Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "net-sysfs.h"
155
156#define MAX_GRO_SKBS 8
157
158/* This should be increased if a protocol with a bigger head is added. */
159#define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161static DEFINE_SPINLOCK(ptype_lock);
162static DEFINE_SPINLOCK(offload_lock);
163struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164struct list_head ptype_all __read_mostly; /* Taps */
165static struct list_head offload_base __read_mostly;
166
167static int netif_rx_internal(struct sk_buff *skb);
168static int call_netdevice_notifiers_info(unsigned long val,
169 struct netdev_notifier_info *info);
170static int call_netdevice_notifiers_extack(unsigned long val,
171 struct net_device *dev,
172 struct netlink_ext_ack *extack);
173static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175/*
176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * semaphore.
178 *
179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180 *
181 * Writers must hold the rtnl semaphore while they loop through the
182 * dev_base_head list, and hold dev_base_lock for writing when they do the
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
185 *
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
189 *
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
192 * semaphore held.
193 */
194DEFINE_RWLOCK(dev_base_lock);
195EXPORT_SYMBOL(dev_base_lock);
196
197static DEFINE_MUTEX(ifalias_mutex);
198
199/* protects napi_hash addition/deletion and napi_gen_id */
200static DEFINE_SPINLOCK(napi_hash_lock);
201
202static unsigned int napi_gen_id = NR_CPUS;
203static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205static DECLARE_RWSEM(devnet_rename_sem);
206
207static inline void dev_base_seq_inc(struct net *net)
208{
209 while (++net->dev_base_seq == 0)
210 ;
211}
212
213static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214{
215 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218}
219
220static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221{
222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223}
224
225static inline void rps_lock(struct softnet_data *sd)
226{
227#ifdef CONFIG_RPS
228 spin_lock(&sd->input_pkt_queue.lock);
229#endif
230}
231
232static inline void rps_unlock(struct softnet_data *sd)
233{
234#ifdef CONFIG_RPS
235 spin_unlock(&sd->input_pkt_queue.lock);
236#endif
237}
238
239static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 const char *name)
241{
242 struct netdev_name_node *name_node;
243
244 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 if (!name_node)
246 return NULL;
247 INIT_HLIST_NODE(&name_node->hlist);
248 name_node->dev = dev;
249 name_node->name = name;
250 return name_node;
251}
252
253static struct netdev_name_node *
254netdev_name_node_head_alloc(struct net_device *dev)
255{
256 struct netdev_name_node *name_node;
257
258 name_node = netdev_name_node_alloc(dev, dev->name);
259 if (!name_node)
260 return NULL;
261 INIT_LIST_HEAD(&name_node->list);
262 return name_node;
263}
264
265static void netdev_name_node_free(struct netdev_name_node *name_node)
266{
267 kfree(name_node);
268}
269
270static void netdev_name_node_add(struct net *net,
271 struct netdev_name_node *name_node)
272{
273 hlist_add_head_rcu(&name_node->hlist,
274 dev_name_hash(net, name_node->name));
275}
276
277static void netdev_name_node_del(struct netdev_name_node *name_node)
278{
279 hlist_del_rcu(&name_node->hlist);
280}
281
282static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 const char *name)
284{
285 struct hlist_head *head = dev_name_hash(net, name);
286 struct netdev_name_node *name_node;
287
288 hlist_for_each_entry(name_node, head, hlist)
289 if (!strcmp(name_node->name, name))
290 return name_node;
291 return NULL;
292}
293
294static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 const char *name)
296{
297 struct hlist_head *head = dev_name_hash(net, name);
298 struct netdev_name_node *name_node;
299
300 hlist_for_each_entry_rcu(name_node, head, hlist)
301 if (!strcmp(name_node->name, name))
302 return name_node;
303 return NULL;
304}
305
306bool netdev_name_in_use(struct net *net, const char *name)
307{
308 return netdev_name_node_lookup(net, name);
309}
310EXPORT_SYMBOL(netdev_name_in_use);
311
312int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313{
314 struct netdev_name_node *name_node;
315 struct net *net = dev_net(dev);
316
317 name_node = netdev_name_node_lookup(net, name);
318 if (name_node)
319 return -EEXIST;
320 name_node = netdev_name_node_alloc(dev, name);
321 if (!name_node)
322 return -ENOMEM;
323 netdev_name_node_add(net, name_node);
324 /* The node that holds dev->name acts as a head of per-device list. */
325 list_add_tail(&name_node->list, &dev->name_node->list);
326
327 return 0;
328}
329EXPORT_SYMBOL(netdev_name_node_alt_create);
330
331static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332{
333 list_del(&name_node->list);
334 netdev_name_node_del(name_node);
335 kfree(name_node->name);
336 netdev_name_node_free(name_node);
337}
338
339int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340{
341 struct netdev_name_node *name_node;
342 struct net *net = dev_net(dev);
343
344 name_node = netdev_name_node_lookup(net, name);
345 if (!name_node)
346 return -ENOENT;
347 /* lookup might have found our primary name or a name belonging
348 * to another device.
349 */
350 if (name_node == dev->name_node || name_node->dev != dev)
351 return -EINVAL;
352
353 __netdev_name_node_alt_destroy(name_node);
354
355 return 0;
356}
357EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358
359static void netdev_name_node_alt_flush(struct net_device *dev)
360{
361 struct netdev_name_node *name_node, *tmp;
362
363 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364 __netdev_name_node_alt_destroy(name_node);
365}
366
367/* Device list insertion */
368static void list_netdevice(struct net_device *dev)
369{
370 struct net *net = dev_net(dev);
371
372 ASSERT_RTNL();
373
374 write_lock_bh(&dev_base_lock);
375 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376 netdev_name_node_add(net, dev->name_node);
377 hlist_add_head_rcu(&dev->index_hlist,
378 dev_index_hash(net, dev->ifindex));
379 write_unlock_bh(&dev_base_lock);
380
381 dev_base_seq_inc(net);
382}
383
384/* Device list removal
385 * caller must respect a RCU grace period before freeing/reusing dev
386 */
387static void unlist_netdevice(struct net_device *dev)
388{
389 ASSERT_RTNL();
390
391 /* Unlink dev from the device chain */
392 write_lock_bh(&dev_base_lock);
393 list_del_rcu(&dev->dev_list);
394 netdev_name_node_del(dev->name_node);
395 hlist_del_rcu(&dev->index_hlist);
396 write_unlock_bh(&dev_base_lock);
397
398 dev_base_seq_inc(dev_net(dev));
399}
400
401/*
402 * Our notifier list
403 */
404
405static RAW_NOTIFIER_HEAD(netdev_chain);
406
407/*
408 * Device drivers call our routines to queue packets here. We empty the
409 * queue in the local softnet handler.
410 */
411
412DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413EXPORT_PER_CPU_SYMBOL(softnet_data);
414
415#ifdef CONFIG_LOCKDEP
416/*
417 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418 * according to dev->type
419 */
420static const unsigned short netdev_lock_type[] = {
421 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436
437static const char *const netdev_lock_name[] = {
438 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453
454static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456
457static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458{
459 int i;
460
461 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462 if (netdev_lock_type[i] == dev_type)
463 return i;
464 /* the last key is used by default */
465 return ARRAY_SIZE(netdev_lock_type) - 1;
466}
467
468static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469 unsigned short dev_type)
470{
471 int i;
472
473 i = netdev_lock_pos(dev_type);
474 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475 netdev_lock_name[i]);
476}
477
478static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479{
480 int i;
481
482 i = netdev_lock_pos(dev->type);
483 lockdep_set_class_and_name(&dev->addr_list_lock,
484 &netdev_addr_lock_key[i],
485 netdev_lock_name[i]);
486}
487#else
488static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489 unsigned short dev_type)
490{
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495}
496#endif
497
498/*******************************************************************************
499 *
500 * Protocol management and registration routines
501 *
502 *******************************************************************************/
503
504
505/*
506 * Add a protocol ID to the list. Now that the input handler is
507 * smarter we can dispense with all the messy stuff that used to be
508 * here.
509 *
510 * BEWARE!!! Protocol handlers, mangling input packets,
511 * MUST BE last in hash buckets and checking protocol handlers
512 * MUST start from promiscuous ptype_all chain in net_bh.
513 * It is true now, do not change it.
514 * Explanation follows: if protocol handler, mangling packet, will
515 * be the first on list, it is not able to sense, that packet
516 * is cloned and should be copied-on-write, so that it will
517 * change it and subsequent readers will get broken packet.
518 * --ANK (980803)
519 */
520
521static inline struct list_head *ptype_head(const struct packet_type *pt)
522{
523 if (pt->type == htons(ETH_P_ALL))
524 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525 else
526 return pt->dev ? &pt->dev->ptype_specific :
527 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528}
529
530/**
531 * dev_add_pack - add packet handler
532 * @pt: packet type declaration
533 *
534 * Add a protocol handler to the networking stack. The passed &packet_type
535 * is linked into kernel lists and may not be freed until it has been
536 * removed from the kernel lists.
537 *
538 * This call does not sleep therefore it can not
539 * guarantee all CPU's that are in middle of receiving packets
540 * will see the new packet type (until the next received packet).
541 */
542
543void dev_add_pack(struct packet_type *pt)
544{
545 struct list_head *head = ptype_head(pt);
546
547 spin_lock(&ptype_lock);
548 list_add_rcu(&pt->list, head);
549 spin_unlock(&ptype_lock);
550}
551EXPORT_SYMBOL(dev_add_pack);
552
553/**
554 * __dev_remove_pack - remove packet handler
555 * @pt: packet type declaration
556 *
557 * Remove a protocol handler that was previously added to the kernel
558 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
559 * from the kernel lists and can be freed or reused once this function
560 * returns.
561 *
562 * The packet type might still be in use by receivers
563 * and must not be freed until after all the CPU's have gone
564 * through a quiescent state.
565 */
566void __dev_remove_pack(struct packet_type *pt)
567{
568 struct list_head *head = ptype_head(pt);
569 struct packet_type *pt1;
570
571 spin_lock(&ptype_lock);
572
573 list_for_each_entry(pt1, head, list) {
574 if (pt == pt1) {
575 list_del_rcu(&pt->list);
576 goto out;
577 }
578 }
579
580 pr_warn("dev_remove_pack: %p not found\n", pt);
581out:
582 spin_unlock(&ptype_lock);
583}
584EXPORT_SYMBOL(__dev_remove_pack);
585
586/**
587 * dev_remove_pack - remove packet handler
588 * @pt: packet type declaration
589 *
590 * Remove a protocol handler that was previously added to the kernel
591 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
592 * from the kernel lists and can be freed or reused once this function
593 * returns.
594 *
595 * This call sleeps to guarantee that no CPU is looking at the packet
596 * type after return.
597 */
598void dev_remove_pack(struct packet_type *pt)
599{
600 __dev_remove_pack(pt);
601
602 synchronize_net();
603}
604EXPORT_SYMBOL(dev_remove_pack);
605
606
607/**
608 * dev_add_offload - register offload handlers
609 * @po: protocol offload declaration
610 *
611 * Add protocol offload handlers to the networking stack. The passed
612 * &proto_offload is linked into kernel lists and may not be freed until
613 * it has been removed from the kernel lists.
614 *
615 * This call does not sleep therefore it can not
616 * guarantee all CPU's that are in middle of receiving packets
617 * will see the new offload handlers (until the next received packet).
618 */
619void dev_add_offload(struct packet_offload *po)
620{
621 struct packet_offload *elem;
622
623 spin_lock(&offload_lock);
624 list_for_each_entry(elem, &offload_base, list) {
625 if (po->priority < elem->priority)
626 break;
627 }
628 list_add_rcu(&po->list, elem->list.prev);
629 spin_unlock(&offload_lock);
630}
631EXPORT_SYMBOL(dev_add_offload);
632
633/**
634 * __dev_remove_offload - remove offload handler
635 * @po: packet offload declaration
636 *
637 * Remove a protocol offload handler that was previously added to the
638 * kernel offload handlers by dev_add_offload(). The passed &offload_type
639 * is removed from the kernel lists and can be freed or reused once this
640 * function returns.
641 *
642 * The packet type might still be in use by receivers
643 * and must not be freed until after all the CPU's have gone
644 * through a quiescent state.
645 */
646static void __dev_remove_offload(struct packet_offload *po)
647{
648 struct list_head *head = &offload_base;
649 struct packet_offload *po1;
650
651 spin_lock(&offload_lock);
652
653 list_for_each_entry(po1, head, list) {
654 if (po == po1) {
655 list_del_rcu(&po->list);
656 goto out;
657 }
658 }
659
660 pr_warn("dev_remove_offload: %p not found\n", po);
661out:
662 spin_unlock(&offload_lock);
663}
664
665/**
666 * dev_remove_offload - remove packet offload handler
667 * @po: packet offload declaration
668 *
669 * Remove a packet offload handler that was previously added to the kernel
670 * offload handlers by dev_add_offload(). The passed &offload_type is
671 * removed from the kernel lists and can be freed or reused once this
672 * function returns.
673 *
674 * This call sleeps to guarantee that no CPU is looking at the packet
675 * type after return.
676 */
677void dev_remove_offload(struct packet_offload *po)
678{
679 __dev_remove_offload(po);
680
681 synchronize_net();
682}
683EXPORT_SYMBOL(dev_remove_offload);
684
685/*******************************************************************************
686 *
687 * Device Interface Subroutines
688 *
689 *******************************************************************************/
690
691/**
692 * dev_get_iflink - get 'iflink' value of a interface
693 * @dev: targeted interface
694 *
695 * Indicates the ifindex the interface is linked to.
696 * Physical interfaces have the same 'ifindex' and 'iflink' values.
697 */
698
699int dev_get_iflink(const struct net_device *dev)
700{
701 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702 return dev->netdev_ops->ndo_get_iflink(dev);
703
704 return dev->ifindex;
705}
706EXPORT_SYMBOL(dev_get_iflink);
707
708/**
709 * dev_fill_metadata_dst - Retrieve tunnel egress information.
710 * @dev: targeted interface
711 * @skb: The packet.
712 *
713 * For better visibility of tunnel traffic OVS needs to retrieve
714 * egress tunnel information for a packet. Following API allows
715 * user to get this info.
716 */
717int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718{
719 struct ip_tunnel_info *info;
720
721 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
722 return -EINVAL;
723
724 info = skb_tunnel_info_unclone(skb);
725 if (!info)
726 return -ENOMEM;
727 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728 return -EINVAL;
729
730 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731}
732EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733
734static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735{
736 int k = stack->num_paths++;
737
738 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739 return NULL;
740
741 return &stack->path[k];
742}
743
744int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745 struct net_device_path_stack *stack)
746{
747 const struct net_device *last_dev;
748 struct net_device_path_ctx ctx = {
749 .dev = dev,
750 .daddr = daddr,
751 };
752 struct net_device_path *path;
753 int ret = 0;
754
755 stack->num_paths = 0;
756 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757 last_dev = ctx.dev;
758 path = dev_fwd_path(stack);
759 if (!path)
760 return -1;
761
762 memset(path, 0, sizeof(struct net_device_path));
763 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764 if (ret < 0)
765 return -1;
766
767 if (WARN_ON_ONCE(last_dev == ctx.dev))
768 return -1;
769 }
770 path = dev_fwd_path(stack);
771 if (!path)
772 return -1;
773 path->type = DEV_PATH_ETHERNET;
774 path->dev = ctx.dev;
775
776 return ret;
777}
778EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779
780/**
781 * __dev_get_by_name - find a device by its name
782 * @net: the applicable net namespace
783 * @name: name to find
784 *
785 * Find an interface by name. Must be called under RTNL semaphore
786 * or @dev_base_lock. If the name is found a pointer to the device
787 * is returned. If the name is not found then %NULL is returned. The
788 * reference counters are not incremented so the caller must be
789 * careful with locks.
790 */
791
792struct net_device *__dev_get_by_name(struct net *net, const char *name)
793{
794 struct netdev_name_node *node_name;
795
796 node_name = netdev_name_node_lookup(net, name);
797 return node_name ? node_name->dev : NULL;
798}
799EXPORT_SYMBOL(__dev_get_by_name);
800
801/**
802 * dev_get_by_name_rcu - find a device by its name
803 * @net: the applicable net namespace
804 * @name: name to find
805 *
806 * Find an interface by name.
807 * If the name is found a pointer to the device is returned.
808 * If the name is not found then %NULL is returned.
809 * The reference counters are not incremented so the caller must be
810 * careful with locks. The caller must hold RCU lock.
811 */
812
813struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814{
815 struct netdev_name_node *node_name;
816
817 node_name = netdev_name_node_lookup_rcu(net, name);
818 return node_name ? node_name->dev : NULL;
819}
820EXPORT_SYMBOL(dev_get_by_name_rcu);
821
822/**
823 * dev_get_by_name - find a device by its name
824 * @net: the applicable net namespace
825 * @name: name to find
826 *
827 * Find an interface by name. This can be called from any
828 * context and does its own locking. The returned handle has
829 * the usage count incremented and the caller must use dev_put() to
830 * release it when it is no longer needed. %NULL is returned if no
831 * matching device is found.
832 */
833
834struct net_device *dev_get_by_name(struct net *net, const char *name)
835{
836 struct net_device *dev;
837
838 rcu_read_lock();
839 dev = dev_get_by_name_rcu(net, name);
840 dev_hold(dev);
841 rcu_read_unlock();
842 return dev;
843}
844EXPORT_SYMBOL(dev_get_by_name);
845
846/**
847 * __dev_get_by_index - find a device by its ifindex
848 * @net: the applicable net namespace
849 * @ifindex: index of device
850 *
851 * Search for an interface by index. Returns %NULL if the device
852 * is not found or a pointer to the device. The device has not
853 * had its reference counter increased so the caller must be careful
854 * about locking. The caller must hold either the RTNL semaphore
855 * or @dev_base_lock.
856 */
857
858struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859{
860 struct net_device *dev;
861 struct hlist_head *head = dev_index_hash(net, ifindex);
862
863 hlist_for_each_entry(dev, head, index_hlist)
864 if (dev->ifindex == ifindex)
865 return dev;
866
867 return NULL;
868}
869EXPORT_SYMBOL(__dev_get_by_index);
870
871/**
872 * dev_get_by_index_rcu - find a device by its ifindex
873 * @net: the applicable net namespace
874 * @ifindex: index of device
875 *
876 * Search for an interface by index. Returns %NULL if the device
877 * is not found or a pointer to the device. The device has not
878 * had its reference counter increased so the caller must be careful
879 * about locking. The caller must hold RCU lock.
