at v5.16 30 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_LIST_H 3#define _LINUX_LIST_H 4 5#include <linux/container_of.h> 6#include <linux/types.h> 7#include <linux/stddef.h> 8#include <linux/poison.h> 9#include <linux/const.h> 10 11#include <asm/barrier.h> 12 13/* 14 * Circular doubly linked list implementation. 15 * 16 * Some of the internal functions ("__xxx") are useful when 17 * manipulating whole lists rather than single entries, as 18 * sometimes we already know the next/prev entries and we can 19 * generate better code by using them directly rather than 20 * using the generic single-entry routines. 21 */ 22 23#define LIST_HEAD_INIT(name) { &(name), &(name) } 24 25#define LIST_HEAD(name) \ 26 struct list_head name = LIST_HEAD_INIT(name) 27 28/** 29 * INIT_LIST_HEAD - Initialize a list_head structure 30 * @list: list_head structure to be initialized. 31 * 32 * Initializes the list_head to point to itself. If it is a list header, 33 * the result is an empty list. 34 */ 35static inline void INIT_LIST_HEAD(struct list_head *list) 36{ 37 WRITE_ONCE(list->next, list); 38 list->prev = list; 39} 40 41#ifdef CONFIG_DEBUG_LIST 42extern bool __list_add_valid(struct list_head *new, 43 struct list_head *prev, 44 struct list_head *next); 45extern bool __list_del_entry_valid(struct list_head *entry); 46#else 47static inline bool __list_add_valid(struct list_head *new, 48 struct list_head *prev, 49 struct list_head *next) 50{ 51 return true; 52} 53static inline bool __list_del_entry_valid(struct list_head *entry) 54{ 55 return true; 56} 57#endif 58 59/* 60 * Insert a new entry between two known consecutive entries. 61 * 62 * This is only for internal list manipulation where we know 63 * the prev/next entries already! 64 */ 65static inline void __list_add(struct list_head *new, 66 struct list_head *prev, 67 struct list_head *next) 68{ 69 if (!__list_add_valid(new, prev, next)) 70 return; 71 72 next->prev = new; 73 new->next = next; 74 new->prev = prev; 75 WRITE_ONCE(prev->next, new); 76} 77 78/** 79 * list_add - add a new entry 80 * @new: new entry to be added 81 * @head: list head to add it after 82 * 83 * Insert a new entry after the specified head. 84 * This is good for implementing stacks. 85 */ 86static inline void list_add(struct list_head *new, struct list_head *head) 87{ 88 __list_add(new, head, head->next); 89} 90 91 92/** 93 * list_add_tail - add a new entry 94 * @new: new entry to be added 95 * @head: list head to add it before 96 * 97 * Insert a new entry before the specified head. 98 * This is useful for implementing queues. 99 */ 100static inline void list_add_tail(struct list_head *new, struct list_head *head) 101{ 102 __list_add(new, head->prev, head); 103} 104 105/* 106 * Delete a list entry by making the prev/next entries 107 * point to each other. 108 * 109 * This is only for internal list manipulation where we know 110 * the prev/next entries already! 111 */ 112static inline void __list_del(struct list_head * prev, struct list_head * next) 113{ 114 next->prev = prev; 115 WRITE_ONCE(prev->next, next); 116} 117 118/* 119 * Delete a list entry and clear the 'prev' pointer. 120 * 121 * This is a special-purpose list clearing method used in the networking code 122 * for lists allocated as per-cpu, where we don't want to incur the extra 123 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this 124 * needs to check the node 'prev' pointer instead of calling list_empty(). 125 */ 126static inline void __list_del_clearprev(struct list_head *entry) 127{ 128 __list_del(entry->prev, entry->next); 129 entry->prev = NULL; 130} 131 132static inline void __list_del_entry(struct list_head *entry) 133{ 134 if (!__list_del_entry_valid(entry)) 135 return; 136 137 __list_del(entry->prev, entry->next); 138} 139 140/** 141 * list_del - deletes entry from list. 142 * @entry: the element to delete from the list. 143 * Note: list_empty() on entry does not return true after this, the entry is 144 * in an undefined state. 