Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <net/net_namespace.h>
38#ifdef CONFIG_DCB
39#include <net/dcbnl.h>
40#endif
41#include <net/netprio_cgroup.h>
42#include <net/xdp.h>
43
44#include <linux/netdev_features.h>
45#include <linux/neighbour.h>
46#include <uapi/linux/netdevice.h>
47#include <uapi/linux/if_bonding.h>
48#include <uapi/linux/pkt_cls.h>
49#include <linux/hashtable.h>
50#include <linux/rbtree.h>
51
52struct netpoll_info;
53struct device;
54struct ethtool_ops;
55struct phy_device;
56struct dsa_port;
57struct ip_tunnel_parm;
58struct macsec_context;
59struct macsec_ops;
60
61struct sfp_bus;
62/* 802.11 specific */
63struct wireless_dev;
64/* 802.15.4 specific */
65struct wpan_dev;
66struct mpls_dev;
67/* UDP Tunnel offloads */
68struct udp_tunnel_info;
69struct udp_tunnel_nic_info;
70struct udp_tunnel_nic;
71struct bpf_prog;
72struct xdp_buff;
73
74void synchronize_net(void);
75void netdev_set_default_ethtool_ops(struct net_device *dev,
76 const struct ethtool_ops *ops);
77
78/* Backlog congestion levels */
79#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
80#define NET_RX_DROP 1 /* packet dropped */
81
82#define MAX_NEST_DEV 8
83
84/*
85 * Transmit return codes: transmit return codes originate from three different
86 * namespaces:
87 *
88 * - qdisc return codes
89 * - driver transmit return codes
90 * - errno values
91 *
92 * Drivers are allowed to return any one of those in their hard_start_xmit()
93 * function. Real network devices commonly used with qdiscs should only return
94 * the driver transmit return codes though - when qdiscs are used, the actual
95 * transmission happens asynchronously, so the value is not propagated to
96 * higher layers. Virtual network devices transmit synchronously; in this case
97 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
98 * others are propagated to higher layers.
99 */
100
101/* qdisc ->enqueue() return codes. */
102#define NET_XMIT_SUCCESS 0x00
103#define NET_XMIT_DROP 0x01 /* skb dropped */
104#define NET_XMIT_CN 0x02 /* congestion notification */
105#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
106
107/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
108 * indicates that the device will soon be dropping packets, or already drops
109 * some packets of the same priority; prompting us to send less aggressively. */
110#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
111#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
112
113/* Driver transmit return codes */
114#define NETDEV_TX_MASK 0xf0
115
116enum netdev_tx {
117 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
118 NETDEV_TX_OK = 0x00, /* driver took care of packet */
119 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
120};
121typedef enum netdev_tx netdev_tx_t;
122
123/*
124 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
125 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
126 */
127static inline bool dev_xmit_complete(int rc)
128{
129 /*
130 * Positive cases with an skb consumed by a driver:
131 * - successful transmission (rc == NETDEV_TX_OK)
132 * - error while transmitting (rc < 0)
133 * - error while queueing to a different device (rc & NET_XMIT_MASK)
134 */
135 if (likely(rc < NET_XMIT_MASK))
136 return true;
137
138 return false;
139}
140
141/*
142 * Compute the worst-case header length according to the protocols
143 * used.
144 */
145
146#if defined(CONFIG_HYPERV_NET)
147# define LL_MAX_HEADER 128
148#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149# if defined(CONFIG_MAC80211_MESH)
150# define LL_MAX_HEADER 128
151# else
152# define LL_MAX_HEADER 96
153# endif
154#else
155# define LL_MAX_HEADER 32
156#endif
157
158#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
159 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
160#define MAX_HEADER LL_MAX_HEADER
161#else
162#define MAX_HEADER (LL_MAX_HEADER + 48)
163#endif
164
165/*
166 * Old network device statistics. Fields are native words
167 * (unsigned long) so they can be read and written atomically.
168 */
169
170struct net_device_stats {
171 unsigned long rx_packets;
172 unsigned long tx_packets;
173 unsigned long rx_bytes;
174 unsigned long tx_bytes;
175 unsigned long rx_errors;
176 unsigned long tx_errors;
177 unsigned long rx_dropped;
178 unsigned long tx_dropped;
179 unsigned long multicast;
180 unsigned long collisions;
181 unsigned long rx_length_errors;
182 unsigned long rx_over_errors;
183 unsigned long rx_crc_errors;
184 unsigned long rx_frame_errors;
185 unsigned long rx_fifo_errors;
186 unsigned long rx_missed_errors;
187 unsigned long tx_aborted_errors;
188 unsigned long tx_carrier_errors;
189 unsigned long tx_fifo_errors;
190 unsigned long tx_heartbeat_errors;
191 unsigned long tx_window_errors;
192 unsigned long rx_compressed;
193 unsigned long tx_compressed;
194};
195
196
197#include <linux/cache.h>
198#include <linux/skbuff.h>
199
200#ifdef CONFIG_RPS
201#include <linux/static_key.h>
202extern struct static_key_false rps_needed;
203extern struct static_key_false rfs_needed;
204#endif
205
206struct neighbour;
207struct neigh_parms;
208struct sk_buff;
209
210struct netdev_hw_addr {
211 struct list_head list;
212 struct rb_node node;
213 unsigned char addr[MAX_ADDR_LEN];
214 unsigned char type;
215#define NETDEV_HW_ADDR_T_LAN 1
216#define NETDEV_HW_ADDR_T_SAN 2
217#define NETDEV_HW_ADDR_T_UNICAST 3
218#define NETDEV_HW_ADDR_T_MULTICAST 4
219 bool global_use;
220 int sync_cnt;
221 int refcount;
222 int synced;
223 struct rcu_head rcu_head;
224};
225
226struct netdev_hw_addr_list {
227 struct list_head list;
228 int count;
229
230 /* Auxiliary tree for faster lookup on addition and deletion */
231 struct rb_root tree;
232};
233
234#define netdev_hw_addr_list_count(l) ((l)->count)
235#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
236#define netdev_hw_addr_list_for_each(ha, l) \
237 list_for_each_entry(ha, &(l)->list, list)
238
239#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
240#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
241#define netdev_for_each_uc_addr(ha, dev) \
242 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
243
244#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
245#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
246#define netdev_for_each_mc_addr(ha, dev) \
247 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
248
249struct hh_cache {
250 unsigned int hh_len;
251 seqlock_t hh_lock;
252
253 /* cached hardware header; allow for machine alignment needs. */
254#define HH_DATA_MOD 16
255#define HH_DATA_OFF(__len) \
256 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
257#define HH_DATA_ALIGN(__len) \
258 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
259 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
260};
261
262/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
263 * Alternative is:
264 * dev->hard_header_len ? (dev->hard_header_len +
265 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
266 *
267 * We could use other alignment values, but we must maintain the
268 * relationship HH alignment <= LL alignment.
269 */
270#define LL_RESERVED_SPACE(dev) \
271 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
272#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
273 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
274
275struct header_ops {
276 int (*create) (struct sk_buff *skb, struct net_device *dev,
277 unsigned short type, const void *daddr,
278 const void *saddr, unsigned int len);
279 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
280 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
281 void (*cache_update)(struct hh_cache *hh,
282 const struct net_device *dev,
283 const unsigned char *haddr);
284 bool (*validate)(const char *ll_header, unsigned int len);
285 __be16 (*parse_protocol)(const struct sk_buff *skb);
286};
287
288/* These flag bits are private to the generic network queueing
289 * layer; they may not be explicitly referenced by any other
290 * code.
291 */
292
293enum netdev_state_t {
294 __LINK_STATE_START,
295 __LINK_STATE_PRESENT,
296 __LINK_STATE_NOCARRIER,
297 __LINK_STATE_LINKWATCH_PENDING,
298 __LINK_STATE_DORMANT,
299 __LINK_STATE_TESTING,
300};
301
302
303struct gro_list {
304 struct list_head list;
305 int count;
306};
307
308/*
309 * size of gro hash buckets, must less than bit number of
310 * napi_struct::gro_bitmask
311 */
312#define GRO_HASH_BUCKETS 8
313
314/*
315 * Structure for NAPI scheduling similar to tasklet but with weighting
316 */
317struct napi_struct {
318 /* The poll_list must only be managed by the entity which
319 * changes the state of the NAPI_STATE_SCHED bit. This means
320 * whoever atomically sets that bit can add this napi_struct
321 * to the per-CPU poll_list, and whoever clears that bit
322 * can remove from the list right before clearing the bit.
323 */
324 struct list_head poll_list;
325
326 unsigned long state;
327 int weight;
328 int defer_hard_irqs_count;
329 unsigned long gro_bitmask;
330 int (*poll)(struct napi_struct *, int);
331#ifdef CONFIG_NETPOLL
332 int poll_owner;
333#endif
334 struct net_device *dev;
335 struct gro_list gro_hash[GRO_HASH_BUCKETS];
336 struct sk_buff *skb;
337 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
338 int rx_count; /* length of rx_list */
339 struct hrtimer timer;
340 struct list_head dev_list;
341 struct hlist_node napi_hash_node;
342 unsigned int napi_id;
343 struct task_struct *thread;
344};
345
346enum {
347 NAPI_STATE_SCHED, /* Poll is scheduled */
348 NAPI_STATE_MISSED, /* reschedule a napi */
349 NAPI_STATE_DISABLE, /* Disable pending */
350 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
351 NAPI_STATE_LISTED, /* NAPI added to system lists */
352 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
353 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
354 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
355 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
356 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
357};
358
359enum {
360 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
361 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
362 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
363 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
364 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
365 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
366 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
367 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
369 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
370};
371
372enum gro_result {
373 GRO_MERGED,
374 GRO_MERGED_FREE,
375 GRO_HELD,
376 GRO_NORMAL,
377 GRO_CONSUMED,
378};
379typedef enum gro_result gro_result_t;
380
381/*
382 * enum rx_handler_result - Possible return values for rx_handlers.
383 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384 * further.
385 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386 * case skb->dev was changed by rx_handler.
387 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389 *
390 * rx_handlers are functions called from inside __netif_receive_skb(), to do
391 * special processing of the skb, prior to delivery to protocol handlers.
392 *
393 * Currently, a net_device can only have a single rx_handler registered. Trying
394 * to register a second rx_handler will return -EBUSY.
395 *
396 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397 * To unregister a rx_handler on a net_device, use
398 * netdev_rx_handler_unregister().
399 *
400 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401 * do with the skb.
402 *
403 * If the rx_handler consumed the skb in some way, it should return
404 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405 * the skb to be delivered in some other way.
406 *
407 * If the rx_handler changed skb->dev, to divert the skb to another
408 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409 * new device will be called if it exists.
410 *
411 * If the rx_handler decides the skb should be ignored, it should return
412 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413 * are registered on exact device (ptype->dev == skb->dev).
414 *
415 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416 * delivered, it should return RX_HANDLER_PASS.
417 *
418 * A device without a registered rx_handler will behave as if rx_handler
419 * returned RX_HANDLER_PASS.
420 */
421
422enum rx_handler_result {
423 RX_HANDLER_CONSUMED,
424 RX_HANDLER_ANOTHER,
425 RX_HANDLER_EXACT,
426 RX_HANDLER_PASS,
427};
428typedef enum rx_handler_result rx_handler_result_t;
429typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430
431void __napi_schedule(struct napi_struct *n);
432void __napi_schedule_irqoff(struct napi_struct *n);
433
434static inline bool napi_disable_pending(struct napi_struct *n)
435{
436 return test_bit(NAPI_STATE_DISABLE, &n->state);
437}
438
439static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440{
441 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442}
443
444bool napi_schedule_prep(struct napi_struct *n);
445
446/**
447 * napi_schedule - schedule NAPI poll
448 * @n: NAPI context
449 *
450 * Schedule NAPI poll routine to be called if it is not already
451 * running.
452 */
453static inline void napi_schedule(struct napi_struct *n)
454{
455 if (napi_schedule_prep(n))
456 __napi_schedule(n);
457}
458
459/**
460 * napi_schedule_irqoff - schedule NAPI poll
461 * @n: NAPI context
462 *
463 * Variant of napi_schedule(), assuming hard irqs are masked.
464 */
465static inline void napi_schedule_irqoff(struct napi_struct *n)
466{
467 if (napi_schedule_prep(n))
468 __napi_schedule_irqoff(n);
469}
470
471/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
472static inline bool napi_reschedule(struct napi_struct *napi)
473{
474 if (napi_schedule_prep(napi)) {
475 __napi_schedule(napi);
476 return true;
477 }
478 return false;
479}
480
481bool napi_complete_done(struct napi_struct *n, int work_done);
482/**
483 * napi_complete - NAPI processing complete
484 * @n: NAPI context
485 *
486 * Mark NAPI processing as complete.
487 * Consider using napi_complete_done() instead.
488 * Return false if device should avoid rearming interrupts.
489 */
490static inline bool napi_complete(struct napi_struct *n)
491{
492 return napi_complete_done(n, 0);
493}
494
495int dev_set_threaded(struct net_device *dev, bool threaded);
496
497/**
498 * napi_disable - prevent NAPI from scheduling
499 * @n: NAPI context
500 *
501 * Stop NAPI from being scheduled on this context.
502 * Waits till any outstanding processing completes.
503 */
504void napi_disable(struct napi_struct *n);
505
506void napi_enable(struct napi_struct *n);
507
508/**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: NAPI context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516static inline void napi_synchronize(const struct napi_struct *n)
517{
518 if (IS_ENABLED(CONFIG_SMP))
519 while (test_bit(NAPI_STATE_SCHED, &n->state))
520 msleep(1);
521 else
522 barrier();
523}
524
525/**
526 * napi_if_scheduled_mark_missed - if napi is running, set the
527 * NAPIF_STATE_MISSED
528 * @n: NAPI context
529 *
530 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531 * NAPI is scheduled.
532 **/
533static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534{
535 unsigned long val, new;
536
537 do {
538 val = READ_ONCE(n->state);
539 if (val & NAPIF_STATE_DISABLE)
540 return true;
541
542 if (!(val & NAPIF_STATE_SCHED))
543 return false;
544
545 new = val | NAPIF_STATE_MISSED;
546 } while (cmpxchg(&n->state, val, new) != val);
547
548 return true;
549}
550
551enum netdev_queue_state_t {
552 __QUEUE_STATE_DRV_XOFF,
553 __QUEUE_STATE_STACK_XOFF,
554 __QUEUE_STATE_FROZEN,
555};
556
557#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
558#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
559#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
560
561#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 QUEUE_STATE_FROZEN)
564#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 QUEUE_STATE_FROZEN)
566
567/*
568 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
569 * netif_tx_* functions below are used to manipulate this flag. The
570 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571 * queue independently. The netif_xmit_*stopped functions below are called
572 * to check if the queue has been stopped by the driver or stack (either
573 * of the XOFF bits are set in the state). Drivers should not need to call
574 * netif_xmit*stopped functions, they should only be using netif_tx_*.
575 */
576
577struct netdev_queue {
578/*
579 * read-mostly part
580 */
581 struct net_device *dev;
582 struct Qdisc __rcu *qdisc;
583 struct Qdisc *qdisc_sleeping;
584#ifdef CONFIG_SYSFS
585 struct kobject kobj;
586#endif
587#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 int numa_node;
589#endif
590 unsigned long tx_maxrate;
591 /*
592 * Number of TX timeouts for this queue
593 * (/sys/class/net/DEV/Q/trans_timeout)
594 */
595 unsigned long trans_timeout;
596
597 /* Subordinate device that the queue has been assigned to */
598 struct net_device *sb_dev;
599#ifdef CONFIG_XDP_SOCKETS
600 struct xsk_buff_pool *pool;
601#endif
602/*
603 * write-mostly part
604 */
605 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
606 int xmit_lock_owner;
607 /*
608 * Time (in jiffies) of last Tx
609 */
610 unsigned long trans_start;
611
612 unsigned long state;
613
614#ifdef CONFIG_BQL
615 struct dql dql;
616#endif
617} ____cacheline_aligned_in_smp;
618
619extern int sysctl_fb_tunnels_only_for_init_net;
620extern int sysctl_devconf_inherit_init_net;
621
622/*
623 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
624 * == 1 : For initns only
625 * == 2 : For none.
626 */
627static inline bool net_has_fallback_tunnels(const struct net *net)
628{
629 return !IS_ENABLED(CONFIG_SYSCTL) ||
630 !sysctl_fb_tunnels_only_for_init_net ||
631 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
632}
633
634static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
635{
636#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
637 return q->numa_node;
638#else
639 return NUMA_NO_NODE;
640#endif
641}
642
643static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
644{
645#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 q->numa_node = node;
647#endif
648}
649
650#ifdef CONFIG_RPS
651/*
652 * This structure holds an RPS map which can be of variable length. The
653 * map is an array of CPUs.
654 */
655struct rps_map {
656 unsigned int len;
657 struct rcu_head rcu;
658 u16 cpus[];
659};
660#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
661
662/*
663 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
664 * tail pointer for that CPU's input queue at the time of last enqueue, and
665 * a hardware filter index.
666 */
667struct rps_dev_flow {
668 u16 cpu;
669 u16 filter;
670 unsigned int last_qtail;
671};
672#define RPS_NO_FILTER 0xffff
673
674/*
675 * The rps_dev_flow_table structure contains a table of flow mappings.
676 */
677struct rps_dev_flow_table {
678 unsigned int mask;
679 struct rcu_head rcu;
680 struct rps_dev_flow flows[];
681};
682#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
683 ((_num) * sizeof(struct rps_dev_flow)))
684
685/*
686 * The rps_sock_flow_table contains mappings of flows to the last CPU
687 * on which they were processed by the application (set in recvmsg).
688 * Each entry is a 32bit value. Upper part is the high-order bits
689 * of flow hash, lower part is CPU number.
690 * rps_cpu_mask is used to partition the space, depending on number of
691 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
692 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
693 * meaning we use 32-6=26 bits for the hash.
694 */
695struct rps_sock_flow_table {
696 u32 mask;
697
698 u32 ents[] ____cacheline_aligned_in_smp;
699};
700#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
701
702#define RPS_NO_CPU 0xffff
703
704extern u32 rps_cpu_mask;
705extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
706
707static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
708 u32 hash)
709{
710 if (table && hash) {
711 unsigned int index = hash & table->mask;
712 u32 val = hash & ~rps_cpu_mask;
713
714 /* We only give a hint, preemption can change CPU under us */
715 val |= raw_smp_processor_id();
716
717 if (table->ents[index] != val)
718 table->ents[index] = val;
719 }
720}
721
722#ifdef CONFIG_RFS_ACCEL
723bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
724 u16 filter_id);
725#endif
726#endif /* CONFIG_RPS */
727
728/* This structure contains an instance of an RX queue. */
729struct netdev_rx_queue {
730 struct xdp_rxq_info xdp_rxq;
731#ifdef CONFIG_RPS
732 struct rps_map __rcu *rps_map;
733 struct rps_dev_flow_table __rcu *rps_flow_table;
734#endif
735 struct kobject kobj;
736 struct net_device *dev;
737#ifdef CONFIG_XDP_SOCKETS
738 struct xsk_buff_pool *pool;
739#endif
740} ____cacheline_aligned_in_smp;
741
742/*
743 * RX queue sysfs structures and functions.
744 */
745struct rx_queue_attribute {
746 struct attribute attr;
747 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
748 ssize_t (*store)(struct netdev_rx_queue *queue,
749 const char *buf, size_t len);
750};
751
752/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
753enum xps_map_type {
754 XPS_CPUS = 0,
755 XPS_RXQS,
756 XPS_MAPS_MAX,
757};
758
759#ifdef CONFIG_XPS
760/*
761 * This structure holds an XPS map which can be of variable length. The
762 * map is an array of queues.
763 */
764struct xps_map {
765 unsigned int len;
766 unsigned int alloc_len;
767 struct rcu_head rcu;
768 u16 queues[];
769};
770#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772 - sizeof(struct xps_map)) / sizeof(u16))
773
774/*
775 * This structure holds all XPS maps for device. Maps are indexed by CPU.
776 *
777 * We keep track of the number of cpus/rxqs used when the struct is allocated,
778 * in nr_ids. This will help not accessing out-of-bound memory.
779 *
780 * We keep track of the number of traffic classes used when the struct is
781 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
782 * not crossing its upper bound, as the original dev->num_tc can be updated in
783 * the meantime.
784 */
785struct xps_dev_maps {
786 struct rcu_head rcu;
787 unsigned int nr_ids;
788 s16 num_tc;
789 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
790};
791
792#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
793 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
794
795#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
796 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
797
798#endif /* CONFIG_XPS */
799
800#define TC_MAX_QUEUE 16
801#define TC_BITMASK 15
802/* HW offloaded queuing disciplines txq count and offset maps */
803struct netdev_tc_txq {
804 u16 count;
805 u16 offset;
806};
807
808#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
809/*
810 * This structure is to hold information about the device
811 * configured to run FCoE protocol stack.