880 */
881
882struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883{
884 struct net_device *dev;
885 struct hlist_head *head = dev_index_hash(net, ifindex);
886
887 hlist_for_each_entry_rcu(dev, head, index_hlist)
888 if (dev->ifindex == ifindex)
889 return dev;
890
891 return NULL;
892}
893EXPORT_SYMBOL(dev_get_by_index_rcu);
894
895
896/**
897 * dev_get_by_index - find a device by its ifindex
898 * @net: the applicable net namespace
899 * @ifindex: index of device
900 *
901 * Search for an interface by index. Returns NULL if the device
902 * is not found or a pointer to the device. The device returned has
903 * had a reference added and the pointer is safe until the user calls
904 * dev_put to indicate they have finished with it.
905 */
906
907struct net_device *dev_get_by_index(struct net *net, int ifindex)
908{
909 struct net_device *dev;
910
911 rcu_read_lock();
912 dev = dev_get_by_index_rcu(net, ifindex);
913 dev_hold(dev);
914 rcu_read_unlock();
915 return dev;
916}
917EXPORT_SYMBOL(dev_get_by_index);
918
919/**
920 * dev_get_by_napi_id - find a device by napi_id
921 * @napi_id: ID of the NAPI struct
922 *
923 * Search for an interface by NAPI ID. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not had
925 * its reference counter increased so the caller must be careful
926 * about locking. The caller must hold RCU lock.
927 */
928
929struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930{
931 struct napi_struct *napi;
932
933 WARN_ON_ONCE(!rcu_read_lock_held());
934
935 if (napi_id < MIN_NAPI_ID)
936 return NULL;
937
938 napi = napi_by_id(napi_id);
939
940 return napi ? napi->dev : NULL;
941}
942EXPORT_SYMBOL(dev_get_by_napi_id);
943
944/**
945 * netdev_get_name - get a netdevice name, knowing its ifindex.
946 * @net: network namespace
947 * @name: a pointer to the buffer where the name will be stored.
948 * @ifindex: the ifindex of the interface to get the name from.
949 */
950int netdev_get_name(struct net *net, char *name, int ifindex)
951{
952 struct net_device *dev;
953 int ret;
954
955 down_read(&devnet_rename_sem);
956 rcu_read_lock();
957
958 dev = dev_get_by_index_rcu(net, ifindex);
959 if (!dev) {
960 ret = -ENODEV;
961 goto out;
962 }
963
964 strcpy(name, dev->name);
965
966 ret = 0;
967out:
968 rcu_read_unlock();
969 up_read(&devnet_rename_sem);
970 return ret;
971}
972
973/**
974 * dev_getbyhwaddr_rcu - find a device by its hardware address
975 * @net: the applicable net namespace
976 * @type: media type of device
977 * @ha: hardware address
978 *
979 * Search for an interface by MAC address. Returns NULL if the device
980 * is not found or a pointer to the device.
981 * The caller must hold RCU or RTNL.
982 * The returned device has not had its ref count increased
983 * and the caller must therefore be careful about locking
984 *
985 */
986
987struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988 const char *ha)
989{
990 struct net_device *dev;
991
992 for_each_netdev_rcu(net, dev)
993 if (dev->type == type &&
994 !memcmp(dev->dev_addr, ha, dev->addr_len))
995 return dev;
996
997 return NULL;
998}
999EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000
1001struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002{
1003 struct net_device *dev, *ret = NULL;
1004
1005 rcu_read_lock();
1006 for_each_netdev_rcu(net, dev)
1007 if (dev->type == type) {
1008 dev_hold(dev);
1009 ret = dev;
1010 break;
1011 }
1012 rcu_read_unlock();
1013 return ret;
1014}
1015EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016
1017/**
1018 * __dev_get_by_flags - find any device with given flags
1019 * @net: the applicable net namespace
1020 * @if_flags: IFF_* values
1021 * @mask: bitmask of bits in if_flags to check
1022 *
1023 * Search for any interface with the given flags. Returns NULL if a device
1024 * is not found or a pointer to the device. Must be called inside
1025 * rtnl_lock(), and result refcount is unchanged.
1026 */
1027
1028struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029 unsigned short mask)
1030{
1031 struct net_device *dev, *ret;
1032
1033 ASSERT_RTNL();
1034
1035 ret = NULL;
1036 for_each_netdev(net, dev) {
1037 if (((dev->flags ^ if_flags) & mask) == 0) {
1038 ret = dev;
1039 break;
1040 }
1041 }
1042 return ret;
1043}
1044EXPORT_SYMBOL(__dev_get_by_flags);
1045
1046/**
1047 * dev_valid_name - check if name is okay for network device
1048 * @name: name string
1049 *
1050 * Network device names need to be valid file names to
1051 * allow sysfs to work. We also disallow any kind of
1052 * whitespace.
1053 */
1054bool dev_valid_name(const char *name)
1055{
1056 if (*name == '\0')
1057 return false;
1058 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059 return false;
1060 if (!strcmp(name, ".") || !strcmp(name, ".."))
1061 return false;
1062
1063 while (*name) {
1064 if (*name == '/' || *name == ':' || isspace(*name))
1065 return false;
1066 name++;
1067 }
1068 return true;
1069}
1070EXPORT_SYMBOL(dev_valid_name);
1071
1072/**
1073 * __dev_alloc_name - allocate a name for a device
1074 * @net: network namespace to allocate the device name in
1075 * @name: name format string
1076 * @buf: scratch buffer and result name string
1077 *
1078 * Passed a format string - eg "lt%d" it will try and find a suitable
1079 * id. It scans list of devices to build up a free map, then chooses
1080 * the first empty slot. The caller must hold the dev_base or rtnl lock
1081 * while allocating the name and adding the device in order to avoid
1082 * duplicates.
1083 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084 * Returns the number of the unit assigned or a negative errno code.
1085 */
1086
1087static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088{
1089 int i = 0;
1090 const char *p;
1091 const int max_netdevices = 8*PAGE_SIZE;
1092 unsigned long *inuse;
1093 struct net_device *d;
1094
1095 if (!dev_valid_name(name))
1096 return -EINVAL;
1097
1098 p = strchr(name, '%');
1099 if (p) {
1100 /*
1101 * Verify the string as this thing may have come from
1102 * the user. There must be either one "%d" and no other "%"
1103 * characters.
1104 */
1105 if (p[1] != 'd' || strchr(p + 2, '%'))
1106 return -EINVAL;
1107
1108 /* Use one page as a bit array of possible slots */
1109 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110 if (!inuse)
1111 return -ENOMEM;
1112
1113 for_each_netdev(net, d) {
1114 struct netdev_name_node *name_node;
1115 list_for_each_entry(name_node, &d->name_node->list, list) {
1116 if (!sscanf(name_node->name, name, &i))
1117 continue;
1118 if (i < 0 || i >= max_netdevices)
1119 continue;
1120
1121 /* avoid cases where sscanf is not exact inverse of printf */
1122 snprintf(buf, IFNAMSIZ, name, i);
1123 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124 set_bit(i, inuse);
1125 }
1126 if (!sscanf(d->name, name, &i))
1127 continue;
1128 if (i < 0 || i >= max_netdevices)
1129 continue;
1130
1131 /* avoid cases where sscanf is not exact inverse of printf */
1132 snprintf(buf, IFNAMSIZ, name, i);
1133 if (!strncmp(buf, d->name, IFNAMSIZ))
1134 set_bit(i, inuse);
1135 }
1136
1137 i = find_first_zero_bit(inuse, max_netdevices);
1138 free_page((unsigned long) inuse);
1139 }
1140
1141 snprintf(buf, IFNAMSIZ, name, i);
1142 if (!netdev_name_in_use(net, buf))
1143 return i;
1144
1145 /* It is possible to run out of possible slots
1146 * when the name is long and there isn't enough space left
1147 * for the digits, or if all bits are used.
1148 */
1149 return -ENFILE;
1150}
1151
1152static int dev_alloc_name_ns(struct net *net,
1153 struct net_device *dev,
1154 const char *name)
1155{
1156 char buf[IFNAMSIZ];
1157 int ret;
1158
1159 BUG_ON(!net);
1160 ret = __dev_alloc_name(net, name, buf);
1161 if (ret >= 0)
1162 strlcpy(dev->name, buf, IFNAMSIZ);
1163 return ret;
1164}
1165
1166/**
1167 * dev_alloc_name - allocate a name for a device
1168 * @dev: device
1169 * @name: name format string
1170 *
1171 * Passed a format string - eg "lt%d" it will try and find a suitable
1172 * id. It scans list of devices to build up a free map, then chooses
1173 * the first empty slot. The caller must hold the dev_base or rtnl lock
1174 * while allocating the name and adding the device in order to avoid
1175 * duplicates.
1176 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177 * Returns the number of the unit assigned or a negative errno code.
1178 */
1179
1180int dev_alloc_name(struct net_device *dev, const char *name)
1181{
1182 return dev_alloc_name_ns(dev_net(dev), dev, name);
1183}
1184EXPORT_SYMBOL(dev_alloc_name);
1185
1186static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187 const char *name)
1188{
1189 BUG_ON(!net);
1190
1191 if (!dev_valid_name(name))
1192 return -EINVAL;
1193
1194 if (strchr(name, '%'))
1195 return dev_alloc_name_ns(net, dev, name);
1196 else if (netdev_name_in_use(net, name))
1197 return -EEXIST;
1198 else if (dev->name != name)
1199 strlcpy(dev->name, name, IFNAMSIZ);
1200
1201 return 0;
1202}
1203
1204/**
1205 * dev_change_name - change name of a device
1206 * @dev: device
1207 * @newname: name (or format string) must be at least IFNAMSIZ
1208 *
1209 * Change name of a device, can pass format strings "eth%d".
1210 * for wildcarding.
1211 */
1212int dev_change_name(struct net_device *dev, const char *newname)
1213{
1214 unsigned char old_assign_type;
1215 char oldname[IFNAMSIZ];
1216 int err = 0;
1217 int ret;
1218 struct net *net;
1219
1220 ASSERT_RTNL();
1221 BUG_ON(!dev_net(dev));
1222
1223 net = dev_net(dev);
1224
1225 /* Some auto-enslaved devices e.g. failover slaves are
1226 * special, as userspace might rename the device after
1227 * the interface had been brought up and running since
1228 * the point kernel initiated auto-enslavement. Allow
1229 * live name change even when these slave devices are
1230 * up and running.
1231 *
1232 * Typically, users of these auto-enslaving devices
1233 * don't actually care about slave name change, as
1234 * they are supposed to operate on master interface
1235 * directly.
1236 */
1237 if (dev->flags & IFF_UP &&
1238 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239 return -EBUSY;
1240
1241 down_write(&devnet_rename_sem);
1242
1243 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244 up_write(&devnet_rename_sem);
1245 return 0;
1246 }
1247
1248 memcpy(oldname, dev->name, IFNAMSIZ);
1249
1250 err = dev_get_valid_name(net, dev, newname);
1251 if (err < 0) {
1252 up_write(&devnet_rename_sem);
1253 return err;
1254 }
1255
1256 if (oldname[0] && !strchr(oldname, '%'))
1257 netdev_info(dev, "renamed from %s\n", oldname);
1258
1259 old_assign_type = dev->name_assign_type;
1260 dev->name_assign_type = NET_NAME_RENAMED;
1261
1262rollback:
1263 ret = device_rename(&dev->dev, dev->name);
1264 if (ret) {
1265 memcpy(dev->name, oldname, IFNAMSIZ);
1266 dev->name_assign_type = old_assign_type;
1267 up_write(&devnet_rename_sem);
1268 return ret;
1269 }
1270
1271 up_write(&devnet_rename_sem);
1272
1273 netdev_adjacent_rename_links(dev, oldname);
1274
1275 write_lock_bh(&dev_base_lock);
1276 netdev_name_node_del(dev->name_node);
1277 write_unlock_bh(&dev_base_lock);
1278
1279 synchronize_rcu();
1280
1281 write_lock_bh(&dev_base_lock);
1282 netdev_name_node_add(net, dev->name_node);
1283 write_unlock_bh(&dev_base_lock);
1284
1285 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286 ret = notifier_to_errno(ret);
1287
1288 if (ret) {
1289 /* err >= 0 after dev_alloc_name() or stores the first errno */
1290 if (err >= 0) {
1291 err = ret;
1292 down_write(&devnet_rename_sem);
1293 memcpy(dev->name, oldname, IFNAMSIZ);
1294 memcpy(oldname, newname, IFNAMSIZ);
1295 dev->name_assign_type = old_assign_type;
1296 old_assign_type = NET_NAME_RENAMED;
1297 goto rollback;
1298 } else {
1299 netdev_err(dev, "name change rollback failed: %d\n",
1300 ret);
1301 }
1302 }
1303
1304 return err;
1305}
1306
1307/**
1308 * dev_set_alias - change ifalias of a device
1309 * @dev: device
1310 * @alias: name up to IFALIASZ
1311 * @len: limit of bytes to copy from info
1312 *
1313 * Set ifalias for a device,
1314 */
1315int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316{
1317 struct dev_ifalias *new_alias = NULL;
1318
1319 if (len >= IFALIASZ)
1320 return -EINVAL;
1321
1322 if (len) {
1323 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324 if (!new_alias)
1325 return -ENOMEM;
1326
1327 memcpy(new_alias->ifalias, alias, len);
1328 new_alias->ifalias[len] = 0;
1329 }
1330
1331 mutex_lock(&ifalias_mutex);
1332 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333 mutex_is_locked(&ifalias_mutex));
1334 mutex_unlock(&ifalias_mutex);
1335
1336 if (new_alias)
1337 kfree_rcu(new_alias, rcuhead);
1338
1339 return len;
1340}
1341EXPORT_SYMBOL(dev_set_alias);
1342
1343/**
1344 * dev_get_alias - get ifalias of a device
1345 * @dev: device
1346 * @name: buffer to store name of ifalias
1347 * @len: size of buffer
1348 *
1349 * get ifalias for a device. Caller must make sure dev cannot go
1350 * away, e.g. rcu read lock or own a reference count to device.
1351 */
1352int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353{
1354 const struct dev_ifalias *alias;
1355 int ret = 0;
1356
1357 rcu_read_lock();
1358 alias = rcu_dereference(dev->ifalias);
1359 if (alias)
1360 ret = snprintf(name, len, "%s", alias->ifalias);
1361 rcu_read_unlock();
1362
1363 return ret;
1364}
1365
1366/**
1367 * netdev_features_change - device changes features
1368 * @dev: device to cause notification
1369 *
1370 * Called to indicate a device has changed features.
1371 */
1372void netdev_features_change(struct net_device *dev)
1373{
1374 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375}
1376EXPORT_SYMBOL(netdev_features_change);
1377
1378/**
1379 * netdev_state_change - device changes state
1380 * @dev: device to cause notification
1381 *
1382 * Called to indicate a device has changed state. This function calls
1383 * the notifier chains for netdev_chain and sends a NEWLINK message
1384 * to the routing socket.
1385 */
1386void netdev_state_change(struct net_device *dev)
1387{
1388 if (dev->flags & IFF_UP) {
1389 struct netdev_notifier_change_info change_info = {
1390 .info.dev = dev,
1391 };
1392
1393 call_netdevice_notifiers_info(NETDEV_CHANGE,
1394 &change_info.info);
1395 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396 }
1397}
1398EXPORT_SYMBOL(netdev_state_change);
1399
1400/**
1401 * __netdev_notify_peers - notify network peers about existence of @dev,
1402 * to be called when rtnl lock is already held.
1403 * @dev: network device
1404 *
1405 * Generate traffic such that interested network peers are aware of
1406 * @dev, such as by generating a gratuitous ARP. This may be used when
1407 * a device wants to inform the rest of the network about some sort of
1408 * reconfiguration such as a failover event or virtual machine
1409 * migration.
1410 */
1411void __netdev_notify_peers(struct net_device *dev)
1412{
1413 ASSERT_RTNL();
1414 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416}
1417EXPORT_SYMBOL(__netdev_notify_peers);
1418
1419/**
1420 * netdev_notify_peers - notify network peers about existence of @dev
1421 * @dev: network device
1422 *
1423 * Generate traffic such that interested network peers are aware of
1424 * @dev, such as by generating a gratuitous ARP. This may be used when
1425 * a device wants to inform the rest of the network about some sort of
1426 * reconfiguration such as a failover event or virtual machine
1427 * migration.
1428 */
1429void netdev_notify_peers(struct net_device *dev)
1430{
1431 rtnl_lock();
1432 __netdev_notify_peers(dev);
1433 rtnl_unlock();
1434}
1435EXPORT_SYMBOL(netdev_notify_peers);
1436
1437static int napi_threaded_poll(void *data);
1438
1439static int napi_kthread_create(struct napi_struct *n)
1440{
1441 int err = 0;
1442
1443 /* Create and wake up the kthread once to put it in
1444 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445 * warning and work with loadavg.
1446 */
1447 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448 n->dev->name, n->napi_id);
1449 if (IS_ERR(n->thread)) {
1450 err = PTR_ERR(n->thread);
1451 pr_err("kthread_run failed with err %d\n", err);
1452 n->thread = NULL;
1453 }
1454
1455 return err;
1456}
1457
1458static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459{
1460 const struct net_device_ops *ops = dev->netdev_ops;
1461 int ret;
1462
1463 ASSERT_RTNL();
1464
1465 if (!netif_device_present(dev)) {
1466 /* may be detached because parent is runtime-suspended */
1467 if (dev->dev.parent)
1468 pm_runtime_resume(dev->dev.parent);
1469 if (!netif_device_present(dev))
1470 return -ENODEV;
1471 }
1472
1473 /* Block netpoll from trying to do any rx path servicing.
1474 * If we don't do this there is a chance ndo_poll_controller
1475 * or ndo_poll may be running while we open the device
1476 */
1477 netpoll_poll_disable(dev);
1478
1479 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480 ret = notifier_to_errno(ret);
1481 if (ret)
1482 return ret;
1483
1484 set_bit(__LINK_STATE_START, &dev->state);
1485
1486 if (ops->ndo_validate_addr)
1487 ret = ops->ndo_validate_addr(dev);
1488
1489 if (!ret && ops->ndo_open)
1490 ret = ops->ndo_open(dev);
1491
1492 netpoll_poll_enable(dev);
1493
1494 if (ret)
1495 clear_bit(__LINK_STATE_START, &dev->state);
1496 else {
1497 dev->flags |= IFF_UP;
1498 dev_set_rx_mode(dev);
1499 dev_activate(dev);
1500 add_device_randomness(dev->dev_addr, dev->addr_len);
1501 }
1502
1503 return ret;
1504}
1505
1506/**
1507 * dev_open - prepare an interface for use.
1508 * @dev: device to open
1509 * @extack: netlink extended ack
1510 *
1511 * Takes a device from down to up state. The device's private open
1512 * function is invoked and then the multicast lists are loaded. Finally
1513 * the device is moved into the up state and a %NETDEV_UP message is
1514 * sent to the netdev notifier chain.
