at v5.16 33 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_uptodate tells whether the page's contents is valid. When a read 72 * completes, the page becomes uptodate, unless a disk I/O error happened. 73 * 74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 75 * file-backed pagecache (see mm/vmscan.c). 76 * 77 * PG_error is set to indicate that an I/O error occurred on this page. 78 * 79 * PG_arch_1 is an architecture specific page state bit. The generic code 80 * guarantees that this bit is cleared for a page when it first is entered into 81 * the page cache. 82 * 83 * PG_hwpoison indicates that a page got corrupted in hardware and contains 84 * data with incorrect ECC bits that triggered a machine check. Accessing is 85 * not safe since it may cause another machine check. Don't touch! 86 */ 87 88/* 89 * Don't use the pageflags directly. Use the PageFoo macros. 90 * 91 * The page flags field is split into two parts, the main flags area 92 * which extends from the low bits upwards, and the fields area which 93 * extends from the high bits downwards. 94 * 95 * | FIELD | ... | FLAGS | 96 * N-1 ^ 0 97 * (NR_PAGEFLAGS) 98 * 99 * The fields area is reserved for fields mapping zone, node (for NUMA) and 100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 102 */ 103enum pageflags { 104 PG_locked, /* Page is locked. Don't touch. */ 105 PG_referenced, 106 PG_uptodate, 107 PG_dirty, 108 PG_lru, 109 PG_active, 110 PG_workingset, 111 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 112 PG_error, 113 PG_slab, 114 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 115 PG_arch_1, 116 PG_reserved, 117 PG_private, /* If pagecache, has fs-private data */ 118 PG_private_2, /* If pagecache, has fs aux data */ 119 PG_writeback, /* Page is under writeback */ 120 PG_head, /* A head page */ 121 PG_mappedtodisk, /* Has blocks allocated on-disk */ 122 PG_reclaim, /* To be reclaimed asap */ 123 PG_swapbacked, /* Page is backed by RAM/swap */ 124 PG_unevictable, /* Page is "unevictable" */ 125#ifdef CONFIG_MMU 126 PG_mlocked, /* Page is vma mlocked */ 127#endif 128#ifdef CONFIG_ARCH_USES_PG_UNCACHED 129 PG_uncached, /* Page has been mapped as uncached */ 130#endif 131#ifdef CONFIG_MEMORY_FAILURE 132 PG_hwpoison, /* hardware poisoned page. Don't touch */ 133#endif 134#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 135 PG_young, 136 PG_idle, 137#endif 138#ifdef CONFIG_64BIT 139 PG_arch_2, 140#endif 141#ifdef CONFIG_KASAN_HW_TAGS 142 PG_skip_kasan_poison, 143#endif 144 __NR_PAGEFLAGS, 145 146 PG_readahead = PG_reclaim, 147 148 /* Filesystems */ 149 PG_checked = PG_owner_priv_1, 150 151 /* SwapBacked */ 152 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 153 154 /* Two page bits are conscripted by FS-Cache to maintain local caching 155 * state. These bits are set on pages belonging to the netfs's inodes 156 * when those inodes are being locally cached. 157 */ 158 PG_fscache = PG_private_2, /* page backed by cache */ 159 160 /* XEN */ 161 /* Pinned in Xen as a read-only pagetable page. */ 162 PG_pinned = PG_owner_priv_1, 163 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 164 PG_savepinned = PG_dirty, 165 /* Has a grant mapping of another (foreign) domain's page. */ 166 PG_foreign = PG_owner_priv_1, 167 /* Remapped by swiotlb-xen. */ 168 PG_xen_remapped = PG_owner_priv_1, 169 170 /* SLOB */ 171 PG_slob_free = PG_private, 172 173 /* Compound pages. Stored in first tail page's flags */ 174 PG_double_map = PG_workingset, 175 176#ifdef CONFIG_MEMORY_FAILURE 177 /* 178 * Compound pages. Stored in first tail page's flags. 179 * Indicates that at least one subpage is hwpoisoned in the 180 * THP. 181 */ 182 PG_has_hwpoisoned = PG_mappedtodisk, 183#endif 184 185 /* non-lru isolated movable page */ 186 PG_isolated = PG_reclaim, 187 188 /* Only valid for buddy pages. Used to track pages that are reported */ 189 PG_reported = PG_uptodate, 190}; 191 192#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 193 194#ifndef __GENERATING_BOUNDS_H 195 196static inline unsigned long _compound_head(const struct page *page) 197{ 198 unsigned long head = READ_ONCE(page->compound_head); 199 200 if (unlikely(head & 1)) 201 return head - 1; 202 return (unsigned long)page; 203} 204 205#define compound_head(page) ((typeof(page))_compound_head(page)) 206 207/** 208 * page_folio - Converts from page to folio. 209 * @p: The page. 210 * 211 * Every page is part of a folio. This function cannot be called on a 212 * NULL pointer. 