at v5.16 108 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page-flags.h> 28#include <linux/page_ref.h> 29#include <linux/memremap.h> 30#include <linux/overflow.h> 31#include <linux/sizes.h> 32#include <linux/sched.h> 33#include <linux/pgtable.h> 34#include <linux/kasan.h> 35 36struct mempolicy; 37struct anon_vma; 38struct anon_vma_chain; 39struct user_struct; 40struct pt_regs; 41 42extern int sysctl_page_lock_unfairness; 43 44void init_mm_internals(void); 45 46#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 47extern unsigned long max_mapnr; 48 49static inline void set_max_mapnr(unsigned long limit) 50{ 51 max_mapnr = limit; 52} 53#else 54static inline void set_max_mapnr(unsigned long limit) { } 55#endif 56 57extern atomic_long_t _totalram_pages; 58static inline unsigned long totalram_pages(void) 59{ 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61} 62 63static inline void totalram_pages_inc(void) 64{ 65 atomic_long_inc(&_totalram_pages); 66} 67 68static inline void totalram_pages_dec(void) 69{ 70 atomic_long_dec(&_totalram_pages); 71} 72 73static inline void totalram_pages_add(long count) 74{ 75 atomic_long_add(count, &_totalram_pages); 76} 77 78extern void * high_memory; 79extern int page_cluster; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/processor.h> 100 101/* 102 * Architectures that support memory tagging (assigning tags to memory regions, 103 * embedding these tags into addresses that point to these memory regions, and 104 * checking that the memory and the pointer tags match on memory accesses) 105 * redefine this macro to strip tags from pointers. 106 * It's defined as noop for architectures that don't support memory tagging. 107 */ 108#ifndef untagged_addr 109#define untagged_addr(addr) (addr) 110#endif 111 112#ifndef __pa_symbol 113#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114#endif 115 116#ifndef page_to_virt 117#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118#endif 119 120#ifndef lm_alias 121#define lm_alias(x) __va(__pa_symbol(x)) 122#endif 123 124/* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131#ifndef mm_forbids_zeropage 132#define mm_forbids_zeropage(X) (0) 133#endif 134 135/* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141#if BITS_PER_LONG == 64 142/* This function must be updated when the size of struct page grows above 80 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statements if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149static inline void __mm_zero_struct_page(struct page *page) 150{ 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 80); 157 158 switch (sizeof(struct page)) { 159 case 80: 160 _pp[9] = 0; 161 fallthrough; 162 case 72: 163 _pp[8] = 0; 164 fallthrough; 165 case 64: 166 _pp[7] = 0; 167 fallthrough; 168 case 56: 169 _pp[6] = 0; 170 _pp[5] = 0; 171 _pp[4] = 0; 172 _pp[3] = 0; 173 _pp[2] = 0; 174 _pp[1] = 0; 175 _pp[0] = 0; 176 } 177} 178#else 179#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 180#endif 181 182/* 183 * Default maximum number of active map areas, this limits the number of vmas 184 * per mm struct. Users can overwrite this number by sysctl but there is a 185 * problem. 186 * 187 * When a program's coredump is generated as ELF format, a section is created 188 * per a vma. In ELF, the number of sections is represented in unsigned short. 189 * This means the number of sections should be smaller than 65535 at coredump. 190 * Because the kernel adds some informative sections to a image of program at 191 * generating coredump, we need some margin. The number of extra sections is 192 * 1-3 now and depends on arch. We use "5" as safe margin, here. 193 * 194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 195 * not a hard limit any more. Although some userspace tools can be surprised by 196 * that. 197 */ 198#define MAPCOUNT_ELF_CORE_MARGIN (5) 199#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 200 201extern int sysctl_max_map_count; 202 203extern unsigned long sysctl_user_reserve_kbytes; 204extern unsigned long sysctl_admin_reserve_kbytes; 205 206extern int sysctl_overcommit_memory; 207extern int sysctl_overcommit_ratio; 208extern unsigned long sysctl_overcommit_kbytes; 209 210int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216 217#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 218#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 219#else 220#define nth_page(page,n) ((page) + (n)) 221#endif 222 223/* to align the pointer to the (next) page boundary */ 224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 225 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 231void setup_initial_init_mm(void *start_code, void *end_code, 232 void *end_data, void *brk); 233 234/* 235 * Linux kernel virtual memory manager primitives. 236 * The idea being to have a "virtual" mm in the same way 237 * we have a virtual fs - giving a cleaner interface to the 238 * mm details, and allowing different kinds of memory mappings 239 * (from shared memory to executable loading to arbitrary 240 * mmap() functions). 241 */ 242 243struct vm_area_struct *vm_area_alloc(struct mm_struct *); 244struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 245void vm_area_free(struct vm_area_struct *); 246 247#ifndef CONFIG_MMU 248extern struct rb_root nommu_region_tree; 249extern struct rw_semaphore nommu_region_sem; 250 251extern unsigned int kobjsize(const void *objp); 252#endif 253 254/* 255 * vm_flags in vm_area_struct, see mm_types.h. 256 * When changing, update also include/trace/events/mmflags.h 257 */ 258#define VM_NONE 0x00000000 259 260#define VM_READ 0x00000001 /* currently active flags */ 261#define VM_WRITE 0x00000002 262#define VM_EXEC 0x00000004 263#define VM_SHARED 0x00000008 264 265/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 266#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 267#define VM_MAYWRITE 0x00000020 268#define VM_MAYEXEC 0x00000040 269#define VM_MAYSHARE 0x00000080 270 271#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 272#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 273#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 274#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 275 276#define VM_LOCKED 0x00002000 277#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 278 279 /* Used by sys_madvise() */ 280#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 281#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 282 283#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 284#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 285#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 286#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 287#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 288#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 289#define VM_SYNC 0x00800000 /* Synchronous page faults */ 290#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 291#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 292#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 293 294#ifdef CONFIG_MEM_SOFT_DIRTY 295# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 296#else 297# define VM_SOFTDIRTY 0 298#endif 299 300#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 301#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 302#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 303#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 304 305#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 306#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 307#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 308#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 309#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 310#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 311#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 312#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 313#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 314#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 315#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 316#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 317 318#ifdef CONFIG_ARCH_HAS_PKEYS 319# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 320# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 321# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 322# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 323# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 324#ifdef CONFIG_PPC 325# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 326#else 327# define VM_PKEY_BIT4 0 328#endif 329#endif /* CONFIG_ARCH_HAS_PKEYS */ 330 331#if defined(CONFIG_X86) 332# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 333#elif defined(CONFIG_PPC) 334# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 335#elif defined(CONFIG_PARISC) 336# define VM_GROWSUP VM_ARCH_1 337#elif defined(CONFIG_IA64) 338# define VM_GROWSUP VM_ARCH_1 339#elif defined(CONFIG_SPARC64) 340# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 341# define VM_ARCH_CLEAR VM_SPARC_ADI 342#elif defined(CONFIG_ARM64) 343# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 344# define VM_ARCH_CLEAR VM_ARM64_BTI 345#elif !defined(CONFIG_MMU) 346# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 347#endif 348 349#if defined(CONFIG_ARM64_MTE) 350# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 351# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 352#else 353# define VM_MTE VM_NONE 354# define VM_MTE_ALLOWED VM_NONE 355#endif 356 357#ifndef VM_GROWSUP 358# define VM_GROWSUP VM_NONE 359#endif 360 361#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 362# define VM_UFFD_MINOR_BIT 37 363# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 364#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 365# define VM_UFFD_MINOR VM_NONE 366#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 367 368/* Bits set in the VMA until the stack is in its final location */ 369#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 370 371#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 372 373/* Common data flag combinations */ 374#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 375 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 376#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 377 VM_MAYWRITE | VM_MAYEXEC) 378#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 379 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 380 381#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 382#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 383#endif 384 385#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 386#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 387#endif 388 389#ifdef CONFIG_STACK_GROWSUP 390#define VM_STACK VM_GROWSUP 391#else 392#define VM_STACK VM_GROWSDOWN 393#endif 394 395#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 396 397/* VMA basic access permission flags */ 398#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 399 400 401/* 402 * Special vmas that are non-mergable, non-mlock()able. 403 */ 404#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 405 406/* This mask prevents VMA from being scanned with khugepaged */ 407#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 408 409/* This mask defines which mm->def_flags a process can inherit its parent */ 410#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 411 412/* This mask is used to clear all the VMA flags used by mlock */ 413#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 414 415/* Arch-specific flags to clear when updating VM flags on protection change */ 416#ifndef VM_ARCH_CLEAR 417# define VM_ARCH_CLEAR VM_NONE 418#endif 419#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 420 421/* 422 * mapping from the currently active vm_flags protection bits (the 423 * low four bits) to a page protection mask.. 424 */ 425extern pgprot_t protection_map[16]; 426 427/** 428 * enum fault_flag - Fault flag definitions. 429 * @FAULT_FLAG_WRITE: Fault was a write fault. 430 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 431 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 432 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 433 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 434 * @FAULT_FLAG_TRIED: The fault has been tried once. 435 * @FAULT_FLAG_USER: The fault originated in userspace. 436 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 437 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 438 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 439 * 440 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 441 * whether we would allow page faults to retry by specifying these two 442 * fault flags correctly. Currently there can be three legal combinations: 443 * 444 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 445 * this is the first try 446 * 447 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 448 * we've already tried at least once 449 * 450 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 451 * 452 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 453 * be used. Note that page faults can be allowed to retry for multiple times, 454 * in which case we'll have an initial fault with flags (a) then later on 455 * continuous faults with flags (b). We should always try to detect pending 456 * signals before a retry to make sure the continuous page faults can still be 457 * interrupted if necessary. 458 */ 459enum fault_flag { 460 FAULT_FLAG_WRITE = 1 << 0, 461 FAULT_FLAG_MKWRITE = 1 << 1, 462 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 463 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 464 FAULT_FLAG_KILLABLE = 1 << 4, 465 FAULT_FLAG_TRIED = 1 << 5, 466 FAULT_FLAG_USER = 1 << 6, 467 FAULT_FLAG_REMOTE = 1 << 7, 468 FAULT_FLAG_INSTRUCTION = 1 << 8, 469 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 470}; 471 472/* 473 * The default fault flags that should be used by most of the 474 * arch-specific page fault handlers. 