145 */ 146static inline void list_del(struct list_head *entry) 147{ 148 __list_del_entry(entry); 149 entry->next = LIST_POISON1; 150 entry->prev = LIST_POISON2; 151} 152 153/** 154 * list_replace - replace old entry by new one 155 * @old : the element to be replaced 156 * @new : the new element to insert 157 * 158 * If @old was empty, it will be overwritten. 159 */ 160static inline void list_replace(struct list_head *old, 161 struct list_head *new) 162{ 163 new->next = old->next; 164 new->next->prev = new; 165 new->prev = old->prev; 166 new->prev->next = new; 167} 168 169/** 170 * list_replace_init - replace old entry by new one and initialize the old one 171 * @old : the element to be replaced 172 * @new : the new element to insert 173 * 174 * If @old was empty, it will be overwritten. 175 */ 176static inline void list_replace_init(struct list_head *old, 177 struct list_head *new) 178{ 179 list_replace(old, new); 180 INIT_LIST_HEAD(old); 181} 182 183/** 184 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position 185 * @entry1: the location to place entry2 186 * @entry2: the location to place entry1 187 */ 188static inline void list_swap(struct list_head *entry1, 189 struct list_head *entry2) 190{ 191 struct list_head *pos = entry2->prev; 192 193 list_del(entry2); 194 list_replace(entry1, entry2); 195 if (pos == entry1) 196 pos = entry2; 197 list_add(entry1, pos); 198} 199 200/** 201 * list_del_init - deletes entry from list and reinitialize it. 202 * @entry: the element to delete from the list. 203 */ 204static inline void list_del_init(struct list_head *entry) 205{ 206 __list_del_entry(entry); 207 INIT_LIST_HEAD(entry); 208} 209 210/** 211 * list_move - delete from one list and add as another's head 212 * @list: the entry to move 213 * @head: the head that will precede our entry 214 */ 215static inline void list_move(struct list_head *list, struct list_head *head) 216{ 217 __list_del_entry(list); 218 list_add(list, head); 219} 220 221/** 222 * list_move_tail - delete from one list and add as another's tail 223 * @list: the entry to move 224 * @head: the head that will follow our entry 225 */ 226static inline void list_move_tail(struct list_head *list, 227 struct list_head *head) 228{ 229 __list_del_entry(list); 230 list_add_tail(list, head); 231} 232 233/** 234 * list_bulk_move_tail - move a subsection of a list to its tail 235 * @head: the head that will follow our entry 236 * @first: first entry to move 237 * @last: last entry to move, can be the same as first 238 * 239 * Move all entries between @first and including @last before @head. 240 * All three entries must belong to the same linked list. 241 */ 242static inline void list_bulk_move_tail(struct list_head *head, 243 struct list_head *first, 244 struct list_head *last) 245{ 246 first->prev->next = last->next; 247 last->next->prev = first->prev; 248 249 head->prev->next = first; 250 first->prev = head->prev; 251 252 last->next = head; 253 head->prev = last; 254} 255 256/** 257 * list_is_first -- tests whether @list is the first entry in list @head 258 * @list: the entry to test 259 * @head: the head of the list 260 */ 261static inline int list_is_first(const struct list_head *list, 262 const struct list_head *head) 263{ 264 return list->prev == head; 265} 266 267/** 268 * list_is_last - tests whether @list is the last entry in list @head 269 * @list: the entry to test 270 * @head: the head of the list 271 */ 272static inline int list_is_last(const struct list_head *list, 273 const struct list_head *head) 274{ 275 return list->next == head; 276} 277 278/** 279 * list_empty - tests whether a list is empty 280 * @head: the list to test. 281 */ 282static inline int list_empty(const struct list_head *head) 283{ 284 return READ_ONCE(head->next) == head; 285} 286 287/** 288 * list_del_init_careful - deletes entry from list and reinitialize it. 289 * @entry: the element to delete from the list. 290 * 291 * This is the same as list_del_init(), except designed to be used 292 * together with list_empty_careful() in a way to guarantee ordering 293 * of other memory operations. 