812 */
813struct netdev_fcoe_hbainfo {
814 char manufacturer[64];
815 char serial_number[64];
816 char hardware_version[64];
817 char driver_version[64];
818 char optionrom_version[64];
819 char firmware_version[64];
820 char model[256];
821 char model_description[256];
822};
823#endif
824
825#define MAX_PHYS_ITEM_ID_LEN 32
826
827/* This structure holds a unique identifier to identify some
828 * physical item (port for example) used by a netdevice.
829 */
830struct netdev_phys_item_id {
831 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
832 unsigned char id_len;
833};
834
835static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
836 struct netdev_phys_item_id *b)
837{
838 return a->id_len == b->id_len &&
839 memcmp(a->id, b->id, a->id_len) == 0;
840}
841
842typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
843 struct sk_buff *skb,
844 struct net_device *sb_dev);
845
846enum net_device_path_type {
847 DEV_PATH_ETHERNET = 0,
848 DEV_PATH_VLAN,
849 DEV_PATH_BRIDGE,
850 DEV_PATH_PPPOE,
851 DEV_PATH_DSA,
852};
853
854struct net_device_path {
855 enum net_device_path_type type;
856 const struct net_device *dev;
857 union {
858 struct {
859 u16 id;
860 __be16 proto;
861 u8 h_dest[ETH_ALEN];
862 } encap;
863 struct {
864 enum {
865 DEV_PATH_BR_VLAN_KEEP,
866 DEV_PATH_BR_VLAN_TAG,
867 DEV_PATH_BR_VLAN_UNTAG,
868 DEV_PATH_BR_VLAN_UNTAG_HW,
869 } vlan_mode;
870 u16 vlan_id;
871 __be16 vlan_proto;
872 } bridge;
873 struct {
874 int port;
875 u16 proto;
876 } dsa;
877 };
878};
879
880#define NET_DEVICE_PATH_STACK_MAX 5
881#define NET_DEVICE_PATH_VLAN_MAX 2
882
883struct net_device_path_stack {
884 int num_paths;
885 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
886};
887
888struct net_device_path_ctx {
889 const struct net_device *dev;
890 const u8 *daddr;
891
892 int num_vlans;
893 struct {
894 u16 id;
895 __be16 proto;
896 } vlan[NET_DEVICE_PATH_VLAN_MAX];
897};
898
899enum tc_setup_type {
900 TC_SETUP_QDISC_MQPRIO,
901 TC_SETUP_CLSU32,
902 TC_SETUP_CLSFLOWER,
903 TC_SETUP_CLSMATCHALL,
904 TC_SETUP_CLSBPF,
905 TC_SETUP_BLOCK,
906 TC_SETUP_QDISC_CBS,
907 TC_SETUP_QDISC_RED,
908 TC_SETUP_QDISC_PRIO,
909 TC_SETUP_QDISC_MQ,
910 TC_SETUP_QDISC_ETF,
911 TC_SETUP_ROOT_QDISC,
912 TC_SETUP_QDISC_GRED,
913 TC_SETUP_QDISC_TAPRIO,
914 TC_SETUP_FT,
915 TC_SETUP_QDISC_ETS,
916 TC_SETUP_QDISC_TBF,
917 TC_SETUP_QDISC_FIFO,
918 TC_SETUP_QDISC_HTB,
919};
920
921/* These structures hold the attributes of bpf state that are being passed
922 * to the netdevice through the bpf op.
923 */
924enum bpf_netdev_command {
925 /* Set or clear a bpf program used in the earliest stages of packet
926 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
927 * is responsible for calling bpf_prog_put on any old progs that are
928 * stored. In case of error, the callee need not release the new prog
929 * reference, but on success it takes ownership and must bpf_prog_put
930 * when it is no longer used.
931 */
932 XDP_SETUP_PROG,
933 XDP_SETUP_PROG_HW,
934 /* BPF program for offload callbacks, invoked at program load time. */
935 BPF_OFFLOAD_MAP_ALLOC,
936 BPF_OFFLOAD_MAP_FREE,
937 XDP_SETUP_XSK_POOL,
938};
939
940struct bpf_prog_offload_ops;
941struct netlink_ext_ack;
942struct xdp_umem;
943struct xdp_dev_bulk_queue;
944struct bpf_xdp_link;
945
946enum bpf_xdp_mode {
947 XDP_MODE_SKB = 0,
948 XDP_MODE_DRV = 1,
949 XDP_MODE_HW = 2,
950 __MAX_XDP_MODE
951};
952
953struct bpf_xdp_entity {
954 struct bpf_prog *prog;
955 struct bpf_xdp_link *link;
956};
957
958struct netdev_bpf {
959 enum bpf_netdev_command command;
960 union {
961 /* XDP_SETUP_PROG */
962 struct {
963 u32 flags;
964 struct bpf_prog *prog;
965 struct netlink_ext_ack *extack;
966 };
967 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
968 struct {
969 struct bpf_offloaded_map *offmap;
970 };
971 /* XDP_SETUP_XSK_POOL */
972 struct {
973 struct xsk_buff_pool *pool;
974 u16 queue_id;
975 } xsk;
976 };
977};
978
979/* Flags for ndo_xsk_wakeup. */
980#define XDP_WAKEUP_RX (1 << 0)
981#define XDP_WAKEUP_TX (1 << 1)
982
983#ifdef CONFIG_XFRM_OFFLOAD
984struct xfrmdev_ops {
985 int (*xdo_dev_state_add) (struct xfrm_state *x);
986 void (*xdo_dev_state_delete) (struct xfrm_state *x);
987 void (*xdo_dev_state_free) (struct xfrm_state *x);
988 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
989 struct xfrm_state *x);
990 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
991};
992#endif
993
994struct dev_ifalias {
995 struct rcu_head rcuhead;
996 char ifalias[];
997};
998
999struct devlink;
1000struct tlsdev_ops;
1001
1002struct netdev_name_node {
1003 struct hlist_node hlist;
1004 struct list_head list;
1005 struct net_device *dev;
1006 const char *name;
1007};
1008
1009int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1010int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1011
1012struct netdev_net_notifier {
1013 struct list_head list;
1014 struct notifier_block *nb;
1015};
1016
1017/*
1018 * This structure defines the management hooks for network devices.
1019 * The following hooks can be defined; unless noted otherwise, they are
1020 * optional and can be filled with a null pointer.
1021 *
1022 * int (*ndo_init)(struct net_device *dev);
1023 * This function is called once when a network device is registered.
1024 * The network device can use this for any late stage initialization
1025 * or semantic validation. It can fail with an error code which will
1026 * be propagated back to register_netdev.
1027 *
1028 * void (*ndo_uninit)(struct net_device *dev);
1029 * This function is called when device is unregistered or when registration
1030 * fails. It is not called if init fails.
1031 *
1032 * int (*ndo_open)(struct net_device *dev);
1033 * This function is called when a network device transitions to the up
1034 * state.
1035 *
1036 * int (*ndo_stop)(struct net_device *dev);
1037 * This function is called when a network device transitions to the down
1038 * state.
1039 *
1040 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1041 * struct net_device *dev);
1042 * Called when a packet needs to be transmitted.
1043 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1044 * the queue before that can happen; it's for obsolete devices and weird
1045 * corner cases, but the stack really does a non-trivial amount
1046 * of useless work if you return NETDEV_TX_BUSY.
1047 * Required; cannot be NULL.
1048 *
1049 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1050 * struct net_device *dev
1051 * netdev_features_t features);
1052 * Called by core transmit path to determine if device is capable of
1053 * performing offload operations on a given packet. This is to give
1054 * the device an opportunity to implement any restrictions that cannot
1055 * be otherwise expressed by feature flags. The check is called with
1056 * the set of features that the stack has calculated and it returns
1057 * those the driver believes to be appropriate.
1058 *
1059 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1060 * struct net_device *sb_dev);
1061 * Called to decide which queue to use when device supports multiple
1062 * transmit queues.
1063 *
1064 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1065 * This function is called to allow device receiver to make
1066 * changes to configuration when multicast or promiscuous is enabled.
1067 *
1068 * void (*ndo_set_rx_mode)(struct net_device *dev);
1069 * This function is called device changes address list filtering.
1070 * If driver handles unicast address filtering, it should set
1071 * IFF_UNICAST_FLT in its priv_flags.
1072 *
1073 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1074 * This function is called when the Media Access Control address
1075 * needs to be changed. If this interface is not defined, the
1076 * MAC address can not be changed.
1077 *
1078 * int (*ndo_validate_addr)(struct net_device *dev);
1079 * Test if Media Access Control address is valid for the device.
1080 *
1081 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1082 * Old-style ioctl entry point. This is used internally by the
1083 * appletalk and ieee802154 subsystems but is no longer called by
1084 * the device ioctl handler.
1085 *
1086 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087 * Used by the bonding driver for its device specific ioctls:
1088 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1089 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1090 *
1091 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1093 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1094 *
1095 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1096 * Used to set network devices bus interface parameters. This interface
1097 * is retained for legacy reasons; new devices should use the bus
1098 * interface (PCI) for low level management.
1099 *
1100 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1101 * Called when a user wants to change the Maximum Transfer Unit
1102 * of a device.
1103 *
1104 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1105 * Callback used when the transmitter has not made any progress
1106 * for dev->watchdog ticks.
1107 *
1108 * void (*ndo_get_stats64)(struct net_device *dev,
1109 * struct rtnl_link_stats64 *storage);
1110 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1111 * Called when a user wants to get the network device usage
1112 * statistics. Drivers must do one of the following:
1113 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1114 * rtnl_link_stats64 structure passed by the caller.
1115 * 2. Define @ndo_get_stats to update a net_device_stats structure
1116 * (which should normally be dev->stats) and return a pointer to
1117 * it. The structure may be changed asynchronously only if each
1118 * field is written atomically.
1119 * 3. Update dev->stats asynchronously and atomically, and define
1120 * neither operation.
1121 *
1122 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1123 * Return true if this device supports offload stats of this attr_id.
1124 *
1125 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1126 * void *attr_data)
1127 * Get statistics for offload operations by attr_id. Write it into the
1128 * attr_data pointer.
1129 *
1130 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1131 * If device supports VLAN filtering this function is called when a
1132 * VLAN id is registered.
1133 *
1134 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1135 * If device supports VLAN filtering this function is called when a
1136 * VLAN id is unregistered.
1137 *
1138 * void (*ndo_poll_controller)(struct net_device *dev);
1139 *
1140 * SR-IOV management functions.
1141 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1142 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1143 * u8 qos, __be16 proto);
1144 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1145 * int max_tx_rate);
1146 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1147 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1148 * int (*ndo_get_vf_config)(struct net_device *dev,
1149 * int vf, struct ifla_vf_info *ivf);
1150 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1151 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1152 * struct nlattr *port[]);
1153 *
1154 * Enable or disable the VF ability to query its RSS Redirection Table and
1155 * Hash Key. This is needed since on some devices VF share this information
1156 * with PF and querying it may introduce a theoretical security risk.
1157 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1158 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1159 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1160 * void *type_data);
1161 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1162 * This is always called from the stack with the rtnl lock held and netif
1163 * tx queues stopped. This allows the netdevice to perform queue
1164 * management safely.
1165 *
1166 * Fiber Channel over Ethernet (FCoE) offload functions.
1167 * int (*ndo_fcoe_enable)(struct net_device *dev);
1168 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1169 * so the underlying device can perform whatever needed configuration or
1170 * initialization to support acceleration of FCoE traffic.
1171 *
1172 * int (*ndo_fcoe_disable)(struct net_device *dev);
1173 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1174 * so the underlying device can perform whatever needed clean-ups to
1175 * stop supporting acceleration of FCoE traffic.
1176 *
1177 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1178 * struct scatterlist *sgl, unsigned int sgc);
1179 * Called when the FCoE Initiator wants to initialize an I/O that
1180 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1181 * perform necessary setup and returns 1 to indicate the device is set up
1182 * successfully to perform DDP on this I/O, otherwise this returns 0.
1183 *
1184 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1185 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1186 * indicated by the FC exchange id 'xid', so the underlying device can
1187 * clean up and reuse resources for later DDP requests.
1188 *
1189 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1190 * struct scatterlist *sgl, unsigned int sgc);
1191 * Called when the FCoE Target wants to initialize an I/O that
1192 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1193 * perform necessary setup and returns 1 to indicate the device is set up
1194 * successfully to perform DDP on this I/O, otherwise this returns 0.
1195 *
1196 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1197 * struct netdev_fcoe_hbainfo *hbainfo);
1198 * Called when the FCoE Protocol stack wants information on the underlying
1199 * device. This information is utilized by the FCoE protocol stack to
1200 * register attributes with Fiber Channel management service as per the
1201 * FC-GS Fabric Device Management Information(FDMI) specification.
1202 *
1203 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1204 * Called when the underlying device wants to override default World Wide
1205 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1206 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1207 * protocol stack to use.
1208 *
1209 * RFS acceleration.
1210 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1211 * u16 rxq_index, u32 flow_id);
1212 * Set hardware filter for RFS. rxq_index is the target queue index;
1213 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1214 * Return the filter ID on success, or a negative error code.
1215 *
1216 * Slave management functions (for bridge, bonding, etc).
1217 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1218 * Called to make another netdev an underling.
1219 *
1220 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1221 * Called to release previously enslaved netdev.
1222 *
1223 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1224 * struct sk_buff *skb,
1225 * bool all_slaves);
1226 * Get the xmit slave of master device. If all_slaves is true, function
1227 * assume all the slaves can transmit.
1228 *
1229 * Feature/offload setting functions.
1230 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1231 * netdev_features_t features);
1232 * Adjusts the requested feature flags according to device-specific
1233 * constraints, and returns the resulting flags. Must not modify
1234 * the device state.
1235 *
1236 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1237 * Called to update device configuration to new features. Passed
1238 * feature set might be less than what was returned by ndo_fix_features()).
1239 * Must return >0 or -errno if it changed dev->features itself.
1240 *
1241 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1242 * struct net_device *dev,
1243 * const unsigned char *addr, u16 vid, u16 flags,
1244 * struct netlink_ext_ack *extack);
1245 * Adds an FDB entry to dev for addr.
1246 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1247 * struct net_device *dev,
1248 * const unsigned char *addr, u16 vid)
1249 * Deletes the FDB entry from dev coresponding to addr.
1250 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1251 * struct net_device *dev, struct net_device *filter_dev,
1252 * int *idx)
1253 * Used to add FDB entries to dump requests. Implementers should add
1254 * entries to skb and update idx with the number of entries.
1255 *
1256 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1257 * u16 flags, struct netlink_ext_ack *extack)
1258 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1259 * struct net_device *dev, u32 filter_mask,
1260 * int nlflags)
1261 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1262 * u16 flags);
1263 *
1264 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1265 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1266 * which do not represent real hardware may define this to allow their
1267 * userspace components to manage their virtual carrier state. Devices
1268 * that determine carrier state from physical hardware properties (eg
1269 * network cables) or protocol-dependent mechanisms (eg
1270 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1271 *
1272 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1273 * struct netdev_phys_item_id *ppid);
1274 * Called to get ID of physical port of this device. If driver does
1275 * not implement this, it is assumed that the hw is not able to have
1276 * multiple net devices on single physical port.
1277 *
1278 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1279 * struct netdev_phys_item_id *ppid)
1280 * Called to get the parent ID of the physical port of this device.
1281 *
1282 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1283 * struct net_device *dev)
1284 * Called by upper layer devices to accelerate switching or other
1285 * station functionality into hardware. 'pdev is the lowerdev
1286 * to use for the offload and 'dev' is the net device that will
1287 * back the offload. Returns a pointer to the private structure
1288 * the upper layer will maintain.
1289 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1290 * Called by upper layer device to delete the station created
1291 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1292 * the station and priv is the structure returned by the add
1293 * operation.
1294 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1295 * int queue_index, u32 maxrate);
1296 * Called when a user wants to set a max-rate limitation of specific
1297 * TX queue.
1298 * int (*ndo_get_iflink)(const struct net_device *dev);
1299 * Called to get the iflink value of this device.
1300 * void (*ndo_change_proto_down)(struct net_device *dev,
1301 * bool proto_down);
1302 * This function is used to pass protocol port error state information
1303 * to the switch driver. The switch driver can react to the proto_down
1304 * by doing a phys down on the associated switch port.
1305 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1306 * This function is used to get egress tunnel information for given skb.
1307 * This is useful for retrieving outer tunnel header parameters while
1308 * sampling packet.
1309 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1310 * This function is used to specify the headroom that the skb must
1311 * consider when allocation skb during packet reception. Setting
1312 * appropriate rx headroom value allows avoiding skb head copy on
1313 * forward. Setting a negative value resets the rx headroom to the
1314 * default value.
1315 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1316 * This function is used to set or query state related to XDP on the
1317 * netdevice and manage BPF offload. See definition of
1318 * enum bpf_netdev_command for details.
1319 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1320 * u32 flags);
1321 * This function is used to submit @n XDP packets for transmit on a
1322 * netdevice. Returns number of frames successfully transmitted, frames
1323 * that got dropped are freed/returned via xdp_return_frame().
1324 * Returns negative number, means general error invoking ndo, meaning
1325 * no frames were xmit'ed and core-caller will free all frames.
1326 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1327 * struct xdp_buff *xdp);
1328 * Get the xmit slave of master device based on the xdp_buff.
1329 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1330 * This function is used to wake up the softirq, ksoftirqd or kthread
1331 * responsible for sending and/or receiving packets on a specific
1332 * queue id bound to an AF_XDP socket. The flags field specifies if
1333 * only RX, only Tx, or both should be woken up using the flags
1334 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1335 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1336 * Get devlink port instance associated with a given netdev.
1337 * Called with a reference on the netdevice and devlink locks only,
1338 * rtnl_lock is not held.
1339 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1340 * int cmd);
1341 * Add, change, delete or get information on an IPv4 tunnel.
1342 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1343 * If a device is paired with a peer device, return the peer instance.
1344 * The caller must be under RCU read context.
