Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <linux/compiler.h>
12#include <linux/list.h>
13#include <linux/kernel.h>
14#include <linux/bitops.h>
15#include <linux/string.h>
16#include <linux/stringify.h>
17#include <linux/zalloc.h>
18#include <sys/stat.h>
19#include <sys/utsname.h>
20#include <linux/time64.h>
21#include <dirent.h>
22#ifdef HAVE_LIBBPF_SUPPORT
23#include <bpf/libbpf.h>
24#endif
25#include <perf/cpumap.h>
26
27#include "dso.h"
28#include "evlist.h"
29#include "evsel.h"
30#include "util/evsel_fprintf.h"
31#include "header.h"
32#include "memswap.h"
33#include "trace-event.h"
34#include "session.h"
35#include "symbol.h"
36#include "debug.h"
37#include "cpumap.h"
38#include "pmu.h"
39#include "vdso.h"
40#include "strbuf.h"
41#include "build-id.h"
42#include "data.h"
43#include <api/fs/fs.h>
44#include "asm/bug.h"
45#include "tool.h"
46#include "time-utils.h"
47#include "units.h"
48#include "util/util.h" // perf_exe()
49#include "cputopo.h"
50#include "bpf-event.h"
51#include "bpf-utils.h"
52#include "clockid.h"
53#include "pmu-hybrid.h"
54
55#include <linux/ctype.h>
56#include <internal/lib.h>
57
58/*
59 * magic2 = "PERFILE2"
60 * must be a numerical value to let the endianness
61 * determine the memory layout. That way we are able
62 * to detect endianness when reading the perf.data file
63 * back.
64 *
65 * we check for legacy (PERFFILE) format.
66 */
67static const char *__perf_magic1 = "PERFFILE";
68static const u64 __perf_magic2 = 0x32454c4946524550ULL;
69static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
70
71#define PERF_MAGIC __perf_magic2
72
73const char perf_version_string[] = PERF_VERSION;
74
75struct perf_file_attr {
76 struct perf_event_attr attr;
77 struct perf_file_section ids;
78};
79
80void perf_header__set_feat(struct perf_header *header, int feat)
81{
82 set_bit(feat, header->adds_features);
83}
84
85void perf_header__clear_feat(struct perf_header *header, int feat)
86{
87 clear_bit(feat, header->adds_features);
88}
89
90bool perf_header__has_feat(const struct perf_header *header, int feat)
91{
92 return test_bit(feat, header->adds_features);
93}
94
95static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96{
97 ssize_t ret = writen(ff->fd, buf, size);
98
99 if (ret != (ssize_t)size)
100 return ret < 0 ? (int)ret : -1;
101 return 0;
102}
103
104static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
105{
106 /* struct perf_event_header::size is u16 */
107 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108 size_t new_size = ff->size;
109 void *addr;
110
111 if (size + ff->offset > max_size)
112 return -E2BIG;
113
114 while (size > (new_size - ff->offset))
115 new_size <<= 1;
116 new_size = min(max_size, new_size);
117
118 if (ff->size < new_size) {
119 addr = realloc(ff->buf, new_size);
120 if (!addr)
121 return -ENOMEM;
122 ff->buf = addr;
123 ff->size = new_size;
124 }
125
126 memcpy(ff->buf + ff->offset, buf, size);
127 ff->offset += size;
128
129 return 0;
130}
131
132/* Return: 0 if succeeded, -ERR if failed. */
133int do_write(struct feat_fd *ff, const void *buf, size_t size)
134{
135 if (!ff->buf)
136 return __do_write_fd(ff, buf, size);
137 return __do_write_buf(ff, buf, size);
138}
139
140/* Return: 0 if succeeded, -ERR if failed. */
141static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142{
143 u64 *p = (u64 *) set;
144 int i, ret;
145
146 ret = do_write(ff, &size, sizeof(size));
147 if (ret < 0)
148 return ret;
149
150 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151 ret = do_write(ff, p + i, sizeof(*p));
152 if (ret < 0)
153 return ret;
154 }
155
156 return 0;
157}
158
159/* Return: 0 if succeeded, -ERR if failed. */
160int write_padded(struct feat_fd *ff, const void *bf,
161 size_t count, size_t count_aligned)
162{
163 static const char zero_buf[NAME_ALIGN];
164 int err = do_write(ff, bf, count);
165
166 if (!err)
167 err = do_write(ff, zero_buf, count_aligned - count);
168
169 return err;
170}
171
172#define string_size(str) \
173 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174
175/* Return: 0 if succeeded, -ERR if failed. */
176static int do_write_string(struct feat_fd *ff, const char *str)
177{
178 u32 len, olen;
179 int ret;
180
181 olen = strlen(str) + 1;
182 len = PERF_ALIGN(olen, NAME_ALIGN);
183
184 /* write len, incl. \0 */
185 ret = do_write(ff, &len, sizeof(len));
186 if (ret < 0)
187 return ret;
188
189 return write_padded(ff, str, olen, len);
190}
191
192static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193{
194 ssize_t ret = readn(ff->fd, addr, size);
195
196 if (ret != size)
197 return ret < 0 ? (int)ret : -1;
198 return 0;
199}
200
201static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202{
203 if (size > (ssize_t)ff->size - ff->offset)
204 return -1;
205
206 memcpy(addr, ff->buf + ff->offset, size);
207 ff->offset += size;
208
209 return 0;
210
211}
212
213static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214{
215 if (!ff->buf)
216 return __do_read_fd(ff, addr, size);
217 return __do_read_buf(ff, addr, size);
218}
219
220static int do_read_u32(struct feat_fd *ff, u32 *addr)
221{
222 int ret;
223
224 ret = __do_read(ff, addr, sizeof(*addr));
225 if (ret)
226 return ret;
227
228 if (ff->ph->needs_swap)
229 *addr = bswap_32(*addr);
230 return 0;
231}
232
233static int do_read_u64(struct feat_fd *ff, u64 *addr)
234{
235 int ret;
236
237 ret = __do_read(ff, addr, sizeof(*addr));
238 if (ret)
239 return ret;
240
241 if (ff->ph->needs_swap)
242 *addr = bswap_64(*addr);
243 return 0;
244}
245
246static char *do_read_string(struct feat_fd *ff)
247{
248 u32 len;
249 char *buf;
250
251 if (do_read_u32(ff, &len))
252 return NULL;
253
254 buf = malloc(len);
255 if (!buf)
256 return NULL;
257
258 if (!__do_read(ff, buf, len)) {
259 /*
260 * strings are padded by zeroes
261 * thus the actual strlen of buf
262 * may be less than len
263 */
264 return buf;
265 }
266
267 free(buf);
268 return NULL;
269}
270
271/* Return: 0 if succeeded, -ERR if failed. */
272static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273{
274 unsigned long *set;
275 u64 size, *p;
276 int i, ret;
277
278 ret = do_read_u64(ff, &size);
279 if (ret)
280 return ret;
281
282 set = bitmap_zalloc(size);
283 if (!set)
284 return -ENOMEM;
285
286 p = (u64 *) set;
287
288 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289 ret = do_read_u64(ff, p + i);
290 if (ret < 0) {
291 free(set);
292 return ret;
293 }
294 }
295
296 *pset = set;
297 *psize = size;
298 return 0;
299}
300
301static int write_tracing_data(struct feat_fd *ff,
302 struct evlist *evlist)
303{
304 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305 return -1;
306
307 return read_tracing_data(ff->fd, &evlist->core.entries);
308}
309
310static int write_build_id(struct feat_fd *ff,
311 struct evlist *evlist __maybe_unused)
312{
313 struct perf_session *session;
314 int err;
315
316 session = container_of(ff->ph, struct perf_session, header);
317
318 if (!perf_session__read_build_ids(session, true))
319 return -1;
320
321 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322 return -1;
323
324 err = perf_session__write_buildid_table(session, ff);
325 if (err < 0) {
326 pr_debug("failed to write buildid table\n");
327 return err;
328 }
329 perf_session__cache_build_ids(session);
330
331 return 0;
332}
333
334static int write_hostname(struct feat_fd *ff,
335 struct evlist *evlist __maybe_unused)
336{
337 struct utsname uts;
338 int ret;
339
340 ret = uname(&uts);
341 if (ret < 0)
342 return -1;
343
344 return do_write_string(ff, uts.nodename);
345}
346
347static int write_osrelease(struct feat_fd *ff,
348 struct evlist *evlist __maybe_unused)
349{
350 struct utsname uts;
351 int ret;
352
353 ret = uname(&uts);
354 if (ret < 0)
355 return -1;
356
357 return do_write_string(ff, uts.release);
358}
359
360static int write_arch(struct feat_fd *ff,
361 struct evlist *evlist __maybe_unused)
362{
363 struct utsname uts;
364 int ret;
365
366 ret = uname(&uts);
367 if (ret < 0)
368 return -1;
369
370 return do_write_string(ff, uts.machine);
371}
372
373static int write_version(struct feat_fd *ff,
374 struct evlist *evlist __maybe_unused)
375{
376 return do_write_string(ff, perf_version_string);
377}
378
379static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380{
381 FILE *file;
382 char *buf = NULL;
383 char *s, *p;
384 const char *search = cpuinfo_proc;
385 size_t len = 0;
386 int ret = -1;
387
388 if (!search)
389 return -1;
390
391 file = fopen("/proc/cpuinfo", "r");
392 if (!file)
393 return -1;
394
395 while (getline(&buf, &len, file) > 0) {
396 ret = strncmp(buf, search, strlen(search));
397 if (!ret)
398 break;
399 }
400
401 if (ret) {
402 ret = -1;
403 goto done;
404 }
405
406 s = buf;
407
408 p = strchr(buf, ':');
409 if (p && *(p+1) == ' ' && *(p+2))
410 s = p + 2;
411 p = strchr(s, '\n');
412 if (p)
413 *p = '\0';
414
415 /* squash extra space characters (branding string) */
416 p = s;
417 while (*p) {
418 if (isspace(*p)) {
419 char *r = p + 1;
420 char *q = skip_spaces(r);
421 *p = ' ';
422 if (q != (p+1))
423 while ((*r++ = *q++));
424 }
425 p++;
426 }
427 ret = do_write_string(ff, s);
428done:
429 free(buf);
430 fclose(file);
431 return ret;
432}
433
434static int write_cpudesc(struct feat_fd *ff,
435 struct evlist *evlist __maybe_unused)
436{
437#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
438#define CPUINFO_PROC { "cpu", }
439#elif defined(__s390__)
440#define CPUINFO_PROC { "vendor_id", }
441#elif defined(__sh__)
442#define CPUINFO_PROC { "cpu type", }
443#elif defined(__alpha__) || defined(__mips__)
444#define CPUINFO_PROC { "cpu model", }
445#elif defined(__arm__)
446#define CPUINFO_PROC { "model name", "Processor", }
447#elif defined(__arc__)
448#define CPUINFO_PROC { "Processor", }
449#elif defined(__xtensa__)
450#define CPUINFO_PROC { "core ID", }
451#else
452#define CPUINFO_PROC { "model name", }
453#endif
454 const char *cpuinfo_procs[] = CPUINFO_PROC;
455#undef CPUINFO_PROC
456 unsigned int i;
457
458 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
459 int ret;
460 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
461 if (ret >= 0)
462 return ret;
463 }
464 return -1;
465}
466
467
468static int write_nrcpus(struct feat_fd *ff,
469 struct evlist *evlist __maybe_unused)
470{
471 long nr;
472 u32 nrc, nra;
473 int ret;
474
475 nrc = cpu__max_present_cpu();
476
477 nr = sysconf(_SC_NPROCESSORS_ONLN);
478 if (nr < 0)
479 return -1;
480
481 nra = (u32)(nr & UINT_MAX);
482
483 ret = do_write(ff, &nrc, sizeof(nrc));
484 if (ret < 0)
485 return ret;
486
487 return do_write(ff, &nra, sizeof(nra));
488}
489
490static int write_event_desc(struct feat_fd *ff,
491 struct evlist *evlist)
492{
493 struct evsel *evsel;
494 u32 nre, nri, sz;
495 int ret;
496
497 nre = evlist->core.nr_entries;
498
499 /*
500 * write number of events
501 */
502 ret = do_write(ff, &nre, sizeof(nre));
503 if (ret < 0)
504 return ret;
505
506 /*
507 * size of perf_event_attr struct
508 */
509 sz = (u32)sizeof(evsel->core.attr);
510 ret = do_write(ff, &sz, sizeof(sz));
511 if (ret < 0)
512 return ret;
513
514 evlist__for_each_entry(evlist, evsel) {
515 ret = do_write(ff, &evsel->core.attr, sz);
516 if (ret < 0)
517 return ret;
518 /*
519 * write number of unique id per event
520 * there is one id per instance of an event
521 *
522 * copy into an nri to be independent of the
523 * type of ids,
524 */
525 nri = evsel->core.ids;
526 ret = do_write(ff, &nri, sizeof(nri));
527 if (ret < 0)
528 return ret;
529
530 /*
531 * write event string as passed on cmdline
532 */
533 ret = do_write_string(ff, evsel__name(evsel));
534 if (ret < 0)
535 return ret;
536 /*
537 * write unique ids for this event
538 */
539 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
540 if (ret < 0)
541 return ret;
542 }
543 return 0;
544}
545
546static int write_cmdline(struct feat_fd *ff,
547 struct evlist *evlist __maybe_unused)
548{
549 char pbuf[MAXPATHLEN], *buf;
550 int i, ret, n;
551
552 /* actual path to perf binary */
553 buf = perf_exe(pbuf, MAXPATHLEN);
554
555 /* account for binary path */
556 n = perf_env.nr_cmdline + 1;
557
558 ret = do_write(ff, &n, sizeof(n));
559 if (ret < 0)
560 return ret;
561
562 ret = do_write_string(ff, buf);
563 if (ret < 0)
564 return ret;
565
566 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
567 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
568 if (ret < 0)
569 return ret;
570 }
571 return 0;
572}
573
574
575static int write_cpu_topology(struct feat_fd *ff,
576 struct evlist *evlist __maybe_unused)
577{
578 struct cpu_topology *tp;
579 u32 i;
580 int ret, j;
581
582 tp = cpu_topology__new();
583 if (!tp)
584 return -1;
585
586 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
587 if (ret < 0)
588 goto done;
589
590 for (i = 0; i < tp->package_cpus_lists; i++) {
591 ret = do_write_string(ff, tp->package_cpus_list[i]);
592 if (ret < 0)
593 goto done;
594 }
595 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
596 if (ret < 0)
597 goto done;
598
599 for (i = 0; i < tp->core_cpus_lists; i++) {
600 ret = do_write_string(ff, tp->core_cpus_list[i]);
601 if (ret < 0)
602 break;
603 }
604
605 ret = perf_env__read_cpu_topology_map(&perf_env);
606 if (ret < 0)
607 goto done;
608
609 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
610 ret = do_write(ff, &perf_env.cpu[j].core_id,
611 sizeof(perf_env.cpu[j].core_id));
612 if (ret < 0)
613 return ret;
614 ret = do_write(ff, &perf_env.cpu[j].socket_id,
615 sizeof(perf_env.cpu[j].socket_id));
616 if (ret < 0)
617 return ret;
618 }
619
620 if (!tp->die_cpus_lists)
621 goto done;
622
623 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
624 if (ret < 0)
625 goto done;
626
627 for (i = 0; i < tp->die_cpus_lists; i++) {
628 ret = do_write_string(ff, tp->die_cpus_list[i]);
629 if (ret < 0)
630 goto done;
631 }
632
633 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
634 ret = do_write(ff, &perf_env.cpu[j].die_id,
635 sizeof(perf_env.cpu[j].die_id));
636 if (ret < 0)
637 return ret;
638 }
639
640done:
641 cpu_topology__delete(tp);
642 return ret;
643}
644
645
646
647static int write_total_mem(struct feat_fd *ff,
648 struct evlist *evlist __maybe_unused)
649{
650 char *buf = NULL;
651 FILE *fp;
652 size_t len = 0;
653 int ret = -1, n;
654 uint64_t mem;
655
656 fp = fopen("/proc/meminfo", "r");
657 if (!fp)
658 return -1;
659
660 while (getline(&buf, &len, fp) > 0) {
661 ret = strncmp(buf, "MemTotal:", 9);
662 if (!ret)
663 break;
664 }
665 if (!ret) {
666 n = sscanf(buf, "%*s %"PRIu64, &mem);
667 if (n == 1)
668 ret = do_write(ff, &mem, sizeof(mem));
669 } else
670 ret = -1;
671 free(buf);
672 fclose(fp);
673 return ret;
674}
675
676static int write_numa_topology(struct feat_fd *ff,
677 struct evlist *evlist __maybe_unused)
678{
679 struct numa_topology *tp;
680 int ret = -1;
681 u32 i;
682
683 tp = numa_topology__new();
684 if (!tp)
685 return -ENOMEM;
686
687 ret = do_write(ff, &tp->nr, sizeof(u32));
688 if (ret < 0)
689 goto err;
690
691 for (i = 0; i < tp->nr; i++) {
692 struct numa_topology_node *n = &tp->nodes[i];
693
694 ret = do_write(ff, &n->node, sizeof(u32));
695 if (ret < 0)
696 goto err;
697
698 ret = do_write(ff, &n->mem_total, sizeof(u64));
699 if (ret)
700 goto err;
701
702 ret = do_write(ff, &n->mem_free, sizeof(u64));
703 if (ret)
704 goto err;
705
706 ret = do_write_string(ff, n->cpus);
707 if (ret < 0)
708 goto err;
709 }
710
711 ret = 0;
712
713err:
714 numa_topology__delete(tp);
715 return ret;
716}
717
718/*
719 * File format:
720 *
721 * struct pmu_mappings {
722 * u32 pmu_num;
723 * struct pmu_map {
724 * u32 type;
725 * char name[];
726 * }[pmu_num];
727 * };
728 */
729
730static int write_pmu_mappings(struct feat_fd *ff,
731 struct evlist *evlist __maybe_unused)
732{
733 struct perf_pmu *pmu = NULL;
734 u32 pmu_num = 0;
735 int ret;
736
737 /*
738 * Do a first pass to count number of pmu to avoid lseek so this
739 * works in pipe mode as well.
