at v5.16 21 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2#ifndef _LINUX_MEMBLOCK_H 3#define _LINUX_MEMBLOCK_H 4#ifdef __KERNEL__ 5 6/* 7 * Logical memory blocks. 8 * 9 * Copyright (C) 2001 Peter Bergner, IBM Corp. 10 */ 11 12#include <linux/init.h> 13#include <linux/mm.h> 14#include <asm/dma.h> 15 16extern unsigned long max_low_pfn; 17extern unsigned long min_low_pfn; 18 19/* 20 * highest page 21 */ 22extern unsigned long max_pfn; 23/* 24 * highest possible page 25 */ 26extern unsigned long long max_possible_pfn; 27 28/** 29 * enum memblock_flags - definition of memory region attributes 30 * @MEMBLOCK_NONE: no special request 31 * @MEMBLOCK_HOTPLUG: memory region indicated in the firmware-provided memory 32 * map during early boot as hot(un)pluggable system RAM (e.g., memory range 33 * that might get hotunplugged later). With "movable_node" set on the kernel 34 * commandline, try keeping this memory region hotunpluggable. Does not apply 35 * to memblocks added ("hotplugged") after early boot. 36 * @MEMBLOCK_MIRROR: mirrored region 37 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as 38 * reserved in the memory map; refer to memblock_mark_nomap() description 39 * for further details 40 * @MEMBLOCK_DRIVER_MANAGED: memory region that is always detected and added 41 * via a driver, and never indicated in the firmware-provided memory map as 42 * system RAM. This corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED in the 43 * kernel resource tree. 44 */ 45enum memblock_flags { 46 MEMBLOCK_NONE = 0x0, /* No special request */ 47 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */ 48 MEMBLOCK_MIRROR = 0x2, /* mirrored region */ 49 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */ 50 MEMBLOCK_DRIVER_MANAGED = 0x8, /* always detected via a driver */ 51}; 52 53/** 54 * struct memblock_region - represents a memory region 55 * @base: base address of the region 56 * @size: size of the region 57 * @flags: memory region attributes 58 * @nid: NUMA node id 59 */ 60struct memblock_region { 61 phys_addr_t base; 62 phys_addr_t size; 63 enum memblock_flags flags; 64#ifdef CONFIG_NUMA 65 int nid; 66#endif 67}; 68 69/** 70 * struct memblock_type - collection of memory regions of certain type 71 * @cnt: number of regions 72 * @max: size of the allocated array 73 * @total_size: size of all regions 74 * @regions: array of regions 75 * @name: the memory type symbolic name 76 */ 77struct memblock_type { 78 unsigned long cnt; 79 unsigned long max; 80 phys_addr_t total_size; 81 struct memblock_region *regions; 82 char *name; 83}; 84 85/** 86 * struct memblock - memblock allocator metadata 87 * @bottom_up: is bottom up direction? 88 * @current_limit: physical address of the current allocation limit 89 * @memory: usable memory regions 90 * @reserved: reserved memory regions 91 */ 92struct memblock { 93 bool bottom_up; /* is bottom up direction? */ 94 phys_addr_t current_limit; 95 struct memblock_type memory; 96 struct memblock_type reserved; 97}; 98 99extern struct memblock memblock; 100 101#ifndef CONFIG_ARCH_KEEP_MEMBLOCK 102#define __init_memblock __meminit 103#define __initdata_memblock __meminitdata 104void memblock_discard(void); 105#else 106#define __init_memblock 107#define __initdata_memblock 108static inline void memblock_discard(void) {} 109#endif 110 111void memblock_allow_resize(void); 112int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid, 113 enum memblock_flags flags); 114int memblock_add(phys_addr_t base, phys_addr_t size); 115int memblock_remove(phys_addr_t base, phys_addr_t size); 116int memblock_phys_free(phys_addr_t base, phys_addr_t size); 117int memblock_reserve(phys_addr_t base, phys_addr_t size); 118#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 119int memblock_physmem_add(phys_addr_t base, phys_addr_t size); 120#endif 121void memblock_trim_memory(phys_addr_t align); 122bool memblock_overlaps_region(struct memblock_type *type, 123 phys_addr_t base, phys_addr_t size); 124int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size); 125int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size); 126int memblock_mark_mirror(phys_addr_t base, phys_addr_t size); 127int memblock_mark_nomap(phys_addr_t base, phys_addr_t size); 128int memblock_clear_nomap(phys_addr_t