1345 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1346 * Get the forwarding path to reach the real device from the HW destination address
1347 */
1348struct net_device_ops {
1349 int (*ndo_init)(struct net_device *dev);
1350 void (*ndo_uninit)(struct net_device *dev);
1351 int (*ndo_open)(struct net_device *dev);
1352 int (*ndo_stop)(struct net_device *dev);
1353 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1354 struct net_device *dev);
1355 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1356 struct net_device *dev,
1357 netdev_features_t features);
1358 u16 (*ndo_select_queue)(struct net_device *dev,
1359 struct sk_buff *skb,
1360 struct net_device *sb_dev);
1361 void (*ndo_change_rx_flags)(struct net_device *dev,
1362 int flags);
1363 void (*ndo_set_rx_mode)(struct net_device *dev);
1364 int (*ndo_set_mac_address)(struct net_device *dev,
1365 void *addr);
1366 int (*ndo_validate_addr)(struct net_device *dev);
1367 int (*ndo_do_ioctl)(struct net_device *dev,
1368 struct ifreq *ifr, int cmd);
1369 int (*ndo_eth_ioctl)(struct net_device *dev,
1370 struct ifreq *ifr, int cmd);
1371 int (*ndo_siocbond)(struct net_device *dev,
1372 struct ifreq *ifr, int cmd);
1373 int (*ndo_siocwandev)(struct net_device *dev,
1374 struct if_settings *ifs);
1375 int (*ndo_siocdevprivate)(struct net_device *dev,
1376 struct ifreq *ifr,
1377 void __user *data, int cmd);
1378 int (*ndo_set_config)(struct net_device *dev,
1379 struct ifmap *map);
1380 int (*ndo_change_mtu)(struct net_device *dev,
1381 int new_mtu);
1382 int (*ndo_neigh_setup)(struct net_device *dev,
1383 struct neigh_parms *);
1384 void (*ndo_tx_timeout) (struct net_device *dev,
1385 unsigned int txqueue);
1386
1387 void (*ndo_get_stats64)(struct net_device *dev,
1388 struct rtnl_link_stats64 *storage);
1389 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1390 int (*ndo_get_offload_stats)(int attr_id,
1391 const struct net_device *dev,
1392 void *attr_data);
1393 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1394
1395 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1396 __be16 proto, u16 vid);
1397 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1398 __be16 proto, u16 vid);
1399#ifdef CONFIG_NET_POLL_CONTROLLER
1400 void (*ndo_poll_controller)(struct net_device *dev);
1401 int (*ndo_netpoll_setup)(struct net_device *dev,
1402 struct netpoll_info *info);
1403 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1404#endif
1405 int (*ndo_set_vf_mac)(struct net_device *dev,
1406 int queue, u8 *mac);
1407 int (*ndo_set_vf_vlan)(struct net_device *dev,
1408 int queue, u16 vlan,
1409 u8 qos, __be16 proto);
1410 int (*ndo_set_vf_rate)(struct net_device *dev,
1411 int vf, int min_tx_rate,
1412 int max_tx_rate);
1413 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1414 int vf, bool setting);
1415 int (*ndo_set_vf_trust)(struct net_device *dev,
1416 int vf, bool setting);
1417 int (*ndo_get_vf_config)(struct net_device *dev,
1418 int vf,
1419 struct ifla_vf_info *ivf);
1420 int (*ndo_set_vf_link_state)(struct net_device *dev,
1421 int vf, int link_state);
1422 int (*ndo_get_vf_stats)(struct net_device *dev,
1423 int vf,
1424 struct ifla_vf_stats
1425 *vf_stats);
1426 int (*ndo_set_vf_port)(struct net_device *dev,
1427 int vf,
1428 struct nlattr *port[]);
1429 int (*ndo_get_vf_port)(struct net_device *dev,
1430 int vf, struct sk_buff *skb);
1431 int (*ndo_get_vf_guid)(struct net_device *dev,
1432 int vf,
1433 struct ifla_vf_guid *node_guid,
1434 struct ifla_vf_guid *port_guid);
1435 int (*ndo_set_vf_guid)(struct net_device *dev,
1436 int vf, u64 guid,
1437 int guid_type);
1438 int (*ndo_set_vf_rss_query_en)(
1439 struct net_device *dev,
1440 int vf, bool setting);
1441 int (*ndo_setup_tc)(struct net_device *dev,
1442 enum tc_setup_type type,
1443 void *type_data);
1444#if IS_ENABLED(CONFIG_FCOE)
1445 int (*ndo_fcoe_enable)(struct net_device *dev);
1446 int (*ndo_fcoe_disable)(struct net_device *dev);
1447 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1448 u16 xid,
1449 struct scatterlist *sgl,
1450 unsigned int sgc);
1451 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1452 u16 xid);
1453 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1454 u16 xid,
1455 struct scatterlist *sgl,
1456 unsigned int sgc);
1457 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1458 struct netdev_fcoe_hbainfo *hbainfo);
1459#endif
1460
1461#if IS_ENABLED(CONFIG_LIBFCOE)
1462#define NETDEV_FCOE_WWNN 0
1463#define NETDEV_FCOE_WWPN 1
1464 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1465 u64 *wwn, int type);
1466#endif
1467
1468#ifdef CONFIG_RFS_ACCEL
1469 int (*ndo_rx_flow_steer)(struct net_device *dev,
1470 const struct sk_buff *skb,
1471 u16 rxq_index,
1472 u32 flow_id);
1473#endif
1474 int (*ndo_add_slave)(struct net_device *dev,
1475 struct net_device *slave_dev,
1476 struct netlink_ext_ack *extack);
1477 int (*ndo_del_slave)(struct net_device *dev,
1478 struct net_device *slave_dev);
1479 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1480 struct sk_buff *skb,
1481 bool all_slaves);
1482 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1483 struct sock *sk);
1484 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1485 netdev_features_t features);
1486 int (*ndo_set_features)(struct net_device *dev,
1487 netdev_features_t features);
1488 int (*ndo_neigh_construct)(struct net_device *dev,
1489 struct neighbour *n);
1490 void (*ndo_neigh_destroy)(struct net_device *dev,
1491 struct neighbour *n);
1492
1493 int (*ndo_fdb_add)(struct ndmsg *ndm,
1494 struct nlattr *tb[],
1495 struct net_device *dev,
1496 const unsigned char *addr,
1497 u16 vid,
1498 u16 flags,
1499 struct netlink_ext_ack *extack);
1500 int (*ndo_fdb_del)(struct ndmsg *ndm,
1501 struct nlattr *tb[],
1502 struct net_device *dev,
1503 const unsigned char *addr,
1504 u16 vid);
1505 int (*ndo_fdb_dump)(struct sk_buff *skb,
1506 struct netlink_callback *cb,
1507 struct net_device *dev,
1508 struct net_device *filter_dev,
1509 int *idx);
1510 int (*ndo_fdb_get)(struct sk_buff *skb,
1511 struct nlattr *tb[],
1512 struct net_device *dev,
1513 const unsigned char *addr,
1514 u16 vid, u32 portid, u32 seq,
1515 struct netlink_ext_ack *extack);
1516 int (*ndo_bridge_setlink)(struct net_device *dev,
1517 struct nlmsghdr *nlh,
1518 u16 flags,
1519 struct netlink_ext_ack *extack);
1520 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1521 u32 pid, u32 seq,
1522 struct net_device *dev,
1523 u32 filter_mask,
1524 int nlflags);
1525 int (*ndo_bridge_dellink)(struct net_device *dev,
1526 struct nlmsghdr *nlh,
1527 u16 flags);
1528 int (*ndo_change_carrier)(struct net_device *dev,
1529 bool new_carrier);
1530 int (*ndo_get_phys_port_id)(struct net_device *dev,
1531 struct netdev_phys_item_id *ppid);
1532 int (*ndo_get_port_parent_id)(struct net_device *dev,
1533 struct netdev_phys_item_id *ppid);
1534 int (*ndo_get_phys_port_name)(struct net_device *dev,
1535 char *name, size_t len);
1536 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1537 struct net_device *dev);
1538 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1539 void *priv);
1540
1541 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1542 int queue_index,
1543 u32 maxrate);
1544 int (*ndo_get_iflink)(const struct net_device *dev);
1545 int (*ndo_change_proto_down)(struct net_device *dev,
1546 bool proto_down);
1547 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1548 struct sk_buff *skb);
1549 void (*ndo_set_rx_headroom)(struct net_device *dev,
1550 int needed_headroom);
1551 int (*ndo_bpf)(struct net_device *dev,
1552 struct netdev_bpf *bpf);
1553 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1554 struct xdp_frame **xdp,
1555 u32 flags);
1556 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1557 struct xdp_buff *xdp);
1558 int (*ndo_xsk_wakeup)(struct net_device *dev,
1559 u32 queue_id, u32 flags);
1560 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1561 int (*ndo_tunnel_ctl)(struct net_device *dev,
1562 struct ip_tunnel_parm *p, int cmd);
1563 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1564 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1565 struct net_device_path *path);
1566};
1567
1568/**
1569 * enum netdev_priv_flags - &struct net_device priv_flags
1570 *
1571 * These are the &struct net_device, they are only set internally
1572 * by drivers and used in the kernel. These flags are invisible to
1573 * userspace; this means that the order of these flags can change
1574 * during any kernel release.
1575 *
1576 * You should have a pretty good reason to be extending these flags.
1577 *
1578 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1579 * @IFF_EBRIDGE: Ethernet bridging device
1580 * @IFF_BONDING: bonding master or slave
1581 * @IFF_ISATAP: ISATAP interface (RFC4214)
1582 * @IFF_WAN_HDLC: WAN HDLC device
1583 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1584 * release skb->dst
1585 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1586 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1587 * @IFF_MACVLAN_PORT: device used as macvlan port
1588 * @IFF_BRIDGE_PORT: device used as bridge port
1589 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1590 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1591 * @IFF_UNICAST_FLT: Supports unicast filtering
1592 * @IFF_TEAM_PORT: device used as team port
1593 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1594 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1595 * change when it's running
1596 * @IFF_MACVLAN: Macvlan device
1597 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1598 * underlying stacked devices
1599 * @IFF_L3MDEV_MASTER: device is an L3 master device
1600 * @IFF_NO_QUEUE: device can run without qdisc attached
1601 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1602 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1603 * @IFF_TEAM: device is a team device
1604 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1605 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1606 * entity (i.e. the master device for bridged veth)
1607 * @IFF_MACSEC: device is a MACsec device
1608 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1609 * @IFF_FAILOVER: device is a failover master device
1610 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1611 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1612 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1613 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1614 * skb_headlen(skb) == 0 (data starts from frag0)
1615 */
1616enum netdev_priv_flags {
1617 IFF_802_1Q_VLAN = 1<<0,
1618 IFF_EBRIDGE = 1<<1,
1619 IFF_BONDING = 1<<2,
1620 IFF_ISATAP = 1<<3,
1621 IFF_WAN_HDLC = 1<<4,
1622 IFF_XMIT_DST_RELEASE = 1<<5,
1623 IFF_DONT_BRIDGE = 1<<6,
1624 IFF_DISABLE_NETPOLL = 1<<7,
1625 IFF_MACVLAN_PORT = 1<<8,
1626 IFF_BRIDGE_PORT = 1<<9,
1627 IFF_OVS_DATAPATH = 1<<10,
1628 IFF_TX_SKB_SHARING = 1<<11,
1629 IFF_UNICAST_FLT = 1<<12,
1630 IFF_TEAM_PORT = 1<<13,
1631 IFF_SUPP_NOFCS = 1<<14,
1632 IFF_LIVE_ADDR_CHANGE = 1<<15,
1633 IFF_MACVLAN = 1<<16,
1634 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1635 IFF_L3MDEV_MASTER = 1<<18,
1636 IFF_NO_QUEUE = 1<<19,
1637 IFF_OPENVSWITCH = 1<<20,
1638 IFF_L3MDEV_SLAVE = 1<<21,
1639 IFF_TEAM = 1<<22,
1640 IFF_RXFH_CONFIGURED = 1<<23,
1641 IFF_PHONY_HEADROOM = 1<<24,
1642 IFF_MACSEC = 1<<25,
1643 IFF_NO_RX_HANDLER = 1<<26,
1644 IFF_FAILOVER = 1<<27,
1645 IFF_FAILOVER_SLAVE = 1<<28,
1646 IFF_L3MDEV_RX_HANDLER = 1<<29,
1647 IFF_LIVE_RENAME_OK = 1<<30,
1648 IFF_TX_SKB_NO_LINEAR = 1<<31,
1649};
1650
1651#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1652#define IFF_EBRIDGE IFF_EBRIDGE
1653#define IFF_BONDING IFF_BONDING
1654#define IFF_ISATAP IFF_ISATAP
1655#define IFF_WAN_HDLC IFF_WAN_HDLC
1656#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1657#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1658#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1659#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1660#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1661#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1662#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1663#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1664#define IFF_TEAM_PORT IFF_TEAM_PORT
1665#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1666#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1667#define IFF_MACVLAN IFF_MACVLAN
1668#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1669#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1670#define IFF_NO_QUEUE IFF_NO_QUEUE
1671#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1672#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1673#define IFF_TEAM IFF_TEAM
1674#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1675#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1676#define IFF_MACSEC IFF_MACSEC
1677#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1678#define IFF_FAILOVER IFF_FAILOVER
1679#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1680#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1681#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1682#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1683
1684/* Specifies the type of the struct net_device::ml_priv pointer */
1685enum netdev_ml_priv_type {
1686 ML_PRIV_NONE,
1687 ML_PRIV_CAN,
1688};
1689
1690/**
1691 * struct net_device - The DEVICE structure.
1692 *
1693 * Actually, this whole structure is a big mistake. It mixes I/O
1694 * data with strictly "high-level" data, and it has to know about
1695 * almost every data structure used in the INET module.
1696 *
1697 * @name: This is the first field of the "visible" part of this structure
1698 * (i.e. as seen by users in the "Space.c" file). It is the name
1699 * of the interface.
1700 *
1701 * @name_node: Name hashlist node
1702 * @ifalias: SNMP alias
1703 * @mem_end: Shared memory end
1704 * @mem_start: Shared memory start
1705 * @base_addr: Device I/O address
1706 * @irq: Device IRQ number
1707 *
1708 * @state: Generic network queuing layer state, see netdev_state_t
1709 * @dev_list: The global list of network devices
1710 * @napi_list: List entry used for polling NAPI devices
1711 * @unreg_list: List entry when we are unregistering the
1712 * device; see the function unregister_netdev
1713 * @close_list: List entry used when we are closing the device
1714 * @ptype_all: Device-specific packet handlers for all protocols
1715 * @ptype_specific: Device-specific, protocol-specific packet handlers
1716 *
1717 * @adj_list: Directly linked devices, like slaves for bonding
1718 * @features: Currently active device features
1719 * @hw_features: User-changeable features
1720 *
1721 * @wanted_features: User-requested features
1722 * @vlan_features: Mask of features inheritable by VLAN devices
1723 *
1724 * @hw_enc_features: Mask of features inherited by encapsulating devices
1725 * This field indicates what encapsulation
1726 * offloads the hardware is capable of doing,
1727 * and drivers will need to set them appropriately.
1728 *
1729 * @mpls_features: Mask of features inheritable by MPLS
1730 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1731 *
1732 * @ifindex: interface index
1733 * @group: The group the device belongs to
1734 *
1735 * @stats: Statistics struct, which was left as a legacy, use
1736 * rtnl_link_stats64 instead
1737 *
1738 * @rx_dropped: Dropped packets by core network,
1739 * do not use this in drivers
1740 * @tx_dropped: Dropped packets by core network,
1741 * do not use this in drivers
1742 * @rx_nohandler: nohandler dropped packets by core network on
1743 * inactive devices, do not use this in drivers
1744 * @carrier_up_count: Number of times the carrier has been up
1745 * @carrier_down_count: Number of times the carrier has been down
1746 *
1747 * @wireless_handlers: List of functions to handle Wireless Extensions,
1748 * instead of ioctl,
1749 * see <net/iw_handler.h> for details.
1750 * @wireless_data: Instance data managed by the core of wireless extensions
1751 *
1752 * @netdev_ops: Includes several pointers to callbacks,
1753 * if one wants to override the ndo_*() functions
1754 * @ethtool_ops: Management operations
1755 * @l3mdev_ops: Layer 3 master device operations
1756 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1757 * discovery handling. Necessary for e.g. 6LoWPAN.
1758 * @xfrmdev_ops: Transformation offload operations
1759 * @tlsdev_ops: Transport Layer Security offload operations
1760 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1761 * of Layer 2 headers.
1762 *
1763 * @flags: Interface flags (a la BSD)
1764 * @priv_flags: Like 'flags' but invisible to userspace,
1765 * see if.h for the definitions
1766 * @gflags: Global flags ( kept as legacy )
1767 * @padded: How much padding added by alloc_netdev()
1768 * @operstate: RFC2863 operstate
1769 * @link_mode: Mapping policy to operstate
1770 * @if_port: Selectable AUI, TP, ...
1771 * @dma: DMA channel
1772 * @mtu: Interface MTU value
1773 * @min_mtu: Interface Minimum MTU value
1774 * @max_mtu: Interface Maximum MTU value
1775 * @type: Interface hardware type
1776 * @hard_header_len: Maximum hardware header length.
1777 * @min_header_len: Minimum hardware header length
1778 *
1779 * @needed_headroom: Extra headroom the hardware may need, but not in all
1780 * cases can this be guaranteed
1781 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1782 * cases can this be guaranteed. Some cases also use
1783 * LL_MAX_HEADER instead to allocate the skb
1784 *
1785 * interface address info:
1786 *
1787 * @perm_addr: Permanent hw address
1788 * @addr_assign_type: Hw address assignment type
1789 * @addr_len: Hardware address length
1790 * @upper_level: Maximum depth level of upper devices.
1791 * @lower_level: Maximum depth level of lower devices.
1792 * @neigh_priv_len: Used in neigh_alloc()
1793 * @dev_id: Used to differentiate devices that share
1794 * the same link layer address
1795 * @dev_port: Used to differentiate devices that share
1796 * the same function
1797 * @addr_list_lock: XXX: need comments on this one
1798 * @name_assign_type: network interface name assignment type
1799 * @uc_promisc: Counter that indicates promiscuous mode
1800 * has been enabled due to the need to listen to
1801 * additional unicast addresses in a device that
1802 * does not implement ndo_set_rx_mode()
1803 * @uc: unicast mac addresses
1804 * @mc: multicast mac addresses
1805 * @dev_addrs: list of device hw addresses
1806 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1807 * @promiscuity: Number of times the NIC is told to work in
1808 * promiscuous mode; if it becomes 0 the NIC will
1809 * exit promiscuous mode
1810 * @allmulti: Counter, enables or disables allmulticast mode
1811 *
1812 * @vlan_info: VLAN info
1813 * @dsa_ptr: dsa specific data
1814 * @tipc_ptr: TIPC specific data
1815 * @atalk_ptr: AppleTalk link
1816 * @ip_ptr: IPv4 specific data
1817 * @dn_ptr: DECnet specific data
1818 * @ip6_ptr: IPv6 specific data
1819 * @ax25_ptr: AX.25 specific data
1820 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1821 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1822 * device struct
1823 * @mpls_ptr: mpls_dev struct pointer
1824 * @mctp_ptr: MCTP specific data
1825 *
1826 * @dev_addr: Hw address (before bcast,
1827 * because most packets are unicast)
1828 *
1829 * @_rx: Array of RX queues
1830 * @num_rx_queues: Number of RX queues
1831 * allocated at register_netdev() time
1832 * @real_num_rx_queues: Number of RX queues currently active in device
1833 * @xdp_prog: XDP sockets filter program pointer
1834 * @gro_flush_timeout: timeout for GRO layer in NAPI
1835 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1836 * allow to avoid NIC hard IRQ, on busy queues.
1837 *
1838 * @rx_handler: handler for received packets
1839 * @rx_handler_data: XXX: need comments on this one
1840 * @miniq_ingress: ingress/clsact qdisc specific data for
1841 * ingress processing
1842 * @ingress_queue: XXX: need comments on this one
1843 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1844 * @broadcast: hw bcast address
1845 *
1846 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1847 * indexed by RX queue number. Assigned by driver.
1848 * This must only be set if the ndo_rx_flow_steer
1849 * operation is defined
1850 * @index_hlist: Device index hash chain
1851 *
1852 * @_tx: Array of TX queues
1853 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1854 * @real_num_tx_queues: Number of TX queues currently active in device
1855 * @qdisc: Root qdisc from userspace point of view
1856 * @tx_queue_len: Max frames per queue allowed
1857 * @tx_global_lock: XXX: need comments on this one
1858 * @xdp_bulkq: XDP device bulk queue
1859 * @xps_maps: all CPUs/RXQs maps for XPS device
1860 *
1861 * @xps_maps: XXX: need comments on this one
1862 * @miniq_egress: clsact qdisc specific data for
1863 * egress processing
1864 * @nf_hooks_egress: netfilter hooks executed for egress packets
1865 * @qdisc_hash: qdisc hash table
1866 * @watchdog_timeo: Represents the timeout that is used by
1867 * the watchdog (see dev_watchdog())
1868 * @watchdog_timer: List of timers
1869 *
1870 * @proto_down_reason: reason a netdev interface is held down
1871 * @pcpu_refcnt: Number of references to this device
1872 * @dev_refcnt: Number of references to this device
1873 * @todo_list: Delayed register/unregister
1874 * @link_watch_list: XXX: need comments on this one
1875 *
1876 * @reg_state: Register/unregister state machine
1877 * @dismantle: Device is going to be freed
1878 * @rtnl_link_state: This enum represents the phases of creating
1879 * a new link
1880 *
1881 * @needs_free_netdev: Should unregister perform free_netdev?
1882 * @priv_destructor: Called from unregister
1883 * @npinfo: XXX: need comments on this one
1884 * @nd_net: Network namespace this network device is inside
1885 *
1886 * @ml_priv: Mid-layer private
1887 * @ml_priv_type: Mid-layer private type
1888 * @lstats: Loopback statistics
1889 * @tstats: Tunnel statistics
1890 * @dstats: Dummy statistics
1891 * @vstats: Virtual ethernet statistics
1892 *
1893 * @garp_port: GARP
1894 * @mrp_port: MRP
1895 *
1896 * @dev: Class/net/name entry
1897 * @sysfs_groups: Space for optional device, statistics and wireless
1898 * sysfs groups
1899 *
1900 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1901 * @rtnl_link_ops: Rtnl_link_ops
1902 *
1903 * @gso_max_size: Maximum size of generic segmentation offload
1904 * @gso_max_segs: Maximum number of segments that can be passed to the
1905 * NIC for GSO
1906 *
1907 * @dcbnl_ops: Data Center Bridging netlink ops
1908 * @num_tc: Number of traffic classes in the net device
1909 * @tc_to_txq: XXX: need comments on this one
1910 * @prio_tc_map: XXX: need comments on this one
1911 *
1912 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1913 *
1914 * @priomap: XXX: need comments on this one
1915 * @phydev: Physical device may attach itself
1916 * for hardware timestamping
1917 * @sfp_bus: attached &struct sfp_bus structure.
