at v5.16 56 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <asm/signal.h> 33 34#include <linux/kvm.h> 35#include <linux/kvm_para.h> 36 37#include <linux/kvm_types.h> 38 39#include <asm/kvm_host.h> 40#include <linux/kvm_dirty_ring.h> 41 42#ifndef KVM_MAX_VCPU_IDS 43#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 44#endif 45 46/* 47 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 48 * in kvm, other bits are visible for userspace which are defined in 49 * include/linux/kvm_h. 50 */ 51#define KVM_MEMSLOT_INVALID (1UL << 16) 52 53/* 54 * Bit 63 of the memslot generation number is an "update in-progress flag", 55 * e.g. is temporarily set for the duration of install_new_memslots(). 56 * This flag effectively creates a unique generation number that is used to 57 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 58 * i.e. may (or may not) have come from the previous memslots generation. 59 * 60 * This is necessary because the actual memslots update is not atomic with 61 * respect to the generation number update. Updating the generation number 62 * first would allow a vCPU to cache a spte from the old memslots using the 63 * new generation number, and updating the generation number after switching 64 * to the new memslots would allow cache hits using the old generation number 65 * to reference the defunct memslots. 66 * 67 * This mechanism is used to prevent getting hits in KVM's caches while a 68 * memslot update is in-progress, and to prevent cache hits *after* updating 69 * the actual generation number against accesses that were inserted into the 70 * cache *before* the memslots were updated. 71 */ 72#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 73 74/* Two fragments for cross MMIO pages. */ 75#define KVM_MAX_MMIO_FRAGMENTS 2 76 77#ifndef KVM_ADDRESS_SPACE_NUM 78#define KVM_ADDRESS_SPACE_NUM 1 79#endif 80 81/* 82 * For the normal pfn, the highest 12 bits should be zero, 83 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 84 * mask bit 63 to indicate the noslot pfn. 85 */ 86#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 87#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 88#define KVM_PFN_NOSLOT (0x1ULL << 63) 89 90#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 91#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 92#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 93 94/* 95 * error pfns indicate that the gfn is in slot but faild to 96 * translate it to pfn on host. 97 */ 98static inline bool is_error_pfn(kvm_pfn_t pfn) 99{ 100 return !!(pfn & KVM_PFN_ERR_MASK); 101} 102 103/* 104 * error_noslot pfns indicate that the gfn can not be 105 * translated to pfn - it is not in slot or failed to 106 * translate it to pfn. 107 */ 108static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 109{ 110 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 111} 112 113/* noslot pfn indicates that the gfn is not in slot. */ 114static inline bool is_noslot_pfn(kvm_pfn_t pfn) 115{ 116 return pfn == KVM_PFN_NOSLOT; 117} 118 119/* 120 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 121 * provide own defines and kvm_is_error_hva 122 */ 123#ifndef KVM_HVA_ERR_BAD 124 125#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 126#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 127 128static inline bool kvm_is_error_hva(unsigned long addr) 129{ 130 return addr >= PAGE_OFFSET; 131} 132 133#endif 134 135#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 136 137static inline bool is_error_page(struct page *page) 138{ 139 return IS_ERR(page); 140} 141 142#define KVM_REQUEST_MASK GENMASK(7,0) 143#define KVM_REQUEST_NO_WAKEUP BIT(8) 144#define KVM_REQUEST_WAIT BIT(9) 145/* 146 * Architecture-independent vcpu->requests bit members 147 * Bits 4-7 are reserved for more arch-independent bits. 148 */ 149#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 151#define KVM_REQ_UNBLOCK 2 152#define KVM_REQ_UNHALT 3 153#define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 154#define KVM_REQUEST_ARCH_BASE 8 155 156#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 157 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 158 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 159}) 160#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 161 162bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 163 unsigned long *vcpu_bitmap); 164bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 165bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 166 struct kvm_vcpu *except); 167bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 168 unsigned long *vcpu_bitmap); 169 170#define KVM_USERSPACE_IRQ_SOURCE_ID 0 171#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 172 173extern struct mutex kvm_lock; 174extern struct list_head vm_list; 175 176struct kvm_io_range { 177 gpa_t addr; 178 int len; 179 struct kvm_io_device *dev; 180}; 181 182#define NR_IOBUS_DEVS 1000 183 184struct kvm_io_bus { 185 int dev_count; 186 int ioeventfd_count; 187 struct kvm_io_range range[]; 188}; 189 190enum kvm_bus { 191 KVM_MMIO_BUS, 192 KVM_PIO_BUS, 193 KVM_VIRTIO_CCW_NOTIFY_BUS, 194 KVM_FAST_MMIO_BUS, 195 KVM_NR_BUSES 196}; 197 198int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 199 int len, const void *val); 200int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 201 gpa_t addr, int len, const void *val, long cookie); 202int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 203 int len, void *val); 204int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 205 int len, struct kvm_io_device *dev); 206int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 207 struct kvm_io_device *dev); 208struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 209 gpa_t addr); 210 211#ifdef CONFIG_KVM_ASYNC_PF 212struct kvm_async_pf { 213 struct work_struct work; 214 struct list_head link; 215 struct list_head queue; 216 struct kvm_vcpu *vcpu; 217 struct mm_struct *mm; 218 gpa_t cr2_or_gpa; 219 unsigned long addr; 220 struct kvm_arch_async_pf arch; 221 bool wakeup_all; 222 bool notpresent_injected; 223}; 224 225void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 226void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 227bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 228 unsigned long hva, struct kvm_arch_async_pf *arch); 229int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 230#endif 231 232#ifdef KVM_ARCH_WANT_MMU_NOTIFIER 233struct kvm_gfn_range { 234 struct kvm_memory_slot *slot; 235 gfn_t start; 236 gfn_t end; 237 pte_t pte; 238 bool may_block; 239}; 240bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 241bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 242bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 243bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 244#endif 245 246enum { 247 OUTSIDE_GUEST_MODE, 248 IN_GUEST_MODE, 249 EXITING_GUEST_MODE, 250 READING_SHADOW_PAGE_TABLES, 251}; 252 253#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 254 255struct kvm_host_map { 256 /* 257 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 258 * a 'struct page' for it. When using mem= kernel parameter some memory 259 * can be used as guest memory but they are not managed by host 260 * kernel). 