Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
23#include <linux/local_lock.h>
24#include <asm/page.h>
25
26/* Free memory management - zoned buddy allocator. */
27#ifndef CONFIG_FORCE_MAX_ZONEORDER
28#define MAX_ORDER 11
29#else
30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31#endif
32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33
34/*
35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36 * costly to service. That is between allocation orders which should
37 * coalesce naturally under reasonable reclaim pressure and those which
38 * will not.
39 */
40#define PAGE_ALLOC_COSTLY_ORDER 3
41
42enum migratetype {
43 MIGRATE_UNMOVABLE,
44 MIGRATE_MOVABLE,
45 MIGRATE_RECLAIMABLE,
46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
48#ifdef CONFIG_CMA
49 /*
50 * MIGRATE_CMA migration type is designed to mimic the way
51 * ZONE_MOVABLE works. Only movable pages can be allocated
52 * from MIGRATE_CMA pageblocks and page allocator never
53 * implicitly change migration type of MIGRATE_CMA pageblock.
54 *
55 * The way to use it is to change migratetype of a range of
56 * pageblocks to MIGRATE_CMA which can be done by
57 * __free_pageblock_cma() function. What is important though
58 * is that a range of pageblocks must be aligned to
59 * MAX_ORDER_NR_PAGES should biggest page be bigger than
60 * a single pageblock.
61 */
62 MIGRATE_CMA,
63#endif
64#ifdef CONFIG_MEMORY_ISOLATION
65 MIGRATE_ISOLATE, /* can't allocate from here */
66#endif
67 MIGRATE_TYPES
68};
69
70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71extern const char * const migratetype_names[MIGRATE_TYPES];
72
73#ifdef CONFIG_CMA
74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76#else
77# define is_migrate_cma(migratetype) false
78# define is_migrate_cma_page(_page) false
79#endif
80
81static inline bool is_migrate_movable(int mt)
82{
83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84}
85
86#define for_each_migratetype_order(order, type) \
87 for (order = 0; order < MAX_ORDER; order++) \
88 for (type = 0; type < MIGRATE_TYPES; type++)
89
90extern int page_group_by_mobility_disabled;
91
92#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
93
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
96
97struct free_area {
98 struct list_head free_list[MIGRATE_TYPES];
99 unsigned long nr_free;
100};
101
102static inline struct page *get_page_from_free_area(struct free_area *area,
103 int migratetype)
104{
105 return list_first_entry_or_null(&area->free_list[migratetype],
106 struct page, lru);
107}
108
109static inline bool free_area_empty(struct free_area *area, int migratetype)
110{
111 return list_empty(&area->free_list[migratetype]);
112}
113
114struct pglist_data;
115
116/*
117 * Add a wild amount of padding here to ensure data fall into separate
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
120 */
121#if defined(CONFIG_SMP)
122struct zone_padding {
123 char x[0];
124} ____cacheline_internodealigned_in_smp;
125#define ZONE_PADDING(name) struct zone_padding name;
126#else
127#define ZONE_PADDING(name)
128#endif
129
130#ifdef CONFIG_NUMA
131enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
138 NR_VM_NUMA_EVENT_ITEMS
139};
140#else
141#define NR_VM_NUMA_EVENT_ITEMS 0
142#endif
143
144enum zone_stat_item {
145 /* First 128 byte cacheline (assuming 64 bit words) */
146 NR_FREE_PAGES,
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 NR_ZONE_ACTIVE_ANON,
150 NR_ZONE_INACTIVE_FILE,
151 NR_ZONE_ACTIVE_FILE,
152 NR_ZONE_UNEVICTABLE,
153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
155 /* Second 128 byte cacheline */
156 NR_BOUNCE,
157#if IS_ENABLED(CONFIG_ZSMALLOC)
158 NR_ZSPAGES, /* allocated in zsmalloc */
159#endif
160 NR_FREE_CMA_PAGES,
161 NR_VM_ZONE_STAT_ITEMS };
162
163enum node_stat_item {
164 NR_LRU_BASE,
165 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
166 NR_ACTIVE_ANON, /* " " " " " */
167 NR_INACTIVE_FILE, /* " " " " " */
168 NR_ACTIVE_FILE, /* " " " " " */
169 NR_UNEVICTABLE, /* " " " " " */
170 NR_SLAB_RECLAIMABLE_B,
171 NR_SLAB_UNRECLAIMABLE_B,
172 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
173 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
174 WORKINGSET_NODES,
175 WORKINGSET_REFAULT_BASE,
176 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_FILE,
178 WORKINGSET_ACTIVATE_BASE,
179 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_FILE,
181 WORKINGSET_RESTORE_BASE,
182 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_FILE,
184 WORKINGSET_NODERECLAIM,
185 NR_ANON_MAPPED, /* Mapped anonymous pages */
186 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
187 only modified from process context */
188 NR_FILE_PAGES,
189 NR_FILE_DIRTY,
190 NR_WRITEBACK,
191 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
192 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
193 NR_SHMEM_THPS,
194 NR_SHMEM_PMDMAPPED,
195 NR_FILE_THPS,
196 NR_FILE_PMDMAPPED,
197 NR_ANON_THPS,
198 NR_VMSCAN_WRITE,
199 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
200 NR_DIRTIED, /* page dirtyings since bootup */
201 NR_WRITTEN, /* page writings since bootup */
202 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
209#endif
210 NR_PAGETABLE, /* used for pagetables */
211#ifdef CONFIG_SWAP
212 NR_SWAPCACHE,
213#endif
214 NR_VM_NODE_STAT_ITEMS
215};
216
217/*
218 * Returns true if the item should be printed in THPs (/proc/vmstat
219 * currently prints number of anon, file and shmem THPs. But the item
220 * is charged in pages).
221 */
222static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
223{
224 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
225 return false;
226
227 return item == NR_ANON_THPS ||
228 item == NR_FILE_THPS ||
229 item == NR_SHMEM_THPS ||
230 item == NR_SHMEM_PMDMAPPED ||
231 item == NR_FILE_PMDMAPPED;
232}
233
234/*
235 * Returns true if the value is measured in bytes (most vmstat values are
236 * measured in pages). This defines the API part, the internal representation
237 * might be different.
238 */
239static __always_inline bool vmstat_item_in_bytes(int idx)
240{
241 /*
242 * Global and per-node slab counters track slab pages.
243 * It's expected that changes are multiples of PAGE_SIZE.
244 * Internally values are stored in pages.
245 *
246 * Per-memcg and per-lruvec counters track memory, consumed
247 * by individual slab objects. These counters are actually
248 * byte-precise.
249 */
250 return (idx == NR_SLAB_RECLAIMABLE_B ||
251 idx == NR_SLAB_UNRECLAIMABLE_B);
252}
253
254/*
255 * We do arithmetic on the LRU lists in various places in the code,
256 * so it is important to keep the active lists LRU_ACTIVE higher in
257 * the array than the corresponding inactive lists, and to keep
258 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
259 *
260 * This has to be kept in sync with the statistics in zone_stat_item
261 * above and the descriptions in vmstat_text in mm/vmstat.c
262 */
263#define LRU_BASE 0
264#define LRU_ACTIVE 1
265#define LRU_FILE 2
266
267enum lru_list {
268 LRU_INACTIVE_ANON = LRU_BASE,
269 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
270 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
271 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
272 LRU_UNEVICTABLE,
273 NR_LRU_LISTS
274};
275
276enum vmscan_throttle_state {
277 VMSCAN_THROTTLE_WRITEBACK,
278 VMSCAN_THROTTLE_ISOLATED,
279 VMSCAN_THROTTLE_NOPROGRESS,
280 VMSCAN_THROTTLE_CONGESTED,
281 NR_VMSCAN_THROTTLE,
282};
283
284#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
285
286#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
287
288static inline bool is_file_lru(enum lru_list lru)
289{
290 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
291}
292
293static inline bool is_active_lru(enum lru_list lru)
294{
295 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
296}
297
298#define ANON_AND_FILE 2
299
300enum lruvec_flags {
301 LRUVEC_CONGESTED, /* lruvec has many dirty pages
302 * backed by a congested BDI
303 */
304};
305
306struct lruvec {
307 struct list_head lists[NR_LRU_LISTS];
308 /* per lruvec lru_lock for memcg */
309 spinlock_t lru_lock;
310 /*
311 * These track the cost of reclaiming one LRU - file or anon -
312 * over the other. As the observed cost of reclaiming one LRU
313 * increases, the reclaim scan balance tips toward the other.
314 */
315 unsigned long anon_cost;
316 unsigned long file_cost;
317 /* Non-resident age, driven by LRU movement */
318 atomic_long_t nonresident_age;
319 /* Refaults at the time of last reclaim cycle */
320 unsigned long refaults[ANON_AND_FILE];
321 /* Various lruvec state flags (enum lruvec_flags) */
322 unsigned long flags;
323#ifdef CONFIG_MEMCG
324 struct pglist_data *pgdat;
325#endif
326};
327
328/* Isolate unmapped pages */
329#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
330/* Isolate for asynchronous migration */
331#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
332/* Isolate unevictable pages */
333#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
334
335/* LRU Isolation modes. */
336typedef unsigned __bitwise isolate_mode_t;
337
338enum zone_watermarks {
339 WMARK_MIN,
340 WMARK_LOW,
341 WMARK_HIGH,
342 NR_WMARK
343};
344
345/*
346 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
347 * for pageblock size for THP if configured.
348 */
349#ifdef CONFIG_TRANSPARENT_HUGEPAGE
350#define NR_PCP_THP 1
351#else
352#define NR_PCP_THP 0
353#endif
354#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
355
356/*
357 * Shift to encode migratetype and order in the same integer, with order
358 * in the least significant bits.
359 */
360#define NR_PCP_ORDER_WIDTH 8
361#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
362
363#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
364#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
365#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
366#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
367
368/* Fields and list protected by pagesets local_lock in page_alloc.c */
369struct per_cpu_pages {
370 int count; /* number of pages in the list */
371 int high; /* high watermark, emptying needed */
372 int batch; /* chunk size for buddy add/remove */
373 short free_factor; /* batch scaling factor during free */
374#ifdef CONFIG_NUMA
375 short expire; /* When 0, remote pagesets are drained */
376#endif
377
378 /* Lists of pages, one per migrate type stored on the pcp-lists */
379 struct list_head lists[NR_PCP_LISTS];
380};
381
382struct per_cpu_zonestat {
383#ifdef CONFIG_SMP
384 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
385 s8 stat_threshold;
386#endif
387#ifdef CONFIG_NUMA
388 /*
389 * Low priority inaccurate counters that are only folded
390 * on demand. Use a large type to avoid the overhead of
391 * folding during refresh_cpu_vm_stats.
392 */
393 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
394#endif
395};
396
397struct per_cpu_nodestat {
398 s8 stat_threshold;
399 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
400};
401
402#endif /* !__GENERATING_BOUNDS.H */
403
404enum zone_type {
405 /*
406 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
407 * to DMA to all of the addressable memory (ZONE_NORMAL).
408 * On architectures where this area covers the whole 32 bit address
409 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
410 * DMA addressing constraints. This distinction is important as a 32bit
411 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
412 * platforms may need both zones as they support peripherals with
413 * different DMA addressing limitations.
414 */
415#ifdef CONFIG_ZONE_DMA
416 ZONE_DMA,
417#endif
418#ifdef CONFIG_ZONE_DMA32
419 ZONE_DMA32,
420#endif
421 /*
422 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
423 * performed on pages in ZONE_NORMAL if the DMA devices support
424 * transfers to all addressable memory.
425 */
426 ZONE_NORMAL,
427#ifdef CONFIG_HIGHMEM
428 /*
429 * A memory area that is only addressable by the kernel through
430 * mapping portions into its own address space. This is for example
431 * used by i386 to allow the kernel to address the memory beyond
432 * 900MB. The kernel will set up special mappings (page
433 * table entries on i386) for each page that the kernel needs to
434 * access.
435 */
436 ZONE_HIGHMEM,
437#endif
438 /*
439 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
440 * movable pages with few exceptional cases described below. Main use
441 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
442 * likely to succeed, and to locally limit unmovable allocations - e.g.,
443 * to increase the number of THP/huge pages. Notable special cases are:
444 *
445 * 1. Pinned pages: (long-term) pinning of movable pages might
446 * essentially turn such pages unmovable. Therefore, we do not allow
447 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
448 * faulted, they come from the right zone right away. However, it is
449 * still possible that address space already has pages in
450 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
451 * touches that memory before pinning). In such case we migrate them
452 * to a different zone. When migration fails - pinning fails.
453 * 2. memblock allocations: kernelcore/movablecore setups might create
454 * situations where ZONE_MOVABLE contains unmovable allocations
455 * after boot. Memory offlining and allocations fail early.
456 * 3. Memory holes: kernelcore/movablecore setups might create very rare
457 * situations where ZONE_MOVABLE contains memory holes after boot,
458 * for example, if we have sections that are only partially
459 * populated. Memory offlining and allocations fail early.
460 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
461 * memory offlining, such pages cannot be allocated.
462 * 5. Unmovable PG_offline pages: in paravirtualized environments,
463 * hotplugged memory blocks might only partially be managed by the
464 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
465 * parts not manged by the buddy are unmovable PG_offline pages. In
466 * some cases (virtio-mem), such pages can be skipped during
467 * memory offlining, however, cannot be moved/allocated. These
468 * techniques might use alloc_contig_range() to hide previously
469 * exposed pages from the buddy again (e.g., to implement some sort
470 * of memory unplug in virtio-mem).
471 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
472 * situations where ZERO_PAGE(0) which is allocated differently
473 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
474 * cannot be migrated.
475 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
476 * memory to the MOVABLE zone, the vmemmap pages are also placed in
477 * such zone. Such pages cannot be really moved around as they are
478 * self-stored in the range, but they are treated as movable when
479 * the range they describe is about to be offlined.
480 *
481 * In general, no unmovable allocations that degrade memory offlining
482 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
483 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
484 * if has_unmovable_pages() states that there are no unmovable pages,
485 * there can be false negatives).
486 */
487 ZONE_MOVABLE,
488#ifdef CONFIG_ZONE_DEVICE
489 ZONE_DEVICE,
490#endif
491 __MAX_NR_ZONES
492
493};
494
495#ifndef __GENERATING_BOUNDS_H
496
497#define ASYNC_AND_SYNC 2
498
499struct zone {
500 /* Read-mostly fields */
501
502 /* zone watermarks, access with *_wmark_pages(zone) macros */
503 unsigned long _watermark[NR_WMARK];
504 unsigned long watermark_boost;
505
506 unsigned long nr_reserved_highatomic;
507
508 /*
509 * We don't know if the memory that we're going to allocate will be
510 * freeable or/and it will be released eventually, so to avoid totally
511 * wasting several GB of ram we must reserve some of the lower zone
512 * memory (otherwise we risk to run OOM on the lower zones despite
513 * there being tons of freeable ram on the higher zones). This array is
514 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
515 * changes.
516 */
517 long lowmem_reserve[MAX_NR_ZONES];
518
519#ifdef CONFIG_NUMA
520 int node;
521#endif
522 struct pglist_data *zone_pgdat;
523 struct per_cpu_pages __percpu *per_cpu_pageset;
524 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
525 /*
526 * the high and batch values are copied to individual pagesets for
527 * faster access
528 */
529 int pageset_high;
530 int pageset_batch;
531
532#ifndef CONFIG_SPARSEMEM
533 /*
534 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
535 * In SPARSEMEM, this map is stored in struct mem_section
536 */
537 unsigned long *pageblock_flags;
538#endif /* CONFIG_SPARSEMEM */
539
540 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
541 unsigned long zone_start_pfn;
542
543 /*
544 * spanned_pages is the total pages spanned by the zone, including
545 * holes, which is calculated as:
546 * spanned_pages = zone_end_pfn - zone_start_pfn;
547 *
548 * present_pages is physical pages existing within the zone, which
549 * is calculated as:
550 * present_pages = spanned_pages - absent_pages(pages in holes);
551 *
552 * present_early_pages is present pages existing within the zone
553 * located on memory available since early boot, excluding hotplugged
554 * memory.
555 *
556 * managed_pages is present pages managed by the buddy system, which
557 * is calculated as (reserved_pages includes pages allocated by the
558 * bootmem allocator):
559 * managed_pages = present_pages - reserved_pages;
560 *
561 * cma pages is present pages that are assigned for CMA use
562 * (MIGRATE_CMA).
563 *
564 * So present_pages may be used by memory hotplug or memory power
565 * management logic to figure out unmanaged pages by checking
566 * (present_pages - managed_pages). And managed_pages should be used
567 * by page allocator and vm scanner to calculate all kinds of watermarks
568 * and thresholds.
569 *
570 * Locking rules:
571 *
572 * zone_start_pfn and spanned_pages are protected by span_seqlock.
573 * It is a seqlock because it has to be read outside of zone->lock,
574 * and it is done in the main allocator path. But, it is written
575 * quite infrequently.
576 *
577 * The span_seq lock is declared along with zone->lock because it is
578 * frequently read in proximity to zone->lock. It's good to
579 * give them a chance of being in the same cacheline.
580 *
581 * Write access to present_pages at runtime should be protected by
582 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
583 * present_pages should get_online_mems() to get a stable value.
584 */
585 atomic_long_t managed_pages;
586 unsigned long spanned_pages;
587 unsigned long present_pages;
588#if defined(CONFIG_MEMORY_HOTPLUG)
589 unsigned long present_early_pages;
590#endif
591#ifdef CONFIG_CMA
592 unsigned long cma_pages;
593#endif
594
595 const char *name;
596
597#ifdef CONFIG_MEMORY_ISOLATION
598 /*
599 * Number of isolated pageblock. It is used to solve incorrect
600 * freepage counting problem due to racy retrieving migratetype
601 * of pageblock. Protected by zone->lock.
602 */
603 unsigned long nr_isolate_pageblock;
604#endif
605
606#ifdef CONFIG_MEMORY_HOTPLUG
607 /* see spanned/present_pages for more description */
608 seqlock_t span_seqlock;
609#endif
610
611 int initialized;
612
613 /* Write-intensive fields used from the page allocator */
614 ZONE_PADDING(_pad1_)
615
616 /* free areas of different sizes */
617 struct free_area free_area[MAX_ORDER];
618
619 /* zone flags, see below */
620 unsigned long flags;
621
622 /* Primarily protects free_area */
623 spinlock_t lock;
624
625 /* Write-intensive fields used by compaction and vmstats. */
626 ZONE_PADDING(_pad2_)
627
628 /*
629 * When free pages are below this point, additional steps are taken
630 * when reading the number of free pages to avoid per-cpu counter
631 * drift allowing watermarks to be breached
632 */
633 unsigned long percpu_drift_mark;
634
635#if defined CONFIG_COMPACTION || defined CONFIG_CMA
636 /* pfn where compaction free scanner should start */
637 unsigned long compact_cached_free_pfn;
638 /* pfn where compaction migration scanner should start */
639 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
640 unsigned long compact_init_migrate_pfn;
641 unsigned long compact_init_free_pfn;
642#endif
643
644#ifdef CONFIG_COMPACTION
645 /*
646 * On compaction failure, 1<<compact_defer_shift compactions
647 * are skipped before trying again. The number attempted since
648 * last failure is tracked with compact_considered.
649 * compact_order_failed is the minimum compaction failed order.
650 */
651 unsigned int compact_considered;
652 unsigned int compact_defer_shift;
653 int compact_order_failed;
654#endif
655
656#if defined CONFIG_COMPACTION || defined CONFIG_CMA
657 /* Set to true when the PG_migrate_skip bits should be cleared */
658 bool compact_blockskip_flush;
659#endif
660
661 bool contiguous;
662
663 ZONE_PADDING(_pad3_)
664 /* Zone statistics */
665 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
666 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
667} ____cacheline_internodealigned_in_smp;
668
669enum pgdat_flags {
670 PGDAT_DIRTY, /* reclaim scanning has recently found
671 * many dirty file pages at the tail
672 * of the LRU.
673 */
674 PGDAT_WRITEBACK, /* reclaim scanning has recently found
675 * many pages under writeback
676 */
677 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
678};
679
680enum zone_flags {
681 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
682 * Cleared when kswapd is woken.
683 */
684 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
685};
686
687static inline unsigned long zone_managed_pages(struct zone *zone)
688{
689 return (unsigned long)atomic_long_read(&zone->managed_pages);
690}
691
692static inline unsigned long zone_cma_pages(struct zone *zone)
693{
694#ifdef CONFIG_CMA
695 return zone->cma_pages;
696#else
697 return 0;
698#endif
699}
700
701static inline unsigned long zone_end_pfn(const struct zone *zone)
702{
703 return zone->zone_start_pfn + zone->spanned_pages;
704}
705
706static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
707{
708 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
709}
710
711static inline bool zone_is_initialized(struct zone *zone)
712{
713 return zone->initialized;
714}
715
716static inline bool zone_is_empty(struct zone *zone)
717{
718 return zone->spanned_pages == 0;
719}
720
721/*
722 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
723 * intersection with the given zone
724 */
725static inline bool zone_intersects(struct zone *zone,
726 unsigned long start_pfn, unsigned long nr_pages)
727{
728 if (zone_is_empty(zone))
729 return false;
730 if (start_pfn >= zone_end_pfn(zone) ||
731 start_pfn + nr_pages <= zone->zone_start_pfn)
732 return false;
733
734 return true;
735}
736
737/*
738 * The "priority" of VM scanning is how much of the queues we will scan in one
739 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
740 * queues ("queue_length >> 12") during an aging round.
741 */
742#define DEF_PRIORITY 12
743
744/* Maximum number of zones on a zonelist */
745#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
746
747enum {
748 ZONELIST_FALLBACK, /* zonelist with fallback */
749#ifdef CONFIG_NUMA
750 /*
751 * The NUMA zonelists are doubled because we need zonelists that
752 * restrict the allocations to a single node for __GFP_THISNODE.
753 */
754 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
755#endif
756 MAX_ZONELISTS
757};
758
759/*
760 * This struct contains information about a zone in a zonelist. It is stored
761 * here to avoid dereferences into large structures and lookups of tables
762 */
763struct zoneref {
764 struct zone *zone; /* Pointer to actual zone */
765 int zone_idx; /* zone_idx(zoneref->zone) */
766};
767
768/*
769 * One allocation request operates on a zonelist. A zonelist
770 * is a list of zones, the first one is the 'goal' of the
771 * allocation, the other zones are fallback zones, in decreasing
772 * priority.
773 *
774 * To speed the reading of the zonelist, the zonerefs contain the zone index
775 * of the entry being read. Helper functions to access information given
776 * a struct zoneref are
777 *
778 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
779 * zonelist_zone_idx() - Return the index of the zone for an entry
780 * zonelist_node_idx() - Return the index of the node for an entry
781 */
782struct zonelist {
783 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
784};
785
786/*
787 * The array of struct pages for flatmem.
788 * It must be declared for SPARSEMEM as well because there are configurations
789 * that rely on that.
790 */
791extern struct page *mem_map;
792
793#ifdef CONFIG_TRANSPARENT_HUGEPAGE
794struct deferred_split {
795 spinlock_t split_queue_lock;
796 struct list_head split_queue;
797 unsigned long split_queue_len;
798};
799#endif
800
801/*
802 * On NUMA machines, each NUMA node would have a pg_data_t to describe
803 * it's memory layout. On UMA machines there is a single pglist_data which
804 * describes the whole memory.
805 *
806 * Memory statistics and page replacement data structures are maintained on a
807 * per-zone basis.
808 */
809typedef struct pglist_data {
810 /*
811 * node_zones contains just the zones for THIS node. Not all of the
812 * zones may be populated, but it is the full list. It is referenced by
813 * this node's node_zonelists as well as other node's node_zonelists.
814 */
815 struct zone node_zones[MAX_NR_ZONES];
816
817 /*
818 * node_zonelists contains references to all zones in all nodes.
819 * Generally the first zones will be references to this node's
820 * node_zones.
821 */
822 struct zonelist node_zonelists[MAX_ZONELISTS];
823
824 int nr_zones; /* number of populated zones in this node */
825#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
826 struct page *node_mem_map;
827#ifdef CONFIG_PAGE_EXTENSION
828 struct page_ext *node_page_ext;
829#endif
830#endif
831#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
832 /*
833 * Must be held any time you expect node_start_pfn,
834 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
835 * Also synchronizes pgdat->first_deferred_pfn during deferred page
836 * init.
837 *
838 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
839 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
840 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
841 *
842 * Nests above zone->lock and zone->span_seqlock
843 */
844 spinlock_t node_size_lock;
845#endif
846 unsigned long node_start_pfn;
847 unsigned long node_present_pages; /* total number of physical pages */
848 unsigned long node_spanned_pages; /* total size of physical page
849 range, including holes */
850 int node_id;
851 wait_queue_head_t kswapd_wait;
852 wait_queue_head_t pfmemalloc_wait;
853
854 /* workqueues for throttling reclaim for different reasons. */
855 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
856
857 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
858 unsigned long nr_reclaim_start; /* nr pages written while throttled
859 * when throttling started. */
860 struct task_struct *kswapd; /* Protected by
861 mem_hotplug_begin/end() */
862 int kswapd_order;
863 enum zone_type kswapd_highest_zoneidx;
864
865 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
866
867#ifdef CONFIG_COMPACTION
868 int kcompactd_max_order;
869 enum zone_type kcompactd_highest_zoneidx;
870 wait_queue_head_t kcompactd_wait;
871 struct task_struct *kcompactd;
872 bool proactive_compact_trigger;
873#endif
874 /*
875 * This is a per-node reserve of pages that are not available
876 * to userspace allocations.
877 */
878 unsigned long totalreserve_pages;
879
880#ifdef CONFIG_NUMA
881 /*
882 * node reclaim becomes active if more unmapped pages exist.
883 */
884 unsigned long min_unmapped_pages;
885 unsigned long min_slab_pages;
886#endif /* CONFIG_NUMA */
887
888 /* Write-intensive fields used by page reclaim */
889 ZONE_PADDING(_pad1_)
890
891#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
892 /*
893 * If memory initialisation on large machines is deferred then this
894 * is the first PFN that needs to be initialised.
895 */
896 unsigned long first_deferred_pfn;
897#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
898
899#ifdef CONFIG_TRANSPARENT_HUGEPAGE
900 struct deferred_split deferred_split_queue;
901#endif
902
903 /* Fields commonly accessed by the page reclaim scanner */
904
905 /*
906 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
907 *
908 * Use mem_cgroup_lruvec() to look up lruvecs.
909 */
910 struct lruvec __lruvec;
911
912 unsigned long flags;
913
914 ZONE_PADDING(_pad2_)
915
916 /* Per-node vmstats */
917 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
918 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
919} pg_data_t;
920
921#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
922#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
923#ifdef CONFIG_FLATMEM
924#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
925#else
926#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
927#endif
928#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
929
930#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
931#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
932
933static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
934{
935 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
936}
937
938static inline bool pgdat_is_empty(pg_data_t *pgdat)
939{
940 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
941}
942
943#include <linux/memory_hotplug.h>
944
945void build_all_zonelists(pg_data_t *pgdat);
946void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
947 enum zone_type highest_zoneidx);
948bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
949 int highest_zoneidx, unsigned int alloc_flags,
950 long free_pages);
951bool zone_watermark_ok(struct zone *z, unsigned int order,
952 unsigned long mark, int highest_zoneidx,
953 unsigned int alloc_flags);
954bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
955 unsigned long mark, int highest_zoneidx);
956/*
957 * Memory initialization context, use to differentiate memory added by
958 * the platform statically or via memory hotplug interface.
