Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
23#include <linux/local_lock.h>
24#include <asm/page.h>
25
26/* Free memory management - zoned buddy allocator. */
27#ifndef CONFIG_FORCE_MAX_ZONEORDER
28#define MAX_ORDER 11
29#else
30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31#endif
32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33
34/*
35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36 * costly to service. That is between allocation orders which should
37 * coalesce naturally under reasonable reclaim pressure and those which
38 * will not.
39 */
40#define PAGE_ALLOC_COSTLY_ORDER 3
41
42enum migratetype {
43 MIGRATE_UNMOVABLE,
44 MIGRATE_MOVABLE,
45 MIGRATE_RECLAIMABLE,
46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
48#ifdef CONFIG_CMA
49 /*
50 * MIGRATE_CMA migration type is designed to mimic the way
51 * ZONE_MOVABLE works. Only movable pages can be allocated
52 * from MIGRATE_CMA pageblocks and page allocator never
53 * implicitly change migration type of MIGRATE_CMA pageblock.
54 *
55 * The way to use it is to change migratetype of a range of
56 * pageblocks to MIGRATE_CMA which can be done by
57 * __free_pageblock_cma() function. What is important though
58 * is that a range of pageblocks must be aligned to
59 * MAX_ORDER_NR_PAGES should biggest page be bigger than
60 * a single pageblock.
61 */
62 MIGRATE_CMA,
63#endif
64#ifdef CONFIG_MEMORY_ISOLATION
65 MIGRATE_ISOLATE, /* can't allocate from here */
66#endif
67 MIGRATE_TYPES
68};
69
70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71extern const char * const migratetype_names[MIGRATE_TYPES];
72
73#ifdef CONFIG_CMA
74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76#else
77# define is_migrate_cma(migratetype) false
78# define is_migrate_cma_page(_page) false
79#endif
80
81static inline bool is_migrate_movable(int mt)
82{
83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84}
85
86#define for_each_migratetype_order(order, type) \
87 for (order = 0; order < MAX_ORDER; order++) \
88 for (type = 0; type < MIGRATE_TYPES; type++)
89
90extern int page_group_by_mobility_disabled;
91
92#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
93
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
96
97struct free_area {
98 struct list_head free_list[MIGRATE_TYPES];
99 unsigned long nr_free;
100};
101
102static inline struct page *get_page_from_free_area(struct free_area *area,
103 int migratetype)
104{
105 return list_first_entry_or_null(&area->free_list[migratetype],
106 struct page, lru);
107}
108
109static inline bool free_area_empty(struct free_area *area, int migratetype)
110{
111 return list_empty(&area->free_list[migratetype]);
112}
113
114struct pglist_data;
115
116/*
117 * Add a wild amount of padding here to ensure data fall into separate
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
120 */
121#if defined(CONFIG_SMP)
122struct zone_padding {
123 char x[0];
124} ____cacheline_internodealigned_in_smp;
125#define ZONE_PADDING(name) struct zone_padding name;
126#else
127#define ZONE_PADDING(name)
128#endif
129
130#ifdef CONFIG_NUMA
131enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
138 NR_VM_NUMA_EVENT_ITEMS
139};
140#else
141#define NR_VM_NUMA_EVENT_ITEMS 0
142#endif
143
144enum zone_stat_item {
145 /* First 128 byte cacheline (assuming 64 bit words) */
146 NR_FREE_PAGES,
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 NR_ZONE_ACTIVE_ANON,
150 NR_ZONE_INACTIVE_FILE,
151 NR_ZONE_ACTIVE_FILE,
152 NR_ZONE_UNEVICTABLE,
153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
155 /* Second 128 byte cacheline */
156 NR_BOUNCE,
157#if IS_ENABLED(CONFIG_ZSMALLOC)
158 NR_ZSPAGES, /* allocated in zsmalloc */
159#endif
160 NR_FREE_CMA_PAGES,
161 NR_VM_ZONE_STAT_ITEMS };
162
163enum node_stat_item {
164 NR_LRU_BASE,
165 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
166 NR_ACTIVE_ANON, /* " " " " " */
167 NR_INACTIVE_FILE, /* " " " " " */
168 NR_ACTIVE_FILE, /* " " " " " */
169 NR_UNEVICTABLE, /* " " " " " */
170 NR_SLAB_RECLAIMABLE_B,
171 NR_SLAB_UNRECLAIMABLE_B,
172 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
173 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
174 WORKINGSET_NODES,
175 WORKINGSET_REFAULT_BASE,
176 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_FILE,
178 WORKINGSET_ACTIVATE_BASE,
179 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_FILE,
181 WORKINGSET_RESTORE_BASE,
182 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_FILE,
184 WORKINGSET_NODERECLAIM,
185 NR_ANON_MAPPED, /* Mapped anonymous pages */
186 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
187 only modified from process context */
188 NR_FILE_PAGES,
189 NR_FILE_DIRTY,
190 NR_WRITEBACK,
191 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
192 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
193 NR_SHMEM_THPS,
194 NR_SHMEM_PMDMAPPED,
195 NR_FILE_THPS,
196 NR_FILE_PMDMAPPED,
197 NR_ANON_THPS,
198 NR_VMSCAN_WRITE,
199 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
200 NR_DIRTIED, /* page dirtyings since bootup */
201 NR_WRITTEN, /* page writings since bootup */
202 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
209#endif
210 NR_PAGETABLE, /* used for pagetables */
211#ifdef CONFIG_SWAP
212 NR_SWAPCACHE,
213#endif
214 NR_VM_NODE_STAT_ITEMS
215};
216
217/*
218 * Returns true if the item should be printed in THPs (/proc/vmstat
219 * currently prints number of anon, file and shmem THPs. But the item
220 * is charged in pages).