740 */
741 while ((pmu = perf_pmu__scan(pmu))) {
742 if (!pmu->name)
743 continue;
744 pmu_num++;
745 }
746
747 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
748 if (ret < 0)
749 return ret;
750
751 while ((pmu = perf_pmu__scan(pmu))) {
752 if (!pmu->name)
753 continue;
754
755 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
756 if (ret < 0)
757 return ret;
758
759 ret = do_write_string(ff, pmu->name);
760 if (ret < 0)
761 return ret;
762 }
763
764 return 0;
765}
766
767/*
768 * File format:
769 *
770 * struct group_descs {
771 * u32 nr_groups;
772 * struct group_desc {
773 * char name[];
774 * u32 leader_idx;
775 * u32 nr_members;
776 * }[nr_groups];
777 * };
778 */
779static int write_group_desc(struct feat_fd *ff,
780 struct evlist *evlist)
781{
782 u32 nr_groups = evlist->core.nr_groups;
783 struct evsel *evsel;
784 int ret;
785
786 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
787 if (ret < 0)
788 return ret;
789
790 evlist__for_each_entry(evlist, evsel) {
791 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
792 const char *name = evsel->group_name ?: "{anon_group}";
793 u32 leader_idx = evsel->core.idx;
794 u32 nr_members = evsel->core.nr_members;
795
796 ret = do_write_string(ff, name);
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
801 if (ret < 0)
802 return ret;
803
804 ret = do_write(ff, &nr_members, sizeof(nr_members));
805 if (ret < 0)
806 return ret;
807 }
808 }
809 return 0;
810}
811
812/*
813 * Return the CPU id as a raw string.
814 *
815 * Each architecture should provide a more precise id string that
816 * can be use to match the architecture's "mapfile".
817 */
818char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
819{
820 return NULL;
821}
822
823/* Return zero when the cpuid from the mapfile.csv matches the
824 * cpuid string generated on this platform.
825 * Otherwise return non-zero.
826 */
827int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
828{
829 regex_t re;
830 regmatch_t pmatch[1];
831 int match;
832
833 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
834 /* Warn unable to generate match particular string. */
835 pr_info("Invalid regular expression %s\n", mapcpuid);
836 return 1;
837 }
838
839 match = !regexec(&re, cpuid, 1, pmatch, 0);
840 regfree(&re);
841 if (match) {
842 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
843
844 /* Verify the entire string matched. */
845 if (match_len == strlen(cpuid))
846 return 0;
847 }
848 return 1;
849}
850
851/*
852 * default get_cpuid(): nothing gets recorded
853 * actual implementation must be in arch/$(SRCARCH)/util/header.c
854 */
855int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
856{
857 return ENOSYS; /* Not implemented */
858}
859
860static int write_cpuid(struct feat_fd *ff,
861 struct evlist *evlist __maybe_unused)
862{
863 char buffer[64];
864 int ret;
865
866 ret = get_cpuid(buffer, sizeof(buffer));
867 if (ret)
868 return -1;
869
870 return do_write_string(ff, buffer);
871}
872
873static int write_branch_stack(struct feat_fd *ff __maybe_unused,
874 struct evlist *evlist __maybe_unused)
875{
876 return 0;
877}
878
879static int write_auxtrace(struct feat_fd *ff,
880 struct evlist *evlist __maybe_unused)
881{
882 struct perf_session *session;
883 int err;
884
885 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
886 return -1;
887
888 session = container_of(ff->ph, struct perf_session, header);
889
890 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
891 if (err < 0)
892 pr_err("Failed to write auxtrace index\n");
893 return err;
894}
895
896static int write_clockid(struct feat_fd *ff,
897 struct evlist *evlist __maybe_unused)
898{
899 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
900 sizeof(ff->ph->env.clock.clockid_res_ns));
901}
902
903static int write_clock_data(struct feat_fd *ff,
904 struct evlist *evlist __maybe_unused)
905{
906 u64 *data64;
907 u32 data32;
908 int ret;
909
910 /* version */
911 data32 = 1;
912
913 ret = do_write(ff, &data32, sizeof(data32));
914 if (ret < 0)
915 return ret;
916
917 /* clockid */
918 data32 = ff->ph->env.clock.clockid;
919
920 ret = do_write(ff, &data32, sizeof(data32));
921 if (ret < 0)
922 return ret;
923
924 /* TOD ref time */
925 data64 = &ff->ph->env.clock.tod_ns;
926
927 ret = do_write(ff, data64, sizeof(*data64));
928 if (ret < 0)
929 return ret;
930
931 /* clockid ref time */
932 data64 = &ff->ph->env.clock.clockid_ns;
933
934 return do_write(ff, data64, sizeof(*data64));
935}
936
937static int write_hybrid_topology(struct feat_fd *ff,
938 struct evlist *evlist __maybe_unused)
939{
940 struct hybrid_topology *tp;
941 int ret;
942 u32 i;
943
944 tp = hybrid_topology__new();
945 if (!tp)
946 return -ENOENT;
947
948 ret = do_write(ff, &tp->nr, sizeof(u32));
949 if (ret < 0)
950 goto err;
951
952 for (i = 0; i < tp->nr; i++) {
953 struct hybrid_topology_node *n = &tp->nodes[i];
954
955 ret = do_write_string(ff, n->pmu_name);
956 if (ret < 0)
957 goto err;
958
959 ret = do_write_string(ff, n->cpus);
960 if (ret < 0)
961 goto err;
962 }
963
964 ret = 0;
965
966err:
967 hybrid_topology__delete(tp);
968 return ret;
969}
970
971static int write_dir_format(struct feat_fd *ff,
972 struct evlist *evlist __maybe_unused)
973{
974 struct perf_session *session;
975 struct perf_data *data;
976
977 session = container_of(ff->ph, struct perf_session, header);
978 data = session->data;
979
980 if (WARN_ON(!perf_data__is_dir(data)))
981 return -1;
982
983 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
984}
985
986#ifdef HAVE_LIBBPF_SUPPORT
987static int write_bpf_prog_info(struct feat_fd *ff,
988 struct evlist *evlist __maybe_unused)
989{
990 struct perf_env *env = &ff->ph->env;
991 struct rb_root *root;
992 struct rb_node *next;
993 int ret;
994
995 down_read(&env->bpf_progs.lock);
996
997 ret = do_write(ff, &env->bpf_progs.infos_cnt,
998 sizeof(env->bpf_progs.infos_cnt));
999 if (ret < 0)
1000 goto out;
1001
1002 root = &env->bpf_progs.infos;
1003 next = rb_first(root);
1004 while (next) {
1005 struct bpf_prog_info_node *node;
1006 size_t len;
1007
1008 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1009 next = rb_next(&node->rb_node);
1010 len = sizeof(struct perf_bpil) +
1011 node->info_linear->data_len;
1012
1013 /* before writing to file, translate address to offset */
1014 bpil_addr_to_offs(node->info_linear);
1015 ret = do_write(ff, node->info_linear, len);
1016 /*
1017 * translate back to address even when do_write() fails,
1018 * so that this function never changes the data.