959 */
960enum meminit_context {
961 MEMINIT_EARLY,
962 MEMINIT_HOTPLUG,
963};
964
965extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
966 unsigned long size);
967
968extern void lruvec_init(struct lruvec *lruvec);
969
970static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
971{
972#ifdef CONFIG_MEMCG
973 return lruvec->pgdat;
974#else
975 return container_of(lruvec, struct pglist_data, __lruvec);
976#endif
977}
978
979#ifdef CONFIG_HAVE_MEMORYLESS_NODES
980int local_memory_node(int node_id);
981#else
982static inline int local_memory_node(int node_id) { return node_id; };
983#endif
984
985/*
986 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
987 */
988#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
989
990#ifdef CONFIG_ZONE_DEVICE
991static inline bool zone_is_zone_device(struct zone *zone)
992{
993 return zone_idx(zone) == ZONE_DEVICE;
994}
995#else
996static inline bool zone_is_zone_device(struct zone *zone)
997{
998 return false;
999}
1000#endif
1001
1002/*
1003 * Returns true if a zone has pages managed by the buddy allocator.
1004 * All the reclaim decisions have to use this function rather than
1005 * populated_zone(). If the whole zone is reserved then we can easily
1006 * end up with populated_zone() && !managed_zone().
1007 */
1008static inline bool managed_zone(struct zone *zone)
1009{
1010 return zone_managed_pages(zone);
1011}
1012
1013/* Returns true if a zone has memory */
1014static inline bool populated_zone(struct zone *zone)
1015{
1016 return zone->present_pages;
1017}
1018
1019#ifdef CONFIG_NUMA
1020static inline int zone_to_nid(struct zone *zone)
1021{
1022 return zone->node;
1023}
1024
1025static inline void zone_set_nid(struct zone *zone, int nid)
1026{
1027 zone->node = nid;
1028}
1029#else
1030static inline int zone_to_nid(struct zone *zone)
1031{
1032 return 0;
1033}
1034
1035static inline void zone_set_nid(struct zone *zone, int nid) {}
1036#endif
1037
1038extern int movable_zone;
1039
1040static inline int is_highmem_idx(enum zone_type idx)
1041{
1042#ifdef CONFIG_HIGHMEM
1043 return (idx == ZONE_HIGHMEM ||
1044 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1045#else
1046 return 0;
1047#endif
1048}
1049
1050/**
1051 * is_highmem - helper function to quickly check if a struct zone is a
1052 * highmem zone or not. This is an attempt to keep references
1053 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1054 * @zone: pointer to struct zone variable
1055 * Return: 1 for a highmem zone, 0 otherwise
1056 */
1057static inline int is_highmem(struct zone *zone)
1058{
1059#ifdef CONFIG_HIGHMEM
1060 return is_highmem_idx(zone_idx(zone));
1061#else
1062 return 0;
1063#endif
1064}
1065
1066/* These two functions are used to setup the per zone pages min values */
1067struct ctl_table;
1068
1069int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1070 loff_t *);
1071int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1072 size_t *, loff_t *);
1073extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1074int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1075 size_t *, loff_t *);
1076int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1077 void *, size_t *, loff_t *);
1078int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1079 void *, size_t *, loff_t *);
1080int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1081 void *, size_t *, loff_t *);
1082int numa_zonelist_order_handler(struct ctl_table *, int,
1083 void *, size_t *, loff_t *);
1084extern int percpu_pagelist_high_fraction;
1085extern char numa_zonelist_order[];
1086#define NUMA_ZONELIST_ORDER_LEN 16
1087
1088#ifndef CONFIG_NUMA
1089
1090extern struct pglist_data contig_page_data;
1091static inline struct pglist_data *NODE_DATA(int nid)
1092{
1093 return &contig_page_data;
1094}
1095#define NODE_MEM_MAP(nid) mem_map
1096
1097#else /* CONFIG_NUMA */
1098
1099#include <asm/mmzone.h>
1100
1101#endif /* !CONFIG_NUMA */
1102
1103extern struct pglist_data *first_online_pgdat(void);
1104extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1105extern struct zone *next_zone(struct zone *zone);
1106
1107/**
1108 * for_each_online_pgdat - helper macro to iterate over all online nodes
1109 * @pgdat: pointer to a pg_data_t variable
1110 */
1111#define for_each_online_pgdat(pgdat) \
1112 for (pgdat = first_online_pgdat(); \
1113 pgdat; \
1114 pgdat = next_online_pgdat(pgdat))
1115/**
1116 * for_each_zone - helper macro to iterate over all memory zones
1117 * @zone: pointer to struct zone variable
1118 *
1119 * The user only needs to declare the zone variable, for_each_zone
1120 * fills it in.
1121 */
1122#define for_each_zone(zone) \
1123 for (zone = (first_online_pgdat())->node_zones; \
1124 zone; \
1125 zone = next_zone(zone))
1126
1127#define for_each_populated_zone(zone) \
1128 for (zone = (first_online_pgdat())->node_zones; \
1129 zone; \
1130 zone = next_zone(zone)) \
1131 if (!populated_zone(zone)) \
1132 ; /* do nothing */ \
1133 else
1134
1135static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1136{
1137 return zoneref->zone;
1138}
1139
1140static inline int zonelist_zone_idx(struct zoneref *zoneref)
1141{
1142 return zoneref->zone_idx;
1143}
1144
1145static inline int zonelist_node_idx(struct zoneref *zoneref)
1146{
1147 return zone_to_nid(zoneref->zone);
1148}
1149
1150struct zoneref *__next_zones_zonelist(struct zoneref *z,
1151 enum zone_type highest_zoneidx,
1152 nodemask_t *nodes);
1153
1154/**
1155 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1156 * @z: The cursor used as a starting point for the search
1157 * @highest_zoneidx: The zone index of the highest zone to return
1158 * @nodes: An optional nodemask to filter the zonelist with
1159 *
1160 * This function returns the next zone at or below a given zone index that is
1161 * within the allowed nodemask using a cursor as the starting point for the
1162 * search. The zoneref returned is a cursor that represents the current zone
1163 * being examined. It should be advanced by one before calling
1164 * next_zones_zonelist again.