1515 *
1516 * Calling this function on an active interface is a nop. On a failure
1517 * a negative errno code is returned.
1518 */
1519int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520{
1521 int ret;
1522
1523 if (dev->flags & IFF_UP)
1524 return 0;
1525
1526 ret = __dev_open(dev, extack);
1527 if (ret < 0)
1528 return ret;
1529
1530 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531 call_netdevice_notifiers(NETDEV_UP, dev);
1532
1533 return ret;
1534}
1535EXPORT_SYMBOL(dev_open);
1536
1537static void __dev_close_many(struct list_head *head)
1538{
1539 struct net_device *dev;
1540
1541 ASSERT_RTNL();
1542 might_sleep();
1543
1544 list_for_each_entry(dev, head, close_list) {
1545 /* Temporarily disable netpoll until the interface is down */
1546 netpoll_poll_disable(dev);
1547
1548 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549
1550 clear_bit(__LINK_STATE_START, &dev->state);
1551
1552 /* Synchronize to scheduled poll. We cannot touch poll list, it
1553 * can be even on different cpu. So just clear netif_running().
1554 *
1555 * dev->stop() will invoke napi_disable() on all of it's
1556 * napi_struct instances on this device.
1557 */
1558 smp_mb__after_atomic(); /* Commit netif_running(). */
1559 }
1560
1561 dev_deactivate_many(head);
1562
1563 list_for_each_entry(dev, head, close_list) {
1564 const struct net_device_ops *ops = dev->netdev_ops;
1565
1566 /*
1567 * Call the device specific close. This cannot fail.
1568 * Only if device is UP
1569 *
1570 * We allow it to be called even after a DETACH hot-plug
1571 * event.
1572 */
1573 if (ops->ndo_stop)
1574 ops->ndo_stop(dev);
1575
1576 dev->flags &= ~IFF_UP;
1577 netpoll_poll_enable(dev);
1578 }
1579}
1580
1581static void __dev_close(struct net_device *dev)
1582{
1583 LIST_HEAD(single);
1584
1585 list_add(&dev->close_list, &single);
1586 __dev_close_many(&single);
1587 list_del(&single);
1588}
1589
1590void dev_close_many(struct list_head *head, bool unlink)
1591{
1592 struct net_device *dev, *tmp;
1593
1594 /* Remove the devices that don't need to be closed */
1595 list_for_each_entry_safe(dev, tmp, head, close_list)
1596 if (!(dev->flags & IFF_UP))
1597 list_del_init(&dev->close_list);
1598
1599 __dev_close_many(head);
1600
1601 list_for_each_entry_safe(dev, tmp, head, close_list) {
1602 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603 call_netdevice_notifiers(NETDEV_DOWN, dev);
1604 if (unlink)
1605 list_del_init(&dev->close_list);
1606 }
1607}
1608EXPORT_SYMBOL(dev_close_many);
1609
1610/**
1611 * dev_close - shutdown an interface.
1612 * @dev: device to shutdown
1613 *
1614 * This function moves an active device into down state. A
1615 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617 * chain.
1618 */
1619void dev_close(struct net_device *dev)
1620{
1621 if (dev->flags & IFF_UP) {
1622 LIST_HEAD(single);
1623
1624 list_add(&dev->close_list, &single);
1625 dev_close_many(&single, true);
1626 list_del(&single);
1627 }
1628}
1629EXPORT_SYMBOL(dev_close);
1630
1631
1632/**
1633 * dev_disable_lro - disable Large Receive Offload on a device
1634 * @dev: device
1635 *
1636 * Disable Large Receive Offload (LRO) on a net device. Must be
1637 * called under RTNL. This is needed if received packets may be
1638 * forwarded to another interface.
1639 */
1640void dev_disable_lro(struct net_device *dev)
1641{
1642 struct net_device *lower_dev;
1643 struct list_head *iter;
1644
1645 dev->wanted_features &= ~NETIF_F_LRO;
1646 netdev_update_features(dev);
1647
1648 if (unlikely(dev->features & NETIF_F_LRO))
1649 netdev_WARN(dev, "failed to disable LRO!\n");
1650
1651 netdev_for_each_lower_dev(dev, lower_dev, iter)
1652 dev_disable_lro(lower_dev);
1653}
1654EXPORT_SYMBOL(dev_disable_lro);
1655
1656/**
1657 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658 * @dev: device
1659 *
1660 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1661 * called under RTNL. This is needed if Generic XDP is installed on
1662 * the device.
1663 */
1664static void dev_disable_gro_hw(struct net_device *dev)
1665{
1666 dev->wanted_features &= ~NETIF_F_GRO_HW;
1667 netdev_update_features(dev);
1668
1669 if (unlikely(dev->features & NETIF_F_GRO_HW))
1670 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671}
1672
1673const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674{
1675#define N(val) \
1676 case NETDEV_##val: \
1677 return "NETDEV_" __stringify(val);
1678 switch (cmd) {
1679 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688 N(PRE_CHANGEADDR)
1689 }
1690#undef N
1691 return "UNKNOWN_NETDEV_EVENT";
1692}
1693EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694
1695static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696 struct net_device *dev)
1697{
1698 struct netdev_notifier_info info = {
1699 .dev = dev,
1700 };
1701
1702 return nb->notifier_call(nb, val, &info);
1703}
1704
1705static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706 struct net_device *dev)
1707{
1708 int err;
1709
1710 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711 err = notifier_to_errno(err);
1712 if (err)
1713 return err;
1714
1715 if (!(dev->flags & IFF_UP))
1716 return 0;
1717
1718 call_netdevice_notifier(nb, NETDEV_UP, dev);
1719 return 0;
1720}
1721
1722static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723 struct net_device *dev)
1724{
1725 if (dev->flags & IFF_UP) {
1726 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 dev);
1728 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 }
1730 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731}
1732
1733static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734 struct net *net)
1735{
1736 struct net_device *dev;
1737 int err;
1738
1739 for_each_netdev(net, dev) {
1740 err = call_netdevice_register_notifiers(nb, dev);
1741 if (err)
1742 goto rollback;
1743 }
1744 return 0;
1745
1746rollback:
1747 for_each_netdev_continue_reverse(net, dev)
1748 call_netdevice_unregister_notifiers(nb, dev);
1749 return err;
1750}
1751
1752static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753 struct net *net)
1754{
1755 struct net_device *dev;
1756
1757 for_each_netdev(net, dev)
1758 call_netdevice_unregister_notifiers(nb, dev);
1759}
1760
1761static int dev_boot_phase = 1;
1762
1763/**
1764 * register_netdevice_notifier - register a network notifier block
1765 * @nb: notifier
1766 *
1767 * Register a notifier to be called when network device events occur.
1768 * The notifier passed is linked into the kernel structures and must
1769 * not be reused until it has been unregistered. A negative errno code
1770 * is returned on a failure.
1771 *
1772 * When registered all registration and up events are replayed
1773 * to the new notifier to allow device to have a race free
1774 * view of the network device list.
1775 */
1776
1777int register_netdevice_notifier(struct notifier_block *nb)
1778{
1779 struct net *net;
1780 int err;
1781
1782 /* Close race with setup_net() and cleanup_net() */
1783 down_write(&pernet_ops_rwsem);
1784 rtnl_lock();
1785 err = raw_notifier_chain_register(&netdev_chain, nb);
1786 if (err)
1787 goto unlock;
1788 if (dev_boot_phase)
1789 goto unlock;
1790 for_each_net(net) {
1791 err = call_netdevice_register_net_notifiers(nb, net);
1792 if (err)
1793 goto rollback;
1794 }
1795
1796unlock:
1797 rtnl_unlock();
1798 up_write(&pernet_ops_rwsem);
1799 return err;
1800
1801rollback:
1802 for_each_net_continue_reverse(net)
1803 call_netdevice_unregister_net_notifiers(nb, net);
1804
1805 raw_notifier_chain_unregister(&netdev_chain, nb);
1806 goto unlock;
1807}
1808EXPORT_SYMBOL(register_netdevice_notifier);
1809
1810/**
1811 * unregister_netdevice_notifier - unregister a network notifier block
1812 * @nb: notifier
1813 *
1814 * Unregister a notifier previously registered by
1815 * register_netdevice_notifier(). The notifier is unlinked into the
1816 * kernel structures and may then be reused. A negative errno code
1817 * is returned on a failure.
1818 *
1819 * After unregistering unregister and down device events are synthesized
1820 * for all devices on the device list to the removed notifier to remove
1821 * the need for special case cleanup code.
1822 */
1823
1824int unregister_netdevice_notifier(struct notifier_block *nb)
1825{
1826 struct net *net;
1827 int err;
1828
1829 /* Close race with setup_net() and cleanup_net() */
1830 down_write(&pernet_ops_rwsem);
1831 rtnl_lock();
1832 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833 if (err)
1834 goto unlock;
1835
1836 for_each_net(net)
1837 call_netdevice_unregister_net_notifiers(nb, net);
1838
1839unlock:
1840 rtnl_unlock();
1841 up_write(&pernet_ops_rwsem);
1842 return err;
1843}
1844EXPORT_SYMBOL(unregister_netdevice_notifier);
1845
1846static int __register_netdevice_notifier_net(struct net *net,
1847 struct notifier_block *nb,
1848 bool ignore_call_fail)
1849{
1850 int err;
1851
1852 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853 if (err)
1854 return err;
1855 if (dev_boot_phase)
1856 return 0;
1857
1858 err = call_netdevice_register_net_notifiers(nb, net);
1859 if (err && !ignore_call_fail)
1860 goto chain_unregister;
1861
1862 return 0;
1863
1864chain_unregister:
1865 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866 return err;
1867}
1868
1869static int __unregister_netdevice_notifier_net(struct net *net,
1870 struct notifier_block *nb)
1871{
1872 int err;
1873
1874 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875 if (err)
1876 return err;
1877
1878 call_netdevice_unregister_net_notifiers(nb, net);
1879 return 0;
1880}
1881
1882/**
1883 * register_netdevice_notifier_net - register a per-netns network notifier block
1884 * @net: network namespace
1885 * @nb: notifier
1886 *
1887 * Register a notifier to be called when network device events occur.
1888 * The notifier passed is linked into the kernel structures and must
1889 * not be reused until it has been unregistered. A negative errno code
1890 * is returned on a failure.
1891 *
1892 * When registered all registration and up events are replayed
1893 * to the new notifier to allow device to have a race free
1894 * view of the network device list.
1895 */
1896
1897int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898{
1899 int err;
1900
1901 rtnl_lock();
1902 err = __register_netdevice_notifier_net(net, nb, false);
1903 rtnl_unlock();
1904 return err;
1905}
1906EXPORT_SYMBOL(register_netdevice_notifier_net);
1907
1908/**
1909 * unregister_netdevice_notifier_net - unregister a per-netns
1910 * network notifier block
1911 * @net: network namespace
1912 * @nb: notifier
1913 *
1914 * Unregister a notifier previously registered by
1915 * register_netdevice_notifier(). The notifier is unlinked into the
1916 * kernel structures and may then be reused. A negative errno code
1917 * is returned on a failure.
1918 *
1919 * After unregistering unregister and down device events are synthesized
1920 * for all devices on the device list to the removed notifier to remove
1921 * the need for special case cleanup code.
1922 */
1923
1924int unregister_netdevice_notifier_net(struct net *net,
1925 struct notifier_block *nb)
1926{
1927 int err;
1928
1929 rtnl_lock();
1930 err = __unregister_netdevice_notifier_net(net, nb);
1931 rtnl_unlock();
1932 return err;
1933}
1934EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935
1936int register_netdevice_notifier_dev_net(struct net_device *dev,
1937 struct notifier_block *nb,
1938 struct netdev_net_notifier *nn)
1939{
1940 int err;
1941
1942 rtnl_lock();
1943 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944 if (!err) {
1945 nn->nb = nb;
1946 list_add(&nn->list, &dev->net_notifier_list);
1947 }
1948 rtnl_unlock();
1949 return err;
1950}
1951EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952
1953int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954 struct notifier_block *nb,
1955 struct netdev_net_notifier *nn)
1956{
1957 int err;
1958
1959 rtnl_lock();
1960 list_del(&nn->list);
1961 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962 rtnl_unlock();
1963 return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966
1967static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968 struct net *net)
1969{
1970 struct netdev_net_notifier *nn;
1971
1972 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974 __register_netdevice_notifier_net(net, nn->nb, true);
1975 }
1976}
1977
1978/**
1979 * call_netdevice_notifiers_info - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @info: notifier information data
1982 *
1983 * Call all network notifier blocks. Parameters and return value
1984 * are as for raw_notifier_call_chain().
1985 */
1986
1987static int call_netdevice_notifiers_info(unsigned long val,
1988 struct netdev_notifier_info *info)
1989{
1990 struct net *net = dev_net(info->dev);
1991 int ret;
1992
1993 ASSERT_RTNL();
1994
1995 /* Run per-netns notifier block chain first, then run the global one.
1996 * Hopefully, one day, the global one is going to be removed after
1997 * all notifier block registrators get converted to be per-netns.
1998 */
1999 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000 if (ret & NOTIFY_STOP_MASK)
2001 return ret;
2002 return raw_notifier_call_chain(&netdev_chain, val, info);
2003}
2004
2005static int call_netdevice_notifiers_extack(unsigned long val,
2006 struct net_device *dev,
2007 struct netlink_ext_ack *extack)
2008{
2009 struct netdev_notifier_info info = {
2010 .dev = dev,
2011 .extack = extack,
2012 };
2013
2014 return call_netdevice_notifiers_info(val, &info);
2015}
2016
2017/**
2018 * call_netdevice_notifiers - call all network notifier blocks
2019 * @val: value passed unmodified to notifier function
2020 * @dev: net_device pointer passed unmodified to notifier function
2021 *
2022 * Call all network notifier blocks. Parameters and return value
2023 * are as for raw_notifier_call_chain().
2024 */
2025
2026int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027{
2028 return call_netdevice_notifiers_extack(val, dev, NULL);
2029}
2030EXPORT_SYMBOL(call_netdevice_notifiers);
2031
2032/**
2033 * call_netdevice_notifiers_mtu - call all network notifier blocks
2034 * @val: value passed unmodified to notifier function
2035 * @dev: net_device pointer passed unmodified to notifier function
2036 * @arg: additional u32 argument passed to the notifier function
2037 *
2038 * Call all network notifier blocks. Parameters and return value
2039 * are as for raw_notifier_call_chain().
2040 */
2041static int call_netdevice_notifiers_mtu(unsigned long val,
2042 struct net_device *dev, u32 arg)
2043{
2044 struct netdev_notifier_info_ext info = {
2045 .info.dev = dev,
2046 .ext.mtu = arg,
2047 };
2048
2049 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050
2051 return call_netdevice_notifiers_info(val, &info.info);
2052}
2053
2054#ifdef CONFIG_NET_INGRESS
2055static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056
2057void net_inc_ingress_queue(void)
2058{
2059 static_branch_inc(&ingress_needed_key);
2060}
2061EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062
2063void net_dec_ingress_queue(void)
2064{
2065 static_branch_dec(&ingress_needed_key);
2066}
2067EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068#endif
2069
2070#ifdef CONFIG_NET_EGRESS
2071static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072
2073void net_inc_egress_queue(void)
2074{
2075 static_branch_inc(&egress_needed_key);
2076}
2077EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078
2079void net_dec_egress_queue(void)
2080{
2081 static_branch_dec(&egress_needed_key);
2082}
2083EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084#endif
2085
2086static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087#ifdef CONFIG_JUMP_LABEL
2088static atomic_t netstamp_needed_deferred;
2089static atomic_t netstamp_wanted;
2090static void netstamp_clear(struct work_struct *work)
2091{
2092 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093 int wanted;
2094
2095 wanted = atomic_add_return(deferred, &netstamp_wanted);
2096 if (wanted > 0)
2097 static_branch_enable(&netstamp_needed_key);
2098 else
2099 static_branch_disable(&netstamp_needed_key);
2100}
2101static DECLARE_WORK(netstamp_work, netstamp_clear);
2102#endif
2103
2104void net_enable_timestamp(void)
2105{
2106#ifdef CONFIG_JUMP_LABEL
2107 int wanted;
2108
2109 while (1) {
2110 wanted = atomic_read(&netstamp_wanted);
2111 if (wanted <= 0)
2112 break;
2113 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114 return;
2115 }
2116 atomic_inc(&netstamp_needed_deferred);
2117 schedule_work(&netstamp_work);
2118#else
2119 static_branch_inc(&netstamp_needed_key);
2120#endif
2121}
2122EXPORT_SYMBOL(net_enable_timestamp);
2123
2124void net_disable_timestamp(void)
2125{
2126#ifdef CONFIG_JUMP_LABEL
2127 int wanted;
2128
2129 while (1) {
2130 wanted = atomic_read(&netstamp_wanted);
2131 if (wanted <= 1)
2132 break;
2133 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134 return;
2135 }
2136 atomic_dec(&netstamp_needed_deferred);
2137 schedule_work(&netstamp_work);
2138#else
2139 static_branch_dec(&netstamp_needed_key);
2140#endif
2141}
2142EXPORT_SYMBOL(net_disable_timestamp);
2143
2144static inline void net_timestamp_set(struct sk_buff *skb)
2145{
2146 skb->tstamp = 0;
2147 if (static_branch_unlikely(&netstamp_needed_key))
2148 __net_timestamp(skb);
2149}
2150
2151#define net_timestamp_check(COND, SKB) \
2152 if (static_branch_unlikely(&netstamp_needed_key)) { \
2153 if ((COND) && !(SKB)->tstamp) \
2154 __net_timestamp(SKB); \
2155 } \
2156
2157bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158{
2159 return __is_skb_forwardable(dev, skb, true);
2160}
2161EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162
2163static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164 bool check_mtu)
2165{
2166 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167
2168 if (likely(!ret)) {
2169 skb->protocol = eth_type_trans(skb, dev);
2170 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171 }
2172
2173 return ret;
2174}
2175
2176int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177{
2178 return __dev_forward_skb2(dev, skb, true);
2179}
2180EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181
2182/**
2183 * dev_forward_skb - loopback an skb to another netif
2184 *
2185 * @dev: destination network device
2186 * @skb: buffer to forward
2187 *
2188 * return values:
2189 * NET_RX_SUCCESS (no congestion)
2190 * NET_RX_DROP (packet was dropped, but freed)
2191 *
2192 * dev_forward_skb can be used for injecting an skb from the
2193 * start_xmit function of one device into the receive queue
2194 * of another device.
2195 *
2196 * The receiving device may be in another namespace, so
2197 * we have to clear all information in the skb that could
2198 * impact namespace isolation.
