Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include <linux/error-injection.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "volumes.h"
17#include "locking.h"
18#include "btrfs_inode.h"
19#include "async-thread.h"
20#include "free-space-cache.h"
21#include "qgroup.h"
22#include "print-tree.h"
23#include "delalloc-space.h"
24#include "block-group.h"
25#include "backref.h"
26#include "misc.h"
27#include "subpage.h"
28#include "zoned.h"
29
30/*
31 * Relocation overview
32 *
33 * [What does relocation do]
34 *
35 * The objective of relocation is to relocate all extents of the target block
36 * group to other block groups.
37 * This is utilized by resize (shrink only), profile converting, compacting
38 * space, or balance routine to spread chunks over devices.
39 *
40 * Before | After
41 * ------------------------------------------------------------------
42 * BG A: 10 data extents | BG A: deleted
43 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
44 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
45 *
46 * [How does relocation work]
47 *
48 * 1. Mark the target block group read-only
49 * New extents won't be allocated from the target block group.
50 *
51 * 2.1 Record each extent in the target block group
52 * To build a proper map of extents to be relocated.
53 *
54 * 2.2 Build data reloc tree and reloc trees
55 * Data reloc tree will contain an inode, recording all newly relocated
56 * data extents.
57 * There will be only one data reloc tree for one data block group.
58 *
59 * Reloc tree will be a special snapshot of its source tree, containing
60 * relocated tree blocks.
61 * Each tree referring to a tree block in target block group will get its
62 * reloc tree built.
63 *
64 * 2.3 Swap source tree with its corresponding reloc tree
65 * Each involved tree only refers to new extents after swap.
66 *
67 * 3. Cleanup reloc trees and data reloc tree.
68 * As old extents in the target block group are still referenced by reloc
69 * trees, we need to clean them up before really freeing the target block
70 * group.
71 *
72 * The main complexity is in steps 2.2 and 2.3.
73 *
74 * The entry point of relocation is relocate_block_group() function.
75 */
76
77#define RELOCATION_RESERVED_NODES 256
78/*
79 * map address of tree root to tree
80 */
81struct mapping_node {
82 struct {
83 struct rb_node rb_node;
84 u64 bytenr;
85 }; /* Use rb_simle_node for search/insert */
86 void *data;
87};
88
89struct mapping_tree {
90 struct rb_root rb_root;
91 spinlock_t lock;
92};
93
94/*
95 * present a tree block to process
96 */
97struct tree_block {
98 struct {
99 struct rb_node rb_node;
100 u64 bytenr;
101 }; /* Use rb_simple_node for search/insert */
102 u64 owner;
103 struct btrfs_key key;
104 unsigned int level:8;
105 unsigned int key_ready:1;
106};
107
108#define MAX_EXTENTS 128
109
110struct file_extent_cluster {
111 u64 start;
112 u64 end;
113 u64 boundary[MAX_EXTENTS];
114 unsigned int nr;
115};
116
117struct reloc_control {
118 /* block group to relocate */
119 struct btrfs_block_group *block_group;
120 /* extent tree */
121 struct btrfs_root *extent_root;
122 /* inode for moving data */
123 struct inode *data_inode;
124
125 struct btrfs_block_rsv *block_rsv;
126
127 struct btrfs_backref_cache backref_cache;
128
129 struct file_extent_cluster cluster;
130 /* tree blocks have been processed */
131 struct extent_io_tree processed_blocks;
132 /* map start of tree root to corresponding reloc tree */
133 struct mapping_tree reloc_root_tree;
134 /* list of reloc trees */
135 struct list_head reloc_roots;
136 /* list of subvolume trees that get relocated */
137 struct list_head dirty_subvol_roots;
138 /* size of metadata reservation for merging reloc trees */
139 u64 merging_rsv_size;
140 /* size of relocated tree nodes */
141 u64 nodes_relocated;
142 /* reserved size for block group relocation*/
143 u64 reserved_bytes;
144
145 u64 search_start;
146 u64 extents_found;
147
148 unsigned int stage:8;
149 unsigned int create_reloc_tree:1;
150 unsigned int merge_reloc_tree:1;
151 unsigned int found_file_extent:1;
152};
153
154/* stages of data relocation */
155#define MOVE_DATA_EXTENTS 0
156#define UPDATE_DATA_PTRS 1
157
158static void mark_block_processed(struct reloc_control *rc,
159 struct btrfs_backref_node *node)
160{
161 u32 blocksize;
162
163 if (node->level == 0 ||
164 in_range(node->bytenr, rc->block_group->start,
165 rc->block_group->length)) {
166 blocksize = rc->extent_root->fs_info->nodesize;
167 set_extent_bits(&rc->processed_blocks, node->bytenr,
168 node->bytenr + blocksize - 1, EXTENT_DIRTY);
169 }
170 node->processed = 1;
171}
172
173
174static void mapping_tree_init(struct mapping_tree *tree)
175{
176 tree->rb_root = RB_ROOT;
177 spin_lock_init(&tree->lock);
178}
179
180/*
181 * walk up backref nodes until reach node presents tree root
182 */
183static struct btrfs_backref_node *walk_up_backref(
184 struct btrfs_backref_node *node,
185 struct btrfs_backref_edge *edges[], int *index)
186{
187 struct btrfs_backref_edge *edge;
188 int idx = *index;
189
190 while (!list_empty(&node->upper)) {
191 edge = list_entry(node->upper.next,
192 struct btrfs_backref_edge, list[LOWER]);
193 edges[idx++] = edge;
194 node = edge->node[UPPER];
195 }
196 BUG_ON(node->detached);
197 *index = idx;
198 return node;
199}
200
201/*
202 * walk down backref nodes to find start of next reference path
203 */
204static struct btrfs_backref_node *walk_down_backref(
205 struct btrfs_backref_edge *edges[], int *index)
206{
207 struct btrfs_backref_edge *edge;
208 struct btrfs_backref_node *lower;
209 int idx = *index;
210
211 while (idx > 0) {
212 edge = edges[idx - 1];
213 lower = edge->node[LOWER];
214 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
215 idx--;
216 continue;
217 }
218 edge = list_entry(edge->list[LOWER].next,
219 struct btrfs_backref_edge, list[LOWER]);
220 edges[idx - 1] = edge;
221 *index = idx;
222 return edge->node[UPPER];
223 }
224 *index = 0;
225 return NULL;
226}
227
228static void update_backref_node(struct btrfs_backref_cache *cache,
229 struct btrfs_backref_node *node, u64 bytenr)
230{
231 struct rb_node *rb_node;
232 rb_erase(&node->rb_node, &cache->rb_root);
233 node->bytenr = bytenr;
234 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
235 if (rb_node)
236 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
237}
238
239/*
240 * update backref cache after a transaction commit
241 */
242static int update_backref_cache(struct btrfs_trans_handle *trans,
243 struct btrfs_backref_cache *cache)
244{
245 struct btrfs_backref_node *node;
246 int level = 0;
247
248 if (cache->last_trans == 0) {
249 cache->last_trans = trans->transid;
250 return 0;
251 }
252
253 if (cache->last_trans == trans->transid)
254 return 0;
255
256 /*
257 * detached nodes are used to avoid unnecessary backref
258 * lookup. transaction commit changes the extent tree.
259 * so the detached nodes are no longer useful.
260 */
261 while (!list_empty(&cache->detached)) {
262 node = list_entry(cache->detached.next,
263 struct btrfs_backref_node, list);
264 btrfs_backref_cleanup_node(cache, node);
265 }
266
267 while (!list_empty(&cache->changed)) {
268 node = list_entry(cache->changed.next,
269 struct btrfs_backref_node, list);
270 list_del_init(&node->list);
271 BUG_ON(node->pending);
272 update_backref_node(cache, node, node->new_bytenr);
273 }
274
275 /*
276 * some nodes can be left in the pending list if there were
277 * errors during processing the pending nodes.
278 */
279 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
280 list_for_each_entry(node, &cache->pending[level], list) {
281 BUG_ON(!node->pending);
282 if (node->bytenr == node->new_bytenr)
283 continue;
284 update_backref_node(cache, node, node->new_bytenr);
285 }
286 }
287
288 cache->last_trans = 0;
289 return 1;
290}
291
292static bool reloc_root_is_dead(struct btrfs_root *root)
293{
294 /*
295 * Pair with set_bit/clear_bit in clean_dirty_subvols and
296 * btrfs_update_reloc_root. We need to see the updated bit before
297 * trying to access reloc_root
298 */
299 smp_rmb();
300 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
301 return true;
302 return false;
303}
304
305/*
306 * Check if this subvolume tree has valid reloc tree.
307 *
308 * Reloc tree after swap is considered dead, thus not considered as valid.
309 * This is enough for most callers, as they don't distinguish dead reloc root
310 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
311 * special case.
312 */
313static bool have_reloc_root(struct btrfs_root *root)
314{
315 if (reloc_root_is_dead(root))
316 return false;
317 if (!root->reloc_root)
318 return false;
319 return true;
320}
321
322int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
323{
324 struct btrfs_root *reloc_root;
325
326 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
327 return 0;
328
329 /* This root has been merged with its reloc tree, we can ignore it */
330 if (reloc_root_is_dead(root))
331 return 1;
332
333 reloc_root = root->reloc_root;
334 if (!reloc_root)
335 return 0;
336
337 if (btrfs_header_generation(reloc_root->commit_root) ==
338 root->fs_info->running_transaction->transid)
339 return 0;
340 /*
341 * if there is reloc tree and it was created in previous
342 * transaction backref lookup can find the reloc tree,
343 * so backref node for the fs tree root is useless for
344 * relocation.
345 */
346 return 1;
347}
348
349/*
350 * find reloc tree by address of tree root
351 */
352struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
353{
354 struct reloc_control *rc = fs_info->reloc_ctl;
355 struct rb_node *rb_node;
356 struct mapping_node *node;
357 struct btrfs_root *root = NULL;
358
359 ASSERT(rc);
360 spin_lock(&rc->reloc_root_tree.lock);
361 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
362 if (rb_node) {
363 node = rb_entry(rb_node, struct mapping_node, rb_node);
364 root = (struct btrfs_root *)node->data;
365 }
366 spin_unlock(&rc->reloc_root_tree.lock);
367 return btrfs_grab_root(root);
368}
369
370/*
371 * For useless nodes, do two major clean ups:
372 *
373 * - Cleanup the children edges and nodes
374 * If child node is also orphan (no parent) during cleanup, then the child
375 * node will also be cleaned up.
376 *
377 * - Freeing up leaves (level 0), keeps nodes detached
378 * For nodes, the node is still cached as "detached"
379 *
380 * Return false if @node is not in the @useless_nodes list.
381 * Return true if @node is in the @useless_nodes list.
382 */
383static bool handle_useless_nodes(struct reloc_control *rc,
384 struct btrfs_backref_node *node)
385{
386 struct btrfs_backref_cache *cache = &rc->backref_cache;
387 struct list_head *useless_node = &cache->useless_node;
388 bool ret = false;
389
390 while (!list_empty(useless_node)) {
391 struct btrfs_backref_node *cur;
392
393 cur = list_first_entry(useless_node, struct btrfs_backref_node,
394 list);
395 list_del_init(&cur->list);
396
397 /* Only tree root nodes can be added to @useless_nodes */
398 ASSERT(list_empty(&cur->upper));
399
400 if (cur == node)
401 ret = true;
402
403 /* The node is the lowest node */
404 if (cur->lowest) {
405 list_del_init(&cur->lower);
406 cur->lowest = 0;
407 }
408
409 /* Cleanup the lower edges */
410 while (!list_empty(&cur->lower)) {
411 struct btrfs_backref_edge *edge;
412 struct btrfs_backref_node *lower;
413
414 edge = list_entry(cur->lower.next,
415 struct btrfs_backref_edge, list[UPPER]);
416 list_del(&edge->list[UPPER]);
417 list_del(&edge->list[LOWER]);
418 lower = edge->node[LOWER];
419 btrfs_backref_free_edge(cache, edge);
420
421 /* Child node is also orphan, queue for cleanup */
422 if (list_empty(&lower->upper))
423 list_add(&lower->list, useless_node);
424 }
425 /* Mark this block processed for relocation */
426 mark_block_processed(rc, cur);
427
428 /*
429 * Backref nodes for tree leaves are deleted from the cache.
430 * Backref nodes for upper level tree blocks are left in the
431 * cache to avoid unnecessary backref lookup.
432 */
433 if (cur->level > 0) {
434 list_add(&cur->list, &cache->detached);
435 cur->detached = 1;
436 } else {
437 rb_erase(&cur->rb_node, &cache->rb_root);
438 btrfs_backref_free_node(cache, cur);
439 }
440 }
441 return ret;
442}
443
444/*
445 * Build backref tree for a given tree block. Root of the backref tree
446 * corresponds the tree block, leaves of the backref tree correspond roots of
447 * b-trees that reference the tree block.
448 *
449 * The basic idea of this function is check backrefs of a given block to find
450 * upper level blocks that reference the block, and then check backrefs of
451 * these upper level blocks recursively. The recursion stops when tree root is
452 * reached or backrefs for the block is cached.
453 *
454 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
455 * all upper level blocks that directly/indirectly reference the block are also
456 * cached.
457 */
458static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
459 struct reloc_control *rc, struct btrfs_key *node_key,
460 int level, u64 bytenr)
461{
462 struct btrfs_backref_iter *iter;
463 struct btrfs_backref_cache *cache = &rc->backref_cache;
464 /* For searching parent of TREE_BLOCK_REF */
465 struct btrfs_path *path;
466 struct btrfs_backref_node *cur;
467 struct btrfs_backref_node *node = NULL;
468 struct btrfs_backref_edge *edge;
469 int ret;
470 int err = 0;
471
472 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
473 if (!iter)
474 return ERR_PTR(-ENOMEM);
475 path = btrfs_alloc_path();
476 if (!path) {
477 err = -ENOMEM;
478 goto out;
479 }
480
481 node = btrfs_backref_alloc_node(cache, bytenr, level);
482 if (!node) {
483 err = -ENOMEM;
484 goto out;
485 }
486
487 node->lowest = 1;
488 cur = node;
489
490 /* Breadth-first search to build backref cache */
491 do {
492 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
493 cur);
494 if (ret < 0) {
495 err = ret;
496 goto out;
497 }
498 edge = list_first_entry_or_null(&cache->pending_edge,
499 struct btrfs_backref_edge, list[UPPER]);
500 /*
501 * The pending list isn't empty, take the first block to
502 * process
503 */
504 if (edge) {
505 list_del_init(&edge->list[UPPER]);
506 cur = edge->node[UPPER];
507 }
508 } while (edge);
509
510 /* Finish the upper linkage of newly added edges/nodes */
511 ret = btrfs_backref_finish_upper_links(cache, node);
512 if (ret < 0) {
513 err = ret;
514 goto out;
515 }
516
517 if (handle_useless_nodes(rc, node))
518 node = NULL;
519out:
520 btrfs_backref_iter_free(iter);
521 btrfs_free_path(path);
522 if (err) {
523 btrfs_backref_error_cleanup(cache, node);
524 return ERR_PTR(err);
525 }
526 ASSERT(!node || !node->detached);
527 ASSERT(list_empty(&cache->useless_node) &&
528 list_empty(&cache->pending_edge));
529 return node;
530}
531
532/*
533 * helper to add backref node for the newly created snapshot.
534 * the backref node is created by cloning backref node that
535 * corresponds to root of source tree
536 */
537static int clone_backref_node(struct btrfs_trans_handle *trans,
538 struct reloc_control *rc,
539 struct btrfs_root *src,
540 struct btrfs_root *dest)
541{
542 struct btrfs_root *reloc_root = src->reloc_root;
543 struct btrfs_backref_cache *cache = &rc->backref_cache;
544 struct btrfs_backref_node *node = NULL;
545 struct btrfs_backref_node *new_node;
546 struct btrfs_backref_edge *edge;
547 struct btrfs_backref_edge *new_edge;
548 struct rb_node *rb_node;
549
550 if (cache->last_trans > 0)
551 update_backref_cache(trans, cache);
552
553 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
554 if (rb_node) {
555 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
556 if (node->detached)
557 node = NULL;
558 else
559 BUG_ON(node->new_bytenr != reloc_root->node->start);
560 }
561
562 if (!node) {
563 rb_node = rb_simple_search(&cache->rb_root,
564 reloc_root->commit_root->start);
565 if (rb_node) {
566 node = rb_entry(rb_node, struct btrfs_backref_node,
567 rb_node);
568 BUG_ON(node->detached);
569 }
570 }
571
572 if (!node)
573 return 0;
574
575 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
576 node->level);
577 if (!new_node)
578 return -ENOMEM;
579
580 new_node->lowest = node->lowest;
581 new_node->checked = 1;
582 new_node->root = btrfs_grab_root(dest);
583 ASSERT(new_node->root);
584
585 if (!node->lowest) {
586 list_for_each_entry(edge, &node->lower, list[UPPER]) {
587 new_edge = btrfs_backref_alloc_edge(cache);
588 if (!new_edge)
589 goto fail;
590
591 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
592 new_node, LINK_UPPER);
593 }
594 } else {
595 list_add_tail(&new_node->lower, &cache->leaves);
596 }
597
598 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
599 &new_node->rb_node);
600 if (rb_node)
601 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
602
603 if (!new_node->lowest) {
604 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
605 list_add_tail(&new_edge->list[LOWER],
606 &new_edge->node[LOWER]->upper);
607 }
608 }
609 return 0;
610fail:
611 while (!list_empty(&new_node->lower)) {
612 new_edge = list_entry(new_node->lower.next,
613 struct btrfs_backref_edge, list[UPPER]);
614 list_del(&new_edge->list[UPPER]);
615 btrfs_backref_free_edge(cache, new_edge);
616 }
617 btrfs_backref_free_node(cache, new_node);
618 return -ENOMEM;
619}
620
621/*
622 * helper to add 'address of tree root -> reloc tree' mapping
623 */
624static int __must_check __add_reloc_root(struct btrfs_root *root)
625{
626 struct btrfs_fs_info *fs_info = root->fs_info;
627 struct rb_node *rb_node;
628 struct mapping_node *node;
629 struct reloc_control *rc = fs_info->reloc_ctl;
630
631 node = kmalloc(sizeof(*node), GFP_NOFS);
632 if (!node)
633 return -ENOMEM;
634
635 node->bytenr = root->commit_root->start;
636 node->data = root;
637
638 spin_lock(&rc->reloc_root_tree.lock);
639 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
640 node->bytenr, &node->rb_node);
641 spin_unlock(&rc->reloc_root_tree.lock);
642 if (rb_node) {
643 btrfs_err(fs_info,
644 "Duplicate root found for start=%llu while inserting into relocation tree",
645 node->bytenr);
646 return -EEXIST;
647 }
648
649 list_add_tail(&root->root_list, &rc->reloc_roots);
650 return 0;
651}
652
653/*
654 * helper to delete the 'address of tree root -> reloc tree'
655 * mapping
656 */
657static void __del_reloc_root(struct btrfs_root *root)
658{
659 struct btrfs_fs_info *fs_info = root->fs_info;
660 struct rb_node *rb_node;
661 struct mapping_node *node = NULL;
662 struct reloc_control *rc = fs_info->reloc_ctl;
663 bool put_ref = false;
664
665 if (rc && root->node) {
666 spin_lock(&rc->reloc_root_tree.lock);
667 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
668 root->commit_root->start);
669 if (rb_node) {
670 node = rb_entry(rb_node, struct mapping_node, rb_node);
671 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
672 RB_CLEAR_NODE(&node->rb_node);
673 }
674 spin_unlock(&rc->reloc_root_tree.lock);
675 ASSERT(!node || (struct btrfs_root *)node->data == root);
676 }
677
678 /*
679 * We only put the reloc root here if it's on the list. There's a lot
680 * of places where the pattern is to splice the rc->reloc_roots, process
681 * the reloc roots, and then add the reloc root back onto
682 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
683 * list we don't want the reference being dropped, because the guy
684 * messing with the list is in charge of the reference.
685 */
686 spin_lock(&fs_info->trans_lock);
687 if (!list_empty(&root->root_list)) {
688 put_ref = true;
689 list_del_init(&root->root_list);
690 }
691 spin_unlock(&fs_info->trans_lock);
692 if (put_ref)
693 btrfs_put_root(root);
694 kfree(node);
695}
696
697/*
698 * helper to update the 'address of tree root -> reloc tree'
699 * mapping
700 */
701static int __update_reloc_root(struct btrfs_root *root)
702{
703 struct btrfs_fs_info *fs_info = root->fs_info;
704 struct rb_node *rb_node;
705 struct mapping_node *node = NULL;
706 struct reloc_control *rc = fs_info->reloc_ctl;
707
708 spin_lock(&rc->reloc_root_tree.lock);
709 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
710 root->commit_root->start);
711 if (rb_node) {
712 node = rb_entry(rb_node, struct mapping_node, rb_node);
713 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
714 }
715 spin_unlock(&rc->reloc_root_tree.lock);
716
717 if (!node)
718 return 0;
719 BUG_ON((struct btrfs_root *)node->data != root);
720
721 spin_lock(&rc->reloc_root_tree.lock);
722 node->bytenr = root->node->start;
723 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
724 node->bytenr, &node->rb_node);
725 spin_unlock(&rc->reloc_root_tree.lock);
726 if (rb_node)
727 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
728 return 0;
729}
730
731static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
732 struct btrfs_root *root, u64 objectid)
733{
734 struct btrfs_fs_info *fs_info = root->fs_info;
735 struct btrfs_root *reloc_root;
736 struct extent_buffer *eb;
737 struct btrfs_root_item *root_item;
738 struct btrfs_key root_key;
739 int ret = 0;
740 bool must_abort = false;
741
742 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
743 if (!root_item)
744 return ERR_PTR(-ENOMEM);
745
746 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
747 root_key.type = BTRFS_ROOT_ITEM_KEY;
748 root_key.offset = objectid;
749
750 if (root->root_key.objectid == objectid) {
751 u64 commit_root_gen;
752
753 /* called by btrfs_init_reloc_root */
754 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
755 BTRFS_TREE_RELOC_OBJECTID);
756 if (ret)
757 goto fail;
758
759 /*
760 * Set the last_snapshot field to the generation of the commit
761 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
762 * correctly (returns true) when the relocation root is created
763 * either inside the critical section of a transaction commit
764 * (through transaction.c:qgroup_account_snapshot()) and when
765 * it's created before the transaction commit is started.
766 */
767 commit_root_gen = btrfs_header_generation(root->commit_root);
768 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
769 } else {
770 /*
771 * called by btrfs_reloc_post_snapshot_hook.
772 * the source tree is a reloc tree, all tree blocks
773 * modified after it was created have RELOC flag
774 * set in their headers. so it's OK to not update
775 * the 'last_snapshot'.
776 */
777 ret = btrfs_copy_root(trans, root, root->node, &eb,
778 BTRFS_TREE_RELOC_OBJECTID);
779 if (ret)
780 goto fail;
781 }
782
783 /*
784 * We have changed references at this point, we must abort the
785 * transaction if anything fails.
786 */
787 must_abort = true;
788
789 memcpy(root_item, &root->root_item, sizeof(*root_item));
790 btrfs_set_root_bytenr(root_item, eb->start);
791 btrfs_set_root_level(root_item, btrfs_header_level(eb));
792 btrfs_set_root_generation(root_item, trans->transid);
793
794 if (root->root_key.objectid == objectid) {
795 btrfs_set_root_refs(root_item, 0);
796 memset(&root_item->drop_progress, 0,
797 sizeof(struct btrfs_disk_key));
798 btrfs_set_root_drop_level(root_item, 0);
799 }
800
801 btrfs_tree_unlock(eb);
802 free_extent_buffer(eb);
803
804 ret = btrfs_insert_root(trans, fs_info->tree_root,
805 &root_key, root_item);
806 if (ret)
807 goto fail;
808
809 kfree(root_item);
810
811 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
812 if (IS_ERR(reloc_root)) {
813 ret = PTR_ERR(reloc_root);
814 goto abort;
815 }
816 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
817 reloc_root->last_trans = trans->transid;
818 return reloc_root;
819fail:
820 kfree(root_item);
821abort:
822 if (must_abort)
823 btrfs_abort_transaction(trans, ret);
824 return ERR_PTR(ret);
825}
826
827/*
828 * create reloc tree for a given fs tree. reloc tree is just a
829 * snapshot of the fs tree with special root objectid.
830 *
831 * The reloc_root comes out of here with two references, one for
832 * root->reloc_root, and another for being on the rc->reloc_roots list.
833 */
834int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
835 struct btrfs_root *root)
836{
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct btrfs_root *reloc_root;
839 struct reloc_control *rc = fs_info->reloc_ctl;
840 struct btrfs_block_rsv *rsv;
841 int clear_rsv = 0;
842 int ret;
843
844 if (!rc)
845 return 0;
846
847 /*
848 * The subvolume has reloc tree but the swap is finished, no need to
849 * create/update the dead reloc tree
850 */
851 if (reloc_root_is_dead(root))
852 return 0;
853
854 /*
855 * This is subtle but important. We do not do
856 * record_root_in_transaction for reloc roots, instead we record their
857 * corresponding fs root, and then here we update the last trans for the
858 * reloc root. This means that we have to do this for the entire life
859 * of the reloc root, regardless of which stage of the relocation we are
860 * in.
861 */
862 if (root->reloc_root) {
863 reloc_root = root->reloc_root;
864 reloc_root->last_trans = trans->transid;
865 return 0;
866 }
867
868 /*
869 * We are merging reloc roots, we do not need new reloc trees. Also
870 * reloc trees never need their own reloc tree.
871 */
872 if (!rc->create_reloc_tree ||
873 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
874 return 0;
875
876 if (!trans->reloc_reserved) {
877 rsv = trans->block_rsv;
878 trans->block_rsv = rc->block_rsv;
879 clear_rsv = 1;
880 }
881 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
882 if (clear_rsv)
883 trans->block_rsv = rsv;
884 if (IS_ERR(reloc_root))
885 return PTR_ERR(reloc_root);
886
887 ret = __add_reloc_root(reloc_root);
888 ASSERT(ret != -EEXIST);
889 if (ret) {
890 /* Pairs with create_reloc_root */
891 btrfs_put_root(reloc_root);
892 return ret;
893 }
894 root->reloc_root = btrfs_grab_root(reloc_root);
895 return 0;
896}
897
898/*
899 * update root item of reloc tree
900 */
901int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
902 struct btrfs_root *root)
903{
904 struct btrfs_fs_info *fs_info = root->fs_info;
905 struct btrfs_root *reloc_root;
906 struct btrfs_root_item *root_item;
907 int ret;
908
909 if (!have_reloc_root(root))
910 return 0;
911
912 reloc_root = root->reloc_root;
913 root_item = &reloc_root->root_item;
914
915 /*
916 * We are probably ok here, but __del_reloc_root() will drop its ref of
917 * the root. We have the ref for root->reloc_root, but just in case
918 * hold it while we update the reloc root.
919 */
920 btrfs_grab_root(reloc_root);
921
922 /* root->reloc_root will stay until current relocation finished */
923 if (fs_info->reloc_ctl->merge_reloc_tree &&
924 btrfs_root_refs(root_item) == 0) {
925 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
926 /*
927 * Mark the tree as dead before we change reloc_root so
928 * have_reloc_root will not touch it from now on.
929 */
930 smp_wmb();
931 __del_reloc_root(reloc_root);
932 }
933
934 if (reloc_root->commit_root != reloc_root->node) {
935 __update_reloc_root(reloc_root);
936 btrfs_set_root_node(root_item, reloc_root->node);
937 free_extent_buffer(reloc_root->commit_root);
938 reloc_root->commit_root = btrfs_root_node(reloc_root);
939 }
940
941 ret = btrfs_update_root(trans, fs_info->tree_root,
942 &reloc_root->root_key, root_item);
943 btrfs_put_root(reloc_root);
944 return ret;
945}
946
947/*
948 * helper to find first cached inode with inode number >= objectid
949 * in a subvolume
950 */
951static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
952{
953 struct rb_node *node;
954 struct rb_node *prev;
955 struct btrfs_inode *entry;
956 struct inode *inode;
957
958 spin_lock(&root->inode_lock);
959again:
960 node = root->inode_tree.rb_node;
961 prev = NULL;
962 while (node) {
963 prev = node;
964 entry = rb_entry(node, struct btrfs_inode, rb_node);
965
966 if (objectid < btrfs_ino(entry))
967 node = node->rb_left;
968 else if (objectid > btrfs_ino(entry))
969 node = node->rb_right;
970 else
971 break;
972 }
973 if (!node) {
974 while (prev) {
975 entry = rb_entry(prev, struct btrfs_inode, rb_node);
976 if (objectid <= btrfs_ino(entry)) {
977 node = prev;
978 break;
979 }
980 prev = rb_next(prev);
981 }
982 }
983 while (node) {
984 entry = rb_entry(node, struct btrfs_inode, rb_node);
985 inode = igrab(&entry->vfs_inode);
986 if (inode) {
987 spin_unlock(&root->inode_lock);
988 return inode;
989 }
990
991 objectid = btrfs_ino(entry) + 1;
992 if (cond_resched_lock(&root->inode_lock))
993 goto again;
994
995 node = rb_next(node);
996 }
997 spin_unlock(&root->inode_lock);
998 return NULL;
999}
1000
1001/*
1002 * get new location of data
1003 */
1004static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1005 u64 bytenr, u64 num_bytes)
1006{
1007 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1008 struct btrfs_path *path;
1009 struct btrfs_file_extent_item *fi;
1010 struct extent_buffer *leaf;
1011 int ret;
1012
1013 path = btrfs_alloc_path();
1014 if (!path)
1015 return -ENOMEM;
1016
1017 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1018 ret = btrfs_lookup_file_extent(NULL, root, path,
1019 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1020 if (ret < 0)
1021 goto out;
1022 if (ret > 0) {
1023 ret = -ENOENT;
1024 goto out;
1025 }
1026
1027 leaf = path->nodes[0];
1028 fi = btrfs_item_ptr(leaf, path->slots[0],
1029 struct btrfs_file_extent_item);
1030
1031 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1032 btrfs_file_extent_compression(leaf, fi) ||
1033 btrfs_file_extent_encryption(leaf, fi) ||
1034 btrfs_file_extent_other_encoding(leaf, fi));
1035
1036 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
1041 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1042 ret = 0;
1043out:
1044 btrfs_free_path(path);
1045 return ret;
1046}
1047
1048/*
1049 * update file extent items in the tree leaf to point to
1050 * the new locations.
1051 */
1052static noinline_for_stack
1053int replace_file_extents(struct btrfs_trans_handle *trans,
1054 struct reloc_control *rc,
1055 struct btrfs_root *root,
1056 struct extent_buffer *leaf)
1057{
1058 struct btrfs_fs_info *fs_info = root->fs_info;
1059 struct btrfs_key key;
1060 struct btrfs_file_extent_item *fi;
1061 struct inode *inode = NULL;
1062 u64 parent;
1063 u64 bytenr;
1064 u64 new_bytenr = 0;
1065 u64 num_bytes;
1066 u64 end;
1067 u32 nritems;
1068 u32 i;
1069 int ret = 0;
1070 int first = 1;
1071 int dirty = 0;
1072
1073 if (rc->stage != UPDATE_DATA_PTRS)
1074 return 0;
1075
1076 /* reloc trees always use full backref */
1077 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1078 parent = leaf->start;
1079 else
1080 parent = 0;
1081
1082 nritems = btrfs_header_nritems(leaf);
1083 for (i = 0; i < nritems; i++) {
1084 struct btrfs_ref ref = { 0 };
1085
1086 cond_resched();
1087 btrfs_item_key_to_cpu(leaf, &key, i);
1088 if (key.type != BTRFS_EXTENT_DATA_KEY)
1089 continue;
1090 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1091 if (btrfs_file_extent_type(leaf, fi) ==
1092 BTRFS_FILE_EXTENT_INLINE)
1093 continue;
1094 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1095 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1096 if (bytenr == 0)
1097 continue;
1098 if (!in_range(bytenr, rc->block_group->start,
1099 rc->block_group->length))
1100 continue;
1101
1102 /*
1103 * if we are modifying block in fs tree, wait for readpage
1104 * to complete and drop the extent cache
1105 */
1106 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1107 if (first) {
1108 inode = find_next_inode(root, key.objectid);
1109 first = 0;
1110 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1111 btrfs_add_delayed_iput(inode);
1112 inode = find_next_inode(root, key.objectid);
1113 }
1114 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1115 end = key.offset +
1116 btrfs_file_extent_num_bytes(leaf, fi);
1117 WARN_ON(!IS_ALIGNED(key.offset,
1118 fs_info->sectorsize));
1119 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1120 end--;
1121 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1122 key.offset, end);
1123 if (!ret)
1124 continue;
1125
1126 btrfs_drop_extent_cache(BTRFS_I(inode),
1127 key.offset, end, 1);
1128 unlock_extent(&BTRFS_I(inode)->io_tree,
1129 key.offset, end);
1130 }
1131 }
1132
1133 ret = get_new_location(rc->data_inode, &new_bytenr,
1134 bytenr, num_bytes);
1135 if (ret) {
1136 /*
1137 * Don't have to abort since we've not changed anything
1138 * in the file extent yet.
1139 */
1140 break;
1141 }
1142
1143 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1144 dirty = 1;
1145
1146 key.offset -= btrfs_file_extent_offset(leaf, fi);
1147 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1148 num_bytes, parent);
1149 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1150 key.objectid, key.offset,
1151 root->root_key.objectid, false);
1152 ret = btrfs_inc_extent_ref(trans, &ref);
1153 if (ret) {
1154 btrfs_abort_transaction(trans, ret);
1155 break;
1156 }
1157
1158 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1159 num_bytes, parent);
1160 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1161 key.objectid, key.offset,
1162 root->root_key.objectid, false);
1163 ret = btrfs_free_extent(trans, &ref);
1164 if (ret) {
1165 btrfs_abort_transaction(trans, ret);
1166 break;
1167 }
1168 }
1169 if (dirty)
1170 btrfs_mark_buffer_dirty(leaf);
1171 if (inode)
1172 btrfs_add_delayed_iput(inode);
1173 return ret;
1174}
1175
1176static noinline_for_stack
1177int memcmp_node_keys(struct extent_buffer *eb, int slot,
1178 struct btrfs_path *path, int level)
1179{
1180 struct btrfs_disk_key key1;
1181 struct btrfs_disk_key key2;
1182 btrfs_node_key(eb, &key1, slot);
1183 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1184 return memcmp(&key1, &key2, sizeof(key1));
1185}
1186
1187/*
1188 * try to replace tree blocks in fs tree with the new blocks
1189 * in reloc tree. tree blocks haven't been modified since the
1190 * reloc tree was create can be replaced.
1191 *
1192 * if a block was replaced, level of the block + 1 is returned.
1193 * if no block got replaced, 0 is returned. if there are other
1194 * errors, a negative error number is returned.
1195 */
1196static noinline_for_stack
1197int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1198 struct btrfs_root *dest, struct btrfs_root *src,
1199 struct btrfs_path *path, struct btrfs_key *next_key,
1200 int lowest_level, int max_level)
1201{
1202 struct btrfs_fs_info *fs_info = dest->fs_info;
1203 struct extent_buffer *eb;
1204 struct extent_buffer *parent;
1205 struct btrfs_ref ref = { 0 };
1206 struct btrfs_key key;
1207 u64 old_bytenr;
1208 u64 new_bytenr;
1209 u64 old_ptr_gen;
1210 u64 new_ptr_gen;
1211 u64 last_snapshot;
1212 u32 blocksize;
1213 int cow = 0;
1214 int level;
1215 int ret;
1216 int slot;
1217
1218 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1219 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1220
1221 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1222again:
1223 slot = path->slots[lowest_level];
1224 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1225
1226 eb = btrfs_lock_root_node(dest);
1227 level = btrfs_header_level(eb);
1228
1229 if (level < lowest_level) {
1230 btrfs_tree_unlock(eb);
1231 free_extent_buffer(eb);
1232 return 0;
1233 }
1234
1235 if (cow) {
1236 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1237 BTRFS_NESTING_COW);
1238 if (ret) {
1239 btrfs_tree_unlock(eb);
1240 free_extent_buffer(eb);
1241 return ret;
1242 }
1243 }
1244
1245 if (next_key) {
1246 next_key->objectid = (u64)-1;
1247 next_key->type = (u8)-1;
1248 next_key->offset = (u64)-1;
1249 }
1250
1251 parent = eb;
1252 while (1) {
1253 level = btrfs_header_level(parent);
1254 ASSERT(level >= lowest_level);
1255
1256 ret = btrfs_bin_search(parent, &key, &slot);
1257 if (ret < 0)
1258 break;
1259 if (ret && slot > 0)
1260 slot--;
1261
1262 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1263 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1264
1265 old_bytenr = btrfs_node_blockptr(parent, slot);
1266 blocksize = fs_info->nodesize;
1267 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1268
1269 if (level <= max_level) {
1270 eb = path->nodes[level];
1271 new_bytenr = btrfs_node_blockptr(eb,
1272 path->slots[level]);
1273 new_ptr_gen = btrfs_node_ptr_generation(eb,
1274 path->slots[level]);
1275 } else {
1276 new_bytenr = 0;
1277 new_ptr_gen = 0;
1278 }
1279
1280 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1281 ret = level;
1282 break;
1283 }
1284
1285 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1286 memcmp_node_keys(parent, slot, path, level)) {
1287 if (level <= lowest_level) {
1288 ret = 0;
1289 break;
1290 }
1291
1292 eb = btrfs_read_node_slot(parent, slot);
1293 if (IS_ERR(eb)) {
1294 ret = PTR_ERR(eb);
1295 break;
1296 }
1297 btrfs_tree_lock(eb);
1298 if (cow) {
1299 ret = btrfs_cow_block(trans, dest, eb, parent,
1300 slot, &eb,
1301 BTRFS_NESTING_COW);
1302 if (ret) {
1303 btrfs_tree_unlock(eb);
1304 free_extent_buffer(eb);
1305 break;
1306 }
1307 }
1308
1309 btrfs_tree_unlock(parent);
1310 free_extent_buffer(parent);
1311
1312 parent = eb;
1313 continue;
1314 }
1315
1316 if (!cow) {
1317 btrfs_tree_unlock(parent);
1318 free_extent_buffer(parent);
1319 cow = 1;
1320 goto again;
1321 }
1322
1323 btrfs_node_key_to_cpu(path->nodes[level], &key,
1324 path->slots[level]);
1325 btrfs_release_path(path);
1326
1327 path->lowest_level = level;
1328 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1329 path->lowest_level = 0;
1330 if (ret) {
1331 if (ret > 0)
1332 ret = -ENOENT;
1333 break;
1334 }
1335
1336 /*
1337 * Info qgroup to trace both subtrees.
1338 *
1339 * We must trace both trees.
1340 * 1) Tree reloc subtree
1341 * If not traced, we will leak data numbers
1342 * 2) Fs subtree
1343 * If not traced, we will double count old data
1344 *
1345 * We don't scan the subtree right now, but only record
1346 * the swapped tree blocks.
1347 * The real subtree rescan is delayed until we have new
1348 * CoW on the subtree root node before transaction commit.
1349 */
1350 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1351 rc->block_group, parent, slot,
1352 path->nodes[level], path->slots[level],
1353 last_snapshot);
1354 if (ret < 0)
1355 break;
1356 /*
1357 * swap blocks in fs tree and reloc tree.
1358 */
1359 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1360 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1361 btrfs_mark_buffer_dirty(parent);
1362
1363 btrfs_set_node_blockptr(path->nodes[level],
1364 path->slots[level], old_bytenr);
1365 btrfs_set_node_ptr_generation(path->nodes[level],
1366 path->slots[level], old_ptr_gen);
1367 btrfs_mark_buffer_dirty(path->nodes[level]);
1368
1369 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1370 blocksize, path->nodes[level]->start);
1371 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1372 0, true);
1373 ret = btrfs_inc_extent_ref(trans, &ref);
1374 if (ret) {
1375 btrfs_abort_transaction(trans, ret);
1376 break;
1377 }
1378 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1379 blocksize, 0);
1380 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1381 true);
1382 ret = btrfs_inc_extent_ref(trans, &ref);
1383 if (ret) {
1384 btrfs_abort_transaction(trans, ret);
1385 break;
1386 }
1387
1388 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1389 blocksize, path->nodes[level]->start);
1390 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1391 0, true);
1392 ret = btrfs_free_extent(trans, &ref);
1393 if (ret) {
1394 btrfs_abort_transaction(trans, ret);
1395 break;
1396 }
1397
1398 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1399 blocksize, 0);
1400 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1401 0, true);
1402 ret = btrfs_free_extent(trans, &ref);
1403 if (ret) {
1404 btrfs_abort_transaction(trans, ret);
1405 break;
1406 }
1407
1408 btrfs_unlock_up_safe(path, 0);
1409
1410 ret = level;
1411 break;
1412 }
1413 btrfs_tree_unlock(parent);
1414 free_extent_buffer(parent);
1415 return ret;
1416}
1417
1418/*
1419 * helper to find next relocated block in reloc tree
1420 */
1421static noinline_for_stack
1422int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1423 int *level)
1424{
1425 struct extent_buffer *eb;
1426 int i;
1427 u64 last_snapshot;
1428 u32 nritems;
1429
1430 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1431
1432 for (i = 0; i < *level; i++) {
1433 free_extent_buffer(path->nodes[i]);
1434 path->nodes[i] = NULL;
1435 }
1436
1437 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1438 eb = path->nodes[i];
1439 nritems = btrfs_header_nritems(eb);
1440 while (path->slots[i] + 1 < nritems) {
1441 path->slots[i]++;
1442 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1443 last_snapshot)
1444 continue;
1445
1446 *level = i;
1447 return 0;
1448 }
1449 free_extent_buffer(path->nodes[i]);
1450 path->nodes[i] = NULL;
1451 }
1452 return 1;
1453}
1454
1455/*
1456 * walk down reloc tree to find relocated block of lowest level
1457 */
1458static noinline_for_stack
1459int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1460 int *level)
1461{
1462 struct extent_buffer *eb = NULL;
1463 int i;
1464 u64 ptr_gen = 0;
1465 u64 last_snapshot;
1466 u32 nritems;
1467
1468 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1469
1470 for (i = *level; i > 0; i--) {
1471 eb = path->nodes[i];
1472 nritems = btrfs_header_nritems(eb);
1473 while (path->slots[i] < nritems) {
1474 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1475 if (ptr_gen > last_snapshot)
1476 break;
1477 path->slots[i]++;
1478 }
1479 if (path->slots[i] >= nritems) {
1480 if (i == *level)
1481 break;
1482 *level = i + 1;
1483 return 0;
1484 }
1485 if (i == 1) {
1486 *level = i;
1487 return 0;
1488 }
1489
1490 eb = btrfs_read_node_slot(eb, path->slots[i]);
1491 if (IS_ERR(eb))
1492 return PTR_ERR(eb);
1493 BUG_ON(btrfs_header_level(eb) != i - 1);
1494 path->nodes[i - 1] = eb;
1495 path->slots[i - 1] = 0;
1496 }
1497 return 1;
1498}
1499
1500/*
1501 * invalidate extent cache for file extents whose key in range of
1502 * [min_key, max_key)
1503 */
1504static int invalidate_extent_cache(struct btrfs_root *root,
1505 struct btrfs_key *min_key,
1506 struct btrfs_key *max_key)
1507{
1508 struct btrfs_fs_info *fs_info = root->fs_info;
1509 struct inode *inode = NULL;
1510 u64 objectid;
1511 u64 start, end;
1512 u64 ino;
1513
1514 objectid = min_key->objectid;
1515 while (1) {
1516 cond_resched();
1517 iput(inode);
1518
1519 if (objectid > max_key->objectid)
1520 break;
1521
1522 inode = find_next_inode(root, objectid);
1523 if (!inode)
1524 break;
1525 ino = btrfs_ino(BTRFS_I(inode));
1526
1527 if (ino > max_key->objectid) {
1528 iput(inode);
1529 break;
1530 }
1531
1532 objectid = ino + 1;
1533 if (!S_ISREG(inode->i_mode))
1534 continue;
1535
1536 if (unlikely(min_key->objectid == ino)) {
1537 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1538 continue;
1539 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1540 start = 0;
1541 else {
1542 start = min_key->offset;
1543 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1544 }
1545 } else {
1546 start = 0;
1547 }
1548
1549 if (unlikely(max_key->objectid == ino)) {
1550 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1551 continue;
1552 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1553 end = (u64)-1;
1554 } else {
1555 if (max_key->offset == 0)
1556 continue;
1557 end = max_key->offset;
1558 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1559 end--;
1560 }
1561 } else {
1562 end = (u64)-1;
1563 }
1564
1565 /* the lock_extent waits for readpage to complete */
1566 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1567 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1568 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1569 }
1570 return 0;
1571}
1572
1573static int find_next_key(struct btrfs_path *path, int level,
1574 struct btrfs_key *key)
1575
1576{
1577 while (level < BTRFS_MAX_LEVEL) {
1578 if (!path->nodes[level])
1579 break;
1580 if (path->slots[level] + 1 <
1581 btrfs_header_nritems(path->nodes[level])) {
1582 btrfs_node_key_to_cpu(path->nodes[level], key,
1583 path->slots[level] + 1);
1584 return 0;
1585 }
1586 level++;
1587 }
1588 return 1;
1589}
1590
1591/*
1592 * Insert current subvolume into reloc_control::dirty_subvol_roots
1593 */
1594static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1595 struct reloc_control *rc,
1596 struct btrfs_root *root)
1597{
1598 struct btrfs_root *reloc_root = root->reloc_root;
1599 struct btrfs_root_item *reloc_root_item;
1600 int ret;
1601
1602 /* @root must be a subvolume tree root with a valid reloc tree */
1603 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1604 ASSERT(reloc_root);
1605
1606 reloc_root_item = &reloc_root->root_item;
1607 memset(&reloc_root_item->drop_progress, 0,
1608 sizeof(reloc_root_item->drop_progress));
1609 btrfs_set_root_drop_level(reloc_root_item, 0);
1610 btrfs_set_root_refs(reloc_root_item, 0);
1611 ret = btrfs_update_reloc_root(trans, root);
1612 if (ret)
1613 return ret;
1614
1615 if (list_empty(&root->reloc_dirty_list)) {
1616 btrfs_grab_root(root);
1617 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1618 }
1619
1620 return 0;
1621}
1622
1623static int clean_dirty_subvols(struct reloc_control *rc)
1624{
1625 struct btrfs_root *root;
1626 struct btrfs_root *next;
1627 int ret = 0;
1628 int ret2;
1629
1630 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1631 reloc_dirty_list) {
1632 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1633 /* Merged subvolume, cleanup its reloc root */
1634 struct btrfs_root *reloc_root = root->reloc_root;
1635
1636 list_del_init(&root->reloc_dirty_list);
1637 root->reloc_root = NULL;
1638 /*
1639 * Need barrier to ensure clear_bit() only happens after
1640 * root->reloc_root = NULL. Pairs with have_reloc_root.
1641 */
1642 smp_wmb();
1643 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1644 if (reloc_root) {
1645 /*
1646 * btrfs_drop_snapshot drops our ref we hold for
1647 * ->reloc_root. If it fails however we must
1648 * drop the ref ourselves.
1649 */
1650 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1651 if (ret2 < 0) {
1652 btrfs_put_root(reloc_root);
1653 if (!ret)
1654 ret = ret2;
1655 }
1656 }
1657 btrfs_put_root(root);
1658 } else {
1659 /* Orphan reloc tree, just clean it up */
1660 ret2 = btrfs_drop_snapshot(root, 0, 1);
1661 if (ret2 < 0) {
1662 btrfs_put_root(root);
1663 if (!ret)
1664 ret = ret2;
1665 }
1666 }
1667 }
1668 return ret;
1669}
1670
1671/*
1672 * merge the relocated tree blocks in reloc tree with corresponding
1673 * fs tree.
1674 */
1675static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1676 struct btrfs_root *root)
1677{
1678 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1679 struct btrfs_key key;
1680 struct btrfs_key next_key;
1681 struct btrfs_trans_handle *trans = NULL;
1682 struct btrfs_root *reloc_root;
1683 struct btrfs_root_item *root_item;
1684 struct btrfs_path *path;
1685 struct extent_buffer *leaf;
1686 int reserve_level;
1687 int level;
1688 int max_level;
1689 int replaced = 0;
1690 int ret = 0;
1691 u32 min_reserved;
1692
1693 path = btrfs_alloc_path();
1694 if (!path)
1695 return -ENOMEM;
1696 path->reada = READA_FORWARD;
1697
1698 reloc_root = root->reloc_root;
1699 root_item = &reloc_root->root_item;
1700
1701 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1702 level = btrfs_root_level(root_item);
1703 atomic_inc(&reloc_root->node->refs);
1704 path->nodes[level] = reloc_root->node;
1705 path->slots[level] = 0;
1706 } else {
1707 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1708
1709 level = btrfs_root_drop_level(root_item);
1710 BUG_ON(level == 0);
1711 path->lowest_level = level;
1712 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1713 path->lowest_level = 0;
1714 if (ret < 0) {
1715 btrfs_free_path(path);
1716 return ret;
1717 }
1718
1719 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1720 path->slots[level]);
1721 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1722
1723 btrfs_unlock_up_safe(path, 0);
1724 }
1725
1726 /*
1727 * In merge_reloc_root(), we modify the upper level pointer to swap the
1728 * tree blocks between reloc tree and subvolume tree. Thus for tree
1729 * block COW, we COW at most from level 1 to root level for each tree.