261 * If 'pfn' is not managed by the host kernel, this field is 262 * initialized to KVM_UNMAPPED_PAGE. 263 */ 264 struct page *page; 265 void *hva; 266 kvm_pfn_t pfn; 267 kvm_pfn_t gfn; 268}; 269 270/* 271 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 272 * directly to check for that. 273 */ 274static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 275{ 276 return !!map->hva; 277} 278 279static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 280{ 281 return single_task_running() && !need_resched() && ktime_before(cur, stop); 282} 283 284/* 285 * Sometimes a large or cross-page mmio needs to be broken up into separate 286 * exits for userspace servicing. 287 */ 288struct kvm_mmio_fragment { 289 gpa_t gpa; 290 void *data; 291 unsigned len; 292}; 293 294struct kvm_vcpu { 295 struct kvm *kvm; 296#ifdef CONFIG_PREEMPT_NOTIFIERS 297 struct preempt_notifier preempt_notifier; 298#endif 299 int cpu; 300 int vcpu_id; /* id given by userspace at creation */ 301 int vcpu_idx; /* index in kvm->vcpus array */ 302 int srcu_idx; 303 int mode; 304 u64 requests; 305 unsigned long guest_debug; 306 307 int pre_pcpu; 308 struct list_head blocked_vcpu_list; 309 310 struct mutex mutex; 311 struct kvm_run *run; 312 313 struct rcuwait wait; 314 struct pid __rcu *pid; 315 int sigset_active; 316 sigset_t sigset; 317 unsigned int halt_poll_ns; 318 bool valid_wakeup; 319 320#ifdef CONFIG_HAS_IOMEM 321 int mmio_needed; 322 int mmio_read_completed; 323 int mmio_is_write; 324 int mmio_cur_fragment; 325 int mmio_nr_fragments; 326 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 327#endif 328 329#ifdef CONFIG_KVM_ASYNC_PF 330 struct { 331 u32 queued; 332 struct list_head queue; 333 struct list_head done; 334 spinlock_t lock; 335 } async_pf; 336#endif 337 338#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 339 /* 340 * Cpu relax intercept or pause loop exit optimization 341 * in_spin_loop: set when a vcpu does a pause loop exit 342 * or cpu relax intercepted. 343 * dy_eligible: indicates whether vcpu is eligible for directed yield. 344 */ 345 struct { 346 bool in_spin_loop; 347 bool dy_eligible; 348 } spin_loop; 349#endif 350 bool preempted; 351 bool ready; 352 struct kvm_vcpu_arch arch; 353 struct kvm_vcpu_stat stat; 354 char stats_id[KVM_STATS_NAME_SIZE]; 355 struct kvm_dirty_ring dirty_ring; 356 357 /* 358 * The index of the most recently used memslot by this vCPU. It's ok 359 * if this becomes stale due to memslot changes since we always check 360 * it is a valid slot. 361 */ 362 int last_used_slot; 363}; 364 365/* must be called with irqs disabled */ 366static __always_inline void guest_enter_irqoff(void) 367{ 368 /* 369 * This is running in ioctl context so its safe to assume that it's the 370 * stime pending cputime to flush. 371 */ 372 instrumentation_begin(); 373 vtime_account_guest_enter(); 374 instrumentation_end(); 375 376 /* 377 * KVM does not hold any references to rcu protected data when it 378 * switches CPU into a guest mode. In fact switching to a guest mode 379 * is very similar to exiting to userspace from rcu point of view. In 380 * addition CPU may stay in a guest mode for quite a long time (up to 381 * one time slice). Lets treat guest mode as quiescent state, just like 382 * we do with user-mode execution. 383 */ 384 if (!context_tracking_guest_enter()) { 385 instrumentation_begin(); 386 rcu_virt_note_context_switch(smp_processor_id()); 387 instrumentation_end(); 388 } 389} 390 391static __always_inline void guest_exit_irqoff(void) 392{ 393 context_tracking_guest_exit(); 394 395 instrumentation_begin(); 396 /* Flush the guest cputime we spent on the guest */ 397 vtime_account_guest_exit(); 398 instrumentation_end(); 399} 400 401static inline void guest_exit(void) 402{ 403 unsigned long flags; 404 405 local_irq_save(flags); 406 guest_exit_irqoff(); 407 local_irq_restore(flags); 408} 409 410static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 411{ 412 /* 413 * The memory barrier ensures a previous write to vcpu->requests cannot 414 * be reordered with the read of vcpu->mode. It pairs with the general 415 * memory barrier following the write of vcpu->mode in VCPU RUN. 416 */ 417 smp_mb__before_atomic(); 418 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 419} 420 421/* 422 * Some of the bitops functions do not support too long bitmaps. 423 * This number must be determined not to exceed such limits. 424 */ 425#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 426 427struct kvm_memory_slot { 428 gfn_t base_gfn; 429 unsigned long npages; 430 unsigned long *dirty_bitmap; 431 struct kvm_arch_memory_slot arch; 432 unsigned long userspace_addr; 433 u32 flags; 434 short id; 435 u16 as_id; 436}; 437 438static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 439{ 440 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 441} 442 443static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 444{ 445 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 446} 447 448static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 449{ 450 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 451 452 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 453} 454 455#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 456#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 457#endif 458 459struct kvm_s390_adapter_int { 460 u64 ind_addr; 461 u64 summary_addr; 462 u64 ind_offset; 463 u32 summary_offset; 464 u32 adapter_id; 465}; 466 467struct kvm_hv_sint { 468 u32 vcpu; 469 u32 sint; 470}; 471 472struct kvm_kernel_irq_routing_entry { 473 u32 gsi; 474 u32 type; 475 int (*set)(struct kvm_kernel_irq_routing_entry *e, 476 struct kvm *kvm, int irq_source_id, int level, 477 bool line_status); 478 union { 479 struct { 480 unsigned irqchip; 481 unsigned pin; 482 } irqchip; 483 struct { 484 u32 address_lo; 485 u32 address_hi; 486 u32 data; 487 u32 flags; 488 u32 devid; 489 } msi; 490 struct kvm_s390_adapter_int adapter; 491 struct kvm_hv_sint hv_sint; 492 }; 493 struct hlist_node link; 494}; 495 496#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 497struct kvm_irq_routing_table { 498 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 499 u32 nr_rt_entries; 500 /* 501 * Array indexed by gsi. Each entry contains list of irq chips 502 * the gsi is connected to. 503 */ 504 struct hlist_head map[]; 505}; 506#endif 507 508#ifndef KVM_PRIVATE_MEM_SLOTS 509#define KVM_PRIVATE_MEM_SLOTS 0 510#endif 511 512#define KVM_MEM_SLOTS_NUM SHRT_MAX 513#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 514 515#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 516static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 517{ 518 return 0; 519} 520#endif 521 522/* 523 * Note: 524 * memslots are not sorted by id anymore, please use id_to_memslot() 525 * to get the memslot by its id. 526 */ 527struct kvm_memslots { 528 u64 generation; 529 /* The mapping table from slot id to the index in memslots[]. */ 530 short id_to_index[KVM_MEM_SLOTS_NUM]; 531 atomic_t last_used_slot; 532 int used_slots; 533 struct kvm_memory_slot memslots[]; 534}; 535 536struct kvm { 537#ifdef KVM_HAVE_MMU_RWLOCK 538 rwlock_t mmu_lock; 539#else 540 spinlock_t mmu_lock; 541#endif /* KVM_HAVE_MMU_RWLOCK */ 542 543 struct mutex slots_lock; 544 545 /* 546 * Protects the arch-specific fields of struct kvm_memory_slots in 547 * use by the VM. To be used under the slots_lock (above) or in a 548 * kvm->srcu critical section where acquiring the slots_lock would 549 * lead to deadlock with the synchronize_srcu in 550 * install_new_memslots. 