475 */ 476#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 477 FAULT_FLAG_KILLABLE | \ 478 FAULT_FLAG_INTERRUPTIBLE) 479 480/** 481 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 482 * @flags: Fault flags. 483 * 484 * This is mostly used for places where we want to try to avoid taking 485 * the mmap_lock for too long a time when waiting for another condition 486 * to change, in which case we can try to be polite to release the 487 * mmap_lock in the first round to avoid potential starvation of other 488 * processes that would also want the mmap_lock. 489 * 490 * Return: true if the page fault allows retry and this is the first 491 * attempt of the fault handling; false otherwise. 492 */ 493static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 494{ 495 return (flags & FAULT_FLAG_ALLOW_RETRY) && 496 (!(flags & FAULT_FLAG_TRIED)); 497} 498 499#define FAULT_FLAG_TRACE \ 500 { FAULT_FLAG_WRITE, "WRITE" }, \ 501 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 502 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 503 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 504 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 505 { FAULT_FLAG_TRIED, "TRIED" }, \ 506 { FAULT_FLAG_USER, "USER" }, \ 507 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 508 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 509 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 510 511/* 512 * vm_fault is filled by the pagefault handler and passed to the vma's 513 * ->fault function. The vma's ->fault is responsible for returning a bitmask 514 * of VM_FAULT_xxx flags that give details about how the fault was handled. 515 * 516 * MM layer fills up gfp_mask for page allocations but fault handler might 517 * alter it if its implementation requires a different allocation context. 518 * 519 * pgoff should be used in favour of virtual_address, if possible. 520 */ 521struct vm_fault { 522 const struct { 523 struct vm_area_struct *vma; /* Target VMA */ 524 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 525 pgoff_t pgoff; /* Logical page offset based on vma */ 526 unsigned long address; /* Faulting virtual address */ 527 }; 528 enum fault_flag flags; /* FAULT_FLAG_xxx flags 529 * XXX: should really be 'const' */ 530 pmd_t *pmd; /* Pointer to pmd entry matching 531 * the 'address' */ 532 pud_t *pud; /* Pointer to pud entry matching 533 * the 'address' 534 */ 535 union { 536 pte_t orig_pte; /* Value of PTE at the time of fault */ 537 pmd_t orig_pmd; /* Value of PMD at the time of fault, 538 * used by PMD fault only. 539 */ 540 }; 541 542 struct page *cow_page; /* Page handler may use for COW fault */ 543 struct page *page; /* ->fault handlers should return a 544 * page here, unless VM_FAULT_NOPAGE 545 * is set (which is also implied by 546 * VM_FAULT_ERROR). 547 */ 548 /* These three entries are valid only while holding ptl lock */ 549 pte_t *pte; /* Pointer to pte entry matching 550 * the 'address'. NULL if the page 551 * table hasn't been allocated. 552 */ 553 spinlock_t *ptl; /* Page table lock. 554 * Protects pte page table if 'pte' 555 * is not NULL, otherwise pmd. 556 */ 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 558 * vm_ops->map_pages() sets up a page 559 * table from atomic context. 560 * do_fault_around() pre-allocates 561 * page table to avoid allocation from 562 * atomic context. 563 */ 564}; 565 566/* page entry size for vm->huge_fault() */ 567enum page_entry_size { 568 PE_SIZE_PTE = 0, 569 PE_SIZE_PMD, 570 PE_SIZE_PUD, 571}; 572 573/* 574 * These are the virtual MM functions - opening of an area, closing and 575 * unmapping it (needed to keep files on disk up-to-date etc), pointer 576 * to the functions called when a no-page or a wp-page exception occurs. 577 */ 578struct vm_operations_struct { 579 void (*open)(struct vm_area_struct * area); 580 void (*close)(struct vm_area_struct * area); 581 /* Called any time before splitting to check if it's allowed */ 582 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 583 int (*mremap)(struct vm_area_struct *area); 584 /* 585 * Called by mprotect() to make driver-specific permission 586 * checks before mprotect() is finalised. The VMA must not 587 * be modified. Returns 0 if eprotect() can proceed. 588 */ 589 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 590 unsigned long end, unsigned long newflags); 591 vm_fault_t (*fault)(struct vm_fault *vmf); 592 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 593 enum page_entry_size pe_size); 594 vm_fault_t (*map_pages)(struct vm_fault *vmf, 595 pgoff_t start_pgoff, pgoff_t end_pgoff); 596 unsigned long (*pagesize)(struct vm_area_struct * area); 597 598 /* notification that a previously read-only page is about to become 599 * writable, if an error is returned it will cause a SIGBUS */ 600 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 601 602 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 603 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 604 605 /* called by access_process_vm when get_user_pages() fails, typically 606 * for use by special VMAs. See also generic_access_phys() for a generic 607 * implementation useful for any iomem mapping. 608 */ 609 int (*access)(struct vm_area_struct *vma, unsigned long addr, 610 void *buf, int len, int write); 611 612 /* Called by the /proc/PID/maps code to ask the vma whether it 613 * has a special name. Returning non-NULL will also cause this 614 * vma to be dumped unconditionally. */ 615 const char *(*name)(struct vm_area_struct *vma); 616 617#ifdef CONFIG_NUMA 618 /* 619 * set_policy() op must add a reference to any non-NULL @new mempolicy 620 * to hold the policy upon return. Caller should pass NULL @new to 621 * remove a policy and fall back to surrounding context--i.e. do not 622 * install a MPOL_DEFAULT policy, nor the task or system default 623 * mempolicy. 624 */ 625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 626 627 /* 628 * get_policy() op must add reference [mpol_get()] to any policy at 629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 630 * in mm/mempolicy.c will do this automatically. 631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 634 * must return NULL--i.e., do not "fallback" to task or system default 635 * policy. 636 */ 637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 638 unsigned long addr); 639#endif 640 /* 641 * Called by vm_normal_page() for special PTEs to find the 642 * page for @addr. This is useful if the default behavior 643 * (using pte_page()) would not find the correct page. 644 */ 645 struct page *(*find_special_page)(struct vm_area_struct *vma, 646 unsigned long addr); 647}; 648 649static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 650{ 651 static const struct vm_operations_struct dummy_vm_ops = {}; 652 653 memset(vma, 0, sizeof(*vma)); 654 vma->vm_mm = mm; 655 vma->vm_ops = &dummy_vm_ops; 656 INIT_LIST_HEAD(&vma->anon_vma_chain); 657} 658 659static inline void vma_set_anonymous(struct vm_area_struct *vma) 660{ 661 vma->vm_ops = NULL; 662} 663 664static inline bool vma_is_anonymous(struct vm_area_struct *vma) 665{ 666 return !vma->vm_ops; 667} 668 669static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 670{ 671 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 672 673 if (!maybe_stack) 674 return false; 675 676 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 677 VM_STACK_INCOMPLETE_SETUP) 678 return true; 679 680 return false; 681} 682 683static inline bool vma_is_foreign(struct vm_area_struct *vma) 684{ 685 if (!current->mm) 686 return true; 687 688 if (current->mm != vma->vm_mm) 689 return true; 690 691 return false; 692} 693 694static inline bool vma_is_accessible(struct vm_area_struct *vma) 695{ 696 return vma->vm_flags & VM_ACCESS_FLAGS; 697} 698 699#ifdef CONFIG_SHMEM 700/* 701 * The vma_is_shmem is not inline because it is used only by slow 702 * paths in userfault. 703 */ 704bool vma_is_shmem(struct vm_area_struct *vma); 705#else 706static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 707#endif 708 709int vma_is_stack_for_current(struct vm_area_struct *vma); 710 711/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 712#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 713 714struct mmu_gather; 715struct inode; 716 717#include <linux/huge_mm.h> 718 719/* 720 * Methods to modify the page usage count. 721 * 722 * What counts for a page usage: 723 * - cache mapping (page->mapping) 724 * - private data (page->private) 725 * - page mapped in a task's page tables, each mapping 726 * is counted separately 727 * 728 * Also, many kernel routines increase the page count before a critical 729 * routine so they can be sure the page doesn't go away from under them. 730 */ 731 732/* 733 * Drop a ref, return true if the refcount fell to zero (the page has no users) 734 */ 735static inline int put_page_testzero(struct page *page) 736{ 737 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 738 return page_ref_dec_and_test(page); 739} 740 741static inline int folio_put_testzero(struct folio *folio) 742{ 743 return put_page_testzero(&folio->page); 744} 745 746/* 747 * Try to grab a ref unless the page has a refcount of zero, return false if 748 * that is the case. 749 * This can be called when MMU is off so it must not access 750 * any of the virtual mappings. 751 */ 752static inline bool get_page_unless_zero(struct page *page) 753{ 754 return page_ref_add_unless(page, 1, 0); 755} 756 757extern int page_is_ram(unsigned long pfn); 758 759enum { 760 REGION_INTERSECTS, 761 REGION_DISJOINT, 762 REGION_MIXED, 763}; 764 765int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 766 unsigned long desc); 767 768/* Support for virtually mapped pages */ 769struct page *vmalloc_to_page(const void *addr); 770unsigned long vmalloc_to_pfn(const void *addr); 771 772/* 773 * Determine if an address is within the vmalloc range 774 * 775 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 776 * is no special casing required. 777 */ 778 779#ifndef is_ioremap_addr 780#define is_ioremap_addr(x) is_vmalloc_addr(x) 781#endif 782 783#ifdef CONFIG_MMU 784extern bool is_vmalloc_addr(const void *x); 785extern int is_vmalloc_or_module_addr(const void *x); 786#else 787static inline bool is_vmalloc_addr(const void *x) 788{ 789 return false; 790} 791static inline int is_vmalloc_or_module_addr(const void *x) 792{ 793 return 0; 794} 795#endif 796 797static inline int head_compound_mapcount(struct page *head) 798{ 799 return atomic_read(compound_mapcount_ptr(head)) + 1; 800} 801 802/* 803 * Mapcount of compound page as a whole, does not include mapped sub-pages. 804 * 805 * Must be called only for compound pages or any their tail sub-pages. 806 */ 807static inline int compound_mapcount(struct page *page) 808{ 809 VM_BUG_ON_PAGE(!PageCompound(page), page); 810 page = compound_head(page); 811 return head_compound_mapcount(page); 812} 813 814/* 815 * The atomic page->_mapcount, starts from -1: so that transitions 816 * both from it and to it can be tracked, using atomic_inc_and_test 817 * and atomic_add_negative(-1). 818 */ 819static inline void page_mapcount_reset(struct page *page) 820{ 821 atomic_set(&(page)->_mapcount, -1); 822} 823 824int __page_mapcount(struct page *page); 825 826/* 827 * Mapcount of 0-order page; when compound sub-page, includes 828 * compound_mapcount(). 829 * 830 * Result is undefined for pages which cannot be mapped into userspace. 831 * For example SLAB or special types of pages. See function page_has_type(). 832 * They use this place in struct page differently. 833 */ 834static inline int page_mapcount(struct page *page) 835{ 836 if (unlikely(PageCompound(page))) 837 return __page_mapcount(page); 838 return atomic_read(&page->_mapcount) + 1; 839} 840 841#ifdef CONFIG_TRANSPARENT_HUGEPAGE 842int total_mapcount(struct page *page); 843int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 844#else 845static inline int total_mapcount(struct page *page) 846{ 847 return page_mapcount(page); 848} 849static inline int page_trans_huge_mapcount(struct page *page, 850 int *total_mapcount) 851{ 852 int mapcount = page_mapcount(page); 853 if (total_mapcount) 854 *total_mapcount = mapcount; 855 return mapcount; 856} 857#endif 858 859static inline struct page *virt_to_head_page(const void *x) 860{ 861 struct page *page = virt_to_page(x); 862 863 return compound_head(page); 864} 865 866void __put_page(struct page *page); 867 868void put_pages_list(struct list_head *pages); 869 870void split_page(struct page *page, unsigned int order); 871void folio_copy(struct folio *dst, struct folio *src); 872 873unsigned long nr_free_buffer_pages(void); 874 875/* 876 * Compound pages have a destructor function. Provide a 877 * prototype for that function and accessor functions. 878 * These are _only_ valid on the head of a compound page. 879 */ 880typedef void compound_page_dtor(struct page *); 881 882/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 883enum compound_dtor_id { 884 NULL_COMPOUND_DTOR, 885 COMPOUND_PAGE_DTOR, 886#ifdef CONFIG_HUGETLB_PAGE 887 HUGETLB_PAGE_DTOR, 888#endif 889#ifdef CONFIG_TRANSPARENT_HUGEPAGE 890 TRANSHUGE_PAGE_DTOR, 891#endif 892 NR_COMPOUND_DTORS, 893}; 894extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 895 896static inline void set_compound_page_dtor(struct page *page, 897 enum compound_dtor_id compound_dtor) 898{ 899 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 900 page[1].compound_dtor = compound_dtor; 901} 902 903static inline void destroy_compound_page(struct page *page) 904{ 905 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 906 compound_page_dtors[page[1].compound_dtor](page); 907} 908 909static inline unsigned int compound_order(struct page *page) 910{ 911 if (!PageHead(page)) 912 return 0; 913 return page[1].compound_order; 914} 915 916/** 917 * folio_order - The allocation order of a folio. 918 * @folio: The folio. 919 * 920 * A folio is composed of 2^order pages. See get_order() for the definition 921 * of order. 922 * 923 * Return: The order of the folio. 924 */ 925static inline unsigned int folio_order(struct folio *folio) 926{ 927 return compound_order(&folio->page); 928} 929 930static inline bool hpage_pincount_available(struct page *page) 931{ 932 /* 933 * Can the page->hpage_pinned_refcount field be used? That field is in 934 * the 3rd page of the compound page, so the smallest (2-page) compound 935 * pages cannot support it. 936 */ 937 page = compound_head(page); 938 return PageCompound(page) && compound_order(page) > 1; 939} 940 941static inline int head_compound_pincount(struct page *head) 942{ 943 return atomic_read(compound_pincount_ptr(head)); 944} 945 946static inline int compound_pincount(struct page *page) 947{ 948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 949 page = compound_head(page); 950 return head_compound_pincount(page); 951} 952 953static inline void set_compound_order(struct page *page, unsigned int order) 954{ 955 page[1].compound_order = order; 956 page[1].compound_nr = 1U << order; 957} 958 959/* Returns the number of pages in this potentially compound page. */ 960static inline unsigned long compound_nr(struct page *page) 961{ 962 if (!PageHead(page)) 963 return 1; 964 return page[1].compound_nr; 965} 966 967/* Returns the number of bytes in this potentially compound page. */ 968static inline unsigned long page_size(struct page *page) 969{ 970 return PAGE_SIZE << compound_order(page); 971} 972 973/* Returns the number of bits needed for the number of bytes in a page */ 974static inline unsigned int page_shift(struct page *page) 975{ 976 return PAGE_SHIFT + compound_order(page); 977} 978 979void free_compound_page(struct page *page); 980 981#ifdef CONFIG_MMU 982/* 983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 984 * servicing faults for write access. In the normal case, do always want 985 * pte_mkwrite. But get_user_pages can cause write faults for mappings 986 * that do not have writing enabled, when used by access_process_vm. 987 */ 988static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 989{ 990 if (likely(vma->vm_flags & VM_WRITE)) 991 pte = pte_mkwrite(pte); 992 return pte; 993} 994 995vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 996void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 997 998vm_fault_t finish_fault(struct vm_fault *vmf); 999vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1000#endif 1001 1002/* 1003 * Multiple processes may "see" the same page. E.g. for untouched 1004 * mappings of /dev/null, all processes see the same page full of 1005 * zeroes, and text pages of executables and shared libraries have 1006 * only one copy in memory, at most, normally. 1007 * 1008 * For the non-reserved pages, page_count(page) denotes a reference count. 1009 * page_count() == 0 means the page is free. page->lru is then used for 1010 * freelist management in the buddy allocator. 1011 * page_count() > 0 means the page has been allocated. 1012 * 1013 * Pages are allocated by the slab allocator in order to provide memory 1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1016 * unless a particular usage is carefully commented. (the responsibility of 1017 * freeing the kmalloc memory is the caller's, of course). 1018 * 1019 * A page may be used by anyone else who does a __get_free_page(). 1020 * In this case, page_count still tracks the references, and should only 1021 * be used through the normal accessor functions. The top bits of page->flags 1022 * and page->virtual store page management information, but all other fields 1023 * are unused and could be used privately, carefully. The management of this 1024 * page is the responsibility of the one who allocated it, and those who have 1025 * subsequently been given references to it. 1026 * 1027 * The other pages (we may call them "pagecache pages") are completely 1028 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1029 * The following discussion applies only to them. 1030 * 1031 * A pagecache page contains an opaque `private' member, which belongs to the 1032 * page's address_space. Usually, this is the address of a circular list of 1033 * the page's disk buffers. PG_private must be set to tell the VM to call 1034 * into the filesystem to release these pages. 1035 * 1036 * A page may belong to an inode's memory mapping. In this case, page->mapping 1037 * is the pointer to the inode, and page->index is the file offset of the page, 1038 * in units of PAGE_SIZE. 1039 * 1040 * If pagecache pages are not associated with an inode, they are said to be 1041 * anonymous pages. These may become associated with the swapcache, and in that 1042 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1043 * 1044 * In either case (swapcache or inode backed), the pagecache itself holds one 1045 * reference to the page. Setting PG_private should also increment the 1046 * refcount. The each user mapping also has a reference to the page. 1047 * 1048 * The pagecache pages are stored in a per-mapping radix tree, which is 1049 * rooted at mapping->i_pages, and indexed by offset. 1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1051 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1052 * 1053 * All pagecache pages may be subject to I/O: 1054 * - inode pages may need to be read from disk, 1055 * - inode pages which have been modified and are MAP_SHARED may need 1056 * to be written back to the inode on disk, 1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1058 * modified may need to be swapped out to swap space and (later) to be read 1059 * back into memory. 1060 */ 1061 1062/* 1063 * The zone field is never updated after free_area_init_core() 1064 * sets it, so none of the operations on it need to be atomic. 1065 */ 1066 1067/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1068#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1069#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1070#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1071#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1072#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1073 1074/* 1075 * Define the bit shifts to access each section. For non-existent 1076 * sections we define the shift as 0; that plus a 0 mask ensures 1077 * the compiler will optimise away reference to them. 1078 */ 1079#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1080#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1081#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1082#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1083#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1084 1085/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1086#ifdef NODE_NOT_IN_PAGE_FLAGS 1087#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1088#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1089 SECTIONS_PGOFF : ZONES_PGOFF) 1090#else 1091#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1092#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1093 NODES_PGOFF : ZONES_PGOFF) 1094#endif 1095 1096#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1097 1098#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1099#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1100#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1101#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1102#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1103#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1104 1105static inline enum zone_type page_zonenum(const struct page *page) 1106{ 1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1109} 1110 1111static inline enum zone_type folio_zonenum(const struct folio *folio) 1112{ 1113 return page_zonenum(&folio->page); 1114} 1115 1116#ifdef CONFIG_ZONE_DEVICE 1117static inline bool is_zone_device_page(const struct page *page) 1118{ 1119 return page_zonenum(page) == ZONE_DEVICE; 1120} 1121extern void memmap_init_zone_device(struct zone *, unsigned long, 1122 unsigned long, struct dev_pagemap *); 1123#else 1124static inline bool is_zone_device_page(const struct page *page) 1125{ 1126 return false; 1127} 1128#endif 1129 1130static inline bool is_zone_movable_page(const struct page *page) 1131{ 1132 return page_zonenum(page) == ZONE_MOVABLE; 1133} 1134 1135#ifdef CONFIG_DEV_PAGEMAP_OPS 1136void free_devmap_managed_page(struct page *page); 1137DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1138 1139static inline bool page_is_devmap_managed(struct page *page) 1140{ 1141 if (!static_branch_unlikely(&devmap_managed_key)) 1142 return false; 1143 if (!is_zone_device_page(page)) 1144 return false; 1145 switch (page->pgmap->type) { 1146 case MEMORY_DEVICE_PRIVATE: 1147 case MEMORY_DEVICE_FS_DAX: 1148 return true; 1149 default: 1150 break; 1151 } 1152 return false; 1153} 1154 1155void put_devmap_managed_page(struct page *page); 1156 1157#else /* CONFIG_DEV_PAGEMAP_OPS */ 1158static inline bool page_is_devmap_managed(struct page *page) 1159{ 1160 return false; 1161} 1162 1163static inline void put_devmap_managed_page(struct page *page) 1164{ 1165} 1166#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1167 1168static inline bool is_device_private_page(const struct page *page) 1169{ 1170 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1171 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1172 is_zone_device_page(page) && 1173 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1174} 1175 1176static inline bool is_pci_p2pdma_page(const struct page *page) 1177{ 1178 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1179 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1180 is_zone_device_page(page) && 1181 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1182} 1183 1184/* 127: arbitrary random number, small enough to assemble well */ 1185#define folio_ref_zero_or_close_to_overflow(folio) \ 1186 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1187 1188/** 1189 * folio_get - Increment the reference count on a folio. 1190 * @folio: The folio. 1191 * 1192 * Context: May be called in any context, as long as you know that 1193 * you have a refcount on the folio. If you do not already have one, 1194 * folio_try_get() may be the right interface for you to use. 1195 */ 1196static inline void folio_get(struct folio *folio) 1197{ 1198 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1199 folio_ref_inc(folio); 1200} 1201 1202static inline void get_page(struct page *page) 1203{ 1204 folio_get(page_folio(page)); 1205} 1206 1207bool __must_check try_grab_page(struct page *page, unsigned int flags); 1208struct page *try_grab_compound_head(struct page *page, int refs, 1209 unsigned int flags); 1210 1211 1212static inline __must_check bool try_get_page(struct page *page) 1213{ 1214 page = compound_head(page); 1215 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1216 return false; 1217 page_ref_inc(page); 1218 return true; 1219} 1220 1221/** 1222 * folio_put - Decrement the reference count on a folio. 1223 * @folio: The folio. 1224 * 1225 * If the folio's reference count reaches zero, the memory will be 1226 * released back to the page allocator and may be used by another 1227 * allocation immediately. Do not access the memory or the struct folio 1228 * after calling folio_put() unless you can be sure that it wasn't the 1229 * last reference. 1230 * 1231 * Context: May be called in process or interrupt context, but not in NMI 1232 * context. May be called while holding a spinlock. 1233 */ 1234static inline void folio_put(struct folio *folio) 1235{ 1236 if (folio_put_testzero(folio)) 1237 __put_page(&folio->page); 1238} 1239 1240static inline void put_page(struct page *page) 1241{ 1242 struct folio *folio = page_folio(page); 1243 1244 /* 1245 * For devmap managed pages we need to catch refcount transition from 1246 * 2 to 1, when refcount reach one it means the page is free and we 1247 * need to inform the device driver through callback. See 1248 * include/linux/memremap.h and HMM for details. 1249 */ 1250 if (page_is_devmap_managed(&folio->page)) { 1251 put_devmap_managed_page(&folio->page); 1252 return; 1253 } 1254 1255 folio_put(folio); 1256} 1257 1258/* 1259 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1260 * the page's refcount so that two separate items are tracked: the original page 1261 * reference count, and also a new count of how many pin_user_pages() calls were 1262 * made against the page. ("gup-pinned" is another term for the latter). 1263 * 1264 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1265 * distinct from normal pages. As such, the unpin_user_page() call (and its 1266 * variants) must be used in order to release gup-pinned pages. 1267 * 1268 * Choice of value: 1269 * 1270 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1271 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1272 * simpler, due to the fact that adding an even power of two to the page 1273 * refcount has the effect of using only the upper N bits, for the code that 1274 * counts up using the bias value. This means that the lower bits are left for 1275 * the exclusive use of the original code that increments and decrements by one 1276 * (or at least, by much smaller values than the bias value). 1277 * 1278 * Of course, once the lower bits overflow into the upper bits (and this is 1279 * OK, because subtraction recovers the original values), then visual inspection 1280 * no longer suffices to directly view the separate counts. However, for normal 1281 * applications that don't have huge page reference counts, this won't be an 1282 * issue. 1283 * 1284 * Locking: the lockless algorithm described in page_cache_get_speculative() 1285 * and page_cache_gup_pin_speculative() provides safe operation for 1286 * get_user_pages and page_mkclean and other calls that race to set up page 1287 * table entries. 