1918 *
1919 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1920 *
1921 * @proto_down: protocol port state information can be sent to the
1922 * switch driver and used to set the phys state of the
1923 * switch port.
1924 *
1925 * @wol_enabled: Wake-on-LAN is enabled
1926 *
1927 * @threaded: napi threaded mode is enabled
1928 *
1929 * @net_notifier_list: List of per-net netdev notifier block
1930 * that follow this device when it is moved
1931 * to another network namespace.
1932 *
1933 * @macsec_ops: MACsec offloading ops
1934 *
1935 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1936 * offload capabilities of the device
1937 * @udp_tunnel_nic: UDP tunnel offload state
1938 * @xdp_state: stores info on attached XDP BPF programs
1939 *
1940 * @nested_level: Used as a parameter of spin_lock_nested() of
1941 * dev->addr_list_lock.
1942 * @unlink_list: As netif_addr_lock() can be called recursively,
1943 * keep a list of interfaces to be deleted.
1944 *
1945 * FIXME: cleanup struct net_device such that network protocol info
1946 * moves out.
1947 */
1948
1949struct net_device {
1950 char name[IFNAMSIZ];
1951 struct netdev_name_node *name_node;
1952 struct dev_ifalias __rcu *ifalias;
1953 /*
1954 * I/O specific fields
1955 * FIXME: Merge these and struct ifmap into one
1956 */
1957 unsigned long mem_end;
1958 unsigned long mem_start;
1959 unsigned long base_addr;
1960
1961 /*
1962 * Some hardware also needs these fields (state,dev_list,
1963 * napi_list,unreg_list,close_list) but they are not
1964 * part of the usual set specified in Space.c.
1965 */
1966
1967 unsigned long state;
1968
1969 struct list_head dev_list;
1970 struct list_head napi_list;
1971 struct list_head unreg_list;
1972 struct list_head close_list;
1973 struct list_head ptype_all;
1974 struct list_head ptype_specific;
1975
1976 struct {
1977 struct list_head upper;
1978 struct list_head lower;
1979 } adj_list;
1980
1981 /* Read-mostly cache-line for fast-path access */
1982 unsigned int flags;
1983 unsigned int priv_flags;
1984 const struct net_device_ops *netdev_ops;
1985 int ifindex;
1986 unsigned short gflags;
1987 unsigned short hard_header_len;
1988
1989 /* Note : dev->mtu is often read without holding a lock.
1990 * Writers usually hold RTNL.
1991 * It is recommended to use READ_ONCE() to annotate the reads,
1992 * and to use WRITE_ONCE() to annotate the writes.
1993 */
1994 unsigned int mtu;
1995 unsigned short needed_headroom;
1996 unsigned short needed_tailroom;
1997
1998 netdev_features_t features;
1999 netdev_features_t hw_features;
2000 netdev_features_t wanted_features;
2001 netdev_features_t vlan_features;
2002 netdev_features_t hw_enc_features;
2003 netdev_features_t mpls_features;
2004 netdev_features_t gso_partial_features;
2005
2006 unsigned int min_mtu;
2007 unsigned int max_mtu;
2008 unsigned short type;
2009 unsigned char min_header_len;
2010 unsigned char name_assign_type;
2011
2012 int group;
2013
2014 struct net_device_stats stats; /* not used by modern drivers */
2015
2016 atomic_long_t rx_dropped;
2017 atomic_long_t tx_dropped;
2018 atomic_long_t rx_nohandler;
2019
2020 /* Stats to monitor link on/off, flapping */
2021 atomic_t carrier_up_count;
2022 atomic_t carrier_down_count;
2023
2024#ifdef CONFIG_WIRELESS_EXT
2025 const struct iw_handler_def *wireless_handlers;
2026 struct iw_public_data *wireless_data;
2027#endif
2028 const struct ethtool_ops *ethtool_ops;
2029#ifdef CONFIG_NET_L3_MASTER_DEV
2030 const struct l3mdev_ops *l3mdev_ops;
2031#endif
2032#if IS_ENABLED(CONFIG_IPV6)
2033 const struct ndisc_ops *ndisc_ops;
2034#endif
2035
2036#ifdef CONFIG_XFRM_OFFLOAD
2037 const struct xfrmdev_ops *xfrmdev_ops;
2038#endif
2039
2040#if IS_ENABLED(CONFIG_TLS_DEVICE)
2041 const struct tlsdev_ops *tlsdev_ops;
2042#endif
2043
2044 const struct header_ops *header_ops;
2045
2046 unsigned char operstate;
2047 unsigned char link_mode;
2048
2049 unsigned char if_port;
2050 unsigned char dma;
2051
2052 /* Interface address info. */
2053 unsigned char perm_addr[MAX_ADDR_LEN];
2054 unsigned char addr_assign_type;
2055 unsigned char addr_len;
2056 unsigned char upper_level;
2057 unsigned char lower_level;
2058
2059 unsigned short neigh_priv_len;
2060 unsigned short dev_id;
2061 unsigned short dev_port;
2062 unsigned short padded;
2063
2064 spinlock_t addr_list_lock;
2065 int irq;
2066
2067 struct netdev_hw_addr_list uc;
2068 struct netdev_hw_addr_list mc;
2069 struct netdev_hw_addr_list dev_addrs;
2070
2071#ifdef CONFIG_SYSFS
2072 struct kset *queues_kset;
2073#endif
2074#ifdef CONFIG_LOCKDEP
2075 struct list_head unlink_list;
2076#endif
2077 unsigned int promiscuity;
2078 unsigned int allmulti;
2079 bool uc_promisc;
2080#ifdef CONFIG_LOCKDEP
2081 unsigned char nested_level;
2082#endif
2083
2084
2085 /* Protocol-specific pointers */
2086
2087#if IS_ENABLED(CONFIG_VLAN_8021Q)
2088 struct vlan_info __rcu *vlan_info;
2089#endif
2090#if IS_ENABLED(CONFIG_NET_DSA)
2091 struct dsa_port *dsa_ptr;
2092#endif
2093#if IS_ENABLED(CONFIG_TIPC)
2094 struct tipc_bearer __rcu *tipc_ptr;
2095#endif
2096#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2097 void *atalk_ptr;
2098#endif
2099 struct in_device __rcu *ip_ptr;
2100#if IS_ENABLED(CONFIG_DECNET)
2101 struct dn_dev __rcu *dn_ptr;
2102#endif
2103 struct inet6_dev __rcu *ip6_ptr;
2104#if IS_ENABLED(CONFIG_AX25)
2105 void *ax25_ptr;
2106#endif
2107 struct wireless_dev *ieee80211_ptr;
2108 struct wpan_dev *ieee802154_ptr;
2109#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2110 struct mpls_dev __rcu *mpls_ptr;
2111#endif
2112#if IS_ENABLED(CONFIG_MCTP)
2113 struct mctp_dev __rcu *mctp_ptr;
2114#endif
2115
2116/*
2117 * Cache lines mostly used on receive path (including eth_type_trans())
2118 */
2119 /* Interface address info used in eth_type_trans() */
2120 unsigned char *dev_addr;
2121
2122 struct netdev_rx_queue *_rx;
2123 unsigned int num_rx_queues;
2124 unsigned int real_num_rx_queues;
2125
2126 struct bpf_prog __rcu *xdp_prog;
2127 unsigned long gro_flush_timeout;
2128 int napi_defer_hard_irqs;
2129 rx_handler_func_t __rcu *rx_handler;
2130 void __rcu *rx_handler_data;
2131
2132#ifdef CONFIG_NET_CLS_ACT
2133 struct mini_Qdisc __rcu *miniq_ingress;
2134#endif
2135 struct netdev_queue __rcu *ingress_queue;
2136#ifdef CONFIG_NETFILTER_INGRESS
2137 struct nf_hook_entries __rcu *nf_hooks_ingress;
2138#endif
2139
2140 unsigned char broadcast[MAX_ADDR_LEN];
2141#ifdef CONFIG_RFS_ACCEL
2142 struct cpu_rmap *rx_cpu_rmap;
2143#endif
2144 struct hlist_node index_hlist;
2145
2146/*
2147 * Cache lines mostly used on transmit path
2148 */
2149 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2150 unsigned int num_tx_queues;
2151 unsigned int real_num_tx_queues;
2152 struct Qdisc *qdisc;
2153 unsigned int tx_queue_len;
2154 spinlock_t tx_global_lock;
2155
2156 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2157
2158#ifdef CONFIG_XPS
2159 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2160#endif
2161#ifdef CONFIG_NET_CLS_ACT
2162 struct mini_Qdisc __rcu *miniq_egress;
2163#endif
2164#ifdef CONFIG_NETFILTER_EGRESS
2165 struct nf_hook_entries __rcu *nf_hooks_egress;
2166#endif
2167
2168#ifdef CONFIG_NET_SCHED
2169 DECLARE_HASHTABLE (qdisc_hash, 4);
2170#endif
2171 /* These may be needed for future network-power-down code. */
2172 struct timer_list watchdog_timer;
2173 int watchdog_timeo;
2174
2175 u32 proto_down_reason;
2176
2177 struct list_head todo_list;
2178
2179#ifdef CONFIG_PCPU_DEV_REFCNT
2180 int __percpu *pcpu_refcnt;
2181#else
2182 refcount_t dev_refcnt;
2183#endif
2184
2185 struct list_head link_watch_list;
2186
2187 enum { NETREG_UNINITIALIZED=0,
2188 NETREG_REGISTERED, /* completed register_netdevice */
2189 NETREG_UNREGISTERING, /* called unregister_netdevice */
2190 NETREG_UNREGISTERED, /* completed unregister todo */
2191 NETREG_RELEASED, /* called free_netdev */
2192 NETREG_DUMMY, /* dummy device for NAPI poll */
2193 } reg_state:8;
2194
2195 bool dismantle;
2196
2197 enum {
2198 RTNL_LINK_INITIALIZED,
2199 RTNL_LINK_INITIALIZING,
2200 } rtnl_link_state:16;
2201
2202 bool needs_free_netdev;
2203 void (*priv_destructor)(struct net_device *dev);
2204
2205#ifdef CONFIG_NETPOLL
2206 struct netpoll_info __rcu *npinfo;
2207#endif
2208
2209 possible_net_t nd_net;
2210
2211 /* mid-layer private */
2212 void *ml_priv;
2213 enum netdev_ml_priv_type ml_priv_type;
2214
2215 union {
2216 struct pcpu_lstats __percpu *lstats;
2217 struct pcpu_sw_netstats __percpu *tstats;
2218 struct pcpu_dstats __percpu *dstats;
2219 };
2220
2221#if IS_ENABLED(CONFIG_GARP)
2222 struct garp_port __rcu *garp_port;
2223#endif
2224#if IS_ENABLED(CONFIG_MRP)
2225 struct mrp_port __rcu *mrp_port;
2226#endif
2227
2228 struct device dev;
2229 const struct attribute_group *sysfs_groups[4];
2230 const struct attribute_group *sysfs_rx_queue_group;
2231
2232 const struct rtnl_link_ops *rtnl_link_ops;
2233
2234 /* for setting kernel sock attribute on TCP connection setup */
2235#define GSO_MAX_SIZE 65536
2236 unsigned int gso_max_size;
2237#define GSO_MAX_SEGS 65535
2238 u16 gso_max_segs;
2239
2240#ifdef CONFIG_DCB
2241 const struct dcbnl_rtnl_ops *dcbnl_ops;
2242#endif
2243 s16 num_tc;
2244 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2245 u8 prio_tc_map[TC_BITMASK + 1];
2246
2247#if IS_ENABLED(CONFIG_FCOE)
2248 unsigned int fcoe_ddp_xid;
2249#endif
2250#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2251 struct netprio_map __rcu *priomap;
2252#endif
2253 struct phy_device *phydev;
2254 struct sfp_bus *sfp_bus;
2255 struct lock_class_key *qdisc_tx_busylock;
2256 bool proto_down;
2257 unsigned wol_enabled:1;
2258 unsigned threaded:1;
2259
2260 struct list_head net_notifier_list;
2261
2262#if IS_ENABLED(CONFIG_MACSEC)
2263 /* MACsec management functions */
2264 const struct macsec_ops *macsec_ops;
2265#endif
2266 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2267 struct udp_tunnel_nic *udp_tunnel_nic;
2268
2269 /* protected by rtnl_lock */
2270 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2271};
2272#define to_net_dev(d) container_of(d, struct net_device, dev)
2273
2274static inline bool netif_elide_gro(const struct net_device *dev)
2275{
2276 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2277 return true;
2278 return false;
2279}
2280
2281#define NETDEV_ALIGN 32
2282
2283static inline
2284int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2285{
2286 return dev->prio_tc_map[prio & TC_BITMASK];
2287}
2288
2289static inline
2290int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2291{
2292 if (tc >= dev->num_tc)
2293 return -EINVAL;
2294
2295 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2296 return 0;
2297}
2298
2299int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2300void netdev_reset_tc(struct net_device *dev);
2301int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2302int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2303
2304static inline
2305int netdev_get_num_tc(struct net_device *dev)
2306{
2307 return dev->num_tc;
2308}
2309
2310static inline void net_prefetch(void *p)
2311{
2312 prefetch(p);
2313#if L1_CACHE_BYTES < 128
2314 prefetch((u8 *)p + L1_CACHE_BYTES);
2315#endif
2316}
2317
2318static inline void net_prefetchw(void *p)
2319{
2320 prefetchw(p);
2321#if L1_CACHE_BYTES < 128
2322 prefetchw((u8 *)p + L1_CACHE_BYTES);
2323#endif
2324}
2325
2326void netdev_unbind_sb_channel(struct net_device *dev,
2327 struct net_device *sb_dev);
2328int netdev_bind_sb_channel_queue(struct net_device *dev,
2329 struct net_device *sb_dev,
2330 u8 tc, u16 count, u16 offset);
2331int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2332static inline int netdev_get_sb_channel(struct net_device *dev)
2333{
2334 return max_t(int, -dev->num_tc, 0);
2335}
2336
2337static inline
2338struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2339 unsigned int index)
2340{
2341 return &dev->_tx[index];
2342}
2343
2344static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2345 const struct sk_buff *skb)
2346{
2347 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2348}
2349
2350static inline void netdev_for_each_tx_queue(struct net_device *dev,
2351 void (*f)(struct net_device *,
2352 struct netdev_queue *,
2353 void *),
2354 void *arg)
2355{
2356 unsigned int i;
2357
2358 for (i = 0; i < dev->num_tx_queues; i++)
2359 f(dev, &dev->_tx[i], arg);
2360}
2361
2362#define netdev_lockdep_set_classes(dev) \
2363{ \
2364 static struct lock_class_key qdisc_tx_busylock_key; \
2365 static struct lock_class_key qdisc_xmit_lock_key; \
2366 static struct lock_class_key dev_addr_list_lock_key; \
2367 unsigned int i; \
2368 \
2369 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2370 lockdep_set_class(&(dev)->addr_list_lock, \
2371 &dev_addr_list_lock_key); \
2372 for (i = 0; i < (dev)->num_tx_queues; i++) \
2373 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2374 &qdisc_xmit_lock_key); \
2375}
2376
2377u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2378 struct net_device *sb_dev);
2379struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2380 struct sk_buff *skb,
2381 struct net_device *sb_dev);
2382
2383/* returns the headroom that the master device needs to take in account
2384 * when forwarding to this dev
2385 */
2386static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2387{
2388 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2389}
2390
2391static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2392{
2393 if (dev->netdev_ops->ndo_set_rx_headroom)
2394 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2395}
2396
2397/* set the device rx headroom to the dev's default */
2398static inline void netdev_reset_rx_headroom(struct net_device *dev)
2399{
2400 netdev_set_rx_headroom(dev, -1);
2401}
2402
2403static inline void *netdev_get_ml_priv(struct net_device *dev,
2404 enum netdev_ml_priv_type type)
2405{
2406 if (dev->ml_priv_type != type)
2407 return NULL;
2408
2409 return dev->ml_priv;
2410}
2411
2412static inline void netdev_set_ml_priv(struct net_device *dev,
2413 void *ml_priv,
2414 enum netdev_ml_priv_type type)
2415{
2416 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2417 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2418 dev->ml_priv_type, type);
2419 WARN(!dev->ml_priv_type && dev->ml_priv,
2420 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2421
2422 dev->ml_priv = ml_priv;
2423 dev->ml_priv_type = type;
2424}
2425
2426/*
2427 * Net namespace inlines
2428 */
2429static inline
2430struct net *dev_net(const struct net_device *dev)
2431{
2432 return read_pnet(&dev->nd_net);
2433}
2434
2435static inline
2436void dev_net_set(struct net_device *dev, struct net *net)
2437{
2438 write_pnet(&dev->nd_net, net);
2439}
2440
2441/**
2442 * netdev_priv - access network device private data
2443 * @dev: network device
2444 *
2445 * Get network device private data
2446 */
2447static inline void *netdev_priv(const struct net_device *dev)
2448{
2449 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2450}
2451
2452/* Set the sysfs physical device reference for the network logical device
2453 * if set prior to registration will cause a symlink during initialization.
2454 */
2455#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2456
2457/* Set the sysfs device type for the network logical device to allow
2458 * fine-grained identification of different network device types. For
2459 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2460 */
2461#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2462
2463/* Default NAPI poll() weight
2464 * Device drivers are strongly advised to not use bigger value
2465 */
2466#define NAPI_POLL_WEIGHT 64
2467
2468/**
2469 * netif_napi_add - initialize a NAPI context
2470 * @dev: network device
2471 * @napi: NAPI context
2472 * @poll: polling function
2473 * @weight: default weight
2474 *
2475 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2476 * *any* of the other NAPI-related functions.
2477 */
2478void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2479 int (*poll)(struct napi_struct *, int), int weight);
2480
2481/**
2482 * netif_tx_napi_add - initialize a NAPI context
2483 * @dev: network device
2484 * @napi: NAPI context
2485 * @poll: polling function
2486 * @weight: default weight
2487 *
2488 * This variant of netif_napi_add() should be used from drivers using NAPI
2489 * to exclusively poll a TX queue.
2490 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2491 */
2492static inline void netif_tx_napi_add(struct net_device *dev,
2493 struct napi_struct *napi,
2494 int (*poll)(struct napi_struct *, int),
2495 int weight)
2496{
2497 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2498 netif_napi_add(dev, napi, poll, weight);
2499}
2500
2501/**
2502 * __netif_napi_del - remove a NAPI context
2503 * @napi: NAPI context
2504 *
2505 * Warning: caller must observe RCU grace period before freeing memory
2506 * containing @napi. Drivers might want to call this helper to combine
2507 * all the needed RCU grace periods into a single one.