213 * 214 * Context: No reference, nor lock is required on @page. If the caller 215 * does not hold a reference, this call may race with a folio split, so 216 * it should re-check the folio still contains this page after gaining 217 * a reference on the folio. 218 * Return: The folio which contains this page. 219 */ 220#define page_folio(p) (_Generic((p), \ 221 const struct page *: (const struct folio *)_compound_head(p), \ 222 struct page *: (struct folio *)_compound_head(p))) 223 224/** 225 * folio_page - Return a page from a folio. 226 * @folio: The folio. 227 * @n: The page number to return. 228 * 229 * @n is relative to the start of the folio. This function does not 230 * check that the page number lies within @folio; the caller is presumed 231 * to have a reference to the page. 232 */ 233#define folio_page(folio, n) nth_page(&(folio)->page, n) 234 235static __always_inline int PageTail(struct page *page) 236{ 237 return READ_ONCE(page->compound_head) & 1; 238} 239 240static __always_inline int PageCompound(struct page *page) 241{ 242 return test_bit(PG_head, &page->flags) || PageTail(page); 243} 244 245#define PAGE_POISON_PATTERN -1l 246static inline int PagePoisoned(const struct page *page) 247{ 248 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 249} 250 251#ifdef CONFIG_DEBUG_VM 252void page_init_poison(struct page *page, size_t size); 253#else 254static inline void page_init_poison(struct page *page, size_t size) 255{ 256} 257#endif 258 259static unsigned long *folio_flags(struct folio *folio, unsigned n) 260{ 261 struct page *page = &folio->page; 262 263 VM_BUG_ON_PGFLAGS(PageTail(page), page); 264 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 265 return &page[n].flags; 266} 267 268/* 269 * Page flags policies wrt compound pages 270 * 271 * PF_POISONED_CHECK 272 * check if this struct page poisoned/uninitialized 273 * 274 * PF_ANY: 275 * the page flag is relevant for small, head and tail pages. 276 * 277 * PF_HEAD: 278 * for compound page all operations related to the page flag applied to 279 * head page. 280 * 281 * PF_ONLY_HEAD: 282 * for compound page, callers only ever operate on the head page. 283 * 284 * PF_NO_TAIL: 285 * modifications of the page flag must be done on small or head pages, 286 * checks can be done on tail pages too. 287 * 288 * PF_NO_COMPOUND: 289 * the page flag is not relevant for compound pages. 290 * 291 * PF_SECOND: 292 * the page flag is stored in the first tail page. 293 */ 294#define PF_POISONED_CHECK(page) ({ \ 295 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 296 page; }) 297#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 298#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 299#define PF_ONLY_HEAD(page, enforce) ({ \ 300 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 301 PF_POISONED_CHECK(page); }) 302#define PF_NO_TAIL(page, enforce) ({ \ 303 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 304 PF_POISONED_CHECK(compound_head(page)); }) 305#define PF_NO_COMPOUND(page, enforce) ({ \ 306 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 307 PF_POISONED_CHECK(page); }) 308#define PF_SECOND(page, enforce) ({ \ 309 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 310 PF_POISONED_CHECK(&page[1]); }) 311 312/* Which page is the flag stored in */ 313#define FOLIO_PF_ANY 0 314#define FOLIO_PF_HEAD 0 315#define FOLIO_PF_ONLY_HEAD 0 316#define FOLIO_PF_NO_TAIL 0 317#define FOLIO_PF_NO_COMPOUND 0 318#define FOLIO_PF_SECOND 1 319 320/* 321 * Macros to create function definitions for page flags 322 */ 323#define TESTPAGEFLAG(uname, lname, policy) \ 324static __always_inline bool folio_test_##lname(struct folio *folio) \ 325{ return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 326static __always_inline int Page##uname(struct page *page) \ 327{ return test_bit(PG_##lname, &policy(page, 0)->flags); } 328 329#define SETPAGEFLAG(uname, lname, policy) \ 330static __always_inline \ 331void folio_set_##lname(struct folio *folio) \ 332{ set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 333static __always_inline void SetPage##uname(struct page *page) \ 334{ set_bit(PG_##lname, &policy(page, 1)->flags); } 335 336#define CLEARPAGEFLAG(uname, lname, policy) \ 337static __always_inline \ 338void folio_clear_##lname(struct folio *folio) \ 339{ clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 340static __always_inline void ClearPage##uname(struct page *page) \ 341{ clear_bit(PG_##lname, &policy(page, 1)->flags); } 342 343#define __SETPAGEFLAG(uname, lname, policy) \ 344static __always_inline \ 345void __folio_set_##lname(struct folio *folio) \ 346{ __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 347static __always_inline void __SetPage##uname(struct page *page) \ 348{ __set_bit(PG_##lname, &policy(page, 1)->flags); } 349 350#define __CLEARPAGEFLAG(uname, lname, policy) \ 351static __always_inline \ 352void __folio_clear_##lname(struct folio *folio) \ 353{ __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 354static __always_inline void __ClearPage##uname(struct page *page) \ 355{ __clear_bit(PG_##lname, &policy(page, 1)->flags); } 356 357#define TESTSETFLAG(uname, lname, policy) \ 358static __always_inline \ 359bool folio_test_set_##lname(struct folio *folio) \ 360{ return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 361static __always_inline int TestSetPage##uname(struct page *page) \ 362{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 363 364#define TESTCLEARFLAG(uname, lname, policy) \ 365static __always_inline \ 366bool folio_test_clear_##lname(struct folio *folio) \ 367{ return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 368static __always_inline int TestClearPage##uname(struct page *page) \ 369{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 370 371#define PAGEFLAG(uname, lname, policy) \ 372 TESTPAGEFLAG(uname, lname, policy) \ 373 SETPAGEFLAG(uname, lname, policy) \ 374 CLEARPAGEFLAG(uname, lname, policy) 375 376#define __PAGEFLAG(uname, lname, policy) \ 377 TESTPAGEFLAG(uname, lname, policy) \ 378 __SETPAGEFLAG(uname, lname, policy) \ 379 __CLEARPAGEFLAG(uname, lname, policy) 380 381#define TESTSCFLAG(uname, lname, policy) \ 382 TESTSETFLAG(uname, lname, policy) \ 383 TESTCLEARFLAG(uname, lname, policy) 384 385#define TESTPAGEFLAG_FALSE(uname, lname) \ 386static inline bool folio_test_##lname(const struct folio *folio) { return 0; } \ 387static inline int Page##uname(const struct page *page) { return 0; } 388 389#define SETPAGEFLAG_NOOP(uname, lname) \ 390static inline void folio_set_##lname(struct folio *folio) { } \ 391static inline void SetPage##uname(struct page *page) { } 392 393#define CLEARPAGEFLAG_NOOP(uname, lname) \ 394static inline void folio_clear_##lname(struct folio *folio) { } \ 395static inline void ClearPage##uname(struct page *page) { } 396 397#define __CLEARPAGEFLAG_NOOP(uname, lname) \ 398static inline void __folio_clear_##lname(struct folio *folio) { } \ 399static inline void __ClearPage##uname(struct page *page) { } 400 401#define TESTSETFLAG_FALSE(uname, lname) \ 402static inline bool folio_test_set_##lname(struct folio *folio) \ 403{ return 0; } \ 404static inline int TestSetPage##uname(struct page *page) { return 0; } 405 406#define TESTCLEARFLAG_FALSE(uname, lname) \ 407static inline bool folio_test_clear_##lname(struct folio *folio) \ 408{ return 0; } \ 409static inline int TestClearPage##uname(struct page *page) { return 0; } 410 411#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 412 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 413 414#define TESTSCFLAG_FALSE(uname, lname) \ 415 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 416 417__PAGEFLAG(Locked, locked, PF_NO_TAIL) 418PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 419PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 420PAGEFLAG(Referenced, referenced, PF_HEAD) 421 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 422 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 423PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 424 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 425PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 426 TESTCLEARFLAG(LRU, lru, PF_HEAD) 427PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 428 TESTCLEARFLAG(Active, active, PF_HEAD) 429PAGEFLAG(Workingset, workingset, PF_HEAD) 430 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 431__PAGEFLAG(Slab, slab, PF_NO_TAIL) 432__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 433PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 434 435/* Xen */ 436PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 437 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 438PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 439PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 440PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 441 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 442 443PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 444 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 445 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 446PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 447 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 448 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 449 450/* 451 * Private page markings that may be used by the filesystem that owns the page 452 * for its own purposes. 