551 */ 552 struct mutex slots_arch_lock; 553 struct mm_struct *mm; /* userspace tied to this vm */ 554 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 555 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 556 557 /* Used to wait for completion of MMU notifiers. */ 558 spinlock_t mn_invalidate_lock; 559 unsigned long mn_active_invalidate_count; 560 struct rcuwait mn_memslots_update_rcuwait; 561 562 /* 563 * created_vcpus is protected by kvm->lock, and is incremented 564 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 565 * incremented after storing the kvm_vcpu pointer in vcpus, 566 * and is accessed atomically. 567 */ 568 atomic_t online_vcpus; 569 int created_vcpus; 570 int last_boosted_vcpu; 571 struct list_head vm_list; 572 struct mutex lock; 573 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 574#ifdef CONFIG_HAVE_KVM_EVENTFD 575 struct { 576 spinlock_t lock; 577 struct list_head items; 578 struct list_head resampler_list; 579 struct mutex resampler_lock; 580 } irqfds; 581 struct list_head ioeventfds; 582#endif 583 struct kvm_vm_stat stat; 584 struct kvm_arch arch; 585 refcount_t users_count; 586#ifdef CONFIG_KVM_MMIO 587 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 588 spinlock_t ring_lock; 589 struct list_head coalesced_zones; 590#endif 591 592 struct mutex irq_lock; 593#ifdef CONFIG_HAVE_KVM_IRQCHIP 594 /* 595 * Update side is protected by irq_lock. 596 */ 597 struct kvm_irq_routing_table __rcu *irq_routing; 598#endif 599#ifdef CONFIG_HAVE_KVM_IRQFD 600 struct hlist_head irq_ack_notifier_list; 601#endif 602 603#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 604 struct mmu_notifier mmu_notifier; 605 unsigned long mmu_notifier_seq; 606 long mmu_notifier_count; 607 unsigned long mmu_notifier_range_start; 608 unsigned long mmu_notifier_range_end; 609#endif 610 struct list_head devices; 611 u64 manual_dirty_log_protect; 612 struct dentry *debugfs_dentry; 613 struct kvm_stat_data **debugfs_stat_data; 614 struct srcu_struct srcu; 615 struct srcu_struct irq_srcu; 616 pid_t userspace_pid; 617 unsigned int max_halt_poll_ns; 618 u32 dirty_ring_size; 619 bool vm_bugged; 620 bool vm_dead; 621 622#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 623 struct notifier_block pm_notifier; 624#endif 625 char stats_id[KVM_STATS_NAME_SIZE]; 626}; 627 628#define kvm_err(fmt, ...) \ 629 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 630#define kvm_info(fmt, ...) \ 631 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 632#define kvm_debug(fmt, ...) \ 633 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 634#define kvm_debug_ratelimited(fmt, ...) \ 635 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 636 ## __VA_ARGS__) 637#define kvm_pr_unimpl(fmt, ...) \ 638 pr_err_ratelimited("kvm [%i]: " fmt, \ 639 task_tgid_nr(current), ## __VA_ARGS__) 640 641/* The guest did something we don't support. */ 642#define vcpu_unimpl(vcpu, fmt, ...) \ 643 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 644 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 645 646#define vcpu_debug(vcpu, fmt, ...) \ 647 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 648#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 649 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 650 ## __VA_ARGS__) 651#define vcpu_err(vcpu, fmt, ...) \ 652 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 653 654static inline void kvm_vm_dead(struct kvm *kvm) 655{ 656 kvm->vm_dead = true; 657 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 658} 659 660static inline void kvm_vm_bugged(struct kvm *kvm) 661{ 662 kvm->vm_bugged = true; 663 kvm_vm_dead(kvm); 664} 665 666 667#define KVM_BUG(cond, kvm, fmt...) \ 668({ \ 669 int __ret = (cond); \ 670 \ 671 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 672 kvm_vm_bugged(kvm); \ 673 unlikely(__ret); \ 674}) 675 676#define KVM_BUG_ON(cond, kvm) \ 677({ \ 678 int __ret = (cond); \ 679 \ 680 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 681 kvm_vm_bugged(kvm); \ 682 unlikely(__ret); \ 683}) 684 685static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 686{ 687 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 688} 689 690static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 691{ 692 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 693 lockdep_is_held(&kvm->slots_lock) || 694 !refcount_read(&kvm->users_count)); 695} 696 697static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 698{ 699 int num_vcpus = atomic_read(&kvm->online_vcpus); 700 i = array_index_nospec(i, num_vcpus); 701 702 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 703 smp_rmb(); 704 return kvm->vcpus[i]; 705} 706 707#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 708 for (idx = 0; \ 709 idx < atomic_read(&kvm->online_vcpus) && \ 710 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 711 idx++) 712 713static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 714{ 715 struct kvm_vcpu *vcpu = NULL; 716 int i; 717 718 if (id < 0) 719 return NULL; 720 if (id < KVM_MAX_VCPUS) 721 vcpu = kvm_get_vcpu(kvm, id); 722 if (vcpu && vcpu->vcpu_id == id) 723 return vcpu; 724 kvm_for_each_vcpu(i, vcpu, kvm) 725 if (vcpu->vcpu_id == id) 726 return vcpu; 727 return NULL; 728} 729 730#define kvm_for_each_memslot(memslot, slots) \ 731 for (memslot = &slots->memslots[0]; \ 732 memslot < slots->memslots + slots->used_slots; memslot++) \ 733 if (WARN_ON_ONCE(!memslot->npages)) { \ 734 } else 735 736void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 737 738void vcpu_load(struct kvm_vcpu *vcpu); 739void vcpu_put(struct kvm_vcpu *vcpu); 740 741#ifdef __KVM_HAVE_IOAPIC 742void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 743void kvm_arch_post_irq_routing_update(struct kvm *kvm); 744#else 745static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 746{ 747} 748static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 749{ 750} 751#endif 752 753#ifdef CONFIG_HAVE_KVM_IRQFD 754int kvm_irqfd_init(void); 755void kvm_irqfd_exit(void); 756#else 757static inline int kvm_irqfd_init(void) 758{ 759 return 0; 760} 761 762static inline void kvm_irqfd_exit(void) 763{ 764} 765#endif 766int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 767 struct module *module); 768void kvm_exit(void); 769 770void kvm_get_kvm(struct kvm *kvm); 771bool kvm_get_kvm_safe(struct kvm *kvm); 772void kvm_put_kvm(struct kvm *kvm); 773bool file_is_kvm(struct file *file); 774void kvm_put_kvm_no_destroy(struct kvm *kvm); 775 776static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 777{ 778 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 779 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 780 lockdep_is_held(&kvm->slots_lock) || 781 !refcount_read(&kvm->users_count)); 782} 783 784static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 785{ 786 return __kvm_memslots(kvm, 0); 787} 788 