at v5.16 30 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13#ifndef _LINUX_FSCRYPT_H 14#define _LINUX_FSCRYPT_H 15 16#include <linux/fs.h> 17#include <linux/mm.h> 18#include <linux/slab.h> 19#include <uapi/linux/fscrypt.h> 20 21#define FS_CRYPTO_BLOCK_SIZE 16 22 23union fscrypt_policy; 24struct fscrypt_info; 25struct seq_file; 26 27struct fscrypt_str { 28 unsigned char *name; 29 u32 len; 30}; 31 32struct fscrypt_name { 33 const struct qstr *usr_fname; 34 struct fscrypt_str disk_name; 35 u32 hash; 36 u32 minor_hash; 37 struct fscrypt_str crypto_buf; 38 bool is_nokey_name; 39}; 40 41#define FSTR_INIT(n, l) { .name = n, .len = l } 42#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 43#define fname_name(p) ((p)->disk_name.name) 44#define fname_len(p) ((p)->disk_name.len) 45 46/* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 47#define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 48 49#ifdef CONFIG_FS_ENCRYPTION 50 51/* 52 * If set, the fscrypt bounce page pool won't be allocated (unless another 53 * filesystem needs it). Set this if the filesystem always uses its own bounce 54 * pages for writes and therefore won't need the fscrypt bounce page pool. 55 */ 56#define FS_CFLG_OWN_PAGES (1U << 1) 57 58/* Crypto operations for filesystems */ 59struct fscrypt_operations { 60 61 /* Set of optional flags; see above for allowed flags */ 62 unsigned int flags; 63 64 /* 65 * If set, this is a filesystem-specific key description prefix that 66 * will be accepted for "logon" keys for v1 fscrypt policies, in 67 * addition to the generic prefix "fscrypt:". This functionality is 68 * deprecated, so new filesystems shouldn't set this field. 69 */ 70 const char *key_prefix; 71 72 /* 73 * Get the fscrypt context of the given inode. 74 * 75 * @inode: the inode whose context to get 76 * @ctx: the buffer into which to get the context 77 * @len: length of the @ctx buffer in bytes 78 * 79 * Return: On success, returns the length of the context in bytes; this 80 * may be less than @len. On failure, returns -ENODATA if the 81 * inode doesn't have a context, -ERANGE if the context is 82 * longer than @len, or another -errno code. 83 */ 84 int (*get_context)(struct inode *inode, void *ctx, size_t len); 85 86 /* 87 * Set an fscrypt context on the given inode. 88 * 89 * @inode: the inode whose context to set. The inode won't already have 90 * an fscrypt context. 91 * @ctx: the context to set 92 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 93 * @fs_data: If called from fscrypt_set_context(), this will be the 94 * value the filesystem passed to fscrypt_set_context(). 95 * Otherwise (i.e. when called from 96 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 97 * 98 * i_rwsem will be held for write. 99 * 100 * Return: 0 on success, -errno on failure. 101 */ 102 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 103 void *fs_data); 104 105 /* 106 * Get the dummy fscrypt policy in use on the filesystem (if any). 107 * 108 * Filesystems only need to implement this function if they support the 109 * test_dummy_encryption mount option. 110 * 111 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 112 * mounted with test_dummy_encryption; otherwise NULL. 113 */ 114 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 115 116 /* 117 * Check whether a directory is empty. i_rwsem will be held for write. 118 */ 119 bool (*empty_dir)(struct inode *inode); 120 121 /* 122 * Check whether the filesystem's inode numbers and UUID are stable, 123 * meaning that they will never be changed even by offline operations 124 * such as filesystem shrinking and therefore can be used in the 125 * encryption without the possibility of files becoming unreadable. 126 * 127 * Filesystems only need to implement this function if they want to 128 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 129 * flags are designed to work around the limitations of UFS and eMMC 130 * inline crypto hardware, and they shouldn't be used in scenarios where 131 * such hardware isn't being used. 132 * 133 * Leaving this NULL is equivalent to always returning false. 134 */ 135 bool (*has_stable_inodes)(struct super_block *sb); 136 137 /* 138 * Get the number of bits that the filesystem uses to represent inode 139 * numbers and file logical block numbers. 140 * 141 * By default, both of these are assumed to be 64-bit. This function 142 * can be implemented to declare that either or both of these numbers is 143 * shorter, which may allow the use of the 144 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 145 * inline crypto hardware whose maximum DUN length is less than 64 bits 146 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 147 * to be implemented if support for one of these features is needed. 148 */ 149 void (*get_ino_and_lblk_bits)(struct super_block *sb, 150 int *ino_bits_ret, int *lblk_bits_ret); 151 152 /* 153 * Return the number of block devices to which the filesystem may write 154 * encrypted file contents. 