Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket __ro_after_init;
85
86/* Kernel memory accounting disabled? */
87bool cgroup_memory_nokmem __ro_after_init;
88
89/* Whether the swap controller is active */
90#ifdef CONFIG_MEMCG_SWAP
91bool cgroup_memory_noswap __ro_after_init;
92#else
93#define cgroup_memory_noswap 1
94#endif
95
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104}
105
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
108
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118};
119
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
131
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
135struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170};
171
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175/* Stuffs for move charges at task migration. */
176/*
177 * Types of charges to be moved.
178 */
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
199
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207/* for encoding cft->private value on file */
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219/* Used for OOM notifier */
220#define OOM_CONTROL (0)
221
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237static inline bool task_is_dying(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252{
253 return container_of(vmpr, struct mem_cgroup, vmpressure);
254}
255
256#ifdef CONFIG_MEMCG_KMEM
257extern spinlock_t css_set_lock;
258
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&css_set_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423}
424
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
454static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
455 struct mem_cgroup_tree_per_node *mctz,
456 unsigned long new_usage_in_excess)
457{
458 struct rb_node **p = &mctz->rb_root.rb_node;
459 struct rb_node *parent = NULL;
460 struct mem_cgroup_per_node *mz_node;
461 bool rightmost = true;
462
463 if (mz->on_tree)
464 return;
465
466 mz->usage_in_excess = new_usage_in_excess;
467 if (!mz->usage_in_excess)
468 return;
469 while (*p) {
470 parent = *p;
471 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
472 tree_node);
473 if (mz->usage_in_excess < mz_node->usage_in_excess) {
474 p = &(*p)->rb_left;
475 rightmost = false;
476 } else {
477 p = &(*p)->rb_right;
478 }
479 }
480
481 if (rightmost)
482 mctz->rb_rightmost = &mz->tree_node;
483
484 rb_link_node(&mz->tree_node, parent, p);
485 rb_insert_color(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = true;
487}
488
489static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
490 struct mem_cgroup_tree_per_node *mctz)
491{
492 if (!mz->on_tree)
493 return;
494
495 if (&mz->tree_node == mctz->rb_rightmost)
496 mctz->rb_rightmost = rb_prev(&mz->tree_node);
497
498 rb_erase(&mz->tree_node, &mctz->rb_root);
499 mz->on_tree = false;
500}
501
502static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
503 struct mem_cgroup_tree_per_node *mctz)
504{
505 unsigned long flags;
506
507 spin_lock_irqsave(&mctz->lock, flags);
508 __mem_cgroup_remove_exceeded(mz, mctz);
509 spin_unlock_irqrestore(&mctz->lock, flags);
510}
511
512static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
513{
514 unsigned long nr_pages = page_counter_read(&memcg->memory);
515 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
516 unsigned long excess = 0;
517
518 if (nr_pages > soft_limit)
519 excess = nr_pages - soft_limit;
520
521 return excess;
522}
523
524static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
525{
526 unsigned long excess;
527 struct mem_cgroup_per_node *mz;
528 struct mem_cgroup_tree_per_node *mctz;
529
530 mctz = soft_limit_tree.rb_tree_per_node[nid];
531 if (!mctz)
532 return;
533 /*
534 * Necessary to update all ancestors when hierarchy is used.
535 * because their event counter is not touched.
536 */
537 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
538 mz = memcg->nodeinfo[nid];
539 excess = soft_limit_excess(memcg);
540 /*
541 * We have to update the tree if mz is on RB-tree or
542 * mem is over its softlimit.
543 */
544 if (excess || mz->on_tree) {
545 unsigned long flags;
546
547 spin_lock_irqsave(&mctz->lock, flags);
548 /* if on-tree, remove it */
549 if (mz->on_tree)
550 __mem_cgroup_remove_exceeded(mz, mctz);
551 /*
552 * Insert again. mz->usage_in_excess will be updated.
553 * If excess is 0, no tree ops.
554 */
555 __mem_cgroup_insert_exceeded(mz, mctz, excess);
556 spin_unlock_irqrestore(&mctz->lock, flags);
557 }
558 }
559}
560
561static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
562{
563 struct mem_cgroup_tree_per_node *mctz;
564 struct mem_cgroup_per_node *mz;
565 int nid;
566
567 for_each_node(nid) {
568 mz = memcg->nodeinfo[nid];
569 mctz = soft_limit_tree.rb_tree_per_node[nid];
570 if (mctz)
571 mem_cgroup_remove_exceeded(mz, mctz);
572 }
573}
574
575static struct mem_cgroup_per_node *
576__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
577{
578 struct mem_cgroup_per_node *mz;
579
580retry:
581 mz = NULL;
582 if (!mctz->rb_rightmost)
583 goto done; /* Nothing to reclaim from */
584
585 mz = rb_entry(mctz->rb_rightmost,
586 struct mem_cgroup_per_node, tree_node);
587 /*
588 * Remove the node now but someone else can add it back,
589 * we will to add it back at the end of reclaim to its correct
590 * position in the tree.
591 */
592 __mem_cgroup_remove_exceeded(mz, mctz);
593 if (!soft_limit_excess(mz->memcg) ||
594 !css_tryget(&mz->memcg->css))
595 goto retry;
596done:
597 return mz;
598}
599
600static struct mem_cgroup_per_node *
601mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
602{
603 struct mem_cgroup_per_node *mz;
604
605 spin_lock_irq(&mctz->lock);
606 mz = __mem_cgroup_largest_soft_limit_node(mctz);
607 spin_unlock_irq(&mctz->lock);
608 return mz;
609}
610
611/*
612 * memcg and lruvec stats flushing
613 *
614 * Many codepaths leading to stats update or read are performance sensitive and
615 * adding stats flushing in such codepaths is not desirable. So, to optimize the
616 * flushing the kernel does:
617 *
618 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
619 * rstat update tree grow unbounded.
620 *
621 * 2) Flush the stats synchronously on reader side only when there are more than
622 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
623 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
624 * only for 2 seconds due to (1).
625 */
626static void flush_memcg_stats_dwork(struct work_struct *w);
627static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
628static DEFINE_SPINLOCK(stats_flush_lock);
629static DEFINE_PER_CPU(unsigned int, stats_updates);
630static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
631
632static inline void memcg_rstat_updated(struct mem_cgroup *memcg)
633{
634 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
635 if (!(__this_cpu_inc_return(stats_updates) % MEMCG_CHARGE_BATCH))
636 atomic_inc(&stats_flush_threshold);
637}
638
639static void __mem_cgroup_flush_stats(void)
640{
641 unsigned long flag;
642
643 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
644 return;
645
646 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
647 atomic_set(&stats_flush_threshold, 0);
648 spin_unlock_irqrestore(&stats_flush_lock, flag);
649}
650
651void mem_cgroup_flush_stats(void)
652{
653 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
654 __mem_cgroup_flush_stats();
655}
656
657static void flush_memcg_stats_dwork(struct work_struct *w)
658{
659 mem_cgroup_flush_stats();
660 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
661}
662
663/**
664 * __mod_memcg_state - update cgroup memory statistics
665 * @memcg: the memory cgroup
666 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
667 * @val: delta to add to the counter, can be negative
668 */
669void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
670{
671 if (mem_cgroup_disabled())
672 return;
673
674 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
675 memcg_rstat_updated(memcg);
676}
677
678/* idx can be of type enum memcg_stat_item or node_stat_item. */
679static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
680{
681 long x = 0;
682 int cpu;
683
684 for_each_possible_cpu(cpu)
685 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
686#ifdef CONFIG_SMP
687 if (x < 0)
688 x = 0;
689#endif
690 return x;
691}
692
693void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
694 int val)
695{
696 struct mem_cgroup_per_node *pn;
697 struct mem_cgroup *memcg;
698
699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
700 memcg = pn->memcg;
701
702 /* Update memcg */
703 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
704
705 /* Update lruvec */
706 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
707
708 memcg_rstat_updated(memcg);
709}
710
711/**
712 * __mod_lruvec_state - update lruvec memory statistics
713 * @lruvec: the lruvec
714 * @idx: the stat item
715 * @val: delta to add to the counter, can be negative
716 *
717 * The lruvec is the intersection of the NUMA node and a cgroup. This
718 * function updates the all three counters that are affected by a
719 * change of state at this level: per-node, per-cgroup, per-lruvec.
720 */
721void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
722 int val)
723{
724 /* Update node */
725 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
726
727 /* Update memcg and lruvec */
728 if (!mem_cgroup_disabled())
729 __mod_memcg_lruvec_state(lruvec, idx, val);
730}
731
732void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
733 int val)
734{
735 struct page *head = compound_head(page); /* rmap on tail pages */
736 struct mem_cgroup *memcg;
737 pg_data_t *pgdat = page_pgdat(page);
738 struct lruvec *lruvec;
739
740 rcu_read_lock();
741 memcg = page_memcg(head);
742 /* Untracked pages have no memcg, no lruvec. Update only the node */
743 if (!memcg) {
744 rcu_read_unlock();
745 __mod_node_page_state(pgdat, idx, val);
746 return;
747 }
748
749 lruvec = mem_cgroup_lruvec(memcg, pgdat);
750 __mod_lruvec_state(lruvec, idx, val);
751 rcu_read_unlock();
752}
753EXPORT_SYMBOL(__mod_lruvec_page_state);
754
755void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
756{
757 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
758 struct mem_cgroup *memcg;
759 struct lruvec *lruvec;
760
761 rcu_read_lock();
762 memcg = mem_cgroup_from_obj(p);
763
764 /*
765 * Untracked pages have no memcg, no lruvec. Update only the
766 * node. If we reparent the slab objects to the root memcg,
767 * when we free the slab object, we need to update the per-memcg
768 * vmstats to keep it correct for the root memcg.
769 */
770 if (!memcg) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
779/**
780 * __count_memcg_events - account VM events in a cgroup
781 * @memcg: the memory cgroup
782 * @idx: the event item
783 * @count: the number of events that occurred
784 */
785void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
786 unsigned long count)
787{
788 if (mem_cgroup_disabled())
789 return;
790
791 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
792 memcg_rstat_updated(memcg);
793}
794
795static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
796{
797 return READ_ONCE(memcg->vmstats.events[event]);
798}
799
800static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
801{
802 long x = 0;
803 int cpu;
804
805 for_each_possible_cpu(cpu)
806 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
807 return x;
808}
809
810static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
811 int nr_pages)
812{
813 /* pagein of a big page is an event. So, ignore page size */
814 if (nr_pages > 0)
815 __count_memcg_events(memcg, PGPGIN, 1);
816 else {
817 __count_memcg_events(memcg, PGPGOUT, 1);
818 nr_pages = -nr_pages; /* for event */
819 }
820
821 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
822}
823
824static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
825 enum mem_cgroup_events_target target)
826{
827 unsigned long val, next;
828
829 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
830 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
831 /* from time_after() in jiffies.h */
832 if ((long)(next - val) < 0) {
833 switch (target) {
834 case MEM_CGROUP_TARGET_THRESH:
835 next = val + THRESHOLDS_EVENTS_TARGET;
836 break;
837 case MEM_CGROUP_TARGET_SOFTLIMIT:
838 next = val + SOFTLIMIT_EVENTS_TARGET;
839 break;
840 default:
841 break;
842 }
843 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
844 return true;
845 }
846 return false;
847}
848
849/*
850 * Check events in order.
851 *
852 */
853static void memcg_check_events(struct mem_cgroup *memcg, int nid)
854{
855 /* threshold event is triggered in finer grain than soft limit */
856 if (unlikely(mem_cgroup_event_ratelimit(memcg,
857 MEM_CGROUP_TARGET_THRESH))) {
858 bool do_softlimit;
859
860 do_softlimit = mem_cgroup_event_ratelimit(memcg,
861 MEM_CGROUP_TARGET_SOFTLIMIT);
862 mem_cgroup_threshold(memcg);
863 if (unlikely(do_softlimit))
864 mem_cgroup_update_tree(memcg, nid);
865 }
866}
867
868struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
869{
870 /*
871 * mm_update_next_owner() may clear mm->owner to NULL
872 * if it races with swapoff, page migration, etc.
873 * So this can be called with p == NULL.
874 */
875 if (unlikely(!p))
876 return NULL;
877
878 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
879}
880EXPORT_SYMBOL(mem_cgroup_from_task);
881
882static __always_inline struct mem_cgroup *active_memcg(void)
883{
884 if (!in_task())
885 return this_cpu_read(int_active_memcg);
886 else
887 return current->active_memcg;
888}
889
890/**
891 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
892 * @mm: mm from which memcg should be extracted. It can be NULL.
893 *
894 * Obtain a reference on mm->memcg and returns it if successful. If mm
895 * is NULL, then the memcg is chosen as follows:
896 * 1) The active memcg, if set.
897 * 2) current->mm->memcg, if available
898 * 3) root memcg
899 * If mem_cgroup is disabled, NULL is returned.
900 */
901struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
902{
903 struct mem_cgroup *memcg;
904
905 if (mem_cgroup_disabled())
906 return NULL;
907
908 /*
909 * Page cache insertions can happen without an
910 * actual mm context, e.g. during disk probing
911 * on boot, loopback IO, acct() writes etc.
912 *
913 * No need to css_get on root memcg as the reference
914 * counting is disabled on the root level in the
915 * cgroup core. See CSS_NO_REF.
916 */
917 if (unlikely(!mm)) {
918 memcg = active_memcg();
919 if (unlikely(memcg)) {
920 /* remote memcg must hold a ref */
921 css_get(&memcg->css);
922 return memcg;
923 }
924 mm = current->mm;
925 if (unlikely(!mm))
926 return root_mem_cgroup;
927 }
928
929 rcu_read_lock();
930 do {
931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 if (unlikely(!memcg))
933 memcg = root_mem_cgroup;
934 } while (!css_tryget(&memcg->css));
935 rcu_read_unlock();
936 return memcg;
937}
938EXPORT_SYMBOL(get_mem_cgroup_from_mm);
939
940static __always_inline bool memcg_kmem_bypass(void)
941{
942 /* Allow remote memcg charging from any context. */
943 if (unlikely(active_memcg()))
944 return false;
945
946 /* Memcg to charge can't be determined. */
947 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
948 return true;
949
950 return false;
951}
952
953/**
954 * mem_cgroup_iter - iterate over memory cgroup hierarchy
955 * @root: hierarchy root
956 * @prev: previously returned memcg, NULL on first invocation
957 * @reclaim: cookie for shared reclaim walks, NULL for full walks
958 *
959 * Returns references to children of the hierarchy below @root, or
960 * @root itself, or %NULL after a full round-trip.
961 *
962 * Caller must pass the return value in @prev on subsequent
963 * invocations for reference counting, or use mem_cgroup_iter_break()
964 * to cancel a hierarchy walk before the round-trip is complete.
965 *
966 * Reclaimers can specify a node in @reclaim to divide up the memcgs
967 * in the hierarchy among all concurrent reclaimers operating on the
968 * same node.
969 */
970struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
971 struct mem_cgroup *prev,
972 struct mem_cgroup_reclaim_cookie *reclaim)
973{
974 struct mem_cgroup_reclaim_iter *iter;
975 struct cgroup_subsys_state *css = NULL;
976 struct mem_cgroup *memcg = NULL;
977 struct mem_cgroup *pos = NULL;
978
979 if (mem_cgroup_disabled())
980 return NULL;
981
982 if (!root)
983 root = root_mem_cgroup;
984
985 if (prev && !reclaim)
986 pos = prev;
987
988 rcu_read_lock();
989
990 if (reclaim) {
991 struct mem_cgroup_per_node *mz;
992
993 mz = root->nodeinfo[reclaim->pgdat->node_id];
994 iter = &mz->iter;
995
996 if (prev && reclaim->generation != iter->generation)
997 goto out_unlock;
998
999 while (1) {
1000 pos = READ_ONCE(iter->position);
1001 if (!pos || css_tryget(&pos->css))
1002 break;
1003 /*
1004 * css reference reached zero, so iter->position will
1005 * be cleared by ->css_released. However, we should not
1006 * rely on this happening soon, because ->css_released
1007 * is called from a work queue, and by busy-waiting we
1008 * might block it. So we clear iter->position right
1009 * away.
1010 */
1011 (void)cmpxchg(&iter->position, pos, NULL);
1012 }
1013 }
1014
1015 if (pos)
1016 css = &pos->css;
1017
1018 for (;;) {
1019 css = css_next_descendant_pre(css, &root->css);
1020 if (!css) {
1021 /*
1022 * Reclaimers share the hierarchy walk, and a
1023 * new one might jump in right at the end of
1024 * the hierarchy - make sure they see at least
1025 * one group and restart from the beginning.
1026 */
1027 if (!prev)
1028 continue;
1029 break;
1030 }
1031
1032 /*
1033 * Verify the css and acquire a reference. The root
1034 * is provided by the caller, so we know it's alive
1035 * and kicking, and don't take an extra reference.
1036 */
1037 memcg = mem_cgroup_from_css(css);
1038
1039 if (css == &root->css)
1040 break;
1041
1042 if (css_tryget(css))
1043 break;
1044
1045 memcg = NULL;
1046 }
1047
1048 if (reclaim) {
1049 /*
1050 * The position could have already been updated by a competing
1051 * thread, so check that the value hasn't changed since we read
1052 * it to avoid reclaiming from the same cgroup twice.
1053 */
1054 (void)cmpxchg(&iter->position, pos, memcg);
1055
1056 if (pos)
1057 css_put(&pos->css);
1058
1059 if (!memcg)
1060 iter->generation++;
1061 else if (!prev)
1062 reclaim->generation = iter->generation;
1063 }
1064
1065out_unlock:
1066 rcu_read_unlock();
1067 if (prev && prev != root)
1068 css_put(&prev->css);
1069
1070 return memcg;
1071}
1072
1073/**
1074 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1075 * @root: hierarchy root
1076 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1077 */
1078void mem_cgroup_iter_break(struct mem_cgroup *root,
1079 struct mem_cgroup *prev)
1080{
1081 if (!root)
1082 root = root_mem_cgroup;
1083 if (prev && prev != root)
1084 css_put(&prev->css);
1085}
1086
1087static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1088 struct mem_cgroup *dead_memcg)
1089{
1090 struct mem_cgroup_reclaim_iter *iter;
1091 struct mem_cgroup_per_node *mz;
1092 int nid;
1093
1094 for_each_node(nid) {
1095 mz = from->nodeinfo[nid];
1096 iter = &mz->iter;
1097 cmpxchg(&iter->position, dead_memcg, NULL);
1098 }
1099}
1100
1101static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1102{
1103 struct mem_cgroup *memcg = dead_memcg;
1104 struct mem_cgroup *last;
1105
1106 do {
1107 __invalidate_reclaim_iterators(memcg, dead_memcg);
1108 last = memcg;
1109 } while ((memcg = parent_mem_cgroup(memcg)));
1110
1111 /*
1112 * When cgruop1 non-hierarchy mode is used,
1113 * parent_mem_cgroup() does not walk all the way up to the
1114 * cgroup root (root_mem_cgroup). So we have to handle
1115 * dead_memcg from cgroup root separately.
1116 */
1117 if (last != root_mem_cgroup)
1118 __invalidate_reclaim_iterators(root_mem_cgroup,
1119 dead_memcg);
1120}
1121
1122/**
1123 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1124 * @memcg: hierarchy root
1125 * @fn: function to call for each task
1126 * @arg: argument passed to @fn
1127 *
1128 * This function iterates over tasks attached to @memcg or to any of its
1129 * descendants and calls @fn for each task. If @fn returns a non-zero
1130 * value, the function breaks the iteration loop and returns the value.
1131 * Otherwise, it will iterate over all tasks and return 0.
1132 *
1133 * This function must not be called for the root memory cgroup.
1134 */
1135int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1136 int (*fn)(struct task_struct *, void *), void *arg)
1137{
1138 struct mem_cgroup *iter;
1139 int ret = 0;
1140
1141 BUG_ON(memcg == root_mem_cgroup);
1142
1143 for_each_mem_cgroup_tree(iter, memcg) {
1144 struct css_task_iter it;
1145 struct task_struct *task;
1146
1147 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1148 while (!ret && (task = css_task_iter_next(&it)))
1149 ret = fn(task, arg);
1150 css_task_iter_end(&it);
1151 if (ret) {
1152 mem_cgroup_iter_break(memcg, iter);
1153 break;
1154 }
1155 }
1156 return ret;
1157}
1158
1159#ifdef CONFIG_DEBUG_VM
1160void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1161{
1162 struct mem_cgroup *memcg;
1163
1164 if (mem_cgroup_disabled())
1165 return;
1166
1167 memcg = folio_memcg(folio);
1168
1169 if (!memcg)
1170 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1171 else
1172 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1173}
1174#endif
1175
1176/**
1177 * folio_lruvec_lock - Lock the lruvec for a folio.
1178 * @folio: Pointer to the folio.
1179 *
1180 * These functions are safe to use under any of the following conditions:
1181 * - folio locked
1182 * - folio_test_lru false
1183 * - folio_memcg_lock()
1184 * - folio frozen (refcount of 0)
1185 *
1186 * Return: The lruvec this folio is on with its lock held.
1187 */
1188struct lruvec *folio_lruvec_lock(struct folio *folio)
1189{
1190 struct lruvec *lruvec = folio_lruvec(folio);
1191
1192 spin_lock(&lruvec->lru_lock);
1193 lruvec_memcg_debug(lruvec, folio);
1194
1195 return lruvec;
1196}
1197
1198/**
1199 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1200 * @folio: Pointer to the folio.
1201 *
1202 * These functions are safe to use under any of the following conditions:
1203 * - folio locked
1204 * - folio_test_lru false
1205 * - folio_memcg_lock()
1206 * - folio frozen (refcount of 0)
1207 *
1208 * Return: The lruvec this folio is on with its lock held and interrupts
1209 * disabled.
1210 */
1211struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1212{
1213 struct lruvec *lruvec = folio_lruvec(folio);
1214
1215 spin_lock_irq(&lruvec->lru_lock);
1216 lruvec_memcg_debug(lruvec, folio);
1217
1218 return lruvec;
1219}
1220
1221/**
1222 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1223 * @folio: Pointer to the folio.
1224 * @flags: Pointer to irqsave flags.
1225 *
1226 * These functions are safe to use under any of the following conditions:
1227 * - folio locked
1228 * - folio_test_lru false
1229 * - folio_memcg_lock()
1230 * - folio frozen (refcount of 0)
1231 *
1232 * Return: The lruvec this folio is on with its lock held and interrupts
1233 * disabled.
1234 */
1235struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1236 unsigned long *flags)
1237{
1238 struct lruvec *lruvec = folio_lruvec(folio);
1239
1240 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1241 lruvec_memcg_debug(lruvec, folio);
1242
1243 return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 int zid, int nr_pages)
1259{
1260 struct mem_cgroup_per_node *mz;
1261 unsigned long *lru_size;
1262 long size;
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 lru_size = &mz->lru_zone_size[zid][lru];
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
1297
1298 count = page_counter_read(&memcg->memory);
1299 limit = READ_ONCE(memcg->memory.max);
1300 if (count < limit)
1301 margin = limit - count;
1302
1303 if (do_memsw_account()) {
1304 count = page_counter_read(&memcg->memsw);
1305 limit = READ_ONCE(memcg->memsw.max);
1306 if (count < limit)
1307 margin = min(margin, limit - count);
1308 else
1309 margin = 0;
1310 }
1311
1312 return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
1326 bool ret = false;
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
1336
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340 spin_unlock(&mc.lock);
1341 return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346 if (mc.moving_task && current != mc.moving_task) {
1347 if (mem_cgroup_under_move(memcg)) {
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358}
1359
1360struct memory_stat {
1361 const char *name;
1362 unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
1376#ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
1383#endif
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1391
1392 /* The memory events */
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426{
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432 struct seq_buf s;
1433 int i;
1434
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
1449 mem_cgroup_flush_stats();
1450
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
1453
1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
1463
1464 /* Accumulated memory events */
1465
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 memcg_events(memcg, THP_FAULT_ALLOC));
1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512 rcu_read_lock();
1513
1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
1519 if (p) {
1520 pr_cont(",task_memcg=");
1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 }
1523 rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533 char *buf;
1534
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 }
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
1579 }
1580 return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585 return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 int order)
1590{
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
1594 .memcg = memcg,
1595 .gfp_mask = gfp_mask,
1596 .order = order,
1597 };
1598 bool ret = true;
1599
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
1610 ret = task_is_dying() || out_of_memory(&oc);
1611
1612unlock:
1613 mutex_unlock(&oom_lock);
1614 return ret;
1615}
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 pg_data_t *pgdat,
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621{
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
1628 .pgdat = pgdat,
1629 };
1630
1631 excess = soft_limit_excess(root_memcg);
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 pgdat, &nr_scanned);
1659 *total_scanned += nr_scanned;
1660 if (!soft_limit_excess(root_memcg))
1661 break;
1662 }
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681 struct mem_cgroup *iter, *failed = NULL;
1682
1683 spin_lock(&memcg_oom_lock);
1684
1685 for_each_mem_cgroup_tree(iter, memcg) {
1686 if (iter->oom_lock) {
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
1691 failed = iter;
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
1694 } else
1695 iter->oom_lock = true;
1696 }
1697
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
1709 }
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720 struct mem_cgroup *iter;
1721
1722 spin_lock(&memcg_oom_lock);
1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 iter->oom_lock = false;
1726 spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731 struct mem_cgroup *iter;
1732
1733 spin_lock(&memcg_oom_lock);
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741 struct mem_cgroup *iter;
1742
1743 /*
1744 * Be careful about under_oom underflows because a child memcg
1745 * could have been added after mem_cgroup_mark_under_oom.
1746 */
1747 spin_lock(&memcg_oom_lock);
1748 for_each_mem_cgroup_tree(iter, memcg)
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757 struct mem_cgroup *memcg;
1758 wait_queue_entry_t wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 unsigned mode, int sync, void *arg)
1763{
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 oom_wait_memcg = oom_wait_info->memcg;
1770
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 return 0;
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800 enum oom_status ret;
1801 bool locked;
1802
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
1808 /*
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
1817 *
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
1825 */
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852
1853 return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875 struct mem_cgroup *memcg = current->memcg_in_oom;
1876 struct oom_wait_info owait;
1877 bool locked;
1878
1879 /* OOM is global, do not handle */
1880 if (!memcg)
1881 return false;
1882
1883 if (!handle)
1884 goto cleanup;
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.entry);
1891
1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
1905 } else {
1906 schedule();
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
1916 * uncharges. Wake any sleepers explicitly.
1917 */
1918 memcg_oom_recover(memcg);
1919 }
1920cleanup:
1921 current->memcg_in_oom = NULL;
1922 css_put(&memcg->css);
1923 return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938{
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * folio_memcg_lock - Bind a folio to its memcg.
1992 * @folio: The folio.
1993 *
1994 * This function prevents unlocked LRU folios from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the bound memcg. The caller is responsible
1998 * for the lifetime of the folio.
1999 */
2000void folio_memcg_lock(struct folio *folio)
2001{
2002 struct mem_cgroup *memcg;
2003 unsigned long flags;
2004
2005 /*
2006 * The RCU lock is held throughout the transaction. The fast
2007 * path can get away without acquiring the memcg->move_lock
2008 * because page moving starts with an RCU grace period.
2009 */
2010 rcu_read_lock();
2011
2012 if (mem_cgroup_disabled())
2013 return;
2014again:
2015 memcg = folio_memcg(folio);
2016 if (unlikely(!memcg))
2017 return;
2018
2019#ifdef CONFIG_PROVE_LOCKING
2020 local_irq_save(flags);
2021 might_lock(&memcg->move_lock);
2022 local_irq_restore(flags);
2023#endif
2024
2025 if (atomic_read(&memcg->moving_account) <= 0)
2026 return;
2027
2028 spin_lock_irqsave(&memcg->move_lock, flags);
2029 if (memcg != folio_memcg(folio)) {
2030 spin_unlock_irqrestore(&memcg->move_lock, flags);
2031 goto again;
2032 }
2033
2034 /*
2035 * When charge migration first begins, we can have multiple
2036 * critical sections holding the fast-path RCU lock and one
2037 * holding the slowpath move_lock. Track the task who has the
2038 * move_lock for unlock_page_memcg().
2039 */
2040 memcg->move_lock_task = current;
2041 memcg->move_lock_flags = flags;
2042}
2043
2044void lock_page_memcg(struct page *page)
2045{
2046 folio_memcg_lock(page_folio(page));
2047}
2048
2049static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2050{
2051 if (memcg && memcg->move_lock_task == current) {
2052 unsigned long flags = memcg->move_lock_flags;
2053
2054 memcg->move_lock_task = NULL;
2055 memcg->move_lock_flags = 0;
2056
2057 spin_unlock_irqrestore(&memcg->move_lock, flags);
2058 }
2059
2060 rcu_read_unlock();
2061}
2062
2063/**
2064 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2065 * @folio: The folio.
2066 *
2067 * This releases the binding created by folio_memcg_lock(). This does
2068 * not change the accounting of this folio to its memcg, but it does
2069 * permit others to change it.
2070 */
2071void folio_memcg_unlock(struct folio *folio)
2072{
2073 __folio_memcg_unlock(folio_memcg(folio));
2074}
2075
2076void unlock_page_memcg(struct page *page)
2077{
2078 folio_memcg_unlock(page_folio(page));
2079}
2080
2081struct obj_stock {
2082#ifdef CONFIG_MEMCG_KMEM
2083 struct obj_cgroup *cached_objcg;
2084 struct pglist_data *cached_pgdat;
2085 unsigned int nr_bytes;
2086 int nr_slab_reclaimable_b;
2087 int nr_slab_unreclaimable_b;
2088#else
2089 int dummy[0];
2090#endif
2091};
2092
2093struct memcg_stock_pcp {
2094 struct mem_cgroup *cached; /* this never be root cgroup */
2095 unsigned int nr_pages;
2096 struct obj_stock task_obj;
2097 struct obj_stock irq_obj;
2098
2099 struct work_struct work;
2100 unsigned long flags;
2101#define FLUSHING_CACHED_CHARGE 0
2102};
2103static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2104static DEFINE_MUTEX(percpu_charge_mutex);
2105
2106#ifdef CONFIG_MEMCG_KMEM
2107static void drain_obj_stock(struct obj_stock *stock);
2108static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2109 struct mem_cgroup *root_memcg);
2110
2111#else
2112static inline void drain_obj_stock(struct obj_stock *stock)
2113{
2114}
2115static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2116 struct mem_cgroup *root_memcg)
2117{
2118 return false;
2119}
2120#endif
2121
2122/**
2123 * consume_stock: Try to consume stocked charge on this cpu.
2124 * @memcg: memcg to consume from.
2125 * @nr_pages: how many pages to charge.
2126 *
2127 * The charges will only happen if @memcg matches the current cpu's memcg
2128 * stock, and at least @nr_pages are available in that stock. Failure to
2129 * service an allocation will refill the stock.
2130 *
2131 * returns true if successful, false otherwise.
2132 */
2133static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2134{
2135 struct memcg_stock_pcp *stock;
2136 unsigned long flags;
2137 bool ret = false;
2138
2139 if (nr_pages > MEMCG_CHARGE_BATCH)
2140 return ret;
2141
2142 local_irq_save(flags);
2143
2144 stock = this_cpu_ptr(&memcg_stock);
2145 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2146 stock->nr_pages -= nr_pages;
2147 ret = true;
2148 }
2149
2150 local_irq_restore(flags);
2151
2152 return ret;
2153}
2154
2155/*
2156 * Returns stocks cached in percpu and reset cached information.
2157 */
2158static void drain_stock(struct memcg_stock_pcp *stock)
2159{
2160 struct mem_cgroup *old = stock->cached;
2161
2162 if (!old)
2163 return;
2164
2165 if (stock->nr_pages) {
2166 page_counter_uncharge(&old->memory, stock->nr_pages);
2167 if (do_memsw_account())
2168 page_counter_uncharge(&old->memsw, stock->nr_pages);
2169 stock->nr_pages = 0;
2170 }
2171
2172 css_put(&old->css);
2173 stock->cached = NULL;
2174}
2175
2176static void drain_local_stock(struct work_struct *dummy)
2177{
2178 struct memcg_stock_pcp *stock;
2179 unsigned long flags;
2180
2181 /*
2182 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2183 * drain_stock races is that we always operate on local CPU stock
2184 * here with IRQ disabled
2185 */
2186 local_irq_save(flags);
2187
2188 stock = this_cpu_ptr(&memcg_stock);
2189 drain_obj_stock(&stock->irq_obj);
2190 if (in_task())
2191 drain_obj_stock(&stock->task_obj);
2192 drain_stock(stock);
2193 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2194
2195 local_irq_restore(flags);
2196}
2197
2198/*
2199 * Cache charges(val) to local per_cpu area.
2200 * This will be consumed by consume_stock() function, later.
2201 */
2202static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2203{
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
2207 local_irq_save(flags);
2208
2209 stock = this_cpu_ptr(&memcg_stock);
2210 if (stock->cached != memcg) { /* reset if necessary */
2211 drain_stock(stock);
2212 css_get(&memcg->css);
2213 stock->cached = memcg;
2214 }
2215 stock->nr_pages += nr_pages;
2216
2217 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2218 drain_stock(stock);
2219
2220 local_irq_restore(flags);
2221}
2222
2223/*
2224 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2225 * of the hierarchy under it.
2226 */
2227static void drain_all_stock(struct mem_cgroup *root_memcg)
2228{
2229 int cpu, curcpu;
2230
2231 /* If someone's already draining, avoid adding running more workers. */
2232 if (!mutex_trylock(&percpu_charge_mutex))
2233 return;
2234 /*
2235 * Notify other cpus that system-wide "drain" is running
2236 * We do not care about races with the cpu hotplug because cpu down
2237 * as well as workers from this path always operate on the local
2238 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2239 */
2240 curcpu = get_cpu();
2241 for_each_online_cpu(cpu) {
2242 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2243 struct mem_cgroup *memcg;
2244 bool flush = false;
2245
2246 rcu_read_lock();
2247 memcg = stock->cached;
2248 if (memcg && stock->nr_pages &&
2249 mem_cgroup_is_descendant(memcg, root_memcg))
2250 flush = true;
2251 else if (obj_stock_flush_required(stock, root_memcg))
2252 flush = true;
2253 rcu_read_unlock();
2254
2255 if (flush &&
2256 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2257 if (cpu == curcpu)
2258 drain_local_stock(&stock->work);
2259 else
2260 schedule_work_on(cpu, &stock->work);
2261 }
2262 }
2263 put_cpu();
2264 mutex_unlock(&percpu_charge_mutex);
2265}
2266
2267static int memcg_hotplug_cpu_dead(unsigned int cpu)
2268{
2269 struct memcg_stock_pcp *stock;
2270
2271 stock = &per_cpu(memcg_stock, cpu);
2272 drain_stock(stock);
2273
2274 return 0;
2275}
2276
2277static unsigned long reclaim_high(struct mem_cgroup *memcg,
2278 unsigned int nr_pages,
2279 gfp_t gfp_mask)
2280{
2281 unsigned long nr_reclaimed = 0;
2282
2283 do {
2284 unsigned long pflags;
2285
2286 if (page_counter_read(&memcg->memory) <=
2287 READ_ONCE(memcg->memory.high))
2288 continue;
2289
2290 memcg_memory_event(memcg, MEMCG_HIGH);
2291
2292 psi_memstall_enter(&pflags);
2293 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2294 gfp_mask, true);
2295 psi_memstall_leave(&pflags);
2296 } while ((memcg = parent_mem_cgroup(memcg)) &&
2297 !mem_cgroup_is_root(memcg));
2298
2299 return nr_reclaimed;
2300}
2301
2302static void high_work_func(struct work_struct *work)
2303{
2304 struct mem_cgroup *memcg;
2305
2306 memcg = container_of(work, struct mem_cgroup, high_work);
2307 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2308}
2309
2310/*
2311 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2312 * enough to still cause a significant slowdown in most cases, while still
2313 * allowing diagnostics and tracing to proceed without becoming stuck.
2314 */
2315#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2316
2317/*
2318 * When calculating the delay, we use these either side of the exponentiation to
2319 * maintain precision and scale to a reasonable number of jiffies (see the table
2320 * below.
2321 *
2322 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2323 * overage ratio to a delay.
2324 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2325 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2326 * to produce a reasonable delay curve.
2327 *
2328 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2329 * reasonable delay curve compared to precision-adjusted overage, not
2330 * penalising heavily at first, but still making sure that growth beyond the
2331 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2332 * example, with a high of 100 megabytes:
2333 *
2334 * +-------+------------------------+
2335 * | usage | time to allocate in ms |
2336 * +-------+------------------------+
2337 * | 100M | 0 |
2338 * | 101M | 6 |
2339 * | 102M | 25 |
2340 * | 103M | 57 |
2341 * | 104M | 102 |
2342 * | 105M | 159 |
2343 * | 106M | 230 |
2344 * | 107M | 313 |
2345 * | 108M | 409 |
2346 * | 109M | 518 |
2347 * | 110M | 639 |
2348 * | 111M | 774 |
2349 * | 112M | 921 |
2350 * | 113M | 1081 |
2351 * | 114M | 1254 |
2352 * | 115M | 1439 |
2353 * | 116M | 1638 |
2354 * | 117M | 1849 |
2355 * | 118M | 2000 |
2356 * | 119M | 2000 |
2357 * | 120M | 2000 |
2358 * +-------+------------------------+
2359 */
2360 #define MEMCG_DELAY_PRECISION_SHIFT 20
2361 #define MEMCG_DELAY_SCALING_SHIFT 14
2362
2363static u64 calculate_overage(unsigned long usage, unsigned long high)
2364{
2365 u64 overage;
2366
2367 if (usage <= high)
2368 return 0;
2369
2370 /*
2371 * Prevent division by 0 in overage calculation by acting as if
2372 * it was a threshold of 1 page
2373 */
2374 high = max(high, 1UL);
2375
2376 overage = usage - high;
2377 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2378 return div64_u64(overage, high);
2379}
2380
2381static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2382{
2383 u64 overage, max_overage = 0;
2384
2385 do {
2386 overage = calculate_overage(page_counter_read(&memcg->memory),
2387 READ_ONCE(memcg->memory.high));
2388 max_overage = max(overage, max_overage);
2389 } while ((memcg = parent_mem_cgroup(memcg)) &&
2390 !mem_cgroup_is_root(memcg));
2391
2392 return max_overage;
2393}
2394
2395static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2396{
2397 u64 overage, max_overage = 0;
2398
2399 do {
2400 overage = calculate_overage(page_counter_read(&memcg->swap),
2401 READ_ONCE(memcg->swap.high));
2402 if (overage)
2403 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2404 max_overage = max(overage, max_overage);
2405 } while ((memcg = parent_mem_cgroup(memcg)) &&
2406 !mem_cgroup_is_root(memcg));
2407
2408 return max_overage;
2409}
2410
2411/*
2412 * Get the number of jiffies that we should penalise a mischievous cgroup which
2413 * is exceeding its memory.high by checking both it and its ancestors.
2414 */
2415static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2416 unsigned int nr_pages,
2417 u64 max_overage)
2418{
2419 unsigned long penalty_jiffies;
2420
2421 if (!max_overage)
2422 return 0;
2423
2424 /*
2425 * We use overage compared to memory.high to calculate the number of
2426 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2427 * fairly lenient on small overages, and increasingly harsh when the
2428 * memcg in question makes it clear that it has no intention of stopping
2429 * its crazy behaviour, so we exponentially increase the delay based on
2430 * overage amount.
2431 */
2432 penalty_jiffies = max_overage * max_overage * HZ;
2433 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2434 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2435
2436 /*
2437 * Factor in the task's own contribution to the overage, such that four
2438 * N-sized allocations are throttled approximately the same as one
2439 * 4N-sized allocation.
2440 *
2441 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2442 * larger the current charge patch is than that.
2443 */
2444 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2445}
2446
2447/*
2448 * Scheduled by try_charge() to be executed from the userland return path
2449 * and reclaims memory over the high limit.
2450 */
2451void mem_cgroup_handle_over_high(void)
2452{
2453 unsigned long penalty_jiffies;
2454 unsigned long pflags;
2455 unsigned long nr_reclaimed;
2456 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2457 int nr_retries = MAX_RECLAIM_RETRIES;
2458 struct mem_cgroup *memcg;
2459 bool in_retry = false;
2460
2461 if (likely(!nr_pages))
2462 return;
2463
2464 memcg = get_mem_cgroup_from_mm(current->mm);
2465 current->memcg_nr_pages_over_high = 0;
2466
2467retry_reclaim:
2468 /*
2469 * The allocating task should reclaim at least the batch size, but for
2470 * subsequent retries we only want to do what's necessary to prevent oom
2471 * or breaching resource isolation.
2472 *
2473 * This is distinct from memory.max or page allocator behaviour because
2474 * memory.high is currently batched, whereas memory.max and the page
2475 * allocator run every time an allocation is made.
2476 */
2477 nr_reclaimed = reclaim_high(memcg,
2478 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2479 GFP_KERNEL);
2480
2481 /*
2482 * memory.high is breached and reclaim is unable to keep up. Throttle
2483 * allocators proactively to slow down excessive growth.
2484 */
2485 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2486 mem_find_max_overage(memcg));
2487
2488 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2489 swap_find_max_overage(memcg));
2490
2491 /*
2492 * Clamp the max delay per usermode return so as to still keep the
2493 * application moving forwards and also permit diagnostics, albeit
2494 * extremely slowly.
2495 */
2496 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2497
2498 /*
2499 * Don't sleep if the amount of jiffies this memcg owes us is so low
2500 * that it's not even worth doing, in an attempt to be nice to those who
2501 * go only a small amount over their memory.high value and maybe haven't
2502 * been aggressively reclaimed enough yet.
2503 */
2504 if (penalty_jiffies <= HZ / 100)
2505 goto out;
2506
2507 /*
2508 * If reclaim is making forward progress but we're still over
2509 * memory.high, we want to encourage that rather than doing allocator
2510 * throttling.
2511 */
2512 if (nr_reclaimed || nr_retries--) {
2513 in_retry = true;
2514 goto retry_reclaim;
2515 }
2516
2517 /*
2518 * If we exit early, we're guaranteed to die (since
2519 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2520 * need to account for any ill-begotten jiffies to pay them off later.
2521 */
2522 psi_memstall_enter(&pflags);
2523 schedule_timeout_killable(penalty_jiffies);
2524 psi_memstall_leave(&pflags);
2525
2526out:
2527 css_put(&memcg->css);
2528}
2529
2530static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2531 unsigned int nr_pages)
2532{
2533 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2534 int nr_retries = MAX_RECLAIM_RETRIES;
2535 struct mem_cgroup *mem_over_limit;
2536 struct page_counter *counter;
2537 enum oom_status oom_status;
2538 unsigned long nr_reclaimed;
2539 bool passed_oom = false;
2540 bool may_swap = true;
2541 bool drained = false;
2542 unsigned long pflags;
2543
2544retry:
2545 if (consume_stock(memcg, nr_pages))
2546 return 0;
2547
2548 if (!do_memsw_account() ||
2549 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2550 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2551 goto done_restock;
2552 if (do_memsw_account())
2553 page_counter_uncharge(&memcg->memsw, batch);
2554 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2555 } else {
2556 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2557 may_swap = false;
2558 }
2559
2560 if (batch > nr_pages) {
2561 batch = nr_pages;
2562 goto retry;
2563 }
2564
2565 /*
2566 * Memcg doesn't have a dedicated reserve for atomic
2567 * allocations. But like the global atomic pool, we need to
2568 * put the burden of reclaim on regular allocation requests
2569 * and let these go through as privileged allocations.
2570 */
2571 if (gfp_mask & __GFP_ATOMIC)
2572 goto force;
2573
2574 /*
2575 * Prevent unbounded recursion when reclaim operations need to
2576 * allocate memory. This might exceed the limits temporarily,
2577 * but we prefer facilitating memory reclaim and getting back
2578 * under the limit over triggering OOM kills in these cases.
2579 */
2580 if (unlikely(current->flags & PF_MEMALLOC))
2581 goto force;
2582
2583 if (unlikely(task_in_memcg_oom(current)))
2584 goto nomem;
2585
2586 if (!gfpflags_allow_blocking(gfp_mask))
2587 goto nomem;
2588
2589 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2590
2591 psi_memstall_enter(&pflags);
2592 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2593 gfp_mask, may_swap);
2594 psi_memstall_leave(&pflags);
2595
2596 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2597 goto retry;
2598
2599 if (!drained) {
2600 drain_all_stock(mem_over_limit);
2601 drained = true;
2602 goto retry;
2603 }
2604
2605 if (gfp_mask & __GFP_NORETRY)
2606 goto nomem;
2607 /*
2608 * Even though the limit is exceeded at this point, reclaim
2609 * may have been able to free some pages. Retry the charge
2610 * before killing the task.
2611 *
2612 * Only for regular pages, though: huge pages are rather
2613 * unlikely to succeed so close to the limit, and we fall back
2614 * to regular pages anyway in case of failure.
2615 */
2616 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2617 goto retry;
2618 /*
2619 * At task move, charge accounts can be doubly counted. So, it's
2620 * better to wait until the end of task_move if something is going on.
2621 */
2622 if (mem_cgroup_wait_acct_move(mem_over_limit))
2623 goto retry;
2624
2625 if (nr_retries--)
2626 goto retry;
2627
2628 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2629 goto nomem;
2630
2631 /* Avoid endless loop for tasks bypassed by the oom killer */
2632 if (passed_oom && task_is_dying())
2633 goto nomem;
2634
2635 /*
2636 * keep retrying as long as the memcg oom killer is able to make
2637 * a forward progress or bypass the charge if the oom killer
2638 * couldn't make any progress.