221 */
222static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
223{
224 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
225 return false;
226
227 return item == NR_ANON_THPS ||
228 item == NR_FILE_THPS ||
229 item == NR_SHMEM_THPS ||
230 item == NR_SHMEM_PMDMAPPED ||
231 item == NR_FILE_PMDMAPPED;
232}
233
234/*
235 * Returns true if the value is measured in bytes (most vmstat values are
236 * measured in pages). This defines the API part, the internal representation
237 * might be different.
238 */
239static __always_inline bool vmstat_item_in_bytes(int idx)
240{
241 /*
242 * Global and per-node slab counters track slab pages.
243 * It's expected that changes are multiples of PAGE_SIZE.
244 * Internally values are stored in pages.
245 *
246 * Per-memcg and per-lruvec counters track memory, consumed
247 * by individual slab objects. These counters are actually
248 * byte-precise.
249 */
250 return (idx == NR_SLAB_RECLAIMABLE_B ||
251 idx == NR_SLAB_UNRECLAIMABLE_B);
252}
253
254/*
255 * We do arithmetic on the LRU lists in various places in the code,
256 * so it is important to keep the active lists LRU_ACTIVE higher in
257 * the array than the corresponding inactive lists, and to keep
258 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
259 *
260 * This has to be kept in sync with the statistics in zone_stat_item
261 * above and the descriptions in vmstat_text in mm/vmstat.c
262 */
263#define LRU_BASE 0
264#define LRU_ACTIVE 1
265#define LRU_FILE 2
266
267enum lru_list {
268 LRU_INACTIVE_ANON = LRU_BASE,
269 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
270 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
271 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
272 LRU_UNEVICTABLE,
273 NR_LRU_LISTS
274};
275
276enum vmscan_throttle_state {
277 VMSCAN_THROTTLE_WRITEBACK,
278 VMSCAN_THROTTLE_ISOLATED,
279 VMSCAN_THROTTLE_NOPROGRESS,
280 NR_VMSCAN_THROTTLE,
281};
282
283#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
284
285#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
286
287static inline bool is_file_lru(enum lru_list lru)
288{
289 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
290}
291
292static inline bool is_active_lru(enum lru_list lru)
293{
294 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
295}
296
297#define ANON_AND_FILE 2
298
299enum lruvec_flags {
300 LRUVEC_CONGESTED, /* lruvec has many dirty pages
301 * backed by a congested BDI
302 */
303};
304
305struct lruvec {
306 struct list_head lists[NR_LRU_LISTS];
307 /* per lruvec lru_lock for memcg */
308 spinlock_t lru_lock;
309 /*
310 * These track the cost of reclaiming one LRU - file or anon -
311 * over the other. As the observed cost of reclaiming one LRU
312 * increases, the reclaim scan balance tips toward the other.
313 */
314 unsigned long anon_cost;
315 unsigned long file_cost;
316 /* Non-resident age, driven by LRU movement */
317 atomic_long_t nonresident_age;
318 /* Refaults at the time of last reclaim cycle */
319 unsigned long refaults[ANON_AND_FILE];
320 /* Various lruvec state flags (enum lruvec_flags) */
321 unsigned long flags;
322#ifdef CONFIG_MEMCG
323 struct pglist_data *pgdat;
324#endif
325};
326
327/* Isolate unmapped pages */
328#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
329/* Isolate for asynchronous migration */
330#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
331/* Isolate unevictable pages */
332#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
333
334/* LRU Isolation modes. */
335typedef unsigned __bitwise isolate_mode_t;
336
337enum zone_watermarks {
338 WMARK_MIN,
339 WMARK_LOW,
340 WMARK_HIGH,
341 NR_WMARK
342};
343
344/*
345 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
346 * for pageblock size for THP if configured.
347 */
348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
349#define NR_PCP_THP 1
350#else
351#define NR_PCP_THP 0
352#endif
353#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
354
355/*
356 * Shift to encode migratetype and order in the same integer, with order
357 * in the least significant bits.
358 */
359#define NR_PCP_ORDER_WIDTH 8
360#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
361
362#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
363#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
364#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
365#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
366
367/* Fields and list protected by pagesets local_lock in page_alloc.c */
368struct per_cpu_pages {
369 int count; /* number of pages in the list */
370 int high; /* high watermark, emptying needed */
371 int batch; /* chunk size for buddy add/remove */
372 short free_factor; /* batch scaling factor during free */
373#ifdef CONFIG_NUMA
374 short expire; /* When 0, remote pagesets are drained */
375#endif
376
377 /* Lists of pages, one per migrate type stored on the pcp-lists */
378 struct list_head lists[NR_PCP_LISTS];
379};
380
381struct per_cpu_zonestat {
382#ifdef CONFIG_SMP
383 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
384 s8 stat_threshold;
385#endif
386#ifdef CONFIG_NUMA
387 /*
388 * Low priority inaccurate counters that are only folded
389 * on demand. Use a large type to avoid the overhead of
390 * folding during refresh_cpu_vm_stats.
391 */
392 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
393#endif
394};
395
396struct per_cpu_nodestat {
397 s8 stat_threshold;
398 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
399};
400
401#endif /* !__GENERATING_BOUNDS.H */
402
403enum zone_type {
404 /*
405 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
406 * to DMA to all of the addressable memory (ZONE_NORMAL).
407 * On architectures where this area covers the whole 32 bit address
408 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
409 * DMA addressing constraints. This distinction is important as a 32bit
410 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
411 * platforms may need both zones as they support peripherals with
412 * different DMA addressing limitations.
413 */
414#ifdef CONFIG_ZONE_DMA
415 ZONE_DMA,
416#endif
417#ifdef CONFIG_ZONE_DMA32
418 ZONE_DMA32,
419#endif
420 /*
421 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
422 * performed on pages in ZONE_NORMAL if the DMA devices support
423 * transfers to all addressable memory.