155 * 156 * If the filesystem can use multiple block devices (other than block 157 * devices that aren't used for encrypted file contents, such as 158 * external journal devices), and wants to support inline encryption, 159 * then it must implement this function. Otherwise it's not needed. 160 */ 161 int (*get_num_devices)(struct super_block *sb); 162 163 /* 164 * If ->get_num_devices() returns a value greater than 1, then this 165 * function is called to get the array of request_queues that the 166 * filesystem is using -- one per block device. (There may be duplicate 167 * entries in this array, as block devices can share a request_queue.) 168 */ 169 void (*get_devices)(struct super_block *sb, 170 struct request_queue **devs); 171}; 172 173static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 174{ 175 /* 176 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 177 * I.e., another task may publish ->i_crypt_info concurrently, executing 178 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 179 * ACQUIRE the memory the other task published. 180 */ 181 return smp_load_acquire(&inode->i_crypt_info); 182} 183 184/** 185 * fscrypt_needs_contents_encryption() - check whether an inode needs 186 * contents encryption 187 * @inode: the inode to check 188 * 189 * Return: %true iff the inode is an encrypted regular file and the kernel was 190 * built with fscrypt support. 191 * 192 * If you need to know whether the encrypt bit is set even when the kernel was 193 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 194 */ 195static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 196{ 197 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 198} 199 200/* 201 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 202 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 203 * cleared. Note that we don't have to support arbitrary moves of this flag 204 * because fscrypt doesn't allow no-key names to be the source or target of a 205 * rename(). 206 */ 207static inline void fscrypt_handle_d_move(struct dentry *dentry) 208{ 209 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 210} 211 212/** 213 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 214 * @dentry: the dentry to check 215 * 216 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 217 * dentry that was created in an encrypted directory that hasn't had its 218 * encryption key added yet. Such dentries may be either positive or negative. 219 * 220 * When a filesystem is asked to create a new filename in an encrypted directory 221 * and the new filename's dentry is a no-key dentry, it must fail the operation 222 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 223 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 224 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 225 * 226 * This is necessary because creating a filename requires the directory's 227 * encryption key, but just checking for the key on the directory inode during 228 * the final filesystem operation doesn't guarantee that the key was available 229 * during the preceding dentry lookup. And the key must have already been 230 * available during the dentry lookup in order for it to have been checked 231 * whether the filename already exists in the directory and for the new file's 232 * dentry not to be invalidated due to it incorrectly having the no-key flag. 233 * 234 * Return: %true if the dentry is a no-key name 235 */ 236static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 237{ 238 return dentry->d_flags & DCACHE_NOKEY_NAME; 239} 240 241/* crypto.c */ 242void fscrypt_enqueue_decrypt_work(struct work_struct *); 243 244struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 245 unsigned int len, 246 unsigned int offs, 247 gfp_t gfp_flags); 248int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 249 unsigned int len, unsigned int offs, 250 u64 lblk_num, gfp_t gfp_flags); 251 252int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, 253 unsigned int offs); 254int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 255 unsigned int len, unsigned int offs, 256 u64 lblk_num); 257 258static inline bool fscrypt_is_bounce_page(struct page *page) 259{ 260 return page->mapping == NULL; 261} 262 263static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 264{ 265 return (struct page *)page_private(bounce_page); 266} 267 268void fscrypt_free_bounce_page(struct page *bounce_page); 269 270/* policy.c */ 271int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 272int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 273int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 274int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 275int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 276int fscrypt_set_context(struct inode *inode, void *fs_data); 277 278struct fscrypt_dummy_policy { 279 const union fscrypt_policy *policy; 280}; 281 282int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg, 283 struct fscrypt_dummy_policy *dummy_policy); 284void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 285 struct super_block *sb); 286static inline void 287fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 288{ 289 kfree(dummy_policy->policy); 290 dummy_policy->policy = NULL; 291} 292 293/* keyring.c */ 294void fscrypt_sb_free(struct super_block *sb); 295int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 296int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 297int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 298int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 299 300/* keysetup.c */ 301int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 302 bool *encrypt_ret); 303void fscrypt_put_encryption_info(struct inode *inode); 304void fscrypt_free_inode(struct inode *inode); 305int fscrypt_drop_inode(struct inode *inode); 306 307/* fname.c */ 308int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 309 int lookup, struct fscrypt_name *fname); 310 311static inline void fscrypt_free_filename(struct fscrypt_name *fname) 312{ 313 kfree(fname->crypto_buf.name); 314} 315 316int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 317 struct fscrypt_str *crypto_str); 318void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 319int fscrypt_fname_disk_to_usr(const struct inode *inode, 320 u32 hash, u32 minor_hash, 321 const struct fscrypt_str *iname, 322 struct fscrypt_str *oname); 323bool fscrypt_match_name(const struct fscrypt_name *fname, 324 const u8 *de_name, u32 de_name_len); 325u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 326int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 327 328/* bio.c */ 329void fscrypt_decrypt_bio(struct bio *bio); 330int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 331 sector_t pblk, unsigned int len); 332 333/* hooks.c */ 334int fscrypt_file_open(struct inode *inode, struct file *filp); 335int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 336 struct dentry *dentry); 337int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 338 struct inode *new_dir, struct dentry *new_dentry, 339 unsigned int flags); 340int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 341 struct fscrypt_name *fname); 342int __fscrypt_prepare_readdir(struct inode *dir); 343int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 344int fscrypt_prepare_setflags(struct inode *inode, 345 unsigned int oldflags, unsigned int flags); 346int fscrypt_prepare_symlink(struct inode *dir, const char *target, 347 unsigned int len, unsigned int max_len, 348 struct fscrypt_str *disk_link); 349int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 350 unsigned int len, struct fscrypt_str *disk_link); 351const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 352 unsigned int max_size, 353 struct delayed_call *done); 354int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 355static inline void fscrypt_set_ops(struct super_block *sb, 356 const struct fscrypt_operations *s_cop) 357{ 358 sb->s_cop = s_cop; 359} 360#else /* !CONFIG_FS_ENCRYPTION */ 361 362static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 363{ 364 return NULL; 365} 366 367static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 368{ 369 return false; 370} 371 372static inline void fscrypt_handle_d_move(struct dentry *dentry) 373{ 374} 375 376static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 377{ 378 return false; 379} 380 381/* crypto.c */ 382static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 383{ 384} 385 386static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 387 unsigned int len, 388 unsigned int offs, 389 gfp_t gfp_flags) 390{ 391 return ERR_PTR(-EOPNOTSUPP); 392} 393 394static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 395 struct page *page, 396 unsigned int len, 397 unsigned int offs, u64 lblk_num, 398 gfp_t gfp_flags) 399{ 400 return -EOPNOTSUPP; 401} 402 403static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, 404 unsigned int len, 405 unsigned int offs) 406{ 407 return -EOPNOTSUPP; 408} 409 410static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 411 struct page *page, 412 unsigned int len, 413 unsigned int offs, u64 lblk_num) 414{ 415 return -EOPNOTSUPP; 416} 417 418static inline bool fscrypt_is_bounce_page(struct page *page) 419{ 420 return false; 421} 422 423static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 424{ 425 WARN_ON_ONCE(1); 426 return ERR_PTR(-EINVAL); 427} 428 429static inline void fscrypt_free_bounce_page(struct page *bounce_page) 430{ 431} 432 433/* policy.c */ 434static inline int fscrypt_ioctl_set_policy(struct file *filp, 435 const void __user *arg) 436{ 437 return -EOPNOTSUPP; 438} 439 440static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 441{ 442 return -EOPNOTSUPP; 443} 444 445static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 446 void __user *arg) 447{ 448 return -EOPNOTSUPP; 449} 450 451static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 452{ 453 return -EOPNOTSUPP; 454} 455 456static inline int fscrypt_has_permitted_context(struct inode *parent, 457 struct inode *child) 458{ 459 return 0; 460} 461 462static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 