2639 */
2640 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2641 get_order(nr_pages * PAGE_SIZE));
2642 if (oom_status == OOM_SUCCESS) {
2643 passed_oom = true;
2644 nr_retries = MAX_RECLAIM_RETRIES;
2645 goto retry;
2646 }
2647nomem:
2648 if (!(gfp_mask & __GFP_NOFAIL))
2649 return -ENOMEM;
2650force:
2651 /*
2652 * The allocation either can't fail or will lead to more memory
2653 * being freed very soon. Allow memory usage go over the limit
2654 * temporarily by force charging it.
2655 */
2656 page_counter_charge(&memcg->memory, nr_pages);
2657 if (do_memsw_account())
2658 page_counter_charge(&memcg->memsw, nr_pages);
2659
2660 return 0;
2661
2662done_restock:
2663 if (batch > nr_pages)
2664 refill_stock(memcg, batch - nr_pages);
2665
2666 /*
2667 * If the hierarchy is above the normal consumption range, schedule
2668 * reclaim on returning to userland. We can perform reclaim here
2669 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2670 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2671 * not recorded as it most likely matches current's and won't
2672 * change in the meantime. As high limit is checked again before
2673 * reclaim, the cost of mismatch is negligible.
2674 */
2675 do {
2676 bool mem_high, swap_high;
2677
2678 mem_high = page_counter_read(&memcg->memory) >
2679 READ_ONCE(memcg->memory.high);
2680 swap_high = page_counter_read(&memcg->swap) >
2681 READ_ONCE(memcg->swap.high);
2682
2683 /* Don't bother a random interrupted task */
2684 if (in_interrupt()) {
2685 if (mem_high) {
2686 schedule_work(&memcg->high_work);
2687 break;
2688 }
2689 continue;
2690 }
2691
2692 if (mem_high || swap_high) {
2693 /*
2694 * The allocating tasks in this cgroup will need to do
2695 * reclaim or be throttled to prevent further growth
2696 * of the memory or swap footprints.
2697 *
2698 * Target some best-effort fairness between the tasks,
2699 * and distribute reclaim work and delay penalties
2700 * based on how much each task is actually allocating.
2701 */
2702 current->memcg_nr_pages_over_high += batch;
2703 set_notify_resume(current);
2704 break;
2705 }
2706 } while ((memcg = parent_mem_cgroup(memcg)));
2707
2708 return 0;
2709}
2710
2711static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2712 unsigned int nr_pages)
2713{
2714 if (mem_cgroup_is_root(memcg))
2715 return 0;
2716
2717 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2718}
2719
2720static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2721{
2722 if (mem_cgroup_is_root(memcg))
2723 return;
2724
2725 page_counter_uncharge(&memcg->memory, nr_pages);
2726 if (do_memsw_account())
2727 page_counter_uncharge(&memcg->memsw, nr_pages);
2728}
2729
2730static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2731{
2732 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2733 /*
2734 * Any of the following ensures page's memcg stability:
2735 *
2736 * - the page lock
2737 * - LRU isolation
2738 * - lock_page_memcg()
2739 * - exclusive reference
2740 */
2741 folio->memcg_data = (unsigned long)memcg;
2742}
2743
2744static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2745{
2746 struct mem_cgroup *memcg;
2747
2748 rcu_read_lock();
2749retry:
2750 memcg = obj_cgroup_memcg(objcg);
2751 if (unlikely(!css_tryget(&memcg->css)))
2752 goto retry;
2753 rcu_read_unlock();
2754
2755 return memcg;
2756}
2757
2758#ifdef CONFIG_MEMCG_KMEM
2759/*
2760 * The allocated objcg pointers array is not accounted directly.
2761 * Moreover, it should not come from DMA buffer and is not readily
2762 * reclaimable. So those GFP bits should be masked off.
2763 */
2764#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2765
2766/*
2767 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2768 * sequence used in this case to access content from object stock is slow.
2769 * To optimize for user context access, there are now two object stocks for
2770 * task context and interrupt context access respectively.
2771 *
2772 * The task context object stock can be accessed by disabling preemption only
2773 * which is cheap in non-preempt kernel. The interrupt context object stock
2774 * can only be accessed after disabling interrupt. User context code can
2775 * access interrupt object stock, but not vice versa.
2776 */
2777static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2778{
2779 struct memcg_stock_pcp *stock;
2780
2781 if (likely(in_task())) {
2782 *pflags = 0UL;
2783 preempt_disable();
2784 stock = this_cpu_ptr(&memcg_stock);
2785 return &stock->task_obj;
2786 }
2787
2788 local_irq_save(*pflags);
2789 stock = this_cpu_ptr(&memcg_stock);
2790 return &stock->irq_obj;
2791}
2792
2793static inline void put_obj_stock(unsigned long flags)
2794{
2795 if (likely(in_task()))
2796 preempt_enable();
2797 else
2798 local_irq_restore(flags);
2799}
2800
2801/*
2802 * mod_objcg_mlstate() may be called with irq enabled, so
2803 * mod_memcg_lruvec_state() should be used.
2804 */
2805static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2806 struct pglist_data *pgdat,
2807 enum node_stat_item idx, int nr)
2808{
2809 struct mem_cgroup *memcg;
2810 struct lruvec *lruvec;
2811
2812 rcu_read_lock();
2813 memcg = obj_cgroup_memcg(objcg);
2814 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2815 mod_memcg_lruvec_state(lruvec, idx, nr);
2816 rcu_read_unlock();
2817}
2818
2819int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2820 gfp_t gfp, bool new_page)
2821{
2822 unsigned int objects = objs_per_slab_page(s, page);
2823 unsigned long memcg_data;
2824 void *vec;
2825
2826 gfp &= ~OBJCGS_CLEAR_MASK;
2827 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2828 page_to_nid(page));
2829 if (!vec)
2830 return -ENOMEM;
2831
2832 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2833 if (new_page) {
2834 /*
2835 * If the slab page is brand new and nobody can yet access
2836 * it's memcg_data, no synchronization is required and
2837 * memcg_data can be simply assigned.
2838 */
2839 page->memcg_data = memcg_data;
2840 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2841 /*
2842 * If the slab page is already in use, somebody can allocate
2843 * and assign obj_cgroups in parallel. In this case the existing
2844 * objcg vector should be reused.
2845 */
2846 kfree(vec);
2847 return 0;
2848 }
2849
2850 kmemleak_not_leak(vec);
2851 return 0;
2852}
2853
2854/*
2855 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2856 *
2857 * A passed kernel object can be a slab object or a generic kernel page, so
2858 * different mechanisms for getting the memory cgroup pointer should be used.
2859 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2860 * can not know for sure how the kernel object is implemented.
2861 * mem_cgroup_from_obj() can be safely used in such cases.
2862 *
2863 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2864 * cgroup_mutex, etc.
2865 */
2866struct mem_cgroup *mem_cgroup_from_obj(void *p)
2867{
2868 struct page *page;
2869
2870 if (mem_cgroup_disabled())
2871 return NULL;
2872
2873 page = virt_to_head_page(p);
2874
2875 /*
2876 * Slab objects are accounted individually, not per-page.
2877 * Memcg membership data for each individual object is saved in
2878 * the page->obj_cgroups.
2879 */
2880 if (page_objcgs_check(page)) {
2881 struct obj_cgroup *objcg;
2882 unsigned int off;
2883
2884 off = obj_to_index(page->slab_cache, page, p);
2885 objcg = page_objcgs(page)[off];
2886 if (objcg)
2887 return obj_cgroup_memcg(objcg);
2888
2889 return NULL;
2890 }
2891
2892 /*
2893 * page_memcg_check() is used here, because page_has_obj_cgroups()
2894 * check above could fail because the object cgroups vector wasn't set
2895 * at that moment, but it can be set concurrently.
2896 * page_memcg_check(page) will guarantee that a proper memory
2897 * cgroup pointer or NULL will be returned.
2898 */
2899 return page_memcg_check(page);
2900}
2901
2902__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2903{
2904 struct obj_cgroup *objcg = NULL;
2905 struct mem_cgroup *memcg;
2906
2907 if (memcg_kmem_bypass())
2908 return NULL;
2909
2910 rcu_read_lock();
2911 if (unlikely(active_memcg()))
2912 memcg = active_memcg();
2913 else
2914 memcg = mem_cgroup_from_task(current);
2915
2916 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2917 objcg = rcu_dereference(memcg->objcg);
2918 if (objcg && obj_cgroup_tryget(objcg))
2919 break;
2920 objcg = NULL;
2921 }
2922 rcu_read_unlock();
2923
2924 return objcg;
2925}
2926
2927static int memcg_alloc_cache_id(void)
2928{
2929 int id, size;
2930 int err;
2931
2932 id = ida_simple_get(&memcg_cache_ida,
2933 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2934 if (id < 0)
2935 return id;
2936
2937 if (id < memcg_nr_cache_ids)
2938 return id;
2939
2940 /*
2941 * There's no space for the new id in memcg_caches arrays,
2942 * so we have to grow them.
2943 */
2944 down_write(&memcg_cache_ids_sem);
2945
2946 size = 2 * (id + 1);
2947 if (size < MEMCG_CACHES_MIN_SIZE)
2948 size = MEMCG_CACHES_MIN_SIZE;
2949 else if (size > MEMCG_CACHES_MAX_SIZE)
2950 size = MEMCG_CACHES_MAX_SIZE;
2951
2952 err = memcg_update_all_list_lrus(size);
2953 if (!err)
2954 memcg_nr_cache_ids = size;
2955
2956 up_write(&memcg_cache_ids_sem);
2957
2958 if (err) {
2959 ida_simple_remove(&memcg_cache_ida, id);
2960 return err;
2961 }
2962 return id;
2963}
2964
2965static void memcg_free_cache_id(int id)
2966{
2967 ida_simple_remove(&memcg_cache_ida, id);
2968}
2969
2970/*
2971 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2972 * @objcg: object cgroup to uncharge
2973 * @nr_pages: number of pages to uncharge
2974 */
2975static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2976 unsigned int nr_pages)
2977{
2978 struct mem_cgroup *memcg;
2979
2980 memcg = get_mem_cgroup_from_objcg(objcg);
2981
2982 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2983 page_counter_uncharge(&memcg->kmem, nr_pages);
2984 refill_stock(memcg, nr_pages);
2985
2986 css_put(&memcg->css);
2987}
2988
2989/*
2990 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2991 * @objcg: object cgroup to charge
2992 * @gfp: reclaim mode
2993 * @nr_pages: number of pages to charge
2994 *
2995 * Returns 0 on success, an error code on failure.
2996 */
2997static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2998 unsigned int nr_pages)
2999{
3000 struct mem_cgroup *memcg;
3001 int ret;
3002
3003 memcg = get_mem_cgroup_from_objcg(objcg);
3004
3005 ret = try_charge_memcg(memcg, gfp, nr_pages);
3006 if (ret)
3007 goto out;
3008
3009 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3010 page_counter_charge(&memcg->kmem, nr_pages);
3011out:
3012 css_put(&memcg->css);
3013
3014 return ret;
3015}
3016
3017/**
3018 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3019 * @page: page to charge
3020 * @gfp: reclaim mode
3021 * @order: allocation order
3022 *
3023 * Returns 0 on success, an error code on failure.
3024 */
3025int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3026{
3027 struct obj_cgroup *objcg;
3028 int ret = 0;
3029
3030 objcg = get_obj_cgroup_from_current();
3031 if (objcg) {
3032 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3033 if (!ret) {
3034 page->memcg_data = (unsigned long)objcg |
3035 MEMCG_DATA_KMEM;
3036 return 0;
3037 }
3038 obj_cgroup_put(objcg);
3039 }
3040 return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_uncharge_page: uncharge a kmem page
3045 * @page: page to uncharge
3046 * @order: allocation order
3047 */
3048void __memcg_kmem_uncharge_page(struct page *page, int order)
3049{
3050 struct folio *folio = page_folio(page);
3051 struct obj_cgroup *objcg;
3052 unsigned int nr_pages = 1 << order;
3053
3054 if (!folio_memcg_kmem(folio))
3055 return;
3056
3057 objcg = __folio_objcg(folio);
3058 obj_cgroup_uncharge_pages(objcg, nr_pages);
3059 folio->memcg_data = 0;
3060 obj_cgroup_put(objcg);
3061}
3062
3063void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3064 enum node_stat_item idx, int nr)
3065{
3066 unsigned long flags;
3067 struct obj_stock *stock = get_obj_stock(&flags);
3068 int *bytes;
3069
3070 /*
3071 * Save vmstat data in stock and skip vmstat array update unless
3072 * accumulating over a page of vmstat data or when pgdat or idx
3073 * changes.
3074 */
3075 if (stock->cached_objcg != objcg) {
3076 drain_obj_stock(stock);
3077 obj_cgroup_get(objcg);
3078 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3079 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3080 stock->cached_objcg = objcg;
3081 stock->cached_pgdat = pgdat;
3082 } else if (stock->cached_pgdat != pgdat) {
3083 /* Flush the existing cached vmstat data */
3084 struct pglist_data *oldpg = stock->cached_pgdat;
3085
3086 if (stock->nr_slab_reclaimable_b) {
3087 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3088 stock->nr_slab_reclaimable_b);
3089 stock->nr_slab_reclaimable_b = 0;
3090 }
3091 if (stock->nr_slab_unreclaimable_b) {
3092 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3093 stock->nr_slab_unreclaimable_b);
3094 stock->nr_slab_unreclaimable_b = 0;
3095 }
3096 stock->cached_pgdat = pgdat;
3097 }
3098
3099 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3100 : &stock->nr_slab_unreclaimable_b;
3101 /*
3102 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3103 * cached locally at least once before pushing it out.
3104 */
3105 if (!*bytes) {
3106 *bytes = nr;
3107 nr = 0;
3108 } else {
3109 *bytes += nr;
3110 if (abs(*bytes) > PAGE_SIZE) {
3111 nr = *bytes;
3112 *bytes = 0;
3113 } else {
3114 nr = 0;
3115 }
3116 }
3117 if (nr)
3118 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3119
3120 put_obj_stock(flags);
3121}
3122
3123static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3124{
3125 unsigned long flags;
3126 struct obj_stock *stock = get_obj_stock(&flags);
3127 bool ret = false;
3128
3129 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3130 stock->nr_bytes -= nr_bytes;
3131 ret = true;
3132 }
3133
3134 put_obj_stock(flags);
3135
3136 return ret;
3137}
3138
3139static void drain_obj_stock(struct obj_stock *stock)
3140{
3141 struct obj_cgroup *old = stock->cached_objcg;
3142
3143 if (!old)
3144 return;
3145
3146 if (stock->nr_bytes) {
3147 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3148 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3149
3150 if (nr_pages)
3151 obj_cgroup_uncharge_pages(old, nr_pages);
3152
3153 /*
3154 * The leftover is flushed to the centralized per-memcg value.
3155 * On the next attempt to refill obj stock it will be moved
3156 * to a per-cpu stock (probably, on an other CPU), see
3157 * refill_obj_stock().
3158 *
3159 * How often it's flushed is a trade-off between the memory
3160 * limit enforcement accuracy and potential CPU contention,
3161 * so it might be changed in the future.
3162 */
3163 atomic_add(nr_bytes, &old->nr_charged_bytes);
3164 stock->nr_bytes = 0;
3165 }
3166
3167 /*
3168 * Flush the vmstat data in current stock
3169 */
3170 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3171 if (stock->nr_slab_reclaimable_b) {
3172 mod_objcg_mlstate(old, stock->cached_pgdat,
3173 NR_SLAB_RECLAIMABLE_B,
3174 stock->nr_slab_reclaimable_b);
3175 stock->nr_slab_reclaimable_b = 0;
3176 }
3177 if (stock->nr_slab_unreclaimable_b) {
3178 mod_objcg_mlstate(old, stock->cached_pgdat,
3179 NR_SLAB_UNRECLAIMABLE_B,
3180 stock->nr_slab_unreclaimable_b);
3181 stock->nr_slab_unreclaimable_b = 0;
3182 }
3183 stock->cached_pgdat = NULL;
3184 }
3185
3186 obj_cgroup_put(old);
3187 stock->cached_objcg = NULL;
3188}
3189
3190static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3191 struct mem_cgroup *root_memcg)
3192{
3193 struct mem_cgroup *memcg;
3194
3195 if (in_task() && stock->task_obj.cached_objcg) {
3196 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3197 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3198 return true;
3199 }
3200 if (stock->irq_obj.cached_objcg) {
3201 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3202 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3203 return true;
3204 }
3205
3206 return false;
3207}
3208
3209static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3210 bool allow_uncharge)
3211{
3212 unsigned long flags;
3213 struct obj_stock *stock = get_obj_stock(&flags);
3214 unsigned int nr_pages = 0;
3215
3216 if (stock->cached_objcg != objcg) { /* reset if necessary */
3217 drain_obj_stock(stock);
3218 obj_cgroup_get(objcg);
3219 stock->cached_objcg = objcg;
3220 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3221 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3222 allow_uncharge = true; /* Allow uncharge when objcg changes */
3223 }
3224 stock->nr_bytes += nr_bytes;
3225
3226 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3227 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3228 stock->nr_bytes &= (PAGE_SIZE - 1);
3229 }
3230
3231 put_obj_stock(flags);
3232
3233 if (nr_pages)
3234 obj_cgroup_uncharge_pages(objcg, nr_pages);
3235}
3236
3237int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3238{
3239 unsigned int nr_pages, nr_bytes;
3240 int ret;
3241
3242 if (consume_obj_stock(objcg, size))
3243 return 0;
3244
3245 /*
3246 * In theory, objcg->nr_charged_bytes can have enough
3247 * pre-charged bytes to satisfy the allocation. However,
3248 * flushing objcg->nr_charged_bytes requires two atomic
3249 * operations, and objcg->nr_charged_bytes can't be big.
3250 * The shared objcg->nr_charged_bytes can also become a
3251 * performance bottleneck if all tasks of the same memcg are
3252 * trying to update it. So it's better to ignore it and try
3253 * grab some new pages. The stock's nr_bytes will be flushed to
3254 * objcg->nr_charged_bytes later on when objcg changes.
3255 *
3256 * The stock's nr_bytes may contain enough pre-charged bytes
3257 * to allow one less page from being charged, but we can't rely
3258 * on the pre-charged bytes not being changed outside of
3259 * consume_obj_stock() or refill_obj_stock(). So ignore those
3260 * pre-charged bytes as well when charging pages. To avoid a
3261 * page uncharge right after a page charge, we set the
3262 * allow_uncharge flag to false when calling refill_obj_stock()
3263 * to temporarily allow the pre-charged bytes to exceed the page
3264 * size limit. The maximum reachable value of the pre-charged
3265 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3266 * race.
3267 */
3268 nr_pages = size >> PAGE_SHIFT;
3269 nr_bytes = size & (PAGE_SIZE - 1);
3270
3271 if (nr_bytes)
3272 nr_pages += 1;
3273
3274 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3275 if (!ret && nr_bytes)
3276 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3277
3278 return ret;
3279}
3280
3281void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3282{
3283 refill_obj_stock(objcg, size, true);
3284}
3285
3286#endif /* CONFIG_MEMCG_KMEM */
3287
3288/*
3289 * Because page_memcg(head) is not set on tails, set it now.
3290 */
3291void split_page_memcg(struct page *head, unsigned int nr)
3292{
3293 struct folio *folio = page_folio(head);
3294 struct mem_cgroup *memcg = folio_memcg(folio);
3295 int i;
3296
3297 if (mem_cgroup_disabled() || !memcg)
3298 return;
3299
3300 for (i = 1; i < nr; i++)
3301 folio_page(folio, i)->memcg_data = folio->memcg_data;
3302
3303 if (folio_memcg_kmem(folio))
3304 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3305 else
3306 css_get_many(&memcg->css, nr - 1);
3307}
3308
3309#ifdef CONFIG_MEMCG_SWAP
3310/**
3311 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3312 * @entry: swap entry to be moved
3313 * @from: mem_cgroup which the entry is moved from
3314 * @to: mem_cgroup which the entry is moved to
3315 *
3316 * It succeeds only when the swap_cgroup's record for this entry is the same
3317 * as the mem_cgroup's id of @from.
3318 *
3319 * Returns 0 on success, -EINVAL on failure.
3320 *
3321 * The caller must have charged to @to, IOW, called page_counter_charge() about
3322 * both res and memsw, and called css_get().
3323 */
3324static int mem_cgroup_move_swap_account(swp_entry_t entry,
3325 struct mem_cgroup *from, struct mem_cgroup *to)
3326{
3327 unsigned short old_id, new_id;
3328
3329 old_id = mem_cgroup_id(from);
3330 new_id = mem_cgroup_id(to);
3331
3332 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3333 mod_memcg_state(from, MEMCG_SWAP, -1);
3334 mod_memcg_state(to, MEMCG_SWAP, 1);
3335 return 0;
3336 }
3337 return -EINVAL;
3338}
3339#else
3340static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3341 struct mem_cgroup *from, struct mem_cgroup *to)
3342{
3343 return -EINVAL;
3344}
3345#endif
3346
3347static DEFINE_MUTEX(memcg_max_mutex);
3348
3349static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3350 unsigned long max, bool memsw)
3351{
3352 bool enlarge = false;
3353 bool drained = false;
3354 int ret;
3355 bool limits_invariant;
3356 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3357
3358 do {
3359 if (signal_pending(current)) {
3360 ret = -EINTR;
3361 break;
3362 }
3363
3364 mutex_lock(&memcg_max_mutex);
3365 /*
3366 * Make sure that the new limit (memsw or memory limit) doesn't
3367 * break our basic invariant rule memory.max <= memsw.max.
3368 */
3369 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3370 max <= memcg->memsw.max;
3371 if (!limits_invariant) {
3372 mutex_unlock(&memcg_max_mutex);
3373 ret = -EINVAL;
3374 break;
3375 }
3376 if (max > counter->max)
3377 enlarge = true;
3378 ret = page_counter_set_max(counter, max);
3379 mutex_unlock(&memcg_max_mutex);
3380
3381 if (!ret)
3382 break;
3383
3384 if (!drained) {
3385 drain_all_stock(memcg);
3386 drained = true;
3387 continue;
3388 }
3389
3390 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3391 GFP_KERNEL, !memsw)) {
3392 ret = -EBUSY;
3393 break;
3394 }
3395 } while (true);
3396
3397 if (!ret && enlarge)
3398 memcg_oom_recover(memcg);
3399
3400 return ret;
3401}
3402
3403unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3404 gfp_t gfp_mask,
3405 unsigned long *total_scanned)
3406{
3407 unsigned long nr_reclaimed = 0;
3408 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3409 unsigned long reclaimed;
3410 int loop = 0;
3411 struct mem_cgroup_tree_per_node *mctz;
3412 unsigned long excess;
3413 unsigned long nr_scanned;
3414
3415 if (order > 0)
3416 return 0;
3417
3418 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3419
3420 /*
3421 * Do not even bother to check the largest node if the root
3422 * is empty. Do it lockless to prevent lock bouncing. Races
3423 * are acceptable as soft limit is best effort anyway.