789static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 790{ 791 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 792 793 return __kvm_memslots(vcpu->kvm, as_id); 794} 795 796static inline 797struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 798{ 799 int index = slots->id_to_index[id]; 800 struct kvm_memory_slot *slot; 801 802 if (index < 0) 803 return NULL; 804 805 slot = &slots->memslots[index]; 806 807 WARN_ON(slot->id != id); 808 return slot; 809} 810 811/* 812 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 813 * - create a new memory slot 814 * - delete an existing memory slot 815 * - modify an existing memory slot 816 * -- move it in the guest physical memory space 817 * -- just change its flags 818 * 819 * Since flags can be changed by some of these operations, the following 820 * differentiation is the best we can do for __kvm_set_memory_region(): 821 */ 822enum kvm_mr_change { 823 KVM_MR_CREATE, 824 KVM_MR_DELETE, 825 KVM_MR_MOVE, 826 KVM_MR_FLAGS_ONLY, 827}; 828 829int kvm_set_memory_region(struct kvm *kvm, 830 const struct kvm_userspace_memory_region *mem); 831int __kvm_set_memory_region(struct kvm *kvm, 832 const struct kvm_userspace_memory_region *mem); 833void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 834void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 835int kvm_arch_prepare_memory_region(struct kvm *kvm, 836 struct kvm_memory_slot *memslot, 837 const struct kvm_userspace_memory_region *mem, 838 enum kvm_mr_change change); 839void kvm_arch_commit_memory_region(struct kvm *kvm, 840 const struct kvm_userspace_memory_region *mem, 841 struct kvm_memory_slot *old, 842 const struct kvm_memory_slot *new, 843 enum kvm_mr_change change); 844/* flush all memory translations */ 845void kvm_arch_flush_shadow_all(struct kvm *kvm); 846/* flush memory translations pointing to 'slot' */ 847void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 848 struct kvm_memory_slot *slot); 849 850int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 851 struct page **pages, int nr_pages); 852 853struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 854unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 855unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 856unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 857unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 858 bool *writable); 859void kvm_release_page_clean(struct page *page); 860void kvm_release_page_dirty(struct page *page); 861void kvm_set_page_accessed(struct page *page); 862 863kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 864kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 865 bool *writable); 866kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 867kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 868kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 869 bool atomic, bool *async, bool write_fault, 870 bool *writable, hva_t *hva); 871 872void kvm_release_pfn_clean(kvm_pfn_t pfn); 873void kvm_release_pfn_dirty(kvm_pfn_t pfn); 874void kvm_set_pfn_dirty(kvm_pfn_t pfn); 875void kvm_set_pfn_accessed(kvm_pfn_t pfn); 876 877void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 878int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 879 int len); 880int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 881int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 882 void *data, unsigned long len); 883int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 884 void *data, unsigned int offset, 885 unsigned long len); 886int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 887 int offset, int len); 888int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 889 unsigned long len); 890int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 891 void *data, unsigned long len); 892int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 893 void *data, unsigned int offset, 894 unsigned long len); 895int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 896 gpa_t gpa, unsigned long len); 897 898#define __kvm_get_guest(kvm, gfn, offset, v) \ 899({ \ 900 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 901 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 902 int __ret = -EFAULT; \ 903 \ 904 if (!kvm_is_error_hva(__addr)) \ 905 __ret = get_user(v, __uaddr); \ 906 __ret; \ 907}) 908 909#define kvm_get_guest(kvm, gpa, v) \ 910({ \ 911 gpa_t __gpa = gpa; \ 912 struct kvm *__kvm = kvm; \ 913 \ 914 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 915 offset_in_page(__gpa), v); \ 916}) 917 918#define __kvm_put_guest(kvm, gfn, offset, v) \ 919({ \ 920 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 921 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 922 int __ret = -EFAULT; \ 923 \ 924 if (!kvm_is_error_hva(__addr)) \ 925 __ret = put_user(v, __uaddr); \ 926 if (!__ret) \ 927 mark_page_dirty(kvm, gfn); \ 928 __ret; \ 929}) 930 931#define kvm_put_guest(kvm, gpa, v) \ 932({ \ 933 gpa_t __gpa = gpa; \ 934 struct kvm *__kvm = kvm; \ 935 \ 936 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 937 offset_in_page(__gpa), v); \ 938}) 939 940int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 941struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 942bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 943bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 944unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 945void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 946void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 947 948struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 949struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 950kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 951kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 952int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 953struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 954void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 955unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 956unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 957int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 958 int len); 959int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 960 unsigned long len); 961int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 962 unsigned long len); 963int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 964 int offset, int len); 965int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 966 unsigned long len); 967void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 968 969void kvm_sigset_activate(struct kvm_vcpu *vcpu); 970void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 971 972void kvm_vcpu_block(struct kvm_vcpu *vcpu); 973void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 974void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 975bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 976void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 977int kvm_vcpu_yield_to(struct kvm_vcpu *target); 978void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 979 980void kvm_flush_remote_tlbs(struct kvm *kvm); 981void kvm_reload_remote_mmus(struct kvm *kvm); 982 983#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 