1019 */
1020 bpil_offs_to_addr(node->info_linear);
1021 if (ret < 0)
1022 goto out;
1023 }
1024out:
1025 up_read(&env->bpf_progs.lock);
1026 return ret;
1027}
1028
1029static int write_bpf_btf(struct feat_fd *ff,
1030 struct evlist *evlist __maybe_unused)
1031{
1032 struct perf_env *env = &ff->ph->env;
1033 struct rb_root *root;
1034 struct rb_node *next;
1035 int ret;
1036
1037 down_read(&env->bpf_progs.lock);
1038
1039 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1040 sizeof(env->bpf_progs.btfs_cnt));
1041
1042 if (ret < 0)
1043 goto out;
1044
1045 root = &env->bpf_progs.btfs;
1046 next = rb_first(root);
1047 while (next) {
1048 struct btf_node *node;
1049
1050 node = rb_entry(next, struct btf_node, rb_node);
1051 next = rb_next(&node->rb_node);
1052 ret = do_write(ff, &node->id,
1053 sizeof(u32) * 2 + node->data_size);
1054 if (ret < 0)
1055 goto out;
1056 }
1057out:
1058 up_read(&env->bpf_progs.lock);
1059 return ret;
1060}
1061#endif // HAVE_LIBBPF_SUPPORT
1062
1063static int cpu_cache_level__sort(const void *a, const void *b)
1064{
1065 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1066 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1067
1068 return cache_a->level - cache_b->level;
1069}
1070
1071static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1072{
1073 if (a->level != b->level)
1074 return false;
1075
1076 if (a->line_size != b->line_size)
1077 return false;
1078
1079 if (a->sets != b->sets)
1080 return false;
1081
1082 if (a->ways != b->ways)
1083 return false;
1084
1085 if (strcmp(a->type, b->type))
1086 return false;
1087
1088 if (strcmp(a->size, b->size))
1089 return false;
1090
1091 if (strcmp(a->map, b->map))
1092 return false;
1093
1094 return true;
1095}
1096
1097static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1098{
1099 char path[PATH_MAX], file[PATH_MAX];
1100 struct stat st;
1101 size_t len;
1102
1103 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1104 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1105
1106 if (stat(file, &st))
1107 return 1;
1108
1109 scnprintf(file, PATH_MAX, "%s/level", path);
1110 if (sysfs__read_int(file, (int *) &cache->level))
1111 return -1;
1112
1113 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1114 if (sysfs__read_int(file, (int *) &cache->line_size))
1115 return -1;
1116
1117 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1118 if (sysfs__read_int(file, (int *) &cache->sets))
1119 return -1;
1120
1121 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1122 if (sysfs__read_int(file, (int *) &cache->ways))
1123 return -1;
1124
1125 scnprintf(file, PATH_MAX, "%s/type", path);
1126 if (sysfs__read_str(file, &cache->type, &len))
1127 return -1;
1128
1129 cache->type[len] = 0;
1130 cache->type = strim(cache->type);
1131
1132 scnprintf(file, PATH_MAX, "%s/size", path);
1133 if (sysfs__read_str(file, &cache->size, &len)) {
1134 zfree(&cache->type);
1135 return -1;
1136 }
1137
1138 cache->size[len] = 0;
1139 cache->size = strim(cache->size);
1140
1141 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1142 if (sysfs__read_str(file, &cache->map, &len)) {
1143 zfree(&cache->size);
1144 zfree(&cache->type);
1145 return -1;
1146 }
1147
1148 cache->map[len] = 0;
1149 cache->map = strim(cache->map);
1150 return 0;
1151}
1152
1153static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1154{
1155 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1156}
1157
1158#define MAX_CACHE_LVL 4
1159
1160static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1161{
1162 u32 i, cnt = 0;
1163 u32 nr, cpu;
1164 u16 level;
1165
1166 nr = cpu__max_cpu();
1167
1168 for (cpu = 0; cpu < nr; cpu++) {
1169 for (level = 0; level < MAX_CACHE_LVL; level++) {
1170 struct cpu_cache_level c;
1171 int err;
1172
1173 err = cpu_cache_level__read(&c, cpu, level);
1174 if (err < 0)
1175 return err;
1176
1177 if (err == 1)
1178 break;
1179
1180 for (i = 0; i < cnt; i++) {
1181 if (cpu_cache_level__cmp(&c, &caches[i]))
1182 break;
1183 }
1184
1185 if (i == cnt)
1186 caches[cnt++] = c;
1187 else
1188 cpu_cache_level__free(&c);
1189 }
1190 }
1191 *cntp = cnt;
1192 return 0;
1193}
1194
1195static int write_cache(struct feat_fd *ff,
1196 struct evlist *evlist __maybe_unused)
1197{
1198 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1199 struct cpu_cache_level caches[max_caches];
1200 u32 cnt = 0, i, version = 1;
1201 int ret;
1202
1203 ret = build_caches(caches, &cnt);
1204 if (ret)
1205 goto out;
1206
1207 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1208
1209 ret = do_write(ff, &version, sizeof(u32));
1210 if (ret < 0)
1211 goto out;
1212
1213 ret = do_write(ff, &cnt, sizeof(u32));
1214 if (ret < 0)
1215 goto out;
1216
1217 for (i = 0; i < cnt; i++) {
1218 struct cpu_cache_level *c = &caches[i];
1219
1220 #define _W(v) \
1221 ret = do_write(ff, &c->v, sizeof(u32)); \
1222 if (ret < 0) \
1223 goto out;
1224
1225 _W(level)
1226 _W(line_size)
1227 _W(sets)
1228 _W(ways)
1229 #undef _W
1230
1231 #define _W(v) \
1232 ret = do_write_string(ff, (const char *) c->v); \
1233 if (ret < 0) \
1234 goto out;
1235
1236 _W(type)
1237 _W(size)
1238 _W(map)
1239 #undef _W
1240 }
1241
1242out:
1243 for (i = 0; i < cnt; i++)
1244 cpu_cache_level__free(&caches[i]);
1245 return ret;
1246}
1247
1248static int write_stat(struct feat_fd *ff __maybe_unused,
1249 struct evlist *evlist __maybe_unused)
1250{
1251 return 0;
1252}
1253
1254static int write_sample_time(struct feat_fd *ff,
1255 struct evlist *evlist)
1256{
1257 int ret;
1258
1259 ret = do_write(ff, &evlist->first_sample_time,
1260 sizeof(evlist->first_sample_time));
1261 if (ret < 0)
1262 return ret;
1263
1264 return do_write(ff, &evlist->last_sample_time,
1265 sizeof(evlist->last_sample_time));
1266}
1267
1268
1269static int memory_node__read(struct memory_node *n, unsigned long idx)
1270{
1271 unsigned int phys, size = 0;
1272 char path[PATH_MAX];
1273 struct dirent *ent;
1274 DIR *dir;
1275
1276#define for_each_memory(mem, dir) \
1277 while ((ent = readdir(dir))) \
1278 if (strcmp(ent->d_name, ".") && \
1279 strcmp(ent->d_name, "..") && \
1280 sscanf(ent->d_name, "memory%u", &mem) == 1)
1281
1282 scnprintf(path, PATH_MAX,
1283 "%s/devices/system/node/node%lu",
1284 sysfs__mountpoint(), idx);
1285
1286 dir = opendir(path);
1287 if (!dir) {
1288 pr_warning("failed: can't open memory sysfs data\n");
1289 return -1;
1290 }
1291
1292 for_each_memory(phys, dir) {
1293 size = max(phys, size);
1294 }
1295
1296 size++;
1297
1298 n->set = bitmap_zalloc(size);
1299 if (!n->set) {
1300 closedir(dir);
1301 return -ENOMEM;
1302 }
1303
1304 n->node = idx;
1305 n->size = size;
1306
1307 rewinddir(dir);
1308
1309 for_each_memory(phys, dir) {
1310 set_bit(phys, n->set);
1311 }
1312
1313 closedir(dir);
1314 return 0;
1315}
1316
1317static int memory_node__sort(const void *a, const void *b)
1318{
1319 const struct memory_node *na = a;
1320 const struct memory_node *nb = b;
1321
1322 return na->node - nb->node;
1323}
1324
1325static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1326{
1327 char path[PATH_MAX];
1328 struct dirent *ent;
1329 DIR *dir;
1330 u64 cnt = 0;
1331 int ret = 0;
1332
1333 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1334 sysfs__mountpoint());
1335
1336 dir = opendir(path);
1337 if (!dir) {
1338 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1339 __func__, path);
1340 return -1;
1341 }
1342
1343 while (!ret && (ent = readdir(dir))) {
1344 unsigned int idx;
1345 int r;
1346
1347 if (!strcmp(ent->d_name, ".") ||
1348 !strcmp(ent->d_name, ".."))
1349 continue;
1350
1351 r = sscanf(ent->d_name, "node%u", &idx);
1352 if (r != 1)
1353 continue;
1354
1355 if (WARN_ONCE(cnt >= size,
1356 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1357 closedir(dir);
1358 return -1;
1359 }
1360
1361 ret = memory_node__read(&nodes[cnt++], idx);
1362 }
1363
1364 *cntp = cnt;
1365 closedir(dir);
1366
1367 if (!ret)
1368 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1369
1370 return ret;
1371}
1372
1373#define MAX_MEMORY_NODES 2000
1374
1375/*
1376 * The MEM_TOPOLOGY holds physical memory map for every
1377 * node in system. The format of data is as follows:
1378 *
1379 * 0 - version | for future changes
1380 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1381 * 16 - count | number of nodes
1382 *
1383 * For each node we store map of physical indexes for
1384 * each node:
1385 *
1386 * 32 - node id | node index
1387 * 40 - size | size of bitmap
1388 * 48 - bitmap | bitmap of memory indexes that belongs to node
1389 */
1390static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1391 struct evlist *evlist __maybe_unused)
1392{
1393 static struct memory_node nodes[MAX_MEMORY_NODES];
1394 u64 bsize, version = 1, i, nr;
1395 int ret;
1396
1397 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1398 (unsigned long long *) &bsize);
1399 if (ret)
1400 return ret;
1401
1402 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1403 if (ret)
1404 return ret;
1405
1406 ret = do_write(ff, &version, sizeof(version));
1407 if (ret < 0)
1408 goto out;
1409
1410 ret = do_write(ff, &bsize, sizeof(bsize));
1411 if (ret < 0)
1412 goto out;
1413
1414 ret = do_write(ff, &nr, sizeof(nr));
1415 if (ret < 0)
1416 goto out;
1417
1418 for (i = 0; i < nr; i++) {
1419 struct memory_node *n = &nodes[i];
1420
1421 #define _W(v) \
1422 ret = do_write(ff, &n->v, sizeof(n->v)); \
1423 if (ret < 0) \
1424 goto out;
1425
1426 _W(node)
1427 _W(size)
1428
1429 #undef _W
1430
1431 ret = do_write_bitmap(ff, n->set, n->size);
1432 if (ret < 0)
1433 goto out;
1434 }
1435
1436out:
1437 return ret;
1438}
1439
1440static int write_compressed(struct feat_fd *ff __maybe_unused,
1441 struct evlist *evlist __maybe_unused)
1442{
1443 int ret;
1444
1445 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1446 if (ret)
1447 return ret;
1448
1449 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1450 if (ret)
1451 return ret;
1452
1453 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1454 if (ret)
1455 return ret;
1456
1457 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1458 if (ret)
1459 return ret;
1460
1461 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1462}
1463
1464static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1465 bool write_pmu)
1466{
1467 struct perf_pmu_caps *caps = NULL;
1468 int nr_caps;
1469 int ret;
1470
1471 nr_caps = perf_pmu__caps_parse(pmu);
1472 if (nr_caps < 0)
1473 return nr_caps;
1474
1475 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1476 if (ret < 0)
1477 return ret;
1478
1479 list_for_each_entry(caps, &pmu->caps, list) {
1480 ret = do_write_string(ff, caps->name);
1481 if (ret < 0)
1482 return ret;
1483
1484 ret = do_write_string(ff, caps->value);
1485 if (ret < 0)
1486 return ret;
1487 }
1488
1489 if (write_pmu) {
1490 ret = do_write_string(ff, pmu->name);
1491 if (ret < 0)
1492 return ret;
1493 }
1494
1495 return ret;
1496}
1497
1498static int write_cpu_pmu_caps(struct feat_fd *ff,
1499 struct evlist *evlist __maybe_unused)
1500{
1501 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1502
1503 if (!cpu_pmu)
1504 return -ENOENT;
1505
1506 return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1507}
1508
1509static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1510 struct evlist *evlist __maybe_unused)
1511{
1512 struct perf_pmu *pmu;
1513 u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1514 int ret;
1515
1516 if (nr_pmu == 0)
1517 return -ENOENT;
1518
1519 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1520 if (ret < 0)
1521 return ret;
1522
1523 perf_pmu__for_each_hybrid_pmu(pmu) {
1524 ret = write_per_cpu_pmu_caps(ff, pmu, true);
1525 if (ret < 0)
1526 return ret;
1527 }
1528
1529 return 0;
1530}
1531
1532static void print_hostname(struct feat_fd *ff, FILE *fp)
1533{
1534 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1535}
1536
1537static void print_osrelease(struct feat_fd *ff, FILE *fp)
1538{
1539 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1540}
1541
1542static void print_arch(struct feat_fd *ff, FILE *fp)
1543{
1544 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1545}
1546
1547static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1548{
1549 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1550}
1551
1552static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1553{
1554 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1555 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1556}
1557
1558static void print_version(struct feat_fd *ff, FILE *fp)
1559{
1560 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1561}
1562
1563static void print_cmdline(struct feat_fd *ff, FILE *fp)
1564{
1565 int nr, i;
1566
1567 nr = ff->ph->env.nr_cmdline;
1568
1569 fprintf(fp, "# cmdline : ");
1570
1571 for (i = 0; i < nr; i++) {
1572 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1573 if (!argv_i) {
1574 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1575 } else {
1576 char *mem = argv_i;
1577 do {
1578 char *quote = strchr(argv_i, '\'');
1579 if (!quote)
1580 break;
1581 *quote++ = '\0';
1582 fprintf(fp, "%s\\\'", argv_i);
1583 argv_i = quote;
1584 } while (1);
1585 fprintf(fp, "%s ", argv_i);
1586 free(mem);
1587 }
1588 }
1589 fputc('\n', fp);
1590}
1591
1592static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1593{
1594 struct perf_header *ph = ff->ph;
1595 int cpu_nr = ph->env.nr_cpus_avail;
1596 int nr, i;
1597 char *str;
1598
1599 nr = ph->env.nr_sibling_cores;
1600 str = ph->env.sibling_cores;
1601
1602 for (i = 0; i < nr; i++) {
1603 fprintf(fp, "# sibling sockets : %s\n", str);
1604 str += strlen(str) + 1;
1605 }
1606
1607 if (ph->env.nr_sibling_dies) {
1608 nr = ph->env.nr_sibling_dies;
1609 str = ph->env.sibling_dies;
1610
1611 for (i = 0; i < nr; i++) {
1612 fprintf(fp, "# sibling dies : %s\n", str);
1613 str += strlen(str) + 1;
1614 }
1615 }
1616
1617 nr = ph->env.nr_sibling_threads;
1618 str = ph->env.sibling_threads;
1619
1620 for (i = 0; i < nr; i++) {
1621 fprintf(fp, "# sibling threads : %s\n", str);
1622 str += strlen(str) + 1;
1623 }
1624
1625 if (ph->env.nr_sibling_dies) {
1626 if (ph->env.cpu != NULL) {
1627 for (i = 0; i < cpu_nr; i++)
1628 fprintf(fp, "# CPU %d: Core ID %d, "
1629 "Die ID %d, Socket ID %d\n",
1630 i, ph->env.cpu[i].core_id,
1631 ph->env.cpu[i].die_id,
1632 ph->env.cpu[i].socket_id);
1633 } else
1634 fprintf(fp, "# Core ID, Die ID and Socket ID "
1635 "information is not available\n");
1636 } else {
1637 if (ph->env.cpu != NULL) {
1638 for (i = 0; i < cpu_nr; i++)
1639 fprintf(fp, "# CPU %d: Core ID %d, "
1640 "Socket ID %d\n",
1641 i, ph->env.cpu[i].core_id,
1642 ph->env.cpu[i].socket_id);
1643 } else
1644 fprintf(fp, "# Core ID and Socket ID "
1645 "information is not available\n");
1646 }
1647}
1648
1649static void print_clockid(struct feat_fd *ff, FILE *fp)
1650{
1651 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1652 ff->ph->env.clock.clockid_res_ns * 1000);
1653}
1654
1655static void print_clock_data(struct feat_fd *ff, FILE *fp)
1656{
1657 struct timespec clockid_ns;
1658 char tstr[64], date[64];
1659 struct timeval tod_ns;
1660 clockid_t clockid;
1661 struct tm ltime;
1662 u64 ref;
1663
1664 if (!ff->ph->env.clock.enabled) {
1665 fprintf(fp, "# reference time disabled\n");
1666 return;
1667 }
1668
1669 /* Compute TOD time. */
1670 ref = ff->ph->env.clock.tod_ns;
1671 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1672 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1673 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1674
1675 /* Compute clockid time. */
1676 ref = ff->ph->env.clock.clockid_ns;
1677 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1678 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1679 clockid_ns.tv_nsec = ref;
1680
1681 clockid = ff->ph->env.clock.clockid;
1682
1683 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1684 snprintf(tstr, sizeof(tstr), "<error>");
1685 else {
1686 strftime(date, sizeof(date), "%F %T", <ime);
1687 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1688 date, (int) tod_ns.tv_usec);
1689 }
1690
1691 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1692 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1693 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1694 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1695 clockid_name(clockid));
1696}
1697
1698static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1699{
1700 int i;
1701 struct hybrid_node *n;
1702
1703 fprintf(fp, "# hybrid cpu system:\n");
1704 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1705 n = &ff->ph->env.hybrid_nodes[i];
1706 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1707 }
1708}
1709
1710static void print_dir_format(struct feat_fd *ff, FILE *fp)
1711{
1712 struct perf_session *session;
1713 struct perf_data *data;
1714
1715 session = container_of(ff->ph, struct perf_session, header);
1716 data = session->data;
1717
1718 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1719}
1720
1721#ifdef HAVE_LIBBPF_SUPPORT
1722static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1723{
1724 struct perf_env *env = &ff->ph->env;
1725 struct rb_root *root;
1726 struct rb_node *next;
1727
1728 down_read(&env->bpf_progs.lock);
1729
1730 root = &env->bpf_progs.infos;
1731 next = rb_first(root);
1732
1733 while (next) {
1734 struct bpf_prog_info_node *node;
1735
1736 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1737 next = rb_next(&node->rb_node);
1738
1739 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1740 env, fp);
1741 }
1742
1743 up_read(&env->bpf_progs.lock);
1744}
1745
1746static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1747{
1748 struct perf_env *env = &ff->ph->env;
1749 struct rb_root *root;
1750 struct rb_node *next;
1751
1752 down_read(&env->bpf_progs.lock);
1753
1754 root = &env->bpf_progs.btfs;
1755 next = rb_first(root);
1756
1757 while (next) {
1758 struct btf_node *node;
1759
1760 node = rb_entry(next, struct btf_node, rb_node);
1761 next = rb_next(&node->rb_node);
1762 fprintf(fp, "# btf info of id %u\n", node->id);
1763 }
1764
1765 up_read(&env->bpf_progs.lock);
1766}
1767#endif // HAVE_LIBBPF_SUPPORT
1768
1769static void free_event_desc(struct evsel *events)
1770{
1771 struct evsel *evsel;
1772
1773 if (!events)
1774 return;
1775
1776 for (evsel = events; evsel->core.attr.size; evsel++) {
1777 zfree(&evsel->name);
1778 zfree(&evsel->core.id);
1779 }
1780
1781 free(events);
1782}
1783
1784static bool perf_attr_check(struct perf_event_attr *attr)
1785{
1786 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1787 pr_warning("Reserved bits are set unexpectedly. "
1788 "Please update perf tool.\n");
1789 return false;
1790 }
1791
1792 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1793 pr_warning("Unknown sample type (0x%llx) is detected. "
1794 "Please update perf tool.\n",
1795 attr->sample_type);
1796 return false;
1797 }
1798
1799 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1800 pr_warning("Unknown read format (0x%llx) is detected. "
1801 "Please update perf tool.\n",
1802 attr->read_format);
1803 return false;
1804 }
1805
1806 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1807 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1808 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1809 "Please update perf tool.\n",
1810 attr->branch_sample_type);
1811
1812 return false;
1813 }
1814
1815 return true;
1816}
1817
1818static struct evsel *read_event_desc(struct feat_fd *ff)
1819{
1820 struct evsel *evsel, *events = NULL;
1821 u64 *id;
1822 void *buf = NULL;
1823 u32 nre, sz, nr, i, j;
1824 size_t msz;
1825
1826 /* number of events */
1827 if (do_read_u32(ff, &nre))
1828 goto error;
1829
1830 if (do_read_u32(ff, &sz))
1831 goto error;
1832
1833 /* buffer to hold on file attr struct */
1834 buf = malloc(sz);
1835 if (!buf)
1836 goto error;
1837
1838 /* the last event terminates with evsel->core.attr.size == 0: */
1839 events = calloc(nre + 1, sizeof(*events));
1840 if (!events)
1841 goto error;
1842
1843 msz = sizeof(evsel->core.attr);
1844 if (sz < msz)
1845 msz = sz;
1846
1847 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1848 evsel->core.idx = i;
1849
1850 /*
1851 * must read entire on-file attr struct to
1852 * sync up with layout.
