Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/blk-mq.h>
9#include <linux/blk-integrity.h>
10#include <linux/compat.h>
11#include <linux/delay.h>
12#include <linux/errno.h>
13#include <linux/hdreg.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/slab.h>
18#include <linux/types.h>
19#include <linux/pr.h>
20#include <linux/ptrace.h>
21#include <linux/nvme_ioctl.h>
22#include <linux/pm_qos.h>
23#include <asm/unaligned.h>
24
25#include "nvme.h"
26#include "fabrics.h"
27
28#define CREATE_TRACE_POINTS
29#include "trace.h"
30
31#define NVME_MINORS (1U << MINORBITS)
32
33unsigned int admin_timeout = 60;
34module_param(admin_timeout, uint, 0644);
35MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36EXPORT_SYMBOL_GPL(admin_timeout);
37
38unsigned int nvme_io_timeout = 30;
39module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43static unsigned char shutdown_timeout = 5;
44module_param(shutdown_timeout, byte, 0644);
45MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47static u8 nvme_max_retries = 5;
48module_param_named(max_retries, nvme_max_retries, byte, 0644);
49MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51static unsigned long default_ps_max_latency_us = 100000;
52module_param(default_ps_max_latency_us, ulong, 0644);
53MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56static bool force_apst;
57module_param(force_apst, bool, 0644);
58MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60static unsigned long apst_primary_timeout_ms = 100;
61module_param(apst_primary_timeout_ms, ulong, 0644);
62MODULE_PARM_DESC(apst_primary_timeout_ms,
63 "primary APST timeout in ms");
64
65static unsigned long apst_secondary_timeout_ms = 2000;
66module_param(apst_secondary_timeout_ms, ulong, 0644);
67MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 "secondary APST timeout in ms");
69
70static unsigned long apst_primary_latency_tol_us = 15000;
71module_param(apst_primary_latency_tol_us, ulong, 0644);
72MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 "primary APST latency tolerance in us");
74
75static unsigned long apst_secondary_latency_tol_us = 100000;
76module_param(apst_secondary_latency_tol_us, ulong, 0644);
77MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 "secondary APST latency tolerance in us");
79
80static bool streams;
81module_param(streams, bool, 0644);
82MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83
84/*
85 * nvme_wq - hosts nvme related works that are not reset or delete
86 * nvme_reset_wq - hosts nvme reset works
87 * nvme_delete_wq - hosts nvme delete works
88 *
89 * nvme_wq will host works such as scan, aen handling, fw activation,
90 * keep-alive, periodic reconnects etc. nvme_reset_wq
91 * runs reset works which also flush works hosted on nvme_wq for
92 * serialization purposes. nvme_delete_wq host controller deletion
93 * works which flush reset works for serialization.
94 */
95struct workqueue_struct *nvme_wq;
96EXPORT_SYMBOL_GPL(nvme_wq);
97
98struct workqueue_struct *nvme_reset_wq;
99EXPORT_SYMBOL_GPL(nvme_reset_wq);
100
101struct workqueue_struct *nvme_delete_wq;
102EXPORT_SYMBOL_GPL(nvme_delete_wq);
103
104static LIST_HEAD(nvme_subsystems);
105static DEFINE_MUTEX(nvme_subsystems_lock);
106
107static DEFINE_IDA(nvme_instance_ida);
108static dev_t nvme_ctrl_base_chr_devt;
109static struct class *nvme_class;
110static struct class *nvme_subsys_class;
111
112static DEFINE_IDA(nvme_ns_chr_minor_ida);
113static dev_t nvme_ns_chr_devt;
114static struct class *nvme_ns_chr_class;
115
116static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 unsigned nsid);
119static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
120 struct nvme_command *cmd);
121
122void nvme_queue_scan(struct nvme_ctrl *ctrl)
123{
124 /*
125 * Only new queue scan work when admin and IO queues are both alive
126 */
127 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
128 queue_work(nvme_wq, &ctrl->scan_work);
129}
130
131/*
132 * Use this function to proceed with scheduling reset_work for a controller
133 * that had previously been set to the resetting state. This is intended for
134 * code paths that can't be interrupted by other reset attempts. A hot removal
135 * may prevent this from succeeding.
136 */
137int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
138{
139 if (ctrl->state != NVME_CTRL_RESETTING)
140 return -EBUSY;
141 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142 return -EBUSY;
143 return 0;
144}
145EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
146
147static void nvme_failfast_work(struct work_struct *work)
148{
149 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
150 struct nvme_ctrl, failfast_work);
151
152 if (ctrl->state != NVME_CTRL_CONNECTING)
153 return;
154
155 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
156 dev_info(ctrl->device, "failfast expired\n");
157 nvme_kick_requeue_lists(ctrl);
158}
159
160static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
161{
162 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
163 return;
164
165 schedule_delayed_work(&ctrl->failfast_work,
166 ctrl->opts->fast_io_fail_tmo * HZ);
167}
168
169static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
170{
171 if (!ctrl->opts)
172 return;
173
174 cancel_delayed_work_sync(&ctrl->failfast_work);
175 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176}
177
178
179int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
180{
181 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
182 return -EBUSY;
183 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184 return -EBUSY;
185 return 0;
186}
187EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
188
189int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190{
191 int ret;
192
193 ret = nvme_reset_ctrl(ctrl);
194 if (!ret) {
195 flush_work(&ctrl->reset_work);
196 if (ctrl->state != NVME_CTRL_LIVE)
197 ret = -ENETRESET;
198 }
199
200 return ret;
201}
202
203static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
204{
205 dev_info(ctrl->device,
206 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
207
208 flush_work(&ctrl->reset_work);
209 nvme_stop_ctrl(ctrl);
210 nvme_remove_namespaces(ctrl);
211 ctrl->ops->delete_ctrl(ctrl);
212 nvme_uninit_ctrl(ctrl);
213}
214
215static void nvme_delete_ctrl_work(struct work_struct *work)
216{
217 struct nvme_ctrl *ctrl =
218 container_of(work, struct nvme_ctrl, delete_work);
219
220 nvme_do_delete_ctrl(ctrl);
221}
222
223int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
224{
225 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
226 return -EBUSY;
227 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228 return -EBUSY;
229 return 0;
230}
231EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
232
233static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
234{
235 /*
236 * Keep a reference until nvme_do_delete_ctrl() complete,
237 * since ->delete_ctrl can free the controller.
238 */
239 nvme_get_ctrl(ctrl);
240 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
241 nvme_do_delete_ctrl(ctrl);
242 nvme_put_ctrl(ctrl);
243}
244
245static blk_status_t nvme_error_status(u16 status)
246{
247 switch (status & 0x7ff) {
248 case NVME_SC_SUCCESS:
249 return BLK_STS_OK;
250 case NVME_SC_CAP_EXCEEDED:
251 return BLK_STS_NOSPC;
252 case NVME_SC_LBA_RANGE:
253 case NVME_SC_CMD_INTERRUPTED:
254 case NVME_SC_NS_NOT_READY:
255 return BLK_STS_TARGET;
256 case NVME_SC_BAD_ATTRIBUTES:
257 case NVME_SC_ONCS_NOT_SUPPORTED:
258 case NVME_SC_INVALID_OPCODE:
259 case NVME_SC_INVALID_FIELD:
260 case NVME_SC_INVALID_NS:
261 return BLK_STS_NOTSUPP;
262 case NVME_SC_WRITE_FAULT:
263 case NVME_SC_READ_ERROR:
264 case NVME_SC_UNWRITTEN_BLOCK:
265 case NVME_SC_ACCESS_DENIED:
266 case NVME_SC_READ_ONLY:
267 case NVME_SC_COMPARE_FAILED:
268 return BLK_STS_MEDIUM;
269 case NVME_SC_GUARD_CHECK:
270 case NVME_SC_APPTAG_CHECK:
271 case NVME_SC_REFTAG_CHECK:
272 case NVME_SC_INVALID_PI:
273 return BLK_STS_PROTECTION;
274 case NVME_SC_RESERVATION_CONFLICT:
275 return BLK_STS_NEXUS;
276 case NVME_SC_HOST_PATH_ERROR:
277 return BLK_STS_TRANSPORT;
278 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
279 return BLK_STS_ZONE_ACTIVE_RESOURCE;
280 case NVME_SC_ZONE_TOO_MANY_OPEN:
281 return BLK_STS_ZONE_OPEN_RESOURCE;
282 default:
283 return BLK_STS_IOERR;
284 }
285}
286
287static void nvme_retry_req(struct request *req)
288{
289 unsigned long delay = 0;
290 u16 crd;
291
292 /* The mask and shift result must be <= 3 */
293 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
294 if (crd)
295 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
296
297 nvme_req(req)->retries++;
298 blk_mq_requeue_request(req, false);
299 blk_mq_delay_kick_requeue_list(req->q, delay);
300}
301
302enum nvme_disposition {
303 COMPLETE,
304 RETRY,
305 FAILOVER,
306};
307
308static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
309{
310 if (likely(nvme_req(req)->status == 0))
311 return COMPLETE;
312
313 if (blk_noretry_request(req) ||
314 (nvme_req(req)->status & NVME_SC_DNR) ||
315 nvme_req(req)->retries >= nvme_max_retries)
316 return COMPLETE;
317
318 if (req->cmd_flags & REQ_NVME_MPATH) {
319 if (nvme_is_path_error(nvme_req(req)->status) ||
320 blk_queue_dying(req->q))
321 return FAILOVER;
322 } else {
323 if (blk_queue_dying(req->q))
324 return COMPLETE;
325 }
326
327 return RETRY;
328}
329
330static inline void nvme_end_req_zoned(struct request *req)
331{
332 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
333 req_op(req) == REQ_OP_ZONE_APPEND)
334 req->__sector = nvme_lba_to_sect(req->q->queuedata,
335 le64_to_cpu(nvme_req(req)->result.u64));
336}
337
338static inline void nvme_end_req(struct request *req)
339{
340 blk_status_t status = nvme_error_status(nvme_req(req)->status);
341
342 nvme_end_req_zoned(req);
343 nvme_trace_bio_complete(req);
344 blk_mq_end_request(req, status);
345}
346
347void nvme_complete_rq(struct request *req)
348{
349 trace_nvme_complete_rq(req);
350 nvme_cleanup_cmd(req);
351
352 if (nvme_req(req)->ctrl->kas)
353 nvme_req(req)->ctrl->comp_seen = true;
354
355 switch (nvme_decide_disposition(req)) {
356 case COMPLETE:
357 nvme_end_req(req);
358 return;
359 case RETRY:
360 nvme_retry_req(req);
361 return;
362 case FAILOVER:
363 nvme_failover_req(req);
364 return;
365 }
366}
367EXPORT_SYMBOL_GPL(nvme_complete_rq);
368
369void nvme_complete_batch_req(struct request *req)
370{
371 nvme_cleanup_cmd(req);
372 nvme_end_req_zoned(req);
373}
374EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
375
376/*
377 * Called to unwind from ->queue_rq on a failed command submission so that the
378 * multipathing code gets called to potentially failover to another path.
379 * The caller needs to unwind all transport specific resource allocations and
380 * must return propagate the return value.
381 */
382blk_status_t nvme_host_path_error(struct request *req)
383{
384 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
385 blk_mq_set_request_complete(req);
386 nvme_complete_rq(req);
387 return BLK_STS_OK;
388}
389EXPORT_SYMBOL_GPL(nvme_host_path_error);
390
391bool nvme_cancel_request(struct request *req, void *data, bool reserved)
392{
393 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
394 "Cancelling I/O %d", req->tag);
395
396 /* don't abort one completed request */
397 if (blk_mq_request_completed(req))
398 return true;
399
400 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
401 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
402 blk_mq_complete_request(req);
403 return true;
404}
405EXPORT_SYMBOL_GPL(nvme_cancel_request);
406
407void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
408{
409 if (ctrl->tagset) {
410 blk_mq_tagset_busy_iter(ctrl->tagset,
411 nvme_cancel_request, ctrl);
412 blk_mq_tagset_wait_completed_request(ctrl->tagset);
413 }
414}
415EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
416
417void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
418{
419 if (ctrl->admin_tagset) {
420 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
421 nvme_cancel_request, ctrl);
422 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
423 }
424}
425EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
426
427bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
428 enum nvme_ctrl_state new_state)
429{
430 enum nvme_ctrl_state old_state;
431 unsigned long flags;
432 bool changed = false;
433
434 spin_lock_irqsave(&ctrl->lock, flags);
435
436 old_state = ctrl->state;
437 switch (new_state) {
438 case NVME_CTRL_LIVE:
439 switch (old_state) {
440 case NVME_CTRL_NEW:
441 case NVME_CTRL_RESETTING:
442 case NVME_CTRL_CONNECTING:
443 changed = true;
444 fallthrough;
445 default:
446 break;
447 }
448 break;
449 case NVME_CTRL_RESETTING:
450 switch (old_state) {
451 case NVME_CTRL_NEW:
452 case NVME_CTRL_LIVE:
453 changed = true;
454 fallthrough;
455 default:
456 break;
457 }
458 break;
459 case NVME_CTRL_CONNECTING:
460 switch (old_state) {
461 case NVME_CTRL_NEW:
462 case NVME_CTRL_RESETTING:
463 changed = true;
464 fallthrough;
465 default:
466 break;
467 }
468 break;
469 case NVME_CTRL_DELETING:
470 switch (old_state) {
471 case NVME_CTRL_LIVE:
472 case NVME_CTRL_RESETTING:
473 case NVME_CTRL_CONNECTING:
474 changed = true;
475 fallthrough;
476 default:
477 break;
478 }
479 break;
480 case NVME_CTRL_DELETING_NOIO:
481 switch (old_state) {
482 case NVME_CTRL_DELETING:
483 case NVME_CTRL_DEAD:
484 changed = true;
485 fallthrough;
486 default:
487 break;
488 }
489 break;
490 case NVME_CTRL_DEAD:
491 switch (old_state) {
492 case NVME_CTRL_DELETING:
493 changed = true;
494 fallthrough;
495 default:
496 break;
497 }
498 break;
499 default:
500 break;
501 }
502
503 if (changed) {
504 ctrl->state = new_state;
505 wake_up_all(&ctrl->state_wq);
506 }
507
508 spin_unlock_irqrestore(&ctrl->lock, flags);
509 if (!changed)
510 return false;
511
512 if (ctrl->state == NVME_CTRL_LIVE) {
513 if (old_state == NVME_CTRL_CONNECTING)
514 nvme_stop_failfast_work(ctrl);
515 nvme_kick_requeue_lists(ctrl);
516 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
517 old_state == NVME_CTRL_RESETTING) {
518 nvme_start_failfast_work(ctrl);
519 }
520 return changed;
521}
522EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
523
524/*
525 * Returns true for sink states that can't ever transition back to live.
526 */
527static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
528{
529 switch (ctrl->state) {
530 case NVME_CTRL_NEW:
531 case NVME_CTRL_LIVE:
532 case NVME_CTRL_RESETTING:
533 case NVME_CTRL_CONNECTING:
534 return false;
535 case NVME_CTRL_DELETING:
536 case NVME_CTRL_DELETING_NOIO:
537 case NVME_CTRL_DEAD:
538 return true;
539 default:
540 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
541 return true;
542 }
543}
544
545/*
546 * Waits for the controller state to be resetting, or returns false if it is
547 * not possible to ever transition to that state.