984int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 985int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 986void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 987void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 988#endif 989 990void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 991 unsigned long end); 992void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 993 unsigned long end); 994 995long kvm_arch_dev_ioctl(struct file *filp, 996 unsigned int ioctl, unsigned long arg); 997long kvm_arch_vcpu_ioctl(struct file *filp, 998 unsigned int ioctl, unsigned long arg); 999vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1000 1001int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1002 1003void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1004 struct kvm_memory_slot *slot, 1005 gfn_t gfn_offset, 1006 unsigned long mask); 1007void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1008 1009#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1010void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1011 const struct kvm_memory_slot *memslot); 1012#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1013int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1014int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1015 int *is_dirty, struct kvm_memory_slot **memslot); 1016#endif 1017 1018int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1019 bool line_status); 1020int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1021 struct kvm_enable_cap *cap); 1022long kvm_arch_vm_ioctl(struct file *filp, 1023 unsigned int ioctl, unsigned long arg); 1024 1025int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1026int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1027 1028int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1029 struct kvm_translation *tr); 1030 1031int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1032int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1033int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1034 struct kvm_sregs *sregs); 1035int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1036 struct kvm_sregs *sregs); 1037int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1038 struct kvm_mp_state *mp_state); 1039int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1040 struct kvm_mp_state *mp_state); 1041int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1042 struct kvm_guest_debug *dbg); 1043int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1044 1045int kvm_arch_init(void *opaque); 1046void kvm_arch_exit(void); 1047 1048void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1049 1050void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1051void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1052int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1053int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1054void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1055void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1056 1057#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1058int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1059#endif 1060 1061#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1062void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1063#endif 1064 1065int kvm_arch_hardware_enable(void); 1066void kvm_arch_hardware_disable(void); 1067int kvm_arch_hardware_setup(void *opaque); 1068void kvm_arch_hardware_unsetup(void); 1069int kvm_arch_check_processor_compat(void *opaque); 1070int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1071bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1072int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1073bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1074bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1075int kvm_arch_post_init_vm(struct kvm *kvm); 1076void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1077int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1078 1079#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1080/* 1081 * All architectures that want to use vzalloc currently also 1082 * need their own kvm_arch_alloc_vm implementation. 1083 */ 1084static inline struct kvm *kvm_arch_alloc_vm(void) 1085{ 1086 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1087} 1088#endif 1089 1090static inline void __kvm_arch_free_vm(struct kvm *kvm) 1091{ 1092 kvfree(kvm); 1093} 1094 1095#ifndef __KVM_HAVE_ARCH_VM_FREE 1096static inline void kvm_arch_free_vm(struct kvm *kvm) 1097{ 1098 __kvm_arch_free_vm(kvm); 1099} 1100#endif 1101 1102#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1103static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1104{ 1105 return -ENOTSUPP; 1106} 1107#endif 1108 1109#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1110void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1111void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1112bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1113#else 1114static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1115{ 1116} 1117 1118static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1119{ 1120} 1121 1122static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1123{ 1124 return false; 1125} 1126#endif 1127#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1128void kvm_arch_start_assignment(struct kvm *kvm); 1129void kvm_arch_end_assignment(struct kvm *kvm); 1130bool kvm_arch_has_assigned_device(struct kvm *kvm); 1131#else 1132static inline void kvm_arch_start_assignment(struct kvm *kvm) 1133{ 1134} 1135 1136static inline void kvm_arch_end_assignment(struct kvm *kvm) 1137{ 1138} 1139 1140static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1141{ 1142 return false; 1143} 1144#endif 1145 1146static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1147{ 1148#ifdef __KVM_HAVE_ARCH_WQP 1149 return vcpu->arch.waitp; 1150#else 1151 return &vcpu->wait; 1152#endif 1153} 1154 1155#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1156/* 1157 * returns true if the virtual interrupt controller is initialized and 1158 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1159 * controller is dynamically instantiated and this is not always true. 1160 */ 1161bool kvm_arch_intc_initialized(struct kvm *kvm); 1162#else 1163static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1164{ 1165 return true; 1166} 1167#endif 1168 1169int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1170void kvm_arch_destroy_vm(struct kvm *kvm); 1171void kvm_arch_sync_events(struct kvm *kvm); 1172 1173int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1174 1175bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1176bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1177bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1178 1179struct kvm_irq_ack_notifier { 1180 struct hlist_node link; 1181 unsigned gsi; 1182 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1183}; 1184 1185int kvm_irq_map_gsi(struct kvm *kvm, 1186 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1187int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1188 1189int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1190 bool line_status); 1191int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1192 