1853 */
1854 if (__do_read(ff, buf, sz))
1855 goto error;
1856
1857 if (ff->ph->needs_swap)
1858 perf_event__attr_swap(buf);
1859
1860 memcpy(&evsel->core.attr, buf, msz);
1861
1862 if (!perf_attr_check(&evsel->core.attr))
1863 goto error;
1864
1865 if (do_read_u32(ff, &nr))
1866 goto error;
1867
1868 if (ff->ph->needs_swap)
1869 evsel->needs_swap = true;
1870
1871 evsel->name = do_read_string(ff);
1872 if (!evsel->name)
1873 goto error;
1874
1875 if (!nr)
1876 continue;
1877
1878 id = calloc(nr, sizeof(*id));
1879 if (!id)
1880 goto error;
1881 evsel->core.ids = nr;
1882 evsel->core.id = id;
1883
1884 for (j = 0 ; j < nr; j++) {
1885 if (do_read_u64(ff, id))
1886 goto error;
1887 id++;
1888 }
1889 }
1890out:
1891 free(buf);
1892 return events;
1893error:
1894 free_event_desc(events);
1895 events = NULL;
1896 goto out;
1897}
1898
1899static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1900 void *priv __maybe_unused)
1901{
1902 return fprintf(fp, ", %s = %s", name, val);
1903}
1904
1905static void print_event_desc(struct feat_fd *ff, FILE *fp)
1906{
1907 struct evsel *evsel, *events;
1908 u32 j;
1909 u64 *id;
1910
1911 if (ff->events)
1912 events = ff->events;
1913 else
1914 events = read_event_desc(ff);
1915
1916 if (!events) {
1917 fprintf(fp, "# event desc: not available or unable to read\n");
1918 return;
1919 }
1920
1921 for (evsel = events; evsel->core.attr.size; evsel++) {
1922 fprintf(fp, "# event : name = %s, ", evsel->name);
1923
1924 if (evsel->core.ids) {
1925 fprintf(fp, ", id = {");
1926 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1927 if (j)
1928 fputc(',', fp);
1929 fprintf(fp, " %"PRIu64, *id);
1930 }
1931 fprintf(fp, " }");
1932 }
1933
1934 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1935
1936 fputc('\n', fp);
1937 }
1938
1939 free_event_desc(events);
1940 ff->events = NULL;
1941}
1942
1943static void print_total_mem(struct feat_fd *ff, FILE *fp)
1944{
1945 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1946}
1947
1948static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1949{
1950 int i;
1951 struct numa_node *n;
1952
1953 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1954 n = &ff->ph->env.numa_nodes[i];
1955
1956 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1957 " free = %"PRIu64" kB\n",
1958 n->node, n->mem_total, n->mem_free);
1959
1960 fprintf(fp, "# node%u cpu list : ", n->node);
1961 cpu_map__fprintf(n->map, fp);
1962 }
1963}
1964
1965static void print_cpuid(struct feat_fd *ff, FILE *fp)
1966{
1967 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1968}
1969
1970static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1971{
1972 fprintf(fp, "# contains samples with branch stack\n");
1973}
1974
1975static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1976{
1977 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1978}
1979
1980static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1981{
1982 fprintf(fp, "# contains stat data\n");
1983}
1984
1985static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1986{
1987 int i;
1988
1989 fprintf(fp, "# CPU cache info:\n");
1990 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1991 fprintf(fp, "# ");
1992 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1993 }
1994}
1995
1996static void print_compressed(struct feat_fd *ff, FILE *fp)
1997{
1998 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1999 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2000 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2001}
2002
2003static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2004 char *pmu_name)
2005{
2006 const char *delimiter;
2007 char *str, buf[128];
2008
2009 if (!nr_caps) {
2010 if (!pmu_name)
2011 fprintf(fp, "# cpu pmu capabilities: not available\n");
2012 else
2013 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2014 return;
2015 }
2016
2017 if (!pmu_name)
2018 scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2019 else
2020 scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2021
2022 delimiter = buf;
2023
2024 str = cpu_pmu_caps;
2025 while (nr_caps--) {
2026 fprintf(fp, "%s%s", delimiter, str);
2027 delimiter = ", ";
2028 str += strlen(str) + 1;
2029 }
2030
2031 fprintf(fp, "\n");
2032}
2033
2034static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2035{
2036 print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2037 ff->ph->env.cpu_pmu_caps, NULL);
2038}
2039
2040static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2041{
2042 struct hybrid_cpc_node *n;
2043
2044 for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2045 n = &ff->ph->env.hybrid_cpc_nodes[i];
2046 print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2047 n->cpu_pmu_caps,
2048 n->pmu_name);
2049 }
2050}
2051
2052static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2053{
2054 const char *delimiter = "# pmu mappings: ";
2055 char *str, *tmp;
2056 u32 pmu_num;
2057 u32 type;
2058
2059 pmu_num = ff->ph->env.nr_pmu_mappings;
2060 if (!pmu_num) {
2061 fprintf(fp, "# pmu mappings: not available\n");
2062 return;
2063 }
2064
2065 str = ff->ph->env.pmu_mappings;
2066
2067 while (pmu_num) {
2068 type = strtoul(str, &tmp, 0);
2069 if (*tmp != ':')
2070 goto error;
2071
2072 str = tmp + 1;
2073 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2074
2075 delimiter = ", ";
2076 str += strlen(str) + 1;
2077 pmu_num--;
2078 }
2079
2080 fprintf(fp, "\n");
2081
2082 if (!pmu_num)
2083 return;
2084error:
2085 fprintf(fp, "# pmu mappings: unable to read\n");
2086}
2087
2088static void print_group_desc(struct feat_fd *ff, FILE *fp)
2089{
2090 struct perf_session *session;
2091 struct evsel *evsel;
2092 u32 nr = 0;
2093
2094 session = container_of(ff->ph, struct perf_session, header);
2095
2096 evlist__for_each_entry(session->evlist, evsel) {
2097 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2098 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2099
2100 nr = evsel->core.nr_members - 1;
2101 } else if (nr) {
2102 fprintf(fp, ",%s", evsel__name(evsel));
2103
2104 if (--nr == 0)
2105 fprintf(fp, "}\n");
2106 }
2107 }
2108}
2109
2110static void print_sample_time(struct feat_fd *ff, FILE *fp)
2111{
2112 struct perf_session *session;
2113 char time_buf[32];
2114 double d;
2115
2116 session = container_of(ff->ph, struct perf_session, header);
2117
2118 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2119 time_buf, sizeof(time_buf));
2120 fprintf(fp, "# time of first sample : %s\n", time_buf);
2121
2122 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2123 time_buf, sizeof(time_buf));
2124 fprintf(fp, "# time of last sample : %s\n", time_buf);
2125
2126 d = (double)(session->evlist->last_sample_time -
2127 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2128
2129 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2130}
2131
2132static void memory_node__fprintf(struct memory_node *n,
2133 unsigned long long bsize, FILE *fp)
2134{
2135 char buf_map[100], buf_size[50];
2136 unsigned long long size;
2137
2138 size = bsize * bitmap_weight(n->set, n->size);
2139 unit_number__scnprintf(buf_size, 50, size);
2140
2141 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2142 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2143}
2144
2145static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2146{
2147 struct memory_node *nodes;
2148 int i, nr;
2149
2150 nodes = ff->ph->env.memory_nodes;
2151 nr = ff->ph->env.nr_memory_nodes;
2152
2153 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2154 nr, ff->ph->env.memory_bsize);
2155
2156 for (i = 0; i < nr; i++) {
2157 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2158 }
2159}
2160
2161static int __event_process_build_id(struct perf_record_header_build_id *bev,
2162 char *filename,
2163 struct perf_session *session)
2164{
2165 int err = -1;
2166 struct machine *machine;
2167 u16 cpumode;
2168 struct dso *dso;
2169 enum dso_space_type dso_space;
2170
2171 machine = perf_session__findnew_machine(session, bev->pid);
2172 if (!machine)
2173 goto out;
2174
2175 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2176
2177 switch (cpumode) {
2178 case PERF_RECORD_MISC_KERNEL:
2179 dso_space = DSO_SPACE__KERNEL;
2180 break;
2181 case PERF_RECORD_MISC_GUEST_KERNEL:
2182 dso_space = DSO_SPACE__KERNEL_GUEST;
2183 break;
2184 case PERF_RECORD_MISC_USER:
2185 case PERF_RECORD_MISC_GUEST_USER:
2186 dso_space = DSO_SPACE__USER;
2187 break;
2188 default:
2189 goto out;
2190 }
2191
2192 dso = machine__findnew_dso(machine, filename);
2193 if (dso != NULL) {
2194 char sbuild_id[SBUILD_ID_SIZE];
2195 struct build_id bid;
2196 size_t size = BUILD_ID_SIZE;
2197
2198 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2199 size = bev->size;
2200
2201 build_id__init(&bid, bev->data, size);
2202 dso__set_build_id(dso, &bid);
2203
2204 if (dso_space != DSO_SPACE__USER) {
2205 struct kmod_path m = { .name = NULL, };
2206
2207 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2208 dso__set_module_info(dso, &m, machine);
2209
2210 dso->kernel = dso_space;
2211 free(m.name);
2212 }
2213
2214 build_id__sprintf(&dso->bid, sbuild_id);
2215 pr_debug("build id event received for %s: %s [%zu]\n",
2216 dso->long_name, sbuild_id, size);
2217 dso__put(dso);
2218 }
2219
2220 err = 0;
2221out:
2222 return err;
2223}
2224
2225static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2226 int input, u64 offset, u64 size)
2227{
2228 struct perf_session *session = container_of(header, struct perf_session, header);
2229 struct {
2230 struct perf_event_header header;
2231 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2232 char filename[0];
2233 } old_bev;
2234 struct perf_record_header_build_id bev;
2235 char filename[PATH_MAX];
2236 u64 limit = offset + size;
2237
2238 while (offset < limit) {
2239 ssize_t len;
2240
2241 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2242 return -1;
2243
2244 if (header->needs_swap)
2245 perf_event_header__bswap(&old_bev.header);
2246
2247 len = old_bev.header.size - sizeof(old_bev);
2248 if (readn(input, filename, len) != len)
2249 return -1;
2250
2251 bev.header = old_bev.header;
2252
2253 /*
2254 * As the pid is the missing value, we need to fill
2255 * it properly. The header.misc value give us nice hint.
2256 */
2257 bev.pid = HOST_KERNEL_ID;
2258 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2259 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2260 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2261
2262 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2263 __event_process_build_id(&bev, filename, session);
2264
2265 offset += bev.header.size;
2266 }
2267
2268 return 0;
2269}
2270
2271static int perf_header__read_build_ids(struct perf_header *header,
2272 int input, u64 offset, u64 size)
2273{
2274 struct perf_session *session = container_of(header, struct perf_session, header);
2275 struct perf_record_header_build_id bev;
2276 char filename[PATH_MAX];
2277 u64 limit = offset + size, orig_offset = offset;
2278 int err = -1;
2279
2280 while (offset < limit) {
2281 ssize_t len;
2282
2283 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2284 goto out;
2285
2286 if (header->needs_swap)
2287 perf_event_header__bswap(&bev.header);
2288
2289 len = bev.header.size - sizeof(bev);
2290 if (readn(input, filename, len) != len)
2291 goto out;
2292 /*
2293 * The a1645ce1 changeset:
2294 *
2295 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2296 *
2297 * Added a field to struct perf_record_header_build_id that broke the file
2298 * format.