2199 */
2200int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201{
2202 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203}
2204EXPORT_SYMBOL_GPL(dev_forward_skb);
2205
2206int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207{
2208 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209}
2210
2211static inline int deliver_skb(struct sk_buff *skb,
2212 struct packet_type *pt_prev,
2213 struct net_device *orig_dev)
2214{
2215 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216 return -ENOMEM;
2217 refcount_inc(&skb->users);
2218 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219}
2220
2221static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222 struct packet_type **pt,
2223 struct net_device *orig_dev,
2224 __be16 type,
2225 struct list_head *ptype_list)
2226{
2227 struct packet_type *ptype, *pt_prev = *pt;
2228
2229 list_for_each_entry_rcu(ptype, ptype_list, list) {
2230 if (ptype->type != type)
2231 continue;
2232 if (pt_prev)
2233 deliver_skb(skb, pt_prev, orig_dev);
2234 pt_prev = ptype;
2235 }
2236 *pt = pt_prev;
2237}
2238
2239static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240{
2241 if (!ptype->af_packet_priv || !skb->sk)
2242 return false;
2243
2244 if (ptype->id_match)
2245 return ptype->id_match(ptype, skb->sk);
2246 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247 return true;
2248
2249 return false;
2250}
2251
2252/**
2253 * dev_nit_active - return true if any network interface taps are in use
2254 *
2255 * @dev: network device to check for the presence of taps
2256 */
2257bool dev_nit_active(struct net_device *dev)
2258{
2259 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260}
2261EXPORT_SYMBOL_GPL(dev_nit_active);
2262
2263/*
2264 * Support routine. Sends outgoing frames to any network
2265 * taps currently in use.
2266 */
2267
2268void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269{
2270 struct packet_type *ptype;
2271 struct sk_buff *skb2 = NULL;
2272 struct packet_type *pt_prev = NULL;
2273 struct list_head *ptype_list = &ptype_all;
2274
2275 rcu_read_lock();
2276again:
2277 list_for_each_entry_rcu(ptype, ptype_list, list) {
2278 if (ptype->ignore_outgoing)
2279 continue;
2280
2281 /* Never send packets back to the socket
2282 * they originated from - MvS (miquels@drinkel.ow.org)
2283 */
2284 if (skb_loop_sk(ptype, skb))
2285 continue;
2286
2287 if (pt_prev) {
2288 deliver_skb(skb2, pt_prev, skb->dev);
2289 pt_prev = ptype;
2290 continue;
2291 }
2292
2293 /* need to clone skb, done only once */
2294 skb2 = skb_clone(skb, GFP_ATOMIC);
2295 if (!skb2)
2296 goto out_unlock;
2297
2298 net_timestamp_set(skb2);
2299
2300 /* skb->nh should be correctly
2301 * set by sender, so that the second statement is
2302 * just protection against buggy protocols.
2303 */
2304 skb_reset_mac_header(skb2);
2305
2306 if (skb_network_header(skb2) < skb2->data ||
2307 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309 ntohs(skb2->protocol),
2310 dev->name);
2311 skb_reset_network_header(skb2);
2312 }
2313
2314 skb2->transport_header = skb2->network_header;
2315 skb2->pkt_type = PACKET_OUTGOING;
2316 pt_prev = ptype;
2317 }
2318
2319 if (ptype_list == &ptype_all) {
2320 ptype_list = &dev->ptype_all;
2321 goto again;
2322 }
2323out_unlock:
2324 if (pt_prev) {
2325 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327 else
2328 kfree_skb(skb2);
2329 }
2330 rcu_read_unlock();
2331}
2332EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333
2334/**
2335 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336 * @dev: Network device
2337 * @txq: number of queues available
2338 *
2339 * If real_num_tx_queues is changed the tc mappings may no longer be
2340 * valid. To resolve this verify the tc mapping remains valid and if
2341 * not NULL the mapping. With no priorities mapping to this
2342 * offset/count pair it will no longer be used. In the worst case TC0
2343 * is invalid nothing can be done so disable priority mappings. If is
2344 * expected that drivers will fix this mapping if they can before
2345 * calling netif_set_real_num_tx_queues.
2346 */
2347static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348{
2349 int i;
2350 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351
2352 /* If TC0 is invalidated disable TC mapping */
2353 if (tc->offset + tc->count > txq) {
2354 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355 dev->num_tc = 0;
2356 return;
2357 }
2358
2359 /* Invalidated prio to tc mappings set to TC0 */
2360 for (i = 1; i < TC_BITMASK + 1; i++) {
2361 int q = netdev_get_prio_tc_map(dev, i);
2362
2363 tc = &dev->tc_to_txq[q];
2364 if (tc->offset + tc->count > txq) {
2365 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366 i, q);
2367 netdev_set_prio_tc_map(dev, i, 0);
2368 }
2369 }
2370}
2371
2372int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373{
2374 if (dev->num_tc) {
2375 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376 int i;
2377
2378 /* walk through the TCs and see if it falls into any of them */
2379 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380 if ((txq - tc->offset) < tc->count)
2381 return i;
2382 }
2383
2384 /* didn't find it, just return -1 to indicate no match */
2385 return -1;
2386 }
2387
2388 return 0;
2389}
2390EXPORT_SYMBOL(netdev_txq_to_tc);
2391
2392#ifdef CONFIG_XPS
2393static struct static_key xps_needed __read_mostly;
2394static struct static_key xps_rxqs_needed __read_mostly;
2395static DEFINE_MUTEX(xps_map_mutex);
2396#define xmap_dereference(P) \
2397 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398
2399static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400 struct xps_dev_maps *old_maps, int tci, u16 index)
2401{
2402 struct xps_map *map = NULL;
2403 int pos;
2404
2405 if (dev_maps)
2406 map = xmap_dereference(dev_maps->attr_map[tci]);
2407 if (!map)
2408 return false;
2409
2410 for (pos = map->len; pos--;) {
2411 if (map->queues[pos] != index)
2412 continue;
2413
2414 if (map->len > 1) {
2415 map->queues[pos] = map->queues[--map->len];
2416 break;
2417 }
2418
2419 if (old_maps)
2420 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422 kfree_rcu(map, rcu);
2423 return false;
2424 }
2425
2426 return true;
2427}
2428
2429static bool remove_xps_queue_cpu(struct net_device *dev,
2430 struct xps_dev_maps *dev_maps,
2431 int cpu, u16 offset, u16 count)
2432{
2433 int num_tc = dev_maps->num_tc;
2434 bool active = false;
2435 int tci;
2436
2437 for (tci = cpu * num_tc; num_tc--; tci++) {
2438 int i, j;
2439
2440 for (i = count, j = offset; i--; j++) {
2441 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442 break;
2443 }
2444
2445 active |= i < 0;
2446 }
2447
2448 return active;
2449}
2450
2451static void reset_xps_maps(struct net_device *dev,
2452 struct xps_dev_maps *dev_maps,
2453 enum xps_map_type type)
2454{
2455 static_key_slow_dec_cpuslocked(&xps_needed);
2456 if (type == XPS_RXQS)
2457 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458
2459 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460
2461 kfree_rcu(dev_maps, rcu);
2462}
2463
2464static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465 u16 offset, u16 count)
2466{
2467 struct xps_dev_maps *dev_maps;
2468 bool active = false;
2469 int i, j;
2470
2471 dev_maps = xmap_dereference(dev->xps_maps[type]);
2472 if (!dev_maps)
2473 return;
2474
2475 for (j = 0; j < dev_maps->nr_ids; j++)
2476 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477 if (!active)
2478 reset_xps_maps(dev, dev_maps, type);
2479
2480 if (type == XPS_CPUS) {
2481 for (i = offset + (count - 1); count--; i--)
2482 netdev_queue_numa_node_write(
2483 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484 }
2485}
2486
2487static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488 u16 count)
2489{
2490 if (!static_key_false(&xps_needed))
2491 return;
2492
2493 cpus_read_lock();
2494 mutex_lock(&xps_map_mutex);
2495
2496 if (static_key_false(&xps_rxqs_needed))
2497 clean_xps_maps(dev, XPS_RXQS, offset, count);
2498
2499 clean_xps_maps(dev, XPS_CPUS, offset, count);
2500
2501 mutex_unlock(&xps_map_mutex);
2502 cpus_read_unlock();
2503}
2504
2505static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506{
2507 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508}
2509
2510static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511 u16 index, bool is_rxqs_map)
2512{
2513 struct xps_map *new_map;
2514 int alloc_len = XPS_MIN_MAP_ALLOC;
2515 int i, pos;
2516
2517 for (pos = 0; map && pos < map->len; pos++) {
2518 if (map->queues[pos] != index)
2519 continue;
2520 return map;
2521 }
2522
2523 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524 if (map) {
2525 if (pos < map->alloc_len)
2526 return map;
2527
2528 alloc_len = map->alloc_len * 2;
2529 }
2530
2531 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532 * map
2533 */
2534 if (is_rxqs_map)
2535 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536 else
2537 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538 cpu_to_node(attr_index));
2539 if (!new_map)
2540 return NULL;
2541
2542 for (i = 0; i < pos; i++)
2543 new_map->queues[i] = map->queues[i];
2544 new_map->alloc_len = alloc_len;
2545 new_map->len = pos;
2546
2547 return new_map;
2548}
2549
2550/* Copy xps maps at a given index */
2551static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552 struct xps_dev_maps *new_dev_maps, int index,
2553 int tc, bool skip_tc)
2554{
2555 int i, tci = index * dev_maps->num_tc;
2556 struct xps_map *map;
2557
2558 /* copy maps belonging to foreign traffic classes */
2559 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560 if (i == tc && skip_tc)
2561 continue;
2562
2563 /* fill in the new device map from the old device map */
2564 map = xmap_dereference(dev_maps->attr_map[tci]);
2565 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566 }
2567}
2568
2569/* Must be called under cpus_read_lock */
2570int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571 u16 index, enum xps_map_type type)
2572{
2573 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574 const unsigned long *online_mask = NULL;
2575 bool active = false, copy = false;
2576 int i, j, tci, numa_node_id = -2;
2577 int maps_sz, num_tc = 1, tc = 0;
2578 struct xps_map *map, *new_map;
2579 unsigned int nr_ids;
2580
2581 if (dev->num_tc) {
2582 /* Do not allow XPS on subordinate device directly */
2583 num_tc = dev->num_tc;
2584 if (num_tc < 0)
2585 return -EINVAL;
2586
2587 /* If queue belongs to subordinate dev use its map */
2588 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589
2590 tc = netdev_txq_to_tc(dev, index);
2591 if (tc < 0)
2592 return -EINVAL;
2593 }
2594
2595 mutex_lock(&xps_map_mutex);
2596
2597 dev_maps = xmap_dereference(dev->xps_maps[type]);
2598 if (type == XPS_RXQS) {
2599 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600 nr_ids = dev->num_rx_queues;
2601 } else {
2602 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603 if (num_possible_cpus() > 1)
2604 online_mask = cpumask_bits(cpu_online_mask);
2605 nr_ids = nr_cpu_ids;
2606 }
2607
2608 if (maps_sz < L1_CACHE_BYTES)
2609 maps_sz = L1_CACHE_BYTES;
2610
2611 /* The old dev_maps could be larger or smaller than the one we're
2612 * setting up now, as dev->num_tc or nr_ids could have been updated in
2613 * between. We could try to be smart, but let's be safe instead and only
2614 * copy foreign traffic classes if the two map sizes match.
2615 */
2616 if (dev_maps &&
2617 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618 copy = true;
2619
2620 /* allocate memory for queue storage */
2621 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622 j < nr_ids;) {
2623 if (!new_dev_maps) {
2624 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625 if (!new_dev_maps) {
2626 mutex_unlock(&xps_map_mutex);
2627 return -ENOMEM;
2628 }
2629
2630 new_dev_maps->nr_ids = nr_ids;
2631 new_dev_maps->num_tc = num_tc;
2632 }
2633
2634 tci = j * num_tc + tc;
2635 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636
2637 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638 if (!map)
2639 goto error;
2640
2641 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642 }
2643
2644 if (!new_dev_maps)
2645 goto out_no_new_maps;
2646
2647 if (!dev_maps) {
2648 /* Increment static keys at most once per type */
2649 static_key_slow_inc_cpuslocked(&xps_needed);
2650 if (type == XPS_RXQS)
2651 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652 }
2653
2654 for (j = 0; j < nr_ids; j++) {
2655 bool skip_tc = false;
2656
2657 tci = j * num_tc + tc;
2658 if (netif_attr_test_mask(j, mask, nr_ids) &&
2659 netif_attr_test_online(j, online_mask, nr_ids)) {
2660 /* add tx-queue to CPU/rx-queue maps */
2661 int pos = 0;
2662
2663 skip_tc = true;
2664
2665 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666 while ((pos < map->len) && (map->queues[pos] != index))
2667 pos++;
2668
2669 if (pos == map->len)
2670 map->queues[map->len++] = index;
2671#ifdef CONFIG_NUMA
2672 if (type == XPS_CPUS) {
2673 if (numa_node_id == -2)
2674 numa_node_id = cpu_to_node(j);
2675 else if (numa_node_id != cpu_to_node(j))
2676 numa_node_id = -1;
2677 }
2678#endif
2679 }
2680
2681 if (copy)
2682 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683 skip_tc);
2684 }
2685
2686 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687
2688 /* Cleanup old maps */
2689 if (!dev_maps)
2690 goto out_no_old_maps;
2691
2692 for (j = 0; j < dev_maps->nr_ids; j++) {
2693 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694 map = xmap_dereference(dev_maps->attr_map[tci]);
2695 if (!map)
2696 continue;
2697
2698 if (copy) {
2699 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 if (map == new_map)
2701 continue;
2702 }
2703
2704 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705 kfree_rcu(map, rcu);
2706 }
2707 }
2708
2709 old_dev_maps = dev_maps;
2710
2711out_no_old_maps:
2712 dev_maps = new_dev_maps;
2713 active = true;
2714
2715out_no_new_maps:
2716 if (type == XPS_CPUS)
2717 /* update Tx queue numa node */
2718 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719 (numa_node_id >= 0) ?
2720 numa_node_id : NUMA_NO_NODE);
2721
2722 if (!dev_maps)
2723 goto out_no_maps;
2724
2725 /* removes tx-queue from unused CPUs/rx-queues */
2726 for (j = 0; j < dev_maps->nr_ids; j++) {
2727 tci = j * dev_maps->num_tc;
2728
2729 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730 if (i == tc &&
2731 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733 continue;
2734
2735 active |= remove_xps_queue(dev_maps,
2736 copy ? old_dev_maps : NULL,
2737 tci, index);
2738 }
2739 }
2740
2741 if (old_dev_maps)
2742 kfree_rcu(old_dev_maps, rcu);
2743
2744 /* free map if not active */
2745 if (!active)
2746 reset_xps_maps(dev, dev_maps, type);
2747
2748out_no_maps:
2749 mutex_unlock(&xps_map_mutex);
2750
2751 return 0;
2752error:
2753 /* remove any maps that we added */
2754 for (j = 0; j < nr_ids; j++) {
2755 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757 map = copy ?
2758 xmap_dereference(dev_maps->attr_map[tci]) :
2759 NULL;
2760 if (new_map && new_map != map)
2761 kfree(new_map);
2762 }
2763 }
2764
2765 mutex_unlock(&xps_map_mutex);
2766
2767 kfree(new_dev_maps);
2768 return -ENOMEM;
2769}
2770EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771
2772int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773 u16 index)
2774{
2775 int ret;
2776
2777 cpus_read_lock();
2778 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779 cpus_read_unlock();
2780
2781 return ret;
2782}
2783EXPORT_SYMBOL(netif_set_xps_queue);
2784
2785#endif
2786static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787{
2788 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789
2790 /* Unbind any subordinate channels */
2791 while (txq-- != &dev->_tx[0]) {
2792 if (txq->sb_dev)
2793 netdev_unbind_sb_channel(dev, txq->sb_dev);
2794 }
2795}
2796
2797void netdev_reset_tc(struct net_device *dev)
2798{
2799#ifdef CONFIG_XPS
2800 netif_reset_xps_queues_gt(dev, 0);
2801#endif
2802 netdev_unbind_all_sb_channels(dev);
2803
2804 /* Reset TC configuration of device */
2805 dev->num_tc = 0;
2806 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808}
2809EXPORT_SYMBOL(netdev_reset_tc);
2810
2811int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812{
2813 if (tc >= dev->num_tc)
2814 return -EINVAL;
2815
2816#ifdef CONFIG_XPS
2817 netif_reset_xps_queues(dev, offset, count);
2818#endif
2819 dev->tc_to_txq[tc].count = count;
2820 dev->tc_to_txq[tc].offset = offset;
2821 return 0;
2822}
2823EXPORT_SYMBOL(netdev_set_tc_queue);
2824
2825int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826{
2827 if (num_tc > TC_MAX_QUEUE)
2828 return -EINVAL;
2829
2830#ifdef CONFIG_XPS
2831 netif_reset_xps_queues_gt(dev, 0);
2832#endif
2833 netdev_unbind_all_sb_channels(dev);
2834
2835 dev->num_tc = num_tc;
2836 return 0;
2837}
2838EXPORT_SYMBOL(netdev_set_num_tc);
2839
2840void netdev_unbind_sb_channel(struct net_device *dev,
2841 struct net_device *sb_dev)
2842{
2843 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844
2845#ifdef CONFIG_XPS
2846 netif_reset_xps_queues_gt(sb_dev, 0);
2847#endif
2848 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850
2851 while (txq-- != &dev->_tx[0]) {
2852 if (txq->sb_dev == sb_dev)
2853 txq->sb_dev = NULL;
2854 }
2855}
2856EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857
2858int netdev_bind_sb_channel_queue(struct net_device *dev,
2859 struct net_device *sb_dev,
2860 u8 tc, u16 count, u16 offset)
2861{
2862 /* Make certain the sb_dev and dev are already configured */
2863 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864 return -EINVAL;
2865
2866 /* We cannot hand out queues we don't have */
2867 if ((offset + count) > dev->real_num_tx_queues)
2868 return -EINVAL;
2869
2870 /* Record the mapping */
2871 sb_dev->tc_to_txq[tc].count = count;
2872 sb_dev->tc_to_txq[tc].offset = offset;
2873
2874 /* Provide a way for Tx queue to find the tc_to_txq map or
2875 * XPS map for itself.
2876 */
2877 while (count--)
2878 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879
2880 return 0;
2881}
2882EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883
2884int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885{
2886 /* Do not use a multiqueue device to represent a subordinate channel */
2887 if (netif_is_multiqueue(dev))
2888 return -ENODEV;
2889
2890 /* We allow channels 1 - 32767 to be used for subordinate channels.