int irq_source_id, int level, bool line_status); 1193int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1194 struct kvm *kvm, int irq_source_id, 1195 int level, bool line_status); 1196bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1197void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1198void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1199void kvm_register_irq_ack_notifier(struct kvm *kvm, 1200 struct kvm_irq_ack_notifier *kian); 1201void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1202 struct kvm_irq_ack_notifier *kian); 1203int kvm_request_irq_source_id(struct kvm *kvm); 1204void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1205bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1206 1207/* 1208 * Returns a pointer to the memslot at slot_index if it contains gfn. 1209 * Otherwise returns NULL. 1210 */ 1211static inline struct kvm_memory_slot * 1212try_get_memslot(struct kvm_memslots *slots, int slot_index, gfn_t gfn) 1213{ 1214 struct kvm_memory_slot *slot; 1215 1216 if (slot_index < 0 || slot_index >= slots->used_slots) 1217 return NULL; 1218 1219 /* 1220 * slot_index can come from vcpu->last_used_slot which is not kept 1221 * in sync with userspace-controllable memslot deletion. So use nospec 1222 * to prevent the CPU from speculating past the end of memslots[]. 1223 */ 1224 slot_index = array_index_nospec(slot_index, slots->used_slots); 1225 slot = &slots->memslots[slot_index]; 1226 1227 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1228 return slot; 1229 else 1230 return NULL; 1231} 1232 1233/* 1234 * Returns a pointer to the memslot that contains gfn and records the index of 1235 * the slot in index. Otherwise returns NULL. 1236 * 1237 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1238 */ 1239static inline struct kvm_memory_slot * 1240search_memslots(struct kvm_memslots *slots, gfn_t gfn, int *index) 1241{ 1242 int start = 0, end = slots->used_slots; 1243 struct kvm_memory_slot *memslots = slots->memslots; 1244 struct kvm_memory_slot *slot; 1245 1246 if (unlikely(!slots->used_slots)) 1247 return NULL; 1248 1249 while (start < end) { 1250 int slot = start + (end - start) / 2; 1251 1252 if (gfn >= memslots[slot].base_gfn) 1253 end = slot; 1254 else 1255 start = slot + 1; 1256 } 1257 1258 slot = try_get_memslot(slots, start, gfn); 1259 if (slot) { 1260 *index = start; 1261 return slot; 1262 } 1263 1264 return NULL; 1265} 1266 1267/* 1268 * __gfn_to_memslot() and its descendants are here because it is called from 1269 * non-modular code in arch/powerpc/kvm/book3s_64_vio{,_hv}.c. gfn_to_memslot() 1270 * itself isn't here as an inline because that would bloat other code too much. 1271 */ 1272static inline struct kvm_memory_slot * 1273__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1274{ 1275 struct kvm_memory_slot *slot; 1276 int slot_index = atomic_read(&slots->last_used_slot); 1277 1278 slot = try_get_memslot(slots, slot_index, gfn); 1279 if (slot) 1280 return slot; 1281 1282 slot = search_memslots(slots, gfn, &slot_index); 1283 if (slot) { 1284 atomic_set(&slots->last_used_slot, slot_index); 1285 return slot; 1286 } 1287 1288 return NULL; 1289} 1290 1291static inline unsigned long 1292__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1293{ 1294 /* 1295 * The index was checked originally in search_memslots. To avoid 1296 * that a malicious guest builds a Spectre gadget out of e.g. page 1297 * table walks, do not let the processor speculate loads outside 1298 * the guest's registered memslots. 1299 */ 1300 unsigned long offset = gfn - slot->base_gfn; 1301 offset = array_index_nospec(offset, slot->npages); 1302 return slot->userspace_addr + offset * PAGE_SIZE; 1303} 1304 1305static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1306{ 1307 return gfn_to_memslot(kvm, gfn)->id; 1308} 1309 1310static inline gfn_t 1311hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1312{ 1313 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1314 1315 return slot->base_gfn + gfn_offset; 1316} 1317 1318static inline gpa_t gfn_to_gpa(gfn_t gfn) 1319{ 1320 return (gpa_t)gfn << PAGE_SHIFT; 1321} 1322 1323static inline gfn_t gpa_to_gfn(gpa_t gpa) 1324{ 1325 return (gfn_t)(gpa >> PAGE_SHIFT); 1326} 1327 1328static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1329{ 1330 return (hpa_t)pfn << PAGE_SHIFT; 1331} 1332 1333static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1334 gpa_t gpa) 1335{ 1336 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1337} 1338 1339static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1340{ 1341 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1342 1343 return kvm_is_error_hva(hva); 1344} 1345 1346enum kvm_stat_kind { 1347 KVM_STAT_VM, 1348 KVM_STAT_VCPU, 1349}; 1350 1351struct kvm_stat_data { 1352 struct kvm *kvm; 1353 const struct _kvm_stats_desc *desc; 1354 enum kvm_stat_kind kind; 1355}; 1356 1357struct _kvm_stats_desc { 1358 struct kvm_stats_desc desc; 1359 char name[KVM_STATS_NAME_SIZE]; 1360}; 1361 1362#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1363 .flags = type | unit | base | \ 1364 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1365 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1366 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1367 .exponent = exp, \ 1368 .size = sz, \ 1369 .bucket_size = bsz 1370 1371#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1372 { \ 1373 { \ 1374 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1375 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1376 }, \ 1377 .name = #stat, \ 1378 } 1379#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1380 { \ 1381 { \ 1382 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1383 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1384 }, \ 1385 .name = #stat, \ 1386 } 1387#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1388 { \ 1389 { \ 1390 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1391 .offset = offsetof(struct kvm_vm_stat, stat) \ 1392 }, \ 1393 .name = #stat, \ 1394 } 1395#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1396 { \ 1397 { \ 1398 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1399 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1400 }, \ 1401 .name = #stat, \ 1402 } 1403/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1404#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1405 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1406 1407#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1408 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1409 unit, base, exponent, 1, 0) 1410#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1411 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1412 unit, base, exponent, 1, 0) 1413#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1414 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1415 unit, base, exponent, 1, 0) 1416#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1417 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1418 unit, base, exponent, sz, bsz) 1419#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1420 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1421 unit, base, exponent, sz, 0) 1422 