453 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 454 */ 455PAGEFLAG(Private, private, PF_ANY) 456PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 457PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 458 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 459 460/* 461 * Only test-and-set exist for PG_writeback. The unconditional operators are 462 * risky: they bypass page accounting. 463 */ 464TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 465 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 466PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 467 468/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 469PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 470 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 471PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND) 472 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND) 473 474#ifdef CONFIG_HIGHMEM 475/* 476 * Must use a macro here due to header dependency issues. page_zone() is not 477 * available at this point. 478 */ 479#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 480#else 481PAGEFLAG_FALSE(HighMem, highmem) 482#endif 483 484#ifdef CONFIG_SWAP 485static __always_inline bool folio_test_swapcache(struct folio *folio) 486{ 487 return folio_test_swapbacked(folio) && 488 test_bit(PG_swapcache, folio_flags(folio, 0)); 489} 490 491static __always_inline bool PageSwapCache(struct page *page) 492{ 493 return folio_test_swapcache(page_folio(page)); 494} 495 496SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 497CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 498#else 499PAGEFLAG_FALSE(SwapCache, swapcache) 500#endif 501 502PAGEFLAG(Unevictable, unevictable, PF_HEAD) 503 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 504 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 505 506#ifdef CONFIG_MMU 507PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 508 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 509 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 510#else 511PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked) 512 TESTSCFLAG_FALSE(Mlocked, mlocked) 513#endif 514 515#ifdef CONFIG_ARCH_USES_PG_UNCACHED 516PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 517#else 518PAGEFLAG_FALSE(Uncached, uncached) 519#endif 520 521#ifdef CONFIG_MEMORY_FAILURE 522PAGEFLAG(HWPoison, hwpoison, PF_ANY) 523TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 524#define __PG_HWPOISON (1UL << PG_hwpoison) 525extern bool take_page_off_buddy(struct page *page); 526#else 527PAGEFLAG_FALSE(HWPoison, hwpoison) 528#define __PG_HWPOISON 0 529#endif 530 531#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 532TESTPAGEFLAG(Young, young, PF_ANY) 533SETPAGEFLAG(Young, young, PF_ANY) 534TESTCLEARFLAG(Young, young, PF_ANY) 535PAGEFLAG(Idle, idle, PF_ANY) 536#endif 537 538#ifdef CONFIG_KASAN_HW_TAGS 539PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD) 540#else 541PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison) 542#endif 543 544/* 545 * PageReported() is used to track reported free pages within the Buddy 546 * allocator. We can use the non-atomic version of the test and set 547 * operations as both should be shielded with the zone lock to prevent 548 * any possible races on the setting or clearing of the bit. 549 */ 550__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 551 552/* 553 * On an anonymous page mapped into a user virtual memory area, 554 * page->mapping points to its anon_vma, not to a struct address_space; 555 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 556 * 557 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 558 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 559 * bit; and then page->mapping points, not to an anon_vma, but to a private 560 * structure which KSM associates with that merged page. See ksm.h. 561 * 562 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 563 * page and then page->mapping points a struct address_space. 564 * 565 * Please note that, confusingly, "page_mapping" refers to the inode 566 * address_space which maps the page from disk; whereas "page_mapped" 567 * refers to user virtual address space into which the page is mapped. 