294 * 295 * Any memory operations done before a list_del_init_careful() are 296 * guaranteed to be visible after a list_empty_careful() test. 297 */ 298static inline void list_del_init_careful(struct list_head *entry) 299{ 300 __list_del_entry(entry); 301 entry->prev = entry; 302 smp_store_release(&entry->next, entry); 303} 304 305/** 306 * list_empty_careful - tests whether a list is empty and not being modified 307 * @head: the list to test 308 * 309 * Description: 310 * tests whether a list is empty _and_ checks that no other CPU might be 311 * in the process of modifying either member (next or prev) 312 * 313 * NOTE: using list_empty_careful() without synchronization 314 * can only be safe if the only activity that can happen 315 * to the list entry is list_del_init(). Eg. it cannot be used 316 * if another CPU could re-list_add() it. 317 */ 318static inline int list_empty_careful(const struct list_head *head) 319{ 320 struct list_head *next = smp_load_acquire(&head->next); 321 return (next == head) && (next == head->prev); 322} 323 324/** 325 * list_rotate_left - rotate the list to the left 326 * @head: the head of the list 327 */ 328static inline void list_rotate_left(struct list_head *head) 329{ 330 struct list_head *first; 331 332 if (!list_empty(head)) { 333 first = head->next; 334 list_move_tail(first, head); 335 } 336} 337 338/** 339 * list_rotate_to_front() - Rotate list to specific item. 340 * @list: The desired new front of the list. 341 * @head: The head of the list. 342 * 343 * Rotates list so that @list becomes the new front of the list. 344 */ 345static inline void list_rotate_to_front(struct list_head *list, 346 struct list_head *head) 347{ 348 /* 349 * Deletes the list head from the list denoted by @head and 350 * places it as the tail of @list, this effectively rotates the 351 * list so that @list is at the front. 352 */ 353 list_move_tail(head, list); 354} 355 356/** 357 * list_is_singular - tests whether a list has just one entry. 358 * @head: the list to test. 359 */ 360static inline int list_is_singular(const struct list_head *head) 361{ 362 return !list_empty(head) && (head->next == head->prev); 363} 364 365static inline void __list_cut_position(struct list_head *list, 366 struct list_head *head, struct list_head *entry) 367{ 368 struct list_head *new_first = entry->next; 369 list->next = head->next; 370 list->next->prev = list; 371 list->prev = entry; 372 entry->next = list; 373 head->next = new_first; 374 new_first->prev = head; 375} 376 377/** 378 * list_cut_position - cut a list into two 379 * @list: a new list to add all removed entries 380 * @head: a list with entries 381 * @entry: an entry within head, could be the head itself 382 * and if so we won't cut the list 383 * 384 * This helper moves the initial part of @head, up to and 385 * including @entry, from @head to @list. You should 386 * pass on @entry an element you know is on @head. @list 387 * should be an empty list or a list you do not care about 388 * losing its data. 389 * 390 */ 391static inline void list_cut_position(struct list_head *list, 392 struct list_head *head, struct list_head *entry) 393{ 394 if (list_empty(head)) 395 return; 396 if (list_is_singular(head) && 397 (head->next != entry && head != entry)) 398 return; 399 if (entry == head) 400 INIT_LIST_HEAD(list); 401 else 402 __list_cut_position(list, head, entry); 403} 404 405/** 406 * list_cut_before - cut a list into two, before given entry 407 * @list: a new list to add all removed entries 408 * @head: a list with entries 409 * @entry: an entry within head, could be the head itself 410 * 411 * This helper moves the initial part of @head, up to but 412 * excluding @entry, from @head to @list. You should pass 413 * in @entry an element you know is on @head. @list should 414 * be an empty list or a list you do not care about losing 415 * its data. 416 * If @entry == @head, all entries on @head are moved to 417 * @list. 418 */ 419static inline void list_cut_before(struct list_head *list, 420 struct list_head *head, 421 struct list_head *entry) 422{ 423 if (head->next == entry) { 424 