2891 * Channel 0 is meant to be "native" mode and used only to represent
2892 * the main root device. We allow writing 0 to reset the device back
2893 * to normal mode after being used as a subordinate channel.
2894 */
2895 if (channel > S16_MAX)
2896 return -EINVAL;
2897
2898 dev->num_tc = -channel;
2899
2900 return 0;
2901}
2902EXPORT_SYMBOL(netdev_set_sb_channel);
2903
2904/*
2905 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907 */
2908int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909{
2910 bool disabling;
2911 int rc;
2912
2913 disabling = txq < dev->real_num_tx_queues;
2914
2915 if (txq < 1 || txq > dev->num_tx_queues)
2916 return -EINVAL;
2917
2918 if (dev->reg_state == NETREG_REGISTERED ||
2919 dev->reg_state == NETREG_UNREGISTERING) {
2920 ASSERT_RTNL();
2921
2922 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923 txq);
2924 if (rc)
2925 return rc;
2926
2927 if (dev->num_tc)
2928 netif_setup_tc(dev, txq);
2929
2930 dev_qdisc_change_real_num_tx(dev, txq);
2931
2932 dev->real_num_tx_queues = txq;
2933
2934 if (disabling) {
2935 synchronize_net();
2936 qdisc_reset_all_tx_gt(dev, txq);
2937#ifdef CONFIG_XPS
2938 netif_reset_xps_queues_gt(dev, txq);
2939#endif
2940 }
2941 } else {
2942 dev->real_num_tx_queues = txq;
2943 }
2944
2945 return 0;
2946}
2947EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948
2949#ifdef CONFIG_SYSFS
2950/**
2951 * netif_set_real_num_rx_queues - set actual number of RX queues used
2952 * @dev: Network device
2953 * @rxq: Actual number of RX queues
2954 *
2955 * This must be called either with the rtnl_lock held or before
2956 * registration of the net device. Returns 0 on success, or a
2957 * negative error code. If called before registration, it always
2958 * succeeds.
2959 */
2960int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961{
2962 int rc;
2963
2964 if (rxq < 1 || rxq > dev->num_rx_queues)
2965 return -EINVAL;
2966
2967 if (dev->reg_state == NETREG_REGISTERED) {
2968 ASSERT_RTNL();
2969
2970 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971 rxq);
2972 if (rc)
2973 return rc;
2974 }
2975
2976 dev->real_num_rx_queues = rxq;
2977 return 0;
2978}
2979EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980#endif
2981
2982/**
2983 * netif_set_real_num_queues - set actual number of RX and TX queues used
2984 * @dev: Network device
2985 * @txq: Actual number of TX queues
2986 * @rxq: Actual number of RX queues
2987 *
2988 * Set the real number of both TX and RX queues.
2989 * Does nothing if the number of queues is already correct.
2990 */
2991int netif_set_real_num_queues(struct net_device *dev,
2992 unsigned int txq, unsigned int rxq)
2993{
2994 unsigned int old_rxq = dev->real_num_rx_queues;
2995 int err;
2996
2997 if (txq < 1 || txq > dev->num_tx_queues ||
2998 rxq < 1 || rxq > dev->num_rx_queues)
2999 return -EINVAL;
3000
3001 /* Start from increases, so the error path only does decreases -
3002 * decreases can't fail.
3003 */
3004 if (rxq > dev->real_num_rx_queues) {
3005 err = netif_set_real_num_rx_queues(dev, rxq);
3006 if (err)
3007 return err;
3008 }
3009 if (txq > dev->real_num_tx_queues) {
3010 err = netif_set_real_num_tx_queues(dev, txq);
3011 if (err)
3012 goto undo_rx;
3013 }
3014 if (rxq < dev->real_num_rx_queues)
3015 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016 if (txq < dev->real_num_tx_queues)
3017 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018
3019 return 0;
3020undo_rx:
3021 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022 return err;
3023}
3024EXPORT_SYMBOL(netif_set_real_num_queues);
3025
3026/**
3027 * netif_get_num_default_rss_queues - default number of RSS queues
3028 *
3029 * This routine should set an upper limit on the number of RSS queues
3030 * used by default by multiqueue devices.
3031 */
3032int netif_get_num_default_rss_queues(void)
3033{
3034 return is_kdump_kernel() ?
3035 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036}
3037EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038
3039static void __netif_reschedule(struct Qdisc *q)
3040{
3041 struct softnet_data *sd;
3042 unsigned long flags;
3043
3044 local_irq_save(flags);
3045 sd = this_cpu_ptr(&softnet_data);
3046 q->next_sched = NULL;
3047 *sd->output_queue_tailp = q;
3048 sd->output_queue_tailp = &q->next_sched;
3049 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050 local_irq_restore(flags);
3051}
3052
3053void __netif_schedule(struct Qdisc *q)
3054{
3055 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056 __netif_reschedule(q);
3057}
3058EXPORT_SYMBOL(__netif_schedule);
3059
3060struct dev_kfree_skb_cb {
3061 enum skb_free_reason reason;
3062};
3063
3064static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065{
3066 return (struct dev_kfree_skb_cb *)skb->cb;
3067}
3068
3069void netif_schedule_queue(struct netdev_queue *txq)
3070{
3071 rcu_read_lock();
3072 if (!netif_xmit_stopped(txq)) {
3073 struct Qdisc *q = rcu_dereference(txq->qdisc);
3074
3075 __netif_schedule(q);
3076 }
3077 rcu_read_unlock();
3078}
3079EXPORT_SYMBOL(netif_schedule_queue);
3080
3081void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082{
3083 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084 struct Qdisc *q;
3085
3086 rcu_read_lock();
3087 q = rcu_dereference(dev_queue->qdisc);
3088 __netif_schedule(q);
3089 rcu_read_unlock();
3090 }
3091}
3092EXPORT_SYMBOL(netif_tx_wake_queue);
3093
3094void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095{
3096 unsigned long flags;
3097
3098 if (unlikely(!skb))
3099 return;
3100
3101 if (likely(refcount_read(&skb->users) == 1)) {
3102 smp_rmb();
3103 refcount_set(&skb->users, 0);
3104 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3105 return;
3106 }
3107 get_kfree_skb_cb(skb)->reason = reason;
3108 local_irq_save(flags);
3109 skb->next = __this_cpu_read(softnet_data.completion_queue);
3110 __this_cpu_write(softnet_data.completion_queue, skb);
3111 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 local_irq_restore(flags);
3113}
3114EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115
3116void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117{
3118 if (in_hardirq() || irqs_disabled())
3119 __dev_kfree_skb_irq(skb, reason);
3120 else
3121 dev_kfree_skb(skb);
3122}
3123EXPORT_SYMBOL(__dev_kfree_skb_any);
3124
3125
3126/**
3127 * netif_device_detach - mark device as removed
3128 * @dev: network device
3129 *
3130 * Mark device as removed from system and therefore no longer available.
3131 */
3132void netif_device_detach(struct net_device *dev)
3133{
3134 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135 netif_running(dev)) {
3136 netif_tx_stop_all_queues(dev);
3137 }
3138}
3139EXPORT_SYMBOL(netif_device_detach);
3140
3141/**
3142 * netif_device_attach - mark device as attached
3143 * @dev: network device
3144 *
3145 * Mark device as attached from system and restart if needed.
3146 */
3147void netif_device_attach(struct net_device *dev)
3148{
3149 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 netif_running(dev)) {
3151 netif_tx_wake_all_queues(dev);
3152 __netdev_watchdog_up(dev);
3153 }
3154}
3155EXPORT_SYMBOL(netif_device_attach);
3156
3157/*
3158 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159 * to be used as a distribution range.
3160 */
3161static u16 skb_tx_hash(const struct net_device *dev,
3162 const struct net_device *sb_dev,
3163 struct sk_buff *skb)
3164{
3165 u32 hash;
3166 u16 qoffset = 0;
3167 u16 qcount = dev->real_num_tx_queues;
3168
3169 if (dev->num_tc) {
3170 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171
3172 qoffset = sb_dev->tc_to_txq[tc].offset;
3173 qcount = sb_dev->tc_to_txq[tc].count;
3174 if (unlikely(!qcount)) {
3175 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3176 sb_dev->name, qoffset, tc);
3177 qoffset = 0;
3178 qcount = dev->real_num_tx_queues;
3179 }
3180 }
3181
3182 if (skb_rx_queue_recorded(skb)) {
3183 hash = skb_get_rx_queue(skb);
3184 if (hash >= qoffset)
3185 hash -= qoffset;
3186 while (unlikely(hash >= qcount))
3187 hash -= qcount;
3188 return hash + qoffset;
3189 }
3190
3191 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3192}
3193
3194static void skb_warn_bad_offload(const struct sk_buff *skb)
3195{
3196 static const netdev_features_t null_features;
3197 struct net_device *dev = skb->dev;
3198 const char *name = "";
3199
3200 if (!net_ratelimit())
3201 return;
3202
3203 if (dev) {
3204 if (dev->dev.parent)
3205 name = dev_driver_string(dev->dev.parent);
3206 else
3207 name = netdev_name(dev);
3208 }
3209 skb_dump(KERN_WARNING, skb, false);
3210 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3211 name, dev ? &dev->features : &null_features,
3212 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3213}
3214
3215/*
3216 * Invalidate hardware checksum when packet is to be mangled, and
3217 * complete checksum manually on outgoing path.
3218 */
3219int skb_checksum_help(struct sk_buff *skb)
3220{
3221 __wsum csum;
3222 int ret = 0, offset;
3223
3224 if (skb->ip_summed == CHECKSUM_COMPLETE)
3225 goto out_set_summed;
3226
3227 if (unlikely(skb_is_gso(skb))) {
3228 skb_warn_bad_offload(skb);
3229 return -EINVAL;
3230 }
3231
3232 /* Before computing a checksum, we should make sure no frag could
3233 * be modified by an external entity : checksum could be wrong.
3234 */
3235 if (skb_has_shared_frag(skb)) {
3236 ret = __skb_linearize(skb);
3237 if (ret)
3238 goto out;
3239 }
3240
3241 offset = skb_checksum_start_offset(skb);
3242 BUG_ON(offset >= skb_headlen(skb));
3243 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3244
3245 offset += skb->csum_offset;
3246 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3247
3248 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249 if (ret)
3250 goto out;
3251
3252 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253out_set_summed:
3254 skb->ip_summed = CHECKSUM_NONE;
3255out:
3256 return ret;
3257}
3258EXPORT_SYMBOL(skb_checksum_help);
3259
3260int skb_crc32c_csum_help(struct sk_buff *skb)
3261{
3262 __le32 crc32c_csum;
3263 int ret = 0, offset, start;
3264
3265 if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 goto out;
3267
3268 if (unlikely(skb_is_gso(skb)))
3269 goto out;
3270
3271 /* Before computing a checksum, we should make sure no frag could
3272 * be modified by an external entity : checksum could be wrong.
3273 */
3274 if (unlikely(skb_has_shared_frag(skb))) {
3275 ret = __skb_linearize(skb);
3276 if (ret)
3277 goto out;
3278 }
3279 start = skb_checksum_start_offset(skb);
3280 offset = start + offsetof(struct sctphdr, checksum);
3281 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282 ret = -EINVAL;
3283 goto out;
3284 }
3285
3286 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287 if (ret)
3288 goto out;
3289
3290 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291 skb->len - start, ~(__u32)0,
3292 crc32c_csum_stub));
3293 *(__le32 *)(skb->data + offset) = crc32c_csum;
3294 skb->ip_summed = CHECKSUM_NONE;
3295 skb->csum_not_inet = 0;
3296out:
3297 return ret;
3298}
3299
3300__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301{
3302 __be16 type = skb->protocol;
3303
3304 /* Tunnel gso handlers can set protocol to ethernet. */
3305 if (type == htons(ETH_P_TEB)) {
3306 struct ethhdr *eth;
3307
3308 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309 return 0;
3310
3311 eth = (struct ethhdr *)skb->data;
3312 type = eth->h_proto;
3313 }
3314
3315 return __vlan_get_protocol(skb, type, depth);
3316}
3317
3318/**
3319 * skb_mac_gso_segment - mac layer segmentation handler.
3320 * @skb: buffer to segment
3321 * @features: features for the output path (see dev->features)
3322 */
3323struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324 netdev_features_t features)
3325{
3326 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327 struct packet_offload *ptype;
3328 int vlan_depth = skb->mac_len;
3329 __be16 type = skb_network_protocol(skb, &vlan_depth);
3330
3331 if (unlikely(!type))
3332 return ERR_PTR(-EINVAL);
3333
3334 __skb_pull(skb, vlan_depth);
3335
3336 rcu_read_lock();
3337 list_for_each_entry_rcu(ptype, &offload_base, list) {
3338 if (ptype->type == type && ptype->callbacks.gso_segment) {
3339 segs = ptype->callbacks.gso_segment(skb, features);
3340 break;
3341 }
3342 }
3343 rcu_read_unlock();
3344
3345 __skb_push(skb, skb->data - skb_mac_header(skb));
3346
3347 return segs;
3348}
3349EXPORT_SYMBOL(skb_mac_gso_segment);
3350
3351
3352/* openvswitch calls this on rx path, so we need a different check.
3353 */
3354static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355{
3356 if (tx_path)
3357 return skb->ip_summed != CHECKSUM_PARTIAL &&
3358 skb->ip_summed != CHECKSUM_UNNECESSARY;
3359
3360 return skb->ip_summed == CHECKSUM_NONE;
3361}
3362
3363/**
3364 * __skb_gso_segment - Perform segmentation on skb.
3365 * @skb: buffer to segment
3366 * @features: features for the output path (see dev->features)
3367 * @tx_path: whether it is called in TX path
3368 *
3369 * This function segments the given skb and returns a list of segments.
3370 *
3371 * It may return NULL if the skb requires no segmentation. This is
3372 * only possible when GSO is used for verifying header integrity.
3373 *
3374 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375 */
3376struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377 netdev_features_t features, bool tx_path)
3378{
3379 struct sk_buff *segs;
3380
3381 if (unlikely(skb_needs_check(skb, tx_path))) {
3382 int err;
3383
3384 /* We're going to init ->check field in TCP or UDP header */
3385 err = skb_cow_head(skb, 0);
3386 if (err < 0)
3387 return ERR_PTR(err);
3388 }
3389
3390 /* Only report GSO partial support if it will enable us to
3391 * support segmentation on this frame without needing additional
3392 * work.
3393 */
3394 if (features & NETIF_F_GSO_PARTIAL) {
3395 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396 struct net_device *dev = skb->dev;
3397
3398 partial_features |= dev->features & dev->gso_partial_features;
3399 if (!skb_gso_ok(skb, features | partial_features))
3400 features &= ~NETIF_F_GSO_PARTIAL;
3401 }
3402
3403 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405
3406 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407 SKB_GSO_CB(skb)->encap_level = 0;
3408
3409 skb_reset_mac_header(skb);
3410 skb_reset_mac_len(skb);
3411
3412 segs = skb_mac_gso_segment(skb, features);
3413
3414 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415 skb_warn_bad_offload(skb);
3416
3417 return segs;
3418}
3419EXPORT_SYMBOL(__skb_gso_segment);
3420
3421/* Take action when hardware reception checksum errors are detected. */
3422#ifdef CONFIG_BUG
3423static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424{
3425 netdev_err(dev, "hw csum failure\n");
3426 skb_dump(KERN_ERR, skb, true);
3427 dump_stack();
3428}
3429
3430void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431{
3432 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433}
3434EXPORT_SYMBOL(netdev_rx_csum_fault);
3435#endif
3436
3437/* XXX: check that highmem exists at all on the given machine. */
3438static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439{
3440#ifdef CONFIG_HIGHMEM
3441 int i;
3442
3443 if (!(dev->features & NETIF_F_HIGHDMA)) {
3444 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446
3447 if (PageHighMem(skb_frag_page(frag)))
3448 return 1;
3449 }
3450 }
3451#endif
3452 return 0;
3453}
3454
3455/* If MPLS offload request, verify we are testing hardware MPLS features
3456 * instead of standard features for the netdev.
3457 */
3458#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460 netdev_features_t features,
3461 __be16 type)
3462{
3463 if (eth_p_mpls(type))
3464 features &= skb->dev->mpls_features;
3465
3466 return features;
3467}
3468#else
3469static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470 netdev_features_t features,
3471 __be16 type)
3472{
3473 return features;
3474}
3475#endif
3476
3477static netdev_features_t harmonize_features(struct sk_buff *skb,
3478 netdev_features_t features)
3479{
3480 __be16 type;
3481
3482 type = skb_network_protocol(skb, NULL);
3483 features = net_mpls_features(skb, features, type);
3484
3485 if (skb->ip_summed != CHECKSUM_NONE &&
3486 !can_checksum_protocol(features, type)) {
3487 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488 }
3489 if (illegal_highdma(skb->dev, skb))
3490 features &= ~NETIF_F_SG;
3491
3492 return features;
3493}
3494
3495netdev_features_t passthru_features_check(struct sk_buff *skb,
3496 struct net_device *dev,
3497 netdev_features_t features)
3498{
3499 return features;
3500}
3501EXPORT_SYMBOL(passthru_features_check);
3502
3503static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504 struct net_device *dev,
3505 netdev_features_t features)
3506{
3507 return vlan_features_check(skb, features);
3508}
3509
3510static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511 struct net_device *dev,
3512 netdev_features_t features)
3513{
3514 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515
3516 if (gso_segs > dev->gso_max_segs)
3517 return features & ~NETIF_F_GSO_MASK;
3518
3519 if (!skb_shinfo(skb)->gso_type) {
3520 skb_warn_bad_offload(skb);
3521 return features & ~NETIF_F_GSO_MASK;
3522 }
3523
3524 /* Support for GSO partial features requires software
3525 * intervention before we can actually process the packets
3526 * so we need to strip support for any partial features now
3527 * and we can pull them back in after we have partially
3528 * segmented the frame.
3529 */
3530 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531 features &= ~dev->gso_partial_features;
3532
3533 /* Make sure to clear the IPv4 ID mangling feature if the
3534 * IPv4 header has the potential to be fragmented.
3535 */
3536 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537 struct iphdr *iph = skb->encapsulation ?