568 */ 569#define PAGE_MAPPING_ANON 0x1 570#define PAGE_MAPPING_MOVABLE 0x2 571#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 572#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 573 574static __always_inline int PageMappingFlags(struct page *page) 575{ 576 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 577} 578 579static __always_inline bool folio_test_anon(struct folio *folio) 580{ 581 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 582} 583 584static __always_inline bool PageAnon(struct page *page) 585{ 586 return folio_test_anon(page_folio(page)); 587} 588 589static __always_inline int __PageMovable(struct page *page) 590{ 591 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 592 PAGE_MAPPING_MOVABLE; 593} 594 595#ifdef CONFIG_KSM 596/* 597 * A KSM page is one of those write-protected "shared pages" or "merged pages" 598 * which KSM maps into multiple mms, wherever identical anonymous page content 599 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 600 * anon_vma, but to that page's node of the stable tree. 601 */ 602static __always_inline bool folio_test_ksm(struct folio *folio) 603{ 604 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 605 PAGE_MAPPING_KSM; 606} 607 608static __always_inline bool PageKsm(struct page *page) 609{ 610 return folio_test_ksm(page_folio(page)); 611} 612#else 613TESTPAGEFLAG_FALSE(Ksm, ksm) 614#endif 615 616u64 stable_page_flags(struct page *page); 617 618static inline bool folio_test_uptodate(struct folio *folio) 619{ 620 bool ret = test_bit(PG_uptodate, folio_flags(folio, 0)); 621 /* 622 * Must ensure that the data we read out of the folio is loaded 623 * _after_ we've loaded folio->flags to check the uptodate bit. 624 * We can skip the barrier if the folio is not uptodate, because 625 * we wouldn't be reading anything from it. 626 * 627 * See folio_mark_uptodate() for the other side of the story. 628 */ 629 if (ret) 630 smp_rmb(); 631 632 return ret; 633} 634 635static inline int PageUptodate(struct page *page) 636{ 637 return folio_test_uptodate(page_folio(page)); 638} 639 640static __always_inline void __folio_mark_uptodate(struct folio *folio) 641{ 642 smp_wmb(); 643 __set_bit(PG_uptodate, folio_flags(folio, 0)); 644} 645 646static __always_inline void folio_mark_uptodate(struct folio *folio) 647{ 648 /* 649 * Memory barrier must be issued before setting the PG_uptodate bit, 650 * so that all previous stores issued in order to bring the folio 651 * uptodate are actually visible before folio_test_uptodate becomes true. 652 */ 653 smp_wmb(); 654 set_bit(PG_uptodate, folio_flags(folio, 0)); 655} 656 657static __always_inline void __SetPageUptodate(struct page *page) 658{ 659 __folio_mark_uptodate((struct folio *)page); 660} 661 662static __always_inline void SetPageUptodate(struct page *page) 663{ 664 folio_mark_uptodate((struct folio *)page); 665} 666 667CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 668 669bool __folio_start_writeback(struct folio *folio, bool keep_write); 670bool set_page_writeback(struct page *page); 671 672#define folio_start_writeback(folio) \ 673 __folio_start_writeback(folio, false) 674#define folio_start_writeback_keepwrite(folio) \ 675 __folio_start_writeback(folio, true) 676 677static inline void set_page_writeback_keepwrite(struct page *page) 678{ 679 folio_start_writeback_keepwrite(page_folio(page)); 680} 681 682static inline bool test_set_page_writeback(struct page *page) 683{ 684 return set_page_writeback(page); 685} 686 687__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 688 689/** 690 * folio_test_large() - Does this folio contain more than one page? 691 * @folio: The folio to test. 692 * 693 * Return: True if the folio is larger than one page. 694 */ 695static inline bool folio_test_large(struct folio *folio) 696{ 697 return folio_test_head(folio); 698} 699 700static __always_inline void set_compound_head(struct page *page, struct page *head) 701{ 702 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 703} 704 705static __always_inline void clear_compound_head(struct page *page) 706{ 707 WRITE_ONCE(page->compound_head, 0); 708} 709 710#ifdef CONFIG_TRANSPARENT_HUGEPAGE 711static inline void ClearPageCompound(struct page *page) 712{ 713 BUG_ON(!PageHead(page)); 714 ClearPageHead(page); 715} 716#endif 717 718#define PG_head_mask ((1UL << PG_head)) 719 720#ifdef CONFIG_HUGETLB_PAGE 721int PageHuge(struct page *page); 722int PageHeadHuge(struct page *page); 723static inline bool folio_test_hugetlb(struct folio *folio) 724{ 725 return PageHeadHuge(&folio->page); 726} 727#else 728TESTPAGEFLAG_FALSE(Huge, hugetlb) 729TESTPAGEFLAG_FALSE(HeadHuge, headhuge) 730#endif 731 732#ifdef CONFIG_TRANSPARENT_HUGEPAGE 733/* 734 * PageHuge() only returns true for hugetlbfs pages, but not for 735 * normal or transparent huge pages. 736 * 737 * PageTransHuge() returns true for both transparent huge and 738 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 739 * called only in the core VM paths where hugetlbfs pages can't exist. 740 */ 741static inline int PageTransHuge(struct page *page) 742{ 743 VM_BUG_ON_PAGE(PageTail(page), page); 744 return PageHead(page); 745} 746 747static inline bool folio_test_transhuge(struct folio *folio) 748{ 749 return folio_test_head(folio); 750} 751 752/* 753 * PageTransCompound returns true for both transparent huge pages 754 * and hugetlbfs pages, so it should only be called when it's known 755 * that hugetlbfs pages aren't involved. 756 */ 757static inline int PageTransCompound(struct page *page) 758{ 759 return PageCompound(page); 760} 761 762/* 763 * PageTransTail returns true for both transparent huge pages 764 * and hugetlbfs pages, so it should only be called when it's known 765 * that hugetlbfs pages aren't involved. 766 */ 767static inline int PageTransTail(struct page *page) 768{ 769 return PageTail(page); 770} 771 772/* 773 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 774 * as PMDs. 775 * 776 * This is required for optimization of rmap operations for THP: we can postpone 777 * per small page mapcount accounting (and its overhead from atomic operations) 778 * until the first PMD split. 779 * 780 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 781 * by one. This reference will go away with last compound_mapcount. 782 * 783 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 784 */ 785PAGEFLAG(DoubleMap, double_map, PF_SECOND) 786 TESTSCFLAG(DoubleMap, double_map, PF_SECOND) 787#else 788TESTPAGEFLAG_FALSE(TransHuge, transhuge) 789TESTPAGEFLAG_FALSE(TransCompound, transcompound) 790TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 791TESTPAGEFLAG_FALSE(TransTail, transtail) 792PAGEFLAG_FALSE(DoubleMap, double_map) 793 TESTSCFLAG_FALSE(DoubleMap, double_map) 794#endif 795 796#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 797/* 798 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 799 * compound page. 800 * 801 * This flag is set by hwpoison handler. Cleared by THP split or free page. 802 */ 803PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 804 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 805#else 806PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 807 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 808#endif 809 810/* 811 * Check if a page is currently marked HWPoisoned. Note that this check is 812 * best effort only and inherently racy: there is no way to synchronize with 813 * failing hardware. 814 */ 815static inline bool is_page_hwpoison(struct page *page) 816{ 817 if (PageHWPoison(page)) 818 return true; 819 return PageHuge(page) && PageHWPoison(compound_head(page)); 820} 821 822/* 823 * For pages that are never mapped to userspace (and aren't PageSlab), 824 * page_type may be used. Because it is initialised to -1, we invert the 825 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 826 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 827 * low bits so that an underflow or overflow of page_mapcount() won't be 828 * mistaken for a page type value. 829 */ 830 831#define PAGE_TYPE_BASE 0xf0000000 832/* Reserve 0x0000007f to catch underflows of page_mapcount */ 833#define PAGE_MAPCOUNT_RESERVE -128 834#define PG_buddy 0x00000080 835#define PG_offline 0x00000100 836#define PG_table 0x00000200 837#define PG_guard 0x00000400 838 839#define PageType(page, flag) \ 840 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 841 842static inline int page_has_type(struct page *page) 843{ 844 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 845} 846 847#define PAGE_TYPE_OPS(uname, lname) \ 848static __always_inline int Page##uname(struct page *page) \ 849{ \ 850 return PageType(page, PG_##lname); \ 851} \ 852static __always_inline void __SetPage##uname(struct page *page) \ 853{ \ 854 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 855 page->page_type &= ~PG_##lname; \ 856} \ 857static __always_inline void __ClearPage##uname(struct page *page) \ 858{ \ 859 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 860 page->page_type |= PG_##lname; \ 861} 862 863/* 864 * PageBuddy() indicates that the page is free and in the buddy system 865 * (see mm/page_alloc.c). 