548 */
549bool nvme_wait_reset(struct nvme_ctrl *ctrl)
550{
551 wait_event(ctrl->state_wq,
552 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
553 nvme_state_terminal(ctrl));
554 return ctrl->state == NVME_CTRL_RESETTING;
555}
556EXPORT_SYMBOL_GPL(nvme_wait_reset);
557
558static void nvme_free_ns_head(struct kref *ref)
559{
560 struct nvme_ns_head *head =
561 container_of(ref, struct nvme_ns_head, ref);
562
563 nvme_mpath_remove_disk(head);
564 ida_simple_remove(&head->subsys->ns_ida, head->instance);
565 cleanup_srcu_struct(&head->srcu);
566 nvme_put_subsystem(head->subsys);
567 kfree(head);
568}
569
570bool nvme_tryget_ns_head(struct nvme_ns_head *head)
571{
572 return kref_get_unless_zero(&head->ref);
573}
574
575void nvme_put_ns_head(struct nvme_ns_head *head)
576{
577 kref_put(&head->ref, nvme_free_ns_head);
578}
579
580static void nvme_free_ns(struct kref *kref)
581{
582 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
583
584 put_disk(ns->disk);
585 nvme_put_ns_head(ns->head);
586 nvme_put_ctrl(ns->ctrl);
587 kfree(ns);
588}
589
590static inline bool nvme_get_ns(struct nvme_ns *ns)
591{
592 return kref_get_unless_zero(&ns->kref);
593}
594
595void nvme_put_ns(struct nvme_ns *ns)
596{
597 kref_put(&ns->kref, nvme_free_ns);
598}
599EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
600
601static inline void nvme_clear_nvme_request(struct request *req)
602{
603 nvme_req(req)->status = 0;
604 nvme_req(req)->retries = 0;
605 nvme_req(req)->flags = 0;
606 req->rq_flags |= RQF_DONTPREP;
607}
608
609static inline unsigned int nvme_req_op(struct nvme_command *cmd)
610{
611 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
612}
613
614static inline void nvme_init_request(struct request *req,
615 struct nvme_command *cmd)
616{
617 if (req->q->queuedata)
618 req->timeout = NVME_IO_TIMEOUT;
619 else /* no queuedata implies admin queue */
620 req->timeout = NVME_ADMIN_TIMEOUT;
621
622 /* passthru commands should let the driver set the SGL flags */
623 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
624
625 req->cmd_flags |= REQ_FAILFAST_DRIVER;
626 if (req->mq_hctx->type == HCTX_TYPE_POLL)
627 req->cmd_flags |= REQ_POLLED;
628 nvme_clear_nvme_request(req);
629 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
630}
631
632struct request *nvme_alloc_request(struct request_queue *q,
633 struct nvme_command *cmd, blk_mq_req_flags_t flags)
634{
635 struct request *req;
636
637 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
638 if (!IS_ERR(req))
639 nvme_init_request(req, cmd);
640 return req;
641}
642EXPORT_SYMBOL_GPL(nvme_alloc_request);
643
644static struct request *nvme_alloc_request_qid(struct request_queue *q,
645 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
646{
647 struct request *req;
648
649 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
650 qid ? qid - 1 : 0);
651 if (!IS_ERR(req))
652 nvme_init_request(req, cmd);
653 return req;
654}
655
656/*
657 * For something we're not in a state to send to the device the default action
658 * is to busy it and retry it after the controller state is recovered. However,
659 * if the controller is deleting or if anything is marked for failfast or
660 * nvme multipath it is immediately failed.
661 *
662 * Note: commands used to initialize the controller will be marked for failfast.
663 * Note: nvme cli/ioctl commands are marked for failfast.
664 */
665blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
666 struct request *rq)
667{
668 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
669 ctrl->state != NVME_CTRL_DELETING &&
670 ctrl->state != NVME_CTRL_DEAD &&
671 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
672 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
673 return BLK_STS_RESOURCE;
674 return nvme_host_path_error(rq);
675}
676EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
677
678bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
679 bool queue_live)
680{
681 struct nvme_request *req = nvme_req(rq);
682
683 /*
684 * currently we have a problem sending passthru commands
685 * on the admin_q if the controller is not LIVE because we can't
686 * make sure that they are going out after the admin connect,
687 * controller enable and/or other commands in the initialization
688 * sequence. until the controller will be LIVE, fail with
689 * BLK_STS_RESOURCE so that they will be rescheduled.
690 */
691 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
692 return false;
693
694 if (ctrl->ops->flags & NVME_F_FABRICS) {
695 /*
696 * Only allow commands on a live queue, except for the connect
697 * command, which is require to set the queue live in the
698 * appropinquate states.
699 */
700 switch (ctrl->state) {
701 case NVME_CTRL_CONNECTING:
702 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
703 req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
704 return true;
705 break;
706 default:
707 break;
708 case NVME_CTRL_DEAD:
709 return false;
710 }
711 }
712
713 return queue_live;
714}
715EXPORT_SYMBOL_GPL(__nvme_check_ready);
716
717static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
718{
719 struct nvme_command c = { };
720
721 c.directive.opcode = nvme_admin_directive_send;
722 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
723 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
724 c.directive.dtype = NVME_DIR_IDENTIFY;
725 c.directive.tdtype = NVME_DIR_STREAMS;
726 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
727
728 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
729}
730
731static int nvme_disable_streams(struct nvme_ctrl *ctrl)
732{
733 return nvme_toggle_streams(ctrl, false);
734}
735
736static int nvme_enable_streams(struct nvme_ctrl *ctrl)
737{
738 return nvme_toggle_streams(ctrl, true);
739}
740
741static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
742 struct streams_directive_params *s, u32 nsid)
743{
744 struct nvme_command c = { };
745
746 memset(s, 0, sizeof(*s));
747
748 c.directive.opcode = nvme_admin_directive_recv;
749 c.directive.nsid = cpu_to_le32(nsid);
750 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
751 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
752 c.directive.dtype = NVME_DIR_STREAMS;
753
754 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
755}
756
757static int nvme_configure_directives(struct nvme_ctrl *ctrl)
758{
759 struct streams_directive_params s;
760 int ret;
761
762 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
763 return 0;
764 if (!streams)
765 return 0;
766
767 ret = nvme_enable_streams(ctrl);
768 if (ret)
769 return ret;
770
771 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
772 if (ret)
773 goto out_disable_stream;
774
775 ctrl->nssa = le16_to_cpu(s.nssa);
776 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
777 dev_info(ctrl->device, "too few streams (%u) available\n",
778 ctrl->nssa);
779 goto out_disable_stream;
780 }
781
782 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
783 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
784 return 0;
785
786out_disable_stream:
787 nvme_disable_streams(ctrl);
788 return ret;
789}
790
791/*
792 * Check if 'req' has a write hint associated with it. If it does, assign
793 * a valid namespace stream to the write.
794 */
795static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
796 struct request *req, u16 *control,
797 u32 *dsmgmt)
798{
799 enum rw_hint streamid = req->write_hint;
800
801 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
802 streamid = 0;
803 else {
804 streamid--;
805 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
806 return;
807
808 *control |= NVME_RW_DTYPE_STREAMS;
809 *dsmgmt |= streamid << 16;
810 }
811
812 if (streamid < ARRAY_SIZE(req->q->write_hints))
813 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
814}
815
816static inline void nvme_setup_flush(struct nvme_ns *ns,
817 struct nvme_command *cmnd)
818{
819 memset(cmnd, 0, sizeof(*cmnd));
820 cmnd->common.opcode = nvme_cmd_flush;
821 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822}
823
824static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 struct nvme_command *cmnd)
826{
827 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 struct nvme_dsm_range *range;
829 struct bio *bio;
830
831 /*
832 * Some devices do not consider the DSM 'Number of Ranges' field when
833 * determining how much data to DMA. Always allocate memory for maximum
834 * number of segments to prevent device reading beyond end of buffer.
835 */
836 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837
838 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 if (!range) {
840 /*
841 * If we fail allocation our range, fallback to the controller
842 * discard page. If that's also busy, it's safe to return
843 * busy, as we know we can make progress once that's freed.
844 */
845 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 return BLK_STS_RESOURCE;
847
848 range = page_address(ns->ctrl->discard_page);
849 }
850
851 __rq_for_each_bio(bio, req) {
852 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
853 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
854
855 if (n < segments) {
856 range[n].cattr = cpu_to_le32(0);
857 range[n].nlb = cpu_to_le32(nlb);
858 range[n].slba = cpu_to_le64(slba);
859 }
860 n++;
861 }
862
863 if (WARN_ON_ONCE(n != segments)) {
864 if (virt_to_page(range) == ns->ctrl->discard_page)
865 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
866 else
867 kfree(range);
868 return BLK_STS_IOERR;
869 }
870
871 memset(cmnd, 0, sizeof(*cmnd));
872 cmnd->dsm.opcode = nvme_cmd_dsm;
873 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
874 cmnd->dsm.nr = cpu_to_le32(segments - 1);
875 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
876
877 req->special_vec.bv_page = virt_to_page(range);
878 req->special_vec.bv_offset = offset_in_page(range);
879 req->special_vec.bv_len = alloc_size;
880 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
881
882 return BLK_STS_OK;
883}
884
885static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
886 struct request *req, struct nvme_command *cmnd)
887{
888 memset(cmnd, 0, sizeof(*cmnd));
889
890 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
891 return nvme_setup_discard(ns, req, cmnd);
892
893 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
894 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
895 cmnd->write_zeroes.slba =
896 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
897 cmnd->write_zeroes.length =
898 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
899
900 if (nvme_ns_has_pi(ns)) {
901 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
902
903 switch (ns->pi_type) {
904 case NVME_NS_DPS_PI_TYPE1:
905 case NVME_NS_DPS_PI_TYPE2:
906 cmnd->write_zeroes.reftag =
907 cpu_to_le32(t10_pi_ref_tag(req));
908 break;
909 }
910 }
911
912 return BLK_STS_OK;
913}
914
915static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
916 struct request *req, struct nvme_command *cmnd,
917 enum nvme_opcode op)
918{
919 struct nvme_ctrl *ctrl = ns->ctrl;
920 u16 control = 0;
921 u32 dsmgmt = 0;
922
923 if (req->cmd_flags & REQ_FUA)
924 control |= NVME_RW_FUA;
925 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
926 control |= NVME_RW_LR;
927
928 if (req->cmd_flags & REQ_RAHEAD)
929 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
930
931 cmnd->rw.opcode = op;
932 cmnd->rw.flags = 0;
933 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
934 cmnd->rw.rsvd2 = 0;
935 cmnd->rw.metadata = 0;
936 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
937 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
938 cmnd->rw.reftag = 0;
939 cmnd->rw.apptag = 0;
940 cmnd->rw.appmask = 0;
941
942 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
943 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
944
945 if (ns->ms) {
946 /*
947 * If formated with metadata, the block layer always provides a
948 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
949 * we enable the PRACT bit for protection information or set the
950 * namespace capacity to zero to prevent any I/O.
951 */
952 if (!blk_integrity_rq(req)) {
953 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
954 return BLK_STS_NOTSUPP;
955 control |= NVME_RW_PRINFO_PRACT;
956 }
957
958 switch (ns->pi_type) {
959 case NVME_NS_DPS_PI_TYPE3:
960 control |= NVME_RW_PRINFO_PRCHK_GUARD;
961 break;
962 case NVME_NS_DPS_PI_TYPE1:
963 case NVME_NS_DPS_PI_TYPE2:
964 control |= NVME_RW_PRINFO_PRCHK_GUARD |
965 NVME_RW_PRINFO_PRCHK_REF;
966 if (op == nvme_cmd_zone_append)
967 control |= NVME_RW_APPEND_PIREMAP;
968 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
969 break;
970 }
971 }
972
973 cmnd->rw.control = cpu_to_le16(control);
974 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
975 return 0;
976}
977
978void nvme_cleanup_cmd(struct request *req)
979{
980 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
981 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
982
983 if (req->special_vec.bv_page == ctrl->discard_page)
984 clear_bit_unlock(0, &ctrl->discard_page_busy);
985 else
986 kfree(bvec_virt(&req->special_vec));
987 }
988}
989EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
990
991blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
992{
993 struct nvme_command *cmd = nvme_req(req)->cmd;
994 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
995 blk_status_t ret = BLK_STS_OK;
996
997 if (!(req->rq_flags & RQF_DONTPREP))
998 nvme_clear_nvme_request(req);
999
1000 switch (req_op(req)) {
1001 case REQ_OP_DRV_IN:
1002 case REQ_OP_DRV_OUT:
1003 /* these are setup prior to execution in nvme_init_request() */
1004 break;
1005 case REQ_OP_FLUSH:
1006 nvme_setup_flush(ns, cmd);
1007 break;
1008 case REQ_OP_ZONE_RESET_ALL:
1009 case REQ_OP_ZONE_RESET:
1010 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1011 break;
1012 case REQ_OP_ZONE_OPEN:
1013 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1014 break;
1015 case REQ_OP_ZONE_CLOSE:
1016 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1017 break;
1018 case REQ_OP_ZONE_FINISH:
1019 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1020 break;
1021 case REQ_OP_WRITE_ZEROES:
1022 ret = nvme_setup_write_zeroes(ns, req, cmd);
1023 break;
1024 case REQ_OP_DISCARD:
1025 ret = nvme_setup_discard(ns, req, cmd);
1026 break;
1027 case REQ_OP_READ:
1028 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1029 break;
1030 case REQ_OP_WRITE:
1031 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1032 break;
1033 case REQ_OP_ZONE_APPEND:
1034 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1035 break;
1036 default:
1037 WARN_ON_ONCE(1);
1038 return BLK_STS_IOERR;
1039 }
1040
1041 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
1042 nvme_req(req)->genctr++;
1043 cmd->common.command_id = nvme_cid(req);
1044 trace_nvme_setup_cmd(req, cmd);
1045 return ret;
1046}
1047EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1048
1049/*
1050 * Return values:
1051 * 0: success
1052 * >0: nvme controller's cqe status response
1053 * <0: kernel error in lieu of controller response
1054 */
1055static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1056 bool at_head)
1057{
1058 blk_status_t status;
1059
1060 status = blk_execute_rq(disk, rq, at_head);
1061 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1062 return -EINTR;
1063 if (nvme_req(rq)->status)
1064 return nvme_req(rq)->status;
1065 return blk_status_to_errno(status);
1066}
1067
1068/*
1069 * Returns 0 on success. If the result is negative, it's a Linux error code;
1070 * if the result is positive, it's an NVM Express status code
1071 */
1072int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1073 union nvme_result *result, void *buffer, unsigned bufflen,
1074 unsigned timeout, int qid, int at_head,
1075 blk_mq_req_flags_t flags)
1076{
1077 struct request *req;
1078 int ret;
1079
1080 if (qid == NVME_QID_ANY)
1081 req = nvme_alloc_request(q, cmd, flags);
1082 else
1083 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1084 if (IS_ERR(req))
1085 return PTR_ERR(req);
1086
1087 if (timeout)
1088 req->timeout = timeout;
1089
1090 if (buffer && bufflen) {
1091 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1092 if (ret)
1093 goto out;
1094 }
1095
1096 ret = nvme_execute_rq(NULL, req, at_head);
1097 if (result && ret >= 0)
1098 *result = nvme_req(req)->result;
1099 out:
1100 blk_mq_free_request(req);
1101 return ret;
1102}
1103EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1104
1105int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1106 void *buffer, unsigned bufflen)
1107{
1108 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1109 NVME_QID_ANY, 0, 0);
1110}
1111EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1112
1113static u32 nvme_known_admin_effects(u8 opcode)
1114{
1115 switch (opcode) {
1116 case nvme_admin_format_nvm:
1117 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1118 NVME_CMD_EFFECTS_CSE_MASK;
1119 case nvme_admin_sanitize_nvm:
1120 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1121 default:
1122 break;
1123 }
1124 return 0;
1125}
1126
1127u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1128{
1129 u32 effects = 0;
1130
1131 if (ns) {
1132 if (ns->head->effects)
1133 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1134 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1135 dev_warn_once(ctrl->device,
1136 "IO command:%02x has unhandled effects:%08x\n",
1137 opcode, effects);
1138 return 0;
1139 }
1140
1141 if (ctrl->effects)
1142 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1143 effects |= nvme_known_admin_effects(opcode);
1144
1145 return effects;
1146}
1147EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1148
1149static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1150 u8 opcode)
1151{
1152 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1153
1154 /*
1155 * For simplicity, IO to all namespaces is quiesced even if the command
1156 * effects say only one namespace is affected.
1157 */
1158 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1159 mutex_lock(&ctrl->scan_lock);
1160 mutex_lock(&ctrl->subsys->lock);
1161 nvme_mpath_start_freeze(ctrl->subsys);
1162 nvme_mpath_wait_freeze(ctrl->subsys);
1163 nvme_start_freeze(ctrl);
1164 nvme_wait_freeze(ctrl);
1165 }
1166 return effects;
1167}
1168
1169static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1170 struct nvme_command *cmd, int status)
1171{
1172 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1173 nvme_unfreeze(ctrl);
1174 nvme_mpath_unfreeze(ctrl->subsys);
1175 mutex_unlock(&ctrl->subsys->lock);
1176 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1177 mutex_unlock(&ctrl->scan_lock);
1178 }
1179 if (effects & NVME_CMD_EFFECTS_CCC)
1180 nvme_init_ctrl_finish(ctrl);
1181 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1182 nvme_queue_scan(ctrl);
1183 flush_work(&ctrl->scan_work);
1184 }
1185
1186 switch (cmd->common.opcode) {
1187 case nvme_admin_set_features:
1188 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1189 case NVME_FEAT_KATO:
1190 /*
1191 * Keep alive commands interval on the host should be
1192 * updated when KATO is modified by Set Features
1193 * commands.