2508 */
2509void __netif_napi_del(struct napi_struct *napi);
2510
2511/**
2512 * netif_napi_del - remove a NAPI context
2513 * @napi: NAPI context
2514 *
2515 * netif_napi_del() removes a NAPI context from the network device NAPI list
2516 */
2517static inline void netif_napi_del(struct napi_struct *napi)
2518{
2519 __netif_napi_del(napi);
2520 synchronize_net();
2521}
2522
2523struct napi_gro_cb {
2524 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2525 void *frag0;
2526
2527 /* Length of frag0. */
2528 unsigned int frag0_len;
2529
2530 /* This indicates where we are processing relative to skb->data. */
2531 int data_offset;
2532
2533 /* This is non-zero if the packet cannot be merged with the new skb. */
2534 u16 flush;
2535
2536 /* Save the IP ID here and check when we get to the transport layer */
2537 u16 flush_id;
2538
2539 /* Number of segments aggregated. */
2540 u16 count;
2541
2542 /* Start offset for remote checksum offload */
2543 u16 gro_remcsum_start;
2544
2545 /* jiffies when first packet was created/queued */
2546 unsigned long age;
2547
2548 /* Used in ipv6_gro_receive() and foo-over-udp */
2549 u16 proto;
2550
2551 /* This is non-zero if the packet may be of the same flow. */
2552 u8 same_flow:1;
2553
2554 /* Used in tunnel GRO receive */
2555 u8 encap_mark:1;
2556
2557 /* GRO checksum is valid */
2558 u8 csum_valid:1;
2559
2560 /* Number of checksums via CHECKSUM_UNNECESSARY */
2561 u8 csum_cnt:3;
2562
2563 /* Free the skb? */
2564 u8 free:2;
2565#define NAPI_GRO_FREE 1
2566#define NAPI_GRO_FREE_STOLEN_HEAD 2
2567
2568 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2569 u8 is_ipv6:1;
2570
2571 /* Used in GRE, set in fou/gue_gro_receive */
2572 u8 is_fou:1;
2573
2574 /* Used to determine if flush_id can be ignored */
2575 u8 is_atomic:1;
2576
2577 /* Number of gro_receive callbacks this packet already went through */
2578 u8 recursion_counter:4;
2579
2580 /* GRO is done by frag_list pointer chaining. */
2581 u8 is_flist:1;
2582
2583 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2584 __wsum csum;
2585
2586 /* used in skb_gro_receive() slow path */
2587 struct sk_buff *last;
2588};
2589
2590#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2591
2592#define GRO_RECURSION_LIMIT 15
2593static inline int gro_recursion_inc_test(struct sk_buff *skb)
2594{
2595 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2596}
2597
2598typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2599static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2600 struct list_head *head,
2601 struct sk_buff *skb)
2602{
2603 if (unlikely(gro_recursion_inc_test(skb))) {
2604 NAPI_GRO_CB(skb)->flush |= 1;
2605 return NULL;
2606 }
2607
2608 return cb(head, skb);
2609}
2610
2611typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2612 struct sk_buff *);
2613static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2614 struct sock *sk,
2615 struct list_head *head,
2616 struct sk_buff *skb)
2617{
2618 if (unlikely(gro_recursion_inc_test(skb))) {
2619 NAPI_GRO_CB(skb)->flush |= 1;
2620 return NULL;
2621 }
2622
2623 return cb(sk, head, skb);
2624}
2625
2626struct packet_type {
2627 __be16 type; /* This is really htons(ether_type). */
2628 bool ignore_outgoing;
2629 struct net_device *dev; /* NULL is wildcarded here */
2630 int (*func) (struct sk_buff *,
2631 struct net_device *,
2632 struct packet_type *,
2633 struct net_device *);
2634 void (*list_func) (struct list_head *,
2635 struct packet_type *,
2636 struct net_device *);
2637 bool (*id_match)(struct packet_type *ptype,
2638 struct sock *sk);
2639 void *af_packet_priv;
2640 struct list_head list;
2641};
2642
2643struct offload_callbacks {
2644 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2645 netdev_features_t features);
2646 struct sk_buff *(*gro_receive)(struct list_head *head,
2647 struct sk_buff *skb);
2648 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2649};
2650
2651struct packet_offload {
2652 __be16 type; /* This is really htons(ether_type). */
2653 u16 priority;
2654 struct offload_callbacks callbacks;
2655 struct list_head list;
2656};
2657
2658/* often modified stats are per-CPU, other are shared (netdev->stats) */
2659struct pcpu_sw_netstats {
2660 u64 rx_packets;
2661 u64 rx_bytes;
2662 u64 tx_packets;
2663 u64 tx_bytes;
2664 struct u64_stats_sync syncp;
2665} __aligned(4 * sizeof(u64));
2666
2667struct pcpu_lstats {
2668 u64_stats_t packets;
2669 u64_stats_t bytes;
2670 struct u64_stats_sync syncp;
2671} __aligned(2 * sizeof(u64));
2672
2673void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2674
2675static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2676{
2677 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2678
2679 u64_stats_update_begin(&tstats->syncp);
2680 tstats->rx_bytes += len;
2681 tstats->rx_packets++;
2682 u64_stats_update_end(&tstats->syncp);
2683}
2684
2685static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2686 unsigned int packets,
2687 unsigned int len)
2688{
2689 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2690
2691 u64_stats_update_begin(&tstats->syncp);
2692 tstats->tx_bytes += len;
2693 tstats->tx_packets += packets;
2694 u64_stats_update_end(&tstats->syncp);
2695}
2696
2697static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2698{
2699 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2700
2701 u64_stats_update_begin(&lstats->syncp);
2702 u64_stats_add(&lstats->bytes, len);
2703 u64_stats_inc(&lstats->packets);
2704 u64_stats_update_end(&lstats->syncp);
2705}
2706
2707#define __netdev_alloc_pcpu_stats(type, gfp) \
2708({ \
2709 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2710 if (pcpu_stats) { \
2711 int __cpu; \
2712 for_each_possible_cpu(__cpu) { \
2713 typeof(type) *stat; \
2714 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2715 u64_stats_init(&stat->syncp); \
2716 } \
2717 } \
2718 pcpu_stats; \
2719})
2720
2721#define netdev_alloc_pcpu_stats(type) \
2722 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2723
2724#define devm_netdev_alloc_pcpu_stats(dev, type) \
2725({ \
2726 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2727 if (pcpu_stats) { \
2728 int __cpu; \
2729 for_each_possible_cpu(__cpu) { \
2730 typeof(type) *stat; \
2731 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2732 u64_stats_init(&stat->syncp); \
2733 } \
2734 } \
2735 pcpu_stats; \
2736})
2737
2738enum netdev_lag_tx_type {
2739 NETDEV_LAG_TX_TYPE_UNKNOWN,
2740 NETDEV_LAG_TX_TYPE_RANDOM,
2741 NETDEV_LAG_TX_TYPE_BROADCAST,
2742 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2743 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2744 NETDEV_LAG_TX_TYPE_HASH,
2745};
2746
2747enum netdev_lag_hash {
2748 NETDEV_LAG_HASH_NONE,
2749 NETDEV_LAG_HASH_L2,
2750 NETDEV_LAG_HASH_L34,
2751 NETDEV_LAG_HASH_L23,
2752 NETDEV_LAG_HASH_E23,
2753 NETDEV_LAG_HASH_E34,
2754 NETDEV_LAG_HASH_VLAN_SRCMAC,
2755 NETDEV_LAG_HASH_UNKNOWN,
2756};
2757
2758struct netdev_lag_upper_info {
2759 enum netdev_lag_tx_type tx_type;
2760 enum netdev_lag_hash hash_type;
2761};
2762
2763struct netdev_lag_lower_state_info {
2764 u8 link_up : 1,
2765 tx_enabled : 1;
2766};
2767
2768#include <linux/notifier.h>
2769
2770/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2771 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2772 * adding new types.
2773 */
2774enum netdev_cmd {
2775 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2776 NETDEV_DOWN,
2777 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2778 detected a hardware crash and restarted
2779 - we can use this eg to kick tcp sessions
2780 once done */
2781 NETDEV_CHANGE, /* Notify device state change */
2782 NETDEV_REGISTER,
2783 NETDEV_UNREGISTER,
2784 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2785 NETDEV_CHANGEADDR, /* notify after the address change */
2786 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2787 NETDEV_GOING_DOWN,
2788 NETDEV_CHANGENAME,
2789 NETDEV_FEAT_CHANGE,
2790 NETDEV_BONDING_FAILOVER,
2791 NETDEV_PRE_UP,
2792 NETDEV_PRE_TYPE_CHANGE,
2793 NETDEV_POST_TYPE_CHANGE,
2794 NETDEV_POST_INIT,
2795 NETDEV_RELEASE,
2796 NETDEV_NOTIFY_PEERS,
2797 NETDEV_JOIN,
2798 NETDEV_CHANGEUPPER,
2799 NETDEV_RESEND_IGMP,
2800 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2801 NETDEV_CHANGEINFODATA,
2802 NETDEV_BONDING_INFO,
2803 NETDEV_PRECHANGEUPPER,
2804 NETDEV_CHANGELOWERSTATE,
2805 NETDEV_UDP_TUNNEL_PUSH_INFO,
2806 NETDEV_UDP_TUNNEL_DROP_INFO,
2807 NETDEV_CHANGE_TX_QUEUE_LEN,
2808 NETDEV_CVLAN_FILTER_PUSH_INFO,
2809 NETDEV_CVLAN_FILTER_DROP_INFO,
2810 NETDEV_SVLAN_FILTER_PUSH_INFO,
2811 NETDEV_SVLAN_FILTER_DROP_INFO,
2812};
2813const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2814
2815int register_netdevice_notifier(struct notifier_block *nb);
2816int unregister_netdevice_notifier(struct notifier_block *nb);
2817int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2818int unregister_netdevice_notifier_net(struct net *net,
2819 struct notifier_block *nb);
2820int register_netdevice_notifier_dev_net(struct net_device *dev,
2821 struct notifier_block *nb,
2822 struct netdev_net_notifier *nn);
2823int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2824 struct notifier_block *nb,
2825 struct netdev_net_notifier *nn);
2826
2827struct netdev_notifier_info {
2828 struct net_device *dev;
2829 struct netlink_ext_ack *extack;
2830};
2831
2832struct netdev_notifier_info_ext {
2833 struct netdev_notifier_info info; /* must be first */
2834 union {
2835 u32 mtu;
2836 } ext;
2837};
2838
2839struct netdev_notifier_change_info {
2840 struct netdev_notifier_info info; /* must be first */
2841 unsigned int flags_changed;
2842};
2843
2844struct netdev_notifier_changeupper_info {
2845 struct netdev_notifier_info info; /* must be first */
2846 struct net_device *upper_dev; /* new upper dev */
2847 bool master; /* is upper dev master */
2848 bool linking; /* is the notification for link or unlink */
2849 void *upper_info; /* upper dev info */
2850};
2851
2852struct netdev_notifier_changelowerstate_info {
2853 struct netdev_notifier_info info; /* must be first */
2854 void *lower_state_info; /* is lower dev state */
2855};
2856
2857struct netdev_notifier_pre_changeaddr_info {
2858 struct netdev_notifier_info info; /* must be first */
2859 const unsigned char *dev_addr;
2860};
2861
2862static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2863 struct net_device *dev)
2864{
2865 info->dev = dev;
2866 info->extack = NULL;
2867}
2868
2869static inline struct net_device *
2870netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2871{
2872 return info->dev;
2873}
2874
2875static inline struct netlink_ext_ack *
2876netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2877{
2878 return info->extack;
2879}
2880
2881int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2882
2883
2884extern rwlock_t dev_base_lock; /* Device list lock */
2885
2886#define for_each_netdev(net, d) \
2887 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2888#define for_each_netdev_reverse(net, d) \
2889 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2890#define for_each_netdev_rcu(net, d) \
2891 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2892#define for_each_netdev_safe(net, d, n) \
2893 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2894#define for_each_netdev_continue(net, d) \
2895 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2896#define for_each_netdev_continue_reverse(net, d) \
2897 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2898 dev_list)
2899#define for_each_netdev_continue_rcu(net, d) \
2900 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2901#define for_each_netdev_in_bond_rcu(bond, slave) \
2902 for_each_netdev_rcu(&init_net, slave) \
2903 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2904#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2905
2906static inline struct net_device *next_net_device(struct net_device *dev)
2907{
2908 struct list_head *lh;
2909 struct net *net;
2910
2911 net = dev_net(dev);
2912 lh = dev->dev_list.next;
2913 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2914}
2915
2916static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2917{
2918 struct list_head *lh;
2919 struct net *net;
2920
2921 net = dev_net(dev);
2922 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2923 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2924}
2925
2926static inline struct net_device *first_net_device(struct net *net)
2927{
2928 return list_empty(&net->dev_base_head) ? NULL :
2929 net_device_entry(net->dev_base_head.next);
2930}
2931
2932static inline struct net_device *first_net_device_rcu(struct net *net)
2933{
2934 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2935
2936 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2937}
2938
2939int netdev_boot_setup_check(struct net_device *dev);
2940struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2941 const char *hwaddr);
2942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2943void dev_add_pack(struct packet_type *pt);
2944void dev_remove_pack(struct packet_type *pt);
2945void __dev_remove_pack(struct packet_type *pt);
2946void dev_add_offload(struct packet_offload *po);
2947void dev_remove_offload(struct packet_offload *po);
2948
2949int dev_get_iflink(const struct net_device *dev);
2950int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2951int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2952 struct net_device_path_stack *stack);
2953struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2954 unsigned short mask);
2955struct net_device *dev_get_by_name(struct net *net, const char *name);
2956struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2957struct net_device *__dev_get_by_name(struct net *net, const char *name);
2958bool netdev_name_in_use(struct net *net, const char *name);
2959int dev_alloc_name(struct net_device *dev, const char *name);
2960int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2961void dev_close(struct net_device *dev);
2962void dev_close_many(struct list_head *head, bool unlink);
2963void dev_disable_lro(struct net_device *dev);
2964int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2965u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2966 struct net_device *sb_dev);
2967u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2968 struct net_device *sb_dev);
2969
2970int dev_queue_xmit(struct sk_buff *skb);
2971int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2972int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2973
2974static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2975{
2976 int ret;
2977
2978 ret = __dev_direct_xmit(skb, queue_id);
2979 if (!dev_xmit_complete(ret))
2980 kfree_skb(skb);
2981 return ret;
2982}
2983
2984int register_netdevice(struct net_device *dev);
2985void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2986void unregister_netdevice_many(struct list_head *head);
2987static inline void unregister_netdevice(struct net_device *dev)
2988{
2989 unregister_netdevice_queue(dev, NULL);
2990}
2991
2992int netdev_refcnt_read(const struct net_device *dev);
2993void free_netdev(struct net_device *dev);
2994void netdev_freemem(struct net_device *dev);
2995int init_dummy_netdev(struct net_device *dev);
2996
2997struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2998 struct sk_buff *skb,
2999 bool all_slaves);
3000struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3001 struct sock *sk);
3002struct net_device *dev_get_by_index(struct net *net, int ifindex);
3003struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3004struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3005struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3006int netdev_get_name(struct net *net, char *name, int ifindex);
3007int dev_restart(struct net_device *dev);
3008int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
3009int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
3010
3011static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
3012{
3013 return NAPI_GRO_CB(skb)->data_offset;
3014}
3015
3016static inline unsigned int skb_gro_len(const struct sk_buff *skb)
3017{
3018 return skb->len - NAPI_GRO_CB(skb)->data_offset;
3019}
3020
3021static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
3022{
3023 NAPI_GRO_CB(skb)->data_offset += len;
3024}
3025
3026static inline void *skb_gro_header_fast(struct sk_buff *skb,
3027 unsigned int offset)
3028{
3029 return NAPI_GRO_CB(skb)->frag0 + offset;
3030}
3031
3032static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
3033{
3034 return NAPI_GRO_CB(skb)->frag0_len < hlen;
3035}
3036
3037static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
3038{
3039 NAPI_GRO_CB(skb)->frag0 = NULL;
3040 NAPI_GRO_CB(skb)->frag0_len = 0;
3041}
3042
3043static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
3044 unsigned int offset)
3045{
3046 if (!pskb_may_pull(skb, hlen))
3047 return NULL;
3048
3049 skb_gro_frag0_invalidate(skb);
3050 return skb->data + offset;
3051}
3052
3053static inline void *skb_gro_network_header(struct sk_buff *skb)
3054{
3055 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
3056 skb_network_offset(skb);
3057}
3058
3059static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3060 const void *start, unsigned int len)
3061{
3062 if (NAPI_GRO_CB(skb)->csum_valid)
3063 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3064 csum_partial(start, len, 0));
3065}
3066
3067/* GRO checksum functions. These are logical equivalents of the normal
3068 * checksum functions (in skbuff.h) except that they operate on the GRO
3069 * offsets and fields in sk_buff.
3070 */
3071
3072__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3073
3074static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3075{
3076 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3077}
3078
3079static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3080 bool zero_okay,
3081 __sum16 check)
3082{
3083 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3084 skb_checksum_start_offset(skb) <
3085 skb_gro_offset(skb)) &&
3086 !skb_at_gro_remcsum_start(skb) &&
3087 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3088 (!zero_okay || check));
3089}
3090
3091static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3092 __wsum psum)
3093{
3094 if (NAPI_GRO_CB(skb)->csum_valid &&
3095 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3096 return 0;
3097
3098 NAPI_GRO_CB(skb)->csum = psum;
3099
3100 return __skb_gro_checksum_complete(skb);
3101}
3102
3103static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3104{
3105 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3106 /* Consume a checksum from CHECKSUM_UNNECESSARY */
3107 NAPI_GRO_CB(skb)->csum_cnt--;
3108 } else {
3109 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3110 * verified a new top level checksum or an encapsulated one
3111 * during GRO. This saves work if we fallback to normal path.
3112 */
3113 __skb_incr_checksum_unnecessary(skb);
3114 }
3115}
3116
3117#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
3118 compute_pseudo) \
3119({ \
3120 __sum16 __ret = 0; \
3121 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
3122 __ret = __skb_gro_checksum_validate_complete(skb, \
3123 compute_pseudo(skb, proto)); \
3124 if (!__ret) \
3125 skb_gro_incr_csum_unnecessary(skb); \
3126 __ret; \
3127})
3128
3129#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
3130 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3131
3132#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
3133 compute_pseudo) \
3134 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3135
3136#define skb_gro_checksum_simple_validate(skb) \
3137 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3138
3139static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3140{
3141 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3142 !NAPI_GRO_CB(skb)->csum_valid);
3143}
3144
3145static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3146 __wsum pseudo)
3147{
3148 NAPI_GRO_CB(skb)->csum = ~pseudo;
3149 NAPI_GRO_CB(skb)->csum_valid = 1;
3150}
3151
3152#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
3153do { \
3154 if (__skb_gro_checksum_convert_check(skb)) \
3155 __skb_gro_checksum_convert(skb, \
3156 compute_pseudo(skb, proto)); \
3157} while (0)
3158
3159struct gro_remcsum {
3160 int offset;
3161 __wsum delta;
3162};
3163
3164static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3165{
3166 grc->offset = 0;
3167 grc->delta = 0;
3168}
3169
3170static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3171 unsigned int off, size_t hdrlen,
3172 int start, int offset,
3173 struct gro_remcsum *grc,
3174 bool nopartial)
3175{
3176 __wsum delta;
3177 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3178
3179 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3180
3181 if (!nopartial) {
3182 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3183 return ptr;
3184 }
3185
3186 ptr = skb_gro_header_fast(skb, off);
3187 if (skb_gro_header_hard(skb, off + plen)) {
3188 ptr = skb_gro_header_slow(skb, off + plen, off);
3189 if (!ptr)
3190 return NULL;
3191 }
3192
3193 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3194 start, offset);
3195
3196 /* Adjust skb->csum since we changed the packet */
3197 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3198
3199 grc->offset = off + hdrlen + offset;
3200 grc->delta = delta;
3201
3202 return ptr;
3203}
3204
3205static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3206 struct gro_remcsum *grc)
3207{
3208 void *ptr;
3209 size_t plen = grc->offset + sizeof(u16);
3210
3211 if (!grc->delta)
3212 return;
3213
3214 ptr = skb_gro_header_fast(skb, grc->offset);
3215 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3216 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3217 if (!ptr)
3218 return;
3219 }
3220
3221 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3222}
3223
3224#ifdef CONFIG_XFRM_OFFLOAD
3225static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3226{
3227 if (PTR_ERR(pp) != -EINPROGRESS)
3228 NAPI_GRO_CB(skb)->flush |= flush;
3229}
3230static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3231 struct sk_buff *pp,
3232 int flush,
3233 struct gro_remcsum *grc)
3234{
3235 if (PTR_ERR(pp) != -EINPROGRESS) {
3236 NAPI_GRO_CB(skb)->flush |= flush;
3237 skb_gro_remcsum_cleanup(skb, grc);
3238 skb->remcsum_offload = 0;
3239 }
3240}
3241#else
3242static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3243{
3244 NAPI_GRO_CB(skb)->flush |= flush;
3245}
3246static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3247 struct sk_buff *pp,
3248 int flush,
3249 struct gro_remcsum *grc)
3250{
3251 NAPI_GRO_CB(skb)->flush |= flush;
3252 skb_gro_remcsum_cleanup(skb, grc);
3253 skb->remcsum_offload = 0;
3254}
3255#endif
3256
3257static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3258 unsigned short type,
3259 const void *daddr, const void *saddr,
3260 unsigned int len)
3261{
3262 if (!dev->header_ops || !dev->header_ops->create)
3263 return 0;
3264
3265 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3266}
3267
3268static inline int dev_parse_header(const struct sk_buff *skb,
3269 unsigned char *haddr)
3270{
3271 const struct net_device *dev = skb->dev;
3272
3273 if (!dev->header_ops || !dev->header_ops->parse)
3274 return 0;
3275 return dev->header_ops->parse(skb, haddr);
3276}
3277
3278static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3279{
3280 const struct net_device *dev = skb->dev;
3281
3282 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3283 return 0;
3284 return dev->header_ops->parse_protocol(skb);
3285}
3286
3287/* ll_header must have at least hard_header_len allocated */
3288static inline bool dev_validate_header(const struct net_device *dev,
3289 char *ll_header, int len)
3290{
3291 if (likely(len >= dev->hard_header_len))
3292 return true;
3293 if (len < dev->min_header_len)
3294 return false;
3295
3296 if (capable(CAP_SYS_RAWIO)) {
3297 memset(ll_header + len, 0, dev->hard_header_len - len);
3298 return true;
3299 }
3300
3301 if (dev->header_ops && dev->header_ops->validate)
3302 return dev->header_ops->validate(ll_header, len);
3303
3304 return false;
3305}
3306
3307static inline bool dev_has_header(const struct net_device *dev)
3308{
3309 return dev->header_ops && dev->header_ops->create;
3310}
3311
3312#ifdef CONFIG_NET_FLOW_LIMIT
3313#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3314struct sd_flow_limit {
3315 u64 count;
3316 unsigned int num_buckets;
3317 unsigned int history_head;
3318 u16 history[FLOW_LIMIT_HISTORY];
3319 u8 buckets[];
3320};
3321
3322extern int netdev_flow_limit_table_len;
3323#endif /* CONFIG_NET_FLOW_LIMIT */
3324
3325/*
3326 * Incoming packets are placed on per-CPU queues
3327 */
3328struct softnet_data {
3329 struct list_head poll_list;
3330 struct sk_buff_head process_queue;
3331
3332 /* stats */
3333 unsigned int processed;
3334 unsigned int time_squeeze;
3335 unsigned int received_rps;
3336#ifdef CONFIG_RPS
3337 struct softnet_data *rps_ipi_list;
3338#endif
3339#ifdef CONFIG_NET_FLOW_LIMIT
3340 struct sd_flow_limit __rcu *flow_limit;
3341#endif
3342 struct Qdisc *output_queue;
3343 struct Qdisc **output_queue_tailp;
3344 struct sk_buff *completion_queue;
3345#ifdef CONFIG_XFRM_OFFLOAD
3346 struct sk_buff_head xfrm_backlog;
3347#endif
3348 /* written and read only by owning cpu: */
3349 struct {
3350 u16 recursion;
3351 u8 more;
3352 } xmit;
3353#ifdef CONFIG_RPS
3354 /* input_queue_head should be written by cpu owning this struct,
3355 * and only read by other cpus. Worth using a cache line.
3356 */
3357 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3358
3359 /* Elements below can be accessed between CPUs for RPS/RFS */
3360 call_single_data_t csd ____cacheline_aligned_in_smp;
3361 struct softnet_data *rps_ipi_next;
3362 unsigned int cpu;
3363 unsigned int input_queue_tail;
3364#endif
3365 unsigned int dropped;
3366 struct sk_buff_head input_pkt_queue;
3367 struct napi_struct backlog;
3368
3369};
3370
3371static inline void input_queue_head_incr(struct softnet_data *sd)
3372{
3373#ifdef CONFIG_RPS
3374 sd->input_queue_head++;
3375#endif
3376}
3377
3378static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3379 unsigned int *qtail)
3380{
3381#ifdef CONFIG_RPS
3382 *qtail = ++sd->input_queue_tail;
3383#endif
3384}
3385
3386DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3387
3388static inline int dev_recursion_level(void)
3389{
3390 return this_cpu_read(softnet_data.xmit.recursion);
3391}
3392
3393#define XMIT_RECURSION_LIMIT 8
3394static inline bool dev_xmit_recursion(void)
3395{
3396 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3397 XMIT_RECURSION_LIMIT);
3398}
3399
3400static inline void dev_xmit_recursion_inc(void)
3401{
3402 __this_cpu_inc(softnet_data.xmit.recursion);
3403}
3404
3405static inline void dev_xmit_recursion_dec(void)
3406{
3407 __this_cpu_dec(softnet_data.xmit.recursion);
3408}
3409
3410void __netif_schedule(struct Qdisc *q);
3411void netif_schedule_queue(struct netdev_queue *txq);
3412
3413static inline void netif_tx_schedule_all(struct net_device *dev)
3414{
3415 unsigned int i;
3416
3417 for (i = 0; i < dev->num_tx_queues; i++)
3418 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3419}
3420
3421static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3422{
3423 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3424}
3425
3426/**
3427 * netif_start_queue - allow transmit
3428 * @dev: network device
3429 *
3430 * Allow upper layers to call the device hard_start_xmit routine.
3431 */
3432static inline void netif_start_queue(struct net_device *dev)
3433{
3434 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3435}
3436
3437static inline void netif_tx_start_all_queues(struct net_device *dev)
3438{
3439 unsigned int i;
3440
3441 for (i = 0; i < dev->num_tx_queues; i++) {
3442 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3443 netif_tx_start_queue(txq);
3444 }
3445}
3446
3447void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3448
3449/**
3450 * netif_wake_queue - restart transmit
3451 * @dev: network device
3452 *
3453 * Allow upper layers to call the device hard_start_xmit routine.
3454 * Used for flow control when transmit resources are available.
3455 */
3456static inline void netif_wake_queue(struct net_device *dev)
3457{
3458 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3459}
3460
3461static inline void netif_tx_wake_all_queues(struct net_device *dev)
3462{
3463 unsigned int i;
3464
3465 for (i = 0; i < dev->num_tx_queues; i++) {
3466 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3467 netif_tx_wake_queue(txq);
3468 }
3469}
3470
3471static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3472{
3473 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3474}
3475
3476/**
3477 * netif_stop_queue - stop transmitted packets
3478 * @dev: network device
3479 *
3480 * Stop upper layers calling the device hard_start_xmit routine.
3481 * Used for flow control when transmit resources are unavailable.
3482 */
3483static inline void netif_stop_queue(struct net_device *dev)
3484{
3485 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3486}
3487
3488void netif_tx_stop_all_queues(struct net_device *dev);
3489
3490static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3491{
3492 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3493}
3494
3495/**
3496 * netif_queue_stopped - test if transmit queue is flowblocked
3497 * @dev: network device
3498 *
3499 * Test if transmit queue on device is currently unable to send.
3500 */
3501static inline bool netif_queue_stopped(const struct net_device *dev)
3502{
3503 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3504}
3505
3506static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3507{
3508 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3509}
3510
3511static inline bool
3512netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3513{
3514 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3515}
3516
3517static inline bool
3518netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3519{
3520 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3521}
3522
3523/**
3524 * netdev_queue_set_dql_min_limit - set dql minimum limit
3525 * @dev_queue: pointer to transmit queue
3526 * @min_limit: dql minimum limit
3527 *
3528 * Forces xmit_more() to return true until the minimum threshold
3529 * defined by @min_limit is reached (or until the tx queue is
3530 * empty). Warning: to be use with care, misuse will impact the
3531 * latency.
3532 */
3533static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3534 unsigned int min_limit)
3535{
3536#ifdef CONFIG_BQL
3537 dev_queue->dql.min_limit = min_limit;
3538#endif
3539}
3540
3541/**
3542 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3543 * @dev_queue: pointer to transmit queue
3544 *
3545 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3546 * to give appropriate hint to the CPU.
3547 */
3548static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3549{
3550#ifdef CONFIG_BQL
3551 prefetchw(&dev_queue->dql.num_queued);
3552#endif
3553}
3554
3555/**
3556 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3557 * @dev_queue: pointer to transmit queue
3558 *
3559 * BQL enabled drivers might use this helper in their TX completion path,
3560 * to give appropriate hint to the CPU.
3561 */
3562static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3563{
3564#ifdef CONFIG_BQL
3565 prefetchw(&dev_queue->dql.limit);
3566#endif
3567}
3568
3569static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3570 unsigned int bytes)
3571{
3572#ifdef CONFIG_BQL
3573 dql_queued(&dev_queue->dql, bytes);
3574
3575 if (likely(dql_avail(&dev_queue->dql) >= 0))
3576 return;
3577
3578 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3579
3580 /*
3581 * The XOFF flag must be set before checking the dql_avail below,
3582 * because in netdev_tx_completed_queue we update the dql_completed
3583 * before checking the XOFF flag.
3584 */
3585 smp_mb();
3586
3587 /* check again in case another CPU has just made room avail */
3588 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3589 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3590#endif
3591}
3592
3593/* Variant of netdev_tx_sent_queue() for drivers that are aware
3594 * that they should not test BQL status themselves.
3595 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3596 * skb of a batch.
3597 * Returns true if the doorbell must be used to kick the NIC.
3598 */
3599static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3600 unsigned int bytes,
3601 bool xmit_more)
3602{
3603 if (xmit_more) {
3604#ifdef CONFIG_BQL
3605 dql_queued(&dev_queue->dql, bytes);
3606#endif
3607 return netif_tx_queue_stopped(dev_queue);
3608 }
3609 netdev_tx_sent_queue(dev_queue, bytes);
3610 return true;
3611}
3612
3613/**
3614 * netdev_sent_queue - report the number of bytes queued to hardware
3615 * @dev: network device
3616 * @bytes: number of bytes queued to the hardware device queue
3617 *
3618 * Report the number of bytes queued for sending/completion to the network
3619 * device hardware queue. @bytes should be a good approximation and should
3620 * exactly match netdev_completed_queue() @bytes
3621 */
3622static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3623{
3624 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3625}
3626
3627static inline bool __netdev_sent_queue(struct net_device *dev,
3628 unsigned int bytes,
3629 bool xmit_more)
3630{
3631 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3632 xmit_more);
3633}
3634
3635static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3636 unsigned int pkts, unsigned int bytes)
3637{
3638#ifdef CONFIG_BQL
3639 if (unlikely(!bytes))
3640 return;
3641
3642 dql_completed(&dev_queue->dql, bytes);
3643
3644 /*
3645 * Without the memory barrier there is a small possiblity that
3646 * netdev_tx_sent_queue will miss the update and cause the queue to
3647 * be stopped forever
3648 */
3649 smp_mb();
3650
3651 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3652 return;
3653
3654 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3655 netif_schedule_queue(dev_queue);
3656#endif
3657}
3658
3659/**
3660 * netdev_completed_queue - report bytes and packets completed by device
3661 * @dev: network device
3662 * @pkts: actual number of packets sent over the medium
3663 * @bytes: actual number of bytes sent over the medium
3664 *
3665 * Report the number of bytes and packets transmitted by the network device
3666 * hardware queue over the physical medium, @bytes must exactly match the
3667 * @bytes amount passed to netdev_sent_queue()
3668 */
3669static inline void netdev_completed_queue(struct net_device *dev,
3670 unsigned int pkts, unsigned int bytes)
3671{
3672 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3673}
3674
3675static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3676{
3677#ifdef CONFIG_BQL
3678 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3679 dql_reset(&q->dql);
3680#endif
3681}
3682
3683/**
3684 * netdev_reset_queue - reset the packets and bytes count of a network device
3685 * @dev_queue: network device
3686 *
3687 * Reset the bytes and packet count of a network device and clear the
3688 * software flow control OFF bit for this network device
3689 */
3690static inline void netdev_reset_queue(struct net_device *dev_queue)
3691{
3692 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3693}
3694
3695/**
3696 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3697 * @dev: network device
3698 * @queue_index: given tx queue index
3699 *
3700 * Returns 0 if given tx queue index >= number of device tx queues,
3701 * otherwise returns the originally passed tx queue index.
3702 */
3703static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3704{
3705 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3706 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3707 dev->name, queue_index,
3708 dev->real_num_tx_queues);
3709 return 0;
3710 }
3711
3712 return queue_index;
3713}
3714
3715/**
3716 * netif_running - test if up
3717 * @dev: network device
3718 *
3719 * Test if the device has been brought up.
3720 */
3721static inline bool netif_running(const struct net_device *dev)
3722{
3723 return test_bit(__LINK_STATE_START, &dev->state);
3724}
3725
3726/*
3727 * Routines to manage the subqueues on a device. We only need start,
3728 * stop, and a check if it's stopped. All other device management is
3729 * done at the overall netdevice level.
3730 * Also test the device if we're multiqueue.
3731 */
3732
3733/**
3734 * netif_start_subqueue - allow sending packets on subqueue
3735 * @dev: network device
3736 * @queue_index: sub queue index
3737 *
3738 * Start individual transmit queue of a device with multiple transmit queues.
3739 */
3740static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3741{
3742 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3743
3744 netif_tx_start_queue(txq);
3745}
3746
3747/**
3748 * netif_stop_subqueue - stop sending packets on subqueue
3749 * @dev: network device
3750 * @queue_index: sub queue index
3751 *
3752 * Stop individual transmit queue of a device with multiple transmit queues.
3753 */
3754static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3755{
3756 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3757 netif_tx_stop_queue(txq);
3758}
3759
3760/**
3761 * __netif_subqueue_stopped - test status of subqueue
3762 * @dev: network device
3763 * @queue_index: sub queue index
3764 *
3765 * Check individual transmit queue of a device with multiple transmit queues.
3766 */
3767static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3768 u16 queue_index)
3769{
3770 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3771
3772 return netif_tx_queue_stopped(txq);
3773}
3774
3775/**
3776 * netif_subqueue_stopped - test status of subqueue
3777 * @dev: network device
3778 * @skb: sub queue buffer pointer
3779 *
3780 * Check individual transmit queue of a device with multiple transmit queues.
3781 */
3782static inline bool netif_subqueue_stopped(const struct net_device *dev,
3783 struct sk_buff *skb)
3784{
3785 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3786}
3787
3788/**
3789 * netif_wake_subqueue - allow sending packets on subqueue
3790 * @dev: network device
3791 * @queue_index: sub queue index
3792 *
3793 * Resume individual transmit queue of a device with multiple transmit queues.
3794 */
3795static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3796{
3797 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3798
3799 netif_tx_wake_queue(txq);
3800}
3801
3802#ifdef CONFIG_XPS
3803int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3804 u16 index);
3805int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3806 u16 index, enum xps_map_type type);
3807
3808/**
3809 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3810 * @j: CPU/Rx queue index
3811 * @mask: bitmask of all cpus/rx queues
3812 * @nr_bits: number of bits in the bitmask
3813 *
3814 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3815 */
3816static inline bool netif_attr_test_mask(unsigned long j,
3817 const unsigned long *mask,
3818 unsigned int nr_bits)
3819{
3820 cpu_max_bits_warn(j, nr_bits);
3821 return test_bit(j, mask);
3822}
3823
3824/**
3825 * netif_attr_test_online - Test for online CPU/Rx queue
3826 * @j: CPU/Rx queue index
3827 * @online_mask: bitmask for CPUs/Rx queues that are online
3828 * @nr_bits: number of bits in the bitmask
3829 *
3830 * Returns true if a CPU/Rx queue is online.
3831 */
3832static inline bool netif_attr_test_online(unsigned long j,
3833 const unsigned long *online_mask,
3834 unsigned int nr_bits)
3835{
3836 cpu_max_bits_warn(j, nr_bits);
3837
3838 if (online_mask)
3839 return test_bit(j, online_mask);
3840
3841 return (j < nr_bits);
3842}
3843
3844/**
3845 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3846 * @n: CPU/Rx queue index
3847 * @srcp: the cpumask/Rx queue mask pointer
3848 * @nr_bits: number of bits in the bitmask
3849 *
3850 * Returns >= nr_bits if no further CPUs/Rx queues set.
3851 */
3852static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3853 unsigned int nr_bits)
3854{
3855 /* -1 is a legal arg here. */
3856 if (n != -1)
3857 cpu_max_bits_warn(n, nr_bits);
3858
3859 if (srcp)
3860 return find_next_bit(srcp, nr_bits, n + 1);
3861
3862 return n + 1;
3863}
3864
3865/**
3866 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3867 * @n: CPU/Rx queue index
3868 * @src1p: the first CPUs/Rx queues mask pointer
3869 * @src2p: the second CPUs/Rx queues mask pointer
3870 * @nr_bits: number of bits in the bitmask
3871 *
3872 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3873 */
3874static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3875 const unsigned long *src2p,
3876 unsigned int nr_bits)
3877{
3878 /* -1 is a legal arg here. */
3879 if (n != -1)
3880 cpu_max_bits_warn(n, nr_bits);
3881
3882 if (src1p && src2p)
3883 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3884 else if (src1p)
3885 return find_next_bit(src1p, nr_bits, n + 1);
3886 else if (src2p)
3887 return find_next_bit(src2p, nr_bits, n + 1);
3888
3889 return n + 1;
3890}
3891#else
3892static inline int netif_set_xps_queue(struct net_device *dev,
3893 const struct cpumask *mask,
3894 u16 index)
3895{
3896 return 0;
3897}
3898
3899static inline int __netif_set_xps_queue(struct net_device *dev,
3900 const unsigned long *mask,
3901 u16 index, enum xps_map_type type)
3902{
3903 return 0;
3904}
3905#endif
3906
3907/**
3908 * netif_is_multiqueue - test if device has multiple transmit queues
3909 * @dev: network device
3910 *
3911 * Check if device has multiple transmit queues
3912 */
3913static inline bool netif_is_multiqueue(const struct net_device *dev)
3914{
3915 return dev->num_tx_queues > 1;
3916}
3917
3918int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3919
3920#ifdef CONFIG_SYSFS
3921int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3922#else
3923static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3924 unsigned int rxqs)
3925{
3926 dev->real_num_rx_queues = rxqs;
3927 return 0;
3928}
3929#endif
3930int netif_set_real_num_queues(struct net_device *dev,
3931 unsigned int txq, unsigned int rxq);
3932
3933static inline struct netdev_rx_queue *
3934__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3935{
3936 return dev->_rx + rxq;
3937}
3938
3939#ifdef CONFIG_SYSFS
3940static inline unsigned int get_netdev_rx_queue_index(
3941 struct netdev_rx_queue *queue)
3942{
3943 struct net_device *dev = queue->dev;
3944 int index = queue - dev->_rx;
3945
3946 BUG_ON(index >= dev->num_rx_queues);
3947 return index;
3948}
3949#endif
3950
3951#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3952int netif_get_num_default_rss_queues(void);
3953
3954enum skb_free_reason {
3955 SKB_REASON_CONSUMED,
3956 SKB_REASON_DROPPED,
3957};
3958
3959void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3960void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3961
3962/*
3963 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3964 * interrupt context or with hardware interrupts being disabled.