base, phys_addr_t size); 129 130void memblock_free_all(void); 131void memblock_free(void *ptr, size_t size); 132void reset_node_managed_pages(pg_data_t *pgdat); 133void reset_all_zones_managed_pages(void); 134 135/* Low level functions */ 136void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 137 struct memblock_type *type_a, 138 struct memblock_type *type_b, phys_addr_t *out_start, 139 phys_addr_t *out_end, int *out_nid); 140 141void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags, 142 struct memblock_type *type_a, 143 struct memblock_type *type_b, phys_addr_t *out_start, 144 phys_addr_t *out_end, int *out_nid); 145 146void memblock_free_late(phys_addr_t base, phys_addr_t size); 147 148#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 149static inline void __next_physmem_range(u64 *idx, struct memblock_type *type, 150 phys_addr_t *out_start, 151 phys_addr_t *out_end) 152{ 153 extern struct memblock_type physmem; 154 155 __next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type, 156 out_start, out_end, NULL); 157} 158 159/** 160 * for_each_physmem_range - iterate through physmem areas not included in type. 161 * @i: u64 used as loop variable 162 * @type: ptr to memblock_type which excludes from the iteration, can be %NULL 163 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 164 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 165 */ 166#define for_each_physmem_range(i, type, p_start, p_end) \ 167 for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \ 168 i != (u64)ULLONG_MAX; \ 169 __next_physmem_range(&i, type, p_start, p_end)) 170#endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */ 171 172/** 173 * __for_each_mem_range - iterate through memblock areas from type_a and not 174 * included in type_b. Or just type_a if type_b is NULL. 175 * @i: u64 used as loop variable 176 * @type_a: ptr to memblock_type to iterate 177 * @type_b: ptr to memblock_type which excludes from the iteration 178 * @nid: node selector, %NUMA_NO_NODE for all nodes 179 * @flags: pick from blocks based on memory attributes 180 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 181 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 182 * @p_nid: ptr to int for nid of the range, can be %NULL 183 */ 184#define __for_each_mem_range(i, type_a, type_b, nid, flags, \ 185 p_start, p_end, p_nid) \ 186 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \ 187 p_start, p_end, p_nid); \ 188 i != (u64)ULLONG_MAX; \ 189 __next_mem_range(&i, nid, flags, type_a, type_b, \ 190 p_start, p_end, p_nid)) 191 192/** 193 * __for_each_mem_range_rev - reverse iterate through memblock areas from 194 * type_a and not included in type_b. Or just type_a if type_b is NULL. 195 * @i: u64 used as loop variable 196 * @type_a: ptr to memblock_type to iterate 197 * @type_b: ptr to memblock_type which excludes from the iteration 198 * @nid: node selector, %NUMA_NO_NODE for all nodes 199 * @flags: pick from blocks based on memory attributes 200 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 201 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 202 * @p_nid: ptr to int for nid of the range, can be %NULL 203 */ 204#define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \ 205 p_start, p_end, p_nid) \ 206 for (i = (u64)ULLONG_MAX, \ 207 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ 208 p_start, p_end, p_nid); \ 209 i != (u64)ULLONG_MAX; \ 210 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ 211 p_start, p_end, p_nid)) 212 213/** 214 * for_each_mem_range - iterate through memory areas. 215 * @i: u64 used as loop variable 216 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 217 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 218 */ 219#define for_each_mem_range(i, p_start, p_end) \ 220 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \ 221 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED, \ 222 p_start, p_end, NULL) 223 224/** 225 * for_each_mem_range_rev - reverse iterate through memblock areas from 226 * type_a and not included in type_b. Or just type_a if type_b is NULL. 227 * @i: u64 used as loop variable 228 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 229 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 230 */ 231#define for_each_mem_range_rev(i, p_start, p_end) \ 232 __for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \ 233 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED,\ 234 p_start, p_end, NULL) 235 236/** 237 * for_each_reserved_mem_range - iterate over all reserved memblock areas 238 * @i: u64 used as loop variable 239 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 240 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 241 * 242 * Walks over reserved areas of memblock. Available as soon as memblock 243 * is initialized. 