2299 *
2300 * Since the kernel build-id is the first entry, process the
2301 * table using the old format if the well known
2302 * '[kernel.kallsyms]' string for the kernel build-id has the
2303 * first 4 characters chopped off (where the pid_t sits).
2304 */
2305 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2306 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2307 return -1;
2308 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2309 }
2310
2311 __event_process_build_id(&bev, filename, session);
2312
2313 offset += bev.header.size;
2314 }
2315 err = 0;
2316out:
2317 return err;
2318}
2319
2320/* Macro for features that simply need to read and store a string. */
2321#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2322static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2323{\
2324 ff->ph->env.__feat_env = do_read_string(ff); \
2325 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2326}
2327
2328FEAT_PROCESS_STR_FUN(hostname, hostname);
2329FEAT_PROCESS_STR_FUN(osrelease, os_release);
2330FEAT_PROCESS_STR_FUN(version, version);
2331FEAT_PROCESS_STR_FUN(arch, arch);
2332FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2333FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2334
2335static int process_tracing_data(struct feat_fd *ff, void *data)
2336{
2337 ssize_t ret = trace_report(ff->fd, data, false);
2338
2339 return ret < 0 ? -1 : 0;
2340}
2341
2342static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2343{
2344 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2345 pr_debug("Failed to read buildids, continuing...\n");
2346 return 0;
2347}
2348
2349static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2350{
2351 int ret;
2352 u32 nr_cpus_avail, nr_cpus_online;
2353
2354 ret = do_read_u32(ff, &nr_cpus_avail);
2355 if (ret)
2356 return ret;
2357
2358 ret = do_read_u32(ff, &nr_cpus_online);
2359 if (ret)
2360 return ret;
2361 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2362 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2363 return 0;
2364}
2365
2366static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2367{
2368 u64 total_mem;
2369 int ret;
2370
2371 ret = do_read_u64(ff, &total_mem);
2372 if (ret)
2373 return -1;
2374 ff->ph->env.total_mem = (unsigned long long)total_mem;
2375 return 0;
2376}
2377
2378static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2379{
2380 struct evsel *evsel;
2381
2382 evlist__for_each_entry(evlist, evsel) {
2383 if (evsel->core.idx == idx)
2384 return evsel;
2385 }
2386
2387 return NULL;
2388}
2389
2390static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2391{
2392 struct evsel *evsel;
2393
2394 if (!event->name)
2395 return;
2396
2397 evsel = evlist__find_by_index(evlist, event->core.idx);
2398 if (!evsel)
2399 return;
2400
2401 if (evsel->name)
2402 return;
2403
2404 evsel->name = strdup(event->name);
2405}
2406
2407static int
2408process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2409{
2410 struct perf_session *session;
2411 struct evsel *evsel, *events = read_event_desc(ff);
2412
2413 if (!events)
2414 return 0;
2415
2416 session = container_of(ff->ph, struct perf_session, header);
2417
2418 if (session->data->is_pipe) {
2419 /* Save events for reading later by print_event_desc,
2420 * since they can't be read again in pipe mode. */
2421 ff->events = events;
2422 }
2423
2424 for (evsel = events; evsel->core.attr.size; evsel++)
2425 evlist__set_event_name(session->evlist, evsel);
2426
2427 if (!session->data->is_pipe)
2428 free_event_desc(events);
2429
2430 return 0;
2431}
2432
2433static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2434{
2435 char *str, *cmdline = NULL, **argv = NULL;
2436 u32 nr, i, len = 0;
2437
2438 if (do_read_u32(ff, &nr))
2439 return -1;
2440
2441 ff->ph->env.nr_cmdline = nr;
2442
2443 cmdline = zalloc(ff->size + nr + 1);
2444 if (!cmdline)
2445 return -1;
2446
2447 argv = zalloc(sizeof(char *) * (nr + 1));
2448 if (!argv)
2449 goto error;
2450
2451 for (i = 0; i < nr; i++) {
2452 str = do_read_string(ff);
2453 if (!str)
2454 goto error;
2455
2456 argv[i] = cmdline + len;
2457 memcpy(argv[i], str, strlen(str) + 1);
2458 len += strlen(str) + 1;
2459 free(str);
2460 }
2461 ff->ph->env.cmdline = cmdline;
2462 ff->ph->env.cmdline_argv = (const char **) argv;
2463 return 0;
2464
2465error:
2466 free(argv);
2467 free(cmdline);
2468 return -1;
2469}
2470
2471static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2472{
2473 u32 nr, i;
2474 char *str;
2475 struct strbuf sb;
2476 int cpu_nr = ff->ph->env.nr_cpus_avail;
2477 u64 size = 0;
2478 struct perf_header *ph = ff->ph;
2479 bool do_core_id_test = true;
2480
2481 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2482 if (!ph->env.cpu)
2483 return -1;
2484
2485 if (do_read_u32(ff, &nr))
2486 goto free_cpu;
2487
2488 ph->env.nr_sibling_cores = nr;
2489 size += sizeof(u32);
2490 if (strbuf_init(&sb, 128) < 0)
2491 goto free_cpu;
2492
2493 for (i = 0; i < nr; i++) {
2494 str = do_read_string(ff);
2495 if (!str)
2496 goto error;
2497
2498 /* include a NULL character at the end */
2499 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2500 goto error;
2501 size += string_size(str);
2502 free(str);
2503 }
2504 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2505
2506 if (do_read_u32(ff, &nr))
2507 return -1;
2508
2509 ph->env.nr_sibling_threads = nr;
2510 size += sizeof(u32);
2511
2512 for (i = 0; i < nr; i++) {
2513 str = do_read_string(ff);
2514 if (!str)
2515 goto error;
2516
2517 /* include a NULL character at the end */
2518 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2519 goto error;
2520 size += string_size(str);
2521 free(str);
2522 }
2523 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2524
2525 /*
2526 * The header may be from old perf,
2527 * which doesn't include core id and socket id information.
2528 */
2529 if (ff->size <= size) {
2530 zfree(&ph->env.cpu);
2531 return 0;
2532 }
2533
2534 /* On s390 the socket_id number is not related to the numbers of cpus.
2535 * The socket_id number might be higher than the numbers of cpus.
2536 * This depends on the configuration.
2537 * AArch64 is the same.
2538 */
2539 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2540 || !strncmp(ph->env.arch, "aarch64", 7)))
2541 do_core_id_test = false;
2542
2543 for (i = 0; i < (u32)cpu_nr; i++) {
2544 if (do_read_u32(ff, &nr))
2545 goto free_cpu;
2546
2547 ph->env.cpu[i].core_id = nr;
2548 size += sizeof(u32);
2549
2550 if (do_read_u32(ff, &nr))
2551 goto free_cpu;
2552
2553 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2554 pr_debug("socket_id number is too big."
2555 "You may need to upgrade the perf tool.\n");
2556 goto free_cpu;
2557 }
2558
2559 ph->env.cpu[i].socket_id = nr;
2560 size += sizeof(u32);
2561 }
2562
2563 /*
2564 * The header may be from old perf,
2565 * which doesn't include die information.
2566 */
2567 if (ff->size <= size)
2568 return 0;
2569
2570 if (do_read_u32(ff, &nr))
2571 return -1;
2572
2573 ph->env.nr_sibling_dies = nr;
2574 size += sizeof(u32);
2575
2576 for (i = 0; i < nr; i++) {
2577 str = do_read_string(ff);
2578 if (!str)
2579 goto error;
2580
2581 /* include a NULL character at the end */
2582 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2583 goto error;
2584 size += string_size(str);
2585 free(str);
2586 }
2587 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2588
2589 for (i = 0; i < (u32)cpu_nr; i++) {
2590 if (do_read_u32(ff, &nr))
2591 goto free_cpu;
2592
2593 ph->env.cpu[i].die_id = nr;
2594 }
2595
2596 return 0;
2597
2598error:
2599 strbuf_release(&sb);
2600free_cpu:
2601 zfree(&ph->env.cpu);
2602 return -1;
2603}
2604
2605static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2606{
2607 struct numa_node *nodes, *n;
2608 u32 nr, i;
2609 char *str;
2610
2611 /* nr nodes */
2612 if (do_read_u32(ff, &nr))
2613 return -1;
2614
2615 nodes = zalloc(sizeof(*nodes) * nr);
2616 if (!nodes)
2617 return -ENOMEM;
2618
2619 for (i = 0; i < nr; i++) {
2620 n = &nodes[i];
2621
2622 /* node number */
2623 if (do_read_u32(ff, &n->node))
2624 goto error;
2625
2626 if (do_read_u64(ff, &n->mem_total))
2627 goto error;
2628
2629 if (do_read_u64(ff, &n->mem_free))
2630 goto error;
2631
2632 str = do_read_string(ff);
2633 if (!str)
2634 goto error;
2635
2636 n->map = perf_cpu_map__new(str);
2637 if (!n->map)
2638 goto error;
2639
2640 free(str);
2641 }
2642 ff->ph->env.nr_numa_nodes = nr;
2643 ff->ph->env.numa_nodes = nodes;
2644 return 0;
2645
2646error:
2647 free(nodes);
2648 return -1;
2649}
2650
2651static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2652{
2653 char *name;
2654 u32 pmu_num;
2655 u32 type;
2656 struct strbuf sb;
2657
2658 if (do_read_u32(ff, &pmu_num))
2659 return -1;
2660
2661 if (!pmu_num) {
2662 pr_debug("pmu mappings not available\n");
2663 return 0;
2664 }
2665
2666 ff->ph->env.nr_pmu_mappings = pmu_num;
2667 if (strbuf_init(&sb, 128) < 0)
2668 return -1;
2669
2670 while (pmu_num) {
2671 if (do_read_u32(ff, &type))
2672 goto error;
2673
2674 name = do_read_string(ff);
2675 if (!name)
2676 goto error;
2677
2678 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2679 goto error;
2680 /* include a NULL character at the end */
2681 if (strbuf_add(&sb, "", 1) < 0)
2682 goto error;
2683
2684 if (!strcmp(name, "msr"))
2685 ff->ph->env.msr_pmu_type = type;
2686
2687 free(name);
2688 pmu_num--;
2689 }
2690 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2691 return 0;
2692
2693error:
2694 strbuf_release(&sb);
2695 return -1;
2696}
2697
2698static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2699{
2700 size_t ret = -1;
2701 u32 i, nr, nr_groups;
2702 struct perf_session *session;
2703 struct evsel *evsel, *leader = NULL;
2704 struct group_desc {
2705 char *name;
2706 u32 leader_idx;
2707 u32 nr_members;
2708 } *desc;
2709
2710 if (do_read_u32(ff, &nr_groups))
2711 return -1;
2712
2713 ff->ph->env.nr_groups = nr_groups;
2714 if (!nr_groups) {
2715 pr_debug("group desc not available\n");
2716 return 0;
2717 }
2718
2719 desc = calloc(nr_groups, sizeof(*desc));
2720 if (!desc)
2721 return -1;
2722
2723 for (i = 0; i < nr_groups; i++) {
2724 desc[i].name = do_read_string(ff);
2725 if (!desc[i].name)
2726 goto out_free;
2727
2728 if (do_read_u32(ff, &desc[i].leader_idx))
2729 goto out_free;
2730
2731 if (do_read_u32(ff, &desc[i].nr_members))
2732 goto out_free;
2733 }
2734
2735 /*
2736 * Rebuild group relationship based on the group_desc
2737 */
2738 session = container_of(ff->ph, struct perf_session, header);
2739 session->evlist->core.nr_groups = nr_groups;
2740
2741 i = nr = 0;
2742 evlist__for_each_entry(session->evlist, evsel) {
2743 if (evsel->core.idx == (int) desc[i].leader_idx) {
2744 evsel__set_leader(evsel, evsel);
2745 /* {anon_group} is a dummy name */
2746 if (strcmp(desc[i].name, "{anon_group}")) {
2747 evsel->group_name = desc[i].name;
2748 desc[i].name = NULL;
2749 }
2750 evsel->core.nr_members = desc[i].nr_members;
2751
2752 if (i >= nr_groups || nr > 0) {
2753 pr_debug("invalid group desc\n");
2754 goto out_free;
2755 }
2756
2757 leader = evsel;
2758 nr = evsel->core.nr_members - 1;
2759 i++;
2760 } else if (nr) {
2761 /* This is a group member */
2762 evsel__set_leader(evsel, leader);
2763
2764 nr--;
2765 }
2766 }
2767
2768 if (i != nr_groups || nr != 0) {
2769 pr_debug("invalid group desc\n");
2770 goto out_free;
2771 }
2772
2773 ret = 0;
2774out_free:
2775 for (i = 0; i < nr_groups; i++)
2776 zfree(&desc[i].name);
2777 free(desc);
2778
2779 return ret;
2780}
2781
2782static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2783{
2784 struct perf_session *session;
2785 int err;
2786
2787 session = container_of(ff->ph, struct perf_session, header);
2788
2789 err = auxtrace_index__process(ff->fd, ff->size, session,
2790 ff->ph->needs_swap);
2791 if (err < 0)
2792 pr_err("Failed to process auxtrace index\n");
2793 return err;
2794}
2795
2796static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2797{
2798 struct cpu_cache_level *caches;
2799 u32 cnt, i, version;
2800
2801 if (do_read_u32(ff, &version))
2802 return -1;
2803
2804 if (version != 1)
2805 return -1;
2806
2807 if (do_read_u32(ff, &cnt))
2808 return -1;
2809
2810 caches = zalloc(sizeof(*caches) * cnt);
2811 if (!caches)
2812 return -1;
2813
2814 for (i = 0; i < cnt; i++) {
2815 struct cpu_cache_level c;
2816
2817 #define _R(v) \
2818 if (do_read_u32(ff, &c.v))\
2819 goto out_free_caches; \
2820
2821 _R(level)
2822 _R(line_size)
2823 _R(sets)
2824 _R(ways)
2825 #undef _R
2826
2827 #define _R(v) \
2828 c.v = do_read_string(ff); \