INIT_LIST_HEAD(list); 425 return; 426 } 427 list->next = head->next; 428 list->next->prev = list; 429 list->prev = entry->prev; 430 list->prev->next = list; 431 head->next = entry; 432 entry->prev = head; 433} 434 435static inline void __list_splice(const struct list_head *list, 436 struct list_head *prev, 437 struct list_head *next) 438{ 439 struct list_head *first = list->next; 440 struct list_head *last = list->prev; 441 442 first->prev = prev; 443 prev->next = first; 444 445 last->next = next; 446 next->prev = last; 447} 448 449/** 450 * list_splice - join two lists, this is designed for stacks 451 * @list: the new list to add. 452 * @head: the place to add it in the first list. 453 */ 454static inline void list_splice(const struct list_head *list, 455 struct list_head *head) 456{ 457 if (!list_empty(list)) 458 __list_splice(list, head, head->next); 459} 460 461/** 462 * list_splice_tail - join two lists, each list being a queue 463 * @list: the new list to add. 464 * @head: the place to add it in the first list. 465 */ 466static inline void list_splice_tail(struct list_head *list, 467 struct list_head *head) 468{ 469 if (!list_empty(list)) 470 __list_splice(list, head->prev, head); 471} 472 473/** 474 * list_splice_init - join two lists and reinitialise the emptied list. 475 * @list: the new list to add. 476 * @head: the place to add it in the first list. 477 * 478 * The list at @list is reinitialised 479 */ 480static inline void list_splice_init(struct list_head *list, 481 struct list_head *head) 482{ 483 if (!list_empty(list)) { 484 __list_splice(list, head, head->next); 485 INIT_LIST_HEAD(list); 486 } 487} 488 489/** 490 * list_splice_tail_init - join two lists and reinitialise the emptied list 491 * @list: the new list to add. 492 * @head: the place to add it in the first list. 493 * 494 * Each of the lists is a queue. 495 * The list at @list is reinitialised 496 */ 497static inline void list_splice_tail_init(struct list_head *list, 498 struct list_head *head) 499{ 500 if (!list_empty(list)) { 501 __list_splice(list, head->prev, head); 502 INIT_LIST_HEAD(list); 503 } 504} 505 506/** 507 * list_entry - get the struct for this entry 508 * @ptr: the &struct list_head pointer. 509 * @type: the type of the struct this is embedded in. 510 * @member: the name of the list_head within the struct. 511 */ 512#define list_entry(ptr, type, member) \ 513 container_of(ptr, type, member) 514 515/** 516 * list_first_entry - get the first element from a list 517 * @ptr: the list head to take the element from. 518 * @type: the type of the struct this is embedded in. 519 * @member: the name of the list_head within the struct. 520 * 521 * Note, that list is expected to be not empty. 522 */ 523#define list_first_entry(ptr, type, member) \ 524 list_entry((ptr)->next, type, member) 525 526/** 527 * list_last_entry - get the last element from a list 528 * @ptr: the list head to take the element from. 529 * @type: the type of the struct this is embedded in. 530 * @member: the name of the list_head within the struct. 531 * 532 * Note, that list is expected to be not empty. 533 */ 534#define list_last_entry(ptr, type, member) \ 535 list_entry((ptr)->prev, type, member) 536 537/** 538 * list_first_entry_or_null - get the first element from a list 539 * @ptr: the list head to take the element from. 540 * @type: the type of the struct this is embedded in. 541 * @member: the name of the list_head within the struct. 542 * 543 * Note that if the list is empty, it returns NULL. 544 */ 545#define list_first_entry_or_null(ptr, type, member) ({ \ 546 struct list_head *head__ = (ptr); \ 547 struct list_head *pos__ = READ_ONCE(head__->next); \ 548 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ 549}) 550 551/** 552 * list_next_entry - get the next element in list 553 * @pos: the type * to cursor 554 * @member: the name of the list_head within the struct. 555 */ 556#define list_next_entry(pos, member) \ 557 list_entry((pos)->member.next, typeof(*(pos)), member) 558 559/** 560 * list_prev_entry - get the prev element in list 561 * @pos: the type * to cursor 562 * @member: the name of the list_head within the struct. 