at v5.16-rc5 716 lines 23 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/mm.h> 12#include <linux/pagemap.h> 13#include <linux/tracepoint-defs.h> 14 15/* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26/* The GFP flags allowed during early boot */ 27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29/* Control allocation cpuset and node placement constraints */ 30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32/* Do not use these with a slab allocator */ 33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35void page_writeback_init(void); 36 37static inline void *folio_raw_mapping(struct folio *folio) 38{ 39 unsigned long mapping = (unsigned long)folio->mapping; 40 41 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 42} 43 44void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 45 int nr_throttled); 46static inline void acct_reclaim_writeback(struct folio *folio) 47{ 48 pg_data_t *pgdat = folio_pgdat(folio); 49 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 50 51 if (nr_throttled) 52 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 53} 54 55static inline void wake_throttle_isolated(pg_data_t *pgdat) 56{ 57 wait_queue_head_t *wqh; 58 59 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 60 if (waitqueue_active(wqh)) 61 wake_up(wqh); 62} 63 64vm_fault_t do_swap_page(struct vm_fault *vmf); 65void folio_rotate_reclaimable(struct folio *folio); 66bool __folio_end_writeback(struct folio *folio); 67 68void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 69 unsigned long floor, unsigned long ceiling); 70void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 71 72static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 73{ 74 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 75} 76 77void unmap_page_range(struct mmu_gather *tlb, 78 struct vm_area_struct *vma, 79 unsigned long addr, unsigned long end, 80 struct zap_details *details); 81 82void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 83 unsigned long lookahead_size); 84void force_page_cache_ra(struct readahead_control *, unsigned long nr); 85static inline void force_page_cache_readahead(struct address_space *mapping, 86 struct file *file, pgoff_t index, unsigned long nr_to_read) 87{ 88 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 89 force_page_cache_ra(&ractl, nr_to_read); 90} 91 92unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 93 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 94 95/** 96 * folio_evictable - Test whether a folio is evictable. 97 * @folio: The folio to test. 98 * 99 * Test whether @folio is evictable -- i.e., should be placed on 100 * active/inactive lists vs unevictable list. 101 * 102 * Reasons folio might not be evictable: 103 * 1. folio's mapping marked unevictable 104 * 2. One of the pages in the folio is part of an mlocked VMA 105 */ 106static inline bool folio_evictable(struct folio *folio) 107{ 108 bool ret; 109 110 /* Prevent address_space of inode and swap cache from being freed */ 111 rcu_read_lock(); 112 ret = !mapping_unevictable(folio_mapping(folio)) && 113 !folio_test_mlocked(folio); 114 rcu_read_unlock(); 115 return ret; 116} 117 118static inline bool page_evictable(struct page *page) 119{ 120 bool ret; 121 122 /* Prevent address_space of inode and swap cache from being freed */ 123 rcu_read_lock(); 124 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 125 rcu_read_unlock(); 126 return ret; 127} 128 129/* 130 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 131 * a count of one. 132 */ 133static inline void set_page_refcounted(struct page *page) 134{ 135 VM_BUG_ON_PAGE(PageTail(page), page); 136 VM_BUG_ON_PAGE(page_ref_count(page), page); 137 set_page_count(page, 1); 138} 139 140extern unsigned long highest_memmap_pfn; 141 142/* 143 * Maximum number of reclaim retries without progress before the OOM 144 * killer is consider the only way forward. 145 */ 146#define MAX_RECLAIM_RETRIES 16 147 148/* 149 * in mm/vmscan.c: 150 */ 151extern int isolate_lru_page(struct page *page); 152extern void putback_lru_page(struct page *page); 153extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 154 155/* 156 * in mm/rmap.c: 157 */ 158extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 159 160/* 161 * in mm/memcontrol.c: 162 */ 163extern bool cgroup_memory_nokmem; 164 165/* 166 * in mm/page_alloc.c 167 */ 168 169/* 170 * Structure for holding the mostly immutable allocation parameters passed 171 * between functions involved in allocations, including the alloc_pages* 172 * family of functions. 