3538 inner_ip_hdr(skb) : ip_hdr(skb);
3539
3540 if (!(iph->frag_off & htons(IP_DF)))
3541 features &= ~NETIF_F_TSO_MANGLEID;
3542 }
3543
3544 return features;
3545}
3546
3547netdev_features_t netif_skb_features(struct sk_buff *skb)
3548{
3549 struct net_device *dev = skb->dev;
3550 netdev_features_t features = dev->features;
3551
3552 if (skb_is_gso(skb))
3553 features = gso_features_check(skb, dev, features);
3554
3555 /* If encapsulation offload request, verify we are testing
3556 * hardware encapsulation features instead of standard
3557 * features for the netdev
3558 */
3559 if (skb->encapsulation)
3560 features &= dev->hw_enc_features;
3561
3562 if (skb_vlan_tagged(skb))
3563 features = netdev_intersect_features(features,
3564 dev->vlan_features |
3565 NETIF_F_HW_VLAN_CTAG_TX |
3566 NETIF_F_HW_VLAN_STAG_TX);
3567
3568 if (dev->netdev_ops->ndo_features_check)
3569 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570 features);
3571 else
3572 features &= dflt_features_check(skb, dev, features);
3573
3574 return harmonize_features(skb, features);
3575}
3576EXPORT_SYMBOL(netif_skb_features);
3577
3578static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579 struct netdev_queue *txq, bool more)
3580{
3581 unsigned int len;
3582 int rc;
3583
3584 if (dev_nit_active(dev))
3585 dev_queue_xmit_nit(skb, dev);
3586
3587 len = skb->len;
3588 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589 trace_net_dev_start_xmit(skb, dev);
3590 rc = netdev_start_xmit(skb, dev, txq, more);
3591 trace_net_dev_xmit(skb, rc, dev, len);
3592
3593 return rc;
3594}
3595
3596struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 struct netdev_queue *txq, int *ret)
3598{
3599 struct sk_buff *skb = first;
3600 int rc = NETDEV_TX_OK;
3601
3602 while (skb) {
3603 struct sk_buff *next = skb->next;
3604
3605 skb_mark_not_on_list(skb);
3606 rc = xmit_one(skb, dev, txq, next != NULL);
3607 if (unlikely(!dev_xmit_complete(rc))) {
3608 skb->next = next;
3609 goto out;
3610 }
3611
3612 skb = next;
3613 if (netif_tx_queue_stopped(txq) && skb) {
3614 rc = NETDEV_TX_BUSY;
3615 break;
3616 }
3617 }
3618
3619out:
3620 *ret = rc;
3621 return skb;
3622}
3623
3624static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 netdev_features_t features)
3626{
3627 if (skb_vlan_tag_present(skb) &&
3628 !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 skb = __vlan_hwaccel_push_inside(skb);
3630 return skb;
3631}
3632
3633int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 const netdev_features_t features)
3635{
3636 if (unlikely(skb_csum_is_sctp(skb)))
3637 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 skb_crc32c_csum_help(skb);
3639
3640 if (features & NETIF_F_HW_CSUM)
3641 return 0;
3642
3643 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 switch (skb->csum_offset) {
3645 case offsetof(struct tcphdr, check):
3646 case offsetof(struct udphdr, check):
3647 return 0;
3648 }
3649 }
3650
3651 return skb_checksum_help(skb);
3652}
3653EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656{
3657 netdev_features_t features;
3658
3659 features = netif_skb_features(skb);
3660 skb = validate_xmit_vlan(skb, features);
3661 if (unlikely(!skb))
3662 goto out_null;
3663
3664 skb = sk_validate_xmit_skb(skb, dev);
3665 if (unlikely(!skb))
3666 goto out_null;
3667
3668 if (netif_needs_gso(skb, features)) {
3669 struct sk_buff *segs;
3670
3671 segs = skb_gso_segment(skb, features);
3672 if (IS_ERR(segs)) {
3673 goto out_kfree_skb;
3674 } else if (segs) {
3675 consume_skb(skb);
3676 skb = segs;
3677 }
3678 } else {
3679 if (skb_needs_linearize(skb, features) &&
3680 __skb_linearize(skb))
3681 goto out_kfree_skb;
3682
3683 /* If packet is not checksummed and device does not
3684 * support checksumming for this protocol, complete
3685 * checksumming here.
3686 */
3687 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 if (skb->encapsulation)
3689 skb_set_inner_transport_header(skb,
3690 skb_checksum_start_offset(skb));
3691 else
3692 skb_set_transport_header(skb,
3693 skb_checksum_start_offset(skb));
3694 if (skb_csum_hwoffload_help(skb, features))
3695 goto out_kfree_skb;
3696 }
3697 }
3698
3699 skb = validate_xmit_xfrm(skb, features, again);
3700
3701 return skb;
3702
3703out_kfree_skb:
3704 kfree_skb(skb);
3705out_null:
3706 atomic_long_inc(&dev->tx_dropped);
3707 return NULL;
3708}
3709
3710struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711{
3712 struct sk_buff *next, *head = NULL, *tail;
3713
3714 for (; skb != NULL; skb = next) {
3715 next = skb->next;
3716 skb_mark_not_on_list(skb);
3717
3718 /* in case skb wont be segmented, point to itself */
3719 skb->prev = skb;
3720
3721 skb = validate_xmit_skb(skb, dev, again);
3722 if (!skb)
3723 continue;
3724
3725 if (!head)
3726 head = skb;
3727 else
3728 tail->next = skb;
3729 /* If skb was segmented, skb->prev points to
3730 * the last segment. If not, it still contains skb.
3731 */
3732 tail = skb->prev;
3733 }
3734 return head;
3735}
3736EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738static void qdisc_pkt_len_init(struct sk_buff *skb)
3739{
3740 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742 qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744 /* To get more precise estimation of bytes sent on wire,
3745 * we add to pkt_len the headers size of all segments
3746 */
3747 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 unsigned int hdr_len;
3749 u16 gso_segs = shinfo->gso_segs;
3750
3751 /* mac layer + network layer */
3752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754 /* + transport layer */
3755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 const struct tcphdr *th;
3757 struct tcphdr _tcphdr;
3758
3759 th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 sizeof(_tcphdr), &_tcphdr);
3761 if (likely(th))
3762 hdr_len += __tcp_hdrlen(th);
3763 } else {
3764 struct udphdr _udphdr;
3765
3766 if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 sizeof(_udphdr), &_udphdr))
3768 hdr_len += sizeof(struct udphdr);
3769 }
3770
3771 if (shinfo->gso_type & SKB_GSO_DODGY)
3772 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 shinfo->gso_size);
3774
3775 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 }
3777}
3778
3779static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 struct sk_buff **to_free,
3781 struct netdev_queue *txq)
3782{
3783 int rc;
3784
3785 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 if (rc == NET_XMIT_SUCCESS)
3787 trace_qdisc_enqueue(q, txq, skb);
3788 return rc;
3789}
3790
3791static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 struct net_device *dev,
3793 struct netdev_queue *txq)
3794{
3795 spinlock_t *root_lock = qdisc_lock(q);
3796 struct sk_buff *to_free = NULL;
3797 bool contended;
3798 int rc;
3799
3800 qdisc_calculate_pkt_len(skb, q);
3801
3802 if (q->flags & TCQ_F_NOLOCK) {
3803 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 qdisc_run_begin(q)) {
3805 /* Retest nolock_qdisc_is_empty() within the protection
3806 * of q->seqlock to protect from racing with requeuing.
3807 */
3808 if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 __qdisc_run(q);
3811 qdisc_run_end(q);
3812
3813 goto no_lock_out;
3814 }
3815
3816 qdisc_bstats_cpu_update(q, skb);
3817 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 !nolock_qdisc_is_empty(q))
3819 __qdisc_run(q);
3820
3821 qdisc_run_end(q);
3822 return NET_XMIT_SUCCESS;
3823 }
3824
3825 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 qdisc_run(q);
3827
3828no_lock_out:
3829 if (unlikely(to_free))
3830 kfree_skb_list(to_free);
3831 return rc;
3832 }
3833
3834 /*
3835 * Heuristic to force contended enqueues to serialize on a
3836 * separate lock before trying to get qdisc main lock.
3837 * This permits qdisc->running owner to get the lock more
3838 * often and dequeue packets faster.
3839 */
3840 contended = qdisc_is_running(q);
3841 if (unlikely(contended))
3842 spin_lock(&q->busylock);
3843
3844 spin_lock(root_lock);
3845 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846 __qdisc_drop(skb, &to_free);
3847 rc = NET_XMIT_DROP;
3848 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849 qdisc_run_begin(q)) {
3850 /*
3851 * This is a work-conserving queue; there are no old skbs
3852 * waiting to be sent out; and the qdisc is not running -
3853 * xmit the skb directly.
3854 */
3855
3856 qdisc_bstats_update(q, skb);
3857
3858 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859 if (unlikely(contended)) {
3860 spin_unlock(&q->busylock);
3861 contended = false;
3862 }
3863 __qdisc_run(q);
3864 }
3865
3866 qdisc_run_end(q);
3867 rc = NET_XMIT_SUCCESS;
3868 } else {
3869 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870 if (qdisc_run_begin(q)) {
3871 if (unlikely(contended)) {
3872 spin_unlock(&q->busylock);
3873 contended = false;
3874 }
3875 __qdisc_run(q);
3876 qdisc_run_end(q);
3877 }
3878 }
3879 spin_unlock(root_lock);
3880 if (unlikely(to_free))
3881 kfree_skb_list(to_free);
3882 if (unlikely(contended))
3883 spin_unlock(&q->busylock);
3884 return rc;
3885}
3886
3887#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888static void skb_update_prio(struct sk_buff *skb)
3889{
3890 const struct netprio_map *map;
3891 const struct sock *sk;
3892 unsigned int prioidx;
3893
3894 if (skb->priority)
3895 return;
3896 map = rcu_dereference_bh(skb->dev->priomap);
3897 if (!map)
3898 return;
3899 sk = skb_to_full_sk(skb);
3900 if (!sk)
3901 return;
3902
3903 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905 if (prioidx < map->priomap_len)
3906 skb->priority = map->priomap[prioidx];
3907}
3908#else
3909#define skb_update_prio(skb)
3910#endif
3911
3912/**
3913 * dev_loopback_xmit - loop back @skb
3914 * @net: network namespace this loopback is happening in
3915 * @sk: sk needed to be a netfilter okfn
3916 * @skb: buffer to transmit
3917 */
3918int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919{
3920 skb_reset_mac_header(skb);
3921 __skb_pull(skb, skb_network_offset(skb));
3922 skb->pkt_type = PACKET_LOOPBACK;
3923 if (skb->ip_summed == CHECKSUM_NONE)
3924 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925 WARN_ON(!skb_dst(skb));
3926 skb_dst_force(skb);
3927 netif_rx_ni(skb);
3928 return 0;
3929}
3930EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932#ifdef CONFIG_NET_EGRESS
3933static struct sk_buff *
3934sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935{
3936#ifdef CONFIG_NET_CLS_ACT
3937 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938 struct tcf_result cl_res;
3939
3940 if (!miniq)
3941 return skb;
3942
3943 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944 qdisc_skb_cb(skb)->mru = 0;
3945 qdisc_skb_cb(skb)->post_ct = false;
3946 mini_qdisc_bstats_cpu_update(miniq, skb);
3947
3948 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949 case TC_ACT_OK:
3950 case TC_ACT_RECLASSIFY:
3951 skb->tc_index = TC_H_MIN(cl_res.classid);
3952 break;
3953 case TC_ACT_SHOT:
3954 mini_qdisc_qstats_cpu_drop(miniq);
3955 *ret = NET_XMIT_DROP;
3956 kfree_skb(skb);
3957 return NULL;
3958 case TC_ACT_STOLEN:
3959 case TC_ACT_QUEUED:
3960 case TC_ACT_TRAP:
3961 *ret = NET_XMIT_SUCCESS;
3962 consume_skb(skb);
3963 return NULL;
3964 case TC_ACT_REDIRECT:
3965 /* No need to push/pop skb's mac_header here on egress! */
3966 skb_do_redirect(skb);
3967 *ret = NET_XMIT_SUCCESS;
3968 return NULL;
3969 default:
3970 break;
3971 }
3972#endif /* CONFIG_NET_CLS_ACT */
3973
3974 return skb;
3975}
3976#endif /* CONFIG_NET_EGRESS */
3977
3978#ifdef CONFIG_XPS
3979static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3980 struct xps_dev_maps *dev_maps, unsigned int tci)
3981{
3982 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3983 struct xps_map *map;
3984 int queue_index = -1;
3985
3986 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3987 return queue_index;
3988
3989 tci *= dev_maps->num_tc;
3990 tci += tc;
3991
3992 map = rcu_dereference(dev_maps->attr_map[tci]);
3993 if (map) {
3994 if (map->len == 1)
3995 queue_index = map->queues[0];
3996 else
3997 queue_index = map->queues[reciprocal_scale(
3998 skb_get_hash(skb), map->len)];
3999 if (unlikely(queue_index >= dev->real_num_tx_queues))
4000 queue_index = -1;
4001 }
4002 return queue_index;
4003}
4004#endif
4005
4006static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4007 struct sk_buff *skb)
4008{
4009#ifdef CONFIG_XPS
4010 struct xps_dev_maps *dev_maps;
4011 struct sock *sk = skb->sk;
4012 int queue_index = -1;
4013
4014 if (!static_key_false(&xps_needed))
4015 return -1;
4016
4017 rcu_read_lock();
4018 if (!static_key_false(&xps_rxqs_needed))
4019 goto get_cpus_map;
4020
4021 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4022 if (dev_maps) {
4023 int tci = sk_rx_queue_get(sk);
4024
4025 if (tci >= 0)
4026 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027 tci);
4028 }
4029
4030get_cpus_map:
4031 if (queue_index < 0) {
4032 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4033 if (dev_maps) {
4034 unsigned int tci = skb->sender_cpu - 1;
4035
4036 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4037 tci);
4038 }
4039 }
4040 rcu_read_unlock();
4041
4042 return queue_index;
4043#else
4044 return -1;
4045#endif
4046}
4047
4048u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4049 struct net_device *sb_dev)
4050{
4051 return 0;
4052}
4053EXPORT_SYMBOL(dev_pick_tx_zero);
4054
4055u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4056 struct net_device *sb_dev)
4057{
4058 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4059}
4060EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4061
4062u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4063 struct net_device *sb_dev)
4064{
4065 struct sock *sk = skb->sk;
4066 int queue_index = sk_tx_queue_get(sk);
4067
4068 sb_dev = sb_dev ? : dev;
4069
4070 if (queue_index < 0 || skb->ooo_okay ||
4071 queue_index >= dev->real_num_tx_queues) {
4072 int new_index = get_xps_queue(dev, sb_dev, skb);
4073
4074 if (new_index < 0)
4075 new_index = skb_tx_hash(dev, sb_dev, skb);
4076
4077 if (queue_index != new_index && sk &&
4078 sk_fullsock(sk) &&
4079 rcu_access_pointer(sk->sk_dst_cache))
4080 sk_tx_queue_set(sk, new_index);
4081
4082 queue_index = new_index;
4083 }
4084
4085 return queue_index;
4086}
4087EXPORT_SYMBOL(netdev_pick_tx);
4088
4089struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4090 struct sk_buff *skb,
4091 struct net_device *sb_dev)
4092{
4093 int queue_index = 0;
4094
4095#ifdef CONFIG_XPS
4096 u32 sender_cpu = skb->sender_cpu - 1;
4097
4098 if (sender_cpu >= (u32)NR_CPUS)
4099 skb->sender_cpu = raw_smp_processor_id() + 1;
4100#endif
4101
4102 if (dev->real_num_tx_queues != 1) {
4103 const struct net_device_ops *ops = dev->netdev_ops;
4104
4105 if (ops->ndo_select_queue)
4106 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4107 else
4108 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4109
4110 queue_index = netdev_cap_txqueue(dev, queue_index);
4111 }
4112
4113 skb_set_queue_mapping(skb, queue_index);
4114 return netdev_get_tx_queue(dev, queue_index);
4115}
4116
4117/**
4118 * __dev_queue_xmit - transmit a buffer
4119 * @skb: buffer to transmit
4120 * @sb_dev: suboordinate device used for L2 forwarding offload
4121 *
4122 * Queue a buffer for transmission to a network device. The caller must
4123 * have set the device and priority and built the buffer before calling
4124 * this function. The function can be called from an interrupt.
4125 *
4126 * A negative errno code is returned on a failure. A success does not
4127 * guarantee the frame will be transmitted as it may be dropped due
4128 * to congestion or traffic shaping.
4129 *
4130 * -----------------------------------------------------------------------------------
4131 * I notice this method can also return errors from the queue disciplines,
4132 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4133 * be positive.
4134 *
4135 * Regardless of the return value, the skb is consumed, so it is currently
4136 * difficult to retry a send to this method. (You can bump the ref count
4137 * before sending to hold a reference for retry if you are careful.)
4138 *
4139 * When calling this method, interrupts MUST be enabled. This is because
4140 * the BH enable code must have IRQs enabled so that it will not deadlock.
4141 * --BLG
4142 */
4143static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4144{
4145 struct net_device *dev = skb->dev;
4146 struct netdev_queue *txq;
4147 struct Qdisc *q;
4148 int rc = -ENOMEM;
4149 bool again = false;
4150
4151 skb_reset_mac_header(skb);
4152
4153 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4154 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4155
4156 /* Disable soft irqs for various locks below. Also
4157 * stops preemption for RCU.
4158 */
4159 rcu_read_lock_bh();
4160
4161 skb_update_prio(skb);
4162
4163 qdisc_pkt_len_init(skb);
4164#ifdef CONFIG_NET_CLS_ACT
4165 skb->tc_at_ingress = 0;
4166#endif
4167#ifdef CONFIG_NET_EGRESS
4168 if (static_branch_unlikely(&egress_needed_key)) {
4169 if (nf_hook_egress_active()) {
4170 skb = nf_hook_egress(skb, &rc, dev);
4171 if (!skb)
4172 goto out;
4173 }
4174 nf_skip_egress(skb, true);
4175 skb = sch_handle_egress(skb, &rc, dev);
4176 if (!skb)
4177 goto out;
4178 nf_skip_egress(skb, false);
4179 }
4180#endif
4181 /* If device/qdisc don't need skb->dst, release it right now while
4182 * its hot in this cpu cache.
4183 */
4184 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4185 skb_dst_drop(skb);
4186 else
4187 skb_dst_force(skb);
4188
4189 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4190 q = rcu_dereference_bh(txq->qdisc);
4191
4192 trace_net_dev_queue(skb);
4193 if (q->enqueue) {
4194 rc = __dev_xmit_skb(skb, q, dev, txq);
4195 goto out;
4196 }
4197
4198 /* The device has no queue. Common case for software devices:
4199 * loopback, all the sorts of tunnels...
4200
4201 * Really, it is unlikely that netif_tx_lock protection is necessary
4202 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4203 * counters.)
4204 * However, it is possible, that they rely on protection
4205 * made by us here.
4206
4207 * Check this and shot the lock. It is not prone from deadlocks.