1288 */ 1289#define GUP_PIN_COUNTING_BIAS (1U << 10) 1290 1291void unpin_user_page(struct page *page); 1292void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1293 bool make_dirty); 1294void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1295 bool make_dirty); 1296void unpin_user_pages(struct page **pages, unsigned long npages); 1297 1298/** 1299 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1300 * @page: The page. 1301 * 1302 * This function checks if a page has been pinned via a call to 1303 * a function in the pin_user_pages() family. 1304 * 1305 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1306 * because it means "definitely not pinned for DMA", but true means "probably 1307 * pinned for DMA, but possibly a false positive due to having at least 1308 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1309 * 1310 * False positives are OK, because: a) it's unlikely for a page to get that many 1311 * refcounts, and b) all the callers of this routine are expected to be able to 1312 * deal gracefully with a false positive. 1313 * 1314 * For huge pages, the result will be exactly correct. That's because we have 1315 * more tracking data available: the 3rd struct page in the compound page is 1316 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1317 * scheme). 1318 * 1319 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1320 * 1321 * Return: True, if it is likely that the page has been "dma-pinned". 1322 * False, if the page is definitely not dma-pinned. 1323 */ 1324static inline bool page_maybe_dma_pinned(struct page *page) 1325{ 1326 if (hpage_pincount_available(page)) 1327 return compound_pincount(page) > 0; 1328 1329 /* 1330 * page_ref_count() is signed. If that refcount overflows, then 1331 * page_ref_count() returns a negative value, and callers will avoid 1332 * further incrementing the refcount. 1333 * 1334 * Here, for that overflow case, use the signed bit to count a little 1335 * bit higher via unsigned math, and thus still get an accurate result. 1336 */ 1337 return ((unsigned int)page_ref_count(compound_head(page))) >= 1338 GUP_PIN_COUNTING_BIAS; 1339} 1340 1341static inline bool is_cow_mapping(vm_flags_t flags) 1342{ 1343 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1344} 1345 1346/* 1347 * This should most likely only be called during fork() to see whether we 1348 * should break the cow immediately for a page on the src mm. 1349 */ 1350static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1351 struct page *page) 1352{ 1353 if (!is_cow_mapping(vma->vm_flags)) 1354 return false; 1355 1356 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1357 return false; 1358 1359 return page_maybe_dma_pinned(page); 1360} 1361 1362#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1363#define SECTION_IN_PAGE_FLAGS 1364#endif 1365 1366/* 1367 * The identification function is mainly used by the buddy allocator for 1368 * determining if two pages could be buddies. We are not really identifying 1369 * the zone since we could be using the section number id if we do not have 1370 * node id available in page flags. 1371 * We only guarantee that it will return the same value for two combinable 1372 * pages in a zone. 1373 */ 1374static inline int page_zone_id(struct page *page) 1375{ 1376 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1377} 1378 1379#ifdef NODE_NOT_IN_PAGE_FLAGS 1380extern int page_to_nid(const struct page *page); 1381#else 1382static inline int page_to_nid(const struct page *page) 1383{ 1384 struct page *p = (struct page *)page; 1385 1386 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1387} 1388#endif 1389 1390static inline int folio_nid(const struct folio *folio) 1391{ 1392 return page_to_nid(&folio->page); 1393} 1394 1395#ifdef CONFIG_NUMA_BALANCING 1396static inline int cpu_pid_to_cpupid(int cpu, int pid) 1397{ 1398 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1399} 1400 1401static inline int cpupid_to_pid(int cpupid) 1402{ 1403 return cpupid & LAST__PID_MASK; 1404} 1405 1406static inline int cpupid_to_cpu(int cpupid) 1407{ 1408 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1409} 1410 1411static inline int cpupid_to_nid(int cpupid) 1412{ 1413 return cpu_to_node(cpupid_to_cpu(cpupid)); 1414} 1415 1416static inline bool cpupid_pid_unset(int cpupid) 1417{ 1418 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1419} 1420 1421static inline bool cpupid_cpu_unset(int cpupid) 1422{ 1423 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1424} 1425 1426static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1427{ 1428 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1429} 1430 1431#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1432#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1433static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1434{ 1435 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1436} 1437 1438static inline int page_cpupid_last(struct page *page) 1439{ 1440 return page->_last_cpupid; 1441} 1442static inline void page_cpupid_reset_last(struct page *page) 1443{ 1444 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1445} 1446#else 1447static inline int page_cpupid_last(struct page *page) 1448{ 1449 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1450} 1451 1452extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1453 1454static inline void page_cpupid_reset_last(struct page *page) 1455{ 1456 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1457} 1458#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1459#else /* !CONFIG_NUMA_BALANCING */ 1460static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1461{ 1462 return page_to_nid(page); /* XXX */ 1463} 1464 1465static inline int page_cpupid_last(struct page *page) 1466{ 1467 return page_to_nid(page); /* XXX */ 1468} 1469 1470static inline int cpupid_to_nid(int cpupid) 1471{ 1472 return -1; 1473} 1474 1475static inline int cpupid_to_pid(int cpupid) 1476{ 1477 return -1; 1478} 1479 1480static inline int cpupid_to_cpu(int cpupid) 1481{ 1482 return -1; 1483} 1484 1485static inline int cpu_pid_to_cpupid(int nid, int pid) 1486{ 1487 return -1; 1488} 1489 1490static inline bool cpupid_pid_unset(int cpupid) 1491{ 1492 return true; 1493} 1494 1495static inline void page_cpupid_reset_last(struct page *page) 1496{ 1497} 1498 1499static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1500{ 1501 return false; 1502} 1503#endif /* CONFIG_NUMA_BALANCING */ 1504 1505#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1506 1507/* 1508 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1509 * setting tags for all pages to native kernel tag value 0xff, as the default 1510 * value 0x00 maps to 0xff. 1511 */ 1512 1513static inline u8 page_kasan_tag(const struct page *page) 1514{ 1515 u8 tag = 0xff; 1516 1517 if (kasan_enabled()) { 1518 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1519 tag ^= 0xff; 1520 } 1521 1522 return tag; 1523} 1524 1525static inline void page_kasan_tag_set(struct page *page, u8 tag) 1526{ 1527 if (kasan_enabled()) { 1528 tag ^= 0xff; 1529 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1530 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1531 } 1532} 1533 1534static inline void page_kasan_tag_reset(struct page *page) 1535{ 1536 if (kasan_enabled()) 1537 page_kasan_tag_set(page, 0xff); 1538} 1539 1540#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1541 1542static inline u8 page_kasan_tag(const struct page *page) 1543{ 1544 return 0xff; 1545} 1546 1547static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1548static inline void page_kasan_tag_reset(struct page *page) { } 1549 1550#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1551 1552static inline struct zone *page_zone(const struct page *page) 1553{ 1554 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1555} 1556 1557static inline pg_data_t *page_pgdat(const struct page *page) 1558{ 1559 return NODE_DATA(page_to_nid(page)); 1560} 1561 1562static inline struct zone *folio_zone(const struct folio *folio) 1563{ 1564 return page_zone(&folio->page); 1565} 1566 1567static inline pg_data_t *folio_pgdat(const struct folio *folio) 1568{ 1569 return page_pgdat(&folio->page); 1570} 1571 1572#ifdef SECTION_IN_PAGE_FLAGS 1573static inline void set_page_section(struct page *page, unsigned long section) 1574{ 1575 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1576 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1577} 1578 1579static inline unsigned long page_to_section(const struct page *page) 1580{ 1581 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1582} 1583#endif 1584 1585/** 1586 * folio_pfn - Return the Page Frame Number of a folio. 1587 * @folio: The folio. 1588 * 1589 * A folio may contain multiple pages. The pages have consecutive 1590 * Page Frame Numbers. 1591 * 1592 * Return: The Page Frame Number of the first page in the folio. 1593 */ 1594static inline unsigned long folio_pfn(struct folio *folio) 1595{ 1596 return page_to_pfn(&folio->page); 1597} 1598 1599/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1600#ifdef CONFIG_MIGRATION 1601static inline bool is_pinnable_page(struct page *page) 1602{ 1603 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1604 is_zero_pfn(page_to_pfn(page)); 1605} 1606#else 1607static inline bool is_pinnable_page(struct page *page) 1608{ 1609 return true; 1610} 1611#endif 1612 1613static inline void set_page_zone(struct page *page, enum zone_type zone) 1614{ 1615 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1616 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1617} 1618 1619static inline void set_page_node(struct page *page, unsigned long node) 1620{ 1621 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1622 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1623} 1624 1625static inline void set_page_links(struct page *page, enum zone_type zone, 1626 unsigned long node, unsigned long pfn) 1627{ 1628 set_page_zone(page, zone); 1629 set_page_node(page, node); 1630#ifdef SECTION_IN_PAGE_FLAGS 1631 set_page_section(page, pfn_to_section_nr(pfn)); 1632#endif 1633} 1634 1635/** 1636 * folio_nr_pages - The number of pages in the folio. 1637 * @folio: The folio. 1638 * 1639 * Return: A positive power of two. 1640 */ 1641static inline long folio_nr_pages(struct folio *folio) 1642{ 1643 return compound_nr(&folio->page); 1644} 1645 1646/** 1647 * folio_next - Move to the next physical folio. 1648 * @folio: The folio we're currently operating on. 1649 * 1650 * If you have physically contiguous memory which may span more than 1651 * one folio (eg a &struct bio_vec), use this function to move from one 1652 * folio to the next. Do not use it if the memory is only virtually 1653 * contiguous as the folios are almost certainly not adjacent to each 1654 * other. This is the folio equivalent to writing ``page++``. 1655 * 1656 * Context: We assume that the folios are refcounted and/or locked at a 1657 * higher level and do not adjust the reference counts. 1658 * Return: The next struct folio. 1659 */ 1660static inline struct folio *folio_next(struct folio *folio) 1661{ 1662 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1663} 1664 1665/** 1666 * folio_shift - The size of the memory described by this folio. 1667 * @folio: The folio. 1668 * 1669 * A folio represents a number of bytes which is a power-of-two in size. 1670 * This function tells you which power-of-two the folio is. See also 1671 * folio_size() and folio_order(). 1672 * 1673 * Context: The caller should have a reference on the folio to prevent 1674 * it from being split. It is not necessary for the folio to be locked. 1675 * Return: The base-2 logarithm of the size of this folio. 1676 */ 1677static inline unsigned int folio_shift(struct folio *folio) 1678{ 1679 return PAGE_SHIFT + folio_order(folio); 1680} 1681 1682/** 1683 * folio_size - The number of bytes in a folio. 1684 * @folio: The folio. 1685 * 1686 * Context: The caller should have a reference on the folio to prevent 1687 * it from being split. It is not necessary for the folio to be locked. 1688 * Return: The number of bytes in this folio. 1689 */ 1690static inline size_t folio_size(struct folio *folio) 1691{ 1692 return PAGE_SIZE << folio_order(folio); 1693} 1694 1695#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1696static inline int arch_make_page_accessible(struct page *page) 1697{ 1698 return 0; 1699} 1700#endif 1701 1702#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1703static inline int arch_make_folio_accessible(struct folio *folio) 1704{ 1705 int ret; 1706 long i, nr = folio_nr_pages(folio); 1707 1708 for (i = 0; i < nr; i++) { 1709 ret = arch_make_page_accessible(folio_page(folio, i)); 1710 if (ret) 1711 break; 1712 } 1713 1714 return ret; 1715} 1716#endif 1717 1718/* 1719 * Some inline functions in vmstat.h depend on page_zone() 1720 */ 1721#include <linux/vmstat.h> 1722 1723static __always_inline void *lowmem_page_address(const struct page *page) 1724{ 1725 return page_to_virt(page); 1726} 1727 1728#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1729#define HASHED_PAGE_VIRTUAL 1730#endif 1731 1732#if defined(WANT_PAGE_VIRTUAL) 1733static inline void *page_address(const struct page *page) 1734{ 1735 return page->virtual; 1736} 1737static inline void set_page_address(struct page *page, void *address) 1738{ 1739 page->virtual = address; 1740} 1741#define page_address_init() do { } while(0) 1742#endif 1743 1744#if defined(HASHED_PAGE_VIRTUAL) 1745void *page_address(const struct page *page); 1746void set_page_address(struct page *page, void *virtual); 1747void page_address_init(void); 1748#endif 1749 1750#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1751#define page_address(page) lowmem_page_address(page) 1752#define set_page_address(page, address) do { } while(0) 1753#define page_address_init() do { } while(0) 1754#endif 1755 1756extern void *page_rmapping(struct page *page); 1757extern struct anon_vma *page_anon_vma(struct page *page); 1758extern pgoff_t __page_file_index(struct page *page); 1759 1760/* 1761 * Return the pagecache index of the passed page. Regular pagecache pages 1762 * use ->index whereas swapcache pages use swp_offset(->private) 1763 */ 1764static inline pgoff_t page_index(struct page *page) 1765{ 1766 if (unlikely(PageSwapCache(page))) 1767 return __page_file_index(page); 1768 return page->index; 1769} 1770 1771bool page_mapped(struct page *page); 1772bool folio_mapped(struct folio *folio); 1773 1774/* 1775 * Return true only if the page has been allocated with 1776 * ALLOC_NO_WATERMARKS and the low watermark was not 1777 * met implying that the system is under some pressure. 1778 */ 1779static inline bool page_is_pfmemalloc(const struct page *page) 1780{ 1781 /* 1782 * lru.next has bit 1 set if the page is allocated from the 1783 * pfmemalloc reserves. Callers may simply overwrite it if 1784 * they do not need to preserve that information. 1785 */ 1786 return (uintptr_t)page->lru.next & BIT(1); 1787} 1788 1789/* 1790 * Only to be called by the page allocator on a freshly allocated 1791 * page. 1792 */ 1793static inline void set_page_pfmemalloc(struct page *page) 1794{ 1795 page->lru.next = (void *)BIT(1); 1796} 1797 1798static inline void clear_page_pfmemalloc(struct page *page) 1799{ 1800 page->lru.next = NULL; 1801} 1802 1803/* 1804 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1805 */ 1806extern void pagefault_out_of_memory(void); 1807 1808#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1809#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1810#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1811 1812/* 1813 * Flags passed to show_mem() and show_free_areas() to suppress output in 1814 * various contexts. 1815 */ 1816#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1817 1818extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1819 1820#ifdef CONFIG_MMU 1821extern bool can_do_mlock(void); 1822#else 1823static inline bool can_do_mlock(void) { return false; } 1824#endif 1825extern int user_shm_lock(size_t, struct ucounts *); 1826extern void user_shm_unlock(size_t, struct ucounts *); 1827 1828/* 1829 * Parameter block passed down to zap_pte_range in exceptional cases. 1830 */ 1831struct zap_details { 1832 struct address_space *zap_mapping; /* Check page->mapping if set */ 1833 struct page *single_page; /* Locked page to be unmapped */ 1834}; 1835 1836/* 1837 * We set details->zap_mappings when we want to unmap shared but keep private 1838 * pages. Return true if skip zapping this page, false otherwise. 1839 */ 1840static inline bool 1841zap_skip_check_mapping(struct zap_details *details, struct page *page) 1842{ 1843 if (!details || !page) 1844 return false; 1845 1846 return details->zap_mapping && 1847 (details->zap_mapping != page_rmapping(page)); 1848} 1849 1850struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1851 pte_t pte); 1852struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1853 pmd_t pmd); 1854 1855void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1856 unsigned long size); 1857void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1858 unsigned long size); 1859void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1860 unsigned long start, unsigned long end); 1861 1862struct mmu_notifier_range; 1863 1864void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1865 unsigned long end, unsigned long floor, unsigned long ceiling); 1866int 1867copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1868int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1869 struct mmu_notifier_range *range, pte_t **ptepp, 1870 pmd_t **pmdpp, spinlock_t **ptlp); 1871int follow_pte(struct mm_struct *mm, unsigned long address, 1872 pte_t **ptepp, spinlock_t **ptlp); 1873int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1874 unsigned long *pfn); 1875int follow_phys(struct vm_area_struct *vma, unsigned long address, 1876 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1877int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1878 void *buf, int len, int write); 1879 1880extern void truncate_pagecache(struct inode *inode, loff_t new); 1881extern void truncate_setsize(struct inode *inode, loff_t newsize); 1882void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1883void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1884int truncate_inode_page(struct address_space *mapping, struct page *page); 1885int generic_error_remove_page(struct address_space *mapping, struct page *page); 1886int invalidate_inode_page(struct page *page); 1887 1888#ifdef CONFIG_MMU 1889extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1890 unsigned long address, unsigned int flags, 1891 struct pt_regs *regs); 1892extern int fixup_user_fault(struct mm_struct *mm, 1893 unsigned long address, unsigned int fault_flags, 1894 bool *unlocked); 1895void unmap_mapping_page(struct page *page); 1896void unmap_mapping_pages(struct address_space *mapping, 1897 pgoff_t start, pgoff_t nr, bool even_cows); 1898void unmap_mapping_range(struct address_space *mapping, 1899 loff_t const holebegin, loff_t const holelen, int even_cows); 1900#else 1901static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1902 unsigned long address, unsigned int flags, 1903 struct pt_regs *regs) 1904{ 1905 /* should never happen if there's no MMU */ 1906 BUG(); 1907 return VM_FAULT_SIGBUS; 1908} 1909static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1910 unsigned int fault_flags, bool *unlocked) 1911{ 1912 /* should never happen if there's no MMU */ 1913 BUG(); 1914 return -EFAULT; 1915} 1916static inline void unmap_mapping_page(struct page *page) { } 1917static inline void unmap_mapping_pages(struct address_space *mapping, 1918 pgoff_t start, pgoff_t nr, bool even_cows) { } 1919static inline void unmap_mapping_range(struct address_space *mapping, 1920 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1921#endif 1922 1923static inline void unmap_shared_mapping_range(struct address_space *mapping, 1924 loff_t const holebegin, loff_t const holelen) 1925{ 1926 unmap_mapping_range(mapping, holebegin, holelen, 0); 1927} 1928 1929extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1930 void *buf, int len, unsigned int gup_flags); 1931extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1932 void *buf, int len, unsigned int gup_flags); 1933extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1934 void *buf, int len, unsigned int gup_flags); 1935 1936long get_user_pages_remote(struct mm_struct *mm, 1937 unsigned long start, unsigned long nr_pages, 1938 unsigned int gup_flags, struct page **pages, 1939 struct vm_area_struct **vmas, int *locked); 1940long pin_user_pages_remote(struct mm_struct *mm, 1941 unsigned long start, unsigned long nr_pages, 1942 unsigned int gup_flags, struct page **pages, 1943 struct vm_area_struct **vmas, int *locked); 1944long get_user_pages(unsigned long start, unsigned long nr_pages, 1945 unsigned int gup_flags, struct page **pages, 1946 struct vm_area_struct **vmas); 1947long pin_user_pages(unsigned long start, unsigned long nr_pages, 1948 unsigned int gup_flags, struct page **pages, 1949 struct vm_area_struct **vmas); 1950long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1951 unsigned int gup_flags, struct page **pages, int *locked); 1952long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1953 unsigned int gup_flags, struct page **pages, int *locked); 1954long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1955 struct page **pages, unsigned int gup_flags); 1956long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1957 struct page **pages, unsigned int gup_flags); 1958 1959int get_user_pages_fast(unsigned long start, int nr_pages, 1960 unsigned int gup_flags, struct page **pages); 1961int pin_user_pages_fast(unsigned long start, int nr_pages, 1962 unsigned int gup_flags, struct page **pages); 1963 1964int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1965int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1966 struct task_struct *task, bool bypass_rlim); 1967 1968struct kvec; 1969int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1970 struct page **pages); 1971struct page *get_dump_page(unsigned long addr); 1972 1973extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1974extern void do_invalidatepage(struct page *page, unsigned int offset, 1975 unsigned int length); 1976 1977bool folio_mark_dirty(struct folio *folio); 1978bool set_page_dirty(struct page *page); 1979int set_page_dirty_lock(struct page *page); 1980 1981int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1982 1983extern unsigned long move_page_tables(struct vm_area_struct *vma, 1984 unsigned long old_addr, struct vm_area_struct *new_vma, 1985 unsigned long new_addr, unsigned long len, 1986 bool need_rmap_locks); 1987 1988/* 1989 * Flags used by change_protection(). For now we make it a bitmap so 1990 * that we can pass in multiple flags just like parameters. However 1991 * for now all the callers are only use one of the flags at the same 1992 * time. 1993 */ 1994/* Whether we should allow dirty bit accounting */ 1995#define MM_CP_DIRTY_ACCT (1UL << 0) 1996/* Whether this protection change is for NUMA hints */ 1997#define MM_CP_PROT_NUMA (1UL << 1) 1998/* Whether this change is for write protecting */ 1999#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2000#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2001#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2002 MM_CP_UFFD_WP_RESOLVE) 2003 2004extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 2005 unsigned long end, pgprot_t newprot, 2006 unsigned long cp_flags); 2007extern int mprotect_fixup(struct vm_area_struct *vma, 2008 struct vm_area_struct **pprev, unsigned long start, 2009 unsigned long end, unsigned long newflags); 2010 2011/* 2012 * doesn't attempt to fault and will return short. 2013 */ 2014int get_user_pages_fast_only(unsigned long start, int nr_pages, 2015 unsigned int gup_flags, struct page **pages); 2016int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2017 unsigned int gup_flags, struct page **pages); 2018 2019static inline bool get_user_page_fast_only(unsigned long addr, 2020 unsigned int gup_flags, struct page **pagep) 2021{ 2022 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2023} 2024/* 2025 * per-process(per-mm_struct) statistics. 2026 */ 2027static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2028{ 2029 long val = atomic_long_read(&mm->rss_stat.count[member]); 2030 2031#ifdef SPLIT_RSS_COUNTING 2032 /* 2033 * counter is updated in asynchronous manner and may go to minus. 2034 * But it's never be expected number for users. 2035 */ 2036 if (val < 0) 2037 val = 0; 2038#endif 2039 return (unsigned long)val; 2040} 2041 2042void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2043 2044static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2045{ 2046 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2047 2048 mm_trace_rss_stat(mm, member, count); 2049} 2050 2051static inline void inc_mm_counter(struct mm_struct *mm, int member) 2052{ 2053 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2054 2055 mm_trace_rss_stat(mm, member, count); 2056} 2057 2058static inline void dec_mm_counter(struct mm_struct *mm, int member) 2059{ 2060 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2061 2062 mm_trace_rss_stat(mm, member, count); 2063} 2064 2065/* Optimized variant when page is already known not to be PageAnon */ 2066static inline int mm_counter_file(struct page *page) 2067{ 2068 if (PageSwapBacked(page)) 2069 return MM_SHMEMPAGES; 2070 return MM_FILEPAGES; 2071} 2072 2073static inline int mm_counter(struct page *page) 2074{ 2075 if (PageAnon(page)) 2076 return MM_ANONPAGES; 2077 return mm_counter_file(page); 2078} 2079 2080static inline unsigned long get_mm_rss(struct mm_struct *mm) 2081{ 2082 return get_mm_counter(mm, MM_FILEPAGES) + 2083 get_mm_counter(mm, MM_ANONPAGES) + 2084 get_mm_counter(mm, MM_SHMEMPAGES); 2085} 2086 2087static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2088{ 2089 return max(mm->hiwater_rss, get_mm_rss(mm)); 2090} 2091 2092static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2093{ 2094 return max(mm->hiwater_vm, mm->total_vm); 2095} 2096 2097static inline void update_hiwater_rss(struct mm_struct *mm) 2098{ 2099 unsigned long _rss = get_mm_rss(mm); 2100 2101 if ((mm)->hiwater_rss < _rss) 2102 (mm)->hiwater_rss = _rss; 2103} 2104 2105static inline void update_hiwater_vm(struct mm_struct *mm) 2106{ 2107 if (mm->hiwater_vm < mm->total_vm) 2108 mm->hiwater_vm = mm->total_vm; 2109} 2110 2111static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2112{ 2113 mm->hiwater_rss = get_mm_rss(mm); 2114} 2115 2116static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2117 struct mm_struct *mm) 2118{ 2119 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2120 2121 if (*maxrss < hiwater_rss) 2122 *maxrss = hiwater_rss; 2123} 2124 2125#if defined(SPLIT_RSS_COUNTING) 2126void sync_mm_rss(struct mm_struct *mm); 2127#else 2128static inline void sync_mm_rss(struct mm_struct *mm) 2129{ 2130} 2131#endif 2132 2133#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2134static inline int pte_special(pte_t pte) 2135{ 2136 return 0; 2137} 2138 2139static inline pte_t pte_mkspecial(pte_t pte) 2140{ 2141 return pte; 2142} 2143#endif 2144 2145#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2146static inline int pte_devmap(pte_t pte) 2147{ 2148 return 0; 2149} 2150#endif 2151 2152int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2153 2154extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2155 spinlock_t **ptl); 2156static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2157 spinlock_t **ptl) 2158{ 2159 pte_t *ptep; 2160 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2161 return ptep; 2162} 2163 2164#ifdef __PAGETABLE_P4D_FOLDED 2165static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2166 unsigned long address) 2167{ 2168 return 0; 2169} 2170#else 2171int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2172#endif 2173 2174#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2175static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2176 unsigned long address) 2177{ 2178 return 0; 2179} 2180static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2181static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2182 2183#else 2184int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2185 2186static inline void mm_inc_nr_puds(struct mm_struct *mm) 2187{ 2188 if (mm_pud_folded(mm)) 2189 return; 2190 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2191} 2192 2193static inline void mm_dec_nr_puds(struct mm_struct *mm) 2194{ 2195 if (mm_pud_folded(mm)) 2196 return; 2197 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2198} 2199#endif 2200 2201#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2202static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2203 unsigned long address) 2204{ 2205 return 0; 2206} 2207 2208static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2209static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2210 2211#else 2212int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2213 2214static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2215{ 2216 if (mm_pmd_folded(mm)) 2217 return; 2218 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2219} 2220 2221static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2222{ 2223 if (mm_pmd_folded(mm)) 2224 return; 2225 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2226} 2227#endif 2228 2229#ifdef CONFIG_MMU 2230static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2231{ 2232 atomic_long_set(&mm->pgtables_bytes, 0); 2233} 2234 2235static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2236{ 2237 return atomic_long_read(&mm->pgtables_bytes); 2238} 2239 2240static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2241{ 2242 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2243} 2244 2245static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2246{ 2247 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2248} 2249#else 2250 2251static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2252static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2253{ 2254 return 0; 2255} 2256 2257static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2258static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2259#endif 2260 2261int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2262int __pte_alloc_kernel(pmd_t *pmd); 2263 2264#if defined(CONFIG_MMU) 2265 2266static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2267 unsigned long address) 2268{ 2269 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2270 NULL : p4d_offset(pgd, address); 2271} 2272 2273static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2274 unsigned long address) 2275{ 2276 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2277 NULL : pud_offset(p4d, address); 2278} 2279 2280static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2281{ 2282 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2283 NULL: pmd_offset(pud, address); 2284} 2285#endif /* CONFIG_MMU */ 2286 2287#if USE_SPLIT_PTE_PTLOCKS 2288#if ALLOC_SPLIT_PTLOCKS 2289void __init ptlock_cache_init(void); 2290extern bool ptlock_alloc(struct page *page); 2291extern void ptlock_free(struct page *page); 2292 2293static inline spinlock_t *ptlock_ptr(struct page *page) 2294{ 2295 return page->ptl; 2296} 2297#else /* ALLOC_SPLIT_PTLOCKS */ 2298static inline void ptlock_cache_init(void) 2299{ 2300} 2301 2302static inline bool ptlock_alloc(struct page *page) 2303{ 2304 return true; 2305} 2306 2307static inline void ptlock_free(struct page *page) 2308{ 2309} 2310 2311static inline spinlock_t *ptlock_ptr(struct page *page) 2312{ 2313 return &page->ptl; 2314} 2315#endif /* ALLOC_SPLIT_PTLOCKS */ 2316 2317static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2318{ 2319 return ptlock_ptr(pmd_page(*pmd)); 2320} 2321 2322static inline bool ptlock_init(struct page *page) 2323{ 2324 /* 2325 * prep_new_page() initialize page->private (and therefore page->ptl) 2326 * with 0. Make sure nobody took it in use in between. 2327 * 2328 * It can happen if arch try to use slab for page table allocation: 2329 * slab code uses page->slab_cache, which share storage with page->ptl. 2330 */ 2331 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2332 if (!ptlock_alloc(page)) 2333 return false; 2334 spin_lock_init(ptlock_ptr(page)); 2335 return true; 2336} 2337 2338#else /* !USE_SPLIT_PTE_PTLOCKS */ 2339/* 2340 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2341 */ 2342static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2343{ 2344 return &mm->page_table_lock; 2345} 2346static inline void ptlock_cache_init(void) {} 2347static inline bool ptlock_init(struct page *page) { return true; } 2348static inline void ptlock_free(struct page *page) {} 2349#endif /* USE_SPLIT_PTE_PTLOCKS */ 2350 2351static inline void pgtable_init(void) 2352{ 2353 ptlock_cache_init(); 2354 pgtable_cache_init(); 2355} 2356 2357static inline bool pgtable_pte_page_ctor(struct page *page) 2358{ 2359 if (!ptlock_init(page)) 2360 return false; 2361 __SetPageTable(page); 2362 inc_lruvec_page_state(page, NR_PAGETABLE); 2363 return true; 2364} 2365 2366static inline void pgtable_pte_page_dtor(struct page *page) 2367{ 2368 ptlock_free(page); 2369 __ClearPageTable(page); 2370 dec_lruvec_page_state(page, NR_PAGETABLE); 2371} 2372 2373#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2374({ \ 2375 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2376 pte_t *__pte = pte_offset_map(pmd, address); \ 2377 *(ptlp) = __ptl; \ 2378 spin_lock(__ptl); \ 2379 __pte; \ 2380}) 2381 2382#define pte_unmap_unlock(pte, ptl) do { \ 2383 spin_unlock(ptl); \ 2384 pte_unmap(pte); \ 2385} while (0) 2386 2387#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2388 2389#define pte_alloc_map(mm, pmd, address) \ 2390 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2391 2392#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2393 (pte_alloc(mm, pmd) ? \ 2394 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2395 2396#define pte_alloc_kernel(pmd, address) \ 2397 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2398 NULL: pte_offset_kernel(pmd, address)) 2399 2400#if USE_SPLIT_PMD_PTLOCKS 2401 2402static struct page *pmd_to_page(pmd_t *pmd) 2403{ 2404 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2405 return virt_to_page((void *)((unsigned long) pmd & mask)); 2406} 2407 2408static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2409{ 2410 return ptlock_ptr(pmd_to_page(pmd)); 2411} 2412 2413static inline bool pmd_ptlock_init(struct page *page) 2414{ 2415#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2416 page->pmd_huge_pte = NULL; 2417#endif 2418 return ptlock_init(page); 2419} 2420 2421static inline void pmd_ptlock_free(struct page *page) 2422{ 2423#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2424 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2425#endif 2426 ptlock_free(page); 2427} 2428 2429#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2430 2431#else 2432 2433static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2434{ 2435 return &mm->page_table_lock; 2436} 2437 2438static inline bool pmd_ptlock_init(struct page *page) { return true; } 2439static inline void pmd_ptlock_free(struct page *page) {} 2440 2441#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2442 2443#endif 2444 2445static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2446{ 2447 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2448 spin_lock(ptl); 2449 return ptl; 2450} 2451 2452static inline bool pgtable_pmd_page_ctor(struct page *page) 2453{ 2454 if (!pmd_ptlock_init(page)) 2455 return false; 2456 __SetPageTable(page); 2457 inc_lruvec_page_state(page, NR_PAGETABLE); 2458 return true; 2459} 2460 2461static inline void pgtable_pmd_page_dtor(struct page *page) 2462{ 2463 pmd_ptlock_free(page); 2464 __ClearPageTable(page); 2465 dec_lruvec_page_state(page, NR_PAGETABLE); 2466} 2467 2468/* 2469 * No scalability reason to split PUD locks yet, but follow the same pattern 2470 * as the PMD locks to make it easier if we decide to. The VM should not be 2471 * considered ready to switch to split PUD locks yet; there may be places 2472 * which need to be converted from page_table_lock. 2473 */ 2474static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2475{ 2476 return &mm->page_table_lock; 2477} 2478 2479static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2480{ 2481 spinlock_t *ptl = pud_lockptr(mm, pud); 2482 2483 spin_lock(ptl); 2484 return ptl; 2485} 2486 2487extern void __init pagecache_init(void); 2488extern void __init free_area_init_memoryless_node(int nid); 2489extern void free_initmem(void); 2490 2491/* 2492 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2493 * into the buddy system. The freed pages will be poisoned with pattern 2494 * "poison" if it's within range [0, UCHAR_MAX]. 2495 * Return pages freed into the buddy system. 2496 */ 2497extern unsigned long free_reserved_area(void *start, void *end, 2498 int poison, const char *s); 2499 2500extern void adjust_managed_page_count(struct page *page, long count); 2501extern void mem_init_print_info(void); 2502 2503extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2504 2505/* Free the reserved page into the buddy system, so it gets managed. */ 2506static inline void free_reserved_page(struct page *page) 2507{ 2508 ClearPageReserved(page); 2509 init_page_count(page); 2510 __free_page(page); 2511 adjust_managed_page_count(page, 1); 2512} 2513#define free_highmem_page(page) free_reserved_page(page) 2514 2515static inline void mark_page_reserved(struct page *page) 2516{ 2517 SetPageReserved(page); 2518 adjust_managed_page_count(page, -1); 2519} 2520 2521/* 2522 * Default method to free all the __init memory into the buddy system. 2523 * The freed pages will be poisoned with pattern "poison" if it's within 2524 * range [0, UCHAR_MAX]. 2525 * Return pages freed into the buddy system. 2526 */ 2527static inline unsigned long free_initmem_default(int poison) 2528{ 2529 extern char __init_begin[], __init_end[]; 2530 2531 return free_reserved_area(&__init_begin, &__init_end, 2532 poison, "unused kernel image (initmem)"); 2533} 2534 2535static inline unsigned long get_num_physpages(void) 2536{ 2537 int nid; 2538 unsigned long phys_pages = 0; 2539 2540 for_each_online_node(nid) 2541 phys_pages += node_present_pages(nid); 2542 2543 return phys_pages; 2544} 2545 2546/* 2547 * Using memblock node mappings, an architecture may initialise its 2548 * zones, allocate the backing mem_map and account for memory holes in an 2549 * architecture independent manner. 2550 * 2551 * An architecture is expected to register range of page frames backed by 2552 * physical memory with memblock_add[_node]() before calling 2553 * free_area_init() passing in the PFN each zone ends at. At a basic 2554 * usage, an architecture is expected to do something like 2555 * 2556 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2557 * max_highmem_pfn}; 2558 * for_each_valid_physical_page_range() 2559 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2560 * free_area_init(max_zone_pfns); 2561 */ 2562void free_area_init(unsigned long *max_zone_pfn); 2563unsigned long node_map_pfn_alignment(void); 2564unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2565 unsigned long end_pfn); 2566extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2567 unsigned long end_pfn); 2568extern void get_pfn_range_for_nid(unsigned int nid, 2569 unsigned long *start_pfn, unsigned long *end_pfn); 2570extern unsigned long find_min_pfn_with_active_regions(void); 2571 2572#ifndef CONFIG_NUMA 2573static inline int early_pfn_to_nid(unsigned long pfn) 2574{ 2575 return 0; 2576} 2577#else 2578/* please see mm/page_alloc.c */ 2579extern int __meminit early_pfn_to_nid(unsigned long pfn); 2580#endif 2581 2582extern void set_dma_reserve(unsigned long new_dma_reserve); 2583extern void memmap_init_range(unsigned long, int, unsigned long, 2584 unsigned long, unsigned long, enum meminit_context, 2585 struct vmem_altmap *, int migratetype); 2586extern void setup_per_zone_wmarks(void); 2587extern void calculate_min_free_kbytes(void); 2588extern int __meminit init_per_zone_wmark_min(void); 2589extern void mem_init(void); 2590extern void __init mmap_init(void); 2591extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2592extern long si_mem_available(void); 2593extern void si_meminfo(struct sysinfo * val); 2594extern void si_meminfo_node(struct sysinfo *val, int nid); 2595#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2596extern unsigned long arch_reserved_kernel_pages(void); 2597#endif 2598 2599extern __printf(3, 4) 2600void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2601 2602extern void setup_per_cpu_pageset(void); 2603 2604/* page_alloc.c */ 2605extern int min_free_kbytes; 2606extern int watermark_boost_factor; 2607extern int watermark_scale_factor; 2608extern bool arch_has_descending_max_zone_pfns(void); 2609 2610/* nommu.c */ 2611extern atomic_long_t mmap_pages_allocated; 2612extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2613 2614/* interval_tree.c */ 2615void vma_interval_tree_insert(struct vm_area_struct *node, 2616 struct rb_root_cached *root); 2617void vma_interval_tree_insert_after(struct vm_area_struct *node, 2618 struct vm_area_struct *prev, 2619 struct rb_root_cached *root); 2620void vma_interval_tree_remove(struct vm_area_struct *node, 2621 struct rb_root_cached *root); 2622struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2623 unsigned long start, unsigned long last); 2624struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2625 unsigned long start, unsigned long last); 2626 2627#define vma_interval_tree_foreach(vma, root, start, last) \ 2628 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2629 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2630 2631void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2632 struct rb_root_cached *root); 2633void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2634 struct rb_root_cached *root); 2635struct anon_vma_chain * 2636anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2637 unsigned long start, unsigned long last); 2638struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2639 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2640#ifdef CONFIG_DEBUG_VM_RB 2641void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2642#endif 2643 2644#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2645 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2646 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2647 2648/* mmap.c */ 2649extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2650extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2651 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2652 struct vm_area_struct *expand); 2653static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2654 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2655{ 2656 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2657} 2658extern struct vm_area_struct *vma_merge(struct mm_struct *, 2659 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2660 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2661 struct mempolicy *, struct vm_userfaultfd_ctx); 2662extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2663extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2664 unsigned long addr, int new_below); 2665extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2666 unsigned long addr, int new_below); 2667extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2668extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2669 struct rb_node **, struct rb_node *); 2670extern void unlink_file_vma(struct vm_area_struct *); 2671extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2672 unsigned long addr, unsigned long len, pgoff_t pgoff, 2673 bool *need_rmap_locks); 2674extern void exit_mmap(struct mm_struct *); 2675 2676static inline int check_data_rlimit(unsigned long rlim, 2677 unsigned long new, 2678 unsigned long start, 2679 unsigned long end_data, 2680 unsigned long start_data) 2681{ 2682 if (rlim < RLIM_INFINITY) { 2683 if (((new - start) + (end_data - start_data)) > rlim) 2684 return -ENOSPC; 2685 } 2686 2687 return 0; 2688} 2689 2690extern int mm_take_all_locks(struct mm_struct *mm); 2691extern void mm_drop_all_locks(struct mm_struct *mm); 2692 2693extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2694extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2695extern struct file *get_mm_exe_file(struct mm_struct *mm); 2696extern struct file *get_task_exe_file(struct task_struct *task); 2697 2698extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2699extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2700 2701extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2702 const struct vm_special_mapping *sm); 2703extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2704 unsigned long addr, unsigned long len, 2705 unsigned long flags, 2706 const struct vm_special_mapping *spec); 2707/* This is an obsolete alternative to _install_special_mapping. */ 2708extern int install_special_mapping(struct mm_struct *mm, 2709 unsigned long addr, unsigned long len, 2710 unsigned long flags, struct page **pages); 2711 2712unsigned long randomize_stack_top(unsigned long stack_top); 2713 2714extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2715 2716extern unsigned long mmap_region(struct file *file, unsigned long addr, 2717 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2718 struct list_head *uf); 2719extern unsigned long do_mmap(struct file *file, unsigned long addr, 2720 unsigned long len, unsigned long prot, unsigned long flags, 2721 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2722extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2723 struct list_head *uf, bool downgrade); 2724extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2725 struct list_head *uf); 2726extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2727 2728#ifdef CONFIG_MMU 2729extern int __mm_populate(unsigned long addr, unsigned long len, 2730 int ignore_errors); 2731static inline void mm_populate(unsigned long addr, unsigned long len) 2732{ 2733 /* Ignore errors */ 2734 (void) __mm_populate(addr, len, 1); 2735} 2736#else 2737static inline void mm_populate(unsigned long addr, unsigned long len) {} 2738#endif 2739 2740/* These take the mm semaphore themselves */ 2741extern int __must_check vm_brk(unsigned long, unsigned long); 2742extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2743extern int vm_munmap(unsigned long, size_t); 2744extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2745 unsigned long, unsigned long, 2746 unsigned long, unsigned long); 2747 2748struct vm_unmapped_area_info { 2749#define VM_UNMAPPED_AREA_TOPDOWN 1 2750 unsigned long flags; 2751 unsigned long length; 2752 unsigned long low_limit; 2753 unsigned long high_limit; 2754 unsigned long align_mask; 2755 unsigned long align_offset; 2756}; 2757 2758extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2759 2760/* truncate.c */ 2761extern void truncate_inode_pages(struct address_space *, loff_t); 2762extern void truncate_inode_pages_range(struct address_space *, 2763 loff_t lstart, loff_t lend); 2764extern void truncate_inode_pages_final(struct address_space *); 2765 2766/* generic vm_area_ops exported for stackable file systems */ 2767extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2768extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2769 pgoff_t start_pgoff, pgoff_t end_pgoff); 2770extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2771 2772extern unsigned long stack_guard_gap; 2773/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2774extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2775 2776/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2777extern int expand_downwards(struct vm_area_struct *vma, 2778 unsigned long address); 2779#if VM_GROWSUP 2780extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2781#else 2782 #define expand_upwards(vma, address) (0) 2783#endif 2784 2785/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2786extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2787extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2788 struct vm_area_struct **pprev); 2789 2790/** 2791 * find_vma_intersection() - Look up the first VMA which intersects the interval 2792 * @mm: The process address space. 2793 * @start_addr: The inclusive start user address. 2794 * @end_addr: The exclusive end user address. 2795 * 2796 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2797 * start_addr < end_addr. 2798 */ 2799static inline 2800struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2801 unsigned long start_addr, 2802 unsigned long end_addr) 2803{ 2804 struct vm_area_struct *vma = find_vma(mm, start_addr); 2805 2806 if (vma && end_addr <= vma->vm_start) 2807 vma = NULL; 2808 return vma; 2809} 2810 2811/** 2812 * vma_lookup() - Find a VMA at a specific address 2813 * @mm: The process address space. 2814 * @addr: The user address. 2815 * 2816 * Return: The vm_area_struct at the given address, %NULL otherwise. 2817 */ 2818static inline 2819struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2820{ 2821 struct vm_area_struct *vma = find_vma(mm, addr); 2822 2823 if (vma && addr < vma->vm_start) 2824 vma = NULL; 2825 2826 return vma; 2827} 2828 2829static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2830{ 2831 unsigned long vm_start = vma->vm_start; 2832 2833 if (vma->vm_flags & VM_GROWSDOWN) { 2834 vm_start -= stack_guard_gap; 2835 if (vm_start > vma->vm_start) 2836 vm_start = 0; 2837 } 2838 return vm_start; 2839} 2840 2841static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2842{ 2843 unsigned long vm_end = vma->vm_end; 2844 2845 if (vma->vm_flags & VM_GROWSUP) { 2846 vm_end += stack_guard_gap; 2847 if (vm_end < vma->vm_end) 2848 vm_end = -PAGE_SIZE; 2849 } 2850 return vm_end; 2851} 2852 2853static inline unsigned long vma_pages(struct vm_area_struct *vma) 2854{ 2855 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2856} 2857 2858/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2859static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2860 unsigned long vm_start, unsigned long vm_end) 2861{ 2862 struct vm_area_struct *vma = find_vma(mm, vm_start); 2863 2864 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2865 vma = NULL; 2866 2867 return vma; 2868} 2869 2870static inline bool range_in_vma(struct vm_area_struct *vma, 2871 unsigned long start, unsigned long end) 2872{ 2873 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2874} 2875 2876#ifdef CONFIG_MMU 2877pgprot_t vm_get_page_prot(unsigned long vm_flags); 2878void vma_set_page_prot(struct vm_area_struct *vma); 2879#else 2880static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2881{ 2882 return __pgprot(0); 2883} 2884static inline void vma_set_page_prot(struct vm_area_struct *vma) 2885{ 2886 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2887} 2888#endif 2889 2890void vma_set_file(struct vm_area_struct *vma, struct file *file); 2891 2892#ifdef CONFIG_NUMA_BALANCING 2893unsigned long change_prot_numa(struct vm_area_struct *vma, 2894 unsigned long start, unsigned long end); 2895#endif 2896 2897struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2898int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2899 unsigned long pfn, unsigned long size, pgprot_t); 2900int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2901 unsigned long pfn, unsigned long size, pgprot_t prot); 2902int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2903int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2904 struct page **pages, unsigned long *num); 2905int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2906 unsigned long num); 2907int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2908 unsigned long num); 2909vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2910 unsigned long pfn); 2911vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2912 unsigned long pfn, pgprot_t pgprot); 2913vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2914 pfn_t pfn); 2915vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2916 pfn_t pfn, pgprot_t pgprot); 2917vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2918 unsigned long addr, pfn_t pfn); 2919int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2920 2921static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2922 unsigned long addr, struct page *page) 2923{ 2924 int err = vm_insert_page(vma, addr, page); 2925 2926 if (err == -ENOMEM) 2927 return VM_FAULT_OOM; 2928 if (err < 0 && err != -EBUSY) 2929 return VM_FAULT_SIGBUS; 2930 2931 return VM_FAULT_NOPAGE; 2932} 2933 2934#ifndef io_remap_pfn_range 2935static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2936 unsigned long addr, unsigned long pfn, 2937 unsigned long size, pgprot_t prot) 2938{ 2939 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2940} 2941#endif 2942 2943static inline vm_fault_t vmf_error(int err) 2944{ 2945 if (err == -ENOMEM) 2946 return VM_FAULT_OOM; 2947 return VM_FAULT_SIGBUS; 2948} 2949 2950struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2951 unsigned int foll_flags); 2952 2953#define FOLL_WRITE 0x01 /* check pte is writable */ 2954#define FOLL_TOUCH 0x02 /* mark page accessed */ 2955#define FOLL_GET 0x04 /* do get_page on page */ 2956#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2957#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2958#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2959 * and return without waiting upon it */ 2960#define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */ 2961#define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2962#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2963#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2964#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2965#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2966#define FOLL_MLOCK 0x1000 /* lock present pages */ 2967#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2968#define FOLL_COW 0x4000 /* internal GUP flag */ 2969#define FOLL_ANON 0x8000 /* don't do file mappings */ 2970#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2971#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2972#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2973#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2974 2975/* 2976 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2977 * other. Here is what they mean, and how to use them: 2978 * 2979 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2980 * period _often_ under userspace control. This is in contrast to 2981 * iov_iter_get_pages(), whose usages are transient. 2982 * 2983 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2984 * lifetime enforced by the filesystem and we need guarantees that longterm 2985 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2986 * the filesystem. Ideas for this coordination include revoking the longterm 2987 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2988 * added after the problem with filesystems was found FS DAX VMAs are 2989 * specifically failed. Filesystem pages are still subject to bugs and use of 2990 * FOLL_LONGTERM should be avoided on those pages. 2991 * 2992 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2993 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2994 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2995 * is due to an incompatibility with the FS DAX check and 2996 * FAULT_FLAG_ALLOW_RETRY. 