173 * 174 * nodemask, migratetype and highest_zoneidx are initialized only once in 175 * __alloc_pages() and then never change. 176 * 177 * zonelist, preferred_zone and highest_zoneidx are set first in 178 * __alloc_pages() for the fast path, and might be later changed 179 * in __alloc_pages_slowpath(). All other functions pass the whole structure 180 * by a const pointer. 181 */ 182struct alloc_context { 183 struct zonelist *zonelist; 184 nodemask_t *nodemask; 185 struct zoneref *preferred_zoneref; 186 int migratetype; 187 188 /* 189 * highest_zoneidx represents highest usable zone index of 190 * the allocation request. Due to the nature of the zone, 191 * memory on lower zone than the highest_zoneidx will be 192 * protected by lowmem_reserve[highest_zoneidx]. 193 * 194 * highest_zoneidx is also used by reclaim/compaction to limit 195 * the target zone since higher zone than this index cannot be 196 * usable for this allocation request. 197 */ 198 enum zone_type highest_zoneidx; 199 bool spread_dirty_pages; 200}; 201 202/* 203 * Locate the struct page for both the matching buddy in our 204 * pair (buddy1) and the combined O(n+1) page they form (page). 205 * 206 * 1) Any buddy B1 will have an order O twin B2 which satisfies 207 * the following equation: 208 * B2 = B1 ^ (1 << O) 209 * For example, if the starting buddy (buddy2) is #8 its order 210 * 1 buddy is #10: 211 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 212 * 213 * 2) Any buddy B will have an order O+1 parent P which 214 * satisfies the following equation: 215 * P = B & ~(1 << O) 216 * 217 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 218 */ 219static inline unsigned long 220__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 221{ 222 return page_pfn ^ (1 << order); 223} 224 225extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 226 unsigned long end_pfn, struct zone *zone); 227 228static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 229 unsigned long end_pfn, struct zone *zone) 230{ 231 if (zone->contiguous) 232 return pfn_to_page(start_pfn); 233 234 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 235} 236 237extern int __isolate_free_page(struct page *page, unsigned int order); 238extern void __putback_isolated_page(struct page *page, unsigned int order, 239 int mt); 240extern void memblock_free_pages(struct page *page, unsigned long pfn, 241 unsigned int order); 242extern void __free_pages_core(struct page *page, unsigned int order); 243extern void prep_compound_page(struct page *page, unsigned int order); 244extern void post_alloc_hook(struct page *page, unsigned int order, 245 gfp_t gfp_flags); 246extern int user_min_free_kbytes; 247 248extern void free_unref_page(struct page *page, unsigned int order); 249extern void free_unref_page_list(struct list_head *list); 250 251extern void zone_pcp_update(struct zone *zone, int cpu_online); 252extern void zone_pcp_reset(struct zone *zone); 253extern void zone_pcp_disable(struct zone *zone); 254extern void zone_pcp_enable(struct zone *zone); 255 256extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 257 phys_addr_t min_addr, 258 int nid, bool exact_nid); 259 260#if defined CONFIG_COMPACTION || defined CONFIG_CMA 261 262/* 263 * in mm/compaction.c 264 */ 265/* 266 * compact_control is used to track pages being migrated and the free pages 267 * they are being migrated to during memory compaction. The free_pfn starts 268 * at the end of a zone and migrate_pfn begins at the start. Movable pages 269 * are moved to the end of a zone during a compaction run and the run 270 * completes when free_pfn <= migrate_pfn 271 */ 272struct compact_control { 273 struct list_head freepages; /* List of free pages to migrate to */ 274 struct list_head migratepages; /* List of pages being migrated */ 275 unsigned int nr_freepages; /* Number of isolated free pages */ 276 unsigned int nr_migratepages; /* Number of pages to migrate */ 277 unsigned long free_pfn; /* isolate_freepages search base */ 278 /* 279 * Acts as an in/out parameter to page isolation for migration. 