3965 * (in_hardirq() || irqs_disabled())
3966 *
3967 * We provide four helpers that can be used in following contexts :
3968 *
3969 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3970 * replacing kfree_skb(skb)
3971 *
3972 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3973 * Typically used in place of consume_skb(skb) in TX completion path
3974 *
3975 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3976 * replacing kfree_skb(skb)
3977 *
3978 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3979 * and consumed a packet. Used in place of consume_skb(skb)
3980 */
3981static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3982{
3983 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3984}
3985
3986static inline void dev_consume_skb_irq(struct sk_buff *skb)
3987{
3988 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3989}
3990
3991static inline void dev_kfree_skb_any(struct sk_buff *skb)
3992{
3993 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3994}
3995
3996static inline void dev_consume_skb_any(struct sk_buff *skb)
3997{
3998 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3999}
4000
4001u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4002 struct bpf_prog *xdp_prog);
4003void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
4004int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
4005int netif_rx(struct sk_buff *skb);
4006int netif_rx_ni(struct sk_buff *skb);
4007int netif_rx_any_context(struct sk_buff *skb);
4008int netif_receive_skb(struct sk_buff *skb);
4009int netif_receive_skb_core(struct sk_buff *skb);
4010void netif_receive_skb_list(struct list_head *head);
4011gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4012void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4013struct sk_buff *napi_get_frags(struct napi_struct *napi);
4014gro_result_t napi_gro_frags(struct napi_struct *napi);
4015struct packet_offload *gro_find_receive_by_type(__be16 type);
4016struct packet_offload *gro_find_complete_by_type(__be16 type);
4017
4018static inline void napi_free_frags(struct napi_struct *napi)
4019{
4020 kfree_skb(napi->skb);
4021 napi->skb = NULL;
4022}
4023
4024bool netdev_is_rx_handler_busy(struct net_device *dev);
4025int netdev_rx_handler_register(struct net_device *dev,
4026 rx_handler_func_t *rx_handler,
4027 void *rx_handler_data);
4028void netdev_rx_handler_unregister(struct net_device *dev);
4029
4030bool dev_valid_name(const char *name);
4031static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4032{
4033 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4034}
4035int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4036int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4037int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4038 void __user *data, bool *need_copyout);
4039int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4040int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4041unsigned int dev_get_flags(const struct net_device *);
4042int __dev_change_flags(struct net_device *dev, unsigned int flags,
4043 struct netlink_ext_ack *extack);
4044int dev_change_flags(struct net_device *dev, unsigned int flags,
4045 struct netlink_ext_ack *extack);
4046void __dev_notify_flags(struct net_device *, unsigned int old_flags,
4047 unsigned int gchanges);
4048int dev_change_name(struct net_device *, const char *);
4049int dev_set_alias(struct net_device *, const char *, size_t);
4050int dev_get_alias(const struct net_device *, char *, size_t);
4051int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4052 const char *pat, int new_ifindex);
4053static inline
4054int dev_change_net_namespace(struct net_device *dev, struct net *net,
4055 const char *pat)
4056{
4057 return __dev_change_net_namespace(dev, net, pat, 0);
4058}
4059int __dev_set_mtu(struct net_device *, int);
4060int dev_validate_mtu(struct net_device *dev, int mtu,
4061 struct netlink_ext_ack *extack);
4062int dev_set_mtu_ext(struct net_device *dev, int mtu,
4063 struct netlink_ext_ack *extack);
4064int dev_set_mtu(struct net_device *, int);
4065int dev_change_tx_queue_len(struct net_device *, unsigned long);
4066void dev_set_group(struct net_device *, int);
4067int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4068 struct netlink_ext_ack *extack);
4069int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4070 struct netlink_ext_ack *extack);
4071int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4072 struct netlink_ext_ack *extack);
4073int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4074int dev_change_carrier(struct net_device *, bool new_carrier);
4075int dev_get_phys_port_id(struct net_device *dev,
4076 struct netdev_phys_item_id *ppid);
4077int dev_get_phys_port_name(struct net_device *dev,
4078 char *name, size_t len);
4079int dev_get_port_parent_id(struct net_device *dev,
4080 struct netdev_phys_item_id *ppid, bool recurse);
4081bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4082int dev_change_proto_down(struct net_device *dev, bool proto_down);
4083int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
4084void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
4085 u32 value);
4086struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4087struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4088 struct netdev_queue *txq, int *ret);
4089
4090typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
4091int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
4092 int fd, int expected_fd, u32 flags);
4093int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4094u8 dev_xdp_prog_count(struct net_device *dev);
4095u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4096
4097int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4098int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4099int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4100bool is_skb_forwardable(const struct net_device *dev,
4101 const struct sk_buff *skb);
4102
4103static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4104 const struct sk_buff *skb,
4105 const bool check_mtu)
4106{
4107 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4108 unsigned int len;
4109
4110 if (!(dev->flags & IFF_UP))
4111 return false;
4112
4113 if (!check_mtu)
4114 return true;
4115
4116 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4117 if (skb->len <= len)
4118 return true;
4119
4120 /* if TSO is enabled, we don't care about the length as the packet
4121 * could be forwarded without being segmented before
4122 */
4123 if (skb_is_gso(skb))
4124 return true;
4125
4126 return false;
4127}
4128
4129static __always_inline int ____dev_forward_skb(struct net_device *dev,
4130 struct sk_buff *skb,
4131 const bool check_mtu)
4132{
4133 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4134 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4135 atomic_long_inc(&dev->rx_dropped);
4136 kfree_skb(skb);
4137 return NET_RX_DROP;
4138 }
4139
4140 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4141 skb->priority = 0;
4142 return 0;
4143}
4144
4145bool dev_nit_active(struct net_device *dev);
4146void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4147
4148extern int netdev_budget;
4149extern unsigned int netdev_budget_usecs;
4150
4151/* Called by rtnetlink.c:rtnl_unlock() */
4152void netdev_run_todo(void);
4153
4154/**
4155 * dev_put - release reference to device
4156 * @dev: network device
4157 *
4158 * Release reference to device to allow it to be freed.
4159 */
4160static inline void dev_put(struct net_device *dev)
4161{
4162 if (dev) {
4163#ifdef CONFIG_PCPU_DEV_REFCNT
4164 this_cpu_dec(*dev->pcpu_refcnt);
4165#else
4166 refcount_dec(&dev->dev_refcnt);
4167#endif
4168 }
4169}
4170
4171/**
4172 * dev_hold - get reference to device
4173 * @dev: network device
4174 *
4175 * Hold reference to device to keep it from being freed.
4176 */
4177static inline void dev_hold(struct net_device *dev)
4178{
4179 if (dev) {
4180#ifdef CONFIG_PCPU_DEV_REFCNT
4181 this_cpu_inc(*dev->pcpu_refcnt);
4182#else
4183 refcount_inc(&dev->dev_refcnt);
4184#endif
4185 }
4186}
4187
4188/* Carrier loss detection, dial on demand. The functions netif_carrier_on
4189 * and _off may be called from IRQ context, but it is caller
4190 * who is responsible for serialization of these calls.
4191 *
4192 * The name carrier is inappropriate, these functions should really be
4193 * called netif_lowerlayer_*() because they represent the state of any
4194 * kind of lower layer not just hardware media.
4195 */
4196
4197void linkwatch_init_dev(struct net_device *dev);
4198void linkwatch_fire_event(struct net_device *dev);
4199void linkwatch_forget_dev(struct net_device *dev);
4200
4201/**
4202 * netif_carrier_ok - test if carrier present
4203 * @dev: network device
4204 *
4205 * Check if carrier is present on device
4206 */
4207static inline bool netif_carrier_ok(const struct net_device *dev)
4208{
4209 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4210}
4211
4212unsigned long dev_trans_start(struct net_device *dev);
4213
4214void __netdev_watchdog_up(struct net_device *dev);
4215
4216void netif_carrier_on(struct net_device *dev);
4217void netif_carrier_off(struct net_device *dev);
4218void netif_carrier_event(struct net_device *dev);
4219
4220/**
4221 * netif_dormant_on - mark device as dormant.
4222 * @dev: network device
4223 *
4224 * Mark device as dormant (as per RFC2863).
4225 *
4226 * The dormant state indicates that the relevant interface is not
4227 * actually in a condition to pass packets (i.e., it is not 'up') but is
4228 * in a "pending" state, waiting for some external event. For "on-
4229 * demand" interfaces, this new state identifies the situation where the
4230 * interface is waiting for events to place it in the up state.
4231 */
4232static inline void netif_dormant_on(struct net_device *dev)
4233{
4234 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4235 linkwatch_fire_event(dev);
4236}
4237
4238/**
4239 * netif_dormant_off - set device as not dormant.
4240 * @dev: network device
4241 *
4242 * Device is not in dormant state.
4243 */
4244static inline void netif_dormant_off(struct net_device *dev)
4245{
4246 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4247 linkwatch_fire_event(dev);
4248}
4249
4250/**
4251 * netif_dormant - test if device is dormant
4252 * @dev: network device
4253 *
4254 * Check if device is dormant.
4255 */
4256static inline bool netif_dormant(const struct net_device *dev)
4257{
4258 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4259}
4260
4261
4262/**
4263 * netif_testing_on - mark device as under test.
4264 * @dev: network device
4265 *
4266 * Mark device as under test (as per RFC2863).
4267 *
4268 * The testing state indicates that some test(s) must be performed on
4269 * the interface. After completion, of the test, the interface state
4270 * will change to up, dormant, or down, as appropriate.
4271 */
4272static inline void netif_testing_on(struct net_device *dev)
4273{
4274 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4275 linkwatch_fire_event(dev);
4276}
4277
4278/**
4279 * netif_testing_off - set device as not under test.
4280 * @dev: network device
4281 *
4282 * Device is not in testing state.
4283 */
4284static inline void netif_testing_off(struct net_device *dev)
4285{
4286 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4287 linkwatch_fire_event(dev);
4288}
4289
4290/**
4291 * netif_testing - test if device is under test
4292 * @dev: network device
4293 *
4294 * Check if device is under test
4295 */
4296static inline bool netif_testing(const struct net_device *dev)
4297{
4298 return test_bit(__LINK_STATE_TESTING, &dev->state);
4299}
4300
4301
4302/**
4303 * netif_oper_up - test if device is operational
4304 * @dev: network device
4305 *
4306 * Check if carrier is operational
4307 */
4308static inline bool netif_oper_up(const struct net_device *dev)
4309{
4310 return (dev->operstate == IF_OPER_UP ||
4311 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4312}
4313
4314/**
4315 * netif_device_present - is device available or removed
4316 * @dev: network device
4317 *
4318 * Check if device has not been removed from system.
4319 */
4320static inline bool netif_device_present(const struct net_device *dev)
4321{
4322 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4323}
4324
4325void netif_device_detach(struct net_device *dev);
4326
4327void netif_device_attach(struct net_device *dev);
4328
4329/*
4330 * Network interface message level settings
4331 */
4332
4333enum {
4334 NETIF_MSG_DRV_BIT,
4335 NETIF_MSG_PROBE_BIT,
4336 NETIF_MSG_LINK_BIT,
4337 NETIF_MSG_TIMER_BIT,
4338 NETIF_MSG_IFDOWN_BIT,
4339 NETIF_MSG_IFUP_BIT,
4340 NETIF_MSG_RX_ERR_BIT,
4341 NETIF_MSG_TX_ERR_BIT,
4342 NETIF_MSG_TX_QUEUED_BIT,
4343 NETIF_MSG_INTR_BIT,
4344 NETIF_MSG_TX_DONE_BIT,
4345 NETIF_MSG_RX_STATUS_BIT,
4346 NETIF_MSG_PKTDATA_BIT,
4347 NETIF_MSG_HW_BIT,
4348 NETIF_MSG_WOL_BIT,
4349
4350 /* When you add a new bit above, update netif_msg_class_names array
4351 * in net/ethtool/common.c
4352 */
4353 NETIF_MSG_CLASS_COUNT,
4354};
4355/* Both ethtool_ops interface and internal driver implementation use u32 */
4356static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4357
4358#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4359#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4360
4361#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4362#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4363#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4364#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4365#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4366#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4367#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4368#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4369#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4370#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4371#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4372#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4373#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4374#define NETIF_MSG_HW __NETIF_MSG(HW)
4375#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4376
4377#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4378#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4379#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4380#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4381#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4382#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4383#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4384#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4385#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4386#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4387#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4388#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4389#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4390#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4391#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4392
4393static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4394{
4395 /* use default */
4396 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4397 return default_msg_enable_bits;
4398 if (debug_value == 0) /* no output */
4399 return 0;
4400 /* set low N bits */
4401 return (1U << debug_value) - 1;
4402}
4403
4404static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4405{
4406 spin_lock(&txq->_xmit_lock);
4407 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4408 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4409}
4410
4411static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4412{
4413 __acquire(&txq->_xmit_lock);
4414 return true;
4415}
4416
4417static inline void __netif_tx_release(struct netdev_queue *txq)
4418{
4419 __release(&txq->_xmit_lock);
4420}
4421
4422static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4423{
4424 spin_lock_bh(&txq->_xmit_lock);
4425 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4426 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4427}
4428
4429static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4430{
4431 bool ok = spin_trylock(&txq->_xmit_lock);
4432
4433 if (likely(ok)) {
4434 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4435 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4436 }
4437 return ok;
4438}
4439
4440static inline void __netif_tx_unlock(struct netdev_queue *txq)
4441{
4442 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4443 WRITE_ONCE(txq->xmit_lock_owner, -1);
4444 spin_unlock(&txq->_xmit_lock);
4445}
4446
4447static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4448{
4449 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4450 WRITE_ONCE(txq->xmit_lock_owner, -1);
4451 spin_unlock_bh(&txq->_xmit_lock);
4452}
4453
4454static inline void txq_trans_update(struct netdev_queue *txq)
4455{
4456 if (txq->xmit_lock_owner != -1)
4457 txq->trans_start = jiffies;
4458}
4459
4460/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4461static inline void netif_trans_update(struct net_device *dev)
4462{
4463 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4464
4465 if (txq->trans_start != jiffies)
4466 txq->trans_start = jiffies;
4467}
4468
4469/**
4470 * netif_tx_lock - grab network device transmit lock
4471 * @dev: network device
4472 *
4473 * Get network device transmit lock
4474 */
4475static inline void netif_tx_lock(struct net_device *dev)
4476{
4477 unsigned int i;
4478 int cpu;
4479
4480 spin_lock(&dev->tx_global_lock);
4481 cpu = smp_processor_id();
4482 for (i = 0; i < dev->num_tx_queues; i++) {
4483 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4484
4485 /* We are the only thread of execution doing a
4486 * freeze, but we have to grab the _xmit_lock in
4487 * order to synchronize with threads which are in
4488 * the ->hard_start_xmit() handler and already
4489 * checked the frozen bit.
4490 */
4491 __netif_tx_lock(txq, cpu);
4492 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4493 __netif_tx_unlock(txq);
4494 }
4495}
4496
4497static inline void netif_tx_lock_bh(struct net_device *dev)
4498{
4499 local_bh_disable();
4500 netif_tx_lock(dev);
4501}
4502
4503static inline void netif_tx_unlock(struct net_device *dev)
4504{
4505 unsigned int i;
4506
4507 for (i = 0; i < dev->num_tx_queues; i++) {
4508 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4509
4510 /* No need to grab the _xmit_lock here. If the
4511 * queue is not stopped for another reason, we
4512 * force a schedule.
4513 */
4514 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4515 netif_schedule_queue(txq);
4516 }
4517 spin_unlock(&dev->tx_global_lock);
4518}
4519
4520static inline void netif_tx_unlock_bh(struct net_device *dev)
4521{
4522 netif_tx_unlock(dev);
4523 local_bh_enable();
4524}
4525
4526#define HARD_TX_LOCK(dev, txq, cpu) { \
4527 if ((dev->features & NETIF_F_LLTX) == 0) { \
4528 __netif_tx_lock(txq, cpu); \
4529 } else { \
4530 __netif_tx_acquire(txq); \
4531 } \
4532}
4533
4534#define HARD_TX_TRYLOCK(dev, txq) \
4535 (((dev->features & NETIF_F_LLTX) == 0) ? \
4536 __netif_tx_trylock(txq) : \
4537 __netif_tx_acquire(txq))
4538
4539#define HARD_TX_UNLOCK(dev, txq) { \
4540 if ((dev->features & NETIF_F_LLTX) == 0) { \
4541 __netif_tx_unlock(txq); \
4542 } else { \
4543 __netif_tx_release(txq); \
4544 } \
4545}
4546
4547static inline void netif_tx_disable(struct net_device *dev)
4548{
4549 unsigned int i;
4550 int cpu;
4551
4552 local_bh_disable();
4553 cpu = smp_processor_id();
4554 spin_lock(&dev->tx_global_lock);
4555 for (i = 0; i < dev->num_tx_queues; i++) {
4556 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4557
4558 __netif_tx_lock(txq, cpu);
4559 netif_tx_stop_queue(txq);
4560 __netif_tx_unlock(txq);
4561 }
4562 spin_unlock(&dev->tx_global_lock);
4563 local_bh_enable();
4564}
4565
4566static inline void netif_addr_lock(struct net_device *dev)
4567{
4568 unsigned char nest_level = 0;
4569
4570#ifdef CONFIG_LOCKDEP
4571 nest_level = dev->nested_level;
4572#endif
4573 spin_lock_nested(&dev->addr_list_lock, nest_level);
4574}
4575
4576static inline void netif_addr_lock_bh(struct net_device *dev)
4577{
4578 unsigned char nest_level = 0;
4579
4580#ifdef CONFIG_LOCKDEP
4581 nest_level = dev->nested_level;
4582#endif
4583 local_bh_disable();
4584 spin_lock_nested(&dev->addr_list_lock, nest_level);
4585}
4586
4587static inline void netif_addr_unlock(struct net_device *dev)
4588{
4589 spin_unlock(&dev->addr_list_lock);
4590}
4591
4592static inline void netif_addr_unlock_bh(struct net_device *dev)
4593{
4594 spin_unlock_bh(&dev->addr_list_lock);
4595}
4596
4597/*
4598 * dev_addrs walker. Should be used only for read access. Call with
4599 * rcu_read_lock held.
4600 */
4601#define for_each_dev_addr(dev, ha) \
4602 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4603
4604/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4605
4606void ether_setup(struct net_device *dev);
4607
4608/* Support for loadable net-drivers */
4609struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4610 unsigned char name_assign_type,
4611 void (*setup)(struct net_device *),
4612 unsigned int txqs, unsigned int rxqs);
4613#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4614 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4615
4616#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4617 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4618 count)
4619
4620int register_netdev(struct net_device *dev);
4621void unregister_netdev(struct net_device *dev);
4622
4623int devm_register_netdev(struct device *dev, struct net_device *ndev);
4624
4625/* General hardware address lists handling functions */
4626int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4627 struct netdev_hw_addr_list *from_list, int addr_len);
4628void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4629 struct netdev_hw_addr_list *from_list, int addr_len);
4630int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4631 struct net_device *dev,
4632 int (*sync)(struct net_device *, const unsigned char *),
4633 int (*unsync)(struct net_device *,
4634 const unsigned char *));
4635int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4636 struct net_device *dev,
4637 int (*sync)(struct net_device *,
4638 const unsigned char *, int),
4639 int (*unsync)(struct net_device *,
4640 const unsigned char *, int));
4641void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4642 struct net_device *dev,
4643 int (*unsync)(struct net_device *,
4644 const unsigned char *, int));
4645void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4646 struct net_device *dev,
4647 int (*unsync)(struct net_device *,
4648 const unsigned char *));
4649void __hw_addr_init(struct netdev_hw_addr_list *list);
4650
4651/* Functions used for device addresses handling */
4652static inline void
4653__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4654{
4655 memcpy(dev->dev_addr, addr, len);
4656}
4657
4658static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4659{
4660 __dev_addr_set(dev, addr, dev->addr_len);
4661}
4662
4663static inline void
4664dev_addr_mod(struct net_device *dev, unsigned int offset,
4665 const void *addr, size_t len)
4666{
4667 memcpy(&dev->dev_addr[offset], addr, len);
4668}
4669
4670int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4671 unsigned char addr_type);
4672int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4673 unsigned char addr_type);
4674void dev_addr_flush(struct net_device *dev);
4675int dev_addr_init(struct net_device *dev);
4676
4677/* Functions used for unicast addresses handling */
4678int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4679int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4680int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4681int dev_uc_sync(struct net_device *to, struct net_device *from);
4682int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4683void dev_uc_unsync(struct net_device *to, struct net_device *from);
4684void dev_uc_flush(struct net_device *dev);
4685void dev_uc_init(struct net_device *dev);
4686
4687/**
4688 * __dev_uc_sync - Synchonize device's unicast list
4689 * @dev: device to sync
4690 * @sync: function to call if address should be added
4691 * @unsync: function to call if address should be removed
4692 *
4693 * Add newly added addresses to the interface, and release
4694 * addresses that have been deleted.
4695 */
4696static inline int __dev_uc_sync(struct net_device *dev,
4697 int (*sync)(struct net_device *,
4698 const unsigned char *),
4699 int (*unsync)(struct net_device *,
4700 const unsigned char *))
4701{
4702 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4703}
4704
4705/**
4706 * __dev_uc_unsync - Remove synchronized addresses from device
4707 * @dev: device to sync
4708 * @unsync: function to call if address should be removed
4709 *
4710 * Remove all addresses that were added to the device by dev_uc_sync().
4711 */
4712static inline void __dev_uc_unsync(struct net_device *dev,
4713 int (*unsync)(struct net_device *,
4714 const unsigned char *))
4715{
4716 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4717}
4718
4719/* Functions used for multicast addresses handling */
4720int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4721int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4722int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4723int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4724int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4725int dev_mc_sync(struct net_device *to, struct net_device *from);
4726int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4727void dev_mc_unsync(struct net_device *to, struct net_device *from);
4728void dev_mc_flush(struct net_device *dev);
4729void dev_mc_init(struct net_device *dev);
4730
4731/**
4732 * __dev_mc_sync - Synchonize device's multicast list
4733 * @dev: device to sync
4734 * @sync: function to call if address should be added
4735 * @unsync: function to call if address should be removed
4736 *
4737 * Add newly added addresses to the interface, and release
4738 * addresses that have been deleted.
4739 */
4740static inline int __dev_mc_sync(struct net_device *dev,
4741 int (*sync)(struct net_device *,
4742 const unsigned char *),
4743 int (*unsync)(struct net_device *,
4744 const unsigned char *))
4745{
4746 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4747}
4748
4749/**
4750 * __dev_mc_unsync - Remove synchronized addresses from device
4751 * @dev: device to sync
4752 * @unsync: function to call if address should be removed
4753 *
4754 * Remove all addresses that were added to the device by dev_mc_sync().