3424 */
3425 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3426 return 0;
3427
3428 /*
3429 * This loop can run a while, specially if mem_cgroup's continuously
3430 * keep exceeding their soft limit and putting the system under
3431 * pressure
3432 */
3433 do {
3434 if (next_mz)
3435 mz = next_mz;
3436 else
3437 mz = mem_cgroup_largest_soft_limit_node(mctz);
3438 if (!mz)
3439 break;
3440
3441 nr_scanned = 0;
3442 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3443 gfp_mask, &nr_scanned);
3444 nr_reclaimed += reclaimed;
3445 *total_scanned += nr_scanned;
3446 spin_lock_irq(&mctz->lock);
3447 __mem_cgroup_remove_exceeded(mz, mctz);
3448
3449 /*
3450 * If we failed to reclaim anything from this memory cgroup
3451 * it is time to move on to the next cgroup
3452 */
3453 next_mz = NULL;
3454 if (!reclaimed)
3455 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3456
3457 excess = soft_limit_excess(mz->memcg);
3458 /*
3459 * One school of thought says that we should not add
3460 * back the node to the tree if reclaim returns 0.
3461 * But our reclaim could return 0, simply because due
3462 * to priority we are exposing a smaller subset of
3463 * memory to reclaim from. Consider this as a longer
3464 * term TODO.
3465 */
3466 /* If excess == 0, no tree ops */
3467 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3468 spin_unlock_irq(&mctz->lock);
3469 css_put(&mz->memcg->css);
3470 loop++;
3471 /*
3472 * Could not reclaim anything and there are no more
3473 * mem cgroups to try or we seem to be looping without
3474 * reclaiming anything.
3475 */
3476 if (!nr_reclaimed &&
3477 (next_mz == NULL ||
3478 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3479 break;
3480 } while (!nr_reclaimed);
3481 if (next_mz)
3482 css_put(&next_mz->memcg->css);
3483 return nr_reclaimed;
3484}
3485
3486/*
3487 * Reclaims as many pages from the given memcg as possible.
3488 *
3489 * Caller is responsible for holding css reference for memcg.
3490 */
3491static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3492{
3493 int nr_retries = MAX_RECLAIM_RETRIES;
3494
3495 /* we call try-to-free pages for make this cgroup empty */
3496 lru_add_drain_all();
3497
3498 drain_all_stock(memcg);
3499
3500 /* try to free all pages in this cgroup */
3501 while (nr_retries && page_counter_read(&memcg->memory)) {
3502 if (signal_pending(current))
3503 return -EINTR;
3504
3505 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3506 nr_retries--;
3507 }
3508
3509 return 0;
3510}
3511
3512static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3513 char *buf, size_t nbytes,
3514 loff_t off)
3515{
3516 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3517
3518 if (mem_cgroup_is_root(memcg))
3519 return -EINVAL;
3520 return mem_cgroup_force_empty(memcg) ?: nbytes;
3521}
3522
3523static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3524 struct cftype *cft)
3525{
3526 return 1;
3527}
3528
3529static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3530 struct cftype *cft, u64 val)
3531{
3532 if (val == 1)
3533 return 0;
3534
3535 pr_warn_once("Non-hierarchical mode is deprecated. "
3536 "Please report your usecase to linux-mm@kvack.org if you "
3537 "depend on this functionality.\n");
3538
3539 return -EINVAL;
3540}
3541
3542static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3543{
3544 unsigned long val;
3545
3546 if (mem_cgroup_is_root(memcg)) {
3547 mem_cgroup_flush_stats();
3548 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3549 memcg_page_state(memcg, NR_ANON_MAPPED);
3550 if (swap)
3551 val += memcg_page_state(memcg, MEMCG_SWAP);
3552 } else {
3553 if (!swap)
3554 val = page_counter_read(&memcg->memory);
3555 else
3556 val = page_counter_read(&memcg->memsw);
3557 }
3558 return val;
3559}
3560
3561enum {
3562 RES_USAGE,
3563 RES_LIMIT,
3564 RES_MAX_USAGE,
3565 RES_FAILCNT,
3566 RES_SOFT_LIMIT,
3567};
3568
3569static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3570 struct cftype *cft)
3571{
3572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3573 struct page_counter *counter;
3574
3575 switch (MEMFILE_TYPE(cft->private)) {
3576 case _MEM:
3577 counter = &memcg->memory;
3578 break;
3579 case _MEMSWAP:
3580 counter = &memcg->memsw;
3581 break;
3582 case _KMEM:
3583 counter = &memcg->kmem;
3584 break;
3585 case _TCP:
3586 counter = &memcg->tcpmem;
3587 break;
3588 default:
3589 BUG();
3590 }
3591
3592 switch (MEMFILE_ATTR(cft->private)) {
3593 case RES_USAGE:
3594 if (counter == &memcg->memory)
3595 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3596 if (counter == &memcg->memsw)
3597 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3598 return (u64)page_counter_read(counter) * PAGE_SIZE;
3599 case RES_LIMIT:
3600 return (u64)counter->max * PAGE_SIZE;
3601 case RES_MAX_USAGE:
3602 return (u64)counter->watermark * PAGE_SIZE;
3603 case RES_FAILCNT:
3604 return counter->failcnt;
3605 case RES_SOFT_LIMIT:
3606 return (u64)memcg->soft_limit * PAGE_SIZE;
3607 default:
3608 BUG();
3609 }
3610}
3611
3612#ifdef CONFIG_MEMCG_KMEM
3613static int memcg_online_kmem(struct mem_cgroup *memcg)
3614{
3615 struct obj_cgroup *objcg;
3616 int memcg_id;
3617
3618 if (cgroup_memory_nokmem)
3619 return 0;
3620
3621 BUG_ON(memcg->kmemcg_id >= 0);
3622
3623 memcg_id = memcg_alloc_cache_id();
3624 if (memcg_id < 0)
3625 return memcg_id;
3626
3627 objcg = obj_cgroup_alloc();
3628 if (!objcg) {
3629 memcg_free_cache_id(memcg_id);
3630 return -ENOMEM;
3631 }
3632 objcg->memcg = memcg;
3633 rcu_assign_pointer(memcg->objcg, objcg);
3634
3635 static_branch_enable(&memcg_kmem_enabled_key);
3636
3637 memcg->kmemcg_id = memcg_id;
3638
3639 return 0;
3640}
3641
3642static void memcg_offline_kmem(struct mem_cgroup *memcg)
3643{
3644 struct mem_cgroup *parent;
3645 int kmemcg_id;
3646
3647 if (memcg->kmemcg_id == -1)
3648 return;
3649
3650 parent = parent_mem_cgroup(memcg);
3651 if (!parent)
3652 parent = root_mem_cgroup;
3653
3654 memcg_reparent_objcgs(memcg, parent);
3655
3656 kmemcg_id = memcg->kmemcg_id;
3657 BUG_ON(kmemcg_id < 0);
3658
3659 /*
3660 * After we have finished memcg_reparent_objcgs(), all list_lrus
3661 * corresponding to this cgroup are guaranteed to remain empty.
3662 * The ordering is imposed by list_lru_node->lock taken by
3663 * memcg_drain_all_list_lrus().
3664 */
3665 memcg_drain_all_list_lrus(kmemcg_id, parent);
3666
3667 memcg_free_cache_id(kmemcg_id);
3668 memcg->kmemcg_id = -1;
3669}
3670#else
3671static int memcg_online_kmem(struct mem_cgroup *memcg)
3672{
3673 return 0;
3674}
3675static void memcg_offline_kmem(struct mem_cgroup *memcg)
3676{
3677}
3678#endif /* CONFIG_MEMCG_KMEM */
3679
3680static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3681{
3682 int ret;
3683
3684 mutex_lock(&memcg_max_mutex);
3685
3686 ret = page_counter_set_max(&memcg->tcpmem, max);
3687 if (ret)
3688 goto out;
3689
3690 if (!memcg->tcpmem_active) {
3691 /*
3692 * The active flag needs to be written after the static_key
3693 * update. This is what guarantees that the socket activation
3694 * function is the last one to run. See mem_cgroup_sk_alloc()
3695 * for details, and note that we don't mark any socket as
3696 * belonging to this memcg until that flag is up.
3697 *
3698 * We need to do this, because static_keys will span multiple
3699 * sites, but we can't control their order. If we mark a socket
3700 * as accounted, but the accounting functions are not patched in
3701 * yet, we'll lose accounting.
3702 *
3703 * We never race with the readers in mem_cgroup_sk_alloc(),
3704 * because when this value change, the code to process it is not
3705 * patched in yet.
3706 */
3707 static_branch_inc(&memcg_sockets_enabled_key);
3708 memcg->tcpmem_active = true;
3709 }
3710out:
3711 mutex_unlock(&memcg_max_mutex);
3712 return ret;
3713}
3714
3715/*
3716 * The user of this function is...
3717 * RES_LIMIT.
3718 */
3719static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3720 char *buf, size_t nbytes, loff_t off)
3721{
3722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3723 unsigned long nr_pages;
3724 int ret;
3725
3726 buf = strstrip(buf);
3727 ret = page_counter_memparse(buf, "-1", &nr_pages);
3728 if (ret)
3729 return ret;
3730
3731 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3732 case RES_LIMIT:
3733 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3734 ret = -EINVAL;
3735 break;
3736 }
3737 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3738 case _MEM:
3739 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3740 break;
3741 case _MEMSWAP:
3742 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3743 break;
3744 case _KMEM:
3745 /* kmem.limit_in_bytes is deprecated. */
3746 ret = -EOPNOTSUPP;
3747 break;
3748 case _TCP:
3749 ret = memcg_update_tcp_max(memcg, nr_pages);
3750 break;
3751 }
3752 break;
3753 case RES_SOFT_LIMIT:
3754 memcg->soft_limit = nr_pages;
3755 ret = 0;
3756 break;
3757 }
3758 return ret ?: nbytes;
3759}
3760
3761static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3762 size_t nbytes, loff_t off)
3763{
3764 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3765 struct page_counter *counter;
3766
3767 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3768 case _MEM:
3769 counter = &memcg->memory;
3770 break;
3771 case _MEMSWAP:
3772 counter = &memcg->memsw;
3773 break;
3774 case _KMEM:
3775 counter = &memcg->kmem;
3776 break;
3777 case _TCP:
3778 counter = &memcg->tcpmem;
3779 break;
3780 default:
3781 BUG();
3782 }
3783
3784 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3785 case RES_MAX_USAGE:
3786 page_counter_reset_watermark(counter);
3787 break;
3788 case RES_FAILCNT:
3789 counter->failcnt = 0;
3790 break;
3791 default:
3792 BUG();
3793 }
3794
3795 return nbytes;
3796}
3797
3798static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3799 struct cftype *cft)
3800{
3801 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3802}
3803
3804#ifdef CONFIG_MMU
3805static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3806 struct cftype *cft, u64 val)
3807{
3808 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3809
3810 if (val & ~MOVE_MASK)
3811 return -EINVAL;
3812
3813 /*
3814 * No kind of locking is needed in here, because ->can_attach() will
3815 * check this value once in the beginning of the process, and then carry
3816 * on with stale data. This means that changes to this value will only
3817 * affect task migrations starting after the change.
3818 */
3819 memcg->move_charge_at_immigrate = val;
3820 return 0;
3821}
3822#else
3823static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3824 struct cftype *cft, u64 val)
3825{
3826 return -ENOSYS;
3827}
3828#endif
3829
3830#ifdef CONFIG_NUMA
3831
3832#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3833#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3834#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3835
3836static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3837 int nid, unsigned int lru_mask, bool tree)
3838{
3839 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3840 unsigned long nr = 0;
3841 enum lru_list lru;
3842
3843 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3844
3845 for_each_lru(lru) {
3846 if (!(BIT(lru) & lru_mask))
3847 continue;
3848 if (tree)
3849 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3850 else
3851 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3852 }
3853 return nr;
3854}
3855
3856static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3857 unsigned int lru_mask,
3858 bool tree)
3859{
3860 unsigned long nr = 0;
3861 enum lru_list lru;
3862
3863 for_each_lru(lru) {
3864 if (!(BIT(lru) & lru_mask))
3865 continue;
3866 if (tree)
3867 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3868 else
3869 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3870 }
3871 return nr;
3872}
3873
3874static int memcg_numa_stat_show(struct seq_file *m, void *v)
3875{
3876 struct numa_stat {
3877 const char *name;
3878 unsigned int lru_mask;
3879 };
3880
3881 static const struct numa_stat stats[] = {
3882 { "total", LRU_ALL },
3883 { "file", LRU_ALL_FILE },
3884 { "anon", LRU_ALL_ANON },
3885 { "unevictable", BIT(LRU_UNEVICTABLE) },
3886 };
3887 const struct numa_stat *stat;
3888 int nid;
3889 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3890
3891 mem_cgroup_flush_stats();
3892
3893 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3894 seq_printf(m, "%s=%lu", stat->name,
3895 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3896 false));
3897 for_each_node_state(nid, N_MEMORY)
3898 seq_printf(m, " N%d=%lu", nid,
3899 mem_cgroup_node_nr_lru_pages(memcg, nid,
3900 stat->lru_mask, false));
3901 seq_putc(m, '\n');
3902 }
3903
3904 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3905
3906 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3907 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3908 true));
3909 for_each_node_state(nid, N_MEMORY)
3910 seq_printf(m, " N%d=%lu", nid,
3911 mem_cgroup_node_nr_lru_pages(memcg, nid,
3912 stat->lru_mask, true));
3913 seq_putc(m, '\n');
3914 }
3915
3916 return 0;
3917}
3918#endif /* CONFIG_NUMA */
3919
3920static const unsigned int memcg1_stats[] = {
3921 NR_FILE_PAGES,
3922 NR_ANON_MAPPED,
3923#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3924 NR_ANON_THPS,
3925#endif
3926 NR_SHMEM,
3927 NR_FILE_MAPPED,
3928 NR_FILE_DIRTY,
3929 NR_WRITEBACK,
3930 MEMCG_SWAP,
3931};
3932
3933static const char *const memcg1_stat_names[] = {
3934 "cache",
3935 "rss",
3936#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3937 "rss_huge",
3938#endif
3939 "shmem",
3940 "mapped_file",
3941 "dirty",
3942 "writeback",
3943 "swap",
3944};
3945
3946/* Universal VM events cgroup1 shows, original sort order */
3947static const unsigned int memcg1_events[] = {
3948 PGPGIN,
3949 PGPGOUT,
3950 PGFAULT,
3951 PGMAJFAULT,
3952};
3953
3954static int memcg_stat_show(struct seq_file *m, void *v)
3955{
3956 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3957 unsigned long memory, memsw;
3958 struct mem_cgroup *mi;
3959 unsigned int i;
3960
3961 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3962
3963 mem_cgroup_flush_stats();
3964
3965 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3966 unsigned long nr;
3967
3968 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3969 continue;
3970 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3971 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3972 }
3973
3974 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3975 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3976 memcg_events_local(memcg, memcg1_events[i]));
3977
3978 for (i = 0; i < NR_LRU_LISTS; i++)
3979 seq_printf(m, "%s %lu\n", lru_list_name(i),
3980 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3981 PAGE_SIZE);
3982
3983 /* Hierarchical information */
3984 memory = memsw = PAGE_COUNTER_MAX;
3985 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3986 memory = min(memory, READ_ONCE(mi->memory.max));
3987 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3988 }
3989 seq_printf(m, "hierarchical_memory_limit %llu\n",
3990 (u64)memory * PAGE_SIZE);
3991 if (do_memsw_account())
3992 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3993 (u64)memsw * PAGE_SIZE);
3994
3995 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3996 unsigned long nr;
3997
3998 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3999 continue;
4000 nr = memcg_page_state(memcg, memcg1_stats[i]);
4001 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4002 (u64)nr * PAGE_SIZE);
4003 }
4004
4005 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4006 seq_printf(m, "total_%s %llu\n",
4007 vm_event_name(memcg1_events[i]),
4008 (u64)memcg_events(memcg, memcg1_events[i]));
4009
4010 for (i = 0; i < NR_LRU_LISTS; i++)
4011 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4012 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4013 PAGE_SIZE);
4014
4015#ifdef CONFIG_DEBUG_VM
4016 {
4017 pg_data_t *pgdat;
4018 struct mem_cgroup_per_node *mz;
4019 unsigned long anon_cost = 0;
4020 unsigned long file_cost = 0;
4021
4022 for_each_online_pgdat(pgdat) {
4023 mz = memcg->nodeinfo[pgdat->node_id];
4024
4025 anon_cost += mz->lruvec.anon_cost;
4026 file_cost += mz->lruvec.file_cost;
4027 }
4028 seq_printf(m, "anon_cost %lu\n", anon_cost);
4029 seq_printf(m, "file_cost %lu\n", file_cost);
4030 }
4031#endif
4032
4033 return 0;
4034}
4035
4036static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4037 struct cftype *cft)
4038{
4039 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4040
4041 return mem_cgroup_swappiness(memcg);
4042}
4043
4044static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4045 struct cftype *cft, u64 val)
4046{
4047 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4048
4049 if (val > 200)
4050 return -EINVAL;
4051
4052 if (!mem_cgroup_is_root(memcg))
4053 memcg->swappiness = val;
4054 else
4055 vm_swappiness = val;
4056
4057 return 0;
4058}
4059
4060static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4061{
4062 struct mem_cgroup_threshold_ary *t;
4063 unsigned long usage;
4064 int i;
4065
4066 rcu_read_lock();
4067 if (!swap)
4068 t = rcu_dereference(memcg->thresholds.primary);
4069 else
4070 t = rcu_dereference(memcg->memsw_thresholds.primary);
4071
4072 if (!t)
4073 goto unlock;
4074
4075 usage = mem_cgroup_usage(memcg, swap);
4076
4077 /*
4078 * current_threshold points to threshold just below or equal to usage.
4079 * If it's not true, a threshold was crossed after last
4080 * call of __mem_cgroup_threshold().
4081 */
4082 i = t->current_threshold;
4083
4084 /*
4085 * Iterate backward over array of thresholds starting from
4086 * current_threshold and check if a threshold is crossed.
4087 * If none of thresholds below usage is crossed, we read
4088 * only one element of the array here.
4089 */
4090 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4091 eventfd_signal(t->entries[i].eventfd, 1);
4092
4093 /* i = current_threshold + 1 */
4094 i++;
4095
4096 /*
4097 * Iterate forward over array of thresholds starting from
4098 * current_threshold+1 and check if a threshold is crossed.
4099 * If none of thresholds above usage is crossed, we read
4100 * only one element of the array here.
4101 */
4102 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4103 eventfd_signal(t->entries[i].eventfd, 1);
4104
4105 /* Update current_threshold */
4106 t->current_threshold = i - 1;
4107unlock:
4108 rcu_read_unlock();
4109}
4110
4111static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4112{
4113 while (memcg) {
4114 __mem_cgroup_threshold(memcg, false);
4115 if (do_memsw_account())
4116 __mem_cgroup_threshold(memcg, true);
4117
4118 memcg = parent_mem_cgroup(memcg);
4119 }
4120}
4121
4122static int compare_thresholds(const void *a, const void *b)
4123{
4124 const struct mem_cgroup_threshold *_a = a;
4125 const struct mem_cgroup_threshold *_b = b;
4126
4127 if (_a->threshold > _b->threshold)
4128 return 1;
4129
4130 if (_a->threshold < _b->threshold)
4131 return -1;
4132
4133 return 0;
4134}
4135
4136static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4137{
4138 struct mem_cgroup_eventfd_list *ev;
4139
4140 spin_lock(&memcg_oom_lock);
4141
4142 list_for_each_entry(ev, &memcg->oom_notify, list)
4143 eventfd_signal(ev->eventfd, 1);
4144
4145 spin_unlock(&memcg_oom_lock);
4146 return 0;
4147}
4148
4149static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4150{
4151 struct mem_cgroup *iter;
4152
4153 for_each_mem_cgroup_tree(iter, memcg)
4154 mem_cgroup_oom_notify_cb(iter);
4155}
4156
4157static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4158 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4159{
4160 struct mem_cgroup_thresholds *thresholds;
4161 struct mem_cgroup_threshold_ary *new;
4162 unsigned long threshold;
4163 unsigned long usage;
4164 int i, size, ret;
4165
4166 ret = page_counter_memparse(args, "-1", &threshold);
4167 if (ret)
4168 return ret;
4169
4170 mutex_lock(&memcg->thresholds_lock);
4171
4172 if (type == _MEM) {
4173 thresholds = &memcg->thresholds;
4174 usage = mem_cgroup_usage(memcg, false);
4175 } else if (type == _MEMSWAP) {
4176 thresholds = &memcg->memsw_thresholds;
4177 usage = mem_cgroup_usage(memcg, true);
4178 } else
4179 BUG();
4180
4181 /* Check if a threshold crossed before adding a new one */
4182 if (thresholds->primary)
4183 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4184
4185 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4186
4187 /* Allocate memory for new array of thresholds */
4188 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4189 if (!new) {
4190 ret = -ENOMEM;
4191 goto unlock;
4192 }
4193 new->size = size;
4194
4195 /* Copy thresholds (if any) to new array */
4196 if (thresholds->primary)
4197 memcpy(new->entries, thresholds->primary->entries,
4198 flex_array_size(new, entries, size - 1));
4199
4200 /* Add new threshold */
4201 new->entries[size - 1].eventfd = eventfd;
4202 new->entries[size - 1].threshold = threshold;
4203
4204 /* Sort thresholds. Registering of new threshold isn't time-critical */
4205 sort(new->entries, size, sizeof(*new->entries),
4206 compare_thresholds, NULL);
4207
4208 /* Find current threshold */
4209 new->current_threshold = -1;
4210 for (i = 0; i < size; i++) {
4211 if (new->entries[i].threshold <= usage) {
4212 /*
4213 * new->current_threshold will not be used until
4214 * rcu_assign_pointer(), so it's safe to increment
4215 * it here.
4216 */
4217 ++new->current_threshold;
4218 } else
4219 break;
4220 }
4221
4222 /* Free old spare buffer and save old primary buffer as spare */
4223 kfree(thresholds->spare);
4224 thresholds->spare = thresholds->primary;
4225
4226 rcu_assign_pointer(thresholds->primary, new);
4227
4228 /* To be sure that nobody uses thresholds */
4229 synchronize_rcu();
4230
4231unlock:
4232 mutex_unlock(&memcg->thresholds_lock);
4233
4234 return ret;
4235}
4236
4237static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4238 struct eventfd_ctx *eventfd, const char *args)
4239{
4240 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4241}
4242
4243static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4244 struct eventfd_ctx *eventfd, const char *args)
4245{
4246 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4247}
4248
4249static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4250 struct eventfd_ctx *eventfd, enum res_type type)
4251{
4252 struct mem_cgroup_thresholds *thresholds;
4253 struct mem_cgroup_threshold_ary *new;
4254 unsigned long usage;
4255 int i, j, size, entries;
4256
4257 mutex_lock(&memcg->thresholds_lock);
4258
4259 if (type == _MEM) {
4260 thresholds = &memcg->thresholds;
4261 usage = mem_cgroup_usage(memcg, false);
4262 } else if (type == _MEMSWAP) {
4263 thresholds = &memcg->memsw_thresholds;
4264 usage = mem_cgroup_usage(memcg, true);
4265 } else
4266 BUG();
4267
4268 if (!thresholds->primary)
4269 goto unlock;
4270
4271 /* Check if a threshold crossed before removing */
4272 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4273
4274 /* Calculate new number of threshold */
4275 size = entries = 0;
4276 for (i = 0; i < thresholds->primary->size; i++) {
4277 if (thresholds->primary->entries[i].eventfd != eventfd)
4278 size++;
4279 else
4280 entries++;
4281 }
4282
4283 new = thresholds->spare;
4284
4285 /* If no items related to eventfd have been cleared, nothing to do */
4286 if (!entries)
4287 goto unlock;
4288
4289 /* Set thresholds array to NULL if we don't have thresholds */
4290 if (!size) {
4291 kfree(new);
4292 new = NULL;
4293 goto swap_buffers;
4294 }
4295
4296 new->size = size;
4297
4298 /* Copy thresholds and find current threshold */
4299 new->current_threshold = -1;
4300 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4301 if (thresholds->primary->entries[i].eventfd == eventfd)
4302 continue;
4303
4304 new->entries[j] = thresholds->primary->entries[i];
4305 if (new->entries[j].threshold <= usage) {
4306 /*
4307 * new->current_threshold will not be used
4308 * until rcu_assign_pointer(), so it's safe to increment
4309 * it here.