1730 *
1731 * Thus the needed metadata size is at most root_level * nodesize,
1732 * and * 2 since we have two trees to COW.
1733 */
1734 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1735 min_reserved = fs_info->nodesize * reserve_level * 2;
1736 memset(&next_key, 0, sizeof(next_key));
1737
1738 while (1) {
1739 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1740 BTRFS_RESERVE_FLUSH_LIMIT);
1741 if (ret)
1742 goto out;
1743 trans = btrfs_start_transaction(root, 0);
1744 if (IS_ERR(trans)) {
1745 ret = PTR_ERR(trans);
1746 trans = NULL;
1747 goto out;
1748 }
1749
1750 /*
1751 * At this point we no longer have a reloc_control, so we can't
1752 * depend on btrfs_init_reloc_root to update our last_trans.
1753 *
1754 * But that's ok, we started the trans handle on our
1755 * corresponding fs_root, which means it's been added to the
1756 * dirty list. At commit time we'll still call
1757 * btrfs_update_reloc_root() and update our root item
1758 * appropriately.
1759 */
1760 reloc_root->last_trans = trans->transid;
1761 trans->block_rsv = rc->block_rsv;
1762
1763 replaced = 0;
1764 max_level = level;
1765
1766 ret = walk_down_reloc_tree(reloc_root, path, &level);
1767 if (ret < 0)
1768 goto out;
1769 if (ret > 0)
1770 break;
1771
1772 if (!find_next_key(path, level, &key) &&
1773 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1774 ret = 0;
1775 } else {
1776 ret = replace_path(trans, rc, root, reloc_root, path,
1777 &next_key, level, max_level);
1778 }
1779 if (ret < 0)
1780 goto out;
1781 if (ret > 0) {
1782 level = ret;
1783 btrfs_node_key_to_cpu(path->nodes[level], &key,
1784 path->slots[level]);
1785 replaced = 1;
1786 }
1787
1788 ret = walk_up_reloc_tree(reloc_root, path, &level);
1789 if (ret > 0)
1790 break;
1791
1792 BUG_ON(level == 0);
1793 /*
1794 * save the merging progress in the drop_progress.
1795 * this is OK since root refs == 1 in this case.
1796 */
1797 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1798 path->slots[level]);
1799 btrfs_set_root_drop_level(root_item, level);
1800
1801 btrfs_end_transaction_throttle(trans);
1802 trans = NULL;
1803
1804 btrfs_btree_balance_dirty(fs_info);
1805
1806 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1807 invalidate_extent_cache(root, &key, &next_key);
1808 }
1809
1810 /*
1811 * handle the case only one block in the fs tree need to be
1812 * relocated and the block is tree root.
1813 */
1814 leaf = btrfs_lock_root_node(root);
1815 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1816 BTRFS_NESTING_COW);
1817 btrfs_tree_unlock(leaf);
1818 free_extent_buffer(leaf);
1819out:
1820 btrfs_free_path(path);
1821
1822 if (ret == 0) {
1823 ret = insert_dirty_subvol(trans, rc, root);
1824 if (ret)
1825 btrfs_abort_transaction(trans, ret);
1826 }
1827
1828 if (trans)
1829 btrfs_end_transaction_throttle(trans);
1830
1831 btrfs_btree_balance_dirty(fs_info);
1832
1833 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1834 invalidate_extent_cache(root, &key, &next_key);
1835
1836 return ret;
1837}
1838
1839static noinline_for_stack
1840int prepare_to_merge(struct reloc_control *rc, int err)
1841{
1842 struct btrfs_root *root = rc->extent_root;
1843 struct btrfs_fs_info *fs_info = root->fs_info;
1844 struct btrfs_root *reloc_root;
1845 struct btrfs_trans_handle *trans;
1846 LIST_HEAD(reloc_roots);
1847 u64 num_bytes = 0;
1848 int ret;
1849
1850 mutex_lock(&fs_info->reloc_mutex);
1851 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1852 rc->merging_rsv_size += rc->nodes_relocated * 2;
1853 mutex_unlock(&fs_info->reloc_mutex);
1854
1855again:
1856 if (!err) {
1857 num_bytes = rc->merging_rsv_size;
1858 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1859 BTRFS_RESERVE_FLUSH_ALL);
1860 if (ret)
1861 err = ret;
1862 }
1863
1864 trans = btrfs_join_transaction(rc->extent_root);
1865 if (IS_ERR(trans)) {
1866 if (!err)
1867 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1868 num_bytes, NULL);
1869 return PTR_ERR(trans);
1870 }
1871
1872 if (!err) {
1873 if (num_bytes != rc->merging_rsv_size) {
1874 btrfs_end_transaction(trans);
1875 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1876 num_bytes, NULL);
1877 goto again;
1878 }
1879 }
1880
1881 rc->merge_reloc_tree = 1;
1882
1883 while (!list_empty(&rc->reloc_roots)) {
1884 reloc_root = list_entry(rc->reloc_roots.next,
1885 struct btrfs_root, root_list);
1886 list_del_init(&reloc_root->root_list);
1887
1888 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1889 false);
1890 if (IS_ERR(root)) {
1891 /*
1892 * Even if we have an error we need this reloc root
1893 * back on our list so we can clean up properly.
1894 */
1895 list_add(&reloc_root->root_list, &reloc_roots);
1896 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1897 if (!err)
1898 err = PTR_ERR(root);
1899 break;
1900 }
1901 ASSERT(root->reloc_root == reloc_root);
1902
1903 /*
1904 * set reference count to 1, so btrfs_recover_relocation
1905 * knows it should resumes merging
1906 */
1907 if (!err)
1908 btrfs_set_root_refs(&reloc_root->root_item, 1);
1909 ret = btrfs_update_reloc_root(trans, root);
1910
1911 /*
1912 * Even if we have an error we need this reloc root back on our
1913 * list so we can clean up properly.
1914 */
1915 list_add(&reloc_root->root_list, &reloc_roots);
1916 btrfs_put_root(root);
1917
1918 if (ret) {
1919 btrfs_abort_transaction(trans, ret);
1920 if (!err)
1921 err = ret;
1922 break;
1923 }
1924 }
1925
1926 list_splice(&reloc_roots, &rc->reloc_roots);
1927
1928 if (!err)
1929 err = btrfs_commit_transaction(trans);
1930 else
1931 btrfs_end_transaction(trans);
1932 return err;
1933}
1934
1935static noinline_for_stack
1936void free_reloc_roots(struct list_head *list)
1937{
1938 struct btrfs_root *reloc_root, *tmp;
1939
1940 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1941 __del_reloc_root(reloc_root);
1942}
1943
1944static noinline_for_stack
1945void merge_reloc_roots(struct reloc_control *rc)
1946{
1947 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1948 struct btrfs_root *root;
1949 struct btrfs_root *reloc_root;
1950 LIST_HEAD(reloc_roots);
1951 int found = 0;
1952 int ret = 0;
1953again:
1954 root = rc->extent_root;
1955
1956 /*
1957 * this serializes us with btrfs_record_root_in_transaction,
1958 * we have to make sure nobody is in the middle of
1959 * adding their roots to the list while we are
1960 * doing this splice
1961 */
1962 mutex_lock(&fs_info->reloc_mutex);
1963 list_splice_init(&rc->reloc_roots, &reloc_roots);
1964 mutex_unlock(&fs_info->reloc_mutex);
1965
1966 while (!list_empty(&reloc_roots)) {
1967 found = 1;
1968 reloc_root = list_entry(reloc_roots.next,
1969 struct btrfs_root, root_list);
1970
1971 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1972 false);
1973 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1974 if (IS_ERR(root)) {
1975 /*
1976 * For recovery we read the fs roots on mount,
1977 * and if we didn't find the root then we marked
1978 * the reloc root as a garbage root. For normal
1979 * relocation obviously the root should exist in
1980 * memory. However there's no reason we can't
1981 * handle the error properly here just in case.
1982 */
1983 ASSERT(0);
1984 ret = PTR_ERR(root);
1985 goto out;
1986 }
1987 if (root->reloc_root != reloc_root) {
1988 /*
1989 * This is actually impossible without something
1990 * going really wrong (like weird race condition
1991 * or cosmic rays).
1992 */
1993 ASSERT(0);
1994 ret = -EINVAL;
1995 goto out;
1996 }
1997 ret = merge_reloc_root(rc, root);
1998 btrfs_put_root(root);
1999 if (ret) {
2000 if (list_empty(&reloc_root->root_list))
2001 list_add_tail(&reloc_root->root_list,
2002 &reloc_roots);
2003 goto out;
2004 }
2005 } else {
2006 if (!IS_ERR(root)) {
2007 if (root->reloc_root == reloc_root) {
2008 root->reloc_root = NULL;
2009 btrfs_put_root(reloc_root);
2010 }
2011 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2012 &root->state);
2013 btrfs_put_root(root);
2014 }
2015
2016 list_del_init(&reloc_root->root_list);
2017 /* Don't forget to queue this reloc root for cleanup */
2018 list_add_tail(&reloc_root->reloc_dirty_list,
2019 &rc->dirty_subvol_roots);
2020 }
2021 }
2022
2023 if (found) {
2024 found = 0;
2025 goto again;
2026 }
2027out:
2028 if (ret) {
2029 btrfs_handle_fs_error(fs_info, ret, NULL);
2030 free_reloc_roots(&reloc_roots);
2031
2032 /* new reloc root may be added */
2033 mutex_lock(&fs_info->reloc_mutex);
2034 list_splice_init(&rc->reloc_roots, &reloc_roots);
2035 mutex_unlock(&fs_info->reloc_mutex);
2036 free_reloc_roots(&reloc_roots);
2037 }
2038
2039 /*
2040 * We used to have
2041 *
2042 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2043 *
2044 * here, but it's wrong. If we fail to start the transaction in
2045 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2046 * have actually been removed from the reloc_root_tree rb tree. This is
2047 * fine because we're bailing here, and we hold a reference on the root
2048 * for the list that holds it, so these roots will be cleaned up when we
2049 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2050 * will be cleaned up on unmount.
2051 *
2052 * The remaining nodes will be cleaned up by free_reloc_control.
2053 */
2054}
2055
2056static void free_block_list(struct rb_root *blocks)
2057{
2058 struct tree_block *block;
2059 struct rb_node *rb_node;
2060 while ((rb_node = rb_first(blocks))) {
2061 block = rb_entry(rb_node, struct tree_block, rb_node);
2062 rb_erase(rb_node, blocks);
2063 kfree(block);
2064 }
2065}
2066
2067static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2068 struct btrfs_root *reloc_root)
2069{
2070 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2071 struct btrfs_root *root;
2072 int ret;
2073
2074 if (reloc_root->last_trans == trans->transid)
2075 return 0;
2076
2077 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2078
2079 /*
2080 * This should succeed, since we can't have a reloc root without having
2081 * already looked up the actual root and created the reloc root for this
2082 * root.
2083 *
2084 * However if there's some sort of corruption where we have a ref to a
2085 * reloc root without a corresponding root this could return ENOENT.
2086 */
2087 if (IS_ERR(root)) {
2088 ASSERT(0);
2089 return PTR_ERR(root);
2090 }
2091 if (root->reloc_root != reloc_root) {
2092 ASSERT(0);
2093 btrfs_err(fs_info,
2094 "root %llu has two reloc roots associated with it",
2095 reloc_root->root_key.offset);
2096 btrfs_put_root(root);
2097 return -EUCLEAN;
2098 }
2099 ret = btrfs_record_root_in_trans(trans, root);
2100 btrfs_put_root(root);
2101
2102 return ret;
2103}
2104
2105static noinline_for_stack
2106struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2107 struct reloc_control *rc,
2108 struct btrfs_backref_node *node,
2109 struct btrfs_backref_edge *edges[])
2110{
2111 struct btrfs_backref_node *next;
2112 struct btrfs_root *root;
2113 int index = 0;
2114 int ret;
2115
2116 next = node;
2117 while (1) {
2118 cond_resched();
2119 next = walk_up_backref(next, edges, &index);
2120 root = next->root;
2121
2122 /*
2123 * If there is no root, then our references for this block are
2124 * incomplete, as we should be able to walk all the way up to a
2125 * block that is owned by a root.
2126 *
2127 * This path is only for SHAREABLE roots, so if we come upon a
2128 * non-SHAREABLE root then we have backrefs that resolve
2129 * improperly.
2130 *
2131 * Both of these cases indicate file system corruption, or a bug
2132 * in the backref walking code.
2133 */
2134 if (!root) {
2135 ASSERT(0);
2136 btrfs_err(trans->fs_info,
2137 "bytenr %llu doesn't have a backref path ending in a root",
2138 node->bytenr);
2139 return ERR_PTR(-EUCLEAN);
2140 }
2141 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2142 ASSERT(0);
2143 btrfs_err(trans->fs_info,
2144 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2145 node->bytenr);
2146 return ERR_PTR(-EUCLEAN);
2147 }
2148
2149 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2150 ret = record_reloc_root_in_trans(trans, root);
2151 if (ret)
2152 return ERR_PTR(ret);
2153 break;
2154 }
2155
2156 ret = btrfs_record_root_in_trans(trans, root);
2157 if (ret)
2158 return ERR_PTR(ret);
2159 root = root->reloc_root;
2160
2161 /*
2162 * We could have raced with another thread which failed, so
2163 * root->reloc_root may not be set, return ENOENT in this case.
2164 */
2165 if (!root)
2166 return ERR_PTR(-ENOENT);
2167
2168 if (next->new_bytenr != root->node->start) {
2169 /*
2170 * We just created the reloc root, so we shouldn't have
2171 * ->new_bytenr set and this shouldn't be in the changed
2172 * list. If it is then we have multiple roots pointing
2173 * at the same bytenr which indicates corruption, or
2174 * we've made a mistake in the backref walking code.
2175 */
2176 ASSERT(next->new_bytenr == 0);
2177 ASSERT(list_empty(&next->list));
2178 if (next->new_bytenr || !list_empty(&next->list)) {
2179 btrfs_err(trans->fs_info,
2180 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2181 node->bytenr, next->bytenr);
2182 return ERR_PTR(-EUCLEAN);
2183 }
2184
2185 next->new_bytenr = root->node->start;
2186 btrfs_put_root(next->root);
2187 next->root = btrfs_grab_root(root);
2188 ASSERT(next->root);
2189 list_add_tail(&next->list,
2190 &rc->backref_cache.changed);
2191 mark_block_processed(rc, next);
2192 break;
2193 }
2194
2195 WARN_ON(1);
2196 root = NULL;
2197 next = walk_down_backref(edges, &index);
2198 if (!next || next->level <= node->level)
2199 break;
2200 }
2201 if (!root) {
2202 /*
2203 * This can happen if there's fs corruption or if there's a bug
2204 * in the backref lookup code.
2205 */
2206 ASSERT(0);
2207 return ERR_PTR(-ENOENT);
2208 }
2209
2210 next = node;
2211 /* setup backref node path for btrfs_reloc_cow_block */
2212 while (1) {
2213 rc->backref_cache.path[next->level] = next;
2214 if (--index < 0)
2215 break;
2216 next = edges[index]->node[UPPER];
2217 }
2218 return root;
2219}
2220
2221/*
2222 * Select a tree root for relocation.
2223 *
2224 * Return NULL if the block is not shareable. We should use do_relocation() in
2225 * this case.
2226 *
2227 * Return a tree root pointer if the block is shareable.
2228 * Return -ENOENT if the block is root of reloc tree.
2229 */
2230static noinline_for_stack
2231struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2232{
2233 struct btrfs_backref_node *next;
2234 struct btrfs_root *root;
2235 struct btrfs_root *fs_root = NULL;
2236 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2237 int index = 0;
2238
2239 next = node;
2240 while (1) {
2241 cond_resched();
2242 next = walk_up_backref(next, edges, &index);
2243 root = next->root;
2244
2245 /*
2246 * This can occur if we have incomplete extent refs leading all
2247 * the way up a particular path, in this case return -EUCLEAN.
2248 */
2249 if (!root)
2250 return ERR_PTR(-EUCLEAN);
2251
2252 /* No other choice for non-shareable tree */
2253 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2254 return root;
2255
2256 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2257 fs_root = root;
2258
2259 if (next != node)
2260 return NULL;
2261
2262 next = walk_down_backref(edges, &index);
2263 if (!next || next->level <= node->level)
2264 break;
2265 }
2266
2267 if (!fs_root)
2268 return ERR_PTR(-ENOENT);
2269 return fs_root;
2270}
2271
2272static noinline_for_stack
2273u64 calcu_metadata_size(struct reloc_control *rc,
2274 struct btrfs_backref_node *node, int reserve)
2275{
2276 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2277 struct btrfs_backref_node *next = node;
2278 struct btrfs_backref_edge *edge;
2279 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2280 u64 num_bytes = 0;
2281 int index = 0;
2282
2283 BUG_ON(reserve && node->processed);
2284
2285 while (next) {
2286 cond_resched();
2287 while (1) {
2288 if (next->processed && (reserve || next != node))
2289 break;
2290
2291 num_bytes += fs_info->nodesize;
2292
2293 if (list_empty(&next->upper))
2294 break;
2295
2296 edge = list_entry(next->upper.next,
2297 struct btrfs_backref_edge, list[LOWER]);
2298 edges[index++] = edge;
2299 next = edge->node[UPPER];
2300 }
2301 next = walk_down_backref(edges, &index);
2302 }
2303 return num_bytes;
2304}
2305
2306static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2307 struct reloc_control *rc,
2308 struct btrfs_backref_node *node)
2309{
2310 struct btrfs_root *root = rc->extent_root;
2311 struct btrfs_fs_info *fs_info = root->fs_info;
2312 u64 num_bytes;
2313 int ret;
2314 u64 tmp;
2315
2316 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2317
2318 trans->block_rsv = rc->block_rsv;
2319 rc->reserved_bytes += num_bytes;
2320
2321 /*
2322 * We are under a transaction here so we can only do limited flushing.
2323 * If we get an enospc just kick back -EAGAIN so we know to drop the
2324 * transaction and try to refill when we can flush all the things.
2325 */
2326 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2327 BTRFS_RESERVE_FLUSH_LIMIT);
2328 if (ret) {
2329 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2330 while (tmp <= rc->reserved_bytes)
2331 tmp <<= 1;
2332 /*
2333 * only one thread can access block_rsv at this point,
2334 * so we don't need hold lock to protect block_rsv.
2335 * we expand more reservation size here to allow enough
2336 * space for relocation and we will return earlier in
2337 * enospc case.
2338 */
2339 rc->block_rsv->size = tmp + fs_info->nodesize *
2340 RELOCATION_RESERVED_NODES;
2341 return -EAGAIN;
2342 }
2343
2344 return 0;
2345}
2346
2347/*
2348 * relocate a block tree, and then update pointers in upper level
2349 * blocks that reference the block to point to the new location.
2350 *
2351 * if called by link_to_upper, the block has already been relocated.
2352 * in that case this function just updates pointers.
2353 */
2354static int do_relocation(struct btrfs_trans_handle *trans,
2355 struct reloc_control *rc,
2356 struct btrfs_backref_node *node,
2357 struct btrfs_key *key,
2358 struct btrfs_path *path, int lowest)
2359{
2360 struct btrfs_backref_node *upper;
2361 struct btrfs_backref_edge *edge;
2362 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2363 struct btrfs_root *root;
2364 struct extent_buffer *eb;
2365 u32 blocksize;
2366 u64 bytenr;
2367 int slot;
2368 int ret = 0;
2369
2370 /*
2371 * If we are lowest then this is the first time we're processing this
2372 * block, and thus shouldn't have an eb associated with it yet.
2373 */
2374 ASSERT(!lowest || !node->eb);
2375
2376 path->lowest_level = node->level + 1;
2377 rc->backref_cache.path[node->level] = node;
2378 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2379 struct btrfs_ref ref = { 0 };
2380
2381 cond_resched();
2382
2383 upper = edge->node[UPPER];
2384 root = select_reloc_root(trans, rc, upper, edges);
2385 if (IS_ERR(root)) {
2386 ret = PTR_ERR(root);
2387 goto next;
2388 }
2389
2390 if (upper->eb && !upper->locked) {
2391 if (!lowest) {
2392 ret = btrfs_bin_search(upper->eb, key, &slot);
2393 if (ret < 0)
2394 goto next;
2395 BUG_ON(ret);
2396 bytenr = btrfs_node_blockptr(upper->eb, slot);
2397 if (node->eb->start == bytenr)
2398 goto next;
2399 }
2400 btrfs_backref_drop_node_buffer(upper);
2401 }
2402
2403 if (!upper->eb) {
2404 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2405 if (ret) {
2406 if (ret > 0)
2407 ret = -ENOENT;
2408
2409 btrfs_release_path(path);
2410 break;
2411 }
2412
2413 if (!upper->eb) {
2414 upper->eb = path->nodes[upper->level];
2415 path->nodes[upper->level] = NULL;
2416 } else {
2417 BUG_ON(upper->eb != path->nodes[upper->level]);
2418 }
2419
2420 upper->locked = 1;
2421 path->locks[upper->level] = 0;
2422
2423 slot = path->slots[upper->level];
2424 btrfs_release_path(path);
2425 } else {
2426 ret = btrfs_bin_search(upper->eb, key, &slot);
2427 if (ret < 0)
2428 goto next;
2429 BUG_ON(ret);
2430 }
2431
2432 bytenr = btrfs_node_blockptr(upper->eb, slot);
2433 if (lowest) {
2434 if (bytenr != node->bytenr) {
2435 btrfs_err(root->fs_info,
2436 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2437 bytenr, node->bytenr, slot,
2438 upper->eb->start);
2439 ret = -EIO;
2440 goto next;
2441 }
2442 } else {
2443 if (node->eb->start == bytenr)
2444 goto next;
2445 }
2446
2447 blocksize = root->fs_info->nodesize;
2448 eb = btrfs_read_node_slot(upper->eb, slot);
2449 if (IS_ERR(eb)) {
2450 ret = PTR_ERR(eb);
2451 goto next;
2452 }
2453 btrfs_tree_lock(eb);
2454
2455 if (!node->eb) {
2456 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2457 slot, &eb, BTRFS_NESTING_COW);
2458 btrfs_tree_unlock(eb);
2459 free_extent_buffer(eb);
2460 if (ret < 0)
2461 goto next;
2462 /*
2463 * We've just COWed this block, it should have updated
2464 * the correct backref node entry.
2465 */
2466 ASSERT(node->eb == eb);
2467 } else {
2468 btrfs_set_node_blockptr(upper->eb, slot,
2469 node->eb->start);
2470 btrfs_set_node_ptr_generation(upper->eb, slot,
2471 trans->transid);
2472 btrfs_mark_buffer_dirty(upper->eb);
2473
2474 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2475 node->eb->start, blocksize,
2476 upper->eb->start);
2477 btrfs_init_tree_ref(&ref, node->level,
2478 btrfs_header_owner(upper->eb),
2479 root->root_key.objectid, false);
2480 ret = btrfs_inc_extent_ref(trans, &ref);
2481 if (!ret)
2482 ret = btrfs_drop_subtree(trans, root, eb,
2483 upper->eb);
2484 if (ret)
2485 btrfs_abort_transaction(trans, ret);
2486 }
2487next:
2488 if (!upper->pending)
2489 btrfs_backref_drop_node_buffer(upper);
2490 else
2491 btrfs_backref_unlock_node_buffer(upper);
2492 if (ret)
2493 break;
2494 }
2495
2496 if (!ret && node->pending) {
2497 btrfs_backref_drop_node_buffer(node);
2498 list_move_tail(&node->list, &rc->backref_cache.changed);
2499 node->pending = 0;
2500 }
2501
2502 path->lowest_level = 0;
2503
2504 /*
2505 * We should have allocated all of our space in the block rsv and thus
2506 * shouldn't ENOSPC.
2507 */
2508 ASSERT(ret != -ENOSPC);
2509 return ret;
2510}
2511
2512static int link_to_upper(struct btrfs_trans_handle *trans,
2513 struct reloc_control *rc,
2514 struct btrfs_backref_node *node,
2515 struct btrfs_path *path)
2516{
2517 struct btrfs_key key;
2518
2519 btrfs_node_key_to_cpu(node->eb, &key, 0);
2520 return do_relocation(trans, rc, node, &key, path, 0);
2521}
2522
2523static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2524 struct reloc_control *rc,
2525 struct btrfs_path *path, int err)
2526{
2527 LIST_HEAD(list);
2528 struct btrfs_backref_cache *cache = &rc->backref_cache;
2529 struct btrfs_backref_node *node;
2530 int level;
2531 int ret;
2532
2533 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2534 while (!list_empty(&cache->pending[level])) {
2535 node = list_entry(cache->pending[level].next,
2536 struct btrfs_backref_node, list);
2537 list_move_tail(&node->list, &list);
2538 BUG_ON(!node->pending);
2539
2540 if (!err) {
2541 ret = link_to_upper(trans, rc, node, path);
2542 if (ret < 0)
2543 err = ret;
2544 }
2545 }
2546 list_splice_init(&list, &cache->pending[level]);
2547 }
2548 return err;
2549}
2550
2551/*
2552 * mark a block and all blocks directly/indirectly reference the block
2553 * as processed.
2554 */
2555static void update_processed_blocks(struct reloc_control *rc,
2556 struct btrfs_backref_node *node)
2557{
2558 struct btrfs_backref_node *next = node;
2559 struct btrfs_backref_edge *edge;
2560 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2561 int index = 0;
2562
2563 while (next) {
2564 cond_resched();
2565 while (1) {
2566 if (next->processed)
2567 break;
2568
2569 mark_block_processed(rc, next);
2570
2571 if (list_empty(&next->upper))
2572 break;
2573
2574 edge = list_entry(next->upper.next,
2575 struct btrfs_backref_edge, list[LOWER]);
2576 edges[index++] = edge;
2577 next = edge->node[UPPER];
2578 }
2579 next = walk_down_backref(edges, &index);
2580 }
2581}
2582
2583static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2584{
2585 u32 blocksize = rc->extent_root->fs_info->nodesize;
2586
2587 if (test_range_bit(&rc->processed_blocks, bytenr,
2588 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2589 return 1;
2590 return 0;
2591}
2592
2593static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2594 struct tree_block *block)
2595{
2596 struct extent_buffer *eb;
2597
2598 eb = read_tree_block(fs_info, block->bytenr, block->owner,
2599 block->key.offset, block->level, NULL);
2600 if (IS_ERR(eb)) {
2601 return PTR_ERR(eb);
2602 } else if (!extent_buffer_uptodate(eb)) {
2603 free_extent_buffer(eb);
2604 return -EIO;
2605 }
2606 if (block->level == 0)
2607 btrfs_item_key_to_cpu(eb, &block->key, 0);
2608 else
2609 btrfs_node_key_to_cpu(eb, &block->key, 0);
2610 free_extent_buffer(eb);
2611 block->key_ready = 1;
2612 return 0;
2613}
2614
2615/*
2616 * helper function to relocate a tree block
2617 */
2618static int relocate_tree_block(struct btrfs_trans_handle *trans,
2619 struct reloc_control *rc,
2620 struct btrfs_backref_node *node,
2621 struct btrfs_key *key,
2622 struct btrfs_path *path)
2623{
2624 struct btrfs_root *root;
2625 int ret = 0;
2626
2627 if (!node)
2628 return 0;
2629
2630 /*
2631 * If we fail here we want to drop our backref_node because we are going
2632 * to start over and regenerate the tree for it.
2633 */
2634 ret = reserve_metadata_space(trans, rc, node);
2635 if (ret)
2636 goto out;
2637
2638 BUG_ON(node->processed);
2639 root = select_one_root(node);
2640 if (IS_ERR(root)) {
2641 ret = PTR_ERR(root);
2642
2643 /* See explanation in select_one_root for the -EUCLEAN case. */
2644 ASSERT(ret == -ENOENT);
2645 if (ret == -ENOENT) {
2646 ret = 0;
2647 update_processed_blocks(rc, node);
2648 }
2649 goto out;
2650 }
2651
2652 if (root) {
2653 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2654 /*
2655 * This block was the root block of a root, and this is
2656 * the first time we're processing the block and thus it
2657 * should not have had the ->new_bytenr modified and
2658 * should have not been included on the changed list.
2659 *
2660 * However in the case of corruption we could have
2661 * multiple refs pointing to the same block improperly,
2662 * and thus we would trip over these checks. ASSERT()
2663 * for the developer case, because it could indicate a
2664 * bug in the backref code, however error out for a
2665 * normal user in the case of corruption.
2666 */
2667 ASSERT(node->new_bytenr == 0);
2668 ASSERT(list_empty(&node->list));
2669 if (node->new_bytenr || !list_empty(&node->list)) {
2670 btrfs_err(root->fs_info,
2671 "bytenr %llu has improper references to it",
2672 node->bytenr);
2673 ret = -EUCLEAN;
2674 goto out;
2675 }
2676 ret = btrfs_record_root_in_trans(trans, root);
2677 if (ret)
2678 goto out;
2679 /*
2680 * Another thread could have failed, need to check if we
2681 * have reloc_root actually set.
2682 */
2683 if (!root->reloc_root) {
2684 ret = -ENOENT;
2685 goto out;
2686 }
2687 root = root->reloc_root;
2688 node->new_bytenr = root->node->start;
2689 btrfs_put_root(node->root);
2690 node->root = btrfs_grab_root(root);
2691 ASSERT(node->root);
2692 list_add_tail(&node->list, &rc->backref_cache.changed);
2693 } else {
2694 path->lowest_level = node->level;
2695 if (root == root->fs_info->chunk_root)
2696 btrfs_reserve_chunk_metadata(trans, false);
2697 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2698 btrfs_release_path(path);
2699 if (root == root->fs_info->chunk_root)
2700 btrfs_trans_release_chunk_metadata(trans);
2701 if (ret > 0)
2702 ret = 0;
2703 }
2704 if (!ret)
2705 update_processed_blocks(rc, node);
2706 } else {
2707 ret = do_relocation(trans, rc, node, key, path, 1);
2708 }
2709out:
2710 if (ret || node->level == 0 || node->cowonly)
2711 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2712 return ret;
2713}
2714
2715/*
2716 * relocate a list of blocks
2717 */
2718static noinline_for_stack
2719int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2720 struct reloc_control *rc, struct rb_root *blocks)
2721{
2722 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2723 struct btrfs_backref_node *node;
2724 struct btrfs_path *path;
2725 struct tree_block *block;
2726 struct tree_block *next;
2727 int ret;
2728 int err = 0;
2729
2730 path = btrfs_alloc_path();
2731 if (!path) {
2732 err = -ENOMEM;
2733 goto out_free_blocks;
2734 }
2735
2736 /* Kick in readahead for tree blocks with missing keys */
2737 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2738 if (!block->key_ready)
2739 btrfs_readahead_tree_block(fs_info, block->bytenr,
2740 block->owner, 0,
2741 block->level);
2742 }
2743
2744 /* Get first keys */
2745 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2746 if (!block->key_ready) {
2747 err = get_tree_block_key(fs_info, block);
2748 if (err)
2749 goto out_free_path;
2750 }
2751 }
2752
2753 /* Do tree relocation */
2754 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2755 node = build_backref_tree(rc, &block->key,
2756 block->level, block->bytenr);
2757 if (IS_ERR(node)) {
2758 err = PTR_ERR(node);
2759 goto out;
2760 }
2761
2762 ret = relocate_tree_block(trans, rc, node, &block->key,
2763 path);
2764 if (ret < 0) {
2765 err = ret;
2766 break;
2767 }
2768 }
2769out:
2770 err = finish_pending_nodes(trans, rc, path, err);
2771
2772out_free_path:
2773 btrfs_free_path(path);
2774out_free_blocks:
2775 free_block_list(blocks);
2776 return err;
2777}
2778
2779static noinline_for_stack int prealloc_file_extent_cluster(
2780 struct btrfs_inode *inode,
2781 struct file_extent_cluster *cluster)
2782{
2783 u64 alloc_hint = 0;
2784 u64 start;
2785 u64 end;
2786 u64 offset = inode->index_cnt;
2787 u64 num_bytes;
2788 int nr;
2789 int ret = 0;
2790 u64 i_size = i_size_read(&inode->vfs_inode);
2791 u64 prealloc_start = cluster->start - offset;
2792 u64 prealloc_end = cluster->end - offset;
2793 u64 cur_offset = prealloc_start;
2794
2795 /*
2796 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2797 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2798 * btrfs_do_readpage() call of previously relocated file cluster.
2799 *
2800 * If the current cluster starts in the above range, btrfs_do_readpage()
2801 * will skip the read, and relocate_one_page() will later writeback
2802 * the padding zeros as new data, causing data corruption.
2803 *
2804 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2805 */
2806 if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2807 struct address_space *mapping = inode->vfs_inode.i_mapping;
2808 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2809 const u32 sectorsize = fs_info->sectorsize;
2810 struct page *page;
2811
2812 ASSERT(sectorsize < PAGE_SIZE);
2813 ASSERT(IS_ALIGNED(i_size, sectorsize));
2814
2815 /*
2816 * Subpage can't handle page with DIRTY but without UPTODATE
2817 * bit as it can lead to the following deadlock:
2818 *
2819 * btrfs_readpage()
2820 * | Page already *locked*
2821 * |- btrfs_lock_and_flush_ordered_range()
2822 * |- btrfs_start_ordered_extent()
2823 * |- extent_write_cache_pages()
2824 * |- lock_page()
2825 * We try to lock the page we already hold.
2826 *
2827 * Here we just writeback the whole data reloc inode, so that
2828 * we will be ensured to have no dirty range in the page, and
2829 * are safe to clear the uptodate bits.
2830 *
2831 * This shouldn't cause too much overhead, as we need to write
2832 * the data back anyway.
2833 */
2834 ret = filemap_write_and_wait(mapping);
2835 if (ret < 0)
2836 return ret;
2837
2838 clear_extent_bits(&inode->io_tree, i_size,
2839 round_up(i_size, PAGE_SIZE) - 1,
2840 EXTENT_UPTODATE);
2841 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2842 /*
2843 * If page is freed we don't need to do anything then, as we
2844 * will re-read the whole page anyway.
2845 */
2846 if (page) {
2847 btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2848 round_up(i_size, PAGE_SIZE) - i_size);
2849 unlock_page(page);
2850 put_page(page);
2851 }
2852 }
2853
2854 BUG_ON(cluster->start != cluster->boundary[0]);
2855 ret = btrfs_alloc_data_chunk_ondemand(inode,
2856 prealloc_end + 1 - prealloc_start);
2857 if (ret)
2858 return ret;
2859
2860 btrfs_inode_lock(&inode->vfs_inode, 0);
2861 for (nr = 0; nr < cluster->nr; nr++) {
2862 start = cluster->boundary[nr] - offset;
2863 if (nr + 1 < cluster->nr)
2864 end = cluster->boundary[nr + 1] - 1 - offset;
2865 else
2866 end = cluster->end - offset;
2867
2868 lock_extent(&inode->io_tree, start, end);
2869 num_bytes = end + 1 - start;
2870 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2871 num_bytes, num_bytes,
2872 end + 1, &alloc_hint);
2873 cur_offset = end + 1;
2874 unlock_extent(&inode->io_tree, start, end);
2875 if (ret)
2876 break;
2877 }
2878 btrfs_inode_unlock(&inode->vfs_inode, 0);
2879
2880 if (cur_offset < prealloc_end)
2881 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2882 prealloc_end + 1 - cur_offset);
2883 return ret;
2884}
2885
2886static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2887 u64 start, u64 end, u64 block_start)
2888{
2889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2890 struct extent_map *em;
2891 int ret = 0;
2892
2893 em = alloc_extent_map();
2894 if (!em)
2895 return -ENOMEM;
2896
2897 em->start = start;
2898 em->len = end + 1 - start;
2899 em->block_len = em->len;
2900 em->block_start = block_start;
2901 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2902
2903 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2904 while (1) {
2905 write_lock(&em_tree->lock);
2906 ret = add_extent_mapping(em_tree, em, 0);
2907 write_unlock(&em_tree->lock);
2908 if (ret != -EEXIST) {
2909 free_extent_map(em);
2910 break;
2911 }
2912 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2913 }
2914 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2915 return ret;
2916}
2917
2918/*
2919 * Allow error injection to test balance/relocation cancellation
2920 */
2921noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2922{
2923 return atomic_read(&fs_info->balance_cancel_req) ||
2924 atomic_read(&fs_info->reloc_cancel_req) ||
2925 fatal_signal_pending(current);
2926}
2927ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2928
2929static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2930 int cluster_nr)
2931{
2932 /* Last extent, use cluster end directly */
2933 if (cluster_nr >= cluster->nr - 1)
2934 return cluster->end;
2935
2936 /* Use next boundary start*/
2937 return cluster->boundary[cluster_nr + 1] - 1;
2938}
2939
2940static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2941 struct file_extent_cluster *cluster,
2942 int *cluster_nr, unsigned long page_index)
2943{
2944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2945 u64 offset = BTRFS_I(inode)->index_cnt;
2946 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2947 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2948 struct page *page;
2949 u64 page_start;
2950 u64 page_end;
2951 u64 cur;
2952 int ret;
2953
2954 ASSERT(page_index <= last_index);
2955 page = find_lock_page(inode->i_mapping, page_index);
2956 if (!page) {
2957 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2958 page_index, last_index + 1 - page_index);
2959 page = find_or_create_page(inode->i_mapping, page_index, mask);
2960 if (!page)
2961 return -ENOMEM;
2962 }
2963 ret = set_page_extent_mapped(page);
2964 if (ret < 0)
2965 goto release_page;
2966
2967 if (PageReadahead(page))
2968 page_cache_async_readahead(inode->i_mapping, ra, NULL, page,
2969 page_index, last_index + 1 - page_index);
2970
2971 if (!PageUptodate(page)) {
2972 btrfs_readpage(NULL, page);
2973 lock_page(page);
2974 if (!PageUptodate(page)) {
2975 ret = -EIO;
2976 goto release_page;
2977 }
2978 }
2979
2980 page_start = page_offset(page);
2981 page_end = page_start + PAGE_SIZE - 1;
2982
2983 /*
2984 * Start from the cluster, as for subpage case, the cluster can start
2985 * inside the page.
2986 */
2987 cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
2988 while (cur <= page_end) {
2989 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2990 u64 extent_end = get_cluster_boundary_end(cluster,
2991 *cluster_nr) - offset;
2992 u64 clamped_start = max(page_start, extent_start);
2993 u64 clamped_end = min(page_end, extent_end);
2994 u32 clamped_len = clamped_end + 1 - clamped_start;
2995
2996 /* Reserve metadata for this range */
2997 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2998 clamped_len);
2999 if (ret)
3000 goto release_page;
3001
3002 /* Mark the range delalloc and dirty for later writeback */
3003 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3004 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3005 clamped_end, 0, NULL);
3006 if (ret) {
3007 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3008 clamped_start, clamped_end,
3009 EXTENT_LOCKED | EXTENT_BOUNDARY);
3010 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3011 clamped_len, true);
3012 btrfs_delalloc_release_extents(BTRFS_I(inode),
3013 clamped_len);
3014 goto release_page;
3015 }
3016 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3017
3018 /*
3019 * Set the boundary if it's inside the page.
3020 * Data relocation requires the destination extents to have the
3021 * same size as the source.
3022 * EXTENT_BOUNDARY bit prevents current extent from being merged
3023 * with previous extent.
3024 */
3025 if (in_range(cluster->boundary[*cluster_nr] - offset,
3026 page_start, PAGE_SIZE)) {
3027 u64 boundary_start = cluster->boundary[*cluster_nr] -
3028 offset;
3029 u64 boundary_end = boundary_start +
3030 fs_info->sectorsize - 1;
3031
3032 set_extent_bits(&BTRFS_I(inode)->io_tree,
3033 boundary_start, boundary_end,
3034 EXTENT_BOUNDARY);
3035 }
3036 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3037 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3038 cur += clamped_len;
3039
3040 /* Crossed extent end, go to next extent */
3041 if (cur >= extent_end) {
3042 (*cluster_nr)++;
3043 /* Just finished the last extent of the cluster, exit. */
3044 if (*cluster_nr >= cluster->nr)
3045 break;
3046 }
3047 }
3048 unlock_page(page);
3049 put_page(page);
3050
3051 balance_dirty_pages_ratelimited(inode->i_mapping);
3052 btrfs_throttle(fs_info);
3053 if (btrfs_should_cancel_balance(fs_info))
3054 ret = -ECANCELED;
3055 return ret;
3056
3057release_page:
3058 unlock_page(page);
3059 put_page(page);
3060 return ret;
3061}
3062
3063static int relocate_file_extent_cluster(struct inode *inode,
3064 struct file_extent_cluster *cluster)
3065{
3066 u64 offset = BTRFS_I(inode)->index_cnt;
3067 unsigned long index;
3068 unsigned long last_index;
3069 struct file_ra_state *ra;
3070 int cluster_nr = 0;
3071 int ret = 0;
3072
3073 if (!cluster->nr)
3074 return 0;
3075
3076 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3077 if (!ra)
3078 return -ENOMEM;
3079
3080 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3081 if (ret)
3082 goto out;
3083
3084 file_ra_state_init(ra, inode->i_mapping);
3085
3086 ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3087 cluster->end - offset, cluster->start);
3088 if (ret)
3089 goto out;
3090
3091 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3092 for (index = (cluster->start - offset) >> PAGE_SHIFT;
3093 index <= last_index && !ret; index++)
3094 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3095 if (ret == 0)
3096 WARN_ON(cluster_nr != cluster->nr);
3097out:
3098 kfree(ra);
3099 return ret;
3100}
3101
3102static noinline_for_stack
3103int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3104 struct file_extent_cluster *cluster)
3105{
3106 int ret;
3107
3108 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3109 ret = relocate_file_extent_cluster(inode, cluster);
3110 if (ret)
3111 return ret;
3112 cluster->nr = 0;
3113 }
3114
3115 if (!cluster->nr)
3116 cluster->start = extent_key->objectid;
3117 else
3118 BUG_ON(cluster->nr >= MAX_EXTENTS);
3119 cluster->end = extent_key->objectid + extent_key->offset - 1;
3120 cluster->boundary[cluster->nr] = extent_key->objectid;
3121 cluster->nr++;
3122
3123 if (cluster->nr >= MAX_EXTENTS) {
3124 ret = relocate_file_extent_cluster(inode, cluster);
3125 if (ret)
3126 return ret;
3127 cluster->nr = 0;
3128 }
3129 return 0;
3130}
3131
3132/*
3133 * helper to add a tree block to the list.
3134 * the major work is getting the generation and level of the block
3135 */
3136static int add_tree_block(struct reloc_control *rc,
3137 struct btrfs_key *extent_key,
3138 struct btrfs_path *path,
3139 struct rb_root *blocks)
3140{
3141 struct extent_buffer *eb;
3142 struct btrfs_extent_item *ei;
3143 struct btrfs_tree_block_info *bi;
3144 struct tree_block *block;
3145 struct rb_node *rb_node;
3146 u32 item_size;
3147 int level = -1;
3148 u64 generation;
3149 u64 owner = 0;
3150
3151 eb = path->nodes[0];
3152 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3153
3154 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3155 item_size >= sizeof(*ei) + sizeof(*bi)) {
3156 unsigned long ptr = 0, end;
3157
3158 ei = btrfs_item_ptr(eb, path->slots[0],
3159 struct btrfs_extent_item);
3160 end = (unsigned long)ei + item_size;
3161 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3162 bi = (struct btrfs_tree_block_info *)(ei + 1);
3163 level = btrfs_tree_block_level(eb, bi);
3164 ptr = (unsigned long)(bi + 1);
3165 } else {
3166 level = (int)extent_key->offset;
3167 ptr = (unsigned long)(ei + 1);
3168 }
3169 generation = btrfs_extent_generation(eb, ei);
3170
3171 /*
3172 * We're reading random blocks without knowing their owner ahead
3173 * of time. This is ok most of the time, as all reloc roots and
3174 * fs roots have the same lock type. However normal trees do
3175 * not, and the only way to know ahead of time is to read the
3176 * inline ref offset. We know it's an fs root if
3177 *
3178 * 1. There's more than one ref.
3179 * 2. There's a SHARED_DATA_REF_KEY set.
3180 * 3. FULL_BACKREF is set on the flags.
3181 *
3182 * Otherwise it's safe to assume that the ref offset == the
3183 * owner of this block, so we can use that when calling
3184 * read_tree_block.
3185 */
3186 if (btrfs_extent_refs(eb, ei) == 1 &&
3187 !(btrfs_extent_flags(eb, ei) &
3188 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3189 ptr < end) {
3190 struct btrfs_extent_inline_ref *iref;
3191 int type;
3192
3193 iref = (struct btrfs_extent_inline_ref *)ptr;
3194 type = btrfs_get_extent_inline_ref_type(eb, iref,
3195 BTRFS_REF_TYPE_BLOCK);
3196 if (type == BTRFS_REF_TYPE_INVALID)
3197 return -EINVAL;
3198 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3199 owner = btrfs_extent_inline_ref_offset(eb, iref);
3200 }
3201 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3202 btrfs_print_v0_err(eb->fs_info);
3203 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3204 return -EINVAL;
3205 } else {
3206 BUG();
3207 }
3208
3209 btrfs_release_path(path);
3210
3211 BUG_ON(level == -1);
3212
3213 block = kmalloc(sizeof(*block), GFP_NOFS);
3214 if (!block)
3215 return -ENOMEM;
3216
3217 block->bytenr = extent_key->objectid;
3218 block->key.objectid = rc->extent_root->fs_info->nodesize;
3219 block->key.offset = generation;
3220 block->level = level;
3221 block->key_ready = 0;
3222 block->owner = owner;
3223
3224 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3225 if (rb_node)
3226 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3227 -EEXIST);
3228
3229 return 0;
3230}
3231
3232/*
3233 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3234 */
3235static int __add_tree_block(struct reloc_control *rc,
3236 u64 bytenr, u32 blocksize,
3237 struct rb_root *blocks)
3238{
3239 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3240 struct btrfs_path *path;
3241 struct btrfs_key key;
3242 int ret;
3243 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3244
3245 if (tree_block_processed(bytenr, rc))
3246 return 0;
3247
3248 if (rb_simple_search(blocks, bytenr))
3249 return 0;
3250
3251 path = btrfs_alloc_path();
3252 if (!path)
3253 return -ENOMEM;
3254again:
3255 key.objectid = bytenr;
3256 if (skinny) {
3257 key.type = BTRFS_METADATA_ITEM_KEY;
3258 key.offset = (u64)-1;
3259 } else {
3260 key.type = BTRFS_EXTENT_ITEM_KEY;
3261 key.offset = blocksize;
3262 }
3263
3264 path->search_commit_root = 1;
3265 path->skip_locking = 1;
3266 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3267 if (ret < 0)
3268 goto out;
3269
3270 if (ret > 0 && skinny) {
3271 if (path->slots[0]) {
3272 path->slots[0]--;
3273 btrfs_item_key_to_cpu(path->nodes[0], &key,
3274 path->slots[0]);
3275 if (key.objectid == bytenr &&
3276 (key.type == BTRFS_METADATA_ITEM_KEY ||
3277 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3278 key.offset == blocksize)))
3279 ret = 0;
3280 }
3281
3282 if (ret) {
3283 skinny = false;
3284 btrfs_release_path(path);
3285 goto again;
3286 }
3287 }
3288 if (ret) {
3289 ASSERT(ret == 1);
3290 btrfs_print_leaf(path->nodes[0]);
3291 btrfs_err(fs_info,
3292 "tree block extent item (%llu) is not found in extent tree",
3293 bytenr);
3294 WARN_ON(1);
3295 ret = -EINVAL;
3296 goto out;
3297 }
3298
3299 ret = add_tree_block(rc, &key, path, blocks);
3300out:
3301 btrfs_free_path(path);
3302 return ret;
3303}
3304
3305static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3306 struct btrfs_block_group *block_group,
3307 struct inode *inode,
3308 u64 ino)
3309{
3310 struct btrfs_root *root = fs_info->tree_root;
3311 struct btrfs_trans_handle *trans;
3312 int ret = 0;
3313
3314 if (inode)
3315 goto truncate;
3316
3317 inode = btrfs_iget(fs_info->sb, ino, root);
3318 if (IS_ERR(inode))
3319 return -ENOENT;
3320
3321truncate:
3322 ret = btrfs_check_trunc_cache_free_space(fs_info,
3323 &fs_info->global_block_rsv);
3324 if (ret)
3325 goto out;
3326
3327 trans = btrfs_join_transaction(root);
3328 if (IS_ERR(trans)) {
3329 ret = PTR_ERR(trans);
3330 goto out;
3331 }
3332
3333 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3334
3335 btrfs_end_transaction(trans);
3336 btrfs_btree_balance_dirty(fs_info);
3337out:
3338 iput(inode);
3339 return ret;
3340}
3341
3342/*
3343 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3344 * cache inode, to avoid free space cache data extent blocking data relocation.