563 */ 564#define list_prev_entry(pos, member) \ 565 list_entry((pos)->member.prev, typeof(*(pos)), member) 566 567/** 568 * list_for_each - iterate over a list 569 * @pos: the &struct list_head to use as a loop cursor. 570 * @head: the head for your list. 571 */ 572#define list_for_each(pos, head) \ 573 for (pos = (head)->next; pos != (head); pos = pos->next) 574 575/** 576 * list_for_each_continue - continue iteration over a list 577 * @pos: the &struct list_head to use as a loop cursor. 578 * @head: the head for your list. 579 * 580 * Continue to iterate over a list, continuing after the current position. 581 */ 582#define list_for_each_continue(pos, head) \ 583 for (pos = pos->next; pos != (head); pos = pos->next) 584 585/** 586 * list_for_each_prev - iterate over a list backwards 587 * @pos: the &struct list_head to use as a loop cursor. 588 * @head: the head for your list. 589 */ 590#define list_for_each_prev(pos, head) \ 591 for (pos = (head)->prev; pos != (head); pos = pos->prev) 592 593/** 594 * list_for_each_safe - iterate over a list safe against removal of list entry 595 * @pos: the &struct list_head to use as a loop cursor. 596 * @n: another &struct list_head to use as temporary storage 597 * @head: the head for your list. 598 */ 599#define list_for_each_safe(pos, n, head) \ 600 for (pos = (head)->next, n = pos->next; pos != (head); \ 601 pos = n, n = pos->next) 602 603/** 604 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 605 * @pos: the &struct list_head to use as a loop cursor. 606 * @n: another &struct list_head to use as temporary storage 607 * @head: the head for your list. 608 */ 609#define list_for_each_prev_safe(pos, n, head) \ 610 for (pos = (head)->prev, n = pos->prev; \ 611 pos != (head); \ 612 pos = n, n = pos->prev) 613 614/** 615 * list_entry_is_head - test if the entry points to the head of the list 616 * @pos: the type * to cursor 617 * @head: the head for your list. 618 * @member: the name of the list_head within the struct. 619 */ 620#define list_entry_is_head(pos, head, member) \ 621 (&pos->member == (head)) 622 623/** 624 * list_for_each_entry - iterate over list of given type 625 * @pos: the type * to use as a loop cursor. 626 * @head: the head for your list. 627 * @member: the name of the list_head within the struct. 628 */ 629#define list_for_each_entry(pos, head, member) \ 630 for (pos = list_first_entry(head, typeof(*pos), member); \ 631 !list_entry_is_head(pos, head, member); \ 632 pos = list_next_entry(pos, member)) 633 634/** 635 * list_for_each_entry_reverse - iterate backwards over list of given type. 636 * @pos: the type * to use as a loop cursor. 637 * @head: the head for your list. 638 * @member: the name of the list_head within the struct. 639 */ 640#define list_for_each_entry_reverse(pos, head, member) \ 641 for (pos = list_last_entry(head, typeof(*pos), member); \ 642 !list_entry_is_head(pos, head, member); \ 643 pos = list_prev_entry(pos, member)) 644 645/** 646 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 647 * @pos: the type * to use as a start point 648 * @head: the head of the list 649 * @member: the name of the list_head within the struct. 650 * 651 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 652 */ 653#define list_prepare_entry(pos, head, member) \ 654 ((pos) ? : list_entry(head, typeof(*pos), member)) 655 656/** 657 * list_for_each_entry_continue - continue iteration over list of given type 658 * @pos: the type * to use as a loop cursor. 659 * @head: the head for your list. 660 * @member: the name of the list_head within the struct. 661 * 662 * Continue to iterate over list of given type, continuing after 663 * the current position. 664 */ 665#define list_for_each_entry_continue(pos, head, member) \ 666 for (pos = list_next_entry(pos, member); \ 667 !list_entry_is_head(pos, head, member); \ 668 pos = list_next_entry(pos, member)) 669 670/** 671 * list_for_each_entry_continue_reverse - iterate backwards from the given point 672 * @pos: the type * to use as a loop cursor. 