, task); 1210 1211 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1212 task->sched_migrated) { 1213 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1214 task->sched_migrated = 0; 1215 } 1216} 1217 1218static inline void perf_event_task_sched_out(struct task_struct *prev, 1219 struct task_struct *next) 1220{ 1221 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1222 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1223 1224#ifdef CONFIG_CGROUP_PERF 1225 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1226 perf_cgroup_from_task(prev, NULL) != 1227 perf_cgroup_from_task(next, NULL)) 1228 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1229#endif 1230 1231 if (static_branch_unlikely(&perf_sched_events)) 1232 __perf_event_task_sched_out(prev, next); 1233} 1234 1235extern void perf_event_mmap(struct vm_area_struct *vma); 1236 1237extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1238 bool unregister, const char *sym); 1239extern void perf_event_bpf_event(struct bpf_prog *prog, 1240 enum perf_bpf_event_type type, 1241 u16 flags); 1242 1243extern struct perf_guest_info_callbacks *perf_guest_cbs; 1244extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1245extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1246 1247extern void perf_event_exec(void); 1248extern void perf_event_comm(struct task_struct *tsk, bool exec); 1249extern void perf_event_namespaces(struct task_struct *tsk); 1250extern void perf_event_fork(struct task_struct *tsk); 1251extern void perf_event_text_poke(const void *addr, 1252 const void *old_bytes, size_t old_len, 1253 const void *new_bytes, size_t new_len); 1254 1255/* Callchains */ 1256DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1257 1258extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1259extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1260extern struct perf_callchain_entry * 1261get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1262 u32 max_stack, bool crosstask, bool add_mark); 1263extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1264extern int get_callchain_buffers(int max_stack); 1265extern void put_callchain_buffers(void); 1266extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1267extern void put_callchain_entry(int rctx); 1268 1269extern int sysctl_perf_event_max_stack; 1270extern int sysctl_perf_event_max_contexts_per_stack; 1271 1272static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1273{ 1274 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1275 struct perf_callchain_entry *entry = ctx->entry; 1276 entry->ip[entry->nr++] = ip; 1277 ++ctx->contexts; 1278 return 0; 1279 } else { 1280 ctx->contexts_maxed = true; 1281 return -1; /* no more room, stop walking the stack */ 1282 } 1283} 1284 1285static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1286{ 1287 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1288 struct perf_callchain_entry *entry = ctx->entry; 1289 entry->ip[entry->nr++] = ip; 1290 ++ctx->nr; 1291 return 0; 1292 } else { 1293 return -1; /* no more room, stop walking the stack */ 1294 } 1295} 1296 1297extern int sysctl_perf_event_paranoid; 1298extern int sysctl_perf_event_mlock; 1299extern int sysctl_perf_event_sample_rate; 1300extern int sysctl_perf_cpu_time_max_percent; 1301 1302extern void perf_sample_event_took(u64 sample_len_ns); 1303 1304int perf_proc_update_handler(struct ctl_table *table, int write, 1305 void *buffer, size_t *lenp, loff_t *ppos); 1306int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1307 void *buffer, size_t *lenp, loff_t *ppos); 1308int perf_event_max_stack_handler(struct ctl_table *table, int write, 1309 void *buffer, size_t *lenp, loff_t *ppos); 1310 1311/* Access to perf_event_open(2) syscall. */ 1312#define PERF_SECURITY_OPEN 0 1313 1314/* Finer grained perf_event_open(2) access control. */ 1315#define PERF_SECURITY_CPU 1 1316#define PERF_SECURITY_KERNEL 2 1317#define PERF_SECURITY_TRACEPOINT 3 1318 1319static inline int perf_is_paranoid(void) 1320{ 1321 return sysctl_perf_event_paranoid > -1; 1322} 1323 1324static inline int perf_allow_kernel(struct perf_event_attr *attr) 1325{ 1326 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1327 return -EACCES; 1328 1329 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1330} 1331 1332static inline int perf_allow_cpu(struct perf_event_attr *attr) 1333{ 1334 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1335 return -EACCES; 1336 1337 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1338} 1339 1340static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1341{ 1342 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1343 return -EPERM; 1344 1345 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1346} 1347 1348extern void perf_event_init(void); 1349extern void perf_tp_event(u16 event_type, u64 count, void *record, 1350 int entry_size, struct pt_regs *regs, 1351 struct hlist_head *head, int rctx, 1352 struct task_struct *task); 1353extern void perf_bp_event(struct perf_event *event, void *data); 1354 1355#ifndef perf_misc_flags 1356# define perf_misc_flags(regs) \ 1357 