2829 if (!c.v) \
2830 goto out_free_caches;
2831
2832 _R(type)
2833 _R(size)
2834 _R(map)
2835 #undef _R
2836
2837 caches[i] = c;
2838 }
2839
2840 ff->ph->env.caches = caches;
2841 ff->ph->env.caches_cnt = cnt;
2842 return 0;
2843out_free_caches:
2844 free(caches);
2845 return -1;
2846}
2847
2848static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2849{
2850 struct perf_session *session;
2851 u64 first_sample_time, last_sample_time;
2852 int ret;
2853
2854 session = container_of(ff->ph, struct perf_session, header);
2855
2856 ret = do_read_u64(ff, &first_sample_time);
2857 if (ret)
2858 return -1;
2859
2860 ret = do_read_u64(ff, &last_sample_time);
2861 if (ret)
2862 return -1;
2863
2864 session->evlist->first_sample_time = first_sample_time;
2865 session->evlist->last_sample_time = last_sample_time;
2866 return 0;
2867}
2868
2869static int process_mem_topology(struct feat_fd *ff,
2870 void *data __maybe_unused)
2871{
2872 struct memory_node *nodes;
2873 u64 version, i, nr, bsize;
2874 int ret = -1;
2875
2876 if (do_read_u64(ff, &version))
2877 return -1;
2878
2879 if (version != 1)
2880 return -1;
2881
2882 if (do_read_u64(ff, &bsize))
2883 return -1;
2884
2885 if (do_read_u64(ff, &nr))
2886 return -1;
2887
2888 nodes = zalloc(sizeof(*nodes) * nr);
2889 if (!nodes)
2890 return -1;
2891
2892 for (i = 0; i < nr; i++) {
2893 struct memory_node n;
2894
2895 #define _R(v) \
2896 if (do_read_u64(ff, &n.v)) \
2897 goto out; \
2898
2899 _R(node)
2900 _R(size)
2901
2902 #undef _R
2903
2904 if (do_read_bitmap(ff, &n.set, &n.size))
2905 goto out;
2906
2907 nodes[i] = n;
2908 }
2909
2910 ff->ph->env.memory_bsize = bsize;
2911 ff->ph->env.memory_nodes = nodes;
2912 ff->ph->env.nr_memory_nodes = nr;
2913 ret = 0;
2914
2915out:
2916 if (ret)
2917 free(nodes);
2918 return ret;
2919}
2920
2921static int process_clockid(struct feat_fd *ff,
2922 void *data __maybe_unused)
2923{
2924 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2925 return -1;
2926
2927 return 0;
2928}
2929
2930static int process_clock_data(struct feat_fd *ff,
2931 void *_data __maybe_unused)
2932{
2933 u32 data32;
2934 u64 data64;
2935
2936 /* version */
2937 if (do_read_u32(ff, &data32))
2938 return -1;
2939
2940 if (data32 != 1)
2941 return -1;
2942
2943 /* clockid */
2944 if (do_read_u32(ff, &data32))
2945 return -1;
2946
2947 ff->ph->env.clock.clockid = data32;
2948
2949 /* TOD ref time */
2950 if (do_read_u64(ff, &data64))
2951 return -1;
2952
2953 ff->ph->env.clock.tod_ns = data64;
2954
2955 /* clockid ref time */
2956 if (do_read_u64(ff, &data64))
2957 return -1;
2958
2959 ff->ph->env.clock.clockid_ns = data64;
2960 ff->ph->env.clock.enabled = true;
2961 return 0;
2962}
2963
2964static int process_hybrid_topology(struct feat_fd *ff,
2965 void *data __maybe_unused)
2966{
2967 struct hybrid_node *nodes, *n;
2968 u32 nr, i;
2969
2970 /* nr nodes */
2971 if (do_read_u32(ff, &nr))
2972 return -1;
2973
2974 nodes = zalloc(sizeof(*nodes) * nr);
2975 if (!nodes)
2976 return -ENOMEM;
2977
2978 for (i = 0; i < nr; i++) {
2979 n = &nodes[i];
2980
2981 n->pmu_name = do_read_string(ff);
2982 if (!n->pmu_name)
2983 goto error;
2984
2985 n->cpus = do_read_string(ff);
2986 if (!n->cpus)
2987 goto error;
2988 }
2989
2990 ff->ph->env.nr_hybrid_nodes = nr;
2991 ff->ph->env.hybrid_nodes = nodes;
2992 return 0;
2993
2994error:
2995 for (i = 0; i < nr; i++) {
2996 free(nodes[i].pmu_name);
2997 free(nodes[i].cpus);
2998 }
2999
3000 free(nodes);
3001 return -1;
3002}
3003
3004static int process_dir_format(struct feat_fd *ff,
3005 void *_data __maybe_unused)
3006{
3007 struct perf_session *session;
3008 struct perf_data *data;
3009
3010 session = container_of(ff->ph, struct perf_session, header);
3011 data = session->data;
3012
3013 if (WARN_ON(!perf_data__is_dir(data)))
3014 return -1;
3015
3016 return do_read_u64(ff, &data->dir.version);
3017}
3018
3019#ifdef HAVE_LIBBPF_SUPPORT
3020static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3021{
3022 struct bpf_prog_info_node *info_node;
3023 struct perf_env *env = &ff->ph->env;
3024 struct perf_bpil *info_linear;
3025 u32 count, i;
3026 int err = -1;
3027
3028 if (ff->ph->needs_swap) {
3029 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3030 return 0;
3031 }
3032
3033 if (do_read_u32(ff, &count))
3034 return -1;
3035
3036 down_write(&env->bpf_progs.lock);
3037
3038 for (i = 0; i < count; ++i) {
3039 u32 info_len, data_len;
3040
3041 info_linear = NULL;
3042 info_node = NULL;
3043 if (do_read_u32(ff, &info_len))
3044 goto out;
3045 if (do_read_u32(ff, &data_len))
3046 goto out;
3047
3048 if (info_len > sizeof(struct bpf_prog_info)) {
3049 pr_warning("detected invalid bpf_prog_info\n");
3050 goto out;
3051 }
3052
3053 info_linear = malloc(sizeof(struct perf_bpil) +
3054 data_len);
3055 if (!info_linear)
3056 goto out;
3057 info_linear->info_len = sizeof(struct bpf_prog_info);
3058 info_linear->data_len = data_len;
3059 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3060 goto out;
3061 if (__do_read(ff, &info_linear->info, info_len))
3062 goto out;
3063 if (info_len < sizeof(struct bpf_prog_info))
3064 memset(((void *)(&info_linear->info)) + info_len, 0,
3065 sizeof(struct bpf_prog_info) - info_len);
3066
3067 if (__do_read(ff, info_linear->data, data_len))
3068 goto out;
3069
3070 info_node = malloc(sizeof(struct bpf_prog_info_node));
3071 if (!info_node)
3072 goto out;
3073
3074 /* after reading from file, translate offset to address */
3075 bpil_offs_to_addr(info_linear);
3076 info_node->info_linear = info_linear;
3077 perf_env__insert_bpf_prog_info(env, info_node);
3078 }
3079
3080 up_write(&env->bpf_progs.lock);
3081 return 0;
3082out:
3083 free(info_linear);
3084 free(info_node);
3085 up_write(&env->bpf_progs.lock);
3086 return err;
3087}
3088
3089static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3090{
3091 struct perf_env *env = &ff->ph->env;
3092 struct btf_node *node = NULL;
3093 u32 count, i;
3094 int err = -1;
3095
3096 if (ff->ph->needs_swap) {
3097 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3098 return 0;
3099 }
3100
3101 if (do_read_u32(ff, &count))
3102 return -1;
3103
3104 down_write(&env->bpf_progs.lock);
3105
3106 for (i = 0; i < count; ++i) {
3107 u32 id, data_size;
3108
3109 if (do_read_u32(ff, &id))
3110 goto out;
3111 if (do_read_u32(ff, &data_size))
3112 goto out;
3113
3114 node = malloc(sizeof(struct btf_node) + data_size);
3115 if (!node)
3116 goto out;
3117
3118 node->id = id;
3119 node->data_size = data_size;
3120
3121 if (__do_read(ff, node->data, data_size))
3122 goto out;
3123
3124 perf_env__insert_btf(env, node);
3125 node = NULL;
3126 }
3127
3128 err = 0;
3129out:
3130 up_write(&env->bpf_progs.lock);
3131 free(node);
3132 return err;
3133}
3134#endif // HAVE_LIBBPF_SUPPORT
3135
3136static int process_compressed(struct feat_fd *ff,
3137 void *data __maybe_unused)
3138{
3139 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3140 return -1;
3141
3142 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3143 return -1;
3144
3145 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3146 return -1;
3147
3148 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3149 return -1;
3150
3151 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3152 return -1;
3153
3154 return 0;
3155}
3156
3157static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3158 char **cpu_pmu_caps,
3159 unsigned int *max_branches)
3160{
3161 char *name, *value;
3162 struct strbuf sb;
3163 u32 nr_caps;
3164
3165 if (do_read_u32(ff, &nr_caps))
3166 return -1;
3167
3168 if (!nr_caps) {
3169 pr_debug("cpu pmu capabilities not available\n");
3170 return 0;
3171 }
3172
3173 *nr_cpu_pmu_caps = nr_caps;
3174
3175 if (strbuf_init(&sb, 128) < 0)
3176 return -1;
3177
3178 while (nr_caps--) {
3179 name = do_read_string(ff);
3180 if (!name)
3181 goto error;
3182
3183 value = do_read_string(ff);
3184 if (!value)
3185 goto free_name;
3186
3187 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3188 goto free_value;
3189
3190 /* include a NULL character at the end */
3191 if (strbuf_add(&sb, "", 1) < 0)
3192 goto free_value;
3193
3194 if (!strcmp(name, "branches"))
3195 *max_branches = atoi(value);
3196
3197 free(value);
3198 free(name);
3199 }
3200 *cpu_pmu_caps = strbuf_detach(&sb, NULL);
3201 return 0;
3202
3203free_value:
3204 free(value);
3205free_name:
3206 free(name);
3207error:
3208 strbuf_release(&sb);
3209 return -1;
3210}
3211
3212static int process_cpu_pmu_caps(struct feat_fd *ff,
3213 void *data __maybe_unused)
3214{
3215 return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3216 &ff->ph->env.cpu_pmu_caps,
3217 &ff->ph->env.max_branches);
3218}
3219
3220static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3221 void *data __maybe_unused)
3222{
3223 struct hybrid_cpc_node *nodes;
3224 u32 nr_pmu, i;
3225 int ret;
3226
3227 if (do_read_u32(ff, &nr_pmu))
3228 return -1;
3229
3230 if (!nr_pmu) {
3231 pr_debug("hybrid cpu pmu capabilities not available\n");
3232 return 0;
3233 }
3234
3235 nodes = zalloc(sizeof(*nodes) * nr_pmu);
3236 if (!nodes)
3237 return -ENOMEM;
3238
3239 for (i = 0; i < nr_pmu; i++) {
3240 struct hybrid_cpc_node *n = &nodes[i];
3241
3242 ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3243 &n->cpu_pmu_caps,
3244 &n->max_branches);
3245 if (ret)
3246 goto err;
3247
3248 n->pmu_name = do_read_string(ff);
3249 if (!n->pmu_name) {
3250 ret = -1;
3251 goto err;
3252 }
3253 }
3254
3255 ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3256 ff->ph->env.hybrid_cpc_nodes = nodes;
3257 return 0;
3258
3259err:
3260 for (i = 0; i < nr_pmu; i++) {
3261 free(nodes[i].cpu_pmu_caps);
3262 free(nodes[i].pmu_name);
3263 }
3264
3265 free(nodes);
3266 return ret;
3267}
3268
3269#define FEAT_OPR(n, func, __full_only) \
3270 [HEADER_##n] = { \
3271 .name = __stringify(n), \
3272 .write = write_##func, \
3273 .print = print_##func, \
3274 .full_only = __full_only, \
3275 .process = process_##func, \
3276 .synthesize = true \
3277 }
3278
3279#define FEAT_OPN(n, func, __full_only) \
3280 [HEADER_##n] = { \
3281 .name = __stringify(n), \
3282 .write = write_##func, \
3283 .print = print_##func, \
3284 .full_only = __full_only, \
3285 .process = process_##func \
3286 }
3287
3288/* feature_ops not implemented: */
3289#define print_tracing_data NULL
3290#define print_build_id NULL
3291
3292#define process_branch_stack NULL
3293#define process_stat NULL
3294
3295// Only used in util/synthetic-events.c
3296const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3297
3298const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3299 FEAT_OPN(TRACING_DATA, tracing_data, false),
3300 FEAT_OPN(BUILD_ID, build_id, false),
3301 FEAT_OPR(HOSTNAME, hostname, false),
3302 FEAT_OPR(OSRELEASE, osrelease, false),
3303 FEAT_OPR(VERSION, version, false),
3304 FEAT_OPR(ARCH, arch, false),
3305 FEAT_OPR(NRCPUS, nrcpus, false),
3306 FEAT_OPR(CPUDESC, cpudesc, false),
3307 FEAT_OPR(CPUID, cpuid, false),
3308 FEAT_OPR(TOTAL_MEM, total_mem, false),
3309 FEAT_OPR(EVENT_DESC, event_desc, false),
3310 FEAT_OPR(CMDLINE, cmdline, false),
3311 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3312 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3313 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3314 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3315 FEAT_OPR(GROUP_DESC, group_desc, false),
3316 FEAT_OPN(AUXTRACE, auxtrace, false),
3317 FEAT_OPN(STAT, stat, false),
3318 FEAT_OPN(CACHE, cache, true),
3319 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3320 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3321 FEAT_OPR(CLOCKID, clockid, false),
3322 FEAT_OPN(DIR_FORMAT, dir_format, false),
3323#ifdef HAVE_LIBBPF_SUPPORT
3324 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3325 FEAT_OPR(BPF_BTF, bpf_btf, false),
3326#endif
3327 FEAT_OPR(COMPRESSED, compressed, false),
3328 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3329 FEAT_OPR(CLOCK_DATA, clock_data, false),
3330 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3331 FEAT_OPR(HYBRID_CPU_PMU_CAPS, hybrid_cpu_pmu_caps, false),
3332};
3333
3334struct header_print_data {
3335 FILE *fp;
3336 bool full; /* extended list of headers */
3337};
3338
3339static int perf_file_section__fprintf_info(struct perf_file_section *section,
3340 struct perf_header *ph,
3341 int feat, int fd, void *data)
3342{
3343 struct header_print_data *hd = data;
3344 struct feat_fd ff;
3345
3346 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3347 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3348 "%d, continuing...\n", section->offset, feat);