4310 */
4311 ++new->current_threshold;
4312 }
4313 j++;
4314 }
4315
4316swap_buffers:
4317 /* Swap primary and spare array */
4318 thresholds->spare = thresholds->primary;
4319
4320 rcu_assign_pointer(thresholds->primary, new);
4321
4322 /* To be sure that nobody uses thresholds */
4323 synchronize_rcu();
4324
4325 /* If all events are unregistered, free the spare array */
4326 if (!new) {
4327 kfree(thresholds->spare);
4328 thresholds->spare = NULL;
4329 }
4330unlock:
4331 mutex_unlock(&memcg->thresholds_lock);
4332}
4333
4334static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4335 struct eventfd_ctx *eventfd)
4336{
4337 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4338}
4339
4340static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4341 struct eventfd_ctx *eventfd)
4342{
4343 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4344}
4345
4346static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4347 struct eventfd_ctx *eventfd, const char *args)
4348{
4349 struct mem_cgroup_eventfd_list *event;
4350
4351 event = kmalloc(sizeof(*event), GFP_KERNEL);
4352 if (!event)
4353 return -ENOMEM;
4354
4355 spin_lock(&memcg_oom_lock);
4356
4357 event->eventfd = eventfd;
4358 list_add(&event->list, &memcg->oom_notify);
4359
4360 /* already in OOM ? */
4361 if (memcg->under_oom)
4362 eventfd_signal(eventfd, 1);
4363 spin_unlock(&memcg_oom_lock);
4364
4365 return 0;
4366}
4367
4368static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4369 struct eventfd_ctx *eventfd)
4370{
4371 struct mem_cgroup_eventfd_list *ev, *tmp;
4372
4373 spin_lock(&memcg_oom_lock);
4374
4375 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4376 if (ev->eventfd == eventfd) {
4377 list_del(&ev->list);
4378 kfree(ev);
4379 }
4380 }
4381
4382 spin_unlock(&memcg_oom_lock);
4383}
4384
4385static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4386{
4387 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4388
4389 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4390 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4391 seq_printf(sf, "oom_kill %lu\n",
4392 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4393 return 0;
4394}
4395
4396static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4397 struct cftype *cft, u64 val)
4398{
4399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4400
4401 /* cannot set to root cgroup and only 0 and 1 are allowed */
4402 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4403 return -EINVAL;
4404
4405 memcg->oom_kill_disable = val;
4406 if (!val)
4407 memcg_oom_recover(memcg);
4408
4409 return 0;
4410}
4411
4412#ifdef CONFIG_CGROUP_WRITEBACK
4413
4414#include <trace/events/writeback.h>
4415
4416static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4417{
4418 return wb_domain_init(&memcg->cgwb_domain, gfp);
4419}
4420
4421static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4422{
4423 wb_domain_exit(&memcg->cgwb_domain);
4424}
4425
4426static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4427{
4428 wb_domain_size_changed(&memcg->cgwb_domain);
4429}
4430
4431struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4432{
4433 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4434
4435 if (!memcg->css.parent)
4436 return NULL;
4437
4438 return &memcg->cgwb_domain;
4439}
4440
4441/**
4442 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4443 * @wb: bdi_writeback in question
4444 * @pfilepages: out parameter for number of file pages
4445 * @pheadroom: out parameter for number of allocatable pages according to memcg
4446 * @pdirty: out parameter for number of dirty pages
4447 * @pwriteback: out parameter for number of pages under writeback
4448 *
4449 * Determine the numbers of file, headroom, dirty, and writeback pages in
4450 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4451 * is a bit more involved.
4452 *
4453 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4454 * headroom is calculated as the lowest headroom of itself and the
4455 * ancestors. Note that this doesn't consider the actual amount of
4456 * available memory in the system. The caller should further cap
4457 * *@pheadroom accordingly.
4458 */
4459void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4460 unsigned long *pheadroom, unsigned long *pdirty,
4461 unsigned long *pwriteback)
4462{
4463 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4464 struct mem_cgroup *parent;
4465
4466 mem_cgroup_flush_stats();
4467
4468 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4469 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4470 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4471 memcg_page_state(memcg, NR_ACTIVE_FILE);
4472
4473 *pheadroom = PAGE_COUNTER_MAX;
4474 while ((parent = parent_mem_cgroup(memcg))) {
4475 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4476 READ_ONCE(memcg->memory.high));
4477 unsigned long used = page_counter_read(&memcg->memory);
4478
4479 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4480 memcg = parent;
4481 }
4482}
4483
4484/*
4485 * Foreign dirty flushing
4486 *
4487 * There's an inherent mismatch between memcg and writeback. The former
4488 * tracks ownership per-page while the latter per-inode. This was a
4489 * deliberate design decision because honoring per-page ownership in the
4490 * writeback path is complicated, may lead to higher CPU and IO overheads
4491 * and deemed unnecessary given that write-sharing an inode across
4492 * different cgroups isn't a common use-case.
4493 *
4494 * Combined with inode majority-writer ownership switching, this works well
4495 * enough in most cases but there are some pathological cases. For
4496 * example, let's say there are two cgroups A and B which keep writing to
4497 * different but confined parts of the same inode. B owns the inode and
4498 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4499 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4500 * triggering background writeback. A will be slowed down without a way to
4501 * make writeback of the dirty pages happen.
4502 *
4503 * Conditions like the above can lead to a cgroup getting repeatedly and
4504 * severely throttled after making some progress after each
4505 * dirty_expire_interval while the underlying IO device is almost
4506 * completely idle.
4507 *
4508 * Solving this problem completely requires matching the ownership tracking
4509 * granularities between memcg and writeback in either direction. However,
4510 * the more egregious behaviors can be avoided by simply remembering the
4511 * most recent foreign dirtying events and initiating remote flushes on
4512 * them when local writeback isn't enough to keep the memory clean enough.
4513 *
4514 * The following two functions implement such mechanism. When a foreign
4515 * page - a page whose memcg and writeback ownerships don't match - is
4516 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4517 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4518 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4519 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4520 * foreign bdi_writebacks which haven't expired. Both the numbers of
4521 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4522 * limited to MEMCG_CGWB_FRN_CNT.
4523 *
4524 * The mechanism only remembers IDs and doesn't hold any object references.
4525 * As being wrong occasionally doesn't matter, updates and accesses to the
4526 * records are lockless and racy.
4527 */
4528void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4529 struct bdi_writeback *wb)
4530{
4531 struct mem_cgroup *memcg = folio_memcg(folio);
4532 struct memcg_cgwb_frn *frn;
4533 u64 now = get_jiffies_64();
4534 u64 oldest_at = now;
4535 int oldest = -1;
4536 int i;
4537
4538 trace_track_foreign_dirty(folio, wb);
4539
4540 /*
4541 * Pick the slot to use. If there is already a slot for @wb, keep
4542 * using it. If not replace the oldest one which isn't being
4543 * written out.
4544 */
4545 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4546 frn = &memcg->cgwb_frn[i];
4547 if (frn->bdi_id == wb->bdi->id &&
4548 frn->memcg_id == wb->memcg_css->id)
4549 break;
4550 if (time_before64(frn->at, oldest_at) &&
4551 atomic_read(&frn->done.cnt) == 1) {
4552 oldest = i;
4553 oldest_at = frn->at;
4554 }
4555 }
4556
4557 if (i < MEMCG_CGWB_FRN_CNT) {
4558 /*
4559 * Re-using an existing one. Update timestamp lazily to
4560 * avoid making the cacheline hot. We want them to be
4561 * reasonably up-to-date and significantly shorter than
4562 * dirty_expire_interval as that's what expires the record.
4563 * Use the shorter of 1s and dirty_expire_interval / 8.
4564 */
4565 unsigned long update_intv =
4566 min_t(unsigned long, HZ,
4567 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4568
4569 if (time_before64(frn->at, now - update_intv))
4570 frn->at = now;
4571 } else if (oldest >= 0) {
4572 /* replace the oldest free one */
4573 frn = &memcg->cgwb_frn[oldest];
4574 frn->bdi_id = wb->bdi->id;
4575 frn->memcg_id = wb->memcg_css->id;
4576 frn->at = now;
4577 }
4578}
4579
4580/* issue foreign writeback flushes for recorded foreign dirtying events */
4581void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4582{
4583 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4584 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4585 u64 now = jiffies_64;
4586 int i;
4587
4588 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4589 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4590
4591 /*
4592 * If the record is older than dirty_expire_interval,
4593 * writeback on it has already started. No need to kick it
4594 * off again. Also, don't start a new one if there's
4595 * already one in flight.
4596 */
4597 if (time_after64(frn->at, now - intv) &&
4598 atomic_read(&frn->done.cnt) == 1) {
4599 frn->at = 0;
4600 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4601 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4602 WB_REASON_FOREIGN_FLUSH,
4603 &frn->done);
4604 }
4605 }
4606}
4607
4608#else /* CONFIG_CGROUP_WRITEBACK */
4609
4610static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4611{
4612 return 0;
4613}
4614
4615static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4616{
4617}
4618
4619static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4620{
4621}
4622
4623#endif /* CONFIG_CGROUP_WRITEBACK */
4624
4625/*
4626 * DO NOT USE IN NEW FILES.
4627 *
4628 * "cgroup.event_control" implementation.
4629 *
4630 * This is way over-engineered. It tries to support fully configurable
4631 * events for each user. Such level of flexibility is completely
4632 * unnecessary especially in the light of the planned unified hierarchy.
4633 *
4634 * Please deprecate this and replace with something simpler if at all
4635 * possible.
4636 */
4637
4638/*
4639 * Unregister event and free resources.
4640 *
4641 * Gets called from workqueue.
4642 */
4643static void memcg_event_remove(struct work_struct *work)
4644{
4645 struct mem_cgroup_event *event =
4646 container_of(work, struct mem_cgroup_event, remove);
4647 struct mem_cgroup *memcg = event->memcg;
4648
4649 remove_wait_queue(event->wqh, &event->wait);
4650
4651 event->unregister_event(memcg, event->eventfd);
4652
4653 /* Notify userspace the event is going away. */
4654 eventfd_signal(event->eventfd, 1);
4655
4656 eventfd_ctx_put(event->eventfd);
4657 kfree(event);
4658 css_put(&memcg->css);
4659}
4660
4661/*
4662 * Gets called on EPOLLHUP on eventfd when user closes it.
4663 *
4664 * Called with wqh->lock held and interrupts disabled.
4665 */
4666static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4667 int sync, void *key)
4668{
4669 struct mem_cgroup_event *event =
4670 container_of(wait, struct mem_cgroup_event, wait);
4671 struct mem_cgroup *memcg = event->memcg;
4672 __poll_t flags = key_to_poll(key);
4673
4674 if (flags & EPOLLHUP) {
4675 /*
4676 * If the event has been detached at cgroup removal, we
4677 * can simply return knowing the other side will cleanup
4678 * for us.
4679 *
4680 * We can't race against event freeing since the other
4681 * side will require wqh->lock via remove_wait_queue(),
4682 * which we hold.
4683 */
4684 spin_lock(&memcg->event_list_lock);
4685 if (!list_empty(&event->list)) {
4686 list_del_init(&event->list);
4687 /*
4688 * We are in atomic context, but cgroup_event_remove()
4689 * may sleep, so we have to call it in workqueue.
4690 */
4691 schedule_work(&event->remove);
4692 }
4693 spin_unlock(&memcg->event_list_lock);
4694 }
4695
4696 return 0;
4697}
4698
4699static void memcg_event_ptable_queue_proc(struct file *file,
4700 wait_queue_head_t *wqh, poll_table *pt)
4701{
4702 struct mem_cgroup_event *event =
4703 container_of(pt, struct mem_cgroup_event, pt);
4704
4705 event->wqh = wqh;
4706 add_wait_queue(wqh, &event->wait);
4707}
4708
4709/*
4710 * DO NOT USE IN NEW FILES.
4711 *
4712 * Parse input and register new cgroup event handler.
4713 *
4714 * Input must be in format '<event_fd> <control_fd> <args>'.
4715 * Interpretation of args is defined by control file implementation.
4716 */
4717static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4718 char *buf, size_t nbytes, loff_t off)
4719{
4720 struct cgroup_subsys_state *css = of_css(of);
4721 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4722 struct mem_cgroup_event *event;
4723 struct cgroup_subsys_state *cfile_css;
4724 unsigned int efd, cfd;
4725 struct fd efile;
4726 struct fd cfile;
4727 const char *name;
4728 char *endp;
4729 int ret;
4730
4731 buf = strstrip(buf);
4732
4733 efd = simple_strtoul(buf, &endp, 10);
4734 if (*endp != ' ')
4735 return -EINVAL;
4736 buf = endp + 1;
4737
4738 cfd = simple_strtoul(buf, &endp, 10);
4739 if ((*endp != ' ') && (*endp != '\0'))
4740 return -EINVAL;
4741 buf = endp + 1;
4742
4743 event = kzalloc(sizeof(*event), GFP_KERNEL);
4744 if (!event)
4745 return -ENOMEM;
4746
4747 event->memcg = memcg;
4748 INIT_LIST_HEAD(&event->list);
4749 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4750 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4751 INIT_WORK(&event->remove, memcg_event_remove);
4752
4753 efile = fdget(efd);
4754 if (!efile.file) {
4755 ret = -EBADF;
4756 goto out_kfree;
4757 }
4758
4759 event->eventfd = eventfd_ctx_fileget(efile.file);
4760 if (IS_ERR(event->eventfd)) {
4761 ret = PTR_ERR(event->eventfd);
4762 goto out_put_efile;
4763 }
4764
4765 cfile = fdget(cfd);
4766 if (!cfile.file) {
4767 ret = -EBADF;
4768 goto out_put_eventfd;
4769 }
4770
4771 /* the process need read permission on control file */
4772 /* AV: shouldn't we check that it's been opened for read instead? */
4773 ret = file_permission(cfile.file, MAY_READ);
4774 if (ret < 0)
4775 goto out_put_cfile;
4776
4777 /*
4778 * Determine the event callbacks and set them in @event. This used
4779 * to be done via struct cftype but cgroup core no longer knows
4780 * about these events. The following is crude but the whole thing
4781 * is for compatibility anyway.
4782 *
4783 * DO NOT ADD NEW FILES.
4784 */
4785 name = cfile.file->f_path.dentry->d_name.name;
4786
4787 if (!strcmp(name, "memory.usage_in_bytes")) {
4788 event->register_event = mem_cgroup_usage_register_event;
4789 event->unregister_event = mem_cgroup_usage_unregister_event;
4790 } else if (!strcmp(name, "memory.oom_control")) {
4791 event->register_event = mem_cgroup_oom_register_event;
4792 event->unregister_event = mem_cgroup_oom_unregister_event;
4793 } else if (!strcmp(name, "memory.pressure_level")) {
4794 event->register_event = vmpressure_register_event;
4795 event->unregister_event = vmpressure_unregister_event;
4796 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4797 event->register_event = memsw_cgroup_usage_register_event;
4798 event->unregister_event = memsw_cgroup_usage_unregister_event;
4799 } else {
4800 ret = -EINVAL;
4801 goto out_put_cfile;
4802 }
4803
4804 /*
4805 * Verify @cfile should belong to @css. Also, remaining events are
4806 * automatically removed on cgroup destruction but the removal is
4807 * asynchronous, so take an extra ref on @css.
4808 */
4809 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4810 &memory_cgrp_subsys);
4811 ret = -EINVAL;
4812 if (IS_ERR(cfile_css))
4813 goto out_put_cfile;
4814 if (cfile_css != css) {
4815 css_put(cfile_css);
4816 goto out_put_cfile;
4817 }
4818
4819 ret = event->register_event(memcg, event->eventfd, buf);
4820 if (ret)
4821 goto out_put_css;
4822
4823 vfs_poll(efile.file, &event->pt);
4824
4825 spin_lock_irq(&memcg->event_list_lock);
4826 list_add(&event->list, &memcg->event_list);
4827 spin_unlock_irq(&memcg->event_list_lock);
4828
4829 fdput(cfile);
4830 fdput(efile);
4831
4832 return nbytes;
4833
4834out_put_css:
4835 css_put(css);
4836out_put_cfile:
4837 fdput(cfile);
4838out_put_eventfd:
4839 eventfd_ctx_put(event->eventfd);
4840out_put_efile:
4841 fdput(efile);
4842out_kfree:
4843 kfree(event);
4844
4845 return ret;
4846}
4847
4848static struct cftype mem_cgroup_legacy_files[] = {
4849 {
4850 .name = "usage_in_bytes",
4851 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4852 .read_u64 = mem_cgroup_read_u64,
4853 },
4854 {
4855 .name = "max_usage_in_bytes",
4856 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4857 .write = mem_cgroup_reset,
4858 .read_u64 = mem_cgroup_read_u64,
4859 },
4860 {
4861 .name = "limit_in_bytes",
4862 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4863 .write = mem_cgroup_write,
4864 .read_u64 = mem_cgroup_read_u64,
4865 },
4866 {
4867 .name = "soft_limit_in_bytes",
4868 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4869 .write = mem_cgroup_write,
4870 .read_u64 = mem_cgroup_read_u64,
4871 },
4872 {
4873 .name = "failcnt",
4874 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4875 .write = mem_cgroup_reset,
4876 .read_u64 = mem_cgroup_read_u64,
4877 },
4878 {
4879 .name = "stat",
4880 .seq_show = memcg_stat_show,
4881 },
4882 {
4883 .name = "force_empty",
4884 .write = mem_cgroup_force_empty_write,
4885 },
4886 {
4887 .name = "use_hierarchy",
4888 .write_u64 = mem_cgroup_hierarchy_write,
4889 .read_u64 = mem_cgroup_hierarchy_read,
4890 },
4891 {
4892 .name = "cgroup.event_control", /* XXX: for compat */
4893 .write = memcg_write_event_control,
4894 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4895 },
4896 {
4897 .name = "swappiness",
4898 .read_u64 = mem_cgroup_swappiness_read,
4899 .write_u64 = mem_cgroup_swappiness_write,
4900 },
4901 {
4902 .name = "move_charge_at_immigrate",
4903 .read_u64 = mem_cgroup_move_charge_read,
4904 .write_u64 = mem_cgroup_move_charge_write,
4905 },
4906 {
4907 .name = "oom_control",
4908 .seq_show = mem_cgroup_oom_control_read,
4909 .write_u64 = mem_cgroup_oom_control_write,
4910 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4911 },
4912 {
4913 .name = "pressure_level",
4914 },
4915#ifdef CONFIG_NUMA
4916 {
4917 .name = "numa_stat",
4918 .seq_show = memcg_numa_stat_show,
4919 },
4920#endif
4921 {
4922 .name = "kmem.limit_in_bytes",
4923 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4924 .write = mem_cgroup_write,
4925 .read_u64 = mem_cgroup_read_u64,
4926 },
4927 {
4928 .name = "kmem.usage_in_bytes",
4929 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4930 .read_u64 = mem_cgroup_read_u64,
4931 },
4932 {
4933 .name = "kmem.failcnt",
4934 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4935 .write = mem_cgroup_reset,
4936 .read_u64 = mem_cgroup_read_u64,
4937 },
4938 {
4939 .name = "kmem.max_usage_in_bytes",
4940 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4941 .write = mem_cgroup_reset,
4942 .read_u64 = mem_cgroup_read_u64,
4943 },
4944#if defined(CONFIG_MEMCG_KMEM) && \
4945 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4946 {
4947 .name = "kmem.slabinfo",
4948 .seq_show = memcg_slab_show,
4949 },
4950#endif
4951 {
4952 .name = "kmem.tcp.limit_in_bytes",
4953 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4954 .write = mem_cgroup_write,
4955 .read_u64 = mem_cgroup_read_u64,
4956 },
4957 {
4958 .name = "kmem.tcp.usage_in_bytes",
4959 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4960 .read_u64 = mem_cgroup_read_u64,
4961 },
4962 {
4963 .name = "kmem.tcp.failcnt",
4964 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4965 .write = mem_cgroup_reset,
4966 .read_u64 = mem_cgroup_read_u64,
4967 },
4968 {
4969 .name = "kmem.tcp.max_usage_in_bytes",
4970 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4971 .write = mem_cgroup_reset,
4972 .read_u64 = mem_cgroup_read_u64,
4973 },
4974 { }, /* terminate */
4975};
4976
4977/*
4978 * Private memory cgroup IDR
4979 *
4980 * Swap-out records and page cache shadow entries need to store memcg
4981 * references in constrained space, so we maintain an ID space that is
4982 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4983 * memory-controlled cgroups to 64k.
4984 *
4985 * However, there usually are many references to the offline CSS after
4986 * the cgroup has been destroyed, such as page cache or reclaimable
4987 * slab objects, that don't need to hang on to the ID. We want to keep
4988 * those dead CSS from occupying IDs, or we might quickly exhaust the
4989 * relatively small ID space and prevent the creation of new cgroups
4990 * even when there are much fewer than 64k cgroups - possibly none.
4991 *
4992 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4993 * be freed and recycled when it's no longer needed, which is usually
4994 * when the CSS is offlined.
4995 *
4996 * The only exception to that are records of swapped out tmpfs/shmem
4997 * pages that need to be attributed to live ancestors on swapin. But
4998 * those references are manageable from userspace.
4999 */
5000
5001static DEFINE_IDR(mem_cgroup_idr);
5002
5003static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5004{
5005 if (memcg->id.id > 0) {
5006 idr_remove(&mem_cgroup_idr, memcg->id.id);
5007 memcg->id.id = 0;
5008 }
5009}
5010
5011static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5012 unsigned int n)
5013{
5014 refcount_add(n, &memcg->id.ref);
5015}
5016
5017static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5018{
5019 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5020 mem_cgroup_id_remove(memcg);
5021
5022 /* Memcg ID pins CSS */
5023 css_put(&memcg->css);
5024 }
5025}
5026
5027static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5028{
5029 mem_cgroup_id_put_many(memcg, 1);
5030}
5031
5032/**
5033 * mem_cgroup_from_id - look up a memcg from a memcg id
5034 * @id: the memcg id to look up
5035 *
5036 * Caller must hold rcu_read_lock().