463{ 464 return -EOPNOTSUPP; 465} 466 467struct fscrypt_dummy_policy { 468}; 469 470static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 471 char sep, 472 struct super_block *sb) 473{ 474} 475 476static inline void 477fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 478{ 479} 480 481/* keyring.c */ 482static inline void fscrypt_sb_free(struct super_block *sb) 483{ 484} 485 486static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 487{ 488 return -EOPNOTSUPP; 489} 490 491static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 492{ 493 return -EOPNOTSUPP; 494} 495 496static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 497 void __user *arg) 498{ 499 return -EOPNOTSUPP; 500} 501 502static inline int fscrypt_ioctl_get_key_status(struct file *filp, 503 void __user *arg) 504{ 505 return -EOPNOTSUPP; 506} 507 508/* keysetup.c */ 509 510static inline int fscrypt_prepare_new_inode(struct inode *dir, 511 struct inode *inode, 512 bool *encrypt_ret) 513{ 514 if (IS_ENCRYPTED(dir)) 515 return -EOPNOTSUPP; 516 return 0; 517} 518 519static inline void fscrypt_put_encryption_info(struct inode *inode) 520{ 521 return; 522} 523 524static inline void fscrypt_free_inode(struct inode *inode) 525{ 526} 527 528static inline int fscrypt_drop_inode(struct inode *inode) 529{ 530 return 0; 531} 532 533 /* fname.c */ 534static inline int fscrypt_setup_filename(struct inode *dir, 535 const struct qstr *iname, 536 int lookup, struct fscrypt_name *fname) 537{ 538 if (IS_ENCRYPTED(dir)) 539 return -EOPNOTSUPP; 540 541 memset(fname, 0, sizeof(*fname)); 542 fname->usr_fname = iname; 543 fname->disk_name.name = (unsigned char *)iname->name; 544 fname->disk_name.len = iname->len; 545 return 0; 546} 547 548static inline void fscrypt_free_filename(struct fscrypt_name *fname) 549{ 550 return; 551} 552 553static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 554 struct fscrypt_str *crypto_str) 555{ 556 return -EOPNOTSUPP; 557} 558 559static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 560{ 561 return; 562} 563 564static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 565 u32 hash, u32 minor_hash, 566 const struct fscrypt_str *iname, 567 struct fscrypt_str *oname) 568{ 569 return -EOPNOTSUPP; 570} 571 572static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 573 const u8 *de_name, u32 de_name_len) 574{ 575 /* Encryption support disabled; use standard comparison */ 576 if (de_name_len != fname->disk_name.len) 577 return false; 578 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 579} 580 581static inline u64 fscrypt_fname_siphash(const struct inode *dir, 582 const struct qstr *name) 583{ 584 WARN_ON_ONCE(1); 585 return 0; 586} 587 588static inline int fscrypt_d_revalidate(struct dentry *dentry, 589 unsigned int flags) 590{ 591 return 1; 592} 593 594/* bio.c */ 595static inline void fscrypt_decrypt_bio(struct bio *bio) 596{ 597} 598 599static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 600 sector_t pblk, unsigned int len) 601{ 602 return -EOPNOTSUPP; 603} 604 605/* hooks.c */ 606 607static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 608{ 609 if (IS_ENCRYPTED(inode)) 610 return -EOPNOTSUPP; 611 return 0; 612} 613 614static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 615 struct dentry *dentry) 616{ 617 return -EOPNOTSUPP; 618} 619 620static inline int __fscrypt_prepare_rename(struct inode *old_dir, 621 struct dentry *old_dentry, 622 struct inode *new_dir, 623 struct dentry *new_dentry, 624 unsigned int flags) 625{ 626 return -EOPNOTSUPP; 627} 628 629static inline int __fscrypt_prepare_lookup(struct inode *dir, 630 struct dentry *dentry, 631 struct fscrypt_name *fname) 632{ 633 return -EOPNOTSUPP; 634} 635 636static inline int __fscrypt_prepare_readdir(struct inode *dir) 637{ 638 return -EOPNOTSUPP; 639} 640 641static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 642 struct iattr *attr) 643{ 644 return -EOPNOTSUPP; 645} 646 647static inline int fscrypt_prepare_setflags(struct inode *inode, 648 unsigned int oldflags, 649 unsigned int flags) 650{ 651 return 0; 652} 653 654static inline int fscrypt_prepare_symlink(struct inode *dir, 655 const char *target, 656 unsigned int len, 657 unsigned int max_len, 658 struct fscrypt_str *disk_link) 659{ 660 if (IS_ENCRYPTED(dir)) 661 return -EOPNOTSUPP; 662 disk_link->name = (unsigned char *)target; 663 disk_link->len = len + 1; 664 if (disk_link->len > max_len) 665 return -ENAMETOOLONG; 666 return 0; 667} 668 669static inline int __fscrypt_encrypt_symlink(struct inode *inode, 670 const char *target, 671 unsigned int len, 672 struct fscrypt_str *disk_link) 673{ 674 return -EOPNOTSUPP; 675} 676 677static inline const char *fscrypt_get_symlink(struct inode *inode, 678 const void *caddr, 679 unsigned int max_size, 680 struct delayed_call *done) 681{ 682 return ERR_PTR(-EOPNOTSUPP); 683} 684 685static inline int fscrypt_symlink_getattr(const struct path *path, 686 struct kstat *stat) 687{ 688 return -EOPNOTSUPP; 689} 690 691static inline void fscrypt_set_ops(struct