424 */
425 ZONE_NORMAL,
426#ifdef CONFIG_HIGHMEM
427 /*
428 * A memory area that is only addressable by the kernel through
429 * mapping portions into its own address space. This is for example
430 * used by i386 to allow the kernel to address the memory beyond
431 * 900MB. The kernel will set up special mappings (page
432 * table entries on i386) for each page that the kernel needs to
433 * access.
434 */
435 ZONE_HIGHMEM,
436#endif
437 /*
438 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
439 * movable pages with few exceptional cases described below. Main use
440 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
441 * likely to succeed, and to locally limit unmovable allocations - e.g.,
442 * to increase the number of THP/huge pages. Notable special cases are:
443 *
444 * 1. Pinned pages: (long-term) pinning of movable pages might
445 * essentially turn such pages unmovable. Therefore, we do not allow
446 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
447 * faulted, they come from the right zone right away. However, it is
448 * still possible that address space already has pages in
449 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
450 * touches that memory before pinning). In such case we migrate them
451 * to a different zone. When migration fails - pinning fails.
452 * 2. memblock allocations: kernelcore/movablecore setups might create
453 * situations where ZONE_MOVABLE contains unmovable allocations
454 * after boot. Memory offlining and allocations fail early.
455 * 3. Memory holes: kernelcore/movablecore setups might create very rare
456 * situations where ZONE_MOVABLE contains memory holes after boot,
457 * for example, if we have sections that are only partially
458 * populated. Memory offlining and allocations fail early.
459 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
460 * memory offlining, such pages cannot be allocated.
461 * 5. Unmovable PG_offline pages: in paravirtualized environments,
462 * hotplugged memory blocks might only partially be managed by the
463 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
464 * parts not manged by the buddy are unmovable PG_offline pages. In
465 * some cases (virtio-mem), such pages can be skipped during
466 * memory offlining, however, cannot be moved/allocated. These
467 * techniques might use alloc_contig_range() to hide previously
468 * exposed pages from the buddy again (e.g., to implement some sort
469 * of memory unplug in virtio-mem).
470 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
471 * situations where ZERO_PAGE(0) which is allocated differently
472 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
473 * cannot be migrated.
474 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
475 * memory to the MOVABLE zone, the vmemmap pages are also placed in
476 * such zone. Such pages cannot be really moved around as they are
477 * self-stored in the range, but they are treated as movable when
478 * the range they describe is about to be offlined.
479 *
480 * In general, no unmovable allocations that degrade memory offlining
481 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
482 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
483 * if has_unmovable_pages() states that there are no unmovable pages,
484 * there can be false negatives).
485 */
486 ZONE_MOVABLE,
487#ifdef CONFIG_ZONE_DEVICE
488 ZONE_DEVICE,
489#endif
490 __MAX_NR_ZONES
491
492};
493
494#ifndef __GENERATING_BOUNDS_H
495
496#define ASYNC_AND_SYNC 2
497
498struct zone {
499 /* Read-mostly fields */
500
501 /* zone watermarks, access with *_wmark_pages(zone) macros */
502 unsigned long _watermark[NR_WMARK];
503 unsigned long watermark_boost;
504
505 unsigned long nr_reserved_highatomic;
506
507 /*
508 * We don't know if the memory that we're going to allocate will be
509 * freeable or/and it will be released eventually, so to avoid totally
510 * wasting several GB of ram we must reserve some of the lower zone
511 * memory (otherwise we risk to run OOM on the lower zones despite
512 * there being tons of freeable ram on the higher zones). This array is
513 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
514 * changes.
515 */
516 long lowmem_reserve[MAX_NR_ZONES];
517
518#ifdef CONFIG_NUMA
519 int node;
520#endif
521 struct pglist_data *zone_pgdat;
522 struct per_cpu_pages __percpu *per_cpu_pageset;
523 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
524 /*
525 * the high and batch values are copied to individual pagesets for
526 * faster access
527 */
528 int pageset_high;
529 int pageset_batch;
530
531#ifndef CONFIG_SPARSEMEM
532 /*
533 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
534 * In SPARSEMEM, this map is stored in struct mem_section
535 */
536 unsigned long *pageblock_flags;
537#endif /* CONFIG_SPARSEMEM */
538
539 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
540 unsigned long zone_start_pfn;
541
542 /*
543 * spanned_pages is the total pages spanned by the zone, including
544 * holes, which is calculated as:
545 * spanned_pages = zone_end_pfn - zone_start_pfn;
546 *
547 * present_pages is physical pages existing within the zone, which
548 * is calculated as:
549 * present_pages = spanned_pages - absent_pages(pages in holes);
550 *
551 * present_early_pages is present pages existing within the zone
552 * located on memory available since early boot, excluding hotplugged
553 * memory.
554 *
555 * managed_pages is present pages managed by the buddy system, which
556 * is calculated as (reserved_pages includes pages allocated by the
557 * bootmem allocator):
558 * managed_pages = present_pages - reserved_pages;
559 *
560 * cma pages is present pages that are assigned for CMA use
561 * (MIGRATE_CMA).
562 *
563 * So present_pages may be used by memory hotplug or memory power
564 * management logic to figure out unmanaged pages by checking
565 * (present_pages - managed_pages). And managed_pages should be used
566 * by page allocator and vm scanner to calculate all kinds of watermarks
567 * and thresholds.
568 *
569 * Locking rules:
570 *
571 * zone_start_pfn and spanned_pages are protected by span_seqlock.
572 * It is a seqlock because it has to be read outside of zone->lock,
573 * and it is done in the main allocator path. But, it is written
574 * quite infrequently.