3349 return 0;
3350 }
3351 if (feat >= HEADER_LAST_FEATURE) {
3352 pr_warning("unknown feature %d\n", feat);
3353 return 0;
3354 }
3355 if (!feat_ops[feat].print)
3356 return 0;
3357
3358 ff = (struct feat_fd) {
3359 .fd = fd,
3360 .ph = ph,
3361 };
3362
3363 if (!feat_ops[feat].full_only || hd->full)
3364 feat_ops[feat].print(&ff, hd->fp);
3365 else
3366 fprintf(hd->fp, "# %s info available, use -I to display\n",
3367 feat_ops[feat].name);
3368
3369 return 0;
3370}
3371
3372int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3373{
3374 struct header_print_data hd;
3375 struct perf_header *header = &session->header;
3376 int fd = perf_data__fd(session->data);
3377 struct stat st;
3378 time_t stctime;
3379 int ret, bit;
3380
3381 hd.fp = fp;
3382 hd.full = full;
3383
3384 ret = fstat(fd, &st);
3385 if (ret == -1)
3386 return -1;
3387
3388 stctime = st.st_mtime;
3389 fprintf(fp, "# captured on : %s", ctime(&stctime));
3390
3391 fprintf(fp, "# header version : %u\n", header->version);
3392 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3393 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3394 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3395
3396 perf_header__process_sections(header, fd, &hd,
3397 perf_file_section__fprintf_info);
3398
3399 if (session->data->is_pipe)
3400 return 0;
3401
3402 fprintf(fp, "# missing features: ");
3403 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3404 if (bit)
3405 fprintf(fp, "%s ", feat_ops[bit].name);
3406 }
3407
3408 fprintf(fp, "\n");
3409 return 0;
3410}
3411
3412static int do_write_feat(struct feat_fd *ff, int type,
3413 struct perf_file_section **p,
3414 struct evlist *evlist)
3415{
3416 int err;
3417 int ret = 0;
3418
3419 if (perf_header__has_feat(ff->ph, type)) {
3420 if (!feat_ops[type].write)
3421 return -1;
3422
3423 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3424 return -1;
3425
3426 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3427
3428 err = feat_ops[type].write(ff, evlist);
3429 if (err < 0) {
3430 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3431
3432 /* undo anything written */
3433 lseek(ff->fd, (*p)->offset, SEEK_SET);
3434
3435 return -1;
3436 }
3437 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3438 (*p)++;
3439 }
3440 return ret;
3441}
3442
3443static int perf_header__adds_write(struct perf_header *header,
3444 struct evlist *evlist, int fd)
3445{
3446 int nr_sections;
3447 struct feat_fd ff;
3448 struct perf_file_section *feat_sec, *p;
3449 int sec_size;
3450 u64 sec_start;
3451 int feat;
3452 int err;
3453
3454 ff = (struct feat_fd){
3455 .fd = fd,
3456 .ph = header,
3457 };
3458
3459 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3460 if (!nr_sections)
3461 return 0;
3462
3463 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3464 if (feat_sec == NULL)
3465 return -ENOMEM;
3466
3467 sec_size = sizeof(*feat_sec) * nr_sections;
3468
3469 sec_start = header->feat_offset;
3470 lseek(fd, sec_start + sec_size, SEEK_SET);
3471
3472 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3473 if (do_write_feat(&ff, feat, &p, evlist))
3474 perf_header__clear_feat(header, feat);
3475 }
3476
3477 lseek(fd, sec_start, SEEK_SET);
3478 /*
3479 * may write more than needed due to dropped feature, but
3480 * this is okay, reader will skip the missing entries
3481 */
3482 err = do_write(&ff, feat_sec, sec_size);
3483 if (err < 0)
3484 pr_debug("failed to write feature section\n");
3485 free(feat_sec);
3486 return err;
3487}
3488
3489int perf_header__write_pipe(int fd)
3490{
3491 struct perf_pipe_file_header f_header;
3492 struct feat_fd ff;
3493 int err;
3494
3495 ff = (struct feat_fd){ .fd = fd };
3496
3497 f_header = (struct perf_pipe_file_header){
3498 .magic = PERF_MAGIC,
3499 .size = sizeof(f_header),
3500 };
3501
3502 err = do_write(&ff, &f_header, sizeof(f_header));
3503 if (err < 0) {
3504 pr_debug("failed to write perf pipe header\n");
3505 return err;
3506 }
3507
3508 return 0;
3509}
3510
3511int perf_session__write_header(struct perf_session *session,
3512 struct evlist *evlist,
3513 int fd, bool at_exit)
3514{
3515 struct perf_file_header f_header;
3516 struct perf_file_attr f_attr;
3517 struct perf_header *header = &session->header;
3518 struct evsel *evsel;
3519 struct feat_fd ff;
3520 u64 attr_offset;
3521 int err;
3522
3523 ff = (struct feat_fd){ .fd = fd};
3524 lseek(fd, sizeof(f_header), SEEK_SET);
3525
3526 evlist__for_each_entry(session->evlist, evsel) {
3527 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3528 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3529 if (err < 0) {
3530 pr_debug("failed to write perf header\n");
3531 return err;
3532 }
3533 }
3534
3535 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3536
3537 evlist__for_each_entry(evlist, evsel) {
3538 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3539 /*
3540 * We are likely in "perf inject" and have read
3541 * from an older file. Update attr size so that
3542 * reader gets the right offset to the ids.
3543 */
3544 evsel->core.attr.size = sizeof(evsel->core.attr);
3545 }
3546 f_attr = (struct perf_file_attr){
3547 .attr = evsel->core.attr,
3548 .ids = {
3549 .offset = evsel->id_offset,
3550 .size = evsel->core.ids * sizeof(u64),
3551 }
3552 };
3553 err = do_write(&ff, &f_attr, sizeof(f_attr));
3554 if (err < 0) {
3555 pr_debug("failed to write perf header attribute\n");
3556 return err;
3557 }
3558 }
3559
3560 if (!header->data_offset)
3561 header->data_offset = lseek(fd, 0, SEEK_CUR);
3562 header->feat_offset = header->data_offset + header->data_size;
3563
3564 if (at_exit) {
3565 err = perf_header__adds_write(header, evlist, fd);
3566 if (err < 0)
3567 return err;
3568 }
3569
3570 f_header = (struct perf_file_header){
3571 .magic = PERF_MAGIC,
3572 .size = sizeof(f_header),
3573 .attr_size = sizeof(f_attr),
3574 .attrs = {
3575 .offset = attr_offset,
3576 .size = evlist->core.nr_entries * sizeof(f_attr),
3577 },
3578 .data = {
3579 .offset = header->data_offset,
3580 .size = header->data_size,
3581 },
3582 /* event_types is ignored, store zeros */
3583 };
3584
3585 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3586
3587 lseek(fd, 0, SEEK_SET);
3588 err = do_write(&ff, &f_header, sizeof(f_header));
3589 if (err < 0) {
3590 pr_debug("failed to write perf header\n");
3591 return err;
3592 }
3593 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3594
3595 return 0;
3596}
3597
3598static int perf_header__getbuffer64(struct perf_header *header,
3599 int fd, void *buf, size_t size)
3600{
3601 if (readn(fd, buf, size) <= 0)
3602 return -1;
3603
3604 if (header->needs_swap)
3605 mem_bswap_64(buf, size);
3606
3607 return 0;
3608}
3609
3610int perf_header__process_sections(struct perf_header *header, int fd,
3611 void *data,
3612 int (*process)(struct perf_file_section *section,
3613 struct perf_header *ph,
3614 int feat, int fd, void *data))
3615{
3616 struct perf_file_section *feat_sec, *sec;
3617 int nr_sections;
3618 int sec_size;
3619 int feat;
3620 int err;
3621
3622 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3623 if (!nr_sections)
3624 return 0;
3625
3626 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3627 if (!feat_sec)
3628 return -1;
3629
3630 sec_size = sizeof(*feat_sec) * nr_sections;
3631
3632 lseek(fd, header->feat_offset, SEEK_SET);
3633
3634 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3635 if (err < 0)
3636 goto out_free;
3637
3638 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3639 err = process(sec++, header, feat, fd, data);
3640 if (err < 0)
3641 goto out_free;
3642 }
3643 err = 0;
3644out_free:
3645 free(feat_sec);
3646 return err;
3647}
3648
3649static const int attr_file_abi_sizes[] = {
3650 [0] = PERF_ATTR_SIZE_VER0,
3651 [1] = PERF_ATTR_SIZE_VER1,
3652 [2] = PERF_ATTR_SIZE_VER2,
3653 [3] = PERF_ATTR_SIZE_VER3,
3654 [4] = PERF_ATTR_SIZE_VER4,
3655 0,
3656};
3657
3658/*
3659 * In the legacy file format, the magic number is not used to encode endianness.
3660 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3661 * on ABI revisions, we need to try all combinations for all endianness to
3662 * detect the endianness.
3663 */
3664static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3665{
3666 uint64_t ref_size, attr_size;
3667 int i;
3668
3669 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3670 ref_size = attr_file_abi_sizes[i]
3671 + sizeof(struct perf_file_section);
3672 if (hdr_sz != ref_size) {
3673 attr_size = bswap_64(hdr_sz);
3674 if (attr_size != ref_size)
3675 continue;
3676
3677 ph->needs_swap = true;
3678 }
3679 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3680 i,
3681 ph->needs_swap);
3682 return 0;
3683 }
3684 /* could not determine endianness */
3685 return -1;
3686}
3687
3688#define PERF_PIPE_HDR_VER0 16
3689
3690static const size_t attr_pipe_abi_sizes[] = {
3691 [0] = PERF_PIPE_HDR_VER0,
3692 0,
3693};
3694
3695/*
3696 * In the legacy pipe format, there is an implicit assumption that endianness
3697 * between host recording the samples, and host parsing the samples is the
3698 * same. This is not always the case given that the pipe output may always be
3699 * redirected into a file and analyzed on a different machine with possibly a
3700 * different endianness and perf_event ABI revisions in the perf tool itself.
3701 */
3702static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3703{
3704 u64 attr_size;
3705 int i;
3706
3707 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3708 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3709 attr_size = bswap_64(hdr_sz);
3710 if (attr_size != hdr_sz)
3711 continue;
3712
3713 ph->needs_swap = true;
3714 }
3715 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3716 return 0;
3717 }
3718 return -1;
3719}
3720
3721bool is_perf_magic(u64 magic)
3722{
3723 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3724 || magic == __perf_magic2
3725 || magic == __perf_magic2_sw)
3726 return true;
3727
3728 return false;
3729}
3730
3731static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3732 bool is_pipe, struct perf_header *ph)
3733{
3734 int ret;
3735
3736 /* check for legacy format */
3737 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3738 if (ret == 0) {
3739 ph->version = PERF_HEADER_VERSION_1;
3740 pr_debug("legacy perf.data format\n");
3741 if (is_pipe)
3742 return try_all_pipe_abis(hdr_sz, ph);
3743
3744 return try_all_file_abis(hdr_sz, ph);
3745 }
3746 /*
3747 * the new magic number serves two purposes:
3748 * - unique number to identify actual perf.data files
3749 * - encode endianness of file
3750 */
3751 ph->version = PERF_HEADER_VERSION_2;
3752
3753 /* check magic number with one endianness */
3754 if (magic == __perf_magic2)
3755 return 0;
3756
3757 /* check magic number with opposite endianness */
3758 if (magic != __perf_magic2_sw)
3759 return -1;
3760
3761 ph->needs_swap = true;
3762
3763 return 0;
3764}
3765
3766int perf_file_header__read(struct perf_file_header *header,
3767 struct perf_header *ph, int fd)
3768{
3769 ssize_t ret;
3770
3771 lseek(fd, 0, SEEK_SET);
3772
3773 ret = readn(fd, header, sizeof(*header));
3774 if (ret <= 0)
3775 return -1;
3776
3777 if (check_magic_endian(header->magic,
3778 header->attr_size, false, ph) < 0) {
3779 pr_debug("magic/endian check failed\n");
3780 return -1;
3781 }
3782
3783 if (ph->needs_swap) {
3784 mem_bswap_64(header, offsetof(struct perf_file_header,
3785 adds_features));
3786 }
3787
3788 if (header->size != sizeof(*header)) {
3789 /* Support the previous format */
3790 if (header->size == offsetof(typeof(*header), adds_features))
3791 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3792 else
3793 return -1;
3794 } else if (ph->needs_swap) {
3795 /*
3796 * feature bitmap is declared as an array of unsigned longs --
3797 * not good since its size can differ between the host that
3798 * generated the data file and the host analyzing the file.
3799 *
3800 * We need to handle endianness, but we don't know the size of
3801 * the unsigned long where the file was generated. Take a best
3802 * guess at determining it: try 64-bit swap first (ie., file
3803 * created on a 64-bit host), and check if the hostname feature
3804 * bit is set (this feature bit is forced on as of fbe96f2).
3805 * If the bit is not, undo the 64-bit swap and try a 32-bit
3806 * swap. If the hostname bit is still not set (e.g., older data
3807 * file), punt and fallback to the original behavior --
3808 * clearing all feature bits and setting buildid.