244 */ 245#define for_each_reserved_mem_range(i, p_start, p_end) \ 246 __for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \ 247 MEMBLOCK_NONE, p_start, p_end, NULL) 248 249static inline bool memblock_is_hotpluggable(struct memblock_region *m) 250{ 251 return m->flags & MEMBLOCK_HOTPLUG; 252} 253 254static inline bool memblock_is_mirror(struct memblock_region *m) 255{ 256 return m->flags & MEMBLOCK_MIRROR; 257} 258 259static inline bool memblock_is_nomap(struct memblock_region *m) 260{ 261 return m->flags & MEMBLOCK_NOMAP; 262} 263 264static inline bool memblock_is_driver_managed(struct memblock_region *m) 265{ 266 return m->flags & MEMBLOCK_DRIVER_MANAGED; 267} 268 269int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn, 270 unsigned long *end_pfn); 271void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn, 272 unsigned long *out_end_pfn, int *out_nid); 273 274/** 275 * for_each_mem_pfn_range - early memory pfn range iterator 276 * @i: an integer used as loop variable 277 * @nid: node selector, %MAX_NUMNODES for all nodes 278 * @p_start: ptr to ulong for start pfn of the range, can be %NULL 279 * @p_end: ptr to ulong for end pfn of the range, can be %NULL 280 * @p_nid: ptr to int for nid of the range, can be %NULL 281 * 282 * Walks over configured memory ranges. 283 */ 284#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \ 285 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \ 286 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid)) 287 288#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 289void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 290 unsigned long *out_spfn, 291 unsigned long *out_epfn); 292/** 293 * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free 294 * memblock areas 295 * @i: u64 used as loop variable 296 * @zone: zone in which all of the memory blocks reside 297 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 298 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 299 * 300 * Walks over free (memory && !reserved) areas of memblock in a specific 301 * zone. Available once memblock and an empty zone is initialized. The main 302 * assumption is that the zone start, end, and pgdat have been associated. 303 * This way we can use the zone to determine NUMA node, and if a given part 304 * of the memblock is valid for the zone. 305 */ 306#define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \ 307 for (i = 0, \ 308 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \ 309 i != U64_MAX; \ 310 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) 311 312/** 313 * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific 314 * free memblock areas from a given point 315 * @i: u64 used as loop variable 316 * @zone: zone in which all of the memory blocks reside 317 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 318 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 319 * 320 * Walks over free (memory && !reserved) areas of memblock in a specific 321 * zone, continuing from current position. Available as soon as memblock is 322 * initialized. 323 */ 324#define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \ 325 for (; i != U64_MAX; \ 326 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) 327 328int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask); 329 330#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 331 332/** 333 * for_each_free_mem_range - iterate through free memblock areas 334 * @i: u64 used as loop variable 335 * @nid: node selector, %NUMA_NO_NODE for all nodes 336 * @flags: pick from blocks based on memory attributes 337 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 338 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 339 * @p_nid: ptr to int for nid of the range, can be %NULL 340 * 341 * Walks over free (memory && !reserved) areas of memblock. Available as 342 * soon as memblock is initialized. 