575 *
576 * The span_seq lock is declared along with zone->lock because it is
577 * frequently read in proximity to zone->lock. It's good to
578 * give them a chance of being in the same cacheline.
579 *
580 * Write access to present_pages at runtime should be protected by
581 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
582 * present_pages should get_online_mems() to get a stable value.
583 */
584 atomic_long_t managed_pages;
585 unsigned long spanned_pages;
586 unsigned long present_pages;
587#if defined(CONFIG_MEMORY_HOTPLUG)
588 unsigned long present_early_pages;
589#endif
590#ifdef CONFIG_CMA
591 unsigned long cma_pages;
592#endif
593
594 const char *name;
595
596#ifdef CONFIG_MEMORY_ISOLATION
597 /*
598 * Number of isolated pageblock. It is used to solve incorrect
599 * freepage counting problem due to racy retrieving migratetype
600 * of pageblock. Protected by zone->lock.
601 */
602 unsigned long nr_isolate_pageblock;
603#endif
604
605#ifdef CONFIG_MEMORY_HOTPLUG
606 /* see spanned/present_pages for more description */
607 seqlock_t span_seqlock;
608#endif
609
610 int initialized;
611
612 /* Write-intensive fields used from the page allocator */
613 ZONE_PADDING(_pad1_)
614
615 /* free areas of different sizes */
616 struct free_area free_area[MAX_ORDER];
617
618 /* zone flags, see below */
619 unsigned long flags;
620
621 /* Primarily protects free_area */
622 spinlock_t lock;
623
624 /* Write-intensive fields used by compaction and vmstats. */
625 ZONE_PADDING(_pad2_)
626
627 /*
628 * When free pages are below this point, additional steps are taken
629 * when reading the number of free pages to avoid per-cpu counter
630 * drift allowing watermarks to be breached
631 */
632 unsigned long percpu_drift_mark;
633
634#if defined CONFIG_COMPACTION || defined CONFIG_CMA
635 /* pfn where compaction free scanner should start */
636 unsigned long compact_cached_free_pfn;
637 /* pfn where compaction migration scanner should start */
638 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
639 unsigned long compact_init_migrate_pfn;
640 unsigned long compact_init_free_pfn;
641#endif
642
643#ifdef CONFIG_COMPACTION
644 /*
645 * On compaction failure, 1<<compact_defer_shift compactions
646 * are skipped before trying again. The number attempted since
647 * last failure is tracked with compact_considered.
648 * compact_order_failed is the minimum compaction failed order.
649 */
650 unsigned int compact_considered;
651 unsigned int compact_defer_shift;
652 int compact_order_failed;
653#endif
654
655#if defined CONFIG_COMPACTION || defined CONFIG_CMA
656 /* Set to true when the PG_migrate_skip bits should be cleared */
657 bool compact_blockskip_flush;
658#endif
659
660 bool contiguous;
661
662 ZONE_PADDING(_pad3_)
663 /* Zone statistics */
664 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
665 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
666} ____cacheline_internodealigned_in_smp;
667
668enum pgdat_flags {
669 PGDAT_DIRTY, /* reclaim scanning has recently found
670 * many dirty file pages at the tail
671 * of the LRU.
672 */
673 PGDAT_WRITEBACK, /* reclaim scanning has recently found
674 * many pages under writeback
675 */
676 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
677};
678
679enum zone_flags {
680 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
681 * Cleared when kswapd is woken.
682 */
683 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
684};
685
686static inline unsigned long zone_managed_pages(struct zone *zone)
687{
688 return (unsigned long)atomic_long_read(&zone->managed_pages);
689}
690
691static inline unsigned long zone_cma_pages(struct zone *zone)
692{
693#ifdef CONFIG_CMA
694 return zone->cma_pages;
695#else
696 return 0;
697#endif
698}
699
700static inline unsigned long zone_end_pfn(const struct zone *zone)
701{
702 return zone->zone_start_pfn + zone->spanned_pages;
703}
704
705static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
706{
707 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
708}
709
710static inline bool zone_is_initialized(struct zone *zone)
711{
712 return zone->initialized;
713}
714
715static inline bool zone_is_empty(struct zone *zone)
716{
717 return zone->spanned_pages == 0;
718}
719
720/*
721 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
722 * intersection with the given zone
723 */
724static inline bool zone_intersects(struct zone *zone,
725 unsigned long start_pfn, unsigned long nr_pages)
726{
727 if (zone_is_empty(zone))
728 return false;
729 if (start_pfn >= zone_end_pfn(zone) ||
730 start_pfn + nr_pages <= zone->zone_start_pfn)
731 return false;
732
733 return true;
734}
735
736/*
737 * The "priority" of VM scanning is how much of the queues we will scan in one
738 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
739 * queues ("queue_length >> 12") during an aging round.
740 */
741#define DEF_PRIORITY 12
742
743/* Maximum number of zones on a zonelist */
744#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
745
746enum {
747 ZONELIST_FALLBACK, /* zonelist with fallback */
748#ifdef CONFIG_NUMA
749 /*
750 * The NUMA zonelists are doubled because we need zonelists that
751 * restrict the allocations to a single node for __GFP_THISNODE.
752 */
753 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
754#endif
755 MAX_ZONELISTS
756};
757
758/*
759 * This struct contains information about a zone in a zonelist. It is stored
760 * here to avoid dereferences into large structures and lookups of tables
761 */
762struct zoneref {
763 struct zone *zone; /* Pointer to actual zone */
764 int zone_idx; /* zone_idx(zoneref->zone) */
765};
766
767/*
768 * One allocation request operates on a zonelist. A zonelist
769 * is a list of zones, the first one is the 'goal' of the
770 * allocation, the other zones are fallback zones, in decreasing
771 * priority.
772 *
773 * To speed the reading of the zonelist, the zonerefs contain the zone index
774 * of the entry being read. Helper functions to access information given
775 * a struct zoneref are
776 *
777 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
778 * zonelist_zone_idx() - Return the index of the zone for an entry
779 * zonelist_node_idx() - Return the index of the node for an entry
780 */
781struct zonelist {
782 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
783};
784
785/*
786 * The array of struct pages for flatmem.
787 * It must be declared for SPARSEMEM as well because there are configurations
788 * that rely on that.
789 */
790extern struct page *mem_map;
791
792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
793struct deferred_split {
794 spinlock_t split_queue_lock;
795 struct list_head split_queue;
796 unsigned long split_queue_len;
797};
798#endif
799
800/*
801 * On NUMA machines, each NUMA node would have a pg_data_t to describe
802 * it's memory layout. On UMA machines there is a single pglist_data which
803 * describes the whole memory.
804 *
805 * Memory statistics and page replacement data structures are maintained on a
806 * per-zone basis.
807 */
808typedef struct pglist_data {
809 /*
810 * node_zones contains just the zones for THIS node. Not all of the
811 * zones may be populated, but it is the full list. It is referenced by
812 * this node's node_zonelists as well as other node's node_zonelists.
813 */
814 struct zone node_zones[MAX_NR_ZONES];
815
816 /*
817 * node_zonelists contains references to all zones in all nodes.
818 * Generally the first zones will be references to this node's
819 * node_zones.
820 */
821 struct zonelist node_zonelists[MAX_ZONELISTS];
822
823 int nr_zones; /* number of populated zones in this node */
824#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
825 struct page *node_mem_map;
826#ifdef CONFIG_PAGE_EXTENSION
827 struct page_ext *node_page_ext;
828#endif
829#endif
830#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
831 /*
832 * Must be held any time you expect node_start_pfn,
833 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
834 * Also synchronizes pgdat->first_deferred_pfn during deferred page
835 * init.
836 *
837 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
838 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
839 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
840 *
841 * Nests above zone->lock and zone->span_seqlock
842 */
843 spinlock_t node_size_lock;
844#endif
845 unsigned long node_start_pfn;
846 unsigned long node_present_pages; /* total number of physical pages */
847 unsigned long node_spanned_pages; /* total size of physical page
848 range, including holes */
849 int node_id;
850 wait_queue_head_t kswapd_wait;
851 wait_queue_head_t pfmemalloc_wait;
852
853 /* workqueues for throttling reclaim for different reasons. */
854 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
855
856 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
857 unsigned long nr_reclaim_start; /* nr pages written while throttled
858 * when throttling started. */
859 struct task_struct *kswapd; /* Protected by
860 mem_hotplug_begin/end() */
861 int kswapd_order;
862 enum zone_type kswapd_highest_zoneidx;
863
864 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
865
866#ifdef CONFIG_COMPACTION
867 int kcompactd_max_order;
868 enum zone_type kcompactd_highest_zoneidx;
869 wait_queue_head_t kcompactd_wait;
870 struct task_struct *kcompactd;
871 bool proactive_compact_trigger;
872#endif
873 /*
874 * This is a per-node reserve of pages that are not available
875 * to userspace allocations.
876 */
877 unsigned long totalreserve_pages;
878
879#ifdef CONFIG_NUMA
880 /*
881 * node reclaim becomes active if more unmapped pages exist.
882 */
883 unsigned long min_unmapped_pages;
884 unsigned long min_slab_pages;
885#endif /* CONFIG_NUMA */
886
887 /* Write-intensive fields used by page reclaim */
888 ZONE_PADDING(_pad1_)
889
890#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
891 /*
892 * If memory initialisation on large machines is deferred then this
893 * is the first PFN that needs to be initialised.
894 */
895 unsigned long first_deferred_pfn;
896#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
897
898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
899 struct deferred_split deferred_split_queue;
900#endif
901
902 /* Fields commonly accessed by the page reclaim scanner */
903
904 /*
905 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
906 *
907 * Use mem_cgroup_lruvec() to look up lruvecs.
908 */
909 struct lruvec __lruvec;
910
911 unsigned long flags;
912
913 ZONE_PADDING(_pad2_)
914
915 /* Per-node vmstats */
916 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
917 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
918} pg_data_t;
919
920#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
921#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
922#ifdef CONFIG_FLATMEM
923#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
924#else
925#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
926#endif
927#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
928
929#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
930#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
931
932static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
933{
934 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
935}
936
937static inline bool pgdat_is_empty(pg_data_t *pgdat)
938{
939 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
940}
941
942#include <linux/memory_hotplug.h>
943
944void build_all_zonelists(pg_data_t *pgdat);
945void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
946 enum zone_type highest_zoneidx);
947bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
948 int highest_zoneidx, unsigned int alloc_flags,
949 long free_pages);
950bool zone_watermark_ok(struct zone *z, unsigned int order,
951 unsigned long mark, int highest_zoneidx,
952 unsigned int alloc_flags);
953bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
954 unsigned long mark, int highest_zoneidx);
955/*
956 * Memory initialization context, use to differentiate memory added by
957 * the platform statically or via memory hotplug interface.
958 */
959enum meminit_context {
960 MEMINIT_EARLY,
961 MEMINIT_HOTPLUG,
962};
963
964extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
965 unsigned long size);
966
967extern void lruvec_init(struct lruvec *lruvec);
968
969static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
970{
971#ifdef CONFIG_MEMCG
972 return lruvec->pgdat;
973#else
974 return container_of(lruvec, struct pglist_data, __lruvec);
975#endif
976}
977
978#ifdef CONFIG_HAVE_MEMORYLESS_NODES
979int local_memory_node(int node_id);
980#else
981static inline int local_memory_node(int node_id) { return node_id; };
982#endif
983
984/*
985 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
986 */
987#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
988
989#ifdef CONFIG_ZONE_DEVICE
990static inline bool zone_is_zone_device(struct zone *zone)
991{
992 return zone_idx(zone) == ZONE_DEVICE;
993}
994#else
995static inline bool zone_is_zone_device(struct zone *zone)
996{
997 return false;
998}
999#endif
1000
1001/*
1002 * Returns true if a zone has pages managed by the buddy allocator.