super_block *sb, 692 const struct fscrypt_operations *s_cop) 693{ 694} 695 696#endif /* !CONFIG_FS_ENCRYPTION */ 697 698/* inline_crypt.c */ 699#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 700 701bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 702 703void fscrypt_set_bio_crypt_ctx(struct bio *bio, 704 const struct inode *inode, u64 first_lblk, 705 gfp_t gfp_mask); 706 707void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 708 const struct buffer_head *first_bh, 709 gfp_t gfp_mask); 710 711bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 712 u64 next_lblk); 713 714bool fscrypt_mergeable_bio_bh(struct bio *bio, 715 const struct buffer_head *next_bh); 716 717#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 718 719static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 720{ 721 return false; 722} 723 724static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 725 const struct inode *inode, 726 u64 first_lblk, gfp_t gfp_mask) { } 727 728static inline void fscrypt_set_bio_crypt_ctx_bh( 729 struct bio *bio, 730 const struct buffer_head *first_bh, 731 gfp_t gfp_mask) { } 732 733static inline bool fscrypt_mergeable_bio(struct bio *bio, 734 const struct inode *inode, 735 u64 next_lblk) 736{ 737 return true; 738} 739 740static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 741 const struct buffer_head *next_bh) 742{ 743 return true; 744} 745#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 746 747/** 748 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 749 * encryption 750 * @inode: an inode. If encrypted, its key must be set up. 751 * 752 * Return: true if the inode requires file contents encryption and if the 753 * encryption should be done in the block layer via blk-crypto rather 754 * than in the filesystem layer. 755 */ 756static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 757{ 758 return fscrypt_needs_contents_encryption(inode) && 759 __fscrypt_inode_uses_inline_crypto(inode); 760} 761 762/** 763 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 764 * encryption 765 * @inode: an inode. If encrypted, its key must be set up. 766 * 767 * Return: true if the inode requires file contents encryption and if the 768 * encryption should be done in the filesystem layer rather than in the 769 * block layer via blk-crypto. 770 */ 771static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 772{ 773 return fscrypt_needs_contents_encryption(inode) && 774 !__fscrypt_inode_uses_inline_crypto(inode); 775} 776 777/** 778 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 779 * @inode: the inode to check 780 * 781 * Return: %true if the inode has had its encryption key set up, else %false. 782 * 783 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 784 * set up the key first. 785 */ 786static inline bool fscrypt_has_encryption_key(const struct inode *inode) 787{ 788 return fscrypt_get_info(inode) != NULL; 789} 790 791/** 792 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 793 * directory 794 * @old_dentry: an existing dentry for the inode being linked 795 * @dir: the target directory 796 * @dentry: negative dentry for the target filename 797 * 798 * A new link can only be added to an encrypted directory if the directory's 799 * encryption key is available --- since otherwise we'd have no way to encrypt 800 * the filename. 801 * 802 * We also verify that the link will not violate the constraint that all files 803 * in an encrypted directory tree use the same encryption policy. 804 * 805 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 806 * -EXDEV if the link would result in an inconsistent encryption policy, or 807 * another -errno code. 808 */ 809static inline int fscrypt_prepare_link(struct dentry *old_dentry, 810 struct inode *dir, 811 struct dentry *dentry) 812{ 813 if (IS_ENCRYPTED(dir)) 814 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 815 return 0; 816} 817 818/** 819 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 820 * directories 821 * @old_dir: source directory 822 * @old_dentry: dentry for source file 823 * @new_dir: target directory 824 * @new_dentry: dentry for target location (may be negative unless exchanging) 825 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 826 * 827 * Prepare for ->rename() where the source and/or target directories may be 828 * encrypted. A new link can only be added to an encrypted directory if the 829 * directory's encryption key is available --- since otherwise we'd have no way 830 * to encrypt the filename. A rename to an existing name, on the other hand, 831 * *is* cryptographically possible without the key. However, we take the more 832 * conservative approach and just forbid all no-key renames. 833 * 834 * We also verify that the rename will not violate the constraint that all files 835 * in an encrypted directory tree use the same encryption policy. 