280 * isolate_migratepages uses it as a search base. 281 * isolate_migratepages_block will update the value to the next pfn 282 * after the last isolated one. 283 */ 284 unsigned long migrate_pfn; 285 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 286 struct zone *zone; 287 unsigned long total_migrate_scanned; 288 unsigned long total_free_scanned; 289 unsigned short fast_search_fail;/* failures to use free list searches */ 290 short search_order; /* order to start a fast search at */ 291 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 292 int order; /* order a direct compactor needs */ 293 int migratetype; /* migratetype of direct compactor */ 294 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 295 const int highest_zoneidx; /* zone index of a direct compactor */ 296 enum migrate_mode mode; /* Async or sync migration mode */ 297 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 298 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 299 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 300 bool direct_compaction; /* False from kcompactd or /proc/... */ 301 bool proactive_compaction; /* kcompactd proactive compaction */ 302 bool whole_zone; /* Whole zone should/has been scanned */ 303 bool contended; /* Signal lock or sched contention */ 304 bool rescan; /* Rescanning the same pageblock */ 305 bool alloc_contig; /* alloc_contig_range allocation */ 306}; 307 308/* 309 * Used in direct compaction when a page should be taken from the freelists 310 * immediately when one is created during the free path. 311 */ 312struct capture_control { 313 struct compact_control *cc; 314 struct page *page; 315}; 316 317unsigned long 318isolate_freepages_range(struct compact_control *cc, 319 unsigned long start_pfn, unsigned long end_pfn); 320int 321isolate_migratepages_range(struct compact_control *cc, 322 unsigned long low_pfn, unsigned long end_pfn); 323#endif 324int find_suitable_fallback(struct free_area *area, unsigned int order, 325 int migratetype, bool only_stealable, bool *can_steal); 326 327/* 328 * This function returns the order of a free page in the buddy system. In 329 * general, page_zone(page)->lock must be held by the caller to prevent the 330 * page from being allocated in parallel and returning garbage as the order. 331 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 332 * page cannot be allocated or merged in parallel. Alternatively, it must 333 * handle invalid values gracefully, and use buddy_order_unsafe() below. 334 */ 335static inline unsigned int buddy_order(struct page *page) 336{ 337 /* PageBuddy() must be checked by the caller */ 338 return page_private(page); 339} 340 341/* 342 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 343 * PageBuddy() should be checked first by the caller to minimize race window, 344 * and invalid values must be handled gracefully. 345 * 346 * READ_ONCE is used so that if the caller assigns the result into a local 347 * variable and e.g. tests it for valid range before using, the compiler cannot 348 * decide to remove the variable and inline the page_private(page) multiple 349 * times, potentially observing different values in the tests and the actual 350 * use of the result. 351 */ 352#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 353 354/* 355 * These three helpers classifies VMAs for virtual memory accounting. 356 */ 357 358/* 359 * Executable code area - executable, not writable, not stack 360 */ 361static inline bool is_exec_mapping(vm_flags_t flags) 362{ 363 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 364} 365 366/* 367 * Stack area - automatically grows in one direction 368 * 369 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 370 * do_mmap() forbids all other combinations. 371 */ 372static inline bool is_stack_mapping(vm_flags_t flags) 373{ 374 return (flags & VM_STACK) == VM_STACK; 375} 376 377/* 378 * Data area - private, writable, not stack 379 */ 380static inline bool is_data_mapping(vm_flags_t flags) 381{ 382 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 383} 384 385/* mm/util.c */ 386void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 387 struct vm_area_struct *prev); 388void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 389 390#ifdef CONFIG_MMU 391extern long populate_vma_page_range(struct vm_area_struct *vma, 392 unsigned long start, unsigned long end, int *locked); 393extern long faultin_vma_page_range(struct vm_area_struct *vma, 394 unsigned long start, unsigned long end, 395 bool write, int *locked); 396extern void munlock_vma_pages_range(struct vm_area_struct *vma, 397 unsigned long start, unsigned long end); 398static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 399{ 400 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 401} 402 403/* 404 * must be called with vma's mmap_lock held for read or write, and page locked. 405 */ 406extern void mlock_vma_page(struct page *page); 407extern unsigned int munlock_vma_page(struct page *page); 408 409extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 410 unsigned long len); 411 412/* 413 * Clear the page's PageMlocked(). This can be useful in a situation where 414 * we want to unconditionally remove a page from the pagecache -- e.g., 415 * on truncation or freeing. 