1194 */
1195 if (!status)
1196 nvme_update_keep_alive(ctrl, cmd);
1197 break;
1198 default:
1199 break;
1200 }
1201 break;
1202 default:
1203 break;
1204 }
1205}
1206
1207int nvme_execute_passthru_rq(struct request *rq)
1208{
1209 struct nvme_command *cmd = nvme_req(rq)->cmd;
1210 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1211 struct nvme_ns *ns = rq->q->queuedata;
1212 struct gendisk *disk = ns ? ns->disk : NULL;
1213 u32 effects;
1214 int ret;
1215
1216 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1217 ret = nvme_execute_rq(disk, rq, false);
1218 if (effects) /* nothing to be done for zero cmd effects */
1219 nvme_passthru_end(ctrl, effects, cmd, ret);
1220
1221 return ret;
1222}
1223EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1224
1225/*
1226 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1227 *
1228 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1229 * accounting for transport roundtrip times [..].
1230 */
1231static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1232{
1233 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1234}
1235
1236static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1237{
1238 struct nvme_ctrl *ctrl = rq->end_io_data;
1239 unsigned long flags;
1240 bool startka = false;
1241
1242 blk_mq_free_request(rq);
1243
1244 if (status) {
1245 dev_err(ctrl->device,
1246 "failed nvme_keep_alive_end_io error=%d\n",
1247 status);
1248 return;
1249 }
1250
1251 ctrl->comp_seen = false;
1252 spin_lock_irqsave(&ctrl->lock, flags);
1253 if (ctrl->state == NVME_CTRL_LIVE ||
1254 ctrl->state == NVME_CTRL_CONNECTING)
1255 startka = true;
1256 spin_unlock_irqrestore(&ctrl->lock, flags);
1257 if (startka)
1258 nvme_queue_keep_alive_work(ctrl);
1259}
1260
1261static void nvme_keep_alive_work(struct work_struct *work)
1262{
1263 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1264 struct nvme_ctrl, ka_work);
1265 bool comp_seen = ctrl->comp_seen;
1266 struct request *rq;
1267
1268 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1269 dev_dbg(ctrl->device,
1270 "reschedule traffic based keep-alive timer\n");
1271 ctrl->comp_seen = false;
1272 nvme_queue_keep_alive_work(ctrl);
1273 return;
1274 }
1275
1276 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1277 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1278 if (IS_ERR(rq)) {
1279 /* allocation failure, reset the controller */
1280 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1281 nvme_reset_ctrl(ctrl);
1282 return;
1283 }
1284
1285 rq->timeout = ctrl->kato * HZ;
1286 rq->end_io_data = ctrl;
1287 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1288}
1289
1290static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1291{
1292 if (unlikely(ctrl->kato == 0))
1293 return;
1294
1295 nvme_queue_keep_alive_work(ctrl);
1296}
1297
1298void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1299{
1300 if (unlikely(ctrl->kato == 0))
1301 return;
1302
1303 cancel_delayed_work_sync(&ctrl->ka_work);
1304}
1305EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1306
1307static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1308 struct nvme_command *cmd)
1309{
1310 unsigned int new_kato =
1311 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1312
1313 dev_info(ctrl->device,
1314 "keep alive interval updated from %u ms to %u ms\n",
1315 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1316
1317 nvme_stop_keep_alive(ctrl);
1318 ctrl->kato = new_kato;
1319 nvme_start_keep_alive(ctrl);
1320}
1321
1322/*
1323 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1324 * flag, thus sending any new CNS opcodes has a big chance of not working.
1325 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1326 * (but not for any later version).
1327 */
1328static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1329{
1330 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1331 return ctrl->vs < NVME_VS(1, 2, 0);
1332 return ctrl->vs < NVME_VS(1, 1, 0);
1333}
1334
1335static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1336{
1337 struct nvme_command c = { };
1338 int error;
1339
1340 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1341 c.identify.opcode = nvme_admin_identify;
1342 c.identify.cns = NVME_ID_CNS_CTRL;
1343
1344 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1345 if (!*id)
1346 return -ENOMEM;
1347
1348 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1349 sizeof(struct nvme_id_ctrl));
1350 if (error)
1351 kfree(*id);
1352 return error;
1353}
1354
1355static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1356 struct nvme_ns_id_desc *cur, bool *csi_seen)
1357{
1358 const char *warn_str = "ctrl returned bogus length:";
1359 void *data = cur;
1360
1361 switch (cur->nidt) {
1362 case NVME_NIDT_EUI64:
1363 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1364 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1365 warn_str, cur->nidl);
1366 return -1;
1367 }
1368 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1369 return NVME_NIDT_EUI64_LEN;
1370 case NVME_NIDT_NGUID:
1371 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1372 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1373 warn_str, cur->nidl);
1374 return -1;
1375 }
1376 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1377 return NVME_NIDT_NGUID_LEN;
1378 case NVME_NIDT_UUID:
1379 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1380 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1381 warn_str, cur->nidl);
1382 return -1;
1383 }
1384 uuid_copy(&ids->uuid, data + sizeof(*cur));
1385 return NVME_NIDT_UUID_LEN;
1386 case NVME_NIDT_CSI:
1387 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1388 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1389 warn_str, cur->nidl);
1390 return -1;
1391 }
1392 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1393 *csi_seen = true;
1394 return NVME_NIDT_CSI_LEN;
1395 default:
1396 /* Skip unknown types */
1397 return cur->nidl;
1398 }
1399}
1400
1401static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1402 struct nvme_ns_ids *ids)
1403{
1404 struct nvme_command c = { };
1405 bool csi_seen = false;
1406 int status, pos, len;
1407 void *data;
1408
1409 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1410 return 0;
1411 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1412 return 0;
1413
1414 c.identify.opcode = nvme_admin_identify;
1415 c.identify.nsid = cpu_to_le32(nsid);
1416 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1417
1418 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1419 if (!data)
1420 return -ENOMEM;
1421
1422 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1423 NVME_IDENTIFY_DATA_SIZE);
1424 if (status) {
1425 dev_warn(ctrl->device,
1426 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1427 nsid, status);
1428 goto free_data;
1429 }
1430
1431 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1432 struct nvme_ns_id_desc *cur = data + pos;
1433
1434 if (cur->nidl == 0)
1435 break;
1436
1437 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1438 if (len < 0)
1439 break;
1440
1441 len += sizeof(*cur);
1442 }
1443
1444 if (nvme_multi_css(ctrl) && !csi_seen) {
1445 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1446 nsid);
1447 status = -EINVAL;
1448 }
1449
1450free_data:
1451 kfree(data);
1452 return status;
1453}
1454
1455static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1456 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1457{
1458 struct nvme_command c = { };
1459 int error;
1460
1461 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1462 c.identify.opcode = nvme_admin_identify;
1463 c.identify.nsid = cpu_to_le32(nsid);
1464 c.identify.cns = NVME_ID_CNS_NS;
1465
1466 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1467 if (!*id)
1468 return -ENOMEM;
1469
1470 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1471 if (error) {
1472 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1473 goto out_free_id;
1474 }
1475
1476 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1477 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1478 goto out_free_id;
1479
1480 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1481 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1482 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1483 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1484 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1485 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1486
1487 return 0;
1488
1489out_free_id:
1490 kfree(*id);
1491 return error;
1492}
1493
1494static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1495 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1496{
1497 union nvme_result res = { 0 };
1498 struct nvme_command c = { };
1499 int ret;
1500
1501 c.features.opcode = op;
1502 c.features.fid = cpu_to_le32(fid);
1503 c.features.dword11 = cpu_to_le32(dword11);
1504
1505 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1506 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1507 if (ret >= 0 && result)
1508 *result = le32_to_cpu(res.u32);
1509 return ret;
1510}
1511
1512int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1513 unsigned int dword11, void *buffer, size_t buflen,
1514 u32 *result)
1515{
1516 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1517 buflen, result);
1518}
1519EXPORT_SYMBOL_GPL(nvme_set_features);
1520
1521int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1522 unsigned int dword11, void *buffer, size_t buflen,
1523 u32 *result)
1524{
1525 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1526 buflen, result);
1527}
1528EXPORT_SYMBOL_GPL(nvme_get_features);
1529
1530int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1531{
1532 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1533 u32 result;
1534 int status, nr_io_queues;
1535
1536 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1537 &result);
1538 if (status < 0)
1539 return status;
1540
1541 /*
1542 * Degraded controllers might return an error when setting the queue
1543 * count. We still want to be able to bring them online and offer
1544 * access to the admin queue, as that might be only way to fix them up.
1545 */
1546 if (status > 0) {
1547 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1548 *count = 0;
1549 } else {
1550 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1551 *count = min(*count, nr_io_queues);
1552 }
1553
1554 return 0;
1555}
1556EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1557
1558#define NVME_AEN_SUPPORTED \
1559 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1560 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1561
1562static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1563{
1564 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1565 int status;
1566
1567 if (!supported_aens)
1568 return;
1569
1570 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1571 NULL, 0, &result);
1572 if (status)
1573 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1574 supported_aens);
1575
1576 queue_work(nvme_wq, &ctrl->async_event_work);
1577}
1578
1579static int nvme_ns_open(struct nvme_ns *ns)
1580{
1581
1582 /* should never be called due to GENHD_FL_HIDDEN */
1583 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1584 goto fail;
1585 if (!nvme_get_ns(ns))
1586 goto fail;
1587 if (!try_module_get(ns->ctrl->ops->module))
1588 goto fail_put_ns;
1589
1590 return 0;
1591
1592fail_put_ns:
1593 nvme_put_ns(ns);
1594fail:
1595 return -ENXIO;
1596}
1597
1598static void nvme_ns_release(struct nvme_ns *ns)
1599{
1600
1601 module_put(ns->ctrl->ops->module);
1602 nvme_put_ns(ns);
1603}
1604
1605static int nvme_open(struct block_device *bdev, fmode_t mode)
1606{
1607 return nvme_ns_open(bdev->bd_disk->private_data);
1608}
1609
1610static void nvme_release(struct gendisk *disk, fmode_t mode)
1611{
1612 nvme_ns_release(disk->private_data);
1613}
1614
1615int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616{
1617 /* some standard values */
1618 geo->heads = 1 << 6;
1619 geo->sectors = 1 << 5;
1620 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621 return 0;
1622}
1623
1624#ifdef CONFIG_BLK_DEV_INTEGRITY
1625static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1626 u32 max_integrity_segments)
1627{
1628 struct blk_integrity integrity = { };
1629
1630 switch (pi_type) {
1631 case NVME_NS_DPS_PI_TYPE3:
1632 integrity.profile = &t10_pi_type3_crc;
1633 integrity.tag_size = sizeof(u16) + sizeof(u32);
1634 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1635 break;
1636 case NVME_NS_DPS_PI_TYPE1:
1637 case NVME_NS_DPS_PI_TYPE2:
1638 integrity.profile = &t10_pi_type1_crc;
1639 integrity.tag_size = sizeof(u16);
1640 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1641 break;
1642 default:
1643 integrity.profile = NULL;
1644 break;
1645 }
1646 integrity.tuple_size = ms;
1647 blk_integrity_register(disk, &integrity);
1648 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1649}
1650#else
1651static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1652 u32 max_integrity_segments)
1653{
1654}
1655#endif /* CONFIG_BLK_DEV_INTEGRITY */
1656
1657static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1658{
1659 struct nvme_ctrl *ctrl = ns->ctrl;
1660 struct request_queue *queue = disk->queue;
1661 u32 size = queue_logical_block_size(queue);
1662
1663 if (ctrl->max_discard_sectors == 0) {
1664 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1665 return;
1666 }
1667
1668 if (ctrl->nr_streams && ns->sws && ns->sgs)
1669 size *= ns->sws * ns->sgs;
1670
1671 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1672 NVME_DSM_MAX_RANGES);
1673
1674 queue->limits.discard_alignment = 0;
1675 queue->limits.discard_granularity = size;
1676
1677 /* If discard is already enabled, don't reset queue limits */
1678 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1679 return;
1680
1681 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1682 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1683
1684 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1685 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1686}
1687
1688static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1689{
1690 return !uuid_is_null(&ids->uuid) ||
1691 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1692 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1693}
1694
1695static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1696{
1697 return uuid_equal(&a->uuid, &b->uuid) &&
1698 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1699 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1700 a->csi == b->csi;
1701}
1702
1703static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1704 u32 *phys_bs, u32 *io_opt)
1705{
1706 struct streams_directive_params s;
1707 int ret;
1708
1709 if (!ctrl->nr_streams)
1710 return 0;
1711
1712 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1713 if (ret)
1714 return ret;
1715
1716 ns->sws = le32_to_cpu(s.sws);
1717 ns->sgs = le16_to_cpu(s.sgs);
1718
1719 if (ns->sws) {
1720 *phys_bs = ns->sws * (1 << ns->lba_shift);
1721 if (ns->sgs)
1722 *io_opt = *phys_bs * ns->sgs;
1723 }
1724
1725 return 0;
1726}
1727
1728static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1729{
1730 struct nvme_ctrl *ctrl = ns->ctrl;
1731
1732 /*
1733 * The PI implementation requires the metadata size to be equal to the
1734 * t10 pi tuple size.
1735 */
1736 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1737 if (ns->ms == sizeof(struct t10_pi_tuple))
1738 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1739 else
1740 ns->pi_type = 0;
1741
1742 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1743 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1744 return 0;
1745 if (ctrl->ops->flags & NVME_F_FABRICS) {
1746 /*
1747 * The NVMe over Fabrics specification only supports metadata as
1748 * part of the extended data LBA. We rely on HCA/HBA support to
1749 * remap the separate metadata buffer from the block layer.
1750 */
1751 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1752 return -EINVAL;
1753
1754 ns->features |= NVME_NS_EXT_LBAS;
1755
1756 /*
1757 * The current fabrics transport drivers support namespace
1758 * metadata formats only if nvme_ns_has_pi() returns true.
1759 * Suppress support for all other formats so the namespace will
1760 * have a 0 capacity and not be usable through the block stack.
1761 *
1762 * Note, this check will need to be modified if any drivers
1763 * gain the ability to use other metadata formats.
1764 */
1765 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1766 ns->features |= NVME_NS_METADATA_SUPPORTED;
1767 } else {
1768 /*
1769 * For PCIe controllers, we can't easily remap the separate
1770 * metadata buffer from the block layer and thus require a
1771 * separate metadata buffer for block layer metadata/PI support.
1772 * We allow extended LBAs for the passthrough interface, though.
1773 */
1774 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1775 ns->features |= NVME_NS_EXT_LBAS;
1776 else
1777 ns->features |= NVME_NS_METADATA_SUPPORTED;
1778 }
1779
1780 return 0;
1781}
1782
1783static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1784 struct request_queue *q)
1785{
1786 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1787
1788 if (ctrl->max_hw_sectors) {
1789 u32 max_segments =
1790 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1791
1792 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1793 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1794 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1795 }
1796 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1797 blk_queue_dma_alignment(q, 7);
1798 blk_queue_write_cache(q, vwc, vwc);
1799}
1800
1801static void nvme_update_disk_info(struct gendisk *disk,
1802 struct nvme_ns *ns, struct nvme_id_ns *id)
1803{
1804 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1805 unsigned short bs = 1 << ns->lba_shift;
1806 u32 atomic_bs, phys_bs, io_opt = 0;
1807
1808 /*
1809 * The block layer can't support LBA sizes larger than the page size
1810 * yet, so catch this early and don't allow block I/O.
1811 */
1812 if (ns->lba_shift > PAGE_SHIFT) {
1813 capacity = 0;
1814 bs = (1 << 9);
1815 }
1816
1817 blk_integrity_unregister(disk);
1818
1819 atomic_bs = phys_bs = bs;
1820 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1821 if (id->nabo == 0) {
1822 /*
1823 * Bit 1 indicates whether NAWUPF is defined for this namespace
1824 * and whether it should be used instead of AWUPF. If NAWUPF ==
1825 * 0 then AWUPF must be used instead.
1826 */
1827 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1828 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1829 else
1830 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1831 }
1832
1833 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1834 /* NPWG = Namespace Preferred Write Granularity */
1835 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1836 /* NOWS = Namespace Optimal Write Size */
1837 io_opt = bs * (1 + le16_to_cpu(id->nows));
1838 }
1839
1840 blk_queue_logical_block_size(disk->queue, bs);
1841 /*
1842 * Linux filesystems assume writing a single physical block is
1843 * an atomic operation. Hence limit the physical block size to the
1844 * value of the Atomic Write Unit Power Fail parameter.
1845 */
1846 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1847 blk_queue_io_min(disk->queue, phys_bs);
1848 blk_queue_io_opt(disk->queue, io_opt);
1849
1850 /*
1851 * Register a metadata profile for PI, or the plain non-integrity NVMe
1852 * metadata masquerading as Type 0 if supported, otherwise reject block
1853 * I/O to namespaces with metadata except when the namespace supports
1854 * PI, as it can strip/insert in that case.