4208 *Either shot noqueue qdisc, it is even simpler 8)
4209 */
4210 if (dev->flags & IFF_UP) {
4211 int cpu = smp_processor_id(); /* ok because BHs are off */
4212
4213 if (txq->xmit_lock_owner != cpu) {
4214 if (dev_xmit_recursion())
4215 goto recursion_alert;
4216
4217 skb = validate_xmit_skb(skb, dev, &again);
4218 if (!skb)
4219 goto out;
4220
4221 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4222 HARD_TX_LOCK(dev, txq, cpu);
4223
4224 if (!netif_xmit_stopped(txq)) {
4225 dev_xmit_recursion_inc();
4226 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4227 dev_xmit_recursion_dec();
4228 if (dev_xmit_complete(rc)) {
4229 HARD_TX_UNLOCK(dev, txq);
4230 goto out;
4231 }
4232 }
4233 HARD_TX_UNLOCK(dev, txq);
4234 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4235 dev->name);
4236 } else {
4237 /* Recursion is detected! It is possible,
4238 * unfortunately
4239 */
4240recursion_alert:
4241 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4242 dev->name);
4243 }
4244 }
4245
4246 rc = -ENETDOWN;
4247 rcu_read_unlock_bh();
4248
4249 atomic_long_inc(&dev->tx_dropped);
4250 kfree_skb_list(skb);
4251 return rc;
4252out:
4253 rcu_read_unlock_bh();
4254 return rc;
4255}
4256
4257int dev_queue_xmit(struct sk_buff *skb)
4258{
4259 return __dev_queue_xmit(skb, NULL);
4260}
4261EXPORT_SYMBOL(dev_queue_xmit);
4262
4263int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4264{
4265 return __dev_queue_xmit(skb, sb_dev);
4266}
4267EXPORT_SYMBOL(dev_queue_xmit_accel);
4268
4269int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4270{
4271 struct net_device *dev = skb->dev;
4272 struct sk_buff *orig_skb = skb;
4273 struct netdev_queue *txq;
4274 int ret = NETDEV_TX_BUSY;
4275 bool again = false;
4276
4277 if (unlikely(!netif_running(dev) ||
4278 !netif_carrier_ok(dev)))
4279 goto drop;
4280
4281 skb = validate_xmit_skb_list(skb, dev, &again);
4282 if (skb != orig_skb)
4283 goto drop;
4284
4285 skb_set_queue_mapping(skb, queue_id);
4286 txq = skb_get_tx_queue(dev, skb);
4287 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4288
4289 local_bh_disable();
4290
4291 dev_xmit_recursion_inc();
4292 HARD_TX_LOCK(dev, txq, smp_processor_id());
4293 if (!netif_xmit_frozen_or_drv_stopped(txq))
4294 ret = netdev_start_xmit(skb, dev, txq, false);
4295 HARD_TX_UNLOCK(dev, txq);
4296 dev_xmit_recursion_dec();
4297
4298 local_bh_enable();
4299 return ret;
4300drop:
4301 atomic_long_inc(&dev->tx_dropped);
4302 kfree_skb_list(skb);
4303 return NET_XMIT_DROP;
4304}
4305EXPORT_SYMBOL(__dev_direct_xmit);
4306
4307/*************************************************************************
4308 * Receiver routines
4309 *************************************************************************/
4310
4311int netdev_max_backlog __read_mostly = 1000;
4312EXPORT_SYMBOL(netdev_max_backlog);
4313
4314int netdev_tstamp_prequeue __read_mostly = 1;
4315int netdev_budget __read_mostly = 300;
4316/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4317unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4318int weight_p __read_mostly = 64; /* old backlog weight */
4319int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4320int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4321int dev_rx_weight __read_mostly = 64;
4322int dev_tx_weight __read_mostly = 64;
4323/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4324int gro_normal_batch __read_mostly = 8;
4325
4326/* Called with irq disabled */
4327static inline void ____napi_schedule(struct softnet_data *sd,
4328 struct napi_struct *napi)
4329{
4330 struct task_struct *thread;
4331
4332 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4333 /* Paired with smp_mb__before_atomic() in
4334 * napi_enable()/dev_set_threaded().
4335 * Use READ_ONCE() to guarantee a complete
4336 * read on napi->thread. Only call
4337 * wake_up_process() when it's not NULL.
4338 */
4339 thread = READ_ONCE(napi->thread);
4340 if (thread) {
4341 /* Avoid doing set_bit() if the thread is in
4342 * INTERRUPTIBLE state, cause napi_thread_wait()
4343 * makes sure to proceed with napi polling
4344 * if the thread is explicitly woken from here.
4345 */
4346 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4347 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4348 wake_up_process(thread);
4349 return;
4350 }
4351 }
4352
4353 list_add_tail(&napi->poll_list, &sd->poll_list);
4354 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4355}
4356
4357#ifdef CONFIG_RPS
4358
4359/* One global table that all flow-based protocols share. */
4360struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4361EXPORT_SYMBOL(rps_sock_flow_table);
4362u32 rps_cpu_mask __read_mostly;
4363EXPORT_SYMBOL(rps_cpu_mask);
4364
4365struct static_key_false rps_needed __read_mostly;
4366EXPORT_SYMBOL(rps_needed);
4367struct static_key_false rfs_needed __read_mostly;
4368EXPORT_SYMBOL(rfs_needed);
4369
4370static struct rps_dev_flow *
4371set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4372 struct rps_dev_flow *rflow, u16 next_cpu)
4373{
4374 if (next_cpu < nr_cpu_ids) {
4375#ifdef CONFIG_RFS_ACCEL
4376 struct netdev_rx_queue *rxqueue;
4377 struct rps_dev_flow_table *flow_table;
4378 struct rps_dev_flow *old_rflow;
4379 u32 flow_id;
4380 u16 rxq_index;
4381 int rc;
4382
4383 /* Should we steer this flow to a different hardware queue? */
4384 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4385 !(dev->features & NETIF_F_NTUPLE))
4386 goto out;
4387 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4388 if (rxq_index == skb_get_rx_queue(skb))
4389 goto out;
4390
4391 rxqueue = dev->_rx + rxq_index;
4392 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4393 if (!flow_table)
4394 goto out;
4395 flow_id = skb_get_hash(skb) & flow_table->mask;
4396 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4397 rxq_index, flow_id);
4398 if (rc < 0)
4399 goto out;
4400 old_rflow = rflow;
4401 rflow = &flow_table->flows[flow_id];
4402 rflow->filter = rc;
4403 if (old_rflow->filter == rflow->filter)
4404 old_rflow->filter = RPS_NO_FILTER;
4405 out:
4406#endif
4407 rflow->last_qtail =
4408 per_cpu(softnet_data, next_cpu).input_queue_head;
4409 }
4410
4411 rflow->cpu = next_cpu;
4412 return rflow;
4413}
4414
4415/*
4416 * get_rps_cpu is called from netif_receive_skb and returns the target
4417 * CPU from the RPS map of the receiving queue for a given skb.
4418 * rcu_read_lock must be held on entry.
4419 */
4420static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4421 struct rps_dev_flow **rflowp)
4422{
4423 const struct rps_sock_flow_table *sock_flow_table;
4424 struct netdev_rx_queue *rxqueue = dev->_rx;
4425 struct rps_dev_flow_table *flow_table;
4426 struct rps_map *map;
4427 int cpu = -1;
4428 u32 tcpu;
4429 u32 hash;
4430
4431 if (skb_rx_queue_recorded(skb)) {
4432 u16 index = skb_get_rx_queue(skb);
4433
4434 if (unlikely(index >= dev->real_num_rx_queues)) {
4435 WARN_ONCE(dev->real_num_rx_queues > 1,
4436 "%s received packet on queue %u, but number "
4437 "of RX queues is %u\n",
4438 dev->name, index, dev->real_num_rx_queues);
4439 goto done;
4440 }
4441 rxqueue += index;
4442 }
4443
4444 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4445
4446 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4447 map = rcu_dereference(rxqueue->rps_map);
4448 if (!flow_table && !map)
4449 goto done;
4450
4451 skb_reset_network_header(skb);
4452 hash = skb_get_hash(skb);
4453 if (!hash)
4454 goto done;
4455
4456 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4457 if (flow_table && sock_flow_table) {
4458 struct rps_dev_flow *rflow;
4459 u32 next_cpu;
4460 u32 ident;
4461
4462 /* First check into global flow table if there is a match */
4463 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4464 if ((ident ^ hash) & ~rps_cpu_mask)
4465 goto try_rps;
4466
4467 next_cpu = ident & rps_cpu_mask;
4468
4469 /* OK, now we know there is a match,
4470 * we can look at the local (per receive queue) flow table
4471 */
4472 rflow = &flow_table->flows[hash & flow_table->mask];
4473 tcpu = rflow->cpu;
4474
4475 /*
4476 * If the desired CPU (where last recvmsg was done) is
4477 * different from current CPU (one in the rx-queue flow
4478 * table entry), switch if one of the following holds:
4479 * - Current CPU is unset (>= nr_cpu_ids).
4480 * - Current CPU is offline.
4481 * - The current CPU's queue tail has advanced beyond the
4482 * last packet that was enqueued using this table entry.
4483 * This guarantees that all previous packets for the flow
4484 * have been dequeued, thus preserving in order delivery.
4485 */
4486 if (unlikely(tcpu != next_cpu) &&
4487 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4488 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4489 rflow->last_qtail)) >= 0)) {
4490 tcpu = next_cpu;
4491 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4492 }
4493
4494 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4495 *rflowp = rflow;
4496 cpu = tcpu;
4497 goto done;
4498 }
4499 }
4500
4501try_rps:
4502
4503 if (map) {
4504 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4505 if (cpu_online(tcpu)) {
4506 cpu = tcpu;
4507 goto done;
4508 }
4509 }
4510
4511done:
4512 return cpu;
4513}
4514
4515#ifdef CONFIG_RFS_ACCEL
4516
4517/**
4518 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4519 * @dev: Device on which the filter was set
4520 * @rxq_index: RX queue index
4521 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4522 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4523 *
4524 * Drivers that implement ndo_rx_flow_steer() should periodically call
4525 * this function for each installed filter and remove the filters for
4526 * which it returns %true.
4527 */
4528bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4529 u32 flow_id, u16 filter_id)
4530{
4531 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4532 struct rps_dev_flow_table *flow_table;
4533 struct rps_dev_flow *rflow;
4534 bool expire = true;
4535 unsigned int cpu;
4536
4537 rcu_read_lock();
4538 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4539 if (flow_table && flow_id <= flow_table->mask) {
4540 rflow = &flow_table->flows[flow_id];
4541 cpu = READ_ONCE(rflow->cpu);
4542 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4543 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4544 rflow->last_qtail) <
4545 (int)(10 * flow_table->mask)))
4546 expire = false;
4547 }
4548 rcu_read_unlock();
4549 return expire;
4550}
4551EXPORT_SYMBOL(rps_may_expire_flow);
4552
4553#endif /* CONFIG_RFS_ACCEL */
4554
4555/* Called from hardirq (IPI) context */
4556static void rps_trigger_softirq(void *data)
4557{
4558 struct softnet_data *sd = data;
4559
4560 ____napi_schedule(sd, &sd->backlog);
4561 sd->received_rps++;
4562}
4563
4564#endif /* CONFIG_RPS */
4565
4566/*
4567 * Check if this softnet_data structure is another cpu one
4568 * If yes, queue it to our IPI list and return 1
4569 * If no, return 0
4570 */
4571static int rps_ipi_queued(struct softnet_data *sd)
4572{
4573#ifdef CONFIG_RPS
4574 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4575
4576 if (sd != mysd) {
4577 sd->rps_ipi_next = mysd->rps_ipi_list;
4578 mysd->rps_ipi_list = sd;
4579
4580 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4581 return 1;
4582 }
4583#endif /* CONFIG_RPS */
4584 return 0;
4585}
4586
4587#ifdef CONFIG_NET_FLOW_LIMIT
4588int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4589#endif
4590
4591static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4592{
4593#ifdef CONFIG_NET_FLOW_LIMIT
4594 struct sd_flow_limit *fl;
4595 struct softnet_data *sd;
4596 unsigned int old_flow, new_flow;
4597
4598 if (qlen < (netdev_max_backlog >> 1))
4599 return false;
4600
4601 sd = this_cpu_ptr(&softnet_data);
4602
4603 rcu_read_lock();
4604 fl = rcu_dereference(sd->flow_limit);
4605 if (fl) {
4606 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4607 old_flow = fl->history[fl->history_head];
4608 fl->history[fl->history_head] = new_flow;
4609
4610 fl->history_head++;
4611 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4612
4613 if (likely(fl->buckets[old_flow]))
4614 fl->buckets[old_flow]--;
4615
4616 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4617 fl->count++;
4618 rcu_read_unlock();
4619 return true;
4620 }
4621 }
4622 rcu_read_unlock();
4623#endif
4624 return false;
4625}
4626
4627/*
4628 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4629 * queue (may be a remote CPU queue).
4630 */
4631static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4632 unsigned int *qtail)
4633{
4634 struct softnet_data *sd;
4635 unsigned long flags;
4636 unsigned int qlen;
4637
4638 sd = &per_cpu(softnet_data, cpu);
4639
4640 local_irq_save(flags);
4641
4642 rps_lock(sd);
4643 if (!netif_running(skb->dev))
4644 goto drop;
4645 qlen = skb_queue_len(&sd->input_pkt_queue);
4646 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4647 if (qlen) {
4648enqueue:
4649 __skb_queue_tail(&sd->input_pkt_queue, skb);
4650 input_queue_tail_incr_save(sd, qtail);
4651 rps_unlock(sd);
4652 local_irq_restore(flags);
4653 return NET_RX_SUCCESS;
4654 }
4655
4656 /* Schedule NAPI for backlog device
4657 * We can use non atomic operation since we own the queue lock
4658 */
4659 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4660 if (!rps_ipi_queued(sd))
4661 ____napi_schedule(sd, &sd->backlog);
4662 }
4663 goto enqueue;
4664 }
4665
4666drop:
4667 sd->dropped++;
4668 rps_unlock(sd);
4669
4670 local_irq_restore(flags);
4671
4672 atomic_long_inc(&skb->dev->rx_dropped);
4673 kfree_skb(skb);
4674 return NET_RX_DROP;
4675}
4676
4677static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4678{
4679 struct net_device *dev = skb->dev;
4680 struct netdev_rx_queue *rxqueue;
4681
4682 rxqueue = dev->_rx;
4683
4684 if (skb_rx_queue_recorded(skb)) {
4685 u16 index = skb_get_rx_queue(skb);
4686
4687 if (unlikely(index >= dev->real_num_rx_queues)) {
4688 WARN_ONCE(dev->real_num_rx_queues > 1,
4689 "%s received packet on queue %u, but number "
4690 "of RX queues is %u\n",
4691 dev->name, index, dev->real_num_rx_queues);
4692
4693 return rxqueue; /* Return first rxqueue */
4694 }
4695 rxqueue += index;
4696 }
4697 return rxqueue;
4698}
4699
4700u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4701 struct bpf_prog *xdp_prog)
4702{
4703 void *orig_data, *orig_data_end, *hard_start;
4704 struct netdev_rx_queue *rxqueue;
4705 bool orig_bcast, orig_host;
4706 u32 mac_len, frame_sz;
4707 __be16 orig_eth_type;
4708 struct ethhdr *eth;
4709 u32 metalen, act;
4710 int off;
4711
4712 /* The XDP program wants to see the packet starting at the MAC
4713 * header.
4714 */
4715 mac_len = skb->data - skb_mac_header(skb);
4716 hard_start = skb->data - skb_headroom(skb);
4717
4718 /* SKB "head" area always have tailroom for skb_shared_info */
4719 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4720 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4721
4722 rxqueue = netif_get_rxqueue(skb);
4723 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4724 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4725 skb_headlen(skb) + mac_len, true);
4726
4727 orig_data_end = xdp->data_end;
4728 orig_data = xdp->data;
4729 eth = (struct ethhdr *)xdp->data;
4730 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4731 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4732 orig_eth_type = eth->h_proto;
4733
4734 act = bpf_prog_run_xdp(xdp_prog, xdp);
4735
4736 /* check if bpf_xdp_adjust_head was used */
4737 off = xdp->data - orig_data;
4738 if (off) {
4739 if (off > 0)
4740 __skb_pull(skb, off);
4741 else if (off < 0)
4742 __skb_push(skb, -off);
4743
4744 skb->mac_header += off;
4745 skb_reset_network_header(skb);
4746 }
4747
4748 /* check if bpf_xdp_adjust_tail was used */
4749 off = xdp->data_end - orig_data_end;
4750 if (off != 0) {
4751 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4752 skb->len += off; /* positive on grow, negative on shrink */
4753 }
4754
4755 /* check if XDP changed eth hdr such SKB needs update */
4756 eth = (struct ethhdr *)xdp->data;
4757 if ((orig_eth_type != eth->h_proto) ||
4758 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4759 skb->dev->dev_addr)) ||
4760 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4761 __skb_push(skb, ETH_HLEN);
4762 skb->pkt_type = PACKET_HOST;
4763 skb->protocol = eth_type_trans(skb, skb->dev);
4764 }
4765
4766 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4767 * before calling us again on redirect path. We do not call do_redirect
4768 * as we leave that up to the caller.
4769 *
4770 * Caller is responsible for managing lifetime of skb (i.e. calling
4771 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4772 */
4773 switch (act) {
4774 case XDP_REDIRECT:
4775 case XDP_TX:
4776 __skb_push(skb, mac_len);
4777 break;
4778 case XDP_PASS:
4779 metalen = xdp->data - xdp->data_meta;
4780 if (metalen)
4781 skb_metadata_set(skb, metalen);
4782 break;
4783 }
4784
4785 return act;
4786}
4787
4788static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4789 struct xdp_buff *xdp,
4790 struct bpf_prog *xdp_prog)
4791{
4792 u32 act = XDP_DROP;
4793
4794 /* Reinjected packets coming from act_mirred or similar should
4795 * not get XDP generic processing.
4796 */
4797 if (skb_is_redirected(skb))
4798 return XDP_PASS;
4799
4800 /* XDP packets must be linear and must have sufficient headroom
4801 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4802 * native XDP provides, thus we need to do it here as well.
4803 */
4804 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4805 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4806 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4807 int troom = skb->tail + skb->data_len - skb->end;
4808
4809 /* In case we have to go down the path and also linearize,
4810 * then lets do the pskb_expand_head() work just once here.