343 */ 344#define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \ 345 __for_each_mem_range(i, &memblock.memory, &memblock.reserved, \ 346 nid, flags, p_start, p_end, p_nid) 347 348/** 349 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas 350 * @i: u64 used as loop variable 351 * @nid: node selector, %NUMA_NO_NODE for all nodes 352 * @flags: pick from blocks based on memory attributes 353 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 354 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 355 * @p_nid: ptr to int for nid of the range, can be %NULL 356 * 357 * Walks over free (memory && !reserved) areas of memblock in reverse 358 * order. Available as soon as memblock is initialized. 359 */ 360#define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \ 361 p_nid) \ 362 __for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \ 363 nid, flags, p_start, p_end, p_nid) 364 365int memblock_set_node(phys_addr_t base, phys_addr_t size, 366 struct memblock_type *type, int nid); 367 368#ifdef CONFIG_NUMA 369static inline void memblock_set_region_node(struct memblock_region *r, int nid) 370{ 371 r->nid = nid; 372} 373 374static inline int memblock_get_region_node(const struct memblock_region *r) 375{ 376 return r->nid; 377} 378#else 379static inline void memblock_set_region_node(struct memblock_region *r, int nid) 380{ 381} 382 383static inline int memblock_get_region_node(const struct memblock_region *r) 384{ 385 return 0; 386} 387#endif /* CONFIG_NUMA */ 388 389/* Flags for memblock allocation APIs */ 390#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0) 391#define MEMBLOCK_ALLOC_ACCESSIBLE 0 392#define MEMBLOCK_ALLOC_NOLEAKTRACE 1 393 394/* We are using top down, so it is safe to use 0 here */ 395#define MEMBLOCK_LOW_LIMIT 0 396 397#ifndef ARCH_LOW_ADDRESS_LIMIT 398#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL 399#endif 400 401phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align, 402 phys_addr_t start, phys_addr_t end); 403phys_addr_t memblock_alloc_range_nid(phys_addr_t size, 404 phys_addr_t align, phys_addr_t start, 405 phys_addr_t end, int nid, bool exact_nid); 406phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid); 407 408static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size, 409 phys_addr_t align) 410{ 411 return memblock_phys_alloc_range(size, align, 0, 412 MEMBLOCK_ALLOC_ACCESSIBLE); 413} 414 415void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align, 416 phys_addr_t min_addr, phys_addr_t max_addr, 417 int nid); 418void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align, 419 phys_addr_t min_addr, phys_addr_t max_addr, 420 int nid); 421void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, 422 phys_addr_t min_addr, phys_addr_t max_addr, 423 int nid); 424 425static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align) 426{ 427 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 428 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 429} 430 431static inline void *memblock_alloc_raw(phys_addr_t size, 432 phys_addr_t align) 433{ 434 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT, 435 MEMBLOCK_ALLOC_ACCESSIBLE, 436 NUMA_NO_NODE); 437} 438 439static inline void *memblock_alloc_from(phys_addr_t size, 440 phys_addr_t align, 441 phys_addr_t min_addr) 442{ 443 return memblock_alloc_try_nid(size, align, min_addr, 444 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 445} 446 447static inline void *memblock_alloc_low(phys_addr_t size, 448 phys_addr_t align) 449{ 450 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 451 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE); 452} 453 454static inline void *memblock_alloc_node(phys_addr_t size, 455 phys_addr_t align, int nid) 456{ 457 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 458 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 459} 460 461/* 462 * Set the allocation direction to bottom-up or top-down. 463 */ 464static inline __init_memblock void memblock_set_bottom_up(bool enable) 465{ 466 memblock.bottom_up = enable; 467} 468 469/* 470 * Check if the allocation direction is bottom-up or not. 471 * if this is true, that said, memblock will allocate memory 472 * in bottom-up direction. 