5037 */
5038struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5039{
5040 WARN_ON_ONCE(!rcu_read_lock_held());
5041 return idr_find(&mem_cgroup_idr, id);
5042}
5043
5044static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5045{
5046 struct mem_cgroup_per_node *pn;
5047 int tmp = node;
5048 /*
5049 * This routine is called against possible nodes.
5050 * But it's BUG to call kmalloc() against offline node.
5051 *
5052 * TODO: this routine can waste much memory for nodes which will
5053 * never be onlined. It's better to use memory hotplug callback
5054 * function.
5055 */
5056 if (!node_state(node, N_NORMAL_MEMORY))
5057 tmp = -1;
5058 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5059 if (!pn)
5060 return 1;
5061
5062 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5063 GFP_KERNEL_ACCOUNT);
5064 if (!pn->lruvec_stats_percpu) {
5065 kfree(pn);
5066 return 1;
5067 }
5068
5069 lruvec_init(&pn->lruvec);
5070 pn->usage_in_excess = 0;
5071 pn->on_tree = false;
5072 pn->memcg = memcg;
5073
5074 memcg->nodeinfo[node] = pn;
5075 return 0;
5076}
5077
5078static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5079{
5080 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5081
5082 if (!pn)
5083 return;
5084
5085 free_percpu(pn->lruvec_stats_percpu);
5086 kfree(pn);
5087}
5088
5089static void __mem_cgroup_free(struct mem_cgroup *memcg)
5090{
5091 int node;
5092
5093 for_each_node(node)
5094 free_mem_cgroup_per_node_info(memcg, node);
5095 free_percpu(memcg->vmstats_percpu);
5096 kfree(memcg);
5097}
5098
5099static void mem_cgroup_free(struct mem_cgroup *memcg)
5100{
5101 memcg_wb_domain_exit(memcg);
5102 __mem_cgroup_free(memcg);
5103}
5104
5105static struct mem_cgroup *mem_cgroup_alloc(void)
5106{
5107 struct mem_cgroup *memcg;
5108 unsigned int size;
5109 int node;
5110 int __maybe_unused i;
5111 long error = -ENOMEM;
5112
5113 size = sizeof(struct mem_cgroup);
5114 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5115
5116 memcg = kzalloc(size, GFP_KERNEL);
5117 if (!memcg)
5118 return ERR_PTR(error);
5119
5120 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5121 1, MEM_CGROUP_ID_MAX,
5122 GFP_KERNEL);
5123 if (memcg->id.id < 0) {
5124 error = memcg->id.id;
5125 goto fail;
5126 }
5127
5128 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5129 GFP_KERNEL_ACCOUNT);
5130 if (!memcg->vmstats_percpu)
5131 goto fail;
5132
5133 for_each_node(node)
5134 if (alloc_mem_cgroup_per_node_info(memcg, node))
5135 goto fail;
5136
5137 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5138 goto fail;
5139
5140 INIT_WORK(&memcg->high_work, high_work_func);
5141 INIT_LIST_HEAD(&memcg->oom_notify);
5142 mutex_init(&memcg->thresholds_lock);
5143 spin_lock_init(&memcg->move_lock);
5144 vmpressure_init(&memcg->vmpressure);
5145 INIT_LIST_HEAD(&memcg->event_list);
5146 spin_lock_init(&memcg->event_list_lock);
5147 memcg->socket_pressure = jiffies;
5148#ifdef CONFIG_MEMCG_KMEM
5149 memcg->kmemcg_id = -1;
5150 INIT_LIST_HEAD(&memcg->objcg_list);
5151#endif
5152#ifdef CONFIG_CGROUP_WRITEBACK
5153 INIT_LIST_HEAD(&memcg->cgwb_list);
5154 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5155 memcg->cgwb_frn[i].done =
5156 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5157#endif
5158#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5159 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5160 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5161 memcg->deferred_split_queue.split_queue_len = 0;
5162#endif
5163 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5164 return memcg;
5165fail:
5166 mem_cgroup_id_remove(memcg);
5167 __mem_cgroup_free(memcg);
5168 return ERR_PTR(error);
5169}
5170
5171static struct cgroup_subsys_state * __ref
5172mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5173{
5174 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5175 struct mem_cgroup *memcg, *old_memcg;
5176 long error = -ENOMEM;
5177
5178 old_memcg = set_active_memcg(parent);
5179 memcg = mem_cgroup_alloc();
5180 set_active_memcg(old_memcg);
5181 if (IS_ERR(memcg))
5182 return ERR_CAST(memcg);
5183
5184 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5185 memcg->soft_limit = PAGE_COUNTER_MAX;
5186 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5187 if (parent) {
5188 memcg->swappiness = mem_cgroup_swappiness(parent);
5189 memcg->oom_kill_disable = parent->oom_kill_disable;
5190
5191 page_counter_init(&memcg->memory, &parent->memory);
5192 page_counter_init(&memcg->swap, &parent->swap);
5193 page_counter_init(&memcg->kmem, &parent->kmem);
5194 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5195 } else {
5196 page_counter_init(&memcg->memory, NULL);
5197 page_counter_init(&memcg->swap, NULL);
5198 page_counter_init(&memcg->kmem, NULL);
5199 page_counter_init(&memcg->tcpmem, NULL);
5200
5201 root_mem_cgroup = memcg;
5202 return &memcg->css;
5203 }
5204
5205 /* The following stuff does not apply to the root */
5206 error = memcg_online_kmem(memcg);
5207 if (error)
5208 goto fail;
5209
5210 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5211 static_branch_inc(&memcg_sockets_enabled_key);
5212
5213 return &memcg->css;
5214fail:
5215 mem_cgroup_id_remove(memcg);
5216 mem_cgroup_free(memcg);
5217 return ERR_PTR(error);
5218}
5219
5220static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5221{
5222 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5223
5224 /*
5225 * A memcg must be visible for expand_shrinker_info()
5226 * by the time the maps are allocated. So, we allocate maps
5227 * here, when for_each_mem_cgroup() can't skip it.
5228 */
5229 if (alloc_shrinker_info(memcg)) {
5230 mem_cgroup_id_remove(memcg);
5231 return -ENOMEM;
5232 }
5233
5234 /* Online state pins memcg ID, memcg ID pins CSS */
5235 refcount_set(&memcg->id.ref, 1);
5236 css_get(css);
5237
5238 if (unlikely(mem_cgroup_is_root(memcg)))
5239 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5240 2UL*HZ);
5241 return 0;
5242}
5243
5244static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5245{
5246 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5247 struct mem_cgroup_event *event, *tmp;
5248
5249 /*
5250 * Unregister events and notify userspace.
5251 * Notify userspace about cgroup removing only after rmdir of cgroup
5252 * directory to avoid race between userspace and kernelspace.
5253 */
5254 spin_lock_irq(&memcg->event_list_lock);
5255 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5256 list_del_init(&event->list);
5257 schedule_work(&event->remove);
5258 }
5259 spin_unlock_irq(&memcg->event_list_lock);
5260
5261 page_counter_set_min(&memcg->memory, 0);
5262 page_counter_set_low(&memcg->memory, 0);
5263
5264 memcg_offline_kmem(memcg);
5265 reparent_shrinker_deferred(memcg);
5266 wb_memcg_offline(memcg);
5267
5268 drain_all_stock(memcg);
5269
5270 mem_cgroup_id_put(memcg);
5271}
5272
5273static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5274{
5275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5276
5277 invalidate_reclaim_iterators(memcg);
5278}
5279
5280static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5281{
5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283 int __maybe_unused i;
5284
5285#ifdef CONFIG_CGROUP_WRITEBACK
5286 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5287 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5288#endif
5289 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5290 static_branch_dec(&memcg_sockets_enabled_key);
5291
5292 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5293 static_branch_dec(&memcg_sockets_enabled_key);
5294
5295 vmpressure_cleanup(&memcg->vmpressure);
5296 cancel_work_sync(&memcg->high_work);
5297 mem_cgroup_remove_from_trees(memcg);
5298 free_shrinker_info(memcg);
5299
5300 /* Need to offline kmem if online_css() fails */
5301 memcg_offline_kmem(memcg);
5302 mem_cgroup_free(memcg);
5303}
5304
5305/**
5306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5307 * @css: the target css
5308 *
5309 * Reset the states of the mem_cgroup associated with @css. This is
5310 * invoked when the userland requests disabling on the default hierarchy
5311 * but the memcg is pinned through dependency. The memcg should stop
5312 * applying policies and should revert to the vanilla state as it may be
5313 * made visible again.
5314 *
5315 * The current implementation only resets the essential configurations.
5316 * This needs to be expanded to cover all the visible parts.
5317 */
5318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5319{
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321
5322 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5323 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5324 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5325 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5326 page_counter_set_min(&memcg->memory, 0);
5327 page_counter_set_low(&memcg->memory, 0);
5328 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5329 memcg->soft_limit = PAGE_COUNTER_MAX;
5330 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5331 memcg_wb_domain_size_changed(memcg);
5332}
5333
5334static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5335{
5336 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5337 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5338 struct memcg_vmstats_percpu *statc;
5339 long delta, v;
5340 int i, nid;
5341
5342 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5343
5344 for (i = 0; i < MEMCG_NR_STAT; i++) {
5345 /*
5346 * Collect the aggregated propagation counts of groups
5347 * below us. We're in a per-cpu loop here and this is
5348 * a global counter, so the first cycle will get them.
5349 */
5350 delta = memcg->vmstats.state_pending[i];
5351 if (delta)
5352 memcg->vmstats.state_pending[i] = 0;
5353
5354 /* Add CPU changes on this level since the last flush */
5355 v = READ_ONCE(statc->state[i]);
5356 if (v != statc->state_prev[i]) {
5357 delta += v - statc->state_prev[i];
5358 statc->state_prev[i] = v;
5359 }
5360
5361 if (!delta)
5362 continue;
5363
5364 /* Aggregate counts on this level and propagate upwards */
5365 memcg->vmstats.state[i] += delta;
5366 if (parent)
5367 parent->vmstats.state_pending[i] += delta;
5368 }
5369
5370 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5371 delta = memcg->vmstats.events_pending[i];
5372 if (delta)
5373 memcg->vmstats.events_pending[i] = 0;
5374
5375 v = READ_ONCE(statc->events[i]);
5376 if (v != statc->events_prev[i]) {
5377 delta += v - statc->events_prev[i];
5378 statc->events_prev[i] = v;
5379 }
5380
5381 if (!delta)
5382 continue;
5383
5384 memcg->vmstats.events[i] += delta;
5385 if (parent)
5386 parent->vmstats.events_pending[i] += delta;
5387 }
5388
5389 for_each_node_state(nid, N_MEMORY) {
5390 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5391 struct mem_cgroup_per_node *ppn = NULL;
5392 struct lruvec_stats_percpu *lstatc;
5393
5394 if (parent)
5395 ppn = parent->nodeinfo[nid];
5396
5397 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5398
5399 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5400 delta = pn->lruvec_stats.state_pending[i];
5401 if (delta)
5402 pn->lruvec_stats.state_pending[i] = 0;
5403
5404 v = READ_ONCE(lstatc->state[i]);
5405 if (v != lstatc->state_prev[i]) {
5406 delta += v - lstatc->state_prev[i];
5407 lstatc->state_prev[i] = v;
5408 }
5409
5410 if (!delta)
5411 continue;
5412
5413 pn->lruvec_stats.state[i] += delta;
5414 if (ppn)
5415 ppn->lruvec_stats.state_pending[i] += delta;
5416 }
5417 }
5418}
5419
5420#ifdef CONFIG_MMU
5421/* Handlers for move charge at task migration. */
5422static int mem_cgroup_do_precharge(unsigned long count)
5423{
5424 int ret;
5425
5426 /* Try a single bulk charge without reclaim first, kswapd may wake */
5427 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5428 if (!ret) {
5429 mc.precharge += count;
5430 return ret;
5431 }
5432
5433 /* Try charges one by one with reclaim, but do not retry */
5434 while (count--) {
5435 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5436 if (ret)
5437 return ret;
5438 mc.precharge++;
5439 cond_resched();
5440 }
5441 return 0;
5442}
5443
5444union mc_target {
5445 struct page *page;
5446 swp_entry_t ent;
5447};
5448
5449enum mc_target_type {
5450 MC_TARGET_NONE = 0,
5451 MC_TARGET_PAGE,
5452 MC_TARGET_SWAP,
5453 MC_TARGET_DEVICE,
5454};
5455
5456static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5457 unsigned long addr, pte_t ptent)
5458{
5459 struct page *page = vm_normal_page(vma, addr, ptent);
5460
5461 if (!page || !page_mapped(page))
5462 return NULL;
5463 if (PageAnon(page)) {
5464 if (!(mc.flags & MOVE_ANON))
5465 return NULL;
5466 } else {
5467 if (!(mc.flags & MOVE_FILE))
5468 return NULL;
5469 }
5470 if (!get_page_unless_zero(page))
5471 return NULL;
5472
5473 return page;
5474}
5475
5476#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5477static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5478 pte_t ptent, swp_entry_t *entry)
5479{
5480 struct page *page = NULL;
5481 swp_entry_t ent = pte_to_swp_entry(ptent);
5482
5483 if (!(mc.flags & MOVE_ANON))
5484 return NULL;
5485
5486 /*
5487 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5488 * a device and because they are not accessible by CPU they are store
5489 * as special swap entry in the CPU page table.
5490 */
5491 if (is_device_private_entry(ent)) {
5492 page = pfn_swap_entry_to_page(ent);
5493 /*
5494 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5495 * a refcount of 1 when free (unlike normal page)
5496 */
5497 if (!page_ref_add_unless(page, 1, 1))
5498 return NULL;
5499 return page;
5500 }
5501
5502 if (non_swap_entry(ent))
5503 return NULL;
5504
5505 /*
5506 * Because lookup_swap_cache() updates some statistics counter,
5507 * we call find_get_page() with swapper_space directly.
5508 */
5509 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5510 entry->val = ent.val;
5511
5512 return page;
5513}
5514#else
5515static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5516 pte_t ptent, swp_entry_t *entry)
5517{
5518 return NULL;
5519}
5520#endif
5521
5522static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5523 unsigned long addr, pte_t ptent)
5524{
5525 if (!vma->vm_file) /* anonymous vma */
5526 return NULL;
5527 if (!(mc.flags & MOVE_FILE))
5528 return NULL;
5529
5530 /* page is moved even if it's not RSS of this task(page-faulted). */
5531 /* shmem/tmpfs may report page out on swap: account for that too. */
5532 return find_get_incore_page(vma->vm_file->f_mapping,
5533 linear_page_index(vma, addr));
5534}
5535
5536/**
5537 * mem_cgroup_move_account - move account of the page
5538 * @page: the page
5539 * @compound: charge the page as compound or small page
5540 * @from: mem_cgroup which the page is moved from.
5541 * @to: mem_cgroup which the page is moved to. @from != @to.
5542 *
5543 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5544 *
5545 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5546 * from old cgroup.
5547 */
5548static int mem_cgroup_move_account(struct page *page,
5549 bool compound,
5550 struct mem_cgroup *from,
5551 struct mem_cgroup *to)
5552{
5553 struct folio *folio = page_folio(page);
5554 struct lruvec *from_vec, *to_vec;
5555 struct pglist_data *pgdat;
5556 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5557 int nid, ret;
5558
5559 VM_BUG_ON(from == to);
5560 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5561 VM_BUG_ON(compound && !folio_test_large(folio));
5562
5563 /*
5564 * Prevent mem_cgroup_migrate() from looking at
5565 * page's memory cgroup of its source page while we change it.
5566 */
5567 ret = -EBUSY;
5568 if (!folio_trylock(folio))
5569 goto out;
5570
5571 ret = -EINVAL;
5572 if (folio_memcg(folio) != from)
5573 goto out_unlock;
5574
5575 pgdat = folio_pgdat(folio);
5576 from_vec = mem_cgroup_lruvec(from, pgdat);
5577 to_vec = mem_cgroup_lruvec(to, pgdat);
5578
5579 folio_memcg_lock(folio);
5580
5581 if (folio_test_anon(folio)) {
5582 if (folio_mapped(folio)) {
5583 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5584 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5585 if (folio_test_transhuge(folio)) {
5586 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5587 -nr_pages);
5588 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5589 nr_pages);
5590 }
5591 }
5592 } else {
5593 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5594 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5595
5596 if (folio_test_swapbacked(folio)) {
5597 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5598 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5599 }
5600
5601 if (folio_mapped(folio)) {
5602 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5603 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5604 }
5605
5606 if (folio_test_dirty(folio)) {
5607 struct address_space *mapping = folio_mapping(folio);
5608
5609 if (mapping_can_writeback(mapping)) {
5610 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5611 -nr_pages);
5612 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5613 nr_pages);
5614 }
5615 }
5616 }
5617
5618 if (folio_test_writeback(folio)) {
5619 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5620 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5621 }
5622
5623 /*
5624 * All state has been migrated, let's switch to the new memcg.
5625 *
5626 * It is safe to change page's memcg here because the page
5627 * is referenced, charged, isolated, and locked: we can't race
5628 * with (un)charging, migration, LRU putback, or anything else
5629 * that would rely on a stable page's memory cgroup.
5630 *
5631 * Note that lock_page_memcg is a memcg lock, not a page lock,
5632 * to save space. As soon as we switch page's memory cgroup to a
5633 * new memcg that isn't locked, the above state can change
5634 * concurrently again. Make sure we're truly done with it.
5635 */
5636 smp_mb();
5637
5638 css_get(&to->css);
5639 css_put(&from->css);
5640
5641 folio->memcg_data = (unsigned long)to;
5642
5643 __folio_memcg_unlock(from);
5644
5645 ret = 0;
5646 nid = folio_nid(folio);
5647
5648 local_irq_disable();
5649 mem_cgroup_charge_statistics(to, nr_pages);
5650 memcg_check_events(to, nid);
5651 mem_cgroup_charge_statistics(from, -nr_pages);
5652 memcg_check_events(from, nid);
5653 local_irq_enable();
5654out_unlock:
5655 folio_unlock(folio);
5656out:
5657 return ret;
5658}
5659
5660/**
5661 * get_mctgt_type - get target type of moving charge
5662 * @vma: the vma the pte to be checked belongs
5663 * @addr: the address corresponding to the pte to be checked
5664 * @ptent: the pte to be checked
5665 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5666 *
5667 * Returns
5668 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5669 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5670 * move charge. if @target is not NULL, the page is stored in target->page
5671 * with extra refcnt got(Callers should handle it).
5672 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5673 * target for charge migration. if @target is not NULL, the entry is stored
5674 * in target->ent.
5675 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5676 * (so ZONE_DEVICE page and thus not on the lru).
5677 * For now we such page is charge like a regular page would be as for all
5678 * intent and purposes it is just special memory taking the place of a
5679 * regular page.
5680 *
5681 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5682 *
5683 * Called with pte lock held.
5684 */
5685
5686static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5687 unsigned long addr, pte_t ptent, union mc_target *target)
5688{
5689 struct page *page = NULL;
5690 enum mc_target_type ret = MC_TARGET_NONE;
5691 swp_entry_t ent = { .val = 0 };
5692
5693 if (pte_present(ptent))
5694 page = mc_handle_present_pte(vma, addr, ptent);
5695 else if (is_swap_pte(ptent))
5696 page = mc_handle_swap_pte(vma, ptent, &ent);
5697 else if (pte_none(ptent))
5698 page = mc_handle_file_pte(vma, addr, ptent);
5699
5700 if (!page && !ent.val)
5701 return ret;
5702 if (page) {
5703 /*
5704 * Do only loose check w/o serialization.
5705 * mem_cgroup_move_account() checks the page is valid or
5706 * not under LRU exclusion.
5707 */
5708 if (page_memcg(page) == mc.from) {
5709 ret = MC_TARGET_PAGE;
5710 if (is_device_private_page(page))
5711 ret = MC_TARGET_DEVICE;
5712 if (target)
5713 target->page = page;
5714 }
5715 if (!ret || !target)
5716 put_page(page);
5717 }
5718 /*
5719 * There is a swap entry and a page doesn't exist or isn't charged.
5720 * But we cannot move a tail-page in a THP.
5721 */
5722 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5723 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5724 ret = MC_TARGET_SWAP;
5725 if (target)
5726 target->ent = ent;
5727 }
5728 return ret;
5729}
5730
5731#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5732/*
5733 * We don't consider PMD mapped swapping or file mapped pages because THP does
5734 * not support them for now.
5735 * Caller should make sure that pmd_trans_huge(pmd) is true.
5736 */
5737static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5738 unsigned long addr, pmd_t pmd, union mc_target *target)
5739{
5740 struct page *page = NULL;
5741 enum mc_target_type ret = MC_TARGET_NONE;
5742
5743 if (unlikely(is_swap_pmd(pmd))) {
5744 VM_BUG_ON(thp_migration_supported() &&
5745 !is_pmd_migration_entry(pmd));
5746 return ret;
5747 }
5748 page = pmd_page(pmd);
5749 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5750 if (!(mc.flags & MOVE_ANON))
5751 return ret;
5752 if (page_memcg(page) == mc.from) {
5753 ret = MC_TARGET_PAGE;
5754 if (target) {
5755 get_page(page);
5756 target->page = page;
5757 }
5758 }
5759 return ret;
5760}
5761#else
5762static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5763 unsigned long addr, pmd_t pmd, union mc_target *target)
5764{
5765 return MC_TARGET_NONE;
5766}
5767#endif
5768
5769static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5770 unsigned long addr, unsigned long end,
5771 struct mm_walk *walk)
5772{
5773 struct vm_area_struct *vma = walk->vma;
5774 pte_t *pte;
5775 spinlock_t *ptl;
5776
5777 ptl = pmd_trans_huge_lock(pmd, vma);
5778 if (ptl) {
5779 /*
5780 * Note their can not be MC_TARGET_DEVICE for now as we do not
5781 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5782 * this might change.
5783 */
5784 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5785 mc.precharge += HPAGE_PMD_NR;
5786 spin_unlock(ptl);
5787 return 0;
5788 }
5789
5790 if (pmd_trans_unstable(pmd))
5791 return 0;
5792 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5793 for (; addr != end; pte++, addr += PAGE_SIZE)
5794 if (get_mctgt_type(vma, addr, *pte, NULL))
5795 mc.precharge++; /* increment precharge temporarily */
5796 pte_unmap_unlock(pte - 1, ptl);
5797 cond_resched();
5798
5799 return 0;
5800}
5801
5802static const struct mm_walk_ops precharge_walk_ops = {
5803 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5804};
5805
5806static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5807{
5808 unsigned long precharge;
5809
5810 mmap_read_lock(mm);
5811 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5812 mmap_read_unlock(mm);
5813
5814 precharge = mc.precharge;
5815 mc.precharge = 0;
5816
5817 return precharge;
5818}
5819
5820static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5821{
5822 unsigned long precharge = mem_cgroup_count_precharge(mm);
5823
5824 VM_BUG_ON(mc.moving_task);
5825 mc.moving_task = current;
5826 return mem_cgroup_do_precharge(precharge);
5827}
5828
5829/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5830static void __mem_cgroup_clear_mc(void)
5831{
5832 struct mem_cgroup *from = mc.from;
5833 struct mem_cgroup *to = mc.to;
5834
5835 /* we must uncharge all the leftover precharges from mc.to */
5836 if (mc.precharge) {
5837 cancel_charge(mc.to, mc.precharge);
5838 mc.precharge = 0;
5839 }
5840 /*
5841 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5842 * we must uncharge here.
5843 */
5844 if (mc.moved_charge) {
5845 cancel_charge(mc.from, mc.moved_charge);
5846 mc.moved_charge = 0;
5847 }
5848 /* we must fixup refcnts and charges */
5849 if (mc.moved_swap) {
5850 /* uncharge swap account from the old cgroup */
5851 if (!mem_cgroup_is_root(mc.from))
5852 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5853
5854 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5855
5856 /*
5857 * we charged both to->memory and to->memsw, so we
5858 * should uncharge to->memory.
5859 */
5860 if (!mem_cgroup_is_root(mc.to))
5861 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5862
5863 mc.moved_swap = 0;
5864 }
5865 memcg_oom_recover(from);
5866 memcg_oom_recover(to);
5867 wake_up_all(&mc.waitq);
5868}
5869
5870static void mem_cgroup_clear_mc(void)
5871{
5872 struct mm_struct *mm = mc.mm;
5873
5874 /*
5875 * we must clear moving_task before waking up waiters at the end of
5876 * task migration.
5877 */
5878 mc.moving_task = NULL;
5879 __mem_cgroup_clear_mc();
5880 spin_lock(&mc.lock);
5881 mc.from = NULL;
5882 mc.to = NULL;
5883 mc.mm = NULL;
5884 spin_unlock(&mc.lock);
5885
5886 mmput(mm);
5887}
5888
5889static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5890{
5891 struct cgroup_subsys_state *css;
5892 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5893 struct mem_cgroup *from;
5894 struct task_struct *leader, *p;
5895 struct mm_struct *mm;
5896 unsigned long move_flags;
5897 int ret = 0;
5898
5899 /* charge immigration isn't supported on the default hierarchy */
5900 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5901 return 0;
5902
5903 /*
5904 * Multi-process migrations only happen on the default hierarchy
5905 * where charge immigration is not used. Perform charge
5906 * immigration if @tset contains a leader and whine if there are
5907 * multiple.
5908 */
5909 p = NULL;
5910 cgroup_taskset_for_each_leader(leader, css, tset) {
5911 WARN_ON_ONCE(p);
5912 p = leader;
5913 memcg = mem_cgroup_from_css(css);
5914 }
5915 if (!p)
5916 return 0;
5917
5918 /*
5919 * We are now committed to this value whatever it is. Changes in this
5920 * tunable will only affect upcoming migrations, not the current one.
5921 * So we need to save it, and keep it going.
5922 */
5923 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5924 if (!move_flags)
5925 return 0;
5926
5927 from = mem_cgroup_from_task(p);
5928
5929 VM_BUG_ON(from == memcg);
5930
5931 mm = get_task_mm(p);
5932 if (!mm)
5933 return 0;
5934 /* We move charges only when we move a owner of the mm */
5935 if (mm->owner == p) {
5936 VM_BUG_ON(mc.from);
5937 VM_BUG_ON(mc.to);
5938 VM_BUG_ON(mc.precharge);
5939 VM_BUG_ON(mc.moved_charge);
5940 VM_BUG_ON(mc.moved_swap);
5941
5942 spin_lock(&mc.lock);
5943 mc.mm = mm;
5944 mc.from = from;
5945 mc.to = memcg;
5946 mc.flags = move_flags;
5947 spin_unlock(&mc.lock);
5948 /* We set mc.moving_task later */
5949
5950 ret = mem_cgroup_precharge_mc(mm);
5951 if (ret)
5952 mem_cgroup_clear_mc();
5953 } else {
5954 mmput(mm);
5955 }
5956 return ret;
5957}
5958
5959static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5960{
5961 if (mc.to)
5962 mem_cgroup_clear_mc();
5963}
5964
5965static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5966 unsigned long addr, unsigned long end,
5967 struct mm_walk *walk)
5968{
5969 int ret = 0;
5970 struct vm_area_struct *vma = walk->vma;
5971 pte_t *pte;
5972 spinlock_t *ptl;
5973 enum mc_target_type target_type;
5974 union mc_target target;
5975 struct page *page;
5976
5977 ptl = pmd_trans_huge_lock(pmd, vma);
5978 if (ptl) {
5979 if (mc.precharge < HPAGE_PMD_NR) {
5980 spin_unlock(ptl);
5981 return 0;
5982 }
5983 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5984 if (target_type == MC_TARGET_PAGE) {
5985 page = target.page;
5986 if (!isolate_lru_page(page)) {
5987 if (!mem_cgroup_move_account(page, true,
5988 mc.from, mc.to)) {
5989 mc.precharge -= HPAGE_PMD_NR;
5990 mc.moved_charge += HPAGE_PMD_NR;
5991 }
5992 putback_lru_page(page);
5993 }
5994 put_page(page);
5995 } else if (target_type == MC_TARGET_DEVICE) {
5996 page = target.page;
5997 if (!mem_cgroup_move_account(page, true,
5998 mc.from, mc.to)) {
5999 mc.precharge -= HPAGE_PMD_NR;
6000 mc.moved_charge += HPAGE_PMD_NR;
6001 }
6002 put_page(page);
6003 }
6004 spin_unlock(ptl);
6005 return 0;
6006 }
6007
6008 if (pmd_trans_unstable(pmd))
6009 return 0;
6010retry:
6011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6012 for (; addr != end; addr += PAGE_SIZE) {
6013 pte_t ptent = *(pte++);
6014 bool device = false;
6015 swp_entry_t ent;
6016
6017 if (!mc.precharge)
6018 break;
6019
6020 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6021 case MC_TARGET_DEVICE:
6022 device = true;
6023 fallthrough;
6024 case MC_TARGET_PAGE:
6025 page = target.page;
6026 /*
6027 * We can have a part of the split pmd here. Moving it
6028 * can be done but it would be too convoluted so simply
6029 * ignore such a partial THP and keep it in original
6030 * memcg. There should be somebody mapping the head.
6031 */
6032 if (PageTransCompound(page))
6033 goto put;
6034 if (!device && isolate_lru_page(page))
6035 goto put;
6036 if (!mem_cgroup_move_account(page, false,
6037 mc.from, mc.to)) {
6038 mc.precharge--;
6039 /* we uncharge from mc.from later. */
6040 mc.moved_charge++;
6041 }
6042 if (!device)
6043 putback_lru_page(page);
6044put: /* get_mctgt_type() gets the page */
6045 put_page(page);
6046 break;
6047 case MC_TARGET_SWAP:
6048 ent = target.ent;
6049 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6050 mc.precharge--;
6051 mem_cgroup_id_get_many(mc.to, 1);
6052 /* we fixup other refcnts and charges later. */
6053 mc.moved_swap++;
6054 }
6055 break;
6056 default:
6057 break;
6058 }
6059 }
6060 pte_unmap_unlock(pte - 1, ptl);
6061 cond_resched();
6062
6063 if (addr != end) {
6064 /*
6065 * We have consumed all precharges we got in can_attach().
6066 * We try charge one by one, but don't do any additional
6067 * charges to mc.to if we have failed in charge once in attach()
6068 * phase.
6069 */
6070 ret = mem_cgroup_do_precharge(1);
6071 if (!ret)
6072 goto retry;
6073 }
6074
6075 return ret;
6076}
6077
6078static const struct mm_walk_ops charge_walk_ops = {
6079 .pmd_entry = mem_cgroup_move_charge_pte_range,
6080};
6081
6082static void mem_cgroup_move_charge(void)
6083{
6084 lru_add_drain_all();
6085 /*
6086 * Signal lock_page_memcg() to take the memcg's move_lock
6087 * while we're moving its pages to another memcg. Then wait
6088 * for already started RCU-only updates to finish.
6089 */
6090 atomic_inc(&mc.from->moving_account);
6091 synchronize_rcu();
6092retry:
6093 if (unlikely(!mmap_read_trylock(mc.mm))) {
6094 /*
6095 * Someone who are holding the mmap_lock might be waiting in
6096 * waitq. So we cancel all extra charges, wake up all waiters,
6097 * and retry. Because we cancel precharges, we might not be able
6098 * to move enough charges, but moving charge is a best-effort
6099 * feature anyway, so it wouldn't be a big problem.
6100 */
6101 __mem_cgroup_clear_mc();
6102 cond_resched();
6103 goto retry;
6104 }
6105 /*
6106 * When we have consumed all precharges and failed in doing
6107 * additional charge, the page walk just aborts.
6108 */
6109 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6110 NULL);
6111
6112 mmap_read_unlock(mc.mm);
6113 atomic_dec(&mc.from->moving_account);
6114}
6115
6116static void mem_cgroup_move_task(void)
6117{
6118 if (mc.to) {
6119 mem_cgroup_move_charge();
6120 mem_cgroup_clear_mc();
6121 }
6122}
6123#else /* !CONFIG_MMU */
6124static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6125{
6126 return 0;
6127}
6128static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6129{
6130}
6131static void mem_cgroup_move_task(void)
6132{
6133}
6134#endif
6135
6136static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6137{
6138 if (value == PAGE_COUNTER_MAX)
6139 seq_puts(m, "max\n");
6140 else
6141 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6142
6143 return 0;
6144}
6145
6146static u64 memory_current_read(struct cgroup_subsys_state *css,
6147 struct cftype *cft)
6148{
6149 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6150
6151 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6152}
6153
6154static int memory_min_show(struct seq_file *m, void *v)
6155{
6156 return seq_puts_memcg_tunable(m,
6157 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6158}
6159
6160static ssize_t memory_min_write(struct kernfs_open_file *of,
6161 char *buf, size_t nbytes, loff_t off)
6162{
6163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6164 unsigned long min;
6165 int err;
6166
6167 buf = strstrip(buf);
6168 err = page_counter_memparse(buf, "max", &min);
6169 if (err)
6170 return err;
6171
6172 page_counter_set_min(&memcg->memory, min);
6173
6174 return nbytes;
6175}
6176
6177static int memory_low_show(struct seq_file *m, void *v)
6178{
6179 return seq_puts_memcg_tunable(m,
6180 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6181}
6182
6183static ssize_t memory_low_write(struct kernfs_open_file *of,
6184 char *buf, size_t nbytes, loff_t off)
6185{
6186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6187 unsigned long low;
6188 int err;
6189
6190 buf = strstrip(buf);
6191 err = page_counter_memparse(buf, "max", &low);
6192 if (err)
6193 return err;
6194
6195 page_counter_set_low(&memcg->memory, low);
6196
6197 return nbytes;
6198}
6199
6200static int memory_high_show(struct seq_file *m, void *v)
6201{
6202 return seq_puts_memcg_tunable(m,
6203 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6204}
6205
6206static ssize_t memory_high_write(struct kernfs_open_file *of,
6207 char *buf, size_t nbytes, loff_t off)
6208{
6209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6211 bool drained = false;
6212 unsigned long high;
6213 int err;
6214
6215 buf = strstrip(buf);
6216 err = page_counter_memparse(buf, "max", &high);
6217 if (err)
6218 return err;
6219
6220 page_counter_set_high(&memcg->memory, high);
6221
6222 for (;;) {
6223 unsigned long nr_pages = page_counter_read(&memcg->memory);
6224 unsigned long reclaimed;
6225
6226 if (nr_pages <= high)
6227 break;
6228
6229 if (signal_pending(current))
6230 break;
6231
6232 if (!drained) {
6233 drain_all_stock(memcg);
6234 drained = true;
6235 continue;
6236 }
6237
6238 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6239 GFP_KERNEL, true);
6240
6241 if (!reclaimed && !nr_retries--)
6242 break;
6243 }
6244
6245 memcg_wb_domain_size_changed(memcg);
6246 return nbytes;
6247}
6248
6249static int memory_max_show(struct seq_file *m, void *v)
6250{
6251 return seq_puts_memcg_tunable(m,
6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6253}
6254
6255static ssize_t memory_max_write(struct kernfs_open_file *of,
6256 char *buf, size_t nbytes, loff_t off)
6257{
6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6260 bool drained = false;
6261 unsigned long max;
6262 int err;
6263
6264 buf = strstrip(buf);
6265 err = page_counter_memparse(buf, "max", &max);
6266 if (err)
6267 return err;
6268
6269 xchg(&memcg->memory.max, max);
6270
6271 for (;;) {
6272 unsigned long nr_pages = page_counter_read(&memcg->memory);
6273
6274 if (nr_pages <= max)
6275 break;
6276
6277 if (signal_pending(current))
6278 break;
6279
6280 if (!drained) {
6281 drain_all_stock(memcg);
6282 drained = true;
6283 continue;
6284 }
6285
6286 if (nr_reclaims) {
6287 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6288 GFP_KERNEL, true))
6289 nr_reclaims--;
6290 continue;
6291 }
6292
6293 memcg_memory_event(memcg, MEMCG_OOM);
6294 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6295 break;
6296 }
6297
6298 memcg_wb_domain_size_changed(memcg);
6299 return nbytes;
6300}
6301
6302static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6303{
6304 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6305 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6306 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6307 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6308 seq_printf(m, "oom_kill %lu\n",
6309 atomic_long_read(&events[MEMCG_OOM_KILL]));
6310}
6311
6312static int memory_events_show(struct seq_file *m, void *v)
6313{
6314 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6315
6316 __memory_events_show(m, memcg->memory_events);
6317 return 0;
6318}
6319
6320static int memory_events_local_show(struct seq_file *m, void *v)
6321{
6322 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6323
6324 __memory_events_show(m, memcg->memory_events_local);
6325 return 0;
6326}
6327
6328static int memory_stat_show(struct seq_file *m, void *v)
6329{
6330 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6331 char *buf;
6332
6333 buf = memory_stat_format(memcg);
6334 if (!buf)
6335 return -ENOMEM;
6336 seq_puts(m, buf);
6337 kfree(buf);
6338 return 0;
6339}
6340
6341#ifdef CONFIG_NUMA
6342static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6343 int item)
6344{
6345 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6346}
6347
6348static int memory_numa_stat_show(struct seq_file *m, void *v)
6349{
6350 int i;
6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352
6353 mem_cgroup_flush_stats();
6354
6355 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6356 int nid;
6357
6358 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6359 continue;
6360
6361 seq_printf(m, "%s", memory_stats[i].name);
6362 for_each_node_state(nid, N_MEMORY) {
6363 u64 size;
6364 struct lruvec *lruvec;
6365
6366 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6367 size = lruvec_page_state_output(lruvec,
6368 memory_stats[i].idx);
6369 seq_printf(m, " N%d=%llu", nid, size);
6370 }
6371 seq_putc(m, '\n');
6372 }
6373
6374 return 0;
6375}
6376#endif
6377
6378static int memory_oom_group_show(struct seq_file *m, void *v)
6379{
6380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6381
6382 seq_printf(m, "%d\n", memcg->oom_group);
6383
6384 return 0;
6385}
6386
6387static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6388 char *buf, size_t nbytes, loff_t off)
6389{
6390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6391 int ret, oom_group;
6392
6393 buf = strstrip(buf);
6394 if (!buf)
6395 return -EINVAL;
6396
6397 ret = kstrtoint(buf, 0, &oom_group);
6398 if (ret)
6399 return ret;
6400
6401 if (oom_group != 0 && oom_group != 1)
6402 return -EINVAL;
6403
6404 memcg->oom_group = oom_group;
6405
6406 return nbytes;
6407}
6408
6409static struct cftype memory_files[] = {
6410 {
6411 .name = "current",
6412 .flags = CFTYPE_NOT_ON_ROOT,
6413 .read_u64 = memory_current_read,
6414 },
6415 {
6416 .name = "min",
6417 .flags = CFTYPE_NOT_ON_ROOT,
6418 .seq_show = memory_min_show,
6419 .write = memory_min_write,
6420 },
6421 {
6422 .name = "low",
6423 .flags = CFTYPE_NOT_ON_ROOT,
6424 .seq_show = memory_low_show,
6425 .write = memory_low_write,
6426 },
6427 {
6428 .name = "high",
6429 .flags = CFTYPE_NOT_ON_ROOT,
6430 .seq_show = memory_high_show,
6431 .write = memory_high_write,
6432 },
6433 {
6434 .name = "max",
6435 .flags = CFTYPE_NOT_ON_ROOT,
6436 .seq_show = memory_max_show,
6437 .write = memory_max_write,
6438 },
6439 {
6440 .name = "events",
6441 .flags = CFTYPE_NOT_ON_ROOT,
6442 .file_offset = offsetof(struct mem_cgroup, events_file),
6443 .seq_show = memory_events_show,
6444 },
6445 {
6446 .name = "events.local",
6447 .flags = CFTYPE_NOT_ON_ROOT,
6448 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6449 .seq_show = memory_events_local_show,
6450 },
6451 {
6452 .name = "stat",
6453 .seq_show = memory_stat_show,
6454 },
6455#ifdef CONFIG_NUMA
6456 {
6457 .name = "numa_stat",
6458 .seq_show = memory_numa_stat_show,
6459 },
6460#endif
6461 {
6462 .name = "oom.group",
6463 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6464 .seq_show = memory_oom_group_show,
6465 .write = memory_oom_group_write,
6466 },
6467 { } /* terminate */
6468};
6469
6470struct cgroup_subsys memory_cgrp_subsys = {
6471 .css_alloc = mem_cgroup_css_alloc,
6472 .css_online = mem_cgroup_css_online,
6473 .css_offline = mem_cgroup_css_offline,
6474 .css_released = mem_cgroup_css_released,
6475 .css_free = mem_cgroup_css_free,
6476 .css_reset = mem_cgroup_css_reset,
6477 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6478 .can_attach = mem_cgroup_can_attach,
6479 .cancel_attach = mem_cgroup_cancel_attach,
6480 .post_attach = mem_cgroup_move_task,
6481 .dfl_cftypes = memory_files,
6482 .legacy_cftypes = mem_cgroup_legacy_files,
6483 .early_init = 0,
6484};
6485
6486/*
6487 * This function calculates an individual cgroup's effective
6488 * protection which is derived from its own memory.min/low, its
6489 * parent's and siblings' settings, as well as the actual memory
6490 * distribution in the tree.
6491 *
6492 * The following rules apply to the effective protection values:
6493 *
6494 * 1. At the first level of reclaim, effective protection is equal to
6495 * the declared protection in memory.min and memory.low.
6496 *
6497 * 2. To enable safe delegation of the protection configuration, at
6498 * subsequent levels the effective protection is capped to the
6499 * parent's effective protection.
6500 *
6501 * 3. To make complex and dynamic subtrees easier to configure, the
6502 * user is allowed to overcommit the declared protection at a given
6503 * level. If that is the case, the parent's effective protection is
6504 * distributed to the children in proportion to how much protection
6505 * they have declared and how much of it they are utilizing.
6506 *
6507 * This makes distribution proportional, but also work-conserving:
6508 * if one cgroup claims much more protection than it uses memory,
6509 * the unused remainder is available to its siblings.
6510 *
6511 * 4. Conversely, when the declared protection is undercommitted at a
6512 * given level, the distribution of the larger parental protection
6513 * budget is NOT proportional. A cgroup's protection from a sibling
6514 * is capped to its own memory.min/low setting.
6515 *
6516 * 5. However, to allow protecting recursive subtrees from each other
6517 * without having to declare each individual cgroup's fixed share
6518 * of the ancestor's claim to protection, any unutilized -
6519 * "floating" - protection from up the tree is distributed in
6520 * proportion to each cgroup's *usage*. This makes the protection
6521 * neutral wrt sibling cgroups and lets them compete freely over
6522 * the shared parental protection budget, but it protects the
6523 * subtree as a whole from neighboring subtrees.
6524 *
6525 * Note that 4. and 5. are not in conflict: 4. is about protecting
6526 * against immediate siblings whereas 5. is about protecting against
6527 * neighboring subtrees.
6528 */
6529static unsigned long effective_protection(unsigned long usage,
6530 unsigned long parent_usage,
6531 unsigned long setting,
6532 unsigned long parent_effective,
6533 unsigned long siblings_protected)
6534{
6535 unsigned long protected;
6536 unsigned long ep;
6537
6538 protected = min(usage, setting);
6539 /*
6540 * If all cgroups at this level combined claim and use more
6541 * protection then what the parent affords them, distribute
6542 * shares in proportion to utilization.
6543 *
6544 * We are using actual utilization rather than the statically
6545 * claimed protection in order to be work-conserving: claimed
6546 * but unused protection is available to siblings that would
6547 * otherwise get a smaller chunk than what they claimed.
6548 */
6549 if (siblings_protected > parent_effective)
6550 return protected * parent_effective / siblings_protected;
6551
6552 /*
6553 * Ok, utilized protection of all children is within what the
6554 * parent affords them, so we know whatever this child claims
6555 * and utilizes is effectively protected.
6556 *
6557 * If there is unprotected usage beyond this value, reclaim
6558 * will apply pressure in proportion to that amount.
6559 *
6560 * If there is unutilized protection, the cgroup will be fully
6561 * shielded from reclaim, but we do return a smaller value for
6562 * protection than what the group could enjoy in theory. This
6563 * is okay. With the overcommit distribution above, effective
6564 * protection is always dependent on how memory is actually
6565 * consumed among the siblings anyway.
6566 */
6567 ep = protected;
6568
6569 /*
6570 * If the children aren't claiming (all of) the protection
6571 * afforded to them by the parent, distribute the remainder in
6572 * proportion to the (unprotected) memory of each cgroup. That
6573 * way, cgroups that aren't explicitly prioritized wrt each
6574 * other compete freely over the allowance, but they are
6575 * collectively protected from neighboring trees.
6576 *
6577 * We're using unprotected memory for the weight so that if
6578 * some cgroups DO claim explicit protection, we don't protect
6579 * the same bytes twice.
6580 *
6581 * Check both usage and parent_usage against the respective
6582 * protected values. One should imply the other, but they
6583 * aren't read atomically - make sure the division is sane.
6584 */
6585 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6586 return ep;
6587 if (parent_effective > siblings_protected &&
6588 parent_usage > siblings_protected &&
6589 usage > protected) {
6590 unsigned long unclaimed;
6591
6592 unclaimed = parent_effective - siblings_protected;
6593 unclaimed *= usage - protected;
6594 unclaimed /= parent_usage - siblings_protected;
6595
6596 ep += unclaimed;
6597 }
6598
6599 return ep;
6600}
6601
6602/**
6603 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6604 * @root: the top ancestor of the sub-tree being checked
6605 * @memcg: the memory cgroup to check
6606 *
6607 * WARNING: This function is not stateless! It can only be used as part
6608 * of a top-down tree iteration, not for isolated queries.
6609 */
6610void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6611 struct mem_cgroup *memcg)
6612{
6613 unsigned long usage, parent_usage;
6614 struct mem_cgroup *parent;
6615
6616 if (mem_cgroup_disabled())
6617 return;
6618
6619 if (!root)
6620 root = root_mem_cgroup;
6621
6622 /*
6623 * Effective values of the reclaim targets are ignored so they
6624 * can be stale. Have a look at mem_cgroup_protection for more
6625 * details.
6626 * TODO: calculation should be more robust so that we do not need
6627 * that special casing.
6628 */
6629 if (memcg == root)
6630 return;
6631
6632 usage = page_counter_read(&memcg->memory);
6633 if (!usage)
6634 return;
6635
6636 parent = parent_mem_cgroup(memcg);
6637 /* No parent means a non-hierarchical mode on v1 memcg */
6638 if (!parent)
6639 return;
6640
6641 if (parent == root) {
6642 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6643 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6644 return;
6645 }
6646
6647 parent_usage = page_counter_read(&parent->memory);
6648
6649 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6650 READ_ONCE(memcg->memory.min),
6651 READ_ONCE(parent->memory.emin),
6652 atomic_long_read(&parent->memory.children_min_usage)));
6653
6654 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6655 READ_ONCE(memcg->memory.low),
6656 READ_ONCE(parent->memory.elow),
6657 atomic_long_read(&parent->memory.children_low_usage)));
6658}
6659
6660static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6661 gfp_t gfp)
6662{
6663 long nr_pages = folio_nr_pages(folio);
6664 int ret;
6665
6666 ret = try_charge(memcg, gfp, nr_pages);
6667 if (ret)
6668 goto out;
6669
6670 css_get(&memcg->css);
6671 commit_charge(folio, memcg);
6672
6673 local_irq_disable();
6674 mem_cgroup_charge_statistics(memcg, nr_pages);
6675 memcg_check_events(memcg, folio_nid(folio));
6676 local_irq_enable();
6677out:
6678 return ret;
6679}
6680
6681int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6682{
6683 struct mem_cgroup *memcg;
6684 int ret;
6685
6686 memcg = get_mem_cgroup_from_mm(mm);
6687 ret = charge_memcg(folio, memcg, gfp);
6688 css_put(&memcg->css);
6689
6690 return ret;
6691}
6692
6693/**
6694 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6695 * @page: page to charge
6696 * @mm: mm context of the victim
6697 * @gfp: reclaim mode
6698 * @entry: swap entry for which the page is allocated
6699 *
6700 * This function charges a page allocated for swapin. Please call this before
6701 * adding the page to the swapcache.
6702 *
6703 * Returns 0 on success. Otherwise, an error code is returned.
6704 */
6705int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6706 gfp_t gfp, swp_entry_t entry)
6707{
6708 struct folio *folio = page_folio(page);
6709 struct mem_cgroup *memcg;
6710 unsigned short id;
6711 int ret;
6712
6713 if (mem_cgroup_disabled())
6714 return 0;
6715
6716 id = lookup_swap_cgroup_id(entry);
6717 rcu_read_lock();
6718 memcg = mem_cgroup_from_id(id);
6719 if (!memcg || !css_tryget_online(&memcg->css))
6720 memcg = get_mem_cgroup_from_mm(mm);
6721 rcu_read_unlock();
6722
6723 ret = charge_memcg(folio, memcg, gfp);
6724
6725 css_put(&memcg->css);
6726 return ret;
6727}
6728
6729/*
6730 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6731 * @entry: swap entry for which the page is charged
6732 *
6733 * Call this function after successfully adding the charged page to swapcache.
6734 *
6735 * Note: This function assumes the page for which swap slot is being uncharged
6736 * is order 0 page.
6737 */
6738void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6739{
6740 /*
6741 * Cgroup1's unified memory+swap counter has been charged with the
6742 * new swapcache page, finish the transfer by uncharging the swap
6743 * slot. The swap slot would also get uncharged when it dies, but
6744 * it can stick around indefinitely and we'd count the page twice
6745 * the entire time.
6746 *
6747 * Cgroup2 has separate resource counters for memory and swap,
6748 * so this is a non-issue here. Memory and swap charge lifetimes
6749 * correspond 1:1 to page and swap slot lifetimes: we charge the
6750 * page to memory here, and uncharge swap when the slot is freed.
6751 */
6752 if (!mem_cgroup_disabled() && do_memsw_account()) {
6753 /*
6754 * The swap entry might not get freed for a long time,
6755 * let's not wait for it. The page already received a
6756 * memory+swap charge, drop the swap entry duplicate.
6757 */
6758 mem_cgroup_uncharge_swap(entry, 1);
6759 }
6760}
6761
6762struct uncharge_gather {
6763 struct mem_cgroup *memcg;
6764 unsigned long nr_memory;
6765 unsigned long pgpgout;
6766 unsigned long nr_kmem;
6767 int nid;
6768};
6769
6770static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6771{
6772 memset(ug, 0, sizeof(*ug));
6773}
6774
6775static void uncharge_batch(const struct uncharge_gather *ug)
6776{
6777 unsigned long flags;
6778
6779 if (ug->nr_memory) {
6780 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6781 if (do_memsw_account())
6782 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6783 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6784 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6785 memcg_oom_recover(ug->memcg);
6786 }
6787
6788 local_irq_save(flags);
6789 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6790 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6791 memcg_check_events(ug->memcg, ug->nid);
6792 local_irq_restore(flags);
6793
6794 /* drop reference from uncharge_folio */
6795 css_put(&ug->memcg->css);
6796}
6797
6798static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6799{
6800 long nr_pages;
6801 struct mem_cgroup *memcg;
6802 struct obj_cgroup *objcg;
6803 bool use_objcg = folio_memcg_kmem(folio);
6804
6805 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6806
6807 /*
6808 * Nobody should be changing or seriously looking at
6809 * folio memcg or objcg at this point, we have fully
6810 * exclusive access to the folio.
6811 */
6812 if (use_objcg) {
6813 objcg = __folio_objcg(folio);
6814 /*
6815 * This get matches the put at the end of the function and
6816 * kmem pages do not hold memcg references anymore.
6817 */
6818 memcg = get_mem_cgroup_from_objcg(objcg);
6819 } else {
6820 memcg = __folio_memcg(folio);
6821 }
6822
6823 if (!memcg)
6824 return;
6825
6826 if (ug->memcg != memcg) {
6827 if (ug->memcg) {
6828 uncharge_batch(ug);
6829 uncharge_gather_clear(ug);
6830 }
6831 ug->memcg = memcg;
6832 ug->nid = folio_nid(folio);
6833
6834 /* pairs with css_put in uncharge_batch */
6835 css_get(&memcg->css);
6836 }
6837
6838 nr_pages = folio_nr_pages(folio);
6839
6840 if (use_objcg) {
6841 ug->nr_memory += nr_pages;
6842 ug->nr_kmem += nr_pages;
6843
6844 folio->memcg_data = 0;
6845 obj_cgroup_put(objcg);
6846 } else {
6847 /* LRU pages aren't accounted at the root level */
6848 if (!mem_cgroup_is_root(memcg))
6849 ug->nr_memory += nr_pages;
6850 ug->pgpgout++;
6851
6852 folio->memcg_data = 0;
6853 }
6854
6855 css_put(&memcg->css);
6856}
6857
6858void __mem_cgroup_uncharge(struct folio *folio)
6859{
6860 struct uncharge_gather ug;
6861
6862 /* Don't touch folio->lru of any random page, pre-check: */
6863 if (!folio_memcg(folio))
6864 return;
6865
6866 uncharge_gather_clear(&ug);
6867 uncharge_folio(folio, &ug);
6868 uncharge_batch(&ug);
6869}
6870
6871/**
6872 * __mem_cgroup_uncharge_list - uncharge a list of page
6873 * @page_list: list of pages to uncharge
6874 *
6875 * Uncharge a list of pages previously charged with
6876 * __mem_cgroup_charge().
6877 */
6878void __mem_cgroup_uncharge_list(struct list_head *page_list)
6879{
6880 struct uncharge_gather ug;
6881 struct folio *folio;
6882
6883 uncharge_gather_clear(&ug);
6884 list_for_each_entry(folio, page_list, lru)
6885 uncharge_folio(folio, &ug);
6886 if (ug.memcg)
6887 uncharge_batch(&ug);
6888}
6889
6890/**
6891 * mem_cgroup_migrate - Charge a folio's replacement.
6892 * @old: Currently circulating folio.
6893 * @new: Replacement folio.
6894 *
6895 * Charge @new as a replacement folio for @old. @old will
6896 * be uncharged upon free.
6897 *
6898 * Both folios must be locked, @new->mapping must be set up.
6899 */
6900void mem_cgroup_migrate(struct folio *old, struct folio *new)
6901{
6902 struct mem_cgroup *memcg;
6903 long nr_pages = folio_nr_pages(new);
6904 unsigned long flags;
6905
6906 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6907 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6908 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6909 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6910
6911 if (mem_cgroup_disabled())
6912 return;
6913
6914 /* Page cache replacement: new folio already charged? */
6915 if (folio_memcg(new))
6916 return;
6917
6918 memcg = folio_memcg(old);
6919 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6920 if (!memcg)
6921 return;
6922
6923 /* Force-charge the new page. The old one will be freed soon */
6924 if (!mem_cgroup_is_root(memcg)) {
6925 page_counter_charge(&memcg->memory, nr_pages);
6926 if (do_memsw_account())
6927 page_counter_charge(&memcg->memsw, nr_pages);
6928 }
6929
6930 css_get(&memcg->css);
6931 commit_charge(new, memcg);
6932
6933 local_irq_save(flags);
6934 mem_cgroup_charge_statistics(memcg, nr_pages);
6935 memcg_check_events(memcg, folio_nid(new));
6936 local_irq_restore(flags);
6937}
6938
6939DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6940EXPORT_SYMBOL(memcg_sockets_enabled_key);
6941
6942void mem_cgroup_sk_alloc(struct sock *sk)
6943{
6944 struct mem_cgroup *memcg;
6945
6946 if (!mem_cgroup_sockets_enabled)
6947 return;
6948
6949 /* Do not associate the sock with unrelated interrupted task's memcg. */
6950 if (in_interrupt())
6951 return;
6952
6953 rcu_read_lock();
6954 memcg = mem_cgroup_from_task(current);
6955 if (memcg == root_mem_cgroup)
6956 goto out;
6957 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6958 goto out;
6959 if (css_tryget(&memcg->css))
6960 sk->sk_memcg = memcg;
6961out:
6962 rcu_read_unlock();
6963}
6964
6965void mem_cgroup_sk_free(struct sock *sk)
6966{
6967 if (sk->sk_memcg)
6968 css_put(&sk->sk_memcg->css);
6969}
6970
6971/**
6972 * mem_cgroup_charge_skmem - charge socket memory
6973 * @memcg: memcg to charge
6974 * @nr_pages: number of pages to charge
6975 * @gfp_mask: reclaim mode
6976 *
6977 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6978 * @memcg's configured limit, %false if it doesn't.
6979 */
6980bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6981 gfp_t gfp_mask)
6982{
6983 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6984 struct page_counter *fail;
6985
6986 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6987 memcg->tcpmem_pressure = 0;
6988 return true;
6989 }
6990 memcg->tcpmem_pressure = 1;
6991 if (gfp_mask & __GFP_NOFAIL) {
6992 page_counter_charge(&memcg->tcpmem, nr_pages);
6993 return true;
6994 }
6995 return false;
6996 }
6997
6998 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
6999 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7000 return true;
7001 }
7002
7003 return false;
7004}
7005
7006/**
7007 * mem_cgroup_uncharge_skmem - uncharge socket memory
7008 * @memcg: memcg to uncharge
7009 * @nr_pages: number of pages to uncharge
7010 */
7011void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7012{
7013 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7014 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7015 return;
7016 }
7017
7018 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7019
7020 refill_stock(memcg, nr_pages);
7021}
7022
7023static int __init cgroup_memory(char *s)
7024{
7025 char *token;
7026
7027 while ((token = strsep(&s, ",")) != NULL) {
7028 if (!*token)
7029 continue;
7030 if (!strcmp(token, "nosocket"))
7031 cgroup_memory_nosocket = true;
7032 if (!strcmp(token, "nokmem"))
7033 cgroup_memory_nokmem = true;
7034 }
7035 return 0;
7036}
7037__setup("cgroup.memory=", cgroup_memory);
7038
7039/*
7040 * subsys_initcall() for memory controller.
7041 *
7042 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7043 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7044 * basically everything that doesn't depend on a specific mem_cgroup structure
7045 * should be initialized from here.
7046 */
7047static int __init mem_cgroup_init(void)
7048{
7049 int cpu, node;
7050
7051 /*
7052 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7053 * used for per-memcg-per-cpu caching of per-node statistics. In order
7054 * to work fine, we should make sure that the overfill threshold can't
7055 * exceed S32_MAX / PAGE_SIZE.
7056 */
7057 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7058
7059 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7060 memcg_hotplug_cpu_dead);
7061
7062 for_each_possible_cpu(cpu)
7063 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7064 drain_local_stock);
7065
7066 for_each_node(node) {
7067 struct mem_cgroup_tree_per_node *rtpn;
7068
7069 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7070 node_online(node) ? node : NUMA_NO_NODE);
7071
7072 rtpn->rb_root = RB_ROOT;
7073 rtpn->rb_rightmost = NULL;
7074 spin_lock_init(&rtpn->lock);
7075 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7076 }
7077
7078 return 0;
7079}
7080subsys_initcall(mem_cgroup_init);
7081
7082#ifdef CONFIG_MEMCG_SWAP
7083static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7084{
7085 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7086 /*
7087 * The root cgroup cannot be destroyed, so it's refcount must
7088 * always be >= 1.
7089 */
7090 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7091 VM_BUG_ON(1);
7092 break;
7093 }
7094 memcg = parent_mem_cgroup(memcg);
7095 if (!memcg)
7096 memcg = root_mem_cgroup;
7097 }
7098 return memcg;
7099}
7100
7101/**
7102 * mem_cgroup_swapout - transfer a memsw charge to swap
7103 * @page: page whose memsw charge to transfer
7104 * @entry: swap entry to move the charge to
7105 *
7106 * Transfer the memsw charge of @page to @entry.
7107 */
7108void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7109{
7110 struct mem_cgroup *memcg, *swap_memcg;
7111 unsigned int nr_entries;
7112 unsigned short oldid;
7113
7114 VM_BUG_ON_PAGE(PageLRU(page), page);
7115 VM_BUG_ON_PAGE(page_count(page), page);
7116
7117 if (mem_cgroup_disabled())
7118 return;
7119
7120 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7121 return;
7122
7123 memcg = page_memcg(page);
7124
7125 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7126 if (!memcg)
7127 return;
7128
7129 /*
7130 * In case the memcg owning these pages has been offlined and doesn't
7131 * have an ID allocated to it anymore, charge the closest online
7132 * ancestor for the swap instead and transfer the memory+swap charge.
7133 */
7134 swap_memcg = mem_cgroup_id_get_online(memcg);
7135 nr_entries = thp_nr_pages(page);
7136 /* Get references for the tail pages, too */
7137 if (nr_entries > 1)
7138 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7139 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7140 nr_entries);
7141 VM_BUG_ON_PAGE(oldid, page);
7142 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7143
7144 page->memcg_data = 0;
7145
7146 if (!mem_cgroup_is_root(memcg))
7147 page_counter_uncharge(&memcg->memory, nr_entries);
7148
7149 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7150 if (!mem_cgroup_is_root(swap_memcg))
7151 page_counter_charge(&swap_memcg->memsw, nr_entries);
7152 page_counter_uncharge(&memcg->memsw, nr_entries);
7153 }
7154
7155 /*
7156 * Interrupts should be disabled here because the caller holds the
7157 * i_pages lock which is taken with interrupts-off. It is
7158 * important here to have the interrupts disabled because it is the
7159 * only synchronisation we have for updating the per-CPU variables.
7160 */
7161 VM_BUG_ON(!irqs_disabled());
7162 mem_cgroup_charge_statistics(memcg, -nr_entries);
7163 memcg_check_events(memcg, page_to_nid(page));
7164
7165 css_put(&memcg->css);
7166}
7167
7168/**
7169 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7170 * @page: page being added to swap
7171 * @entry: swap entry to charge
7172 *
7173 * Try to charge @page's memcg for the swap space at @entry.
7174 *
7175 * Returns 0 on success, -ENOMEM on failure.
7176 */
7177int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7178{
7179 unsigned int nr_pages = thp_nr_pages(page);
7180 struct page_counter *counter;
7181 struct mem_cgroup *memcg;
7182 unsigned short oldid;
7183
7184 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7185 return 0;
7186
7187 memcg = page_memcg(page);
7188
7189 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7190 if (!memcg)
7191 return 0;
7192
7193 if (!entry.val) {
7194 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7195 return 0;
7196 }
7197
7198 memcg = mem_cgroup_id_get_online(memcg);
7199
7200 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7201 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7202 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7203 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7204 mem_cgroup_id_put(memcg);
7205 return -ENOMEM;
7206 }
7207
7208 /* Get references for the tail pages, too */
7209 if (nr_pages > 1)
7210 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7211 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7212 VM_BUG_ON_PAGE(oldid, page);
7213 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7214
7215 return 0;
7216}
7217
7218/**
7219 * __mem_cgroup_uncharge_swap - uncharge swap space
7220 * @entry: swap entry to uncharge
7221 * @nr_pages: the amount of swap space to uncharge
7222 */
7223void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7224{
7225 struct mem_cgroup *memcg;
7226 unsigned short id;
7227
7228 id = swap_cgroup_record(entry, 0, nr_pages);
7229 rcu_read_lock();
7230 memcg = mem_cgroup_from_id(id);
7231 if (memcg) {
7232 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7233 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7234 page_counter_uncharge(&memcg->swap, nr_pages);
7235 else
7236 page_counter_uncharge(&memcg->memsw, nr_pages);
7237 }
7238 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7239 mem_cgroup_id_put_many(memcg, nr_pages);
7240 }
7241 rcu_read_unlock();
7242}
7243
7244long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7245{
7246 long nr_swap_pages = get_nr_swap_pages();
7247
7248 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7249 return nr_swap_pages;
7250 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7251 nr_swap_pages = min_t(long, nr_swap_pages,
7252 READ_ONCE(memcg->swap.max) -
7253 page_counter_read(&memcg->swap));
7254 return nr_swap_pages;
7255}
7256
7257bool mem_cgroup_swap_full(struct page *page)
7258{
7259 struct mem_cgroup *memcg;
7260
7261 VM_BUG_ON_PAGE(!PageLocked(page), page);
7262
7263 if (vm_swap_full())
7264 return true;
7265 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7266 return false;
7267
7268 memcg = page_memcg(page);
7269 if (!memcg)
7270 return false;
7271
7272 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7273 unsigned long usage = page_counter_read(&memcg->swap);
7274
7275 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7276 usage * 2 >= READ_ONCE(memcg->swap.max))
7277 return true;
7278 }
7279
7280 return false;
7281}
7282
7283static int __init setup_swap_account(char *s)
7284{
7285 if (!strcmp(s, "1"))
7286 cgroup_memory_noswap = false;
7287 else if (!strcmp(s, "0"))
7288 cgroup_memory_noswap = true;
7289 return 1;
7290}
7291__setup("swapaccount=", setup_swap_account);
7292
7293static u64 swap_current_read(struct cgroup_subsys_state *css,
7294 struct cftype *cft)
7295{
7296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7297
7298 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7299}
7300
7301static int swap_high_show(struct seq_file *m, void *v)
7302{
7303 return seq_puts_memcg_tunable(m,
7304 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7305}
7306
7307static ssize_t swap_high_write(struct kernfs_open_file *of,
7308 char *buf, size_t nbytes, loff_t off)
7309{
7310 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7311 unsigned long high;
7312 int err;
7313
7314 buf = strstrip(buf);
7315 err = page_counter_memparse(buf, "max", &high);
7316 if (err)
7317 return err;
7318
7319 page_counter_set_high(&memcg->swap, high);
7320
7321 return nbytes;
7322}
7323
7324static int swap_max_show(struct seq_file *m, void *v)
7325{
7326 return seq_puts_memcg_tunable(m,
7327 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7328}
7329
7330static ssize_t swap_max_write(struct kernfs_open_file *of,
7331 char *buf, size_t nbytes, loff_t off)
7332{
7333 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7334 unsigned long max;
7335 int err;
7336
7337 buf = strstrip(buf);
7338 err = page_counter_memparse(buf, "max", &max);
7339 if (err)
7340 return err;
7341
7342 xchg(&memcg->swap.max, max);
7343
7344 return nbytes;
7345}
7346
7347static int swap_events_show(struct seq_file *m, void *v)
7348{
7349 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7350
7351 seq_printf(m, "high %lu\n",
7352 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7353 seq_printf(m, "max %lu\n",
7354 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7355 seq_printf(m, "fail %lu\n",
7356 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7357
7358 return 0;
7359}
7360
7361static struct cftype swap_files[] = {
7362 {
7363 .name = "swap.current",
7364 .flags = CFTYPE_NOT_ON_ROOT,
7365 .read_u64 = swap_current_read,
7366 },
7367 {
7368 .name = "swap.high",
7369 .flags = CFTYPE_NOT_ON_ROOT,
7370 .seq_show = swap_high_show,
7371 .write = swap_high_write,
7372 },
7373 {
7374 .name = "swap.max",
7375 .flags = CFTYPE_NOT_ON_ROOT,
7376 .seq_show = swap_max_show,
7377 .write = swap_max_write,
7378 },
7379 {
7380 .name = "swap.events",
7381 .flags = CFTYPE_NOT_ON_ROOT,
7382 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7383 .seq_show = swap_events_show,
7384 },
7385 { } /* terminate */
7386};
7387
7388static struct cftype memsw_files[] = {
7389 {
7390 .name = "memsw.usage_in_bytes",
7391 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7392 .read_u64 = mem_cgroup_read_u64,
7393 },
7394 {
7395 .name = "memsw.max_usage_in_bytes",
7396 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7397 .write = mem_cgroup_reset,
7398 .read_u64 = mem_cgroup_read_u64,
7399 },
7400 {
7401 .name = "memsw.limit_in_bytes",
7402 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7403 .write = mem_cgroup_write,
7404 .read_u64 = mem_cgroup_read_u64,
7405 },
7406 {
7407 .name = "memsw.failcnt",
7408 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7409 .write = mem_cgroup_reset,
7410 .read_u64 = mem_cgroup_read_u64,
7411 },
7412 { }, /* terminate */
7413};
7414
7415/*
7416 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7417 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7418 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7419 * boot parameter. This may result in premature OOPS inside
7420 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7421 */
7422static int __init mem_cgroup_swap_init(void)
7423{
7424 /* No memory control -> no swap control */
7425 if (mem_cgroup_disabled())
7426 cgroup_memory_noswap = true;
7427
7428 if (cgroup_memory_noswap)
7429 return 0;
7430
7431 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7432 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7433
7434 return 0;
7435}
7436core_initcall(mem_cgroup_swap_init);
7437
7438#endif /* CONFIG_MEMCG_SWAP */