4811 */
4812 if (pskb_expand_head(skb,
4813 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4814 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4815 goto do_drop;
4816 if (skb_linearize(skb))
4817 goto do_drop;
4818 }
4819
4820 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4821 switch (act) {
4822 case XDP_REDIRECT:
4823 case XDP_TX:
4824 case XDP_PASS:
4825 break;
4826 default:
4827 bpf_warn_invalid_xdp_action(act);
4828 fallthrough;
4829 case XDP_ABORTED:
4830 trace_xdp_exception(skb->dev, xdp_prog, act);
4831 fallthrough;
4832 case XDP_DROP:
4833 do_drop:
4834 kfree_skb(skb);
4835 break;
4836 }
4837
4838 return act;
4839}
4840
4841/* When doing generic XDP we have to bypass the qdisc layer and the
4842 * network taps in order to match in-driver-XDP behavior.
4843 */
4844void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4845{
4846 struct net_device *dev = skb->dev;
4847 struct netdev_queue *txq;
4848 bool free_skb = true;
4849 int cpu, rc;
4850
4851 txq = netdev_core_pick_tx(dev, skb, NULL);
4852 cpu = smp_processor_id();
4853 HARD_TX_LOCK(dev, txq, cpu);
4854 if (!netif_xmit_stopped(txq)) {
4855 rc = netdev_start_xmit(skb, dev, txq, 0);
4856 if (dev_xmit_complete(rc))
4857 free_skb = false;
4858 }
4859 HARD_TX_UNLOCK(dev, txq);
4860 if (free_skb) {
4861 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4862 kfree_skb(skb);
4863 }
4864}
4865
4866static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4867
4868int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4869{
4870 if (xdp_prog) {
4871 struct xdp_buff xdp;
4872 u32 act;
4873 int err;
4874
4875 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4876 if (act != XDP_PASS) {
4877 switch (act) {
4878 case XDP_REDIRECT:
4879 err = xdp_do_generic_redirect(skb->dev, skb,
4880 &xdp, xdp_prog);
4881 if (err)
4882 goto out_redir;
4883 break;
4884 case XDP_TX:
4885 generic_xdp_tx(skb, xdp_prog);
4886 break;
4887 }
4888 return XDP_DROP;
4889 }
4890 }
4891 return XDP_PASS;
4892out_redir:
4893 kfree_skb(skb);
4894 return XDP_DROP;
4895}
4896EXPORT_SYMBOL_GPL(do_xdp_generic);
4897
4898static int netif_rx_internal(struct sk_buff *skb)
4899{
4900 int ret;
4901
4902 net_timestamp_check(netdev_tstamp_prequeue, skb);
4903
4904 trace_netif_rx(skb);
4905
4906#ifdef CONFIG_RPS
4907 if (static_branch_unlikely(&rps_needed)) {
4908 struct rps_dev_flow voidflow, *rflow = &voidflow;
4909 int cpu;
4910
4911 preempt_disable();
4912 rcu_read_lock();
4913
4914 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4915 if (cpu < 0)
4916 cpu = smp_processor_id();
4917
4918 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4919
4920 rcu_read_unlock();
4921 preempt_enable();
4922 } else
4923#endif
4924 {
4925 unsigned int qtail;
4926
4927 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4928 put_cpu();
4929 }
4930 return ret;
4931}
4932
4933/**
4934 * netif_rx - post buffer to the network code
4935 * @skb: buffer to post
4936 *
4937 * This function receives a packet from a device driver and queues it for
4938 * the upper (protocol) levels to process. It always succeeds. The buffer
4939 * may be dropped during processing for congestion control or by the
4940 * protocol layers.
4941 *
4942 * return values:
4943 * NET_RX_SUCCESS (no congestion)
4944 * NET_RX_DROP (packet was dropped)
4945 *
4946 */
4947
4948int netif_rx(struct sk_buff *skb)
4949{
4950 int ret;
4951
4952 trace_netif_rx_entry(skb);
4953
4954 ret = netif_rx_internal(skb);
4955 trace_netif_rx_exit(ret);
4956
4957 return ret;
4958}
4959EXPORT_SYMBOL(netif_rx);
4960
4961int netif_rx_ni(struct sk_buff *skb)
4962{
4963 int err;
4964
4965 trace_netif_rx_ni_entry(skb);
4966
4967 preempt_disable();
4968 err = netif_rx_internal(skb);
4969 if (local_softirq_pending())
4970 do_softirq();
4971 preempt_enable();
4972 trace_netif_rx_ni_exit(err);
4973
4974 return err;
4975}
4976EXPORT_SYMBOL(netif_rx_ni);
4977
4978int netif_rx_any_context(struct sk_buff *skb)
4979{
4980 /*
4981 * If invoked from contexts which do not invoke bottom half
4982 * processing either at return from interrupt or when softrqs are
4983 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4984 * directly.
4985 */
4986 if (in_interrupt())
4987 return netif_rx(skb);
4988 else
4989 return netif_rx_ni(skb);
4990}
4991EXPORT_SYMBOL(netif_rx_any_context);
4992
4993static __latent_entropy void net_tx_action(struct softirq_action *h)
4994{
4995 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4996
4997 if (sd->completion_queue) {
4998 struct sk_buff *clist;
4999
5000 local_irq_disable();
5001 clist = sd->completion_queue;
5002 sd->completion_queue = NULL;
5003 local_irq_enable();
5004
5005 while (clist) {
5006 struct sk_buff *skb = clist;
5007
5008 clist = clist->next;
5009
5010 WARN_ON(refcount_read(&skb->users));
5011 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5012 trace_consume_skb(skb);
5013 else
5014 trace_kfree_skb(skb, net_tx_action);
5015
5016 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5017 __kfree_skb(skb);
5018 else
5019 __kfree_skb_defer(skb);
5020 }
5021 }
5022
5023 if (sd->output_queue) {
5024 struct Qdisc *head;
5025
5026 local_irq_disable();
5027 head = sd->output_queue;
5028 sd->output_queue = NULL;
5029 sd->output_queue_tailp = &sd->output_queue;
5030 local_irq_enable();
5031
5032 rcu_read_lock();
5033
5034 while (head) {
5035 struct Qdisc *q = head;
5036 spinlock_t *root_lock = NULL;
5037
5038 head = head->next_sched;
5039
5040 /* We need to make sure head->next_sched is read
5041 * before clearing __QDISC_STATE_SCHED
5042 */
5043 smp_mb__before_atomic();
5044
5045 if (!(q->flags & TCQ_F_NOLOCK)) {
5046 root_lock = qdisc_lock(q);
5047 spin_lock(root_lock);
5048 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5049 &q->state))) {
5050 /* There is a synchronize_net() between
5051 * STATE_DEACTIVATED flag being set and
5052 * qdisc_reset()/some_qdisc_is_busy() in
5053 * dev_deactivate(), so we can safely bail out
5054 * early here to avoid data race between
5055 * qdisc_deactivate() and some_qdisc_is_busy()
5056 * for lockless qdisc.
5057 */
5058 clear_bit(__QDISC_STATE_SCHED, &q->state);
5059 continue;
5060 }
5061
5062 clear_bit(__QDISC_STATE_SCHED, &q->state);
5063 qdisc_run(q);
5064 if (root_lock)
5065 spin_unlock(root_lock);
5066 }
5067
5068 rcu_read_unlock();
5069 }
5070
5071 xfrm_dev_backlog(sd);
5072}
5073
5074#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5075/* This hook is defined here for ATM LANE */
5076int (*br_fdb_test_addr_hook)(struct net_device *dev,
5077 unsigned char *addr) __read_mostly;
5078EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5079#endif
5080
5081static inline struct sk_buff *
5082sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5083 struct net_device *orig_dev, bool *another)
5084{
5085#ifdef CONFIG_NET_CLS_ACT
5086 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5087 struct tcf_result cl_res;
5088
5089 /* If there's at least one ingress present somewhere (so
5090 * we get here via enabled static key), remaining devices
5091 * that are not configured with an ingress qdisc will bail
5092 * out here.
5093 */
5094 if (!miniq)
5095 return skb;
5096
5097 if (*pt_prev) {
5098 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5099 *pt_prev = NULL;
5100 }
5101
5102 qdisc_skb_cb(skb)->pkt_len = skb->len;
5103 qdisc_skb_cb(skb)->mru = 0;
5104 qdisc_skb_cb(skb)->post_ct = false;
5105 skb->tc_at_ingress = 1;
5106 mini_qdisc_bstats_cpu_update(miniq, skb);
5107
5108 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5109 case TC_ACT_OK:
5110 case TC_ACT_RECLASSIFY:
5111 skb->tc_index = TC_H_MIN(cl_res.classid);
5112 break;
5113 case TC_ACT_SHOT:
5114 mini_qdisc_qstats_cpu_drop(miniq);
5115 kfree_skb(skb);
5116 return NULL;
5117 case TC_ACT_STOLEN:
5118 case TC_ACT_QUEUED:
5119 case TC_ACT_TRAP:
5120 consume_skb(skb);
5121 return NULL;
5122 case TC_ACT_REDIRECT:
5123 /* skb_mac_header check was done by cls/act_bpf, so
5124 * we can safely push the L2 header back before
5125 * redirecting to another netdev
5126 */
5127 __skb_push(skb, skb->mac_len);
5128 if (skb_do_redirect(skb) == -EAGAIN) {
5129 __skb_pull(skb, skb->mac_len);
5130 *another = true;
5131 break;
5132 }
5133 return NULL;
5134 case TC_ACT_CONSUMED:
5135 return NULL;
5136 default:
5137 break;
5138 }
5139#endif /* CONFIG_NET_CLS_ACT */
5140 return skb;
5141}
5142
5143/**
5144 * netdev_is_rx_handler_busy - check if receive handler is registered
5145 * @dev: device to check
5146 *
5147 * Check if a receive handler is already registered for a given device.
5148 * Return true if there one.
5149 *
5150 * The caller must hold the rtnl_mutex.
5151 */
5152bool netdev_is_rx_handler_busy(struct net_device *dev)
5153{
5154 ASSERT_RTNL();
5155 return dev && rtnl_dereference(dev->rx_handler);
5156}
5157EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5158
5159/**
5160 * netdev_rx_handler_register - register receive handler
5161 * @dev: device to register a handler for
5162 * @rx_handler: receive handler to register
5163 * @rx_handler_data: data pointer that is used by rx handler
5164 *
5165 * Register a receive handler for a device. This handler will then be
5166 * called from __netif_receive_skb. A negative errno code is returned
5167 * on a failure.
5168 *
5169 * The caller must hold the rtnl_mutex.
5170 *
5171 * For a general description of rx_handler, see enum rx_handler_result.
5172 */
5173int netdev_rx_handler_register(struct net_device *dev,
5174 rx_handler_func_t *rx_handler,
5175 void *rx_handler_data)
5176{
5177 if (netdev_is_rx_handler_busy(dev))
5178 return -EBUSY;
5179
5180 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5181 return -EINVAL;
5182
5183 /* Note: rx_handler_data must be set before rx_handler */
5184 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5185 rcu_assign_pointer(dev->rx_handler, rx_handler);
5186
5187 return 0;
5188}
5189EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5190
5191/**
5192 * netdev_rx_handler_unregister - unregister receive handler
5193 * @dev: device to unregister a handler from
5194 *
5195 * Unregister a receive handler from a device.
5196 *
5197 * The caller must hold the rtnl_mutex.
5198 */
5199void netdev_rx_handler_unregister(struct net_device *dev)
5200{
5201
5202 ASSERT_RTNL();
5203 RCU_INIT_POINTER(dev->rx_handler, NULL);
5204 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5205 * section has a guarantee to see a non NULL rx_handler_data
5206 * as well.
5207 */
5208 synchronize_net();
5209 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5210}
5211EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5212
5213/*
5214 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5215 * the special handling of PFMEMALLOC skbs.
5216 */
5217static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5218{
5219 switch (skb->protocol) {
5220 case htons(ETH_P_ARP):
5221 case htons(ETH_P_IP):
5222 case htons(ETH_P_IPV6):
5223 case htons(ETH_P_8021Q):
5224 case htons(ETH_P_8021AD):
5225 return true;
5226 default:
5227 return false;
5228 }
5229}
5230
5231static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5232 int *ret, struct net_device *orig_dev)
5233{
5234 if (nf_hook_ingress_active(skb)) {
5235 int ingress_retval;
5236
5237 if (*pt_prev) {
5238 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5239 *pt_prev = NULL;
5240 }
5241
5242 rcu_read_lock();
5243 ingress_retval = nf_hook_ingress(skb);
5244 rcu_read_unlock();
5245 return ingress_retval;
5246 }
5247 return 0;
5248}
5249
5250static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5251 struct packet_type **ppt_prev)
5252{
5253 struct packet_type *ptype, *pt_prev;
5254 rx_handler_func_t *rx_handler;
5255 struct sk_buff *skb = *pskb;
5256 struct net_device *orig_dev;
5257 bool deliver_exact = false;
5258 int ret = NET_RX_DROP;
5259 __be16 type;
5260
5261 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5262
5263 trace_netif_receive_skb(skb);
5264
5265 orig_dev = skb->dev;
5266
5267 skb_reset_network_header(skb);
5268 if (!skb_transport_header_was_set(skb))
5269 skb_reset_transport_header(skb);
5270 skb_reset_mac_len(skb);
5271
5272 pt_prev = NULL;
5273
5274another_round:
5275 skb->skb_iif = skb->dev->ifindex;
5276
5277 __this_cpu_inc(softnet_data.processed);
5278
5279 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5280 int ret2;
5281
5282 migrate_disable();
5283 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5284 migrate_enable();
5285
5286 if (ret2 != XDP_PASS) {
5287 ret = NET_RX_DROP;
5288 goto out;
5289 }
5290 }
5291
5292 if (eth_type_vlan(skb->protocol)) {
5293 skb = skb_vlan_untag(skb);
5294 if (unlikely(!skb))
5295 goto out;
5296 }
5297
5298 if (skb_skip_tc_classify(skb))
5299 goto skip_classify;
5300
5301 if (pfmemalloc)
5302 goto skip_taps;
5303
5304 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5305 if (pt_prev)
5306 ret = deliver_skb(skb, pt_prev, orig_dev);
5307 pt_prev = ptype;
5308 }
5309
5310 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5311 if (pt_prev)
5312 ret = deliver_skb(skb, pt_prev, orig_dev);
5313 pt_prev = ptype;
5314 }
5315
5316skip_taps:
5317#ifdef CONFIG_NET_INGRESS
5318 if (static_branch_unlikely(&ingress_needed_key)) {
5319 bool another = false;
5320
5321 nf_skip_egress(skb, true);
5322 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5323 &another);
5324 if (another)
5325 goto another_round;
5326 if (!skb)
5327 goto out;
5328
5329 nf_skip_egress(skb, false);
5330 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5331 goto out;
5332 }
5333#endif
5334 skb_reset_redirect(skb);
5335skip_classify:
5336 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5337 goto drop;
5338
5339 if (skb_vlan_tag_present(skb)) {
5340 if (pt_prev) {
5341 ret = deliver_skb(skb, pt_prev, orig_dev);
5342 pt_prev = NULL;
5343 }
5344 if (vlan_do_receive(&skb))
5345 goto another_round;
5346 else if (unlikely(!skb))
5347 goto out;
5348 }
5349
5350 rx_handler = rcu_dereference(skb->dev->rx_handler);
5351 if (rx_handler) {
5352 if (pt_prev) {
5353 ret = deliver_skb(skb, pt_prev, orig_dev);
5354 pt_prev = NULL;
5355 }
5356 switch (rx_handler(&skb)) {
5357 case RX_HANDLER_CONSUMED:
5358 ret = NET_RX_SUCCESS;
5359 goto out;
5360 case RX_HANDLER_ANOTHER:
5361 goto another_round;
5362 case RX_HANDLER_EXACT:
5363 deliver_exact = true;
5364 break;
5365 case RX_HANDLER_PASS:
5366 break;
5367 default:
5368 BUG();
5369 }
5370 }
5371
5372 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5373check_vlan_id:
5374 if (skb_vlan_tag_get_id(skb)) {
5375 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5376 * find vlan device.
5377 */
5378 skb->pkt_type = PACKET_OTHERHOST;
5379 } else if (eth_type_vlan(skb->protocol)) {
5380 /* Outer header is 802.1P with vlan 0, inner header is
5381 * 802.1Q or 802.1AD and vlan_do_receive() above could
5382 * not find vlan dev for vlan id 0.
5383 */
5384 __vlan_hwaccel_clear_tag(skb);
5385 skb = skb_vlan_untag(skb);
5386 if (unlikely(!skb))
5387 goto out;
5388 if (vlan_do_receive(&skb))
5389 /* After stripping off 802.1P header with vlan 0
5390 * vlan dev is found for inner header.
5391 */
5392 goto another_round;
5393 else if (unlikely(!skb))
5394 goto out;
5395 else
5396 /* We have stripped outer 802.1P vlan 0 header.
5397 * But could not find vlan dev.
5398 * check again for vlan id to set OTHERHOST.
5399 */
5400 goto check_vlan_id;
5401 }
5402 /* Note: we might in the future use prio bits
5403 * and set skb->priority like in vlan_do_receive()
5404 * For the time being, just ignore Priority Code Point
5405 */
5406 __vlan_hwaccel_clear_tag(skb);
5407 }
5408
5409 type = skb->protocol;
5410
5411 /* deliver only exact match when indicated */
5412 if (likely(!deliver_exact)) {
5413 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5414 &ptype_base[ntohs(type) &
5415 PTYPE_HASH_MASK]);
5416 }
5417
5418 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5419 &orig_dev->ptype_specific);
5420
5421 if (unlikely(skb->dev != orig_dev)) {
5422 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5423 &skb->dev->ptype_specific);
5424 }
5425
5426 if (pt_prev) {
5427 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5428 goto drop;
5429 *ppt_prev = pt_prev;
5430 } else {
5431drop:
5432 if (!deliver_exact)
5433 atomic_long_inc(&skb->dev->rx_dropped);
5434 else
5435 atomic_long_inc(&skb->dev->rx_nohandler);
5436 kfree_skb(skb);
5437 /* Jamal, now you will not able to escape explaining
5438 * me how you were going to use this. :-)
5439 */
5440 ret = NET_RX_DROP;
5441 }
5442
5443out:
5444 /* The invariant here is that if *ppt_prev is not NULL
5445 * then skb should also be non-NULL.
5446 *
5447 * Apparently *ppt_prev assignment above holds this invariant due to
5448 * skb dereferencing near it.
5449 */
5450 *pskb = skb;
5451 return ret;
5452}
5453
5454static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5455{
5456 struct net_device *orig_dev = skb->dev;
5457 struct packet_type *pt_prev = NULL;
5458 int ret;
5459
5460 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5461 if (pt_prev)
5462 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5463 skb->dev, pt_prev, orig_dev);
5464 return ret;
5465}
5466
5467/**
5468 * netif_receive_skb_core - