Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6#include <linux/backing-dev.h>
7#include <linux/moduleparam.h>
8#include <trace/events/block.h>
9#include "nvme.h"
10
11static bool multipath = true;
12module_param(multipath, bool, 0444);
13MODULE_PARM_DESC(multipath,
14 "turn on native support for multiple controllers per subsystem");
15
16void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17{
18 struct nvme_ns_head *h;
19
20 lockdep_assert_held(&subsys->lock);
21 list_for_each_entry(h, &subsys->nsheads, entry)
22 if (h->disk)
23 blk_mq_unfreeze_queue(h->disk->queue);
24}
25
26void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27{
28 struct nvme_ns_head *h;
29
30 lockdep_assert_held(&subsys->lock);
31 list_for_each_entry(h, &subsys->nsheads, entry)
32 if (h->disk)
33 blk_mq_freeze_queue_wait(h->disk->queue);
34}
35
36void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37{
38 struct nvme_ns_head *h;
39
40 lockdep_assert_held(&subsys->lock);
41 list_for_each_entry(h, &subsys->nsheads, entry)
42 if (h->disk)
43 blk_freeze_queue_start(h->disk->queue);
44}
45
46/*
47 * If multipathing is enabled we need to always use the subsystem instance
48 * number for numbering our devices to avoid conflicts between subsystems that
49 * have multiple controllers and thus use the multipath-aware subsystem node
50 * and those that have a single controller and use the controller node
51 * directly.
52 */
53bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54{
55 if (!multipath)
56 return false;
57 if (!ns->head->disk) {
58 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59 ns->head->instance);
60 return true;
61 }
62 sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63 ns->ctrl->instance, ns->head->instance);
64 *flags = GENHD_FL_HIDDEN;
65 return true;
66}
67
68void nvme_failover_req(struct request *req)
69{
70 struct nvme_ns *ns = req->q->queuedata;
71 u16 status = nvme_req(req)->status & 0x7ff;
72 unsigned long flags;
73 struct bio *bio;
74
75 nvme_mpath_clear_current_path(ns);
76
77 /*
78 * If we got back an ANA error, we know the controller is alive but not
79 * ready to serve this namespace. Kick of a re-read of the ANA
80 * information page, and just try any other available path for now.
81 */
82 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84 queue_work(nvme_wq, &ns->ctrl->ana_work);
85 }
86
87 spin_lock_irqsave(&ns->head->requeue_lock, flags);
88 for (bio = req->bio; bio; bio = bio->bi_next) {
89 bio_set_dev(bio, ns->head->disk->part0);
90 if (bio->bi_opf & REQ_POLLED) {
91 bio->bi_opf &= ~REQ_POLLED;
92 bio->bi_cookie = BLK_QC_T_NONE;
93 }
94 }
95 blk_steal_bios(&ns->head->requeue_list, req);
96 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
97
98 blk_mq_end_request(req, 0);
99 kblockd_schedule_work(&ns->head->requeue_work);
100}
101
102void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
103{
104 struct nvme_ns *ns;
105
106 down_read(&ctrl->namespaces_rwsem);
107 list_for_each_entry(ns, &ctrl->namespaces, list) {
108 if (!ns->head->disk)
109 continue;
110 kblockd_schedule_work(&ns->head->requeue_work);
111 if (ctrl->state == NVME_CTRL_LIVE)
112 disk_uevent(ns->head->disk, KOBJ_CHANGE);
113 }
114 up_read(&ctrl->namespaces_rwsem);
115}
116
117static const char *nvme_ana_state_names[] = {
118 [0] = "invalid state",
119 [NVME_ANA_OPTIMIZED] = "optimized",
120 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
121 [NVME_ANA_INACCESSIBLE] = "inaccessible",
122 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
123 [NVME_ANA_CHANGE] = "change",
124};
125
126bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
127{
128 struct nvme_ns_head *head = ns->head;
129 bool changed = false;
130 int node;
131
132 if (!head)
133 goto out;
134
135 for_each_node(node) {
136 if (ns == rcu_access_pointer(head->current_path[node])) {
137 rcu_assign_pointer(head->current_path[node], NULL);
138 changed = true;
139 }
140 }
141out:
142 return changed;
143}
144
145void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
146{
147 struct nvme_ns *ns;
148
149 down_read(&ctrl->namespaces_rwsem);
150 list_for_each_entry(ns, &ctrl->namespaces, list) {
151 nvme_mpath_clear_current_path(ns);
152 kblockd_schedule_work(&ns->head->requeue_work);
153 }
154 up_read(&ctrl->namespaces_rwsem);
155}
156
157void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
158{
159 struct nvme_ns_head *head = ns->head;
160 sector_t capacity = get_capacity(head->disk);
161 int node;
162
163 list_for_each_entry_rcu(ns, &head->list, siblings) {
164 if (capacity != get_capacity(ns->disk))
165 clear_bit(NVME_NS_READY, &ns->flags);
166 }
167
168 for_each_node(node)
169 rcu_assign_pointer(head->current_path[node], NULL);
170}
171
172static bool nvme_path_is_disabled(struct nvme_ns *ns)
173{
174 /*
175 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
176 * still be able to complete assuming that the controller is connected.
177 * Otherwise it will fail immediately and return to the requeue list.
178 */
179 if (ns->ctrl->state != NVME_CTRL_LIVE &&
180 ns->ctrl->state != NVME_CTRL_DELETING)
181 return true;
182 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
183 !test_bit(NVME_NS_READY, &ns->flags))
184 return true;
185 return false;
186}
187
188static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
189{
190 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
191 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
192
193 list_for_each_entry_rcu(ns, &head->list, siblings) {
194 if (nvme_path_is_disabled(ns))
195 continue;
196
197 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
198 distance = node_distance(node, ns->ctrl->numa_node);
199 else
200 distance = LOCAL_DISTANCE;
201
202 switch (ns->ana_state) {
203 case NVME_ANA_OPTIMIZED:
204 if (distance < found_distance) {
205 found_distance = distance;
206 found = ns;
207 }
208 break;
209 case NVME_ANA_NONOPTIMIZED:
210 if (distance < fallback_distance) {
211 fallback_distance = distance;
212 fallback = ns;
213 }
214 break;
215 default:
216 break;
217 }
218 }
219
220 if (!found)
221 found = fallback;
222 if (found)
223 rcu_assign_pointer(head->current_path[node], found);
224 return found;
225}
226
227static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
228 struct nvme_ns *ns)
229{
230 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
231 siblings);
232 if (ns)
233 return ns;
234 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
235}
236
237static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
238 int node, struct nvme_ns *old)
239{
240 struct nvme_ns *ns, *found = NULL;
241
242 if (list_is_singular(&head->list)) {
243 if (nvme_path_is_disabled(old))
244 return NULL;
245 return old;
246 }
247
248 for (ns = nvme_next_ns(head, old);
249 ns && ns != old;
250 ns = nvme_next_ns(head, ns)) {
251 if (nvme_path_is_disabled(ns))
252 continue;
253
254 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
255 found = ns;
256 goto out;
257 }
258 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
259 found = ns;
260 }
261
262 /*
263 * The loop above skips the current path for round-robin semantics.
264 * Fall back to the current path if either:
265 * - no other optimized path found and current is optimized,
266 * - no other usable path found and current is usable.
267 */
268 if (!nvme_path_is_disabled(old) &&
269 (old->ana_state == NVME_ANA_OPTIMIZED ||
270 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
271 return old;
272
273 if (!found)
274 return NULL;
275out:
276 rcu_assign_pointer(head->current_path[node], found);
277 return found;
278}
279
280static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
281{
282 return ns->ctrl->state == NVME_CTRL_LIVE &&
283 ns->ana_state == NVME_ANA_OPTIMIZED;
284}
285
286inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
287{
288 int node = numa_node_id();
289 struct nvme_ns *ns;
290
291 ns = srcu_dereference(head->current_path[node], &head->srcu);
292 if (unlikely(!ns))
293 return __nvme_find_path(head, node);
294
295 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
296 return nvme_round_robin_path(head, node, ns);
297 if (unlikely(!nvme_path_is_optimized(ns)))
298 return __nvme_find_path(head, node);
299 return ns;
300}
301
302static bool nvme_available_path(struct nvme_ns_head *head)
303{
304 struct nvme_ns *ns;
305
306 list_for_each_entry_rcu(ns, &head->list, siblings) {
307 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
308 continue;
309 switch (ns->ctrl->state) {
310 case NVME_CTRL_LIVE:
311 case NVME_CTRL_RESETTING:
312 case NVME_CTRL_CONNECTING:
313 /* fallthru */
314 return true;
315 default:
316 break;
317 }
318 }
319 return false;
320}
321
322static void nvme_ns_head_submit_bio(struct bio *bio)
323{
324 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
325 struct device *dev = disk_to_dev(head->disk);
326 struct nvme_ns *ns;
327 int srcu_idx;
328
329 /*
330 * The namespace might be going away and the bio might be moved to a
331 * different queue via blk_steal_bios(), so we need to use the bio_split
332 * pool from the original queue to allocate the bvecs from.
333 */
334 blk_queue_split(&bio);
335
336 srcu_idx = srcu_read_lock(&head->srcu);
337 ns = nvme_find_path(head);
338 if (likely(ns)) {
339 bio_set_dev(bio, ns->disk->part0);
340 bio->bi_opf |= REQ_NVME_MPATH;
341 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
342 bio->bi_iter.bi_sector);
343 submit_bio_noacct(bio);
344 } else if (nvme_available_path(head)) {
345 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
346
347 spin_lock_irq(&head->requeue_lock);
348 bio_list_add(&head->requeue_list, bio);
349 spin_unlock_irq(&head->requeue_lock);
350 } else {
351 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
352
353 bio->bi_status = BLK_STS_IOERR;
354 bio_endio(bio);
355 }
356
357 srcu_read_unlock(&head->srcu, srcu_idx);
358}
359
360static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
361{
362 if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
363 return -ENXIO;
364 return 0;
365}
366
367static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
368{
369 nvme_put_ns_head(disk->private_data);
370}
371
372#ifdef CONFIG_BLK_DEV_ZONED
373static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
374 unsigned int nr_zones, report_zones_cb cb, void *data)
375{
376 struct nvme_ns_head *head = disk->private_data;
377 struct nvme_ns *ns;
378 int srcu_idx, ret = -EWOULDBLOCK;
379
380 srcu_idx = srcu_read_lock(&head->srcu);
381 ns = nvme_find_path(head);
382 if (ns)
383 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
384 srcu_read_unlock(&head->srcu, srcu_idx);
385 return ret;
386}
387#else
388#define nvme_ns_head_report_zones NULL
389#endif /* CONFIG_BLK_DEV_ZONED */
390
391const struct block_device_operations nvme_ns_head_ops = {
392 .owner = THIS_MODULE,
393 .submit_bio = nvme_ns_head_submit_bio,
394 .open = nvme_ns_head_open,
395 .release = nvme_ns_head_release,
396 .ioctl = nvme_ns_head_ioctl,
397 .getgeo = nvme_getgeo,
398 .report_zones = nvme_ns_head_report_zones,
399 .pr_ops = &nvme_pr_ops,
400};
401
402static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
403{
404 return container_of(cdev, struct nvme_ns_head, cdev);
405}
406
407static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
408{
409 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
410 return -ENXIO;
411 return 0;
412}
413
414static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
415{
416 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
417 return 0;
418}
419
420static const struct file_operations nvme_ns_head_chr_fops = {
421 .owner = THIS_MODULE,
422 .open = nvme_ns_head_chr_open,
423 .release = nvme_ns_head_chr_release,
424 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
425 .compat_ioctl = compat_ptr_ioctl,
426};
427
428static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
429{
430 int ret;
431
432 head->cdev_device.parent = &head->subsys->dev;
433 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
434 head->subsys->instance, head->instance);
435 if (ret)
436 return ret;
437 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
438 &nvme_ns_head_chr_fops, THIS_MODULE);
439 return ret;
440}
441
442static void nvme_requeue_work(struct work_struct *work)
443{
444 struct nvme_ns_head *head =
445 container_of(work, struct nvme_ns_head, requeue_work);
446 struct bio *bio, *next;
447
448 spin_lock_irq(&head->requeue_lock);
449 next = bio_list_get(&head->requeue_list);
450 spin_unlock_irq(&head->requeue_lock);
451
452 while ((bio = next) != NULL) {
453 next = bio->bi_next;
454 bio->bi_next = NULL;
455
456 submit_bio_noacct(bio);
457 }
458}
459
460int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
461{
462 bool vwc = false;
463
464 mutex_init(&head->lock);
465 bio_list_init(&head->requeue_list);
466 spin_lock_init(&head->requeue_lock);
467 INIT_WORK(&head->requeue_work, nvme_requeue_work);
468
469 /*
470 * Add a multipath node if the subsystems supports multiple controllers.
471 * We also do this for private namespaces as the namespace sharing data could
472 * change after a rescan.
473 */
474 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
475 return 0;
476
477 head->disk = blk_alloc_disk(ctrl->numa_node);
478 if (!head->disk)
479 return -ENOMEM;
480 head->disk->fops = &nvme_ns_head_ops;
481 head->disk->private_data = head;
482 sprintf(head->disk->disk_name, "nvme%dn%d",
483 ctrl->subsys->instance, head->instance);
484
485 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
486 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
487 /*
488 * This assumes all controllers that refer to a namespace either
489 * support poll queues or not. That is not a strict guarantee,
490 * but if the assumption is wrong the effect is only suboptimal
491 * performance but not correctness problem.
492 */
493 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
494 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
495 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
496
497 /* set to a default value of 512 until the disk is validated */
498 blk_queue_logical_block_size(head->disk->queue, 512);
499 blk_set_stacking_limits(&head->disk->queue->limits);
500
501 /* we need to propagate up the VMC settings */
502 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
503 vwc = true;
504 blk_queue_write_cache(head->disk->queue, vwc, vwc);
505 return 0;
506}
507
508static void nvme_mpath_set_live(struct nvme_ns *ns)
509{
510 struct nvme_ns_head *head = ns->head;
511 int rc;
512
513 if (!head->disk)
514 return;
515
516 /*
517 * test_and_set_bit() is used because it is protecting against two nvme
518 * paths simultaneously calling device_add_disk() on the same namespace
519 * head.
520 */
521 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
522 rc = device_add_disk(&head->subsys->dev, head->disk,
523 nvme_ns_id_attr_groups);
524 if (rc) {
525 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
526 return;
527 }
528 nvme_add_ns_head_cdev(head);
529 }
530
531 mutex_lock(&head->lock);
532 if (nvme_path_is_optimized(ns)) {
533 int node, srcu_idx;
534
535 srcu_idx = srcu_read_lock(&head->srcu);
536 for_each_node(node)
537 __nvme_find_path(head, node);
538 srcu_read_unlock(&head->srcu, srcu_idx);
539 }
540 mutex_unlock(&head->lock);
541
542 synchronize_srcu(&head->srcu);
543 kblockd_schedule_work(&head->requeue_work);
544}
545
546static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
547 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
548 void *))
549{
550 void *base = ctrl->ana_log_buf;
551 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
552 int error, i;
553
554 lockdep_assert_held(&ctrl->ana_lock);
555
556 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
557 struct nvme_ana_group_desc *desc = base + offset;
558 u32 nr_nsids;
559 size_t nsid_buf_size;
560
561 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
562 return -EINVAL;
563
564 nr_nsids = le32_to_cpu(desc->nnsids);
565 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
566
567 if (WARN_ON_ONCE(desc->grpid == 0))
568 return -EINVAL;
569 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
570 return -EINVAL;
571 if (WARN_ON_ONCE(desc->state == 0))
572 return -EINVAL;
573 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
574 return -EINVAL;
575
576 offset += sizeof(*desc);
577 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
578 return -EINVAL;
579
580 error = cb(ctrl, desc, data);
581 if (error)
582 return error;
583
584 offset += nsid_buf_size;
585 }
586
587 return 0;
588}
589
590static inline bool nvme_state_is_live(enum nvme_ana_state state)
591{
592 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
593}
594
595static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
596 struct nvme_ns *ns)
597{
598 ns->ana_grpid = le32_to_cpu(desc->grpid);
599 ns->ana_state = desc->state;
600 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
601
602 if (nvme_state_is_live(ns->ana_state))
603 nvme_mpath_set_live(ns);
604}
605
606static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
607 struct nvme_ana_group_desc *desc, void *data)
608{
609 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
610 unsigned *nr_change_groups = data;
611 struct nvme_ns *ns;
612
613 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
614 le32_to_cpu(desc->grpid),
615 nvme_ana_state_names[desc->state]);
616
617 if (desc->state == NVME_ANA_CHANGE)
618 (*nr_change_groups)++;
619
620 if (!nr_nsids)
621 return 0;
622
623 down_read(&ctrl->namespaces_rwsem);
624 list_for_each_entry(ns, &ctrl->namespaces, list) {
625 unsigned nsid;
626again:
627 nsid = le32_to_cpu(desc->nsids[n]);
628 if (ns->head->ns_id < nsid)
629 continue;
630 if (ns->head->ns_id == nsid)
631 nvme_update_ns_ana_state(desc, ns);
632 if (++n == nr_nsids)
633 break;
634 if (ns->head->ns_id > nsid)
635 goto again;
636 }
637 up_read(&ctrl->namespaces_rwsem);
638 return 0;
639}
640
641static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
642{
643 u32 nr_change_groups = 0;
644 int error;
645
646 mutex_lock(&ctrl->ana_lock);
647 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
648 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
649 if (error) {
650 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
651 goto out_unlock;
652 }
653
654 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
655 nvme_update_ana_state);
656 if (error)
657 goto out_unlock;
658
659 /*
660 * In theory we should have an ANATT timer per group as they might enter
661 * the change state at different times. But that is a lot of overhead
662 * just to protect against a target that keeps entering new changes
663 * states while never finishing previous ones. But we'll still
664 * eventually time out once all groups are in change state, so this
665 * isn't a big deal.
666 *
667 * We also double the ANATT value to provide some slack for transports
668 * or AEN processing overhead.
669 */
670 if (nr_change_groups)
671 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
672 else
673 del_timer_sync(&ctrl->anatt_timer);
674out_unlock:
675 mutex_unlock(&ctrl->ana_lock);
676 return error;
677}
678
679static void nvme_ana_work(struct work_struct *work)
680{
681 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
682
683 if (ctrl->state != NVME_CTRL_LIVE)
684 return;
685
686 nvme_read_ana_log(ctrl);
687}
688
689static void nvme_anatt_timeout(struct timer_list *t)
690{
691 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
692
693 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
694 nvme_reset_ctrl(ctrl);
695}
696
697void nvme_mpath_stop(struct nvme_ctrl *ctrl)
698{
699 if (!nvme_ctrl_use_ana(ctrl))
700 return;
701 del_timer_sync(&ctrl->anatt_timer);
702 cancel_work_sync(&ctrl->ana_work);
703}
704
705#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
706 struct device_attribute subsys_attr_##_name = \
707 __ATTR(_name, _mode, _show, _store)
708
709static const char *nvme_iopolicy_names[] = {
710 [NVME_IOPOLICY_NUMA] = "numa",
711 [NVME_IOPOLICY_RR] = "round-robin",
712};
713
714static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
715 struct device_attribute *attr, char *buf)
716{
717 struct nvme_subsystem *subsys =
718 container_of(dev, struct nvme_subsystem, dev);
719
720 return sysfs_emit(buf, "%s\n",
721 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
722}
723
724static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
725 struct device_attribute *attr, const char *buf, size_t count)
726{
727 struct nvme_subsystem *subsys =
728 container_of(dev, struct nvme_subsystem, dev);
729 int i;
730
731 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
732 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
733 WRITE_ONCE(subsys->iopolicy, i);
734 return count;
735 }
736 }
737
738 return -EINVAL;
739}
740SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
741 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
742
743static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
744 char *buf)
745{
746 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
747}
748DEVICE_ATTR_RO(ana_grpid);
749
750static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
751 char *buf)
752{
753 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
754
755 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
756}
757DEVICE_ATTR_RO(ana_state);
758
759static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
760 struct nvme_ana_group_desc *desc, void *data)
761{
762 struct nvme_ana_group_desc *dst = data;
763
764 if (desc->grpid != dst->grpid)
765 return 0;
766
767 *dst = *desc;
768 return -ENXIO; /* just break out of the loop */
769}
770
771void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
772{
773 if (nvme_ctrl_use_ana(ns->ctrl)) {
774 struct nvme_ana_group_desc desc = {
775 .grpid = id->anagrpid,
776 .state = 0,
777 };
778
779 mutex_lock(&ns->ctrl->ana_lock);
780 ns->ana_grpid = le32_to_cpu(id->anagrpid);
781 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
782 mutex_unlock(&ns->ctrl->ana_lock);
783 if (desc.state) {
784 /* found the group desc: update */
785 nvme_update_ns_ana_state(&desc, ns);
786 } else {
787 /* group desc not found: trigger a re-read */
788 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
789 queue_work(nvme_wq, &ns->ctrl->ana_work);
790 }
791 } else {
792 ns->ana_state = NVME_ANA_OPTIMIZED;
793 nvme_mpath_set_live(ns);
794 }
795
796 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
797 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
798 ns->head->disk->queue);
799#ifdef CONFIG_BLK_DEV_ZONED
800 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
801 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
802#endif
803}
804
805void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
806{
807 if (!head->disk)
808 return;
809 kblockd_schedule_work(&head->requeue_work);
810 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
811 nvme_cdev_del(&head->cdev, &head->cdev_device);
812 del_gendisk(head->disk);
813 }
814}
815
816void nvme_mpath_remove_disk(struct nvme_ns_head *head)
817{
818 if (!head->disk)
819 return;
820 blk_set_queue_dying(head->disk->queue);
821 /* make sure all pending bios are cleaned up */
822 kblockd_schedule_work(&head->requeue_work);
823 flush_work(&head->requeue_work);
824 blk_cleanup_disk(head->disk);
825}
826
827void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
828{
829 mutex_init(&ctrl->ana_lock);
830 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
831 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
832}
833
834int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
835{
836 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
837 size_t ana_log_size;
838 int error = 0;
839
840 /* check if multipath is enabled and we have the capability */
841 if (!multipath || !ctrl->subsys ||
842 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
843 return 0;
844
845 if (!ctrl->max_namespaces ||
846 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
847 dev_err(ctrl->device,
848 "Invalid MNAN value %u\n", ctrl->max_namespaces);
849 return -EINVAL;
850 }
851
852 ctrl->anacap = id->anacap;
853 ctrl->anatt = id->anatt;
854 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
855 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
856
857 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
858 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
859 ctrl->max_namespaces * sizeof(__le32);
860 if (ana_log_size > max_transfer_size) {
861 dev_err(ctrl->device,
862 "ANA log page size (%zd) larger than MDTS (%zd).\n",
863 ana_log_size, max_transfer_size);
864 dev_err(ctrl->device, "disabling ANA support.\n");
865 goto out_uninit;
866 }
867 if (ana_log_size > ctrl->ana_log_size) {
868 nvme_mpath_stop(ctrl);
869 nvme_mpath_uninit(ctrl);
870 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
871 if (!ctrl->ana_log_buf)
872 return -ENOMEM;
873 }
874 ctrl->ana_log_size = ana_log_size;
875 error = nvme_read_ana_log(ctrl);
876 if (error)
877 goto out_uninit;
878 return 0;
879
880out_uninit:
881 nvme_mpath_uninit(ctrl);
882 return error;
883}
884
885void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
886{
887 kfree(ctrl->ana_log_buf);
888 ctrl->ana_log_buf = NULL;
889 ctrl->ana_log_size = 0;
890}