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1358# define perf_instruction_pointer(regs) instruction_pointer(regs) 1359#endif 1360#ifndef perf_arch_bpf_user_pt_regs 1361# define perf_arch_bpf_user_pt_regs(regs) regs 1362#endif 1363 1364static inline bool has_branch_stack(struct perf_event *event) 1365{ 1366 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1367} 1368 1369static inline bool needs_branch_stack(struct perf_event *event) 1370{ 1371 return event->attr.branch_sample_type != 0; 1372} 1373 1374static inline bool has_aux(struct perf_event *event) 1375{ 1376 return event->pmu->setup_aux; 1377} 1378 1379static inline bool is_write_backward(struct perf_event *event) 1380{ 1381 return !!event->attr.write_backward; 1382} 1383 1384static inline bool has_addr_filter(struct perf_event *event) 1385{ 1386 return event->pmu->nr_addr_filters; 1387} 1388 1389/* 1390 * An inherited event uses parent's filters 1391 */ 1392static inline struct perf_addr_filters_head * 1393perf_event_addr_filters(struct perf_event *event) 1394{ 1395 struct perf_addr_filters_head *ifh = &event->addr_filters; 1396 1397 if (event->parent) 1398 ifh = &event->parent->addr_filters; 1399 1400 return ifh; 1401} 1402 1403extern void perf_event_addr_filters_sync(struct perf_event *event); 1404extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1405 1406extern int perf_output_begin(struct perf_output_handle *handle, 1407 struct perf_sample_data *data, 1408 struct perf_event *event, unsigned int size); 1409extern int perf_output_begin_forward(struct perf_output_handle *handle, 1410 struct perf_sample_data *data, 1411 struct perf_event *event, 1412 unsigned int size); 1413extern int perf_output_begin_backward(struct perf_output_handle *handle, 1414 struct perf_sample_data *data, 1415 struct perf_event *event, 1416 unsigned int size); 1417 1418extern void perf_output_end(struct perf_output_handle *handle); 1419extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1420 const void *buf, unsigned int len); 1421extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1422 unsigned int len); 1423extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1424 struct perf_output_handle *handle, 1425 unsigned long from, unsigned long to); 1426extern int perf_swevent_get_recursion_context(void); 1427extern void perf_swevent_put_recursion_context(int rctx); 1428extern u64 perf_swevent_set_period(struct perf_event *event); 1429extern void perf_event_enable(struct perf_event *event); 1430extern void perf_event_disable(struct perf_event *event); 1431extern void perf_event_disable_local(struct perf_event *event); 1432extern void perf_event_disable_inatomic(struct perf_event *event); 1433extern void perf_event_task_tick(void); 1434extern int perf_event_account_interrupt(struct perf_event *event); 1435extern int perf_event_period(struct perf_event *event, u64 value); 1436extern u64 perf_event_pause(struct perf_event *event, bool reset); 1437#else /* !CONFIG_PERF_EVENTS: */ 1438static inline void * 1439perf_aux_output_begin(struct perf_output_handle *handle, 1440 struct perf_event *event) { return NULL; } 1441static inline void 1442perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1443 { } 1444static inline int 1445perf_aux_output_skip(struct perf_output_handle *handle, 1446 unsigned long size) { return -EINVAL; } 1447static inline void * 1448perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1449static inline void 1450perf_event_task_migrate(struct task_struct *task) { } 1451static inline void 1452perf_event_task_sched_in(struct task_struct *prev, 1453 struct task_struct *task) { } 1454static inline void 1455perf_event_task_sched_out(struct task_struct *prev, 1456 struct task_struct *next) { } 1457static inline int perf_event_init_task(struct task_struct *child, 1458 u64 clone_flags) { return 0; } 1459static inline void perf_event_exit_task(struct task_struct *child) { } 1460static inline void perf_event_free_task(struct task_struct *task) { } 1461static inline void perf_event_delayed_put(struct task_struct *task) { } 1462static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1463static inline const struct perf_event *perf_get_event(struct file *file) 1464{ 1465 return ERR_PTR(-EINVAL); 1466} 1467static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1468{ 1469 return ERR_PTR(-EINVAL); 1470} 1471static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1472 u64 *enabled, u64 *running) 1473{ 1474 return -EINVAL; 1475} 1476static inline void perf_event_print_debug(void) { } 1477static inline int perf_event_task_disable(void) { return -EINVAL; } 1478static inline int perf_event_task_enable(void) { return -EINVAL; } 1479static inline int perf_event_refresh(struct perf_event *event, int refresh) 1480{ 1481 return -EINVAL; 1482} 1483 1484static inline void 1485perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1486static inline void 1487perf_bp_event(struct perf_event *event, void *data) { } 1488 1489static inline int perf_register_guest_info_callbacks 1490(struct perf_guest_info_callbacks *callbacks) { return 0; } 1491static inline int