3345 */
3346static int delete_v1_space_cache(struct extent_buffer *leaf,
3347 struct btrfs_block_group *block_group,
3348 u64 data_bytenr)
3349{
3350 u64 space_cache_ino;
3351 struct btrfs_file_extent_item *ei;
3352 struct btrfs_key key;
3353 bool found = false;
3354 int i;
3355 int ret;
3356
3357 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3358 return 0;
3359
3360 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3361 u8 type;
3362
3363 btrfs_item_key_to_cpu(leaf, &key, i);
3364 if (key.type != BTRFS_EXTENT_DATA_KEY)
3365 continue;
3366 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3367 type = btrfs_file_extent_type(leaf, ei);
3368
3369 if ((type == BTRFS_FILE_EXTENT_REG ||
3370 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3371 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3372 found = true;
3373 space_cache_ino = key.objectid;
3374 break;
3375 }
3376 }
3377 if (!found)
3378 return -ENOENT;
3379 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3380 space_cache_ino);
3381 return ret;
3382}
3383
3384/*
3385 * helper to find all tree blocks that reference a given data extent
3386 */
3387static noinline_for_stack
3388int add_data_references(struct reloc_control *rc,
3389 struct btrfs_key *extent_key,
3390 struct btrfs_path *path,
3391 struct rb_root *blocks)
3392{
3393 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3394 struct ulist *leaves = NULL;
3395 struct ulist_iterator leaf_uiter;
3396 struct ulist_node *ref_node = NULL;
3397 const u32 blocksize = fs_info->nodesize;
3398 int ret = 0;
3399
3400 btrfs_release_path(path);
3401 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3402 0, &leaves, NULL, true);
3403 if (ret < 0)
3404 return ret;
3405
3406 ULIST_ITER_INIT(&leaf_uiter);
3407 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3408 struct extent_buffer *eb;
3409
3410 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3411 if (IS_ERR(eb)) {
3412 ret = PTR_ERR(eb);
3413 break;
3414 }
3415 ret = delete_v1_space_cache(eb, rc->block_group,
3416 extent_key->objectid);
3417 free_extent_buffer(eb);
3418 if (ret < 0)
3419 break;
3420 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3421 if (ret < 0)
3422 break;
3423 }
3424 if (ret < 0)
3425 free_block_list(blocks);
3426 ulist_free(leaves);
3427 return ret;
3428}
3429
3430/*
3431 * helper to find next unprocessed extent
3432 */
3433static noinline_for_stack
3434int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3435 struct btrfs_key *extent_key)
3436{
3437 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3438 struct btrfs_key key;
3439 struct extent_buffer *leaf;
3440 u64 start, end, last;
3441 int ret;
3442
3443 last = rc->block_group->start + rc->block_group->length;
3444 while (1) {
3445 cond_resched();
3446 if (rc->search_start >= last) {
3447 ret = 1;
3448 break;
3449 }
3450
3451 key.objectid = rc->search_start;
3452 key.type = BTRFS_EXTENT_ITEM_KEY;
3453 key.offset = 0;
3454
3455 path->search_commit_root = 1;
3456 path->skip_locking = 1;
3457 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3458 0, 0);
3459 if (ret < 0)
3460 break;
3461next:
3462 leaf = path->nodes[0];
3463 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3464 ret = btrfs_next_leaf(rc->extent_root, path);
3465 if (ret != 0)
3466 break;
3467 leaf = path->nodes[0];
3468 }
3469
3470 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3471 if (key.objectid >= last) {
3472 ret = 1;
3473 break;
3474 }
3475
3476 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3477 key.type != BTRFS_METADATA_ITEM_KEY) {
3478 path->slots[0]++;
3479 goto next;
3480 }
3481
3482 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3483 key.objectid + key.offset <= rc->search_start) {
3484 path->slots[0]++;
3485 goto next;
3486 }
3487
3488 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3489 key.objectid + fs_info->nodesize <=
3490 rc->search_start) {
3491 path->slots[0]++;
3492 goto next;
3493 }
3494
3495 ret = find_first_extent_bit(&rc->processed_blocks,
3496 key.objectid, &start, &end,
3497 EXTENT_DIRTY, NULL);
3498
3499 if (ret == 0 && start <= key.objectid) {
3500 btrfs_release_path(path);
3501 rc->search_start = end + 1;
3502 } else {
3503 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3504 rc->search_start = key.objectid + key.offset;
3505 else
3506 rc->search_start = key.objectid +
3507 fs_info->nodesize;
3508 memcpy(extent_key, &key, sizeof(key));
3509 return 0;
3510 }
3511 }
3512 btrfs_release_path(path);
3513 return ret;
3514}
3515
3516static void set_reloc_control(struct reloc_control *rc)
3517{
3518 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3519
3520 mutex_lock(&fs_info->reloc_mutex);
3521 fs_info->reloc_ctl = rc;
3522 mutex_unlock(&fs_info->reloc_mutex);
3523}
3524
3525static void unset_reloc_control(struct reloc_control *rc)
3526{
3527 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3528
3529 mutex_lock(&fs_info->reloc_mutex);
3530 fs_info->reloc_ctl = NULL;
3531 mutex_unlock(&fs_info->reloc_mutex);
3532}
3533
3534static noinline_for_stack
3535int prepare_to_relocate(struct reloc_control *rc)
3536{
3537 struct btrfs_trans_handle *trans;
3538 int ret;
3539
3540 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3541 BTRFS_BLOCK_RSV_TEMP);
3542 if (!rc->block_rsv)
3543 return -ENOMEM;
3544
3545 memset(&rc->cluster, 0, sizeof(rc->cluster));
3546 rc->search_start = rc->block_group->start;
3547 rc->extents_found = 0;
3548 rc->nodes_relocated = 0;
3549 rc->merging_rsv_size = 0;
3550 rc->reserved_bytes = 0;
3551 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3552 RELOCATION_RESERVED_NODES;
3553 ret = btrfs_block_rsv_refill(rc->extent_root,
3554 rc->block_rsv, rc->block_rsv->size,
3555 BTRFS_RESERVE_FLUSH_ALL);
3556 if (ret)
3557 return ret;
3558
3559 rc->create_reloc_tree = 1;
3560 set_reloc_control(rc);
3561
3562 trans = btrfs_join_transaction(rc->extent_root);
3563 if (IS_ERR(trans)) {
3564 unset_reloc_control(rc);
3565 /*
3566 * extent tree is not a ref_cow tree and has no reloc_root to
3567 * cleanup. And callers are responsible to free the above
3568 * block rsv.
3569 */
3570 return PTR_ERR(trans);
3571 }
3572 return btrfs_commit_transaction(trans);
3573}
3574
3575static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3576{
3577 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3578 struct rb_root blocks = RB_ROOT;
3579 struct btrfs_key key;
3580 struct btrfs_trans_handle *trans = NULL;
3581 struct btrfs_path *path;
3582 struct btrfs_extent_item *ei;
3583 u64 flags;
3584 int ret;
3585 int err = 0;
3586 int progress = 0;
3587
3588 path = btrfs_alloc_path();
3589 if (!path)
3590 return -ENOMEM;
3591 path->reada = READA_FORWARD;
3592
3593 ret = prepare_to_relocate(rc);
3594 if (ret) {
3595 err = ret;
3596 goto out_free;
3597 }
3598
3599 while (1) {
3600 rc->reserved_bytes = 0;
3601 ret = btrfs_block_rsv_refill(rc->extent_root,
3602 rc->block_rsv, rc->block_rsv->size,
3603 BTRFS_RESERVE_FLUSH_ALL);
3604 if (ret) {
3605 err = ret;
3606 break;
3607 }
3608 progress++;
3609 trans = btrfs_start_transaction(rc->extent_root, 0);
3610 if (IS_ERR(trans)) {
3611 err = PTR_ERR(trans);
3612 trans = NULL;
3613 break;
3614 }
3615restart:
3616 if (update_backref_cache(trans, &rc->backref_cache)) {
3617 btrfs_end_transaction(trans);
3618 trans = NULL;
3619 continue;
3620 }
3621
3622 ret = find_next_extent(rc, path, &key);
3623 if (ret < 0)
3624 err = ret;
3625 if (ret != 0)
3626 break;
3627
3628 rc->extents_found++;
3629
3630 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3631 struct btrfs_extent_item);
3632 flags = btrfs_extent_flags(path->nodes[0], ei);
3633
3634 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3635 ret = add_tree_block(rc, &key, path, &blocks);
3636 } else if (rc->stage == UPDATE_DATA_PTRS &&
3637 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3638 ret = add_data_references(rc, &key, path, &blocks);
3639 } else {
3640 btrfs_release_path(path);
3641 ret = 0;
3642 }
3643 if (ret < 0) {
3644 err = ret;
3645 break;
3646 }
3647
3648 if (!RB_EMPTY_ROOT(&blocks)) {
3649 ret = relocate_tree_blocks(trans, rc, &blocks);
3650 if (ret < 0) {
3651 if (ret != -EAGAIN) {
3652 err = ret;
3653 break;
3654 }
3655 rc->extents_found--;
3656 rc->search_start = key.objectid;
3657 }
3658 }
3659
3660 btrfs_end_transaction_throttle(trans);
3661 btrfs_btree_balance_dirty(fs_info);
3662 trans = NULL;
3663
3664 if (rc->stage == MOVE_DATA_EXTENTS &&
3665 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3666 rc->found_file_extent = 1;
3667 ret = relocate_data_extent(rc->data_inode,
3668 &key, &rc->cluster);
3669 if (ret < 0) {
3670 err = ret;
3671 break;
3672 }
3673 }
3674 if (btrfs_should_cancel_balance(fs_info)) {
3675 err = -ECANCELED;
3676 break;
3677 }
3678 }
3679 if (trans && progress && err == -ENOSPC) {
3680 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3681 if (ret == 1) {
3682 err = 0;
3683 progress = 0;
3684 goto restart;
3685 }
3686 }
3687
3688 btrfs_release_path(path);
3689 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3690
3691 if (trans) {
3692 btrfs_end_transaction_throttle(trans);
3693 btrfs_btree_balance_dirty(fs_info);
3694 }
3695
3696 if (!err) {
3697 ret = relocate_file_extent_cluster(rc->data_inode,
3698 &rc->cluster);
3699 if (ret < 0)
3700 err = ret;
3701 }
3702
3703 rc->create_reloc_tree = 0;
3704 set_reloc_control(rc);
3705
3706 btrfs_backref_release_cache(&rc->backref_cache);
3707 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3708
3709 /*
3710 * Even in the case when the relocation is cancelled, we should all go
3711 * through prepare_to_merge() and merge_reloc_roots().
3712 *
3713 * For error (including cancelled balance), prepare_to_merge() will
3714 * mark all reloc trees orphan, then queue them for cleanup in
3715 * merge_reloc_roots()
3716 */
3717 err = prepare_to_merge(rc, err);
3718
3719 merge_reloc_roots(rc);
3720
3721 rc->merge_reloc_tree = 0;
3722 unset_reloc_control(rc);
3723 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3724
3725 /* get rid of pinned extents */
3726 trans = btrfs_join_transaction(rc->extent_root);
3727 if (IS_ERR(trans)) {
3728 err = PTR_ERR(trans);
3729 goto out_free;
3730 }
3731 ret = btrfs_commit_transaction(trans);
3732 if (ret && !err)
3733 err = ret;
3734out_free:
3735 ret = clean_dirty_subvols(rc);
3736 if (ret < 0 && !err)
3737 err = ret;
3738 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3739 btrfs_free_path(path);
3740 return err;
3741}
3742
3743static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3744 struct btrfs_root *root, u64 objectid)
3745{
3746 struct btrfs_path *path;
3747 struct btrfs_inode_item *item;
3748 struct extent_buffer *leaf;
3749 int ret;
3750
3751 path = btrfs_alloc_path();
3752 if (!path)
3753 return -ENOMEM;
3754
3755 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3756 if (ret)
3757 goto out;
3758
3759 leaf = path->nodes[0];
3760 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3761 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3762 btrfs_set_inode_generation(leaf, item, 1);
3763 btrfs_set_inode_size(leaf, item, 0);
3764 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3765 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3766 BTRFS_INODE_PREALLOC);
3767 btrfs_mark_buffer_dirty(leaf);
3768out:
3769 btrfs_free_path(path);
3770 return ret;
3771}
3772
3773static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3774 struct btrfs_root *root, u64 objectid)
3775{
3776 struct btrfs_path *path;
3777 struct btrfs_key key;
3778 int ret = 0;
3779
3780 path = btrfs_alloc_path();
3781 if (!path) {
3782 ret = -ENOMEM;
3783 goto out;
3784 }
3785
3786 key.objectid = objectid;
3787 key.type = BTRFS_INODE_ITEM_KEY;
3788 key.offset = 0;
3789 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3790 if (ret) {
3791 if (ret > 0)
3792 ret = -ENOENT;
3793 goto out;
3794 }
3795 ret = btrfs_del_item(trans, root, path);
3796out:
3797 if (ret)
3798 btrfs_abort_transaction(trans, ret);
3799 btrfs_free_path(path);
3800}
3801
3802/*
3803 * helper to create inode for data relocation.
3804 * the inode is in data relocation tree and its link count is 0
3805 */
3806static noinline_for_stack
3807struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3808 struct btrfs_block_group *group)
3809{
3810 struct inode *inode = NULL;
3811 struct btrfs_trans_handle *trans;
3812 struct btrfs_root *root;
3813 u64 objectid;
3814 int err = 0;
3815
3816 root = btrfs_grab_root(fs_info->data_reloc_root);
3817 trans = btrfs_start_transaction(root, 6);
3818 if (IS_ERR(trans)) {
3819 btrfs_put_root(root);
3820 return ERR_CAST(trans);
3821 }
3822
3823 err = btrfs_get_free_objectid(root, &objectid);
3824 if (err)
3825 goto out;
3826
3827 err = __insert_orphan_inode(trans, root, objectid);
3828 if (err)
3829 goto out;
3830
3831 inode = btrfs_iget(fs_info->sb, objectid, root);
3832 if (IS_ERR(inode)) {
3833 delete_orphan_inode(trans, root, objectid);
3834 err = PTR_ERR(inode);
3835 inode = NULL;
3836 goto out;
3837 }
3838 BTRFS_I(inode)->index_cnt = group->start;
3839
3840 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3841out:
3842 btrfs_put_root(root);
3843 btrfs_end_transaction(trans);
3844 btrfs_btree_balance_dirty(fs_info);
3845 if (err) {
3846 if (inode)
3847 iput(inode);
3848 inode = ERR_PTR(err);
3849 }
3850 return inode;
3851}
3852
3853/*
3854 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3855 * has been requested meanwhile and don't start in that case.
3856 *
3857 * Return:
3858 * 0 success
3859 * -EINPROGRESS operation is already in progress, that's probably a bug
3860 * -ECANCELED cancellation request was set before the operation started
3861 * -EAGAIN can not start because there are ongoing send operations
3862 */
3863static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3864{
3865 spin_lock(&fs_info->send_reloc_lock);
3866 if (fs_info->send_in_progress) {
3867 btrfs_warn_rl(fs_info,
3868"cannot run relocation while send operations are in progress (%d in progress)",
3869 fs_info->send_in_progress);
3870 spin_unlock(&fs_info->send_reloc_lock);
3871 return -EAGAIN;
3872 }
3873 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3874 /* This should not happen */
3875 spin_unlock(&fs_info->send_reloc_lock);
3876 btrfs_err(fs_info, "reloc already running, cannot start");
3877 return -EINPROGRESS;
3878 }
3879 spin_unlock(&fs_info->send_reloc_lock);
3880
3881 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3882 btrfs_info(fs_info, "chunk relocation canceled on start");
3883 /*
3884 * On cancel, clear all requests but let the caller mark
3885 * the end after cleanup operations.
3886 */
3887 atomic_set(&fs_info->reloc_cancel_req, 0);
3888 return -ECANCELED;
3889 }
3890 return 0;
3891}
3892
3893/*
3894 * Mark end of chunk relocation that is cancellable and wake any waiters.
3895 */
3896static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3897{
3898 /* Requested after start, clear bit first so any waiters can continue */
3899 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3900 btrfs_info(fs_info, "chunk relocation canceled during operation");
3901 spin_lock(&fs_info->send_reloc_lock);
3902 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3903 spin_unlock(&fs_info->send_reloc_lock);
3904 atomic_set(&fs_info->reloc_cancel_req, 0);
3905}
3906
3907static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3908{
3909 struct reloc_control *rc;
3910
3911 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3912 if (!rc)
3913 return NULL;
3914
3915 INIT_LIST_HEAD(&rc->reloc_roots);
3916 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3917 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3918 mapping_tree_init(&rc->reloc_root_tree);
3919 extent_io_tree_init(fs_info, &rc->processed_blocks,
3920 IO_TREE_RELOC_BLOCKS, NULL);
3921 return rc;
3922}
3923
3924static void free_reloc_control(struct reloc_control *rc)
3925{
3926 struct mapping_node *node, *tmp;
3927
3928 free_reloc_roots(&rc->reloc_roots);
3929 rbtree_postorder_for_each_entry_safe(node, tmp,
3930 &rc->reloc_root_tree.rb_root, rb_node)
3931 kfree(node);
3932
3933 kfree(rc);
3934}
3935
3936/*
3937 * Print the block group being relocated
3938 */
3939static void describe_relocation(struct btrfs_fs_info *fs_info,
3940 struct btrfs_block_group *block_group)
3941{
3942 char buf[128] = {'\0'};
3943
3944 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3945
3946 btrfs_info(fs_info,
3947 "relocating block group %llu flags %s",
3948 block_group->start, buf);
3949}
3950
3951static const char *stage_to_string(int stage)
3952{
3953 if (stage == MOVE_DATA_EXTENTS)
3954 return "move data extents";
3955 if (stage == UPDATE_DATA_PTRS)
3956 return "update data pointers";
3957 return "unknown";
3958}
3959
3960/*
3961 * function to relocate all extents in a block group.