1003 * All the reclaim decisions have to use this function rather than
1004 * populated_zone(). If the whole zone is reserved then we can easily
1005 * end up with populated_zone() && !managed_zone().
1006 */
1007static inline bool managed_zone(struct zone *zone)
1008{
1009 return zone_managed_pages(zone);
1010}
1011
1012/* Returns true if a zone has memory */
1013static inline bool populated_zone(struct zone *zone)
1014{
1015 return zone->present_pages;
1016}
1017
1018#ifdef CONFIG_NUMA
1019static inline int zone_to_nid(struct zone *zone)
1020{
1021 return zone->node;
1022}
1023
1024static inline void zone_set_nid(struct zone *zone, int nid)
1025{
1026 zone->node = nid;
1027}
1028#else
1029static inline int zone_to_nid(struct zone *zone)
1030{
1031 return 0;
1032}
1033
1034static inline void zone_set_nid(struct zone *zone, int nid) {}
1035#endif
1036
1037extern int movable_zone;
1038
1039static inline int is_highmem_idx(enum zone_type idx)
1040{
1041#ifdef CONFIG_HIGHMEM
1042 return (idx == ZONE_HIGHMEM ||
1043 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1044#else
1045 return 0;
1046#endif
1047}
1048
1049/**
1050 * is_highmem - helper function to quickly check if a struct zone is a
1051 * highmem zone or not. This is an attempt to keep references
1052 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1053 * @zone: pointer to struct zone variable
1054 * Return: 1 for a highmem zone, 0 otherwise
1055 */
1056static inline int is_highmem(struct zone *zone)
1057{
1058#ifdef CONFIG_HIGHMEM
1059 return is_highmem_idx(zone_idx(zone));
1060#else
1061 return 0;
1062#endif
1063}
1064
1065/* These two functions are used to setup the per zone pages min values */
1066struct ctl_table;
1067
1068int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1069 loff_t *);
1070int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1071 size_t *, loff_t *);
1072extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1073int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1074 size_t *, loff_t *);
1075int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1076 void *, size_t *, loff_t *);
1077int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1078 void *, size_t *, loff_t *);
1079int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1080 void *, size_t *, loff_t *);
1081int numa_zonelist_order_handler(struct ctl_table *, int,
1082 void *, size_t *, loff_t *);
1083extern int percpu_pagelist_high_fraction;
1084extern char numa_zonelist_order[];
1085#define NUMA_ZONELIST_ORDER_LEN 16
1086
1087#ifndef CONFIG_NUMA
1088
1089extern struct pglist_data contig_page_data;
1090static inline struct pglist_data *NODE_DATA(int nid)
1091{
1092 return &contig_page_data;
1093}
1094#define NODE_MEM_MAP(nid) mem_map
1095
1096#else /* CONFIG_NUMA */
1097
1098#include <asm/mmzone.h>
1099
1100#endif /* !CONFIG_NUMA */
1101
1102extern struct pglist_data *first_online_pgdat(void);
1103extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1104extern struct zone *next_zone(struct zone *zone);
1105
1106/**
1107 * for_each_online_pgdat - helper macro to iterate over all online nodes
1108 * @pgdat: pointer to a pg_data_t variable
1109 */
1110#define for_each_online_pgdat(pgdat) \
1111 for (pgdat = first_online_pgdat(); \
1112 pgdat; \
1113 pgdat = next_online_pgdat(pgdat))
1114/**
1115 * for_each_zone - helper macro to iterate over all memory zones
1116 * @zone: pointer to struct zone variable
1117 *
1118 * The user only needs to declare the zone variable, for_each_zone
1119 * fills it in.
1120 */
1121#define for_each_zone(zone) \
1122 for (zone = (first_online_pgdat())->node_zones; \
1123 zone; \
1124 zone = next_zone(zone))
1125
1126#define for_each_populated_zone(zone) \
1127 for (zone = (first_online_pgdat())->node_zones; \
1128 zone; \
1129 zone = next_zone(zone)) \
1130 if (!populated_zone(zone)) \
1131 ; /* do nothing */ \
1132 else
1133
1134static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1135{
1136 return zoneref->zone;
1137}
1138
1139static inline int zonelist_zone_idx(struct zoneref *zoneref)
1140{
1141 return zoneref->zone_idx;
1142}
1143
1144static inline int zonelist_node_idx(struct zoneref *zoneref)
1145{
1146 return zone_to_nid(zoneref->zone);
1147}
1148
1149struct zoneref *__next_zones_zonelist(struct zoneref *z,
1150 enum zone_type highest_zoneidx,
1151 nodemask_t *nodes);
1152
1153/**
1154 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1155 * @z: The cursor used as a starting point for the search
1156 * @highest_zoneidx: The zone index of the highest zone to return
1157 * @nodes: An optional nodemask to filter the zonelist with
1158 *
1159 * This function returns the next zone at or below a given zone index that is
1160 * within the allowed nodemask using a cursor as the starting point for the
1161 * search. The zoneref returned is a cursor that represents the current zone
1162 * being examined. It should be advanced by one before calling
1163 * next_zones_zonelist again.