2997 * 2998 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2999 * that region. And so, CMA attempts to migrate the page before pinning, when 3000 * FOLL_LONGTERM is specified. 3001 * 3002 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 3003 * but an additional pin counting system) will be invoked. This is intended for 3004 * anything that gets a page reference and then touches page data (for example, 3005 * Direct IO). This lets the filesystem know that some non-file-system entity is 3006 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 3007 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 3008 * a call to unpin_user_page(). 3009 * 3010 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 3011 * and separate refcounting mechanisms, however, and that means that each has 3012 * its own acquire and release mechanisms: 3013 * 3014 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 3015 * 3016 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 3017 * 3018 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 3019 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 3020 * calls applied to them, and that's perfectly OK. This is a constraint on the 3021 * callers, not on the pages.) 3022 * 3023 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 3024 * directly by the caller. That's in order to help avoid mismatches when 3025 * releasing pages: get_user_pages*() pages must be released via put_page(), 3026 * while pin_user_pages*() pages must be released via unpin_user_page(). 3027 * 3028 * Please see Documentation/core-api/pin_user_pages.rst for more information. 3029 */ 3030 3031static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3032{ 3033 if (vm_fault & VM_FAULT_OOM) 3034 return -ENOMEM; 3035 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3036 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3037 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3038 return -EFAULT; 3039 return 0; 3040} 3041 3042typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3043extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3044 unsigned long size, pte_fn_t fn, void *data); 3045extern int apply_to_existing_page_range(struct mm_struct *mm, 3046 unsigned long address, unsigned long size, 3047 pte_fn_t fn, void *data); 3048 3049extern void init_mem_debugging_and_hardening(void); 3050#ifdef CONFIG_PAGE_POISONING 3051extern void __kernel_poison_pages(struct page *page, int numpages); 3052extern void __kernel_unpoison_pages(struct page *page, int numpages); 3053extern bool _page_poisoning_enabled_early; 3054DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3055static inline bool page_poisoning_enabled(void) 3056{ 3057 return _page_poisoning_enabled_early; 3058} 3059/* 3060 * For use in fast paths after init_mem_debugging() has run, or when a 3061 * false negative result is not harmful when called too early. 3062 */ 3063static inline bool page_poisoning_enabled_static(void) 3064{ 3065 return static_branch_unlikely(&_page_poisoning_enabled); 3066} 3067static inline void kernel_poison_pages(struct page *page, int numpages) 3068{ 3069 if (page_poisoning_enabled_static()) 3070 __kernel_poison_pages(page, numpages); 3071} 3072static inline void kernel_unpoison_pages(struct page *page, int numpages) 3073{ 3074 if (page_poisoning_enabled_static()) 3075 __kernel_unpoison_pages(page, numpages); 3076} 3077#else 3078static inline bool page_poisoning_enabled(void) { return false; } 3079static inline bool page_poisoning_enabled_static(void) { return false; } 3080static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3081static inline void kernel_poison_pages(struct page *page, int numpages) { } 3082static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3083#endif 3084 3085DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3086static inline bool want_init_on_alloc(gfp_t flags) 3087{ 3088 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3089 &init_on_alloc)) 3090 return true; 3091 return flags & __GFP_ZERO; 3092} 3093 3094DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3095static inline bool want_init_on_free(void) 3096{ 3097 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3098 &init_on_free); 3099} 3100 3101extern bool _debug_pagealloc_enabled_early; 3102DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3103 3104static inline bool debug_pagealloc_enabled(void) 3105{ 3106 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3107 _debug_pagealloc_enabled_early; 3108} 3109 3110/* 3111 * For use in fast paths after init_debug_pagealloc() has run, or when a 3112 * false negative result is not harmful when called too early. 3113 */ 3114static inline bool debug_pagealloc_enabled_static(void) 3115{ 3116 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3117 return false; 3118 3119 return static_branch_unlikely(&_debug_pagealloc_enabled); 3120} 3121 3122#ifdef CONFIG_DEBUG_PAGEALLOC 3123/* 3124 * To support DEBUG_PAGEALLOC architecture must ensure that 3125 * __kernel_map_pages() never fails 3126 */ 3127extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3128 3129static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3130{ 3131 if (debug_pagealloc_enabled_static()) 3132 __kernel_map_pages(page, numpages, 1); 3133} 3134 3135static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3136{ 3137 if (debug_pagealloc_enabled_static()) 3138 __kernel_map_pages(page, numpages, 0); 3139} 3140#else /* CONFIG_DEBUG_PAGEALLOC */ 3141static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3142static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3143#endif /* CONFIG_DEBUG_PAGEALLOC */ 3144 3145#ifdef __HAVE_ARCH_GATE_AREA 3146extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3147extern int in_gate_area_no_mm(unsigned long addr); 3148extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3149#else 3150static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3151{ 3152 return NULL; 3153} 3154static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3155static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3156{ 3157 return 0; 3158} 3159#endif /* __HAVE_ARCH_GATE_AREA */ 3160 3161extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3162 3163#ifdef CONFIG_SYSCTL 3164extern int sysctl_drop_caches; 3165int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3166 loff_t *); 3167#endif 3168 3169void drop_slab(void); 3170void drop_slab_node(int nid); 3171 3172#ifndef CONFIG_MMU 3173#define randomize_va_space 0 3174#else 3175extern int randomize_va_space; 3176#endif 3177 3178const char * arch_vma_name(struct vm_area_struct *vma); 3179#ifdef CONFIG_MMU 3180void print_vma_addr(char *prefix, unsigned long rip); 3181#else 3182static inline void print_vma_addr(char *prefix, unsigned long rip) 3183{ 3184} 3185#endif 3186 3187int vmemmap_remap_free(unsigned long start, unsigned long end, 3188 unsigned long reuse); 3189int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3190 unsigned long reuse, gfp_t gfp_mask); 3191 3192void *sparse_buffer_alloc(unsigned long size); 3193struct page * __populate_section_memmap(unsigned long pfn, 3194 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3195pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3196p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3197pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3198pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3199pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3200 struct vmem_altmap *altmap); 3201void *vmemmap_alloc_block(unsigned long size, int node); 3202struct vmem_altmap; 3203void *vmemmap_alloc_block_buf(unsigned long size, int node, 3204 struct vmem_altmap *altmap); 3205void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3206int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3207 int node, struct vmem_altmap *altmap); 3208int vmemmap_populate(unsigned long start, unsigned long end, int node, 3209 struct vmem_altmap *altmap); 3210void vmemmap_populate_print_last(void); 3211#ifdef CONFIG_MEMORY_HOTPLUG 3212void vmemmap_free(unsigned long start, unsigned long end, 3213 struct vmem_altmap *altmap); 3214#endif 3215void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3216 unsigned long nr_pages); 3217 3218enum mf_flags { 3219 MF_COUNT_INCREASED = 1 << 0, 3220 MF_ACTION_REQUIRED = 1 << 1, 3221 MF_MUST_KILL = 1 << 2, 3222 MF_SOFT_OFFLINE = 1 << 3, 3223}; 3224extern int memory_failure(unsigned long pfn, int flags); 3225extern void memory_failure_queue(unsigned long pfn, int flags); 3226extern void memory_failure_queue_kick(int cpu); 3227extern int unpoison_memory(unsigned long pfn); 3228extern int sysctl_memory_failure_early_kill; 3229extern int sysctl_memory_failure_recovery; 3230extern void shake_page(struct page *p); 3231extern atomic_long_t num_poisoned_pages __read_mostly; 3232extern int soft_offline_page(unsigned long pfn, int flags); 3233 3234 3235/* 3236 * Error handlers for various types of pages. 3237 */ 3238enum mf_result { 3239 MF_IGNORED, /* Error: cannot be handled */ 3240 MF_FAILED, /* Error: handling failed */ 3241 MF_DELAYED, /* Will be handled later */ 3242 MF_RECOVERED, /* Successfully recovered */ 3243}; 3244 3245enum mf_action_page_type { 3246 MF_MSG_KERNEL, 3247 MF_MSG_KERNEL_HIGH_ORDER, 3248 MF_MSG_SLAB, 3249 MF_MSG_DIFFERENT_COMPOUND, 3250 MF_MSG_POISONED_HUGE, 3251 MF_MSG_HUGE, 3252 MF_MSG_FREE_HUGE, 3253 MF_MSG_NON_PMD_HUGE, 3254 MF_MSG_UNMAP_FAILED, 3255 MF_MSG_DIRTY_SWAPCACHE, 3256 MF_MSG_CLEAN_SWAPCACHE, 3257 MF_MSG_DIRTY_MLOCKED_LRU, 3258 MF_MSG_CLEAN_MLOCKED_LRU, 3259 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3260 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3261 MF_MSG_DIRTY_LRU, 3262 MF_MSG_CLEAN_LRU, 3263 MF_MSG_TRUNCATED_LRU, 3264 MF_MSG_BUDDY, 3265 MF_MSG_BUDDY_2ND, 3266 MF_MSG_DAX, 3267 MF_MSG_UNSPLIT_THP, 3268 MF_MSG_UNKNOWN, 3269}; 3270 3271#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3272extern void clear_huge_page(struct page *page, 3273 unsigned long addr_hint, 3274 unsigned int pages_per_huge_page); 3275extern void copy_user_huge_page(struct page *dst, struct page *src, 3276 unsigned long addr_hint, 3277 struct vm_area_struct *vma, 3278 unsigned int pages_per_huge_page); 3279extern long copy_huge_page_from_user(struct page *dst_page, 3280 const void __user *usr_src, 3281 unsigned int pages_per_huge_page, 3282 bool allow_pagefault); 3283 3284/** 3285 * vma_is_special_huge - Are transhuge page-table entries considered special? 3286 * @vma: Pointer to the struct vm_area_struct to consider 3287 * 3288 * Whether transhuge page-table entries are considered "special" following 3289 * the definition in vm_normal_page(). 3290 * 3291 * Return: true if transhuge page-table entries should be considered special, 3292 * false otherwise. 3293 */ 3294static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3295{ 3296 return vma_is_dax(vma) || (vma->vm_file && 3297 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3298} 3299 3300#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3301 3302#ifdef CONFIG_DEBUG_PAGEALLOC 3303extern unsigned int _debug_guardpage_minorder; 3304DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3305 3306static inline unsigned int debug_guardpage_minorder(void) 3307{ 3308 return _debug_guardpage_minorder; 3309} 3310 3311static inline bool debug_guardpage_enabled(void) 3312{ 3313 return static_branch_unlikely(&_debug_guardpage_enabled); 3314} 3315 3316static inline bool page_is_guard(struct page *page) 3317{ 3318 if (!debug_guardpage_enabled()) 3319 return false; 3320 3321 return PageGuard(page); 3322} 3323#else 3324static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3325static inline bool debug_guardpage_enabled(void) { return false; } 3326static inline bool page_is_guard(struct page *page) { return false; } 3327#endif /* CONFIG_DEBUG_PAGEALLOC */ 3328 3329#if MAX_NUMNODES > 1 3330void __init setup_nr_node_ids(void); 3331#else 3332static inline void setup_nr_node_ids(void) {} 3333#endif 3334 3335extern int memcmp_pages(struct page *page1, struct page *page2); 3336 3337static inline int pages_identical(struct page *page1, struct page *page2) 3338{ 3339 return !memcmp_pages(page1, page2); 3340} 3341 3342#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3343unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3344 pgoff_t first_index, pgoff_t nr, 3345 pgoff_t bitmap_pgoff, 3346 unsigned long *bitmap, 3347 pgoff_t *start, 3348 pgoff_t *end); 3349 3350unsigned long wp_shared_mapping_range(struct address_space *mapping, 3351 pgoff_t first_index, pgoff_t nr); 3352#endif 3353 3354extern int sysctl_nr_trim_pages; 3355 3356#ifdef CONFIG_PRINTK 3357void mem_dump_obj(void *object); 3358#else 3359static inline void mem_dump_obj(void *object) {} 3360#endif 3361 3362/** 3363 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3364 * @seals: the seals to check 3365 * @vma: the vma to operate on 3366 * 3367 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3368 * the vma flags. Return 0 if check pass, or <0 for errors. 3369 */ 3370static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3371{ 3372 if (seals & F_SEAL_FUTURE_WRITE) { 3373 /* 3374 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3375 * "future write" seal active. 3376 */ 3377 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3378 return -EPERM; 3379 3380 /* 3381 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3382 * MAP_SHARED and read-only, take care to not allow mprotect to 3383 * revert protections on such mappings. Do this only for shared 3384 * mappings. For private mappings, don't need to mask 3385 * VM_MAYWRITE as we still want them to be COW-writable. 3386 */ 3387 if (vma->vm_flags & VM_SHARED) 3388 vma->vm_flags &= ~(VM_MAYWRITE); 3389 } 3390 3391 return 0; 3392} 3393 3394#endif /* __KERNEL__ */ 3395#endif /* _LINUX_MM_H */