3962 */
3963int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3964{
3965 struct btrfs_block_group *bg;
3966 struct btrfs_root *extent_root = fs_info->extent_root;
3967 struct reloc_control *rc;
3968 struct inode *inode;
3969 struct btrfs_path *path;
3970 int ret;
3971 int rw = 0;
3972 int err = 0;
3973
3974 bg = btrfs_lookup_block_group(fs_info, group_start);
3975 if (!bg)
3976 return -ENOENT;
3977
3978 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3979 btrfs_put_block_group(bg);
3980 return -ETXTBSY;
3981 }
3982
3983 rc = alloc_reloc_control(fs_info);
3984 if (!rc) {
3985 btrfs_put_block_group(bg);
3986 return -ENOMEM;
3987 }
3988
3989 ret = reloc_chunk_start(fs_info);
3990 if (ret < 0) {
3991 err = ret;
3992 goto out_put_bg;
3993 }
3994
3995 rc->extent_root = extent_root;
3996 rc->block_group = bg;
3997
3998 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3999 if (ret) {
4000 err = ret;
4001 goto out;
4002 }
4003 rw = 1;
4004
4005 path = btrfs_alloc_path();
4006 if (!path) {
4007 err = -ENOMEM;
4008 goto out;
4009 }
4010
4011 inode = lookup_free_space_inode(rc->block_group, path);
4012 btrfs_free_path(path);
4013
4014 if (!IS_ERR(inode))
4015 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4016 else
4017 ret = PTR_ERR(inode);
4018
4019 if (ret && ret != -ENOENT) {
4020 err = ret;
4021 goto out;
4022 }
4023
4024 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4025 if (IS_ERR(rc->data_inode)) {
4026 err = PTR_ERR(rc->data_inode);
4027 rc->data_inode = NULL;
4028 goto out;
4029 }
4030
4031 describe_relocation(fs_info, rc->block_group);
4032
4033 btrfs_wait_block_group_reservations(rc->block_group);
4034 btrfs_wait_nocow_writers(rc->block_group);
4035 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4036 rc->block_group->start,
4037 rc->block_group->length);
4038
4039 ret = btrfs_zone_finish(rc->block_group);
4040 WARN_ON(ret && ret != -EAGAIN);
4041
4042 while (1) {
4043 int finishes_stage;
4044
4045 mutex_lock(&fs_info->cleaner_mutex);
4046 ret = relocate_block_group(rc);
4047 mutex_unlock(&fs_info->cleaner_mutex);
4048 if (ret < 0)
4049 err = ret;
4050
4051 finishes_stage = rc->stage;
4052 /*
4053 * We may have gotten ENOSPC after we already dirtied some
4054 * extents. If writeout happens while we're relocating a
4055 * different block group we could end up hitting the
4056 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4057 * btrfs_reloc_cow_block. Make sure we write everything out
4058 * properly so we don't trip over this problem, and then break
4059 * out of the loop if we hit an error.
4060 */
4061 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4062 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4063 (u64)-1);
4064 if (ret)
4065 err = ret;
4066 invalidate_mapping_pages(rc->data_inode->i_mapping,
4067 0, -1);
4068 rc->stage = UPDATE_DATA_PTRS;
4069 }
4070
4071 if (err < 0)
4072 goto out;
4073
4074 if (rc->extents_found == 0)
4075 break;
4076
4077 btrfs_info(fs_info, "found %llu extents, stage: %s",
4078 rc->extents_found, stage_to_string(finishes_stage));
4079 }
4080
4081 WARN_ON(rc->block_group->pinned > 0);
4082 WARN_ON(rc->block_group->reserved > 0);
4083 WARN_ON(rc->block_group->used > 0);
4084out:
4085 if (err && rw)
4086 btrfs_dec_block_group_ro(rc->block_group);
4087 iput(rc->data_inode);
4088out_put_bg:
4089 btrfs_put_block_group(bg);
4090 reloc_chunk_end(fs_info);
4091 free_reloc_control(rc);
4092 return err;
4093}
4094
4095static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4096{
4097 struct btrfs_fs_info *fs_info = root->fs_info;
4098 struct btrfs_trans_handle *trans;
4099 int ret, err;
4100
4101 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4102 if (IS_ERR(trans))
4103 return PTR_ERR(trans);
4104
4105 memset(&root->root_item.drop_progress, 0,
4106 sizeof(root->root_item.drop_progress));
4107 btrfs_set_root_drop_level(&root->root_item, 0);
4108 btrfs_set_root_refs(&root->root_item, 0);
4109 ret = btrfs_update_root(trans, fs_info->tree_root,
4110 &root->root_key, &root->root_item);
4111
4112 err = btrfs_end_transaction(trans);
4113 if (err)
4114 return err;
4115 return ret;
4116}
4117
4118/*
4119 * recover relocation interrupted by system crash.
4120 *
4121 * this function resumes merging reloc trees with corresponding fs trees.
4122 * this is important for keeping the sharing of tree blocks
4123 */
4124int btrfs_recover_relocation(struct btrfs_root *root)
4125{
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 LIST_HEAD(reloc_roots);
4128 struct btrfs_key key;
4129 struct btrfs_root *fs_root;
4130 struct btrfs_root *reloc_root;
4131 struct btrfs_path *path;
4132 struct extent_buffer *leaf;
4133 struct reloc_control *rc = NULL;
4134 struct btrfs_trans_handle *trans;
4135 int ret;
4136 int err = 0;
4137
4138 path = btrfs_alloc_path();
4139 if (!path)
4140 return -ENOMEM;
4141 path->reada = READA_BACK;
4142
4143 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4144 key.type = BTRFS_ROOT_ITEM_KEY;
4145 key.offset = (u64)-1;
4146
4147 while (1) {
4148 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4149 path, 0, 0);
4150 if (ret < 0) {
4151 err = ret;
4152 goto out;
4153 }
4154 if (ret > 0) {
4155 if (path->slots[0] == 0)
4156 break;
4157 path->slots[0]--;
4158 }
4159 leaf = path->nodes[0];
4160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4161 btrfs_release_path(path);
4162
4163 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4164 key.type != BTRFS_ROOT_ITEM_KEY)
4165 break;
4166
4167 reloc_root = btrfs_read_tree_root(root, &key);
4168 if (IS_ERR(reloc_root)) {
4169 err = PTR_ERR(reloc_root);
4170 goto out;
4171 }
4172
4173 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4174 list_add(&reloc_root->root_list, &reloc_roots);
4175
4176 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4177 fs_root = btrfs_get_fs_root(fs_info,
4178 reloc_root->root_key.offset, false);
4179 if (IS_ERR(fs_root)) {
4180 ret = PTR_ERR(fs_root);
4181 if (ret != -ENOENT) {
4182 err = ret;
4183 goto out;
4184 }
4185 ret = mark_garbage_root(reloc_root);
4186 if (ret < 0) {
4187 err = ret;
4188 goto out;
4189 }
4190 } else {
4191 btrfs_put_root(fs_root);
4192 }
4193 }
4194
4195 if (key.offset == 0)
4196 break;
4197
4198 key.offset--;
4199 }
4200 btrfs_release_path(path);
4201
4202 if (list_empty(&reloc_roots))
4203 goto out;
4204
4205 rc = alloc_reloc_control(fs_info);
4206 if (!rc) {
4207 err = -ENOMEM;
4208 goto out;
4209 }
4210
4211 ret = reloc_chunk_start(fs_info);
4212 if (ret < 0) {
4213 err = ret;
4214 goto out_end;
4215 }
4216
4217 rc->extent_root = fs_info->extent_root;
4218
4219 set_reloc_control(rc);
4220
4221 trans = btrfs_join_transaction(rc->extent_root);
4222 if (IS_ERR(trans)) {
4223 err = PTR_ERR(trans);
4224 goto out_unset;
4225 }
4226
4227 rc->merge_reloc_tree = 1;
4228
4229 while (!list_empty(&reloc_roots)) {
4230 reloc_root = list_entry(reloc_roots.next,
4231 struct btrfs_root, root_list);
4232 list_del(&reloc_root->root_list);
4233
4234 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4235 list_add_tail(&reloc_root->root_list,
4236 &rc->reloc_roots);
4237 continue;
4238 }
4239
4240 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4241 false);
4242 if (IS_ERR(fs_root)) {
4243 err = PTR_ERR(fs_root);
4244 list_add_tail(&reloc_root->root_list, &reloc_roots);
4245 btrfs_end_transaction(trans);
4246 goto out_unset;
4247 }
4248
4249 err = __add_reloc_root(reloc_root);
4250 ASSERT(err != -EEXIST);
4251 if (err) {
4252 list_add_tail(&reloc_root->root_list, &reloc_roots);
4253 btrfs_put_root(fs_root);
4254 btrfs_end_transaction(trans);
4255 goto out_unset;
4256 }
4257 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4258 btrfs_put_root(fs_root);
4259 }
4260
4261 err = btrfs_commit_transaction(trans);
4262 if (err)
4263 goto out_unset;
4264
4265 merge_reloc_roots(rc);
4266
4267 unset_reloc_control(rc);
4268
4269 trans = btrfs_join_transaction(rc->extent_root);
4270 if (IS_ERR(trans)) {
4271 err = PTR_ERR(trans);
4272 goto out_clean;
4273 }
4274 err = btrfs_commit_transaction(trans);
4275out_clean:
4276 ret = clean_dirty_subvols(rc);
4277 if (ret < 0 && !err)
4278 err = ret;
4279out_unset:
4280 unset_reloc_control(rc);
4281out_end:
4282 reloc_chunk_end(fs_info);
4283 free_reloc_control(rc);
4284out:
4285 free_reloc_roots(&reloc_roots);
4286
4287 btrfs_free_path(path);
4288
4289 if (err == 0) {
4290 /* cleanup orphan inode in data relocation tree */
4291 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4292 ASSERT(fs_root);
4293 err = btrfs_orphan_cleanup(fs_root);
4294 btrfs_put_root(fs_root);
4295 }
4296 return err;
4297}
4298
4299/*
4300 * helper to add ordered checksum for data relocation.
4301 *
4302 * cloning checksum properly handles the nodatasum extents.
4303 * it also saves CPU time to re-calculate the checksum.
4304 */
4305int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4306{
4307 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4308 struct btrfs_ordered_sum *sums;
4309 struct btrfs_ordered_extent *ordered;
4310 int ret;
4311 u64 disk_bytenr;
4312 u64 new_bytenr;
4313 LIST_HEAD(list);
4314
4315 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4316 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4317
4318 disk_bytenr = file_pos + inode->index_cnt;
4319 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4320 disk_bytenr + len - 1, &list, 0);
4321 if (ret)
4322 goto out;
4323
4324 while (!list_empty(&list)) {
4325 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4326 list_del_init(&sums->list);
4327
4328 /*
4329 * We need to offset the new_bytenr based on where the csum is.
4330 * We need to do this because we will read in entire prealloc
4331 * extents but we may have written to say the middle of the
4332 * prealloc extent, so we need to make sure the csum goes with
4333 * the right disk offset.
4334 *
4335 * We can do this because the data reloc inode refers strictly
4336 * to the on disk bytes, so we don't have to worry about
4337 * disk_len vs real len like with real inodes since it's all
4338 * disk length.
4339 */
4340 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4341 sums->bytenr = new_bytenr;
4342
4343 btrfs_add_ordered_sum(ordered, sums);
4344 }
4345out:
4346 btrfs_put_ordered_extent(ordered);
4347 return ret;
4348}
4349
4350int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4351 struct btrfs_root *root, struct extent_buffer *buf,
4352 struct extent_buffer *cow)
4353{
4354 struct btrfs_fs_info *fs_info = root->fs_info;
4355 struct reloc_control *rc;
4356 struct btrfs_backref_node *node;
4357 int first_cow = 0;
4358 int level;
4359 int ret = 0;
4360
4361 rc = fs_info->reloc_ctl;
4362 if (!rc)
4363 return 0;
4364
4365 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4366
4367 level = btrfs_header_level(buf);
4368 if (btrfs_header_generation(buf) <=
4369 btrfs_root_last_snapshot(&root->root_item))
4370 first_cow = 1;
4371
4372 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4373 rc->create_reloc_tree) {
4374 WARN_ON(!first_cow && level == 0);
4375
4376 node = rc->backref_cache.path[level];
4377 BUG_ON(node->bytenr != buf->start &&
4378 node->new_bytenr != buf->start);
4379
4380 btrfs_backref_drop_node_buffer(node);
4381 atomic_inc(&cow->refs);
4382 node->eb = cow;
4383 node->new_bytenr = cow->start;
4384
4385 if (!node->pending) {
4386 list_move_tail(&node->list,
4387 &rc->backref_cache.pending[level]);
4388 node->pending = 1;
4389 }
4390
4391 if (first_cow)
4392 mark_block_processed(rc, node);
4393
4394 if (first_cow && level > 0)
4395 rc->nodes_relocated += buf->len;
4396 }
4397
4398 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4399 ret = replace_file_extents(trans, rc, root, cow);
4400 return ret;
4401}
4402
4403/*
4404 * called before creating snapshot. it calculates metadata reservation
4405 * required for relocating tree blocks in the snapshot
4406 */
4407void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4408 u64 *bytes_to_reserve)
4409{
4410 struct btrfs_root *root = pending->root;
4411 struct reloc_control *rc = root->fs_info->reloc_ctl;
4412
4413 if (!rc || !have_reloc_root(root))
4414 return;
4415
4416 if (!rc->merge_reloc_tree)
4417 return;
4418
4419 root = root->reloc_root;
4420 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4421 /*
4422 * relocation is in the stage of merging trees. the space
4423 * used by merging a reloc tree is twice the size of
4424 * relocated tree nodes in the worst case. half for cowing
4425 * the reloc tree, half for cowing the fs tree. the space
4426 * used by cowing the reloc tree will be freed after the
4427 * tree is dropped. if we create snapshot, cowing the fs
4428 * tree may use more space than it frees. so we need
4429 * reserve extra space.
4430 */
4431 *bytes_to_reserve += rc->nodes_relocated;
4432}
4433
4434/*
4435 * called after snapshot is created. migrate block reservation
4436 * and create reloc root for the newly created snapshot
4437 *
4438 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4439 * references held on the reloc_root, one for root->reloc_root and one for
4440 * rc->reloc_roots.
4441 */
4442int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4443 struct btrfs_pending_snapshot *pending)
4444{
4445 struct btrfs_root *root = pending->root;
4446 struct btrfs_root *reloc_root;
4447 struct btrfs_root *new_root;
4448 struct reloc_control *rc = root->fs_info->reloc_ctl;
4449 int ret;
4450
4451 if (!rc || !have_reloc_root(root))
4452 return 0;
4453
4454 rc = root->fs_info->reloc_ctl;
4455 rc->merging_rsv_size += rc->nodes_relocated;
4456
4457 if (rc->merge_reloc_tree) {
4458 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4459 rc->block_rsv,
4460 rc->nodes_relocated, true);
4461 if (ret)
4462 return ret;
4463 }
4464
4465 new_root = pending->snap;
4466 reloc_root = create_reloc_root(trans, root->reloc_root,
4467 new_root->root_key.objectid);
4468 if (IS_ERR(reloc_root))
4469 return PTR_ERR(reloc_root);
4470
4471 ret = __add_reloc_root(reloc_root);
4472 ASSERT(ret != -EEXIST);
4473 if (ret) {
4474 /* Pairs with create_reloc_root */
4475 btrfs_put_root(reloc_root);
4476 return ret;
4477 }
4478 new_root->reloc_root = btrfs_grab_root(reloc_root);
4479
4480 if (rc->create_reloc_tree)
4481 ret = clone_backref_node(trans, rc, root, reloc_root);
4482 return ret;
4483}