1164 *
1165 * Return: the next zone at or below highest_zoneidx within the allowed
1166 * nodemask using a cursor within a zonelist as a starting point
1167 */
1168static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1169 enum zone_type highest_zoneidx,
1170 nodemask_t *nodes)
1171{
1172 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1173 return z;
1174 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1175}
1176
1177/**
1178 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1179 * @zonelist: The zonelist to search for a suitable zone
1180 * @highest_zoneidx: The zone index of the highest zone to return
1181 * @nodes: An optional nodemask to filter the zonelist with
1182 *
1183 * This function returns the first zone at or below a given zone index that is
1184 * within the allowed nodemask. The zoneref returned is a cursor that can be
1185 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1186 * one before calling.
1187 *
1188 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1189 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1190 * update due to cpuset modification.
1191 *
1192 * Return: Zoneref pointer for the first suitable zone found
1193 */
1194static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1195 enum zone_type highest_zoneidx,
1196 nodemask_t *nodes)
1197{
1198 return next_zones_zonelist(zonelist->_zonerefs,
1199 highest_zoneidx, nodes);
1200}
1201
1202/**
1203 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1204 * @zone: The current zone in the iterator
1205 * @z: The current pointer within zonelist->_zonerefs being iterated
1206 * @zlist: The zonelist being iterated
1207 * @highidx: The zone index of the highest zone to return
1208 * @nodemask: Nodemask allowed by the allocator
1209 *
1210 * This iterator iterates though all zones at or below a given zone index and
1211 * within a given nodemask
1212 */
1213#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1214 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1215 zone; \
1216 z = next_zones_zonelist(++z, highidx, nodemask), \
1217 zone = zonelist_zone(z))
1218
1219#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1220 for (zone = z->zone; \
1221 zone; \
1222 z = next_zones_zonelist(++z, highidx, nodemask), \
1223 zone = zonelist_zone(z))
1224
1225
1226/**
1227 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1228 * @zone: The current zone in the iterator
1229 * @z: The current pointer within zonelist->zones being iterated
1230 * @zlist: The zonelist being iterated
1231 * @highidx: The zone index of the highest zone to return
1232 *
1233 * This iterator iterates though all zones at or below a given zone index.
1234 */
1235#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1236 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1237
1238/* Whether the 'nodes' are all movable nodes */
1239static inline bool movable_only_nodes(nodemask_t *nodes)
1240{
1241 struct zonelist *zonelist;
1242 struct zoneref *z;
1243 int nid;
1244
1245 if (nodes_empty(*nodes))
1246 return false;
1247
1248 /*
1249 * We can chose arbitrary node from the nodemask to get a
1250 * zonelist as they are interlinked. We just need to find
1251 * at least one zone that can satisfy kernel allocations.
1252 */
1253 nid = first_node(*nodes);
1254 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1255 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1256 return (!z->zone) ? true : false;
1257}
1258
1259
1260#ifdef CONFIG_SPARSEMEM
1261#include <asm/sparsemem.h>
1262#endif
1263
1264#ifdef CONFIG_FLATMEM
1265#define pfn_to_nid(pfn) (0)
1266#endif
1267
1268#ifdef CONFIG_SPARSEMEM
1269
1270/*
1271 * PA_SECTION_SHIFT physical address to/from section number
1272 * PFN_SECTION_SHIFT pfn to/from section number
1273 */
1274#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1275#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1276
1277#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1278
1279#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1280#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1281
1282#define SECTION_BLOCKFLAGS_BITS \
1283 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1284
1285#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1286#error Allocator MAX_ORDER exceeds SECTION_SIZE
1287#endif
1288
1289static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1290{
1291 return pfn >> PFN_SECTION_SHIFT;
1292}
1293static inline unsigned long section_nr_to_pfn(unsigned long sec)
1294{
1295 return sec << PFN_SECTION_SHIFT;
1296}
1297
1298#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1299#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1300
1301#define SUBSECTION_SHIFT 21
1302#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1303
1304#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1305#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1306#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1307
1308#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1309#error Subsection size exceeds section size
1310#else
1311#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1312#endif
1313
1314#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1315#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1316
1317struct mem_section_usage {
1318#ifdef CONFIG_SPARSEMEM_VMEMMAP
1319 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1320#endif
1321 /* See declaration of similar field in struct zone */
1322 unsigned long pageblock_flags[0];
1323};
1324
1325void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1326
1327struct page;
1328struct page_ext;
1329struct mem_section {
1330 /*
1331 * This is, logically, a pointer to an array of struct
1332 * pages. However, it is stored with some other magic.
1333 * (see sparse.c::sparse_init_one_section())
1334 *
1335 * Additionally during early boot we encode node id of
1336 * the location of the section here to guide allocation.
1337 * (see sparse.c::memory_present())
1338 *
1339 * Making it a UL at least makes someone do a cast
1340 * before using it wrong.
1341 */
1342 unsigned long section_mem_map;
1343
1344 struct mem_section_usage *usage;
1345#ifdef CONFIG_PAGE_EXTENSION
1346 /*
1347 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1348 * section. (see page_ext.h about this.)
1349 */
1350 struct page_ext *page_ext;
1351 unsigned long pad;
1352#endif
1353 /*
1354 * WARNING: mem_section must be a power-of-2 in size for the
1355 * calculation and use of SECTION_ROOT_MASK to make sense.