673 * @head: the head for your list. 674 * @member: the name of the list_head within the struct. 675 * 676 * Start to iterate over list of given type backwards, continuing after 677 * the current position. 678 */ 679#define list_for_each_entry_continue_reverse(pos, head, member) \ 680 for (pos = list_prev_entry(pos, member); \ 681 !list_entry_is_head(pos, head, member); \ 682 pos = list_prev_entry(pos, member)) 683 684/** 685 * list_for_each_entry_from - iterate over list of given type from the current point 686 * @pos: the type * to use as a loop cursor. 687 * @head: the head for your list. 688 * @member: the name of the list_head within the struct. 689 * 690 * Iterate over list of given type, continuing from current position. 691 */ 692#define list_for_each_entry_from(pos, head, member) \ 693 for (; !list_entry_is_head(pos, head, member); \ 694 pos = list_next_entry(pos, member)) 695 696/** 697 * list_for_each_entry_from_reverse - iterate backwards over list of given type 698 * from the current point 699 * @pos: the type * to use as a loop cursor. 700 * @head: the head for your list. 701 * @member: the name of the list_head within the struct. 702 * 703 * Iterate backwards over list of given type, continuing from current position. 704 */ 705#define list_for_each_entry_from_reverse(pos, head, member) \ 706 for (; !list_entry_is_head(pos, head, member); \ 707 pos = list_prev_entry(pos, member)) 708 709/** 710 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 711 * @pos: the type * to use as a loop cursor. 712 * @n: another type * to use as temporary storage 713 * @head: the head for your list. 714 * @member: the name of the list_head within the struct. 715 */ 716#define list_for_each_entry_safe(pos, n, head, member) \ 717 for (pos = list_first_entry(head, typeof(*pos), member), \ 718 n = list_next_entry(pos, member); \ 719 !list_entry_is_head(pos, head, member); \ 720 pos = n, n = list_next_entry(n, member)) 721 722/** 723 * list_for_each_entry_safe_continue - continue list iteration safe against removal 724 * @pos: the type * to use as a loop cursor. 725 * @n: another type * to use as temporary storage 726 * @head: the head for your list. 727 * @member: the name of the list_head within the struct. 728 * 729 * Iterate over list of given type, continuing after current point, 730 * safe against removal of list entry. 731 */ 732#define list_for_each_entry_safe_continue(pos, n, head, member) \ 733 for (pos = list_next_entry(pos, member), \ 734 n = list_next_entry(pos, member); \ 735 !list_entry_is_head(pos, head, member); \ 736 pos = n, n = list_next_entry(n, member)) 737 738/** 739 * list_for_each_entry_safe_from - iterate over list from current point safe against removal 740 * @pos: the type * to use as a loop cursor. 741 * @n: another type * to use as temporary storage 742 * @head: the head for your list. 743 * @member: the name of the list_head within the struct. 744 * 745 * Iterate over list of given type from current point, safe against 746 * removal of list entry. 747 */ 748#define list_for_each_entry_safe_from(pos, n, head, member) \ 749 for (n = list_next_entry(pos, member); \ 750 !list_entry_is_head(pos, head, member); \ 751 pos = n, n = list_next_entry(n, member)) 752 753/** 754 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal 755 * @pos: the type * to use as a loop cursor. 756 * @n: another type * to use as temporary storage 757 * @head: the head for your list. 758 * @member: the name of the list_head within the struct. 759 * 760 * Iterate backwards over list of given type, safe against removal 761 * of list entry. 762 */ 763#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 764 for (pos = list_last_entry(head, typeof(*pos), member), \ 765 n = list_prev_entry(pos, member); \ 766 !list_entry_is_head(pos, head, member); \ 767 pos = n, n = list_prev_entry(n, member)) 768 769/** 770 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop 771 * @pos: the loop cursor used in the list_for_each_entry_safe loop 772 * @n: temporary storage used in list_for_each_entry_safe 773 * @member: the name of the list_head within the struct. 