1855 */
1856 if (ns->ms) {
1857 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1858 (ns->features & NVME_NS_METADATA_SUPPORTED))
1859 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1860 ns->ctrl->max_integrity_segments);
1861 else if (!nvme_ns_has_pi(ns))
1862 capacity = 0;
1863 }
1864
1865 set_capacity_and_notify(disk, capacity);
1866
1867 nvme_config_discard(disk, ns);
1868 blk_queue_max_write_zeroes_sectors(disk->queue,
1869 ns->ctrl->max_zeroes_sectors);
1870
1871 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1872 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1873}
1874
1875static inline bool nvme_first_scan(struct gendisk *disk)
1876{
1877 /* nvme_alloc_ns() scans the disk prior to adding it */
1878 return !disk_live(disk);
1879}
1880
1881static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1882{
1883 struct nvme_ctrl *ctrl = ns->ctrl;
1884 u32 iob;
1885
1886 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1887 is_power_of_2(ctrl->max_hw_sectors))
1888 iob = ctrl->max_hw_sectors;
1889 else
1890 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1891
1892 if (!iob)
1893 return;
1894
1895 if (!is_power_of_2(iob)) {
1896 if (nvme_first_scan(ns->disk))
1897 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1898 ns->disk->disk_name, iob);
1899 return;
1900 }
1901
1902 if (blk_queue_is_zoned(ns->disk->queue)) {
1903 if (nvme_first_scan(ns->disk))
1904 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1905 ns->disk->disk_name);
1906 return;
1907 }
1908
1909 blk_queue_chunk_sectors(ns->queue, iob);
1910}
1911
1912static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1913{
1914 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1915 int ret;
1916
1917 blk_mq_freeze_queue(ns->disk->queue);
1918 ns->lba_shift = id->lbaf[lbaf].ds;
1919 nvme_set_queue_limits(ns->ctrl, ns->queue);
1920
1921 ret = nvme_configure_metadata(ns, id);
1922 if (ret)
1923 goto out_unfreeze;
1924 nvme_set_chunk_sectors(ns, id);
1925 nvme_update_disk_info(ns->disk, ns, id);
1926
1927 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1928 ret = nvme_update_zone_info(ns, lbaf);
1929 if (ret)
1930 goto out_unfreeze;
1931 }
1932
1933 set_bit(NVME_NS_READY, &ns->flags);
1934 blk_mq_unfreeze_queue(ns->disk->queue);
1935
1936 if (blk_queue_is_zoned(ns->queue)) {
1937 ret = nvme_revalidate_zones(ns);
1938 if (ret && !nvme_first_scan(ns->disk))
1939 goto out;
1940 }
1941
1942 if (nvme_ns_head_multipath(ns->head)) {
1943 blk_mq_freeze_queue(ns->head->disk->queue);
1944 nvme_update_disk_info(ns->head->disk, ns, id);
1945 nvme_mpath_revalidate_paths(ns);
1946 blk_stack_limits(&ns->head->disk->queue->limits,
1947 &ns->queue->limits, 0);
1948 disk_update_readahead(ns->head->disk);
1949 blk_mq_unfreeze_queue(ns->head->disk->queue);
1950 }
1951 return 0;
1952
1953out_unfreeze:
1954 blk_mq_unfreeze_queue(ns->disk->queue);
1955out:
1956 /*
1957 * If probing fails due an unsupported feature, hide the block device,
1958 * but still allow other access.
1959 */
1960 if (ret == -ENODEV) {
1961 ns->disk->flags |= GENHD_FL_HIDDEN;
1962 ret = 0;
1963 }
1964 return ret;
1965}
1966
1967static char nvme_pr_type(enum pr_type type)
1968{
1969 switch (type) {
1970 case PR_WRITE_EXCLUSIVE:
1971 return 1;
1972 case PR_EXCLUSIVE_ACCESS:
1973 return 2;
1974 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1975 return 3;
1976 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1977 return 4;
1978 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1979 return 5;
1980 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1981 return 6;
1982 default:
1983 return 0;
1984 }
1985};
1986
1987static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1988 struct nvme_command *c, u8 data[16])
1989{
1990 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1991 int srcu_idx = srcu_read_lock(&head->srcu);
1992 struct nvme_ns *ns = nvme_find_path(head);
1993 int ret = -EWOULDBLOCK;
1994
1995 if (ns) {
1996 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1997 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1998 }
1999 srcu_read_unlock(&head->srcu, srcu_idx);
2000 return ret;
2001}
2002
2003static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2004 u8 data[16])
2005{
2006 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2007 return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2008}
2009
2010static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2011 u64 key, u64 sa_key, u8 op)
2012{
2013 struct nvme_command c = { };
2014 u8 data[16] = { 0, };
2015
2016 put_unaligned_le64(key, &data[0]);
2017 put_unaligned_le64(sa_key, &data[8]);
2018
2019 c.common.opcode = op;
2020 c.common.cdw10 = cpu_to_le32(cdw10);
2021
2022 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2023 bdev->bd_disk->fops == &nvme_ns_head_ops)
2024 return nvme_send_ns_head_pr_command(bdev, &c, data);
2025 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2026}
2027
2028static int nvme_pr_register(struct block_device *bdev, u64 old,
2029 u64 new, unsigned flags)
2030{
2031 u32 cdw10;
2032
2033 if (flags & ~PR_FL_IGNORE_KEY)
2034 return -EOPNOTSUPP;
2035
2036 cdw10 = old ? 2 : 0;
2037 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2038 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2039 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2040}
2041
2042static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2043 enum pr_type type, unsigned flags)
2044{
2045 u32 cdw10;
2046
2047 if (flags & ~PR_FL_IGNORE_KEY)
2048 return -EOPNOTSUPP;
2049
2050 cdw10 = nvme_pr_type(type) << 8;
2051 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2052 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2053}
2054
2055static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2056 enum pr_type type, bool abort)
2057{
2058 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2059
2060 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2061}
2062
2063static int nvme_pr_clear(struct block_device *bdev, u64 key)
2064{
2065 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2066
2067 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2068}
2069
2070static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2071{
2072 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2073
2074 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2075}
2076
2077const struct pr_ops nvme_pr_ops = {
2078 .pr_register = nvme_pr_register,
2079 .pr_reserve = nvme_pr_reserve,
2080 .pr_release = nvme_pr_release,
2081 .pr_preempt = nvme_pr_preempt,
2082 .pr_clear = nvme_pr_clear,
2083};
2084
2085#ifdef CONFIG_BLK_SED_OPAL
2086int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2087 bool send)
2088{
2089 struct nvme_ctrl *ctrl = data;
2090 struct nvme_command cmd = { };
2091
2092 if (send)
2093 cmd.common.opcode = nvme_admin_security_send;
2094 else
2095 cmd.common.opcode = nvme_admin_security_recv;
2096 cmd.common.nsid = 0;
2097 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2098 cmd.common.cdw11 = cpu_to_le32(len);
2099
2100 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2101 NVME_QID_ANY, 1, 0);
2102}
2103EXPORT_SYMBOL_GPL(nvme_sec_submit);
2104#endif /* CONFIG_BLK_SED_OPAL */
2105
2106#ifdef CONFIG_BLK_DEV_ZONED
2107static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2108 unsigned int nr_zones, report_zones_cb cb, void *data)
2109{
2110 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2111 data);
2112}
2113#else
2114#define nvme_report_zones NULL
2115#endif /* CONFIG_BLK_DEV_ZONED */
2116
2117static const struct block_device_operations nvme_bdev_ops = {
2118 .owner = THIS_MODULE,
2119 .ioctl = nvme_ioctl,
2120 .open = nvme_open,
2121 .release = nvme_release,
2122 .getgeo = nvme_getgeo,
2123 .report_zones = nvme_report_zones,
2124 .pr_ops = &nvme_pr_ops,
2125};
2126
2127static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2128{
2129 unsigned long timeout =
2130 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2131 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2132 int ret;
2133
2134 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2135 if (csts == ~0)
2136 return -ENODEV;
2137 if ((csts & NVME_CSTS_RDY) == bit)
2138 break;
2139
2140 usleep_range(1000, 2000);
2141 if (fatal_signal_pending(current))
2142 return -EINTR;
2143 if (time_after(jiffies, timeout)) {
2144 dev_err(ctrl->device,
2145 "Device not ready; aborting %s, CSTS=0x%x\n",
2146 enabled ? "initialisation" : "reset", csts);
2147 return -ENODEV;
2148 }
2149 }
2150
2151 return ret;
2152}
2153
2154/*
2155 * If the device has been passed off to us in an enabled state, just clear
2156 * the enabled bit. The spec says we should set the 'shutdown notification
2157 * bits', but doing so may cause the device to complete commands to the
2158 * admin queue ... and we don't know what memory that might be pointing at!
2159 */
2160int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2161{
2162 int ret;
2163
2164 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2165 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2166
2167 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2168 if (ret)
2169 return ret;
2170
2171 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2172 msleep(NVME_QUIRK_DELAY_AMOUNT);
2173
2174 return nvme_wait_ready(ctrl, ctrl->cap, false);
2175}
2176EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2177
2178int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2179{
2180 unsigned dev_page_min;
2181 int ret;
2182
2183 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2184 if (ret) {
2185 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2186 return ret;
2187 }
2188 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2189
2190 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2191 dev_err(ctrl->device,
2192 "Minimum device page size %u too large for host (%u)\n",
2193 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2194 return -ENODEV;
2195 }
2196
2197 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2198 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2199 else
2200 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2201 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2202 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2203 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2204 ctrl->ctrl_config |= NVME_CC_ENABLE;
2205
2206 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2207 if (ret)
2208 return ret;
2209 return nvme_wait_ready(ctrl, ctrl->cap, true);
2210}
2211EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2212
2213int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2214{
2215 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2216 u32 csts;
2217 int ret;
2218
2219 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2220 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2221
2222 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2223 if (ret)
2224 return ret;
2225
2226 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2227 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2228 break;
2229
2230 msleep(100);
2231 if (fatal_signal_pending(current))
2232 return -EINTR;
2233 if (time_after(jiffies, timeout)) {
2234 dev_err(ctrl->device,
2235 "Device shutdown incomplete; abort shutdown\n");
2236 return -ENODEV;
2237 }
2238 }
2239
2240 return ret;
2241}
2242EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2243
2244static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2245{
2246 __le64 ts;
2247 int ret;
2248
2249 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2250 return 0;
2251
2252 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2253 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2254 NULL);
2255 if (ret)
2256 dev_warn_once(ctrl->device,
2257 "could not set timestamp (%d)\n", ret);
2258 return ret;
2259}
2260
2261static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2262{
2263 struct nvme_feat_host_behavior *host;
2264 int ret;
2265
2266 /* Don't bother enabling the feature if retry delay is not reported */
2267 if (!ctrl->crdt[0])
2268 return 0;
2269
2270 host = kzalloc(sizeof(*host), GFP_KERNEL);
2271 if (!host)
2272 return 0;
2273
2274 host->acre = NVME_ENABLE_ACRE;
2275 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2276 host, sizeof(*host), NULL);
2277 kfree(host);
2278 return ret;
2279}
2280
2281/*
2282 * The function checks whether the given total (exlat + enlat) latency of
2283 * a power state allows the latter to be used as an APST transition target.
2284 * It does so by comparing the latency to the primary and secondary latency
2285 * tolerances defined by module params. If there's a match, the corresponding
2286 * timeout value is returned and the matching tolerance index (1 or 2) is
2287 * reported.
2288 */
2289static bool nvme_apst_get_transition_time(u64 total_latency,
2290 u64 *transition_time, unsigned *last_index)
2291{
2292 if (total_latency <= apst_primary_latency_tol_us) {
2293 if (*last_index == 1)
2294 return false;
2295 *last_index = 1;
2296 *transition_time = apst_primary_timeout_ms;
2297 return true;
2298 }
2299 if (apst_secondary_timeout_ms &&
2300 total_latency <= apst_secondary_latency_tol_us) {
2301 if (*last_index <= 2)
2302 return false;
2303 *last_index = 2;
2304 *transition_time = apst_secondary_timeout_ms;
2305 return true;
2306 }
2307 return false;
2308}
2309
2310/*
2311 * APST (Autonomous Power State Transition) lets us program a table of power
2312 * state transitions that the controller will perform automatically.
2313 *
2314 * Depending on module params, one of the two supported techniques will be used:
2315 *
2316 * - If the parameters provide explicit timeouts and tolerances, they will be
2317 * used to build a table with up to 2 non-operational states to transition to.
2318 * The default parameter values were selected based on the values used by
2319 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2320 * regeneration of the APST table in the event of switching between external
2321 * and battery power, the timeouts and tolerances reflect a compromise
2322 * between values used by Microsoft for AC and battery scenarios.
2323 * - If not, we'll configure the table with a simple heuristic: we are willing
2324 * to spend at most 2% of the time transitioning between power states.
2325 * Therefore, when running in any given state, we will enter the next
2326 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2327 * microseconds, as long as that state's exit latency is under the requested
2328 * maximum latency.
2329 *
2330 * We will not autonomously enter any non-operational state for which the total
2331 * latency exceeds ps_max_latency_us.
2332 *
2333 * Users can set ps_max_latency_us to zero to turn off APST.
2334 */
2335static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2336{
2337 struct nvme_feat_auto_pst *table;
2338 unsigned apste = 0;
2339 u64 max_lat_us = 0;
2340 __le64 target = 0;
2341 int max_ps = -1;
2342 int state;
2343 int ret;
2344 unsigned last_lt_index = UINT_MAX;
2345
2346 /*
2347 * If APST isn't supported or if we haven't been initialized yet,
2348 * then don't do anything.
2349 */
2350 if (!ctrl->apsta)
2351 return 0;
2352
2353 if (ctrl->npss > 31) {
2354 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2355 return 0;
2356 }
2357
2358 table = kzalloc(sizeof(*table), GFP_KERNEL);
2359 if (!table)
2360 return 0;
2361
2362 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2363 /* Turn off APST. */
2364 dev_dbg(ctrl->device, "APST disabled\n");
2365 goto done;
2366 }
2367
2368 /*
2369 * Walk through all states from lowest- to highest-power.
2370 * According to the spec, lower-numbered states use more power. NPSS,
2371 * despite the name, is the index of the lowest-power state, not the
2372 * number of states.
2373 */
2374 for (state = (int)ctrl->npss; state >= 0; state--) {
2375 u64 total_latency_us, exit_latency_us, transition_ms;
2376
2377 if (target)
2378 table->entries[state] = target;
2379
2380 /*
2381 * Don't allow transitions to the deepest state if it's quirked
2382 * off.
2383 */
2384 if (state == ctrl->npss &&
2385 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2386 continue;
2387
2388 /*
2389 * Is this state a useful non-operational state for higher-power
2390 * states to autonomously transition to?
2391 */
2392 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2393 continue;
2394
2395 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2396 if (exit_latency_us > ctrl->ps_max_latency_us)
2397 continue;
2398
2399 total_latency_us = exit_latency_us +
2400 le32_to_cpu(ctrl->psd[state].entry_lat);
2401
2402 /*
2403 * This state is good. It can be used as the APST idle target
2404 * for higher power states.
2405 */
2406 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2407 if (!nvme_apst_get_transition_time(total_latency_us,
2408 &transition_ms, &last_lt_index))
2409 continue;
2410 } else {
2411 transition_ms = total_latency_us + 19;
2412 do_div(transition_ms, 20);
2413 if (transition_ms > (1 << 24) - 1)
2414 transition_ms = (1 << 24) - 1;
2415 }
2416
2417 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2418 if (max_ps == -1)
2419 max_ps = state;
2420 if (total_latency_us > max_lat_us)
2421 max_lat_us = total_latency_us;
2422 }
2423
2424 if (max_ps == -1)
2425 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2426 else
2427 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2428 max_ps, max_lat_us, (int)sizeof(*table), table);
2429 apste = 1;
2430
2431done:
2432 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2433 table, sizeof(*table), NULL);
2434 if (ret)
2435 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2436 kfree(table);
2437 return ret;
2438}
2439
2440static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2441{
2442 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2443 u64 latency;
2444
2445 switch (val) {
2446 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2447 case PM_QOS_LATENCY_ANY:
2448 latency = U64_MAX;
2449 break;
2450
2451 default:
2452 latency = val;
2453 }
2454
2455 if (ctrl->ps_max_latency_us != latency) {
2456 ctrl->ps_max_latency_us = latency;
2457 if (ctrl->state == NVME_CTRL_LIVE)
2458 nvme_configure_apst(ctrl);
2459 }
2460}
2461
2462struct nvme_core_quirk_entry {
2463 /*
2464 * NVMe model and firmware strings are padded with spaces. For
2465 * simplicity, strings in the quirk table are padded with NULLs
2466 * instead.