4755 */
4756static inline void __dev_mc_unsync(struct net_device *dev,
4757 int (*unsync)(struct net_device *,
4758 const unsigned char *))
4759{
4760 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4761}
4762
4763/* Functions used for secondary unicast and multicast support */
4764void dev_set_rx_mode(struct net_device *dev);
4765void __dev_set_rx_mode(struct net_device *dev);
4766int dev_set_promiscuity(struct net_device *dev, int inc);
4767int dev_set_allmulti(struct net_device *dev, int inc);
4768void netdev_state_change(struct net_device *dev);
4769void __netdev_notify_peers(struct net_device *dev);
4770void netdev_notify_peers(struct net_device *dev);
4771void netdev_features_change(struct net_device *dev);
4772/* Load a device via the kmod */
4773void dev_load(struct net *net, const char *name);
4774struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4775 struct rtnl_link_stats64 *storage);
4776void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4777 const struct net_device_stats *netdev_stats);
4778void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4779 const struct pcpu_sw_netstats __percpu *netstats);
4780void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4781
4782extern int netdev_max_backlog;
4783extern int netdev_tstamp_prequeue;
4784extern int netdev_unregister_timeout_secs;
4785extern int weight_p;
4786extern int dev_weight_rx_bias;
4787extern int dev_weight_tx_bias;
4788extern int dev_rx_weight;
4789extern int dev_tx_weight;
4790extern int gro_normal_batch;
4791
4792enum {
4793 NESTED_SYNC_IMM_BIT,
4794 NESTED_SYNC_TODO_BIT,
4795};
4796
4797#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4798#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4799
4800#define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4801#define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4802
4803struct netdev_nested_priv {
4804 unsigned char flags;
4805 void *data;
4806};
4807
4808bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4809struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4810 struct list_head **iter);
4811
4812#ifdef CONFIG_LOCKDEP
4813static LIST_HEAD(net_unlink_list);
4814
4815static inline void net_unlink_todo(struct net_device *dev)
4816{
4817 if (list_empty(&dev->unlink_list))
4818 list_add_tail(&dev->unlink_list, &net_unlink_list);
4819}
4820#endif
4821
4822/* iterate through upper list, must be called under RCU read lock */
4823#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4824 for (iter = &(dev)->adj_list.upper, \
4825 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4826 updev; \
4827 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4828
4829int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4830 int (*fn)(struct net_device *upper_dev,
4831 struct netdev_nested_priv *priv),
4832 struct netdev_nested_priv *priv);
4833
4834bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4835 struct net_device *upper_dev);
4836
4837bool netdev_has_any_upper_dev(struct net_device *dev);
4838
4839void *netdev_lower_get_next_private(struct net_device *dev,
4840 struct list_head **iter);
4841void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4842 struct list_head **iter);
4843
4844#define netdev_for_each_lower_private(dev, priv, iter) \
4845 for (iter = (dev)->adj_list.lower.next, \
4846 priv = netdev_lower_get_next_private(dev, &(iter)); \
4847 priv; \
4848 priv = netdev_lower_get_next_private(dev, &(iter)))
4849
4850#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4851 for (iter = &(dev)->adj_list.lower, \
4852 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4853 priv; \
4854 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4855
4856void *netdev_lower_get_next(struct net_device *dev,
4857 struct list_head **iter);
4858
4859#define netdev_for_each_lower_dev(dev, ldev, iter) \
4860 for (iter = (dev)->adj_list.lower.next, \
4861 ldev = netdev_lower_get_next(dev, &(iter)); \
4862 ldev; \
4863 ldev = netdev_lower_get_next(dev, &(iter)))
4864
4865struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4866 struct list_head **iter);
4867int netdev_walk_all_lower_dev(struct net_device *dev,
4868 int (*fn)(struct net_device *lower_dev,
4869 struct netdev_nested_priv *priv),
4870 struct netdev_nested_priv *priv);
4871int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4872 int (*fn)(struct net_device *lower_dev,
4873 struct netdev_nested_priv *priv),
4874 struct netdev_nested_priv *priv);
4875
4876void *netdev_adjacent_get_private(struct list_head *adj_list);
4877void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4878struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4879struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4880int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4881 struct netlink_ext_ack *extack);
4882int netdev_master_upper_dev_link(struct net_device *dev,
4883 struct net_device *upper_dev,
4884 void *upper_priv, void *upper_info,
4885 struct netlink_ext_ack *extack);
4886void netdev_upper_dev_unlink(struct net_device *dev,
4887 struct net_device *upper_dev);
4888int netdev_adjacent_change_prepare(struct net_device *old_dev,
4889 struct net_device *new_dev,
4890 struct net_device *dev,
4891 struct netlink_ext_ack *extack);
4892void netdev_adjacent_change_commit(struct net_device *old_dev,
4893 struct net_device *new_dev,
4894 struct net_device *dev);
4895void netdev_adjacent_change_abort(struct net_device *old_dev,
4896 struct net_device *new_dev,
4897 struct net_device *dev);
4898void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4899void *netdev_lower_dev_get_private(struct net_device *dev,
4900 struct net_device *lower_dev);
4901void netdev_lower_state_changed(struct net_device *lower_dev,
4902 void *lower_state_info);
4903
4904/* RSS keys are 40 or 52 bytes long */
4905#define NETDEV_RSS_KEY_LEN 52
4906extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4907void netdev_rss_key_fill(void *buffer, size_t len);
4908
4909int skb_checksum_help(struct sk_buff *skb);
4910int skb_crc32c_csum_help(struct sk_buff *skb);
4911int skb_csum_hwoffload_help(struct sk_buff *skb,
4912 const netdev_features_t features);
4913
4914struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4915 netdev_features_t features, bool tx_path);
4916struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4917 netdev_features_t features);
4918
4919struct netdev_bonding_info {
4920 ifslave slave;
4921 ifbond master;
4922};
4923
4924struct netdev_notifier_bonding_info {
4925 struct netdev_notifier_info info; /* must be first */
4926 struct netdev_bonding_info bonding_info;
4927};
4928
4929void netdev_bonding_info_change(struct net_device *dev,
4930 struct netdev_bonding_info *bonding_info);
4931
4932#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4933void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4934#else
4935static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4936 const void *data)
4937{
4938}
4939#endif
4940
4941static inline
4942struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4943{
4944 return __skb_gso_segment(skb, features, true);
4945}
4946__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4947
4948static inline bool can_checksum_protocol(netdev_features_t features,
4949 __be16 protocol)
4950{
4951 if (protocol == htons(ETH_P_FCOE))
4952 return !!(features & NETIF_F_FCOE_CRC);
4953
4954 /* Assume this is an IP checksum (not SCTP CRC) */
4955
4956 if (features & NETIF_F_HW_CSUM) {
4957 /* Can checksum everything */
4958 return true;
4959 }
4960
4961 switch (protocol) {
4962 case htons(ETH_P_IP):
4963 return !!(features & NETIF_F_IP_CSUM);
4964 case htons(ETH_P_IPV6):
4965 return !!(features & NETIF_F_IPV6_CSUM);
4966 default:
4967 return false;
4968 }
4969}
4970
4971#ifdef CONFIG_BUG
4972void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4973#else
4974static inline void netdev_rx_csum_fault(struct net_device *dev,
4975 struct sk_buff *skb)
4976{
4977}
4978#endif
4979/* rx skb timestamps */
4980void net_enable_timestamp(void);
4981void net_disable_timestamp(void);
4982
4983#ifdef CONFIG_PROC_FS
4984int __init dev_proc_init(void);
4985#else
4986#define dev_proc_init() 0
4987#endif
4988
4989static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4990 struct sk_buff *skb, struct net_device *dev,
4991 bool more)
4992{
4993 __this_cpu_write(softnet_data.xmit.more, more);
4994 return ops->ndo_start_xmit(skb, dev);
4995}
4996
4997static inline bool netdev_xmit_more(void)
4998{
4999 return __this_cpu_read(softnet_data.xmit.more);
5000}
5001
5002static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5003 struct netdev_queue *txq, bool more)
5004{
5005 const struct net_device_ops *ops = dev->netdev_ops;
5006 netdev_tx_t rc;
5007
5008 rc = __netdev_start_xmit(ops, skb, dev, more);
5009 if (rc == NETDEV_TX_OK)
5010 txq_trans_update(txq);
5011
5012 return rc;
5013}
5014
5015int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5016 const void *ns);
5017void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5018 const void *ns);
5019
5020extern const struct kobj_ns_type_operations net_ns_type_operations;
5021
5022const char *netdev_drivername(const struct net_device *dev);
5023
5024void linkwatch_run_queue(void);
5025
5026static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5027 netdev_features_t f2)
5028{
5029 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5030 if (f1 & NETIF_F_HW_CSUM)
5031 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5032 else
5033 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5034 }
5035
5036 return f1 & f2;
5037}
5038
5039static inline netdev_features_t netdev_get_wanted_features(
5040 struct net_device *dev)
5041{
5042 return (dev->features & ~dev->hw_features) | dev->wanted_features;
5043}
5044netdev_features_t netdev_increment_features(netdev_features_t all,
5045 netdev_features_t one, netdev_features_t mask);
5046
5047/* Allow TSO being used on stacked device :
5048 * Performing the GSO segmentation before last device
5049 * is a performance improvement.
5050 */
5051static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5052 netdev_features_t mask)
5053{
5054 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5055}
5056
5057int __netdev_update_features(struct net_device *dev);
5058void netdev_update_features(struct net_device *dev);
5059void netdev_change_features(struct net_device *dev);
5060
5061void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5062 struct net_device *dev);
5063
5064netdev_features_t passthru_features_check(struct sk_buff *skb,
5065 struct net_device *dev,
5066 netdev_features_t features);
5067netdev_features_t netif_skb_features(struct sk_buff *skb);
5068
5069static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5070{
5071 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5072
5073 /* check flags correspondence */
5074 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5075 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5076 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5077 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5078 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5079 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5080 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5081 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5082 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5083 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5084 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5085 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5086 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5087 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5088 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5089 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5090 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5091 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5092 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5093
5094 return (features & feature) == feature;
5095}
5096
5097static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5098{
5099 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5100 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5101}
5102
5103static inline bool netif_needs_gso(struct sk_buff *skb,
5104 netdev_features_t features)
5105{
5106 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5107 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5108 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5109}
5110
5111static inline void netif_set_gso_max_size(struct net_device *dev,
5112 unsigned int size)
5113{
5114 dev->gso_max_size = size;
5115}
5116
5117static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5118 int pulled_hlen, u16 mac_offset,
5119 int mac_len)
5120{
5121 skb->protocol = protocol;
5122 skb->encapsulation = 1;
5123 skb_push(skb, pulled_hlen);
5124 skb_reset_transport_header(skb);
5125 skb->mac_header = mac_offset;
5126 skb->network_header = skb->mac_header + mac_len;
5127 skb->mac_len = mac_len;
5128}
5129
5130static inline bool netif_is_macsec(const struct net_device *dev)
5131{
5132 return dev->priv_flags & IFF_MACSEC;
5133}
5134
5135static inline bool netif_is_macvlan(const struct net_device *dev)
5136{
5137 return dev->priv_flags & IFF_MACVLAN;
5138}
5139
5140static inline bool netif_is_macvlan_port(const struct net_device *dev)
5141{
5142 return dev->priv_flags & IFF_MACVLAN_PORT;
5143}
5144
5145static inline bool netif_is_bond_master(const struct net_device *dev)
5146{
5147 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5148}
5149
5150static inline bool netif_is_bond_slave(const struct net_device *dev)
5151{
5152 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5153}
5154
5155static inline bool netif_supports_nofcs(struct net_device *dev)
5156{
5157 return dev->priv_flags & IFF_SUPP_NOFCS;
5158}
5159
5160static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5161{
5162 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5163}
5164
5165static inline bool netif_is_l3_master(const struct net_device *dev)
5166{
5167 return dev->priv_flags & IFF_L3MDEV_MASTER;
5168}
5169
5170static inline bool netif_is_l3_slave(const struct net_device *dev)
5171{
5172 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5173}
5174
5175static inline bool netif_is_bridge_master(const struct net_device *dev)
5176{
5177 return dev->priv_flags & IFF_EBRIDGE;
5178}
5179
5180static inline bool netif_is_bridge_port(const struct net_device *dev)
5181{
5182 return dev->priv_flags & IFF_BRIDGE_PORT;
5183}
5184
5185static inline bool netif_is_ovs_master(const struct net_device *dev)
5186{
5187 return dev->priv_flags & IFF_OPENVSWITCH;
5188}
5189
5190static inline bool netif_is_ovs_port(const struct net_device *dev)
5191{
5192 return dev->priv_flags & IFF_OVS_DATAPATH;
5193}
5194
5195static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5196{
5197 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5198}
5199
5200static inline bool netif_is_team_master(const struct net_device *dev)
5201{
5202 return dev->priv_flags & IFF_TEAM;
5203}
5204
5205static inline bool netif_is_team_port(const struct net_device *dev)
5206{
5207 return dev->priv_flags & IFF_TEAM_PORT;
5208}
5209
5210static inline bool netif_is_lag_master(const struct net_device *dev)
5211{
5212 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5213}
5214
5215static inline bool netif_is_lag_port(const struct net_device *dev)
5216{
5217 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5218}
5219
5220static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5221{
5222 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5223}
5224
5225static inline bool netif_is_failover(const struct net_device *dev)
5226{
5227 return dev->priv_flags & IFF_FAILOVER;
5228}
5229
5230static inline bool netif_is_failover_slave(const struct net_device *dev)
5231{
5232 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5233}
5234
5235/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5236static inline void netif_keep_dst(struct net_device *dev)
5237{
5238 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5239}
5240
5241/* return true if dev can't cope with mtu frames that need vlan tag insertion */
5242static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5243{
5244 /* TODO: reserve and use an additional IFF bit, if we get more users */
5245 return netif_is_macsec(dev);
5246}
5247
5248extern struct pernet_operations __net_initdata loopback_net_ops;
5249
5250/* Logging, debugging and troubleshooting/diagnostic helpers. */
5251
5252/* netdev_printk helpers, similar to dev_printk */
5253
5254static inline const char *netdev_name(const struct net_device *dev)
5255{
5256 if (!dev->name[0] || strchr(dev->name, '%'))
5257 return "(unnamed net_device)";
5258 return dev->name;
5259}
5260
5261static inline bool netdev_unregistering(const struct net_device *dev)
5262{
5263 return dev->reg_state == NETREG_UNREGISTERING;
5264}
5265
5266static inline const char *netdev_reg_state(const struct net_device *dev)
5267{
5268 switch (dev->reg_state) {
5269 case NETREG_UNINITIALIZED: return " (uninitialized)";
5270 case NETREG_REGISTERED: return "";
5271 case NETREG_UNREGISTERING: return " (unregistering)";
5272 case NETREG_UNREGISTERED: return " (unregistered)";
5273 case NETREG_RELEASED: return " (released)";
5274 case NETREG_DUMMY: return " (dummy)";
5275 }
5276
5277 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5278 return " (unknown)";
5279}
5280
5281__printf(3, 4) __cold
5282void netdev_printk(const char *level, const struct net_device *dev,
5283 const char *format, ...);
5284__printf(2, 3) __cold
5285void netdev_emerg(const struct net_device *dev, const char *format, ...);
5286__printf(2, 3) __cold
5287void netdev_alert(const struct net_device *dev, const char *format, ...);
5288__printf(2, 3) __cold
5289void netdev_crit(const struct net_device *dev, const char *format, ...);
5290__printf(2, 3) __cold
5291void netdev_err(const struct net_device *dev, const char *format, ...);
5292__printf(2, 3) __cold
5293void netdev_warn(const struct net_device *dev, const char *format, ...);
5294__printf(2, 3) __cold
5295void netdev_notice(const struct net_device *dev, const char *format, ...);
5296__printf(2, 3) __cold
5297void netdev_info(const struct net_device *dev, const char *format, ...);
5298
5299#define netdev_level_once(level, dev, fmt, ...) \
5300do { \
5301 static bool __print_once __read_mostly; \
5302 \
5303 if (!__print_once) { \
5304 __print_once = true; \
5305 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5306 } \
5307} while (0)
5308
5309#define netdev_emerg_once(dev, fmt, ...) \
5310 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5311#define netdev_alert_once(dev, fmt, ...) \
5312 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5313#define netdev_crit_once(dev, fmt, ...) \
5314 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5315#define netdev_err_once(dev, fmt, ...) \
5316 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5317#define netdev_warn_once(dev, fmt, ...) \
5318 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5319#define netdev_notice_once(dev, fmt, ...) \
5320 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5321#define netdev_info_once(dev, fmt, ...) \
5322 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5323
5324#define MODULE_ALIAS_NETDEV(device) \
5325 MODULE_ALIAS("netdev-" device)
5326
5327#if defined(CONFIG_DYNAMIC_DEBUG) || \
5328 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5329#define netdev_dbg(__dev, format, args...) \
5330do { \
5331 dynamic_netdev_dbg(__dev, format, ##args); \
5332} while (0)
5333#elif defined(DEBUG)
5334#define netdev_dbg(__dev, format, args...) \
5335 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5336#else
5337#define netdev_dbg(__dev, format, args...) \
5338({ \
5339 if (0) \
5340 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5341})
5342#endif
5343
5344#if defined(VERBOSE_DEBUG)
5345#define netdev_vdbg netdev_dbg
5346#else
5347
5348#define netdev_vdbg(dev, format, args...) \
5349({ \
5350 if (0) \
5351 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5352 0; \
5353})
5354#endif
5355
5356/*
5357 * netdev_WARN() acts like dev_printk(), but with the key difference
5358 * of using a WARN/WARN_ON to get the message out, including the
5359 * file/line information and a backtrace.
5360 */
5361#define netdev_WARN(dev, format, args...) \
5362 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5363 netdev_reg_state(dev), ##args)
5364
5365#define netdev_WARN_ONCE(dev, format, args...) \
5366 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5367 netdev_reg_state(dev), ##args)
5368
5369/* netif printk helpers, similar to netdev_printk */
5370
5371#define netif_printk(priv, type, level, dev, fmt, args...) \
5372do { \
5373 if (netif_msg_##type(priv)) \
5374 netdev_printk(level, (dev), fmt, ##args); \
5375} while (0)
5376
5377#define netif_level(level, priv, type, dev, fmt, args...) \
5378do { \
5379 if (netif_msg_##type(priv)) \
5380 netdev_##level(dev, fmt, ##args); \
5381} while (0)
5382
5383#define netif_emerg(priv, type, dev, fmt, args...) \
5384 netif_level(emerg, priv, type, dev, fmt, ##args)
5385#define netif_alert(priv, type, dev, fmt, args...) \
5386 netif_level(alert, priv, type, dev, fmt, ##args)
5387#define netif_crit(priv, type, dev, fmt, args...) \
5388 netif_level(crit, priv, type, dev, fmt, ##args)
5389#define netif_err(priv, type, dev, fmt, args...) \
5390 netif_level(err, priv, type, dev, fmt, ##args)
5391#define netif_warn(priv, type, dev, fmt, args...) \
5392 netif_level(warn, priv, type, dev, fmt, ##args)
5393#define netif_notice(priv, type, dev, fmt, args...) \
5394 netif_level(notice, priv, type, dev, fmt, ##args)
5395#define netif_info(priv, type, dev, fmt, args...) \
5396 netif_level(info, priv, type, dev, fmt, ##args)
5397
5398#if defined(CONFIG_DYNAMIC_DEBUG) || \
5399 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5400#define netif_dbg(priv, type, netdev, format, args...) \
5401do { \
5402 if (netif_msg_##type(priv)) \
5403 dynamic_netdev_dbg(netdev, format, ##args); \
5404} while (0)
5405#elif defined(DEBUG)
5406#define netif_dbg(priv, type, dev, format, args...) \
5407 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5408#else
5409#define netif_dbg(priv, type, dev, format, args...) \
5410({ \
5411 if (0) \
5412 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5413 0; \
5414})
5415#endif
5416
5417/* if @cond then downgrade to debug, else print at @level */
5418#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5419 do { \
5420 if (cond) \
5421 netif_dbg(priv, type, netdev, fmt, ##args); \
5422 else \
5423 netif_ ## level(priv, type, netdev, fmt, ##args); \
5424 } while (0)
5425
5426#if defined(VERBOSE_DEBUG)
5427#define netif_vdbg netif_dbg
5428#else
5429#define netif_vdbg(priv, type, dev, format, args...) \
5430({ \
5431 if (0) \
5432 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5433 0; \
5434})
5435#endif
5436
5437/*
5438 * The list of packet types we will receive (as opposed to discard)
5439 * and the routines to invoke.
5440 *
5441 * Why 16. Because with 16 the only overlap we get on a hash of the
5442 * low nibble of the protocol value is RARP/SNAP/X.25.
5443 *
5444 * 0800 IP
5445 * 0001 802.3
5446 * 0002 AX.25
5447 * 0004 802.2
5448 * 8035 RARP
5449 * 0005 SNAP
5450 * 0805 X.25
5451 * 0806 ARP
5452 * 8137 IPX
5453 * 0009 Localtalk
5454 * 86DD IPv6
5455 */
5456#define PTYPE_HASH_SIZE (16)
5457#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5458
5459extern struct list_head ptype_all __read_mostly;
5460extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5461
5462extern struct net_device *blackhole_netdev;
5463
5464#endif /* _LINUX_NETDEVICE_H */