416 * 417 * It is legal to call this function for any page, mlocked or not. 418 * If called for a page that is still mapped by mlocked vmas, all we do 419 * is revert to lazy LRU behaviour -- semantics are not broken. 420 */ 421extern void clear_page_mlock(struct page *page); 422 423extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 424 425/* 426 * At what user virtual address is page expected in vma? 427 * Returns -EFAULT if all of the page is outside the range of vma. 428 * If page is a compound head, the entire compound page is considered. 429 */ 430static inline unsigned long 431vma_address(struct page *page, struct vm_area_struct *vma) 432{ 433 pgoff_t pgoff; 434 unsigned long address; 435 436 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 437 pgoff = page_to_pgoff(page); 438 if (pgoff >= vma->vm_pgoff) { 439 address = vma->vm_start + 440 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 441 /* Check for address beyond vma (or wrapped through 0?) */ 442 if (address < vma->vm_start || address >= vma->vm_end) 443 address = -EFAULT; 444 } else if (PageHead(page) && 445 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 446 /* Test above avoids possibility of wrap to 0 on 32-bit */ 447 address = vma->vm_start; 448 } else { 449 address = -EFAULT; 450 } 451 return address; 452} 453 454/* 455 * Then at what user virtual address will none of the page be found in vma? 456 * Assumes that vma_address() already returned a good starting address. 457 * If page is a compound head, the entire compound page is considered. 458 */ 459static inline unsigned long 460vma_address_end(struct page *page, struct vm_area_struct *vma) 461{ 462 pgoff_t pgoff; 463 unsigned long address; 464 465 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 466 pgoff = page_to_pgoff(page) + compound_nr(page); 467 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 468 /* Check for address beyond vma (or wrapped through 0?) */ 469 if (address < vma->vm_start || address > vma->vm_end) 470 address = vma->vm_end; 471 return address; 472} 473 474static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 475 struct file *fpin) 476{ 477 int flags = vmf->flags; 478 479 if (fpin) 480 return fpin; 481 482 /* 483 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 484 * anything, so we only pin the file and drop the mmap_lock if only 485 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 486 */ 487 if (fault_flag_allow_retry_first(flags) && 488 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 489 fpin = get_file(vmf->vma->vm_file); 490 mmap_read_unlock(vmf->vma->vm_mm); 491 } 492 return fpin; 493} 494 495#else /* !CONFIG_MMU */ 496static inline void clear_page_mlock(struct page *page) { } 497static inline void mlock_vma_page(struct page *page) { } 498static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 499{ 500} 501#endif /* !CONFIG_MMU */ 502 503/* 504 * Return the mem_map entry representing the 'offset' subpage within 505 * the maximally aligned gigantic page 'base'. Handle any discontiguity 506 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 507 */ 508static inline struct page *mem_map_offset(struct page *base, int offset) 509{ 510 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 511 return nth_page(base, offset); 512 return base + offset; 513} 514 515/* 516 * Iterator over all subpages within the maximally aligned gigantic 517 * page 'base'. Handle any discontiguity in the mem_map. 518 */ 519static inline struct page *mem_map_next(struct page *iter, 520 struct page *base, int offset) 521{ 522 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 523 unsigned long pfn = page_to_pfn(base) + offset; 524 if (!pfn_valid(pfn)) 525 return NULL; 526 return pfn_to_page(pfn); 527 } 528 return iter + 1; 529} 530 531/* Memory initialisation debug and verification */ 532enum mminit_level { 533 MMINIT_WARNING, 534 MMINIT_VERIFY, 535 MMINIT_TRACE 536}; 537 538#ifdef CONFIG_DEBUG_MEMORY_INIT 539 540extern int mminit_loglevel; 541 542#define mminit_dprintk(level, prefix, fmt, arg...) \ 543do { \ 544 if (level < mminit_loglevel) { \ 545 if (level <= MMINIT_WARNING) \ 546 pr_warn("mminit::" prefix " " fmt, ##arg); \ 547 else \ 548 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 549 } \ 550} while (0) 551 552extern void mminit_verify_pageflags_layout(void); 553extern void mminit_verify_zonelist(void); 554#else 555 556static inline void mminit_dprintk(enum mminit_level level, 557 const char *prefix, const char *fmt, ...) 