2467 */
2468 u16 vid;
2469 const char *mn;
2470 const char *fr;
2471 unsigned long quirks;
2472};
2473
2474static const struct nvme_core_quirk_entry core_quirks[] = {
2475 {
2476 /*
2477 * This Toshiba device seems to die using any APST states. See:
2478 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2479 */
2480 .vid = 0x1179,
2481 .mn = "THNSF5256GPUK TOSHIBA",
2482 .quirks = NVME_QUIRK_NO_APST,
2483 },
2484 {
2485 /*
2486 * This LiteON CL1-3D*-Q11 firmware version has a race
2487 * condition associated with actions related to suspend to idle
2488 * LiteON has resolved the problem in future firmware
2489 */
2490 .vid = 0x14a4,
2491 .fr = "22301111",
2492 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2493 },
2494 {
2495 /*
2496 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2497 * aborts I/O during any load, but more easily reproducible
2498 * with discards (fstrim).
2499 *
2500 * The device is left in a state where it is also not possible
2501 * to use "nvme set-feature" to disable APST, but booting with
2502 * nvme_core.default_ps_max_latency=0 works.
2503 */
2504 .vid = 0x1e0f,
2505 .mn = "KCD6XVUL6T40",
2506 .quirks = NVME_QUIRK_NO_APST,
2507 }
2508};
2509
2510/* match is null-terminated but idstr is space-padded. */
2511static bool string_matches(const char *idstr, const char *match, size_t len)
2512{
2513 size_t matchlen;
2514
2515 if (!match)
2516 return true;
2517
2518 matchlen = strlen(match);
2519 WARN_ON_ONCE(matchlen > len);
2520
2521 if (memcmp(idstr, match, matchlen))
2522 return false;
2523
2524 for (; matchlen < len; matchlen++)
2525 if (idstr[matchlen] != ' ')
2526 return false;
2527
2528 return true;
2529}
2530
2531static bool quirk_matches(const struct nvme_id_ctrl *id,
2532 const struct nvme_core_quirk_entry *q)
2533{
2534 return q->vid == le16_to_cpu(id->vid) &&
2535 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2536 string_matches(id->fr, q->fr, sizeof(id->fr));
2537}
2538
2539static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2540 struct nvme_id_ctrl *id)
2541{
2542 size_t nqnlen;
2543 int off;
2544
2545 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2546 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2547 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2548 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2549 return;
2550 }
2551
2552 if (ctrl->vs >= NVME_VS(1, 2, 1))
2553 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2554 }
2555
2556 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2557 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2558 "nqn.2014.08.org.nvmexpress:%04x%04x",
2559 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2560 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2561 off += sizeof(id->sn);
2562 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2563 off += sizeof(id->mn);
2564 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2565}
2566
2567static void nvme_release_subsystem(struct device *dev)
2568{
2569 struct nvme_subsystem *subsys =
2570 container_of(dev, struct nvme_subsystem, dev);
2571
2572 if (subsys->instance >= 0)
2573 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2574 kfree(subsys);
2575}
2576
2577static void nvme_destroy_subsystem(struct kref *ref)
2578{
2579 struct nvme_subsystem *subsys =
2580 container_of(ref, struct nvme_subsystem, ref);
2581
2582 mutex_lock(&nvme_subsystems_lock);
2583 list_del(&subsys->entry);
2584 mutex_unlock(&nvme_subsystems_lock);
2585
2586 ida_destroy(&subsys->ns_ida);
2587 device_del(&subsys->dev);
2588 put_device(&subsys->dev);
2589}
2590
2591static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2592{
2593 kref_put(&subsys->ref, nvme_destroy_subsystem);
2594}
2595
2596static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2597{
2598 struct nvme_subsystem *subsys;
2599
2600 lockdep_assert_held(&nvme_subsystems_lock);
2601
2602 /*
2603 * Fail matches for discovery subsystems. This results
2604 * in each discovery controller bound to a unique subsystem.
2605 * This avoids issues with validating controller values
2606 * that can only be true when there is a single unique subsystem.
2607 * There may be multiple and completely independent entities
2608 * that provide discovery controllers.
2609 */
2610 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2611 return NULL;
2612
2613 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2614 if (strcmp(subsys->subnqn, subsysnqn))
2615 continue;
2616 if (!kref_get_unless_zero(&subsys->ref))
2617 continue;
2618 return subsys;
2619 }
2620
2621 return NULL;
2622}
2623
2624#define SUBSYS_ATTR_RO(_name, _mode, _show) \
2625 struct device_attribute subsys_attr_##_name = \
2626 __ATTR(_name, _mode, _show, NULL)
2627
2628static ssize_t nvme_subsys_show_nqn(struct device *dev,
2629 struct device_attribute *attr,
2630 char *buf)
2631{
2632 struct nvme_subsystem *subsys =
2633 container_of(dev, struct nvme_subsystem, dev);
2634
2635 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2636}
2637static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2638
2639static ssize_t nvme_subsys_show_type(struct device *dev,
2640 struct device_attribute *attr,
2641 char *buf)
2642{
2643 struct nvme_subsystem *subsys =
2644 container_of(dev, struct nvme_subsystem, dev);
2645
2646 switch (subsys->subtype) {
2647 case NVME_NQN_DISC:
2648 return sysfs_emit(buf, "discovery\n");
2649 case NVME_NQN_NVME:
2650 return sysfs_emit(buf, "nvm\n");
2651 default:
2652 return sysfs_emit(buf, "reserved\n");
2653 }
2654}
2655static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2656
2657#define nvme_subsys_show_str_function(field) \
2658static ssize_t subsys_##field##_show(struct device *dev, \
2659 struct device_attribute *attr, char *buf) \
2660{ \
2661 struct nvme_subsystem *subsys = \
2662 container_of(dev, struct nvme_subsystem, dev); \
2663 return sysfs_emit(buf, "%.*s\n", \
2664 (int)sizeof(subsys->field), subsys->field); \
2665} \
2666static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2667
2668nvme_subsys_show_str_function(model);
2669nvme_subsys_show_str_function(serial);
2670nvme_subsys_show_str_function(firmware_rev);
2671
2672static struct attribute *nvme_subsys_attrs[] = {
2673 &subsys_attr_model.attr,
2674 &subsys_attr_serial.attr,
2675 &subsys_attr_firmware_rev.attr,
2676 &subsys_attr_subsysnqn.attr,
2677 &subsys_attr_subsystype.attr,
2678#ifdef CONFIG_NVME_MULTIPATH
2679 &subsys_attr_iopolicy.attr,
2680#endif
2681 NULL,
2682};
2683
2684static const struct attribute_group nvme_subsys_attrs_group = {
2685 .attrs = nvme_subsys_attrs,
2686};
2687
2688static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2689 &nvme_subsys_attrs_group,
2690 NULL,
2691};
2692
2693static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2694{
2695 return ctrl->opts && ctrl->opts->discovery_nqn;
2696}
2697
2698static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2699 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2700{
2701 struct nvme_ctrl *tmp;
2702
2703 lockdep_assert_held(&nvme_subsystems_lock);
2704
2705 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2706 if (nvme_state_terminal(tmp))
2707 continue;
2708
2709 if (tmp->cntlid == ctrl->cntlid) {
2710 dev_err(ctrl->device,
2711 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2712 ctrl->cntlid, dev_name(tmp->device),
2713 subsys->subnqn);
2714 return false;
2715 }
2716
2717 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2718 nvme_discovery_ctrl(ctrl))
2719 continue;
2720
2721 dev_err(ctrl->device,
2722 "Subsystem does not support multiple controllers\n");
2723 return false;
2724 }
2725
2726 return true;
2727}
2728
2729static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2730{
2731 struct nvme_subsystem *subsys, *found;
2732 int ret;
2733
2734 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2735 if (!subsys)
2736 return -ENOMEM;
2737
2738 subsys->instance = -1;
2739 mutex_init(&subsys->lock);
2740 kref_init(&subsys->ref);
2741 INIT_LIST_HEAD(&subsys->ctrls);
2742 INIT_LIST_HEAD(&subsys->nsheads);
2743 nvme_init_subnqn(subsys, ctrl, id);
2744 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2745 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2746 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2747 subsys->vendor_id = le16_to_cpu(id->vid);
2748 subsys->cmic = id->cmic;
2749
2750 /* Versions prior to 1.4 don't necessarily report a valid type */
2751 if (id->cntrltype == NVME_CTRL_DISC ||
2752 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2753 subsys->subtype = NVME_NQN_DISC;
2754 else
2755 subsys->subtype = NVME_NQN_NVME;
2756
2757 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2758 dev_err(ctrl->device,
2759 "Subsystem %s is not a discovery controller",
2760 subsys->subnqn);
2761 kfree(subsys);
2762 return -EINVAL;
2763 }
2764 subsys->awupf = le16_to_cpu(id->awupf);
2765#ifdef CONFIG_NVME_MULTIPATH
2766 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2767#endif
2768
2769 subsys->dev.class = nvme_subsys_class;
2770 subsys->dev.release = nvme_release_subsystem;
2771 subsys->dev.groups = nvme_subsys_attrs_groups;
2772 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2773 device_initialize(&subsys->dev);
2774
2775 mutex_lock(&nvme_subsystems_lock);
2776 found = __nvme_find_get_subsystem(subsys->subnqn);
2777 if (found) {
2778 put_device(&subsys->dev);
2779 subsys = found;
2780
2781 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2782 ret = -EINVAL;
2783 goto out_put_subsystem;
2784 }
2785 } else {
2786 ret = device_add(&subsys->dev);
2787 if (ret) {
2788 dev_err(ctrl->device,
2789 "failed to register subsystem device.\n");
2790 put_device(&subsys->dev);
2791 goto out_unlock;
2792 }
2793 ida_init(&subsys->ns_ida);
2794 list_add_tail(&subsys->entry, &nvme_subsystems);
2795 }
2796
2797 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2798 dev_name(ctrl->device));
2799 if (ret) {
2800 dev_err(ctrl->device,
2801 "failed to create sysfs link from subsystem.\n");
2802 goto out_put_subsystem;
2803 }
2804
2805 if (!found)
2806 subsys->instance = ctrl->instance;
2807 ctrl->subsys = subsys;
2808 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2809 mutex_unlock(&nvme_subsystems_lock);
2810 return 0;
2811
2812out_put_subsystem:
2813 nvme_put_subsystem(subsys);
2814out_unlock:
2815 mutex_unlock(&nvme_subsystems_lock);
2816 return ret;
2817}
2818
2819int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2820 void *log, size_t size, u64 offset)
2821{
2822 struct nvme_command c = { };
2823 u32 dwlen = nvme_bytes_to_numd(size);
2824
2825 c.get_log_page.opcode = nvme_admin_get_log_page;
2826 c.get_log_page.nsid = cpu_to_le32(nsid);
2827 c.get_log_page.lid = log_page;
2828 c.get_log_page.lsp = lsp;
2829 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2830 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2831 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2832 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2833 c.get_log_page.csi = csi;
2834
2835 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2836}
2837
2838static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2839 struct nvme_effects_log **log)
2840{
2841 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2842 int ret;
2843
2844 if (cel)
2845 goto out;
2846
2847 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2848 if (!cel)
2849 return -ENOMEM;
2850
2851 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2852 cel, sizeof(*cel), 0);
2853 if (ret) {
2854 kfree(cel);
2855 return ret;
2856 }
2857
2858 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2859out:
2860 *log = cel;
2861 return 0;
2862}
2863
2864static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2865{
2866 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2867
2868 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2869 return UINT_MAX;
2870 return val;
2871}
2872
2873static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2874{
2875 struct nvme_command c = { };
2876 struct nvme_id_ctrl_nvm *id;
2877 int ret;
2878
2879 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2880 ctrl->max_discard_sectors = UINT_MAX;
2881 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2882 } else {
2883 ctrl->max_discard_sectors = 0;
2884 ctrl->max_discard_segments = 0;
2885 }
2886
2887 /*
2888 * Even though NVMe spec explicitly states that MDTS is not applicable
2889 * to the write-zeroes, we are cautious and limit the size to the
2890 * controllers max_hw_sectors value, which is based on the MDTS field
2891 * and possibly other limiting factors.
2892 */
2893 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2894 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2895 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2896 else
2897 ctrl->max_zeroes_sectors = 0;
2898
2899 if (nvme_ctrl_limited_cns(ctrl))
2900 return 0;
2901
2902 id = kzalloc(sizeof(*id), GFP_KERNEL);
2903 if (!id)
2904 return 0;
2905
2906 c.identify.opcode = nvme_admin_identify;
2907 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2908 c.identify.csi = NVME_CSI_NVM;
2909
2910 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2911 if (ret)
2912 goto free_data;
2913
2914 if (id->dmrl)
2915 ctrl->max_discard_segments = id->dmrl;
2916 if (id->dmrsl)
2917 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2918 if (id->wzsl)
2919 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2920
2921free_data:
2922 kfree(id);
2923 return ret;
2924}
2925
2926static int nvme_init_identify(struct nvme_ctrl *ctrl)
2927{
2928 struct nvme_id_ctrl *id;
2929 u32 max_hw_sectors;
2930 bool prev_apst_enabled;
2931 int ret;
2932
2933 ret = nvme_identify_ctrl(ctrl, &id);
2934 if (ret) {
2935 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2936 return -EIO;
2937 }
2938
2939 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2940 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2941 if (ret < 0)
2942 goto out_free;
2943 }
2944
2945 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2946 ctrl->cntlid = le16_to_cpu(id->cntlid);
2947
2948 if (!ctrl->identified) {
2949 unsigned int i;
2950
2951 ret = nvme_init_subsystem(ctrl, id);
2952 if (ret)
2953 goto out_free;
2954
2955 /*
2956 * Check for quirks. Quirk can depend on firmware version,
2957 * so, in principle, the set of quirks present can change
2958 * across a reset. As a possible future enhancement, we
2959 * could re-scan for quirks every time we reinitialize
2960 * the device, but we'd have to make sure that the driver
2961 * behaves intelligently if the quirks change.
2962 */
2963 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2964 if (quirk_matches(id, &core_quirks[i]))
2965 ctrl->quirks |= core_quirks[i].quirks;
2966 }
2967 }
2968
2969 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2970 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2971 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2972 }
2973
2974 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2975 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2976 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2977
2978 ctrl->oacs = le16_to_cpu(id->oacs);
2979 ctrl->oncs = le16_to_cpu(id->oncs);
2980 ctrl->mtfa = le16_to_cpu(id->mtfa);
2981 ctrl->oaes = le32_to_cpu(id->oaes);
2982 ctrl->wctemp = le16_to_cpu(id->wctemp);
2983 ctrl->cctemp = le16_to_cpu(id->cctemp);
2984
2985 atomic_set(&ctrl->abort_limit, id->acl + 1);
2986 ctrl->vwc = id->vwc;
2987 if (id->mdts)
2988 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2989 else
2990 max_hw_sectors = UINT_MAX;
2991 ctrl->max_hw_sectors =
2992 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2993
2994 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2995 ctrl->sgls = le32_to_cpu(id->sgls);
2996 ctrl->kas = le16_to_cpu(id->kas);
2997 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2998 ctrl->ctratt = le32_to_cpu(id->ctratt);
2999
3000 if (id->rtd3e) {
3001 /* us -> s */
3002 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3003
3004 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3005 shutdown_timeout, 60);
3006
3007 if (ctrl->shutdown_timeout != shutdown_timeout)
3008 dev_info(ctrl->device,
3009 "Shutdown timeout set to %u seconds\n",
3010 ctrl->shutdown_timeout);
3011 } else
3012 ctrl->shutdown_timeout = shutdown_timeout;
3013
3014 ctrl->npss = id->npss;
3015 ctrl->apsta = id->apsta;
3016 prev_apst_enabled = ctrl->apst_enabled;
3017 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3018 if (force_apst && id->apsta) {
3019 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3020 ctrl->apst_enabled = true;
3021 } else {
3022 ctrl->apst_enabled = false;
3023 }
3024 } else {
3025 ctrl->apst_enabled = id->apsta;
3026 }
3027 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3028
3029 if (ctrl->ops->flags & NVME_F_FABRICS) {
3030 ctrl->icdoff = le16_to_cpu(id->icdoff);
3031 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3032 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3033 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3034
3035 /*
3036 * In fabrics we need to verify the cntlid matches the
3037 * admin connect
3038 */
3039 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3040 dev_err(ctrl->device,
3041 "Mismatching cntlid: Connect %u vs Identify "
3042 "%u, rejecting\n",
3043 ctrl->cntlid, le16_to_cpu(id->cntlid));
3044 ret = -EINVAL;
3045 goto out_free;
3046 }
3047
3048 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3049 dev_err(ctrl->device,
3050 "keep-alive support is mandatory for fabrics\n");
3051 ret = -EINVAL;
3052 goto out_free;
3053 }
3054 } else {
3055 ctrl->hmpre = le32_to_cpu(id->hmpre);
3056 ctrl->hmmin = le32_to_cpu(id->hmmin);
3057 ctrl->hmminds = le32_to_cpu(id->hmminds);
3058 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3059 }
3060
3061 ret = nvme_mpath_init_identify(ctrl, id);
3062 if (ret < 0)
3063 goto out_free;
3064
3065 if (ctrl->apst_enabled && !prev_apst_enabled)
3066 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3067 else if (!ctrl->apst_enabled && prev_apst_enabled)
3068 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3069
3070out_free:
3071 kfree(id);
3072 return ret;
3073}
3074
3075/*
3076 * Initialize the cached copies of the Identify data and various controller
3077 * register in our nvme_ctrl structure. This should be called as soon as
3078 * the admin queue is fully up and running.