774 * 775 * list_safe_reset_next is not safe to use in general if the list may be 776 * modified concurrently (eg. the lock is dropped in the loop body). An 777 * exception to this is if the cursor element (pos) is pinned in the list, 778 * and list_safe_reset_next is called after re-taking the lock and before 779 * completing the current iteration of the loop body. 780 */ 781#define list_safe_reset_next(pos, n, member) \ 782 n = list_next_entry(pos, member) 783 784/* 785 * Double linked lists with a single pointer list head. 786 * Mostly useful for hash tables where the two pointer list head is 787 * too wasteful. 788 * You lose the ability to access the tail in O(1). 789 */ 790 791#define HLIST_HEAD_INIT { .first = NULL } 792#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 793#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 794static inline void INIT_HLIST_NODE(struct hlist_node *h) 795{ 796 h->next = NULL; 797 h->pprev = NULL; 798} 799 800/** 801 * hlist_unhashed - Has node been removed from list and reinitialized? 802 * @h: Node to be checked 803 * 804 * Not that not all removal functions will leave a node in unhashed 805 * state. For example, hlist_nulls_del_init_rcu() does leave the 806 * node in unhashed state, but hlist_nulls_del() does not. 807 */ 808static inline int hlist_unhashed(const struct hlist_node *h) 809{ 810 return !h->pprev; 811} 812 813/** 814 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use 815 * @h: Node to be checked 816 * 817 * This variant of hlist_unhashed() must be used in lockless contexts 818 * to avoid potential load-tearing. The READ_ONCE() is paired with the 819 * various WRITE_ONCE() in hlist helpers that are defined below. 820 */ 821static inline int hlist_unhashed_lockless(const struct hlist_node *h) 822{ 823 return !READ_ONCE(h->pprev); 824} 825 826/** 827 * hlist_empty - Is the specified hlist_head structure an empty hlist? 828 * @h: Structure to check. 829 */ 830static inline int hlist_empty(const struct hlist_head *h) 831{ 832 return !READ_ONCE(h->first); 833} 834 835static inline void __hlist_del(struct hlist_node *n) 836{ 837 struct hlist_node *next = n->next; 838 struct hlist_node **pprev = n->pprev; 839 840 WRITE_ONCE(*pprev, next); 841 if (next) 842 WRITE_ONCE(next->pprev, pprev); 843} 844 845/** 846 * hlist_del - Delete the specified hlist_node from its list 847 * @n: Node to delete. 848 * 849 * Note that this function leaves the node in hashed state. Use 850 * hlist_del_init() or similar instead to unhash @n. 851 */ 852static inline void hlist_del(struct hlist_node *n) 853{ 854 __hlist_del(n); 855 n->next = LIST_POISON1; 856 n->pprev = LIST_POISON2; 857} 858 859/** 860 * hlist_del_init - Delete the specified hlist_node from its list and initialize 861 * @n: Node to delete. 862 * 863 * Note that this function leaves the node in unhashed state. 864 */ 865static inline void hlist_del_init(struct hlist_node *n) 866{ 867 if (!hlist_unhashed(n)) { 868 __hlist_del(n); 869 INIT_HLIST_NODE(n); 870 } 871} 872 873/** 874 * hlist_add_head - add a new entry at the beginning of the hlist 875 * @n: new entry to be added 876 * @h: hlist head to add it after 877 * 878 * Insert a new entry after the specified head. 879 * This is good for implementing stacks. 880 */ 881static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 882{ 883 struct hlist_node *first = h->first; 884 WRITE_ONCE(n->next, first); 885 if (first) 886 WRITE_ONCE(first->pprev, &n->next); 887 WRITE_ONCE(h->first, n); 888 WRITE_ONCE(n->pprev, &h->first); 889} 890 891/** 892 * hlist_add_before - add a new entry before the one specified 893 * @n: new entry to be added 894 * @next: hlist node to add it before, which must be non-NULL 895 */ 896static inline void hlist_add_before(struct hlist_node *n, 897 struct hlist_node *next) 898{ 899 WRITE_ONCE(n->pprev, next->pprev); 900 WRITE_ONCE(n->next, next); 901 WRITE_ONCE(next->pprev, &n->next); 902 WRITE_ONCE(*(n->pprev), n); 903} 904 905/** 906 * hlist_add_behind - add a new entry after the one specified 907 * @n: new entry to be added 908 * @prev: hlist node to add it after, which must be non-NULL 909 */ 910static inline void hlist_add_behind(struct hlist_node *n, 911 struct hlist_node *prev) 912{ 913 WRITE_ONCE(n->next, prev->next); 914 WRITE_ONCE(prev->next, n); 915 WRITE_ONCE(n->pprev, &prev->next); 916 917 if (n->next) 918 WRITE_ONCE(n->next->pprev, &n->next); 919} 920 921/** 922 * hlist_add_fake - create a fake hlist consisting of a single headless node 923 * @n: Node to make a fake list out of 924 * 925 * This makes @n appear to be its own predecessor on a headless hlist. 926 * The point of this is to allow things like hlist_del() to work correctly 927 * in cases where there is no list. 928 */ 929static inline void hlist_add_fake(struct hlist_node *n) 930{ 931 n->pprev = &n->next; 932} 933 934/** 935 * hlist_fake: Is this node a fake hlist? 936 * @h: Node to check for being a self-referential fake hlist. 937 */ 938static inline bool hlist_fake(struct hlist_node *h) 939{ 940 return h->pprev == &h->next; 941} 942 943/** 944 * hlist_is_singular_node - is node the only element of the specified hlist? 945 * @n: Node to check for singularity. 946 * @h: Header for potentially singular list. 947 * 948 * Check whether the node is the only node of the head without 949 * accessing head, thus avoiding unnecessary cache misses. 950 */ 951static inline bool 952hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) 953{ 954 return !n->next && n->pprev == &h->first; 955} 956 957/** 958 * hlist_move_list - Move an hlist 959 * @old: hlist_head for old list. 960 * @new: hlist_head for new list. 961 * 962 * Move a list from one list head to another. Fixup the pprev 963 * reference of the first entry if it exists. 964 */ 965static inline void hlist_move_list(struct hlist_head *old, 966 struct hlist_head *new) 967{ 968 new->first = old->first; 969 if (new->first) 970 new->first->pprev = &new->first; 971 old->first = NULL; 972} 973 974#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 975 976#define hlist_for_each(pos, head) \ 977 for (pos = (head)->first; pos ; pos = pos->next) 978 979#define hlist_for_each_safe(pos, n, head) \ 980 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 981 pos = n) 982 983#define hlist_entry_safe(ptr, type, member) \ 984 ({ typeof(ptr) ____ptr = (ptr); \ 985 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ 986 }) 987 988/** 989 * hlist_for_each_entry - iterate over list of given type 990 * @pos: the type * to use as a loop cursor. 991 * @head: the head for your list. 992 * @member: the name of the hlist_node within the struct. 993 */ 994#define hlist_for_each_entry(pos, head, member) \ 995 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ 996 pos; \ 997 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 998 999/** 1000 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 1001 * @pos: the type * to use as a loop cursor. 1002 * @member: the name of the hlist_node within the struct. 1003 */ 1004#define hlist_for_each_entry_continue(pos, member) \ 1005 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ 1006 pos; \ 1007 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 1008 1009/** 1010 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 1011 * @pos: the type * to use as a loop cursor. 1012 * @member: the name of the hlist_node within the struct. 1013 */ 1014#define hlist_for_each_entry_from(pos, member) \ 1015 for (; pos; \ 1016 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 1017 1018/** 1019 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 1020 * @pos: the type * to use as a loop cursor. 1021 * @n: a &struct hlist_node to use as temporary storage 1022 * @head: the head for your list. 1023 * @member: the name of the hlist_node within the struct. 1024 */ 1025#define hlist_for_each_entry_safe(pos, n, head, member) \ 1026 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ 1027 pos && ({ n = pos->member.next; 1; }); \ 1028 pos = hlist_entry_safe(n, typeof(*pos), member)) 1029 1030#endif