1356 */
1357};
1358
1359#ifdef CONFIG_SPARSEMEM_EXTREME
1360#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1361#else
1362#define SECTIONS_PER_ROOT 1
1363#endif
1364
1365#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1366#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1367#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1368
1369#ifdef CONFIG_SPARSEMEM_EXTREME
1370extern struct mem_section **mem_section;
1371#else
1372extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1373#endif
1374
1375static inline unsigned long *section_to_usemap(struct mem_section *ms)
1376{
1377 return ms->usage->pageblock_flags;
1378}
1379
1380static inline struct mem_section *__nr_to_section(unsigned long nr)
1381{
1382#ifdef CONFIG_SPARSEMEM_EXTREME
1383 if (!mem_section)
1384 return NULL;
1385#endif
1386 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1387 return NULL;
1388 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1389}
1390extern size_t mem_section_usage_size(void);
1391
1392/*
1393 * We use the lower bits of the mem_map pointer to store
1394 * a little bit of information. The pointer is calculated
1395 * as mem_map - section_nr_to_pfn(pnum). The result is
1396 * aligned to the minimum alignment of the two values:
1397 * 1. All mem_map arrays are page-aligned.
1398 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1399 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1400 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1401 * worst combination is powerpc with 256k pages,
1402 * which results in PFN_SECTION_SHIFT equal 6.
1403 * To sum it up, at least 6 bits are available.
1404 */
1405#define SECTION_MARKED_PRESENT (1UL<<0)
1406#define SECTION_HAS_MEM_MAP (1UL<<1)
1407#define SECTION_IS_ONLINE (1UL<<2)
1408#define SECTION_IS_EARLY (1UL<<3)
1409#define SECTION_TAINT_ZONE_DEVICE (1UL<<4)
1410#define SECTION_MAP_LAST_BIT (1UL<<5)
1411#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1412#define SECTION_NID_SHIFT 6
1413
1414static inline struct page *__section_mem_map_addr(struct mem_section *section)
1415{
1416 unsigned long map = section->section_mem_map;
1417 map &= SECTION_MAP_MASK;
1418 return (struct page *)map;
1419}
1420
1421static inline int present_section(struct mem_section *section)
1422{
1423 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1424}
1425
1426static inline int present_section_nr(unsigned long nr)
1427{
1428 return present_section(__nr_to_section(nr));
1429}
1430
1431static inline int valid_section(struct mem_section *section)
1432{
1433 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1434}
1435
1436static inline int early_section(struct mem_section *section)
1437{
1438 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1439}
1440
1441static inline int valid_section_nr(unsigned long nr)
1442{
1443 return valid_section(__nr_to_section(nr));
1444}
1445
1446static inline int online_section(struct mem_section *section)
1447{
1448 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1449}
1450
1451static inline int online_device_section(struct mem_section *section)
1452{
1453 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1454
1455 return section && ((section->section_mem_map & flags) == flags);
1456}
1457
1458static inline int online_section_nr(unsigned long nr)
1459{
1460 return online_section(__nr_to_section(nr));
1461}
1462
1463#ifdef CONFIG_MEMORY_HOTPLUG
1464void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1465void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1466#endif
1467
1468static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1469{
1470 return __nr_to_section(pfn_to_section_nr(pfn));
1471}
1472
1473extern unsigned long __highest_present_section_nr;
1474
1475static inline int subsection_map_index(unsigned long pfn)
1476{
1477 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1478}
1479
1480#ifdef CONFIG_SPARSEMEM_VMEMMAP
1481static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1482{
1483 int idx = subsection_map_index(pfn);
1484
1485 return test_bit(idx, ms->usage->subsection_map);
1486}
1487#else
1488static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1489{
1490 return 1;
1491}
1492#endif
1493
1494#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1495/**
1496 * pfn_valid - check if there is a valid memory map entry for a PFN
1497 * @pfn: the page frame number to check
1498 *
1499 * Check if there is a valid memory map entry aka struct page for the @pfn.
1500 * Note, that availability of the memory map entry does not imply that
1501 * there is actual usable memory at that @pfn. The struct page may
1502 * represent a hole or an unusable page frame.
1503 *
1504 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1505 */
1506static inline int pfn_valid(unsigned long pfn)
1507{
1508 struct mem_section *ms;
1509
1510 /*
1511 * Ensure the upper PAGE_SHIFT bits are clear in the
1512 * pfn. Else it might lead to false positives when
1513 * some of the upper bits are set, but the lower bits
1514 * match a valid pfn.
1515 */
1516 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1517 return 0;
1518
1519 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1520 return 0;
1521 ms = __pfn_to_section(pfn);
1522 if (!valid_section(ms))
1523 return 0;
1524 /*
1525 * Traditionally early sections always returned pfn_valid() for
1526 * the entire section-sized span.
1527 */
1528 return early_section(ms) || pfn_section_valid(ms, pfn);
1529}
1530#endif
1531
1532static inline int pfn_in_present_section(unsigned long pfn)
1533{
1534 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1535 return 0;
1536 return present_section(__pfn_to_section(pfn));
1537}
1538
1539static inline unsigned long next_present_section_nr(unsigned long section_nr)
1540{
1541 while (++section_nr <= __highest_present_section_nr) {
1542 if (present_section_nr(section_nr))
1543 return section_nr;
1544 }
1545
1546 return -1;
1547}
1548
1549/*
1550 * These are _only_ used during initialisation, therefore they
1551 * can use __initdata ... They could have names to indicate
1552 * this restriction.
1553 */
1554#ifdef CONFIG_NUMA
1555#define pfn_to_nid(pfn) \
1556({ \
1557 unsigned long __pfn_to_nid_pfn = (pfn); \
1558 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1559})
1560#else
1561#define pfn_to_nid(pfn) (0)
1562#endif
1563
1564void sparse_init(void);
1565#else
1566#define sparse_init() do {} while (0)
1567#define sparse_index_init(_sec, _nid) do {} while (0)
1568#define pfn_in_present_section pfn_valid
1569#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1570#endif /* CONFIG_SPARSEMEM */
1571
1572#endif /* !__GENERATING_BOUNDS.H */
1573#endif /* !__ASSEMBLY__ */
1574#endif /* _LINUX_MMZONE_H */