perf_unregister_guest_info_callbacks 1492(struct perf_guest_info_callbacks *callbacks) { return 0; } 1493 1494static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1495 1496typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1497static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1498 bool unregister, const char *sym) { } 1499static inline void perf_event_bpf_event(struct bpf_prog *prog, 1500 enum perf_bpf_event_type type, 1501 u16 flags) { } 1502static inline void perf_event_exec(void) { } 1503static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1504static inline void perf_event_namespaces(struct task_struct *tsk) { } 1505static inline void perf_event_fork(struct task_struct *tsk) { } 1506static inline void perf_event_text_poke(const void *addr, 1507 const void *old_bytes, 1508 size_t old_len, 1509 const void *new_bytes, 1510 size_t new_len) { } 1511static inline void perf_event_init(void) { } 1512static inline int perf_swevent_get_recursion_context(void) { return -1; } 1513static inline void perf_swevent_put_recursion_context(int rctx) { } 1514static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1515static inline void perf_event_enable(struct perf_event *event) { } 1516static inline void perf_event_disable(struct perf_event *event) { } 1517static inline int __perf_event_disable(void *info) { return -1; } 1518static inline void perf_event_task_tick(void) { } 1519static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1520static inline int perf_event_period(struct perf_event *event, u64 value) 1521{ 1522 return -EINVAL; 1523} 1524static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1525{ 1526 return 0; 1527} 1528#endif 1529 1530#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1531extern void perf_restore_debug_store(void); 1532#else 1533static inline void perf_restore_debug_store(void) { } 1534#endif 1535 1536static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1537{ 1538 return frag->pad < sizeof(u64); 1539} 1540 1541#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1542 1543struct perf_pmu_events_attr { 1544 struct device_attribute attr; 1545 u64 id; 1546 const char *event_str; 1547}; 1548 1549struct perf_pmu_events_ht_attr { 1550 struct device_attribute attr; 1551 u64 id; 1552 const char *event_str_ht; 1553 const char *event_str_noht; 1554}; 1555 1556struct perf_pmu_events_hybrid_attr { 1557 struct device_attribute attr; 1558 u64 id; 1559 const char *event_str; 1560 u64 pmu_type; 1561}; 1562 1563struct perf_pmu_format_hybrid_attr { 1564 struct device_attribute attr; 1565 u64 pmu_type; 1566}; 1567 1568ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1569 char *page); 1570 1571#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1572static struct perf_pmu_events_attr _var = { \ 1573 .attr = __ATTR(_name, 0444, _show, NULL), \ 1574 .id = _id, \ 1575}; 1576 1577#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1578static struct perf_pmu_events_attr _var = { \ 1579 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1580 .id = 0, \ 1581 .event_str = _str, \ 1582}; 1583 1584#define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1585 (&((struct perf_pmu_events_attr[]) { \ 1586 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1587 .id = _id, } \ 1588 })[0].attr.attr) 1589 1590#define PMU_FORMAT_ATTR(_name, _format) \ 1591static ssize_t \ 1592_name##_show(struct device *dev, \ 1593 struct device_attribute *attr, \ 1594 char *page) \ 1595{ \ 1596 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1597 return sprintf(page, _format "\n"); \ 1598} \ 1599 \ 1600static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1601 1602/* Performance counter hotplug functions */ 1603#ifdef CONFIG_PERF_EVENTS 1604int perf_event_init_cpu(unsigned int cpu); 1605int perf_event_exit_cpu(unsigned int cpu); 1606#else 1607#define perf_event_init_cpu NULL 1608#define perf_event_exit_cpu NULL 1609#endif 1610 1611extern void __weak arch_perf_update_userpage(struct perf_event *event, 1612 struct perf_event_mmap_page *userpg, 1613 u64 now); 1614 1615#ifdef CONFIG_MMU 1616extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1617#endif 1618 1619/* 1620 * Snapshot branch stack on software events. 1621 * 1622 * Branch stack can be very useful in understanding software events. For 1623 * example, when a long function, e.g. sys_perf_event_open, returns an 1624 * errno, it is not obvious why the function failed. Branch stack could 1625 * provide very helpful information in this type of scenarios. 1626 * 1627 * On software event, it is necessary to stop the hardware branch recorder 1628 * fast. Otherwise, the hardware register/buffer will be flushed with 1629 * entries of the triggering event. Therefore, static call is used to 1630 * stop the hardware recorder. 1631 */ 1632 1633/* 1634 * cnt is the number of entries allocated for entries. 1635 * Return number of entries copied to . 1636 */ 1637typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1638 unsigned int cnt); 1639DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1640 1641#endif /* _LINUX_PERF_EVENT_H */