866 */ 867PAGE_TYPE_OPS(Buddy, buddy) 868 869/* 870 * PageOffline() indicates that the page is logically offline although the 871 * containing section is online. (e.g. inflated in a balloon driver or 872 * not onlined when onlining the section). 873 * The content of these pages is effectively stale. Such pages should not 874 * be touched (read/write/dump/save) except by their owner. 875 * 876 * If a driver wants to allow to offline unmovable PageOffline() pages without 877 * putting them back to the buddy, it can do so via the memory notifier by 878 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 879 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 880 * pages (now with a reference count of zero) are treated like free pages, 881 * allowing the containing memory block to get offlined. A driver that 882 * relies on this feature is aware that re-onlining the memory block will 883 * require to re-set the pages PageOffline() and not giving them to the 884 * buddy via online_page_callback_t. 885 * 886 * There are drivers that mark a page PageOffline() and expect there won't be 887 * any further access to page content. PFN walkers that read content of random 888 * pages should check PageOffline() and synchronize with such drivers using 889 * page_offline_freeze()/page_offline_thaw(). 890 */ 891PAGE_TYPE_OPS(Offline, offline) 892 893extern void page_offline_freeze(void); 894extern void page_offline_thaw(void); 895extern void page_offline_begin(void); 896extern void page_offline_end(void); 897 898/* 899 * Marks pages in use as page tables. 900 */ 901PAGE_TYPE_OPS(Table, table) 902 903/* 904 * Marks guardpages used with debug_pagealloc. 905 */ 906PAGE_TYPE_OPS(Guard, guard) 907 908extern bool is_free_buddy_page(struct page *page); 909 910__PAGEFLAG(Isolated, isolated, PF_ANY); 911 912/* 913 * If network-based swap is enabled, sl*b must keep track of whether pages 914 * were allocated from pfmemalloc reserves. 915 */ 916static inline int PageSlabPfmemalloc(struct page *page) 917{ 918 VM_BUG_ON_PAGE(!PageSlab(page), page); 919 return PageActive(page); 920} 921 922/* 923 * A version of PageSlabPfmemalloc() for opportunistic checks where the page 924 * might have been freed under us and not be a PageSlab anymore. 925 */ 926static inline int __PageSlabPfmemalloc(struct page *page) 927{ 928 return PageActive(page); 929} 930 931static inline void SetPageSlabPfmemalloc(struct page *page) 932{ 933 VM_BUG_ON_PAGE(!PageSlab(page), page); 934 SetPageActive(page); 935} 936 937static inline void __ClearPageSlabPfmemalloc(struct page *page) 938{ 939 VM_BUG_ON_PAGE(!PageSlab(page), page); 940 __ClearPageActive(page); 941} 942 943static inline void ClearPageSlabPfmemalloc(struct page *page) 944{ 945 VM_BUG_ON_PAGE(!PageSlab(page), page); 946 ClearPageActive(page); 947} 948 949#ifdef CONFIG_MMU 950#define __PG_MLOCKED (1UL << PG_mlocked) 951#else 952#define __PG_MLOCKED 0 953#endif 954 955/* 956 * Flags checked when a page is freed. Pages being freed should not have 957 * these flags set. If they are, there is a problem. 958 */ 959#define PAGE_FLAGS_CHECK_AT_FREE \ 960 (1UL << PG_lru | 1UL << PG_locked | \ 961 1UL << PG_private | 1UL << PG_private_2 | \ 962 1UL << PG_writeback | 1UL << PG_reserved | \ 963 1UL << PG_slab | 1UL << PG_active | \ 964 1UL << PG_unevictable | __PG_MLOCKED) 965 966/* 967 * Flags checked when a page is prepped for return by the page allocator. 968 * Pages being prepped should not have these flags set. If they are set, 969 * there has been a kernel bug or struct page corruption. 970 * 971 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 972 * alloc-free cycle to prevent from reusing the page. 973 */ 974#define PAGE_FLAGS_CHECK_AT_PREP \ 975 (PAGEFLAGS_MASK & ~__PG_HWPOISON) 976 977#define PAGE_FLAGS_PRIVATE \ 978 (1UL << PG_private | 1UL << PG_private_2) 979/** 980 * page_has_private - Determine if page has private stuff 981 * @page: The page to be checked 982 * 983 * Determine if a page has private stuff, indicating that release routines 984 * should be invoked upon it. 985 */ 986static inline int page_has_private(struct page *page) 987{ 988 return !!(page->flags & PAGE_FLAGS_PRIVATE); 989} 990 991static inline bool folio_has_private(struct folio *folio) 992{ 993 return page_has_private(&folio->page); 994} 995 996#undef PF_ANY 997#undef PF_HEAD 998#undef PF_ONLY_HEAD 999#undef PF_NO_TAIL 1000#undef PF_NO_COMPOUND 1001#undef PF_SECOND 1002#endif /* !__GENERATING_BOUNDS_H */ 1003 1004#endif /* PAGE_FLAGS_H */