1165 *
1166 * Return: the next zone at or below highest_zoneidx within the allowed
1167 * nodemask using a cursor within a zonelist as a starting point
1168 */
1169static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1170 enum zone_type highest_zoneidx,
1171 nodemask_t *nodes)
1172{
1173 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1174 return z;
1175 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1176}
1177
1178/**
1179 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1180 * @zonelist: The zonelist to search for a suitable zone
1181 * @highest_zoneidx: The zone index of the highest zone to return
1182 * @nodes: An optional nodemask to filter the zonelist with
1183 *
1184 * This function returns the first zone at or below a given zone index that is
1185 * within the allowed nodemask. The zoneref returned is a cursor that can be
1186 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1187 * one before calling.
1188 *
1189 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1190 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1191 * update due to cpuset modification.
1192 *
1193 * Return: Zoneref pointer for the first suitable zone found
1194 */
1195static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1196 enum zone_type highest_zoneidx,
1197 nodemask_t *nodes)
1198{
1199 return next_zones_zonelist(zonelist->_zonerefs,
1200 highest_zoneidx, nodes);
1201}
1202
1203/**
1204 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1205 * @zone: The current zone in the iterator
1206 * @z: The current pointer within zonelist->_zonerefs being iterated
1207 * @zlist: The zonelist being iterated
1208 * @highidx: The zone index of the highest zone to return
1209 * @nodemask: Nodemask allowed by the allocator
1210 *
1211 * This iterator iterates though all zones at or below a given zone index and
1212 * within a given nodemask
1213 */
1214#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1215 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1216 zone; \
1217 z = next_zones_zonelist(++z, highidx, nodemask), \
1218 zone = zonelist_zone(z))
1219
1220#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1221 for (zone = z->zone; \
1222 zone; \
1223 z = next_zones_zonelist(++z, highidx, nodemask), \
1224 zone = zonelist_zone(z))
1225
1226
1227/**
1228 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1229 * @zone: The current zone in the iterator
1230 * @z: The current pointer within zonelist->zones being iterated
1231 * @zlist: The zonelist being iterated
1232 * @highidx: The zone index of the highest zone to return
1233 *
1234 * This iterator iterates though all zones at or below a given zone index.
1235 */
1236#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1237 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1238
1239/* Whether the 'nodes' are all movable nodes */
1240static inline bool movable_only_nodes(nodemask_t *nodes)
1241{
1242 struct zonelist *zonelist;
1243 struct zoneref *z;
1244 int nid;
1245
1246 if (nodes_empty(*nodes))
1247 return false;
1248
1249 /*
1250 * We can chose arbitrary node from the nodemask to get a
1251 * zonelist as they are interlinked. We just need to find
1252 * at least one zone that can satisfy kernel allocations.
1253 */
1254 nid = first_node(*nodes);
1255 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1256 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1257 return (!z->zone) ? true : false;
1258}
1259
1260
1261#ifdef CONFIG_SPARSEMEM
1262#include <asm/sparsemem.h>
1263#endif
1264
1265#ifdef CONFIG_FLATMEM
1266#define pfn_to_nid(pfn) (0)
1267#endif
1268
1269#ifdef CONFIG_SPARSEMEM
1270
1271/*
1272 * PA_SECTION_SHIFT physical address to/from section number
1273 * PFN_SECTION_SHIFT pfn to/from section number
1274 */
1275#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1276#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1277
1278#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1279
1280#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1281#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1282
1283#define SECTION_BLOCKFLAGS_BITS \
1284 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1285
1286#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1287#error Allocator MAX_ORDER exceeds SECTION_SIZE
1288#endif
1289
1290static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1291{
1292 return pfn >> PFN_SECTION_SHIFT;
1293}
1294static inline unsigned long section_nr_to_pfn(unsigned long sec)
1295{
1296 return sec << PFN_SECTION_SHIFT;
1297}
1298
1299#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1300#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1301
1302#define SUBSECTION_SHIFT 21
1303#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1304
1305#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1306#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1307#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1308
1309#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1310#error Subsection size exceeds section size
1311#else
1312#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1313#endif
1314
1315#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1316#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1317
1318struct mem_section_usage {
1319#ifdef CONFIG_SPARSEMEM_VMEMMAP
1320 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1321#endif
1322 /* See declaration of similar field in struct zone */
1323 unsigned long pageblock_flags[0];
1324};
1325
1326void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1327
1328struct page;
1329struct page_ext;
1330struct mem_section {
1331 /*
1332 * This is, logically, a pointer to an array of struct
1333 * pages. However, it is stored with some other magic.
1334 * (see sparse.c::sparse_init_one_section())
1335 *
1336 * Additionally during early boot we encode node id of
1337 * the location of the section here to guide allocation.
1338 * (see sparse.c::memory_present())
1339 *
1340 * Making it a UL at least makes someone do a cast
1341 * before using it wrong.
1342 */
1343 unsigned long section_mem_map;
1344
1345 struct mem_section_usage *usage;
1346#ifdef CONFIG_PAGE_EXTENSION
1347 /*
1348 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1349 * section. (see page_ext.h about this.)
1350 */
1351 struct page_ext *page_ext;
1352 unsigned long pad;
1353#endif
1354 /*
1355 * WARNING: mem_section must be a power-of-2 in size for the
1356 * calculation and use of SECTION_ROOT_MASK to make sense.