1423/* Cumulative counter, read/write */ 1424#define STATS_DESC_COUNTER(SCOPE, name) \ 1425 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1426 KVM_STATS_BASE_POW10, 0) 1427/* Instantaneous counter, read only */ 1428#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1429 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1430 KVM_STATS_BASE_POW10, 0) 1431/* Peak counter, read/write */ 1432#define STATS_DESC_PCOUNTER(SCOPE, name) \ 1433 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1434 KVM_STATS_BASE_POW10, 0) 1435 1436/* Cumulative time in nanosecond */ 1437#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1438 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1439 KVM_STATS_BASE_POW10, -9) 1440/* Linear histogram for time in nanosecond */ 1441#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1442 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1443 KVM_STATS_BASE_POW10, -9, sz, bsz) 1444/* Logarithmic histogram for time in nanosecond */ 1445#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1446 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1447 KVM_STATS_BASE_POW10, -9, sz) 1448 1449#define KVM_GENERIC_VM_STATS() \ 1450 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1451 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1452 1453#define KVM_GENERIC_VCPU_STATS() \ 1454 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1455 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1456 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1457 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1458 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1459 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1460 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1461 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1462 HALT_POLL_HIST_COUNT), \ 1463 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1464 HALT_POLL_HIST_COUNT), \ 1465 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1466 HALT_POLL_HIST_COUNT) 1467 1468extern struct dentry *kvm_debugfs_dir; 1469 1470ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1471 const struct _kvm_stats_desc *desc, 1472 void *stats, size_t size_stats, 1473 char __user *user_buffer, size_t size, loff_t *offset); 1474 1475/** 1476 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1477 * statistics data. 1478 * 1479 * @data: start address of the stats data 1480 * @size: the number of bucket of the stats data 1481 * @value: the new value used to update the linear histogram's bucket 1482 * @bucket_size: the size (width) of a bucket 1483 */ 1484static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1485 u64 value, size_t bucket_size) 1486{ 1487 size_t index = div64_u64(value, bucket_size); 1488 1489 index = min(index, size - 1); 1490 ++data[index]; 1491} 1492 1493/** 1494 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1495 * statistics data. 1496 * 1497 * @data: start address of the stats data 1498 * @size: the number of bucket of the stats data 1499 * @value: the new value used to update the logarithmic histogram's bucket 1500 */ 1501static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1502{ 1503 size_t index = fls64(value); 1504 1505 index = min(index, size - 1); 1506 ++data[index]; 1507} 1508 1509#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1510 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1511#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1512 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1513 1514 1515extern const struct kvm_stats_header kvm_vm_stats_header; 1516extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1517extern const struct kvm_stats_header kvm_vcpu_stats_header; 1518extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1519 1520#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1521static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1522{ 1523 if (unlikely(kvm->mmu_notifier_count)) 1524 return 1; 1525 /* 1526 * Ensure the read of mmu_notifier_count happens before the read 1527 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1528 * mmu_notifier_invalidate_range_end to make sure that the caller 1529 * either sees the old (non-zero) value of mmu_notifier_count or 1530 * the new (incremented) value of mmu_notifier_seq. 1531 * PowerPC Book3s HV KVM calls this under a per-page lock 1532 * rather than under kvm->mmu_lock, for scalability, so 1533 * can't rely on kvm->mmu_lock to keep things ordered. 1534 */ 1535 smp_rmb(); 1536 if (kvm->mmu_notifier_seq != mmu_seq) 1537 return 1; 1538 return 0; 1539} 1540 1541static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1542 unsigned long mmu_seq, 1543 unsigned long hva) 1544{ 1545 lockdep_assert_held(&kvm->mmu_lock); 1546 /* 1547 * If mmu_notifier_count is non-zero, then the range maintained by 1548 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1549 * might be being invalidated. Note that it may include some false 1550 * positives, due to shortcuts when handing concurrent invalidations. 1551 */ 1552 if (unlikely(kvm->mmu_notifier_count) && 1553 hva >= kvm->mmu_notifier_range_start && 1554 hva < kvm->mmu_notifier_range_end) 1555 return 1; 1556 if (kvm->mmu_notifier_seq != mmu_seq) 1557 return 1; 1558 return 0; 1559} 1560#endif 1561 1562#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1563 1564#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1565 1566bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1567int kvm_set_irq_routing(struct kvm *kvm, 1568 const struct kvm_irq_routing_entry *entries, 1569 unsigned nr, 1570 unsigned flags); 1571int kvm_set_routing_entry(struct kvm *kvm, 1572 struct kvm_kernel_irq_routing_entry *e, 1573 const struct kvm_irq_routing_entry *ue); 1574void kvm_free_irq_routing(struct kvm *kvm); 1575 1576#else 1577 1578static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1579 1580#endif 1581 1582int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1583 1584#ifdef CONFIG_HAVE_KVM_EVENTFD 1585 1586void kvm_eventfd_init(struct kvm *kvm); 1587int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1588 1589#ifdef CONFIG_HAVE_KVM_IRQFD 1590int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1591void kvm_irqfd_release(struct kvm *kvm); 1592void kvm_irq_routing_update(struct kvm *); 1593#else 1594static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1595{ 1596 return -EINVAL; 1597} 1598 1599static inline void kvm_irqfd_release(struct kvm *kvm) {} 1600#endif 1601 1602#else 1603 1604static inline void kvm_eventfd_init(struct kvm *kvm) {} 1605 1606static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1607{ 1608 return -EINVAL; 1609} 1610 1611static inline void kvm_irqfd_release(struct kvm *kvm) {} 1612 1613#ifdef CONFIG_HAVE_KVM_IRQCHIP 1614static inline void kvm_irq_routing_update(struct kvm *kvm) 1615{ 1616} 1617#endif 1618 1619static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1620{ 1621 return -ENOSYS; 1622} 1623 1624#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1625 1626void kvm_arch_irq_routing_update(struct kvm *kvm); 1627 1628static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1629{ 1630 /* 1631 * Ensure the rest of the request is published to kvm_check_request's 1632 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1633 */ 1634 smp_wmb(); 1635 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1636} 1637 1638static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1639{ 1640 return READ_ONCE(vcpu->requests); 1641} 1642 1643static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1644{ 1645 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1646} 1647 1648static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1649{ 1650 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1651} 1652 1653static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1654{ 1655 if (kvm_test_request(req, vcpu)) { 1656 kvm_clear_request(req, vcpu); 1657 1658 /* 1659 * Ensure the rest of the request is visible to kvm_check_request's 1660 * caller. Paired with the smp_wmb in kvm_make_request. 