3079 */
3080int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3081{
3082 int ret;
3083
3084 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3085 if (ret) {
3086 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3087 return ret;
3088 }
3089
3090 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3091
3092 if (ctrl->vs >= NVME_VS(1, 1, 0))
3093 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3094
3095 ret = nvme_init_identify(ctrl);
3096 if (ret)
3097 return ret;
3098
3099 ret = nvme_init_non_mdts_limits(ctrl);
3100 if (ret < 0)
3101 return ret;
3102
3103 ret = nvme_configure_apst(ctrl);
3104 if (ret < 0)
3105 return ret;
3106
3107 ret = nvme_configure_timestamp(ctrl);
3108 if (ret < 0)
3109 return ret;
3110
3111 ret = nvme_configure_directives(ctrl);
3112 if (ret < 0)
3113 return ret;
3114
3115 ret = nvme_configure_acre(ctrl);
3116 if (ret < 0)
3117 return ret;
3118
3119 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3120 ret = nvme_hwmon_init(ctrl);
3121 if (ret < 0)
3122 return ret;
3123 }
3124
3125 ctrl->identified = true;
3126
3127 return 0;
3128}
3129EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3130
3131static int nvme_dev_open(struct inode *inode, struct file *file)
3132{
3133 struct nvme_ctrl *ctrl =
3134 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3135
3136 switch (ctrl->state) {
3137 case NVME_CTRL_LIVE:
3138 break;
3139 default:
3140 return -EWOULDBLOCK;
3141 }
3142
3143 nvme_get_ctrl(ctrl);
3144 if (!try_module_get(ctrl->ops->module)) {
3145 nvme_put_ctrl(ctrl);
3146 return -EINVAL;
3147 }
3148
3149 file->private_data = ctrl;
3150 return 0;
3151}
3152
3153static int nvme_dev_release(struct inode *inode, struct file *file)
3154{
3155 struct nvme_ctrl *ctrl =
3156 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3157
3158 module_put(ctrl->ops->module);
3159 nvme_put_ctrl(ctrl);
3160 return 0;
3161}
3162
3163static const struct file_operations nvme_dev_fops = {
3164 .owner = THIS_MODULE,
3165 .open = nvme_dev_open,
3166 .release = nvme_dev_release,
3167 .unlocked_ioctl = nvme_dev_ioctl,
3168 .compat_ioctl = compat_ptr_ioctl,
3169};
3170
3171static ssize_t nvme_sysfs_reset(struct device *dev,
3172 struct device_attribute *attr, const char *buf,
3173 size_t count)
3174{
3175 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3176 int ret;
3177
3178 ret = nvme_reset_ctrl_sync(ctrl);
3179 if (ret < 0)
3180 return ret;
3181 return count;
3182}
3183static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3184
3185static ssize_t nvme_sysfs_rescan(struct device *dev,
3186 struct device_attribute *attr, const char *buf,
3187 size_t count)
3188{
3189 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3190
3191 nvme_queue_scan(ctrl);
3192 return count;
3193}
3194static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3195
3196static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3197{
3198 struct gendisk *disk = dev_to_disk(dev);
3199
3200 if (disk->fops == &nvme_bdev_ops)
3201 return nvme_get_ns_from_dev(dev)->head;
3202 else
3203 return disk->private_data;
3204}
3205
3206static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3207 char *buf)
3208{
3209 struct nvme_ns_head *head = dev_to_ns_head(dev);
3210 struct nvme_ns_ids *ids = &head->ids;
3211 struct nvme_subsystem *subsys = head->subsys;
3212 int serial_len = sizeof(subsys->serial);
3213 int model_len = sizeof(subsys->model);
3214
3215 if (!uuid_is_null(&ids->uuid))
3216 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3217
3218 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3219 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3220
3221 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3222 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3223
3224 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3225 subsys->serial[serial_len - 1] == '\0'))
3226 serial_len--;
3227 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3228 subsys->model[model_len - 1] == '\0'))
3229 model_len--;
3230
3231 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3232 serial_len, subsys->serial, model_len, subsys->model,
3233 head->ns_id);
3234}
3235static DEVICE_ATTR_RO(wwid);
3236
3237static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3238 char *buf)
3239{
3240 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3241}
3242static DEVICE_ATTR_RO(nguid);
3243
3244static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3245 char *buf)
3246{
3247 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3248
3249 /* For backward compatibility expose the NGUID to userspace if
3250 * we have no UUID set
3251 */
3252 if (uuid_is_null(&ids->uuid)) {
3253 printk_ratelimited(KERN_WARNING
3254 "No UUID available providing old NGUID\n");
3255 return sysfs_emit(buf, "%pU\n", ids->nguid);
3256 }
3257 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3258}
3259static DEVICE_ATTR_RO(uuid);
3260
3261static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3262 char *buf)
3263{
3264 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3265}
3266static DEVICE_ATTR_RO(eui);
3267
3268static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3269 char *buf)
3270{
3271 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3272}
3273static DEVICE_ATTR_RO(nsid);
3274
3275static struct attribute *nvme_ns_id_attrs[] = {
3276 &dev_attr_wwid.attr,
3277 &dev_attr_uuid.attr,
3278 &dev_attr_nguid.attr,
3279 &dev_attr_eui.attr,
3280 &dev_attr_nsid.attr,
3281#ifdef CONFIG_NVME_MULTIPATH
3282 &dev_attr_ana_grpid.attr,
3283 &dev_attr_ana_state.attr,
3284#endif
3285 NULL,
3286};
3287
3288static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3289 struct attribute *a, int n)
3290{
3291 struct device *dev = container_of(kobj, struct device, kobj);
3292 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3293
3294 if (a == &dev_attr_uuid.attr) {
3295 if (uuid_is_null(&ids->uuid) &&
3296 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3297 return 0;
3298 }
3299 if (a == &dev_attr_nguid.attr) {
3300 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3301 return 0;
3302 }
3303 if (a == &dev_attr_eui.attr) {
3304 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3305 return 0;
3306 }
3307#ifdef CONFIG_NVME_MULTIPATH
3308 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3309 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3310 return 0;
3311 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3312 return 0;
3313 }
3314#endif
3315 return a->mode;
3316}
3317
3318static const struct attribute_group nvme_ns_id_attr_group = {
3319 .attrs = nvme_ns_id_attrs,
3320 .is_visible = nvme_ns_id_attrs_are_visible,
3321};
3322
3323const struct attribute_group *nvme_ns_id_attr_groups[] = {
3324 &nvme_ns_id_attr_group,
3325 NULL,
3326};
3327
3328#define nvme_show_str_function(field) \
3329static ssize_t field##_show(struct device *dev, \
3330 struct device_attribute *attr, char *buf) \
3331{ \
3332 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3333 return sysfs_emit(buf, "%.*s\n", \
3334 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3335} \
3336static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3337
3338nvme_show_str_function(model);
3339nvme_show_str_function(serial);
3340nvme_show_str_function(firmware_rev);
3341
3342#define nvme_show_int_function(field) \
3343static ssize_t field##_show(struct device *dev, \
3344 struct device_attribute *attr, char *buf) \
3345{ \
3346 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3347 return sysfs_emit(buf, "%d\n", ctrl->field); \
3348} \
3349static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3350
3351nvme_show_int_function(cntlid);
3352nvme_show_int_function(numa_node);
3353nvme_show_int_function(queue_count);
3354nvme_show_int_function(sqsize);
3355nvme_show_int_function(kato);
3356
3357static ssize_t nvme_sysfs_delete(struct device *dev,
3358 struct device_attribute *attr, const char *buf,
3359 size_t count)
3360{
3361 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3362
3363 if (device_remove_file_self(dev, attr))
3364 nvme_delete_ctrl_sync(ctrl);
3365 return count;
3366}
3367static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3368
3369static ssize_t nvme_sysfs_show_transport(struct device *dev,
3370 struct device_attribute *attr,
3371 char *buf)
3372{
3373 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3374
3375 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3376}
3377static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3378
3379static ssize_t nvme_sysfs_show_state(struct device *dev,
3380 struct device_attribute *attr,
3381 char *buf)
3382{
3383 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3384 static const char *const state_name[] = {
3385 [NVME_CTRL_NEW] = "new",
3386 [NVME_CTRL_LIVE] = "live",
3387 [NVME_CTRL_RESETTING] = "resetting",
3388 [NVME_CTRL_CONNECTING] = "connecting",
3389 [NVME_CTRL_DELETING] = "deleting",
3390 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3391 [NVME_CTRL_DEAD] = "dead",
3392 };
3393
3394 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3395 state_name[ctrl->state])
3396 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3397
3398 return sysfs_emit(buf, "unknown state\n");
3399}
3400
3401static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3402
3403static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3404 struct device_attribute *attr,
3405 char *buf)
3406{
3407 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3408
3409 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3410}
3411static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3412
3413static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3414 struct device_attribute *attr,
3415 char *buf)
3416{
3417 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3418
3419 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3420}
3421static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3422
3423static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3424 struct device_attribute *attr,
3425 char *buf)
3426{
3427 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3428
3429 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3430}
3431static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3432
3433static ssize_t nvme_sysfs_show_address(struct device *dev,
3434 struct device_attribute *attr,
3435 char *buf)
3436{
3437 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3438
3439 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3440}
3441static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3442
3443static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3444 struct device_attribute *attr, char *buf)
3445{
3446 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3447 struct nvmf_ctrl_options *opts = ctrl->opts;
3448
3449 if (ctrl->opts->max_reconnects == -1)
3450 return sysfs_emit(buf, "off\n");
3451 return sysfs_emit(buf, "%d\n",
3452 opts->max_reconnects * opts->reconnect_delay);
3453}
3454
3455static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3456 struct device_attribute *attr, const char *buf, size_t count)
3457{
3458 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3459 struct nvmf_ctrl_options *opts = ctrl->opts;
3460 int ctrl_loss_tmo, err;
3461
3462 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3463 if (err)
3464 return -EINVAL;
3465
3466 if (ctrl_loss_tmo < 0)
3467 opts->max_reconnects = -1;
3468 else
3469 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3470 opts->reconnect_delay);
3471 return count;
3472}
3473static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3474 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3475
3476static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3477 struct device_attribute *attr, char *buf)
3478{
3479 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3480
3481 if (ctrl->opts->reconnect_delay == -1)
3482 return sysfs_emit(buf, "off\n");
3483 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3484}
3485
3486static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3487 struct device_attribute *attr, const char *buf, size_t count)
3488{
3489 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3490 unsigned int v;
3491 int err;
3492
3493 err = kstrtou32(buf, 10, &v);
3494 if (err)
3495 return err;
3496
3497 ctrl->opts->reconnect_delay = v;
3498 return count;
3499}
3500static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3501 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3502
3503static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3504 struct device_attribute *attr, char *buf)
3505{
3506 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3507
3508 if (ctrl->opts->fast_io_fail_tmo == -1)
3509 return sysfs_emit(buf, "off\n");
3510 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3511}
3512
3513static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3514 struct device_attribute *attr, const char *buf, size_t count)
3515{
3516 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3517 struct nvmf_ctrl_options *opts = ctrl->opts;
3518 int fast_io_fail_tmo, err;
3519
3520 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3521 if (err)
3522 return -EINVAL;
3523
3524 if (fast_io_fail_tmo < 0)
3525 opts->fast_io_fail_tmo = -1;
3526 else
3527 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3528 return count;
3529}
3530static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3531 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3532
3533static struct attribute *nvme_dev_attrs[] = {
3534 &dev_attr_reset_controller.attr,
3535 &dev_attr_rescan_controller.attr,
3536 &dev_attr_model.attr,
3537 &dev_attr_serial.attr,
3538 &dev_attr_firmware_rev.attr,
3539 &dev_attr_cntlid.attr,
3540 &dev_attr_delete_controller.attr,
3541 &dev_attr_transport.attr,
3542 &dev_attr_subsysnqn.attr,
3543 &dev_attr_address.attr,
3544 &dev_attr_state.attr,
3545 &dev_attr_numa_node.attr,
3546 &dev_attr_queue_count.attr,
3547 &dev_attr_sqsize.attr,
3548 &dev_attr_hostnqn.attr,
3549 &dev_attr_hostid.attr,
3550 &dev_attr_ctrl_loss_tmo.attr,
3551 &dev_attr_reconnect_delay.attr,
3552 &dev_attr_fast_io_fail_tmo.attr,
3553 &dev_attr_kato.attr,
3554 NULL
3555};
3556
3557static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3558 struct attribute *a, int n)
3559{
3560 struct device *dev = container_of(kobj, struct device, kobj);
3561 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3562
3563 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3564 return 0;
3565 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3566 return 0;
3567 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3568 return 0;
3569 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3570 return 0;
3571 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3572 return 0;
3573 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3574 return 0;
3575 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3576 return 0;
3577
3578 return a->mode;
3579}
3580
3581static const struct attribute_group nvme_dev_attrs_group = {
3582 .attrs = nvme_dev_attrs,
3583 .is_visible = nvme_dev_attrs_are_visible,
3584};
3585
3586static const struct attribute_group *nvme_dev_attr_groups[] = {
3587 &nvme_dev_attrs_group,
3588 NULL,
3589};
3590
3591static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3592 unsigned nsid)
3593{
3594 struct nvme_ns_head *h;
3595
3596 lockdep_assert_held(&subsys->lock);
3597
3598 list_for_each_entry(h, &subsys->nsheads, entry) {
3599 if (h->ns_id != nsid)
3600 continue;
3601 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3602 return h;
3603 }
3604
3605 return NULL;
3606}
3607
3608static int __nvme_check_ids(struct nvme_subsystem *subsys,
3609 struct nvme_ns_head *new)
3610{
3611 struct nvme_ns_head *h;
3612
3613 lockdep_assert_held(&subsys->lock);
3614
3615 list_for_each_entry(h, &subsys->nsheads, entry) {
3616 if (nvme_ns_ids_valid(&new->ids) &&
3617 nvme_ns_ids_equal(&new->ids, &h->ids))
3618 return -EINVAL;
3619 }
3620
3621 return 0;
3622}
3623
3624static void nvme_cdev_rel(struct device *dev)
3625{
3626 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3627}
3628
3629void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3630{
3631 cdev_device_del(cdev, cdev_device);
3632 put_device(cdev_device);
3633}
3634
3635int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3636 const struct file_operations *fops, struct module *owner)
3637{
3638 int minor, ret;
3639
3640 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3641 if (minor < 0)
3642 return minor;
3643 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3644 cdev_device->class = nvme_ns_chr_class;
3645 cdev_device->release = nvme_cdev_rel;
3646 device_initialize(cdev_device);
3647 cdev_init(cdev, fops);
3648 cdev->owner = owner;
3649 ret = cdev_device_add(cdev, cdev_device);
3650 if (ret)
3651 put_device(cdev_device);
3652
3653 return ret;
3654}
3655
3656static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3657{
3658 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3659}
3660
3661static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3662{
3663 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3664 return 0;
3665}
3666
3667static const struct file_operations nvme_ns_chr_fops = {
3668 .owner = THIS_MODULE,
3669 .open = nvme_ns_chr_open,
3670 .release = nvme_ns_chr_release,
3671 .unlocked_ioctl = nvme_ns_chr_ioctl,
3672 .compat_ioctl = compat_ptr_ioctl,
3673};
3674
3675static int nvme_add_ns_cdev(struct nvme_ns *ns)
3676{
3677 int ret;
3678
3679 ns->cdev_device.parent = ns->ctrl->device;
3680 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3681 ns->ctrl->instance, ns->head->instance);
3682 if (ret)
3683 return ret;
3684
3685 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3686 ns->ctrl->ops->module);
3687}
3688
3689static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3690 unsigned nsid, struct nvme_ns_ids *ids)
3691{
3692 struct nvme_ns_head *head;
3693 size_t size = sizeof(*head);
3694 int ret = -ENOMEM;
3695
3696#ifdef CONFIG_NVME_MULTIPATH
3697 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3698#endif
3699
3700 head = kzalloc(size, GFP_KERNEL);
3701 if (!head)
3702 goto out;
3703 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3704 if (ret < 0)
3705 goto out_free_head;
3706 head->instance = ret;
3707 INIT_LIST_HEAD(&head->list);
3708 ret = init_srcu_struct(&head->srcu);
3709 if (ret)
3710 goto out_ida_remove;
3711 head->subsys = ctrl->subsys;
3712 head->ns_id = nsid;
3713 head->ids = *ids;
3714 kref_init(&head->ref);
3715
3716 ret = __nvme_check_ids(ctrl->subsys, head);
3717 if (ret) {
3718 dev_err(ctrl->device,
3719 "duplicate IDs for nsid %d\n", nsid);
3720 goto out_cleanup_srcu;
3721 }
3722
3723 if (head->ids.csi) {
3724 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3725 if (ret)
3726 goto out_cleanup_srcu;
3727 } else
3728 head->effects = ctrl->effects;
3729
3730 ret = nvme_mpath_alloc_disk(ctrl, head);
3731 if (ret)
3732 goto out_cleanup_srcu;
3733
3734 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3735
3736 kref_get(&ctrl->subsys->ref);
3737
3738 return head;
3739out_cleanup_srcu:
3740 cleanup_srcu_struct(&head->srcu);
3741out_ida_remove:
3742 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3743out_free_head:
3744 kfree(head);
3745out:
3746 if (ret > 0)
3747 ret = blk_status_to_errno(nvme_error_status(ret));
3748 return ERR_PTR(ret);
3749}
3750
3751static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3752 struct nvme_ns_ids *ids, bool is_shared)
3753{
3754 struct nvme_ctrl *ctrl = ns->ctrl;
3755 struct nvme_ns_head *head = NULL;
3756 int ret = 0;
3757
3758 mutex_lock(&ctrl->subsys->lock);
3759 head = nvme_find_ns_head(ctrl->subsys, nsid);
3760 if (!head) {
3761 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3762 if (IS_ERR(head)) {
3763 ret = PTR_ERR(head);
3764 goto out_unlock;
3765 }
3766 head->shared = is_shared;
3767 } else {
3768 ret = -EINVAL;
3769 if (!is_shared || !head->shared) {
3770 dev_err(ctrl->device,
3771 "Duplicate unshared namespace %d\n", nsid);
3772 goto out_put_ns_head;
3773 }
3774 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3775 dev_err(ctrl->device,
3776 "IDs don't match for shared namespace %d\n",
3777 nsid);
3778 goto out_put_ns_head;
3779 }
3780 }
3781
3782 list_add_tail_rcu(&ns->siblings, &head->list);
3783 ns->head = head;
3784 mutex_unlock(&ctrl->subsys->lock);
3785 return 0;
3786
3787out_put_ns_head:
3788 nvme_put_ns_head(head);
3789out_unlock:
3790 mutex_unlock(&ctrl->subsys->lock);
3791 return ret;
3792}
3793
3794struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3795{
3796 struct nvme_ns *ns, *ret = NULL;
3797
3798 down_read(&ctrl->namespaces_rwsem);
3799 list_for_each_entry(ns, &ctrl->namespaces, list) {
3800 if (ns->head->ns_id == nsid) {
3801 if (!nvme_get_ns(ns))
3802 continue;
3803 ret = ns;
3804 break;
3805 }
3806 if (ns->head->ns_id > nsid)
3807 break;
3808 }
3809 up_read(&ctrl->namespaces_rwsem);
3810 return ret;
3811}
3812EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3813
3814/*
3815 * Add the namespace to the controller list while keeping the list ordered.