1357 */
1358};
1359
1360#ifdef CONFIG_SPARSEMEM_EXTREME
1361#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1362#else
1363#define SECTIONS_PER_ROOT 1
1364#endif
1365
1366#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1367#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1368#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1369
1370#ifdef CONFIG_SPARSEMEM_EXTREME
1371extern struct mem_section **mem_section;
1372#else
1373extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1374#endif
1375
1376static inline unsigned long *section_to_usemap(struct mem_section *ms)
1377{
1378 return ms->usage->pageblock_flags;
1379}
1380
1381static inline struct mem_section *__nr_to_section(unsigned long nr)
1382{
1383#ifdef CONFIG_SPARSEMEM_EXTREME
1384 if (!mem_section)
1385 return NULL;
1386#endif
1387 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1388 return NULL;
1389 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1390}
1391extern size_t mem_section_usage_size(void);
1392
1393/*
1394 * We use the lower bits of the mem_map pointer to store
1395 * a little bit of information. The pointer is calculated
1396 * as mem_map - section_nr_to_pfn(pnum). The result is
1397 * aligned to the minimum alignment of the two values:
1398 * 1. All mem_map arrays are page-aligned.
1399 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1400 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1401 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1402 * worst combination is powerpc with 256k pages,
1403 * which results in PFN_SECTION_SHIFT equal 6.
1404 * To sum it up, at least 6 bits are available.
1405 */
1406#define SECTION_MARKED_PRESENT (1UL<<0)
1407#define SECTION_HAS_MEM_MAP (1UL<<1)
1408#define SECTION_IS_ONLINE (1UL<<2)
1409#define SECTION_IS_EARLY (1UL<<3)
1410#define SECTION_TAINT_ZONE_DEVICE (1UL<<4)
1411#define SECTION_MAP_LAST_BIT (1UL<<5)
1412#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1413#define SECTION_NID_SHIFT 6
1414
1415static inline struct page *__section_mem_map_addr(struct mem_section *section)
1416{
1417 unsigned long map = section->section_mem_map;
1418 map &= SECTION_MAP_MASK;
1419 return (struct page *)map;
1420}
1421
1422static inline int present_section(struct mem_section *section)
1423{
1424 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1425}
1426
1427static inline int present_section_nr(unsigned long nr)
1428{
1429 return present_section(__nr_to_section(nr));
1430}
1431
1432static inline int valid_section(struct mem_section *section)
1433{
1434 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1435}
1436
1437static inline int early_section(struct mem_section *section)
1438{
1439 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1440}
1441
1442static inline int valid_section_nr(unsigned long nr)
1443{
1444 return valid_section(__nr_to_section(nr));
1445}
1446
1447static inline int online_section(struct mem_section *section)
1448{
1449 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1450}
1451
1452static inline int online_device_section(struct mem_section *section)
1453{
1454 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1455
1456 return section && ((section->section_mem_map & flags) == flags);
1457}
1458
1459static inline int online_section_nr(unsigned long nr)
1460{
1461 return online_section(__nr_to_section(nr));
1462}
1463
1464#ifdef CONFIG_MEMORY_HOTPLUG
1465void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1466void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1467#endif
1468
1469static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1470{
1471 return __nr_to_section(pfn_to_section_nr(pfn));
1472}
1473
1474extern unsigned long __highest_present_section_nr;
1475
1476static inline int subsection_map_index(unsigned long pfn)
1477{
1478 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1479}
1480
1481#ifdef CONFIG_SPARSEMEM_VMEMMAP
1482static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1483{
1484 int idx = subsection_map_index(pfn);
1485
1486 return test_bit(idx, ms->usage->subsection_map);
1487}
1488#else
1489static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1490{
1491 return 1;
1492}
1493#endif
1494
1495#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1496/**
1497 * pfn_valid - check if there is a valid memory map entry for a PFN
1498 * @pfn: the page frame number to check
1499 *
1500 * Check if there is a valid memory map entry aka struct page for the @pfn.
1501 * Note, that availability of the memory map entry does not imply that
1502 * there is actual usable memory at that @pfn. The struct page may
1503 * represent a hole or an unusable page frame.
1504 *
1505 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1506 */
1507static inline int pfn_valid(unsigned long pfn)
1508{
1509 struct mem_section *ms;
1510
1511 /*
1512 * Ensure the upper PAGE_SHIFT bits are clear in the
1513 * pfn. Else it might lead to false positives when
1514 * some of the upper bits are set, but the lower bits
1515 * match a valid pfn.
1516 */
1517 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1518 return 0;
1519
1520 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1521 return 0;
1522 ms = __pfn_to_section(pfn);
1523 if (!valid_section(ms))
1524 return 0;
1525 /*
1526 * Traditionally early sections always returned pfn_valid() for
1527 * the entire section-sized span.
1528 */
1529 return early_section(ms) || pfn_section_valid(ms, pfn);
1530}
1531#endif
1532
1533static inline int pfn_in_present_section(unsigned long pfn)
1534{
1535 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1536 return 0;
1537 return present_section(__pfn_to_section(pfn));
1538}
1539
1540static inline unsigned long next_present_section_nr(unsigned long section_nr)
1541{
1542 while (++section_nr <= __highest_present_section_nr) {
1543 if (present_section_nr(section_nr))
1544 return section_nr;
1545 }
1546
1547 return -1;
1548}
1549
1550/*
1551 * These are _only_ used during initialisation, therefore they
1552 * can use __initdata ... They could have names to indicate
1553 * this restriction.
1554 */
1555#ifdef CONFIG_NUMA
1556#define pfn_to_nid(pfn) \
1557({ \
1558 unsigned long __pfn_to_nid_pfn = (pfn); \
1559 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1560})
1561#else
1562#define pfn_to_nid(pfn) (0)
1563#endif
1564
1565void sparse_init(void);
1566#else
1567#define sparse_init() do {} while (0)
1568#define sparse_index_init(_sec, _nid) do {} while (0)
1569#define pfn_in_present_section pfn_valid
1570#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1571#endif /* CONFIG_SPARSEMEM */
1572
1573#endif /* !__GENERATING_BOUNDS.H */
1574#endif /* !__ASSEMBLY__ */
1575#endif /* _LINUX_MMZONE_H */