1661 */ 1662 smp_mb__after_atomic(); 1663 return true; 1664 } else { 1665 return false; 1666 } 1667} 1668 1669extern bool kvm_rebooting; 1670 1671extern unsigned int halt_poll_ns; 1672extern unsigned int halt_poll_ns_grow; 1673extern unsigned int halt_poll_ns_grow_start; 1674extern unsigned int halt_poll_ns_shrink; 1675 1676struct kvm_device { 1677 const struct kvm_device_ops *ops; 1678 struct kvm *kvm; 1679 void *private; 1680 struct list_head vm_node; 1681}; 1682 1683/* create, destroy, and name are mandatory */ 1684struct kvm_device_ops { 1685 const char *name; 1686 1687 /* 1688 * create is called holding kvm->lock and any operations not suitable 1689 * to do while holding the lock should be deferred to init (see 1690 * below). 1691 */ 1692 int (*create)(struct kvm_device *dev, u32 type); 1693 1694 /* 1695 * init is called after create if create is successful and is called 1696 * outside of holding kvm->lock. 1697 */ 1698 void (*init)(struct kvm_device *dev); 1699 1700 /* 1701 * Destroy is responsible for freeing dev. 1702 * 1703 * Destroy may be called before or after destructors are called 1704 * on emulated I/O regions, depending on whether a reference is 1705 * held by a vcpu or other kvm component that gets destroyed 1706 * after the emulated I/O. 1707 */ 1708 void (*destroy)(struct kvm_device *dev); 1709 1710 /* 1711 * Release is an alternative method to free the device. It is 1712 * called when the device file descriptor is closed. Once 1713 * release is called, the destroy method will not be called 1714 * anymore as the device is removed from the device list of 1715 * the VM. kvm->lock is held. 1716 */ 1717 void (*release)(struct kvm_device *dev); 1718 1719 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1720 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1721 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1722 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1723 unsigned long arg); 1724 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1725}; 1726 1727void kvm_device_get(struct kvm_device *dev); 1728void kvm_device_put(struct kvm_device *dev); 1729struct kvm_device *kvm_device_from_filp(struct file *filp); 1730int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1731void kvm_unregister_device_ops(u32 type); 1732 1733extern struct kvm_device_ops kvm_mpic_ops; 1734extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1735extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1736 1737#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1738 1739static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1740{ 1741 vcpu->spin_loop.in_spin_loop = val; 1742} 1743static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1744{ 1745 vcpu->spin_loop.dy_eligible = val; 1746} 1747 1748#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1749 1750static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1751{ 1752} 1753 1754static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1755{ 1756} 1757#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1758 1759static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1760{ 1761 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1762 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1763} 1764 1765struct kvm_vcpu *kvm_get_running_vcpu(void); 1766struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1767 1768#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1769bool kvm_arch_has_irq_bypass(void); 1770int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1771 struct irq_bypass_producer *); 1772void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1773 struct irq_bypass_producer *); 1774void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1775void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1776int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1777 uint32_t guest_irq, bool set); 1778bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 1779 struct kvm_kernel_irq_routing_entry *); 1780#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1781 1782#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1783/* If we wakeup during the poll time, was it a sucessful poll? */ 1784static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1785{ 1786 return vcpu->valid_wakeup; 1787} 1788 1789#else 1790static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1791{ 1792 return true; 1793} 1794#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1795 1796#ifdef CONFIG_HAVE_KVM_NO_POLL 1797/* Callback that tells if we must not poll */ 1798bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1799#else 1800static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1801{ 1802 return false; 1803} 1804#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1805 1806#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1807long kvm_arch_vcpu_async_ioctl(struct file *filp, 1808 unsigned int ioctl, unsigned long arg); 1809#else 1810static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1811 unsigned int ioctl, 1812 unsigned long arg) 1813{ 1814 return -ENOIOCTLCMD; 1815} 1816#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1817 1818void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1819 unsigned long start, unsigned long end); 1820 1821#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1822int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1823#else 1824static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1825{ 1826 return 0; 1827} 1828#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1829 1830typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1831 1832int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1833 uintptr_t data, const char *name, 1834 struct task_struct **thread_ptr); 1835 1836#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1837static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1838{ 1839 vcpu->run->exit_reason = KVM_EXIT_INTR; 1840 vcpu->stat.signal_exits++; 1841} 1842#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1843 1844/* 1845 * This defines how many reserved entries we want to keep before we 1846 * kick the vcpu to the userspace to avoid dirty ring full. This 1847 * value can be tuned to higher if e.g. PML is enabled on the host. 1848 */ 1849#define KVM_DIRTY_RING_RSVD_ENTRIES 64 1850 1851/* Max number of entries allowed for each kvm dirty ring */ 1852#define KVM_DIRTY_RING_MAX_ENTRIES 65536 1853 1854#endif