3816 */
3817static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3818{
3819 struct nvme_ns *tmp;
3820
3821 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3822 if (tmp->head->ns_id < ns->head->ns_id) {
3823 list_add(&ns->list, &tmp->list);
3824 return;
3825 }
3826 }
3827 list_add(&ns->list, &ns->ctrl->namespaces);
3828}
3829
3830static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3831 struct nvme_ns_ids *ids)
3832{
3833 struct nvme_ns *ns;
3834 struct gendisk *disk;
3835 struct nvme_id_ns *id;
3836 int node = ctrl->numa_node;
3837
3838 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3839 return;
3840
3841 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3842 if (!ns)
3843 goto out_free_id;
3844
3845 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3846 if (IS_ERR(disk))
3847 goto out_free_ns;
3848 disk->fops = &nvme_bdev_ops;
3849 disk->private_data = ns;
3850
3851 ns->disk = disk;
3852 ns->queue = disk->queue;
3853
3854 if (ctrl->opts && ctrl->opts->data_digest)
3855 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3856
3857 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3858 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3859 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3860
3861 ns->ctrl = ctrl;
3862 kref_init(&ns->kref);
3863
3864 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3865 goto out_cleanup_disk;
3866
3867 /*
3868 * Without the multipath code enabled, multiple controller per
3869 * subsystems are visible as devices and thus we cannot use the
3870 * subsystem instance.
3871 */
3872 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3873 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3874 ns->head->instance);
3875
3876 if (nvme_update_ns_info(ns, id))
3877 goto out_unlink_ns;
3878
3879 down_write(&ctrl->namespaces_rwsem);
3880 nvme_ns_add_to_ctrl_list(ns);
3881 up_write(&ctrl->namespaces_rwsem);
3882 nvme_get_ctrl(ctrl);
3883
3884 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3885 goto out_cleanup_ns_from_list;
3886
3887 if (!nvme_ns_head_multipath(ns->head))
3888 nvme_add_ns_cdev(ns);
3889
3890 nvme_mpath_add_disk(ns, id);
3891 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3892 kfree(id);
3893
3894 return;
3895
3896 out_cleanup_ns_from_list:
3897 nvme_put_ctrl(ctrl);
3898 down_write(&ctrl->namespaces_rwsem);
3899 list_del_init(&ns->list);
3900 up_write(&ctrl->namespaces_rwsem);
3901 out_unlink_ns:
3902 mutex_lock(&ctrl->subsys->lock);
3903 list_del_rcu(&ns->siblings);
3904 if (list_empty(&ns->head->list))
3905 list_del_init(&ns->head->entry);
3906 mutex_unlock(&ctrl->subsys->lock);
3907 nvme_put_ns_head(ns->head);
3908 out_cleanup_disk:
3909 blk_cleanup_disk(disk);
3910 out_free_ns:
3911 kfree(ns);
3912 out_free_id:
3913 kfree(id);
3914}
3915
3916static void nvme_ns_remove(struct nvme_ns *ns)
3917{
3918 bool last_path = false;
3919
3920 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3921 return;
3922
3923 clear_bit(NVME_NS_READY, &ns->flags);
3924 set_capacity(ns->disk, 0);
3925 nvme_fault_inject_fini(&ns->fault_inject);
3926
3927 mutex_lock(&ns->ctrl->subsys->lock);
3928 list_del_rcu(&ns->siblings);
3929 if (list_empty(&ns->head->list)) {
3930 list_del_init(&ns->head->entry);
3931 last_path = true;
3932 }
3933 mutex_unlock(&ns->ctrl->subsys->lock);
3934
3935 /* guarantee not available in head->list */
3936 synchronize_rcu();
3937
3938 /* wait for concurrent submissions */
3939 if (nvme_mpath_clear_current_path(ns))
3940 synchronize_srcu(&ns->head->srcu);
3941
3942 if (!nvme_ns_head_multipath(ns->head))
3943 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3944 del_gendisk(ns->disk);
3945 blk_cleanup_queue(ns->queue);
3946
3947 down_write(&ns->ctrl->namespaces_rwsem);
3948 list_del_init(&ns->list);
3949 up_write(&ns->ctrl->namespaces_rwsem);
3950
3951 if (last_path)
3952 nvme_mpath_shutdown_disk(ns->head);
3953 nvme_put_ns(ns);
3954}
3955
3956static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3957{
3958 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3959
3960 if (ns) {
3961 nvme_ns_remove(ns);
3962 nvme_put_ns(ns);
3963 }
3964}
3965
3966static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3967{
3968 struct nvme_id_ns *id;
3969 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3970
3971 if (test_bit(NVME_NS_DEAD, &ns->flags))
3972 goto out;
3973
3974 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3975 if (ret)
3976 goto out;
3977
3978 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3979 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3980 dev_err(ns->ctrl->device,
3981 "identifiers changed for nsid %d\n", ns->head->ns_id);
3982 goto out_free_id;
3983 }
3984
3985 ret = nvme_update_ns_info(ns, id);
3986
3987out_free_id:
3988 kfree(id);
3989out:
3990 /*
3991 * Only remove the namespace if we got a fatal error back from the
3992 * device, otherwise ignore the error and just move on.
3993 *
3994 * TODO: we should probably schedule a delayed retry here.
3995 */
3996 if (ret > 0 && (ret & NVME_SC_DNR))
3997 nvme_ns_remove(ns);
3998}
3999
4000static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4001{
4002 struct nvme_ns_ids ids = { };
4003 struct nvme_ns *ns;
4004
4005 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4006 return;
4007
4008 ns = nvme_find_get_ns(ctrl, nsid);
4009 if (ns) {
4010 nvme_validate_ns(ns, &ids);
4011 nvme_put_ns(ns);
4012 return;
4013 }
4014
4015 switch (ids.csi) {
4016 case NVME_CSI_NVM:
4017 nvme_alloc_ns(ctrl, nsid, &ids);
4018 break;
4019 case NVME_CSI_ZNS:
4020 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4021 dev_warn(ctrl->device,
4022 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4023 nsid);
4024 break;
4025 }
4026 if (!nvme_multi_css(ctrl)) {
4027 dev_warn(ctrl->device,
4028 "command set not reported for nsid: %d\n",
4029 nsid);
4030 break;
4031 }
4032 nvme_alloc_ns(ctrl, nsid, &ids);
4033 break;
4034 default:
4035 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4036 ids.csi, nsid);
4037 break;
4038 }
4039}
4040
4041static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4042 unsigned nsid)
4043{
4044 struct nvme_ns *ns, *next;
4045 LIST_HEAD(rm_list);
4046
4047 down_write(&ctrl->namespaces_rwsem);
4048 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4049 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4050 list_move_tail(&ns->list, &rm_list);
4051 }
4052 up_write(&ctrl->namespaces_rwsem);
4053
4054 list_for_each_entry_safe(ns, next, &rm_list, list)
4055 nvme_ns_remove(ns);
4056
4057}
4058
4059static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4060{
4061 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4062 __le32 *ns_list;
4063 u32 prev = 0;
4064 int ret = 0, i;
4065
4066 if (nvme_ctrl_limited_cns(ctrl))
4067 return -EOPNOTSUPP;
4068
4069 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4070 if (!ns_list)
4071 return -ENOMEM;
4072
4073 for (;;) {
4074 struct nvme_command cmd = {
4075 .identify.opcode = nvme_admin_identify,
4076 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4077 .identify.nsid = cpu_to_le32(prev),
4078 };
4079
4080 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4081 NVME_IDENTIFY_DATA_SIZE);
4082 if (ret) {
4083 dev_warn(ctrl->device,
4084 "Identify NS List failed (status=0x%x)\n", ret);
4085 goto free;
4086 }
4087
4088 for (i = 0; i < nr_entries; i++) {
4089 u32 nsid = le32_to_cpu(ns_list[i]);
4090
4091 if (!nsid) /* end of the list? */
4092 goto out;
4093 nvme_validate_or_alloc_ns(ctrl, nsid);
4094 while (++prev < nsid)
4095 nvme_ns_remove_by_nsid(ctrl, prev);
4096 }
4097 }
4098 out:
4099 nvme_remove_invalid_namespaces(ctrl, prev);
4100 free:
4101 kfree(ns_list);
4102 return ret;
4103}
4104
4105static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4106{
4107 struct nvme_id_ctrl *id;
4108 u32 nn, i;
4109
4110 if (nvme_identify_ctrl(ctrl, &id))
4111 return;
4112 nn = le32_to_cpu(id->nn);
4113 kfree(id);
4114
4115 for (i = 1; i <= nn; i++)
4116 nvme_validate_or_alloc_ns(ctrl, i);
4117
4118 nvme_remove_invalid_namespaces(ctrl, nn);
4119}
4120
4121static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4122{
4123 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4124 __le32 *log;
4125 int error;
4126
4127 log = kzalloc(log_size, GFP_KERNEL);
4128 if (!log)
4129 return;
4130
4131 /*
4132 * We need to read the log to clear the AEN, but we don't want to rely
4133 * on it for the changed namespace information as userspace could have
4134 * raced with us in reading the log page, which could cause us to miss
4135 * updates.
4136 */
4137 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4138 NVME_CSI_NVM, log, log_size, 0);
4139 if (error)
4140 dev_warn(ctrl->device,
4141 "reading changed ns log failed: %d\n", error);
4142
4143 kfree(log);
4144}
4145
4146static void nvme_scan_work(struct work_struct *work)
4147{
4148 struct nvme_ctrl *ctrl =
4149 container_of(work, struct nvme_ctrl, scan_work);
4150
4151 /* No tagset on a live ctrl means IO queues could not created */
4152 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4153 return;
4154
4155 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4156 dev_info(ctrl->device, "rescanning namespaces.\n");
4157 nvme_clear_changed_ns_log(ctrl);
4158 }
4159
4160 mutex_lock(&ctrl->scan_lock);
4161 if (nvme_scan_ns_list(ctrl) != 0)
4162 nvme_scan_ns_sequential(ctrl);
4163 mutex_unlock(&ctrl->scan_lock);
4164}
4165
4166/*
4167 * This function iterates the namespace list unlocked to allow recovery from
4168 * controller failure. It is up to the caller to ensure the namespace list is
4169 * not modified by scan work while this function is executing.
4170 */
4171void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4172{
4173 struct nvme_ns *ns, *next;
4174 LIST_HEAD(ns_list);
4175
4176 /*
4177 * make sure to requeue I/O to all namespaces as these
4178 * might result from the scan itself and must complete
4179 * for the scan_work to make progress
4180 */
4181 nvme_mpath_clear_ctrl_paths(ctrl);
4182
4183 /* prevent racing with ns scanning */
4184 flush_work(&ctrl->scan_work);
4185
4186 /*
4187 * The dead states indicates the controller was not gracefully
4188 * disconnected. In that case, we won't be able to flush any data while
4189 * removing the namespaces' disks; fail all the queues now to avoid
4190 * potentially having to clean up the failed sync later.