836 * 837 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 838 * rename would cause inconsistent encryption policies, or another -errno code. 839 */ 840static inline int fscrypt_prepare_rename(struct inode *old_dir, 841 struct dentry *old_dentry, 842 struct inode *new_dir, 843 struct dentry *new_dentry, 844 unsigned int flags) 845{ 846 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 847 return __fscrypt_prepare_rename(old_dir, old_dentry, 848 new_dir, new_dentry, flags); 849 return 0; 850} 851 852/** 853 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 854 * directory 855 * @dir: directory being searched 856 * @dentry: filename being looked up 857 * @fname: (output) the name to use to search the on-disk directory 858 * 859 * Prepare for ->lookup() in a directory which may be encrypted by determining 860 * the name that will actually be used to search the directory on-disk. If the 861 * directory's encryption policy is supported by this kernel and its encryption 862 * key is available, then the lookup is assumed to be by plaintext name; 863 * otherwise, it is assumed to be by no-key name. 864 * 865 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 866 * name. In this case the filesystem must assign the dentry a dentry_operations 867 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 868 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 869 * directory's encryption key is later added. 870 * 871 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 872 * filename isn't a valid no-key name, so a negative dentry should be created; 873 * or another -errno code. 874 */ 875static inline int fscrypt_prepare_lookup(struct inode *dir, 876 struct dentry *dentry, 877 struct fscrypt_name *fname) 878{ 879 if (IS_ENCRYPTED(dir)) 880 return __fscrypt_prepare_lookup(dir, dentry, fname); 881 882 memset(fname, 0, sizeof(*fname)); 883 fname->usr_fname = &dentry->d_name; 884 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 885 fname->disk_name.len = dentry->d_name.len; 886 return 0; 887} 888 889/** 890 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 891 * @dir: the directory inode 892 * 893 * If the directory is encrypted and it doesn't already have its encryption key 894 * set up, try to set it up so that the filenames will be listed in plaintext 895 * form rather than in no-key form. 896 * 897 * Return: 0 on success; -errno on error. Note that the encryption key being 898 * unavailable is not considered an error. It is also not an error if 899 * the encryption policy is unsupported by this kernel; that is treated 900 * like the key being unavailable, so that files can still be deleted. 901 */ 902static inline int fscrypt_prepare_readdir(struct inode *dir) 903{ 904 if (IS_ENCRYPTED(dir)) 905 return __fscrypt_prepare_readdir(dir); 906 return 0; 907} 908 909/** 910 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 911 * attributes 912 * @dentry: dentry through which the inode is being changed 913 * @attr: attributes to change 914 * 915 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 916 * most attribute changes are allowed even without the encryption key. However, 917 * without the encryption key we do have to forbid truncates. This is needed 918 * because the size being truncated to may not be a multiple of the filesystem 919 * block size, and in that case we'd have to decrypt the final block, zero the 920 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 921 * filesystem block boundary, but it's simpler to just forbid all truncates --- 922 * and we already forbid all other contents modifications without the key.) 923 * 924 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 925 * if a problem occurred while setting up the encryption key. 926 */ 927static inline int fscrypt_prepare_setattr(struct dentry *dentry, 928 struct iattr *attr) 929{ 930 if (IS_ENCRYPTED(d_inode(dentry))) 931 return __fscrypt_prepare_setattr(dentry, attr); 932 return 0; 933} 934 935/** 936 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 937 * @inode: symlink inode 938 * @target: plaintext symlink target 939 * @len: length of @target excluding null terminator 940 * @disk_link: (in/out) the on-disk symlink target being prepared 941 * 942 * If the symlink target needs to be encrypted, then this function encrypts it 943 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 944 * previously to compute @disk_link->len. If the filesystem did not allocate a 945 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 946 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 947 * 948 * Return: 0 on success, -errno on failure 949 */ 950static inline int fscrypt_encrypt_symlink(struct inode *inode, 951 const char *target, 952 unsigned int len, 953 struct fscrypt_str *disk_link) 954{ 955 if (IS_ENCRYPTED(inode)) 956 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 957 return 0; 958} 959 960/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 961static inline void fscrypt_finalize_bounce_page(struct page **pagep) 962{ 963 struct page *page = *pagep; 964 965 if (fscrypt_is_bounce_page(page)) { 966 *pagep = fscrypt_pagecache_page(page); 967 fscrypt_free_bounce_page(page); 968 } 969} 970 971#endif /* _LINUX_FSCRYPT_H */