558{ 559} 560 561static inline void mminit_verify_pageflags_layout(void) 562{ 563} 564 565static inline void mminit_verify_zonelist(void) 566{ 567} 568#endif /* CONFIG_DEBUG_MEMORY_INIT */ 569 570/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 571#if defined(CONFIG_SPARSEMEM) 572extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 573 unsigned long *end_pfn); 574#else 575static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 576 unsigned long *end_pfn) 577{ 578} 579#endif /* CONFIG_SPARSEMEM */ 580 581#define NODE_RECLAIM_NOSCAN -2 582#define NODE_RECLAIM_FULL -1 583#define NODE_RECLAIM_SOME 0 584#define NODE_RECLAIM_SUCCESS 1 585 586#ifdef CONFIG_NUMA 587extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 588extern int find_next_best_node(int node, nodemask_t *used_node_mask); 589#else 590static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 591 unsigned int order) 592{ 593 return NODE_RECLAIM_NOSCAN; 594} 595static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 596{ 597 return NUMA_NO_NODE; 598} 599#endif 600 601extern int hwpoison_filter(struct page *p); 602 603extern u32 hwpoison_filter_dev_major; 604extern u32 hwpoison_filter_dev_minor; 605extern u64 hwpoison_filter_flags_mask; 606extern u64 hwpoison_filter_flags_value; 607extern u64 hwpoison_filter_memcg; 608extern u32 hwpoison_filter_enable; 609 610extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 611 unsigned long, unsigned long, 612 unsigned long, unsigned long); 613 614extern void set_pageblock_order(void); 615unsigned int reclaim_clean_pages_from_list(struct zone *zone, 616 struct list_head *page_list); 617/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 618#define ALLOC_WMARK_MIN WMARK_MIN 619#define ALLOC_WMARK_LOW WMARK_LOW 620#define ALLOC_WMARK_HIGH WMARK_HIGH 621#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 622 623/* Mask to get the watermark bits */ 624#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 625 626/* 627 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 628 * cannot assume a reduced access to memory reserves is sufficient for 629 * !MMU 630 */ 631#ifdef CONFIG_MMU 632#define ALLOC_OOM 0x08 633#else 634#define ALLOC_OOM ALLOC_NO_WATERMARKS 635#endif 636 637#define ALLOC_HARDER 0x10 /* try to alloc harder */ 638#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 639#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 640#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 641#ifdef CONFIG_ZONE_DMA32 642#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 643#else 644#define ALLOC_NOFRAGMENT 0x0 645#endif 646#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 647 648enum ttu_flags; 649struct tlbflush_unmap_batch; 650 651 652/* 653 * only for MM internal work items which do not depend on 654 * any allocations or locks which might depend on allocations 655 */ 656extern struct workqueue_struct *mm_percpu_wq; 657 658#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 659void try_to_unmap_flush(void); 660void try_to_unmap_flush_dirty(void); 661void flush_tlb_batched_pending(struct mm_struct *mm); 662#else 663static inline void try_to_unmap_flush(void) 664{ 665} 666static inline void try_to_unmap_flush_dirty(void) 667{ 668} 669static inline void flush_tlb_batched_pending(struct mm_struct *mm) 670{ 671} 672#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 673 674extern const struct trace_print_flags pageflag_names[]; 675extern const struct trace_print_flags vmaflag_names[]; 676extern const struct trace_print_flags gfpflag_names[]; 677 678static inline bool is_migrate_highatomic(enum migratetype migratetype) 679{ 680 return migratetype == MIGRATE_HIGHATOMIC; 681} 682 683static inline bool is_migrate_highatomic_page(struct page *page) 684{ 685 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 686} 687 688void setup_zone_pageset(struct zone *zone); 689 690struct migration_target_control { 691 int nid; /* preferred node id */ 692 nodemask_t *nmask; 693 gfp_t gfp_mask; 694}; 695 696/* 697 * mm/vmalloc.c 698 */ 699#ifdef CONFIG_MMU 700int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 701 pgprot_t prot, struct page **pages, unsigned int page_shift); 702#else 703static inline 704int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 705 pgprot_t prot, struct page **pages, unsigned int page_shift) 706{ 707 return -EINVAL; 708} 709#endif 710 711void vunmap_range_noflush(unsigned long start, unsigned long end); 712 713int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 714 unsigned long addr, int page_nid, int *flags); 715 716#endif /* __MM_INTERNAL_H */