4191 */
4192 if (ctrl->state == NVME_CTRL_DEAD)
4193 nvme_kill_queues(ctrl);
4194
4195 /* this is a no-op when called from the controller reset handler */
4196 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4197
4198 down_write(&ctrl->namespaces_rwsem);
4199 list_splice_init(&ctrl->namespaces, &ns_list);
4200 up_write(&ctrl->namespaces_rwsem);
4201
4202 list_for_each_entry_safe(ns, next, &ns_list, list)
4203 nvme_ns_remove(ns);
4204}
4205EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4206
4207static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4208{
4209 struct nvme_ctrl *ctrl =
4210 container_of(dev, struct nvme_ctrl, ctrl_device);
4211 struct nvmf_ctrl_options *opts = ctrl->opts;
4212 int ret;
4213
4214 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4215 if (ret)
4216 return ret;
4217
4218 if (opts) {
4219 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4220 if (ret)
4221 return ret;
4222
4223 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4224 opts->trsvcid ?: "none");
4225 if (ret)
4226 return ret;
4227
4228 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4229 opts->host_traddr ?: "none");
4230 if (ret)
4231 return ret;
4232
4233 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4234 opts->host_iface ?: "none");
4235 }
4236 return ret;
4237}
4238
4239static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4240{
4241 char *envp[2] = { NULL, NULL };
4242 u32 aen_result = ctrl->aen_result;
4243
4244 ctrl->aen_result = 0;
4245 if (!aen_result)
4246 return;
4247
4248 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4249 if (!envp[0])
4250 return;
4251 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4252 kfree(envp[0]);
4253}
4254
4255static void nvme_async_event_work(struct work_struct *work)
4256{
4257 struct nvme_ctrl *ctrl =
4258 container_of(work, struct nvme_ctrl, async_event_work);
4259
4260 nvme_aen_uevent(ctrl);
4261 ctrl->ops->submit_async_event(ctrl);
4262}
4263
4264static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4265{
4266
4267 u32 csts;
4268
4269 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4270 return false;
4271
4272 if (csts == ~0)
4273 return false;
4274
4275 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4276}
4277
4278static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4279{
4280 struct nvme_fw_slot_info_log *log;
4281
4282 log = kmalloc(sizeof(*log), GFP_KERNEL);
4283 if (!log)
4284 return;
4285
4286 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4287 log, sizeof(*log), 0))
4288 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4289 kfree(log);
4290}
4291
4292static void nvme_fw_act_work(struct work_struct *work)
4293{
4294 struct nvme_ctrl *ctrl = container_of(work,
4295 struct nvme_ctrl, fw_act_work);
4296 unsigned long fw_act_timeout;
4297
4298 if (ctrl->mtfa)
4299 fw_act_timeout = jiffies +
4300 msecs_to_jiffies(ctrl->mtfa * 100);
4301 else
4302 fw_act_timeout = jiffies +
4303 msecs_to_jiffies(admin_timeout * 1000);
4304
4305 nvme_stop_queues(ctrl);
4306 while (nvme_ctrl_pp_status(ctrl)) {
4307 if (time_after(jiffies, fw_act_timeout)) {
4308 dev_warn(ctrl->device,
4309 "Fw activation timeout, reset controller\n");
4310 nvme_try_sched_reset(ctrl);
4311 return;
4312 }
4313 msleep(100);
4314 }
4315
4316 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4317 return;
4318
4319 nvme_start_queues(ctrl);
4320 /* read FW slot information to clear the AER */
4321 nvme_get_fw_slot_info(ctrl);
4322}
4323
4324static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4325{
4326 u32 aer_notice_type = (result & 0xff00) >> 8;
4327
4328 trace_nvme_async_event(ctrl, aer_notice_type);
4329
4330 switch (aer_notice_type) {
4331 case NVME_AER_NOTICE_NS_CHANGED:
4332 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4333 nvme_queue_scan(ctrl);
4334 break;
4335 case NVME_AER_NOTICE_FW_ACT_STARTING:
4336 /*
4337 * We are (ab)using the RESETTING state to prevent subsequent
4338 * recovery actions from interfering with the controller's
4339 * firmware activation.
4340 */
4341 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4342 queue_work(nvme_wq, &ctrl->fw_act_work);
4343 break;
4344#ifdef CONFIG_NVME_MULTIPATH
4345 case NVME_AER_NOTICE_ANA:
4346 if (!ctrl->ana_log_buf)
4347 break;
4348 queue_work(nvme_wq, &ctrl->ana_work);
4349 break;
4350#endif
4351 case NVME_AER_NOTICE_DISC_CHANGED:
4352 ctrl->aen_result = result;
4353 break;
4354 default:
4355 dev_warn(ctrl->device, "async event result %08x\n", result);
4356 }
4357}
4358
4359void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4360 volatile union nvme_result *res)
4361{
4362 u32 result = le32_to_cpu(res->u32);
4363 u32 aer_type = result & 0x07;
4364
4365 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4366 return;
4367
4368 switch (aer_type) {
4369 case NVME_AER_NOTICE:
4370 nvme_handle_aen_notice(ctrl, result);
4371 break;
4372 case NVME_AER_ERROR:
4373 case NVME_AER_SMART:
4374 case NVME_AER_CSS:
4375 case NVME_AER_VS:
4376 trace_nvme_async_event(ctrl, aer_type);
4377 ctrl->aen_result = result;
4378 break;
4379 default:
4380 break;
4381 }
4382 queue_work(nvme_wq, &ctrl->async_event_work);
4383}
4384EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4385
4386void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4387{
4388 nvme_mpath_stop(ctrl);
4389 nvme_stop_keep_alive(ctrl);
4390 nvme_stop_failfast_work(ctrl);
4391 flush_work(&ctrl->async_event_work);
4392 cancel_work_sync(&ctrl->fw_act_work);
4393}
4394EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4395
4396void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4397{
4398 nvme_start_keep_alive(ctrl);
4399
4400 nvme_enable_aen(ctrl);
4401
4402 if (ctrl->queue_count > 1) {
4403 nvme_queue_scan(ctrl);
4404 nvme_start_queues(ctrl);
4405 }
4406}
4407EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4408
4409void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4410{
4411 nvme_hwmon_exit(ctrl);
4412 nvme_fault_inject_fini(&ctrl->fault_inject);
4413 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4414 cdev_device_del(&ctrl->cdev, ctrl->device);
4415 nvme_put_ctrl(ctrl);
4416}
4417EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4418
4419static void nvme_free_cels(struct nvme_ctrl *ctrl)
4420{
4421 struct nvme_effects_log *cel;
4422 unsigned long i;
4423
4424 xa_for_each(&ctrl->cels, i, cel) {
4425 xa_erase(&ctrl->cels, i);
4426 kfree(cel);
4427 }
4428
4429 xa_destroy(&ctrl->cels);
4430}
4431
4432static void nvme_free_ctrl(struct device *dev)
4433{
4434 struct nvme_ctrl *ctrl =
4435 container_of(dev, struct nvme_ctrl, ctrl_device);
4436 struct nvme_subsystem *subsys = ctrl->subsys;
4437
4438 if (!subsys || ctrl->instance != subsys->instance)
4439 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4440
4441 nvme_free_cels(ctrl);
4442 nvme_mpath_uninit(ctrl);
4443 __free_page(ctrl->discard_page);
4444
4445 if (subsys) {
4446 mutex_lock(&nvme_subsystems_lock);
4447 list_del(&ctrl->subsys_entry);
4448 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4449 mutex_unlock(&nvme_subsystems_lock);
4450 }
4451
4452 ctrl->ops->free_ctrl(ctrl);
4453
4454 if (subsys)
4455 nvme_put_subsystem(subsys);
4456}
4457
4458/*
4459 * Initialize a NVMe controller structures. This needs to be called during
4460 * earliest initialization so that we have the initialized structured around
4461 * during probing.
4462 */
4463int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4464 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4465{
4466 int ret;
4467
4468 ctrl->state = NVME_CTRL_NEW;
4469 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4470 spin_lock_init(&ctrl->lock);
4471 mutex_init(&ctrl->scan_lock);
4472 INIT_LIST_HEAD(&ctrl->namespaces);
4473 xa_init(&ctrl->cels);
4474 init_rwsem(&ctrl->namespaces_rwsem);
4475 ctrl->dev = dev;
4476 ctrl->ops = ops;
4477 ctrl->quirks = quirks;
4478 ctrl->numa_node = NUMA_NO_NODE;
4479 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4480 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4481 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4482 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4483 init_waitqueue_head(&ctrl->state_wq);
4484
4485 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4486 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4487 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4488 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4489
4490 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4491 PAGE_SIZE);
4492 ctrl->discard_page = alloc_page(GFP_KERNEL);
4493 if (!ctrl->discard_page) {
4494 ret = -ENOMEM;
4495 goto out;
4496 }
4497
4498 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4499 if (ret < 0)
4500 goto out;
4501 ctrl->instance = ret;
4502
4503 device_initialize(&ctrl->ctrl_device);
4504 ctrl->device = &ctrl->ctrl_device;
4505 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4506 ctrl->instance);
4507 ctrl->device->class = nvme_class;
4508 ctrl->device->parent = ctrl->dev;
4509 ctrl->device->groups = nvme_dev_attr_groups;
4510 ctrl->device->release = nvme_free_ctrl;
4511 dev_set_drvdata(ctrl->device, ctrl);
4512 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4513 if (ret)
4514 goto out_release_instance;
4515
4516 nvme_get_ctrl(ctrl);
4517 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4518 ctrl->cdev.owner = ops->module;
4519 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4520 if (ret)
4521 goto out_free_name;
4522
4523 /*
4524 * Initialize latency tolerance controls. The sysfs files won't
4525 * be visible to userspace unless the device actually supports APST.
4526 */
4527 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4528 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4529 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4530
4531 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4532 nvme_mpath_init_ctrl(ctrl);
4533
4534 return 0;
4535out_free_name:
4536 nvme_put_ctrl(ctrl);
4537 kfree_const(ctrl->device->kobj.name);
4538out_release_instance:
4539 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4540out:
4541 if (ctrl->discard_page)
4542 __free_page(ctrl->discard_page);
4543 return ret;
4544}
4545EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4546
4547static void nvme_start_ns_queue(struct nvme_ns *ns)
4548{
4549 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4550 blk_mq_unquiesce_queue(ns->queue);
4551}
4552
4553static void nvme_stop_ns_queue(struct nvme_ns *ns)
4554{
4555 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4556 blk_mq_quiesce_queue(ns->queue);
4557 else
4558 blk_mq_wait_quiesce_done(ns->queue);
4559}
4560
4561/*
4562 * Prepare a queue for teardown.
4563 *
4564 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4565 * the capacity to 0 after that to avoid blocking dispatchers that may be
4566 * holding bd_butex. This will end buffered writers dirtying pages that can't
4567 * be synced.
4568 */
4569static void nvme_set_queue_dying(struct nvme_ns *ns)
4570{
4571 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4572 return;
4573
4574 blk_set_queue_dying(ns->queue);
4575 nvme_start_ns_queue(ns);
4576
4577 set_capacity_and_notify(ns->disk, 0);
4578}
4579
4580/**
4581 * nvme_kill_queues(): Ends all namespace queues
4582 * @ctrl: the dead controller that needs to end
4583 *
4584 * Call this function when the driver determines it is unable to get the
4585 * controller in a state capable of servicing IO.
4586 */
4587void nvme_kill_queues(struct nvme_ctrl *ctrl)
4588{
4589 struct nvme_ns *ns;
4590
4591 down_read(&ctrl->namespaces_rwsem);
4592
4593 /* Forcibly unquiesce queues to avoid blocking dispatch */
4594 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4595 nvme_start_admin_queue(ctrl);
4596
4597 list_for_each_entry(ns, &ctrl->namespaces, list)
4598 nvme_set_queue_dying(ns);
4599
4600 up_read(&ctrl->namespaces_rwsem);
4601}
4602EXPORT_SYMBOL_GPL(nvme_kill_queues);
4603
4604void nvme_unfreeze(struct nvme_ctrl *ctrl)
4605{
4606 struct nvme_ns *ns;
4607
4608 down_read(&ctrl->namespaces_rwsem);
4609 list_for_each_entry(ns, &ctrl->namespaces, list)
4610 blk_mq_unfreeze_queue(ns->queue);
4611 up_read(&ctrl->namespaces_rwsem);
4612}
4613EXPORT_SYMBOL_GPL(nvme_unfreeze);
4614
4615int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4616{
4617 struct nvme_ns *ns;
4618
4619 down_read(&ctrl->namespaces_rwsem);
4620 list_for_each_entry(ns, &ctrl->namespaces, list) {
4621 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4622 if (timeout <= 0)
4623 break;
4624 }
4625 up_read(&ctrl->namespaces_rwsem);
4626 return timeout;
4627}
4628EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4629
4630void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4631{
4632 struct nvme_ns *ns;
4633
4634 down_read(&ctrl->namespaces_rwsem);
4635 list_for_each_entry(ns, &ctrl->namespaces, list)
4636 blk_mq_freeze_queue_wait(ns->queue);
4637 up_read(&ctrl->namespaces_rwsem);
4638}
4639EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4640
4641void nvme_start_freeze(struct nvme_ctrl *ctrl)
4642{
4643 struct nvme_ns *ns;
4644
4645 down_read(&ctrl->namespaces_rwsem);
4646 list_for_each_entry(ns, &ctrl->namespaces, list)
4647 blk_freeze_queue_start(ns->queue);
4648 up_read(&ctrl->namespaces_rwsem);
4649}
4650EXPORT_SYMBOL_GPL(nvme_start_freeze);
4651
4652void nvme_stop_queues(struct nvme_ctrl *ctrl)
4653{
4654 struct nvme_ns *ns;
4655
4656 down_read(&ctrl->namespaces_rwsem);
4657 list_for_each_entry(ns, &ctrl->namespaces, list)
4658 nvme_stop_ns_queue(ns);
4659 up_read(&ctrl->namespaces_rwsem);
4660}
4661EXPORT_SYMBOL_GPL(nvme_stop_queues);
4662
4663void nvme_start_queues(struct nvme_ctrl *ctrl)
4664{
4665 struct nvme_ns *ns;
4666
4667 down_read(&ctrl->namespaces_rwsem);
4668 list_for_each_entry(ns, &ctrl->namespaces, list)
4669 nvme_start_ns_queue(ns);
4670 up_read(&ctrl->namespaces_rwsem);
4671}
4672EXPORT_SYMBOL_GPL(nvme_start_queues);
4673
4674void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4675{
4676 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4677 blk_mq_quiesce_queue(ctrl->admin_q);
4678 else
4679 blk_mq_wait_quiesce_done(ctrl->admin_q);
4680}
4681EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4682
4683void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4684{
4685 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4686 blk_mq_unquiesce_queue(ctrl->admin_q);
4687}
4688EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4689
4690void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4691{
4692 struct nvme_ns *ns;
4693
4694 down_read(&ctrl->namespaces_rwsem);
4695 list_for_each_entry(ns, &ctrl->namespaces, list)
4696 blk_sync_queue(ns->queue);
4697 up_read(&ctrl->namespaces_rwsem);
4698}
4699EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4700
4701void nvme_sync_queues(struct nvme_ctrl *ctrl)
4702{
4703 nvme_sync_io_queues(ctrl);
4704 if (ctrl->admin_q)
4705 blk_sync_queue(ctrl->admin_q);
4706}
4707EXPORT_SYMBOL_GPL(nvme_sync_queues);
4708
4709struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4710{
4711 if (file->f_op != &nvme_dev_fops)
4712 return NULL;
4713 return file->private_data;
4714}
4715EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4716
4717/*
4718 * Check we didn't inadvertently grow the command structure sizes:
4719 */
4720static inline void _nvme_check_size(void)
4721{
4722 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4723 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4724 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4725 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4726 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4727 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4728 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4729 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4730 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4731 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4732 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4733 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4734 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4735 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4736 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4737 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4738 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4739 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4740 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4741 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4742}
4743
4744
4745static int __init nvme_core_init(void)
4746{
4747 int result = -ENOMEM;
4748
4749 _nvme_check_size();
4750
4751 nvme_wq = alloc_workqueue("nvme-wq",
4752 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4753 if (!nvme_wq)
4754 goto out;
4755
4756 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4757 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4758 if (!nvme_reset_wq)
4759 goto destroy_wq;
4760
4761 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4762 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4763 if (!nvme_delete_wq)
4764 goto destroy_reset_wq;
4765
4766 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4767 NVME_MINORS, "nvme");
4768 if (result < 0)
4769 goto destroy_delete_wq;
4770
4771 nvme_class = class_create(THIS_MODULE, "nvme");
4772 if (IS_ERR(nvme_class)) {
4773 result = PTR_ERR(nvme_class);
4774 goto unregister_chrdev;
4775 }
4776 nvme_class->dev_uevent = nvme_class_uevent;
4777
4778 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4779 if (IS_ERR(nvme_subsys_class)) {
4780 result = PTR_ERR(nvme_subsys_class);
4781 goto destroy_class;
4782 }
4783
4784 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4785 "nvme-generic");
4786 if (result < 0)
4787 goto destroy_subsys_class;
4788
4789 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4790 if (IS_ERR(nvme_ns_chr_class)) {
4791 result = PTR_ERR(nvme_ns_chr_class);
4792 goto unregister_generic_ns;
4793 }
4794
4795 return 0;
4796
4797unregister_generic_ns:
4798 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4799destroy_subsys_class:
4800 class_destroy(nvme_subsys_class);
4801destroy_class:
4802 class_destroy(nvme_class);
4803unregister_chrdev:
4804 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4805destroy_delete_wq:
4806 destroy_workqueue(nvme_delete_wq);
4807destroy_reset_wq:
4808 destroy_workqueue(nvme_reset_wq);
4809destroy_wq:
4810 destroy_workqueue(nvme_wq);
4811out:
4812 return result;
4813}
4814
4815static void __exit nvme_core_exit(void)
4816{
4817 class_destroy(nvme_ns_chr_class);
4818 class_destroy(nvme_subsys_class);
4819 class_destroy(nvme_class);
4820 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4821 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4822 destroy_workqueue(nvme_delete_wq);
4823 destroy_workqueue(nvme_reset_wq);
4824 destroy_workqueue(nvme_wq);
4825 ida_destroy(&nvme_ns_chr_minor_ida);
4826 ida_destroy(&nvme_instance_ida);
4827}
4828
4829MODULE_LICENSE("GPL");
4830MODULE_VERSION("1.0");
4831module_init(nvme_core_init);
4832module_exit(nvme_core_exit);