3809 */
3810 mem_bswap_64(&header->adds_features,
3811 BITS_TO_U64(HEADER_FEAT_BITS));
3812
3813 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3814 /* unswap as u64 */
3815 mem_bswap_64(&header->adds_features,
3816 BITS_TO_U64(HEADER_FEAT_BITS));
3817
3818 /* unswap as u32 */
3819 mem_bswap_32(&header->adds_features,
3820 BITS_TO_U32(HEADER_FEAT_BITS));
3821 }
3822
3823 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3824 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3825 set_bit(HEADER_BUILD_ID, header->adds_features);
3826 }
3827 }
3828
3829 memcpy(&ph->adds_features, &header->adds_features,
3830 sizeof(ph->adds_features));
3831
3832 ph->data_offset = header->data.offset;
3833 ph->data_size = header->data.size;
3834 ph->feat_offset = header->data.offset + header->data.size;
3835 return 0;
3836}
3837
3838static int perf_file_section__process(struct perf_file_section *section,
3839 struct perf_header *ph,
3840 int feat, int fd, void *data)
3841{
3842 struct feat_fd fdd = {
3843 .fd = fd,
3844 .ph = ph,
3845 .size = section->size,
3846 .offset = section->offset,
3847 };
3848
3849 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3850 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3851 "%d, continuing...\n", section->offset, feat);
3852 return 0;
3853 }
3854
3855 if (feat >= HEADER_LAST_FEATURE) {
3856 pr_debug("unknown feature %d, continuing...\n", feat);
3857 return 0;
3858 }
3859
3860 if (!feat_ops[feat].process)
3861 return 0;
3862
3863 return feat_ops[feat].process(&fdd, data);
3864}
3865
3866static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3867 struct perf_header *ph,
3868 struct perf_data* data,
3869 bool repipe, int repipe_fd)
3870{
3871 struct feat_fd ff = {
3872 .fd = repipe_fd,
3873 .ph = ph,
3874 };
3875 ssize_t ret;
3876
3877 ret = perf_data__read(data, header, sizeof(*header));
3878 if (ret <= 0)
3879 return -1;
3880
3881 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3882 pr_debug("endian/magic failed\n");
3883 return -1;
3884 }
3885
3886 if (ph->needs_swap)
3887 header->size = bswap_64(header->size);
3888
3889 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3890 return -1;
3891
3892 return 0;
3893}
3894
3895static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
3896{
3897 struct perf_header *header = &session->header;
3898 struct perf_pipe_file_header f_header;
3899
3900 if (perf_file_header__read_pipe(&f_header, header, session->data,
3901 session->repipe, repipe_fd) < 0) {
3902 pr_debug("incompatible file format\n");
3903 return -EINVAL;
3904 }
3905
3906 return f_header.size == sizeof(f_header) ? 0 : -1;
3907}
3908
3909static int read_attr(int fd, struct perf_header *ph,
3910 struct perf_file_attr *f_attr)
3911{
3912 struct perf_event_attr *attr = &f_attr->attr;
3913 size_t sz, left;
3914 size_t our_sz = sizeof(f_attr->attr);
3915 ssize_t ret;
3916
3917 memset(f_attr, 0, sizeof(*f_attr));
3918
3919 /* read minimal guaranteed structure */
3920 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3921 if (ret <= 0) {
3922 pr_debug("cannot read %d bytes of header attr\n",
3923 PERF_ATTR_SIZE_VER0);
3924 return -1;
3925 }
3926
3927 /* on file perf_event_attr size */
3928 sz = attr->size;
3929
3930 if (ph->needs_swap)
3931 sz = bswap_32(sz);
3932
3933 if (sz == 0) {
3934 /* assume ABI0 */
3935 sz = PERF_ATTR_SIZE_VER0;
3936 } else if (sz > our_sz) {
3937 pr_debug("file uses a more recent and unsupported ABI"
3938 " (%zu bytes extra)\n", sz - our_sz);
3939 return -1;
3940 }
3941 /* what we have not yet read and that we know about */
3942 left = sz - PERF_ATTR_SIZE_VER0;
3943 if (left) {
3944 void *ptr = attr;
3945 ptr += PERF_ATTR_SIZE_VER0;
3946
3947 ret = readn(fd, ptr, left);
3948 }
3949 /* read perf_file_section, ids are read in caller */
3950 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3951
3952 return ret <= 0 ? -1 : 0;
3953}
3954
3955static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3956{
3957 struct tep_event *event;
3958 char bf[128];
3959
3960 /* already prepared */
3961 if (evsel->tp_format)
3962 return 0;
3963
3964 if (pevent == NULL) {
3965 pr_debug("broken or missing trace data\n");
3966 return -1;
3967 }
3968
3969 event = tep_find_event(pevent, evsel->core.attr.config);
3970 if (event == NULL) {
3971 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3972 return -1;
3973 }
3974
3975 if (!evsel->name) {
3976 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3977 evsel->name = strdup(bf);
3978 if (evsel->name == NULL)
3979 return -1;
3980 }
3981
3982 evsel->tp_format = event;
3983 return 0;
3984}
3985
3986static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3987{
3988 struct evsel *pos;
3989
3990 evlist__for_each_entry(evlist, pos) {
3991 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3992 evsel__prepare_tracepoint_event(pos, pevent))
3993 return -1;
3994 }
3995
3996 return 0;
3997}
3998
3999int perf_session__read_header(struct perf_session *session, int repipe_fd)
4000{
4001 struct perf_data *data = session->data;
4002 struct perf_header *header = &session->header;
4003 struct perf_file_header f_header;
4004 struct perf_file_attr f_attr;
4005 u64 f_id;
4006 int nr_attrs, nr_ids, i, j, err;
4007 int fd = perf_data__fd(data);
4008
4009 session->evlist = evlist__new();
4010 if (session->evlist == NULL)
4011 return -ENOMEM;
4012
4013 session->evlist->env = &header->env;
4014 session->machines.host.env = &header->env;
4015
4016 /*
4017 * We can read 'pipe' data event from regular file,
4018 * check for the pipe header regardless of source.
4019 */
4020 err = perf_header__read_pipe(session, repipe_fd);
4021 if (!err || perf_data__is_pipe(data)) {
4022 data->is_pipe = true;
4023 return err;
4024 }
4025
4026 if (perf_file_header__read(&f_header, header, fd) < 0)
4027 return -EINVAL;
4028
4029 if (header->needs_swap && data->in_place_update) {
4030 pr_err("In-place update not supported when byte-swapping is required\n");
4031 return -EINVAL;
4032 }
4033
4034 /*
4035 * Sanity check that perf.data was written cleanly; data size is
4036 * initialized to 0 and updated only if the on_exit function is run.
4037 * If data size is still 0 then the file contains only partial
4038 * information. Just warn user and process it as much as it can.
4039 */
4040 if (f_header.data.size == 0) {
4041 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4042 "Was the 'perf record' command properly terminated?\n",
4043 data->file.path);
4044 }
4045
4046 if (f_header.attr_size == 0) {
4047 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4048 "Was the 'perf record' command properly terminated?\n",
4049 data->file.path);
4050 return -EINVAL;
4051 }
4052
4053 nr_attrs = f_header.attrs.size / f_header.attr_size;
4054 lseek(fd, f_header.attrs.offset, SEEK_SET);
4055
4056 for (i = 0; i < nr_attrs; i++) {
4057 struct evsel *evsel;
4058 off_t tmp;
4059
4060 if (read_attr(fd, header, &f_attr) < 0)
4061 goto out_errno;
4062
4063 if (header->needs_swap) {
4064 f_attr.ids.size = bswap_64(f_attr.ids.size);
4065 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4066 perf_event__attr_swap(&f_attr.attr);
4067 }
4068
4069 tmp = lseek(fd, 0, SEEK_CUR);
4070 evsel = evsel__new(&f_attr.attr);
4071
4072 if (evsel == NULL)
4073 goto out_delete_evlist;
4074
4075 evsel->needs_swap = header->needs_swap;
4076 /*
4077 * Do it before so that if perf_evsel__alloc_id fails, this
4078 * entry gets purged too at evlist__delete().
4079 */
4080 evlist__add(session->evlist, evsel);
4081
4082 nr_ids = f_attr.ids.size / sizeof(u64);
4083 /*
4084 * We don't have the cpu and thread maps on the header, so
4085 * for allocating the perf_sample_id table we fake 1 cpu and
4086 * hattr->ids threads.
4087 */
4088 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4089 goto out_delete_evlist;
4090
4091 lseek(fd, f_attr.ids.offset, SEEK_SET);
4092
4093 for (j = 0; j < nr_ids; j++) {
4094 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4095 goto out_errno;
4096
4097 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4098 }
4099
4100 lseek(fd, tmp, SEEK_SET);
4101 }
4102
4103 perf_header__process_sections(header, fd, &session->tevent,
4104 perf_file_section__process);
4105
4106 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4107 goto out_delete_evlist;
4108
4109 return 0;
4110out_errno:
4111 return -errno;
4112
4113out_delete_evlist:
4114 evlist__delete(session->evlist);
4115 session->evlist = NULL;
4116 return -ENOMEM;
4117}
4118
4119int perf_event__process_feature(struct perf_session *session,
4120 union perf_event *event)
4121{
4122 struct perf_tool *tool = session->tool;
4123 struct feat_fd ff = { .fd = 0 };
4124 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4125 int type = fe->header.type;
4126 u64 feat = fe->feat_id;
4127
4128 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4129 pr_warning("invalid record type %d in pipe-mode\n", type);
4130 return 0;
4131 }
4132 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4133 pr_warning("invalid record type %d in pipe-mode\n", type);
4134 return -1;
4135 }
4136
4137 if (!feat_ops[feat].process)
4138 return 0;
4139
4140 ff.buf = (void *)fe->data;
4141 ff.size = event->header.size - sizeof(*fe);
4142 ff.ph = &session->header;
4143
4144 if (feat_ops[feat].process(&ff, NULL))
4145 return -1;
4146
4147 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4148 return 0;
4149
4150 if (!feat_ops[feat].full_only ||
4151 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4152 feat_ops[feat].print(&ff, stdout);
4153 } else {
4154 fprintf(stdout, "# %s info available, use -I to display\n",
4155 feat_ops[feat].name);
4156 }
4157
4158 return 0;
4159}
4160
4161size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4162{
4163 struct perf_record_event_update *ev = &event->event_update;
4164 struct perf_record_event_update_scale *ev_scale;
4165 struct perf_record_event_update_cpus *ev_cpus;
4166 struct perf_cpu_map *map;
4167 size_t ret;
4168
4169 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4170
4171 switch (ev->type) {
4172 case PERF_EVENT_UPDATE__SCALE:
4173 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4174 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4175 break;
4176 case PERF_EVENT_UPDATE__UNIT:
4177 ret += fprintf(fp, "... unit: %s\n", ev->data);
4178 break;
4179 case PERF_EVENT_UPDATE__NAME:
4180 ret += fprintf(fp, "... name: %s\n", ev->data);
4181 break;
4182 case PERF_EVENT_UPDATE__CPUS:
4183 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4184 ret += fprintf(fp, "... ");
4185
4186 map = cpu_map__new_data(&ev_cpus->cpus);
4187 if (map)
4188 ret += cpu_map__fprintf(map, fp);
4189 else
4190 ret += fprintf(fp, "failed to get cpus\n");
4191 break;
4192 default:
4193 ret += fprintf(fp, "... unknown type\n");
4194 break;
4195 }
4196
4197 return ret;
4198}
4199
4200int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4201 union perf_event *event,
4202 struct evlist **pevlist)
4203{
4204 u32 i, ids, n_ids;
4205 struct evsel *evsel;
4206 struct evlist *evlist = *pevlist;
4207
4208 if (evlist == NULL) {
4209 *pevlist = evlist = evlist__new();
4210 if (evlist == NULL)
4211 return -ENOMEM;
4212 }
4213
4214 evsel = evsel__new(&event->attr.attr);
4215 if (evsel == NULL)
4216 return -ENOMEM;
4217
4218 evlist__add(evlist, evsel);
4219
4220 ids = event->header.size;
4221 ids -= (void *)&event->attr.id - (void *)event;
4222 n_ids = ids / sizeof(u64);
4223 /*
4224 * We don't have the cpu and thread maps on the header, so
4225 * for allocating the perf_sample_id table we fake 1 cpu and
4226 * hattr->ids threads.
4227 */
4228 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4229 return -ENOMEM;
4230
4231 for (i = 0; i < n_ids; i++) {
4232 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4233 }
4234
4235 return 0;
4236}
4237
4238int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4239 union perf_event *event,
4240 struct evlist **pevlist)
4241{
4242 struct perf_record_event_update *ev = &event->event_update;
4243 struct perf_record_event_update_scale *ev_scale;
4244 struct perf_record_event_update_cpus *ev_cpus;
4245 struct evlist *evlist;
4246 struct evsel *evsel;
4247 struct perf_cpu_map *map;
4248
4249 if (!pevlist || *pevlist == NULL)
4250 return -EINVAL;
4251
4252 evlist = *pevlist;
4253
4254 evsel = evlist__id2evsel(evlist, ev->id);
4255 if (evsel == NULL)
4256 return -EINVAL;
4257
4258 switch (ev->type) {
4259 case PERF_EVENT_UPDATE__UNIT:
4260 evsel->unit = strdup(ev->data);
4261 break;
4262 case PERF_EVENT_UPDATE__NAME:
4263 evsel->name = strdup(ev->data);
4264 break;
4265 case PERF_EVENT_UPDATE__SCALE:
4266 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4267 evsel->scale = ev_scale->scale;
4268 break;
4269 case PERF_EVENT_UPDATE__CPUS:
4270 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4271
4272 map = cpu_map__new_data(&ev_cpus->cpus);
4273 if (map)
4274 evsel->core.own_cpus = map;
4275 else
4276 pr_err("failed to get event_update cpus\n");
4277 default:
4278 break;
4279 }
4280
4281 return 0;
4282}
4283
4284int perf_event__process_tracing_data(struct perf_session *session,
4285 union perf_event *event)
4286{
4287 ssize_t size_read, padding, size = event->tracing_data.size;
4288 int fd = perf_data__fd(session->data);
4289 char buf[BUFSIZ];
4290
4291 /*
4292 * The pipe fd is already in proper place and in any case
4293 * we can't move it, and we'd screw the case where we read
4294 * 'pipe' data from regular file. The trace_report reads
4295 * data from 'fd' so we need to set it directly behind the
4296 * event, where the tracing data starts.
4297 */
4298 if (!perf_data__is_pipe(session->data)) {
4299 off_t offset = lseek(fd, 0, SEEK_CUR);
4300
4301 /* setup for reading amidst mmap */
4302 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4303 SEEK_SET);
4304 }
4305
4306 size_read = trace_report(fd, &session->tevent,
4307 session->repipe);
4308 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4309
4310 if (readn(fd, buf, padding) < 0) {
4311 pr_err("%s: reading input file", __func__);
4312 return -1;
4313 }
4314 if (session->repipe) {
4315 int retw = write(STDOUT_FILENO, buf, padding);
4316 if (retw <= 0 || retw != padding) {
4317 pr_err("%s: repiping tracing data padding", __func__);
4318 return -1;
4319 }
4320 }
4321
4322 if (size_read + padding != size) {
4323 pr_err("%s: tracing data size mismatch", __func__);
4324 return -1;
4325 }
4326
4327 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4328
4329 return size_read + padding;
4330}
4331
4332int perf_event__process_build_id(struct perf_session *session,
4333 union perf_event *event)
4334{
4335 __event_process_build_id(&event->build_id,
4336 event->build_id.filename,
4337 session);
4338 return 0;
4339}