473 */ 474static inline __init_memblock bool memblock_bottom_up(void) 475{ 476 return memblock.bottom_up; 477} 478 479phys_addr_t memblock_phys_mem_size(void); 480phys_addr_t memblock_reserved_size(void); 481phys_addr_t memblock_start_of_DRAM(void); 482phys_addr_t memblock_end_of_DRAM(void); 483void memblock_enforce_memory_limit(phys_addr_t memory_limit); 484void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size); 485void memblock_mem_limit_remove_map(phys_addr_t limit); 486bool memblock_is_memory(phys_addr_t addr); 487bool memblock_is_map_memory(phys_addr_t addr); 488bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size); 489bool memblock_is_reserved(phys_addr_t addr); 490bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size); 491 492void memblock_dump_all(void); 493 494/** 495 * memblock_set_current_limit - Set the current allocation limit to allow 496 * limiting allocations to what is currently 497 * accessible during boot 498 * @limit: New limit value (physical address) 499 */ 500void memblock_set_current_limit(phys_addr_t limit); 501 502 503phys_addr_t memblock_get_current_limit(void); 504 505/* 506 * pfn conversion functions 507 * 508 * While the memory MEMBLOCKs should always be page aligned, the reserved 509 * MEMBLOCKs may not be. This accessor attempt to provide a very clear 510 * idea of what they return for such non aligned MEMBLOCKs. 511 */ 512 513/** 514 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region 515 * @reg: memblock_region structure 516 * 517 * Return: the lowest pfn intersecting with the memory region 518 */ 519static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg) 520{ 521 return PFN_UP(reg->base); 522} 523 524/** 525 * memblock_region_memory_end_pfn - get the end pfn of the memory region 526 * @reg: memblock_region structure 527 * 528 * Return: the end_pfn of the reserved region 529 */ 530static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg) 531{ 532 return PFN_DOWN(reg->base + reg->size); 533} 534 535/** 536 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region 537 * @reg: memblock_region structure 538 * 539 * Return: the lowest pfn intersecting with the reserved region 540 */ 541static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg) 542{ 543 return PFN_DOWN(reg->base); 544} 545 546/** 547 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region 548 * @reg: memblock_region structure 549 * 550 * Return: the end_pfn of the reserved region 551 */ 552static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg) 553{ 554 return PFN_UP(reg->base + reg->size); 555} 556 557/** 558 * for_each_mem_region - itereate over memory regions 559 * @region: loop variable 560 */ 561#define for_each_mem_region(region) \ 562 for (region = memblock.memory.regions; \ 563 region < (memblock.memory.regions + memblock.memory.cnt); \ 564 region++) 565 566/** 567 * for_each_reserved_mem_region - itereate over reserved memory regions 568 * @region: loop variable 569 */ 570#define for_each_reserved_mem_region(region) \ 571 for (region = memblock.reserved.regions; \ 572 region < (memblock.reserved.regions + memblock.reserved.cnt); \ 573 region++) 574 575extern void *alloc_large_system_hash(const char *tablename, 576 unsigned long bucketsize, 577 unsigned long numentries, 578 int scale, 579 int flags, 580 unsigned int *_hash_shift, 581 unsigned int *_hash_mask, 582 unsigned long low_limit, 583 unsigned long high_limit); 584 585#define HASH_EARLY 0x00000001 /* Allocating during early boot? */ 586#define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min 587 * shift passed via *_hash_shift */ 588#define HASH_ZERO 0x00000004 /* Zero allocated hash table */ 589 590/* Only NUMA needs hash distribution. 64bit NUMA architectures have 591 * sufficient vmalloc space. 592 */ 593#ifdef CONFIG_NUMA 594#define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT) 595extern int hashdist; /* Distribute hashes across NUMA nodes? */ 596#else 597#define hashdist (0) 598#endif 599 600#ifdef CONFIG_MEMTEST 601extern void early_memtest(phys_addr_t start, phys_addr_t end); 602#else 603static inline void early_memtest(phys_addr_t start, phys_addr_t end) 604{ 605} 606#endif 607 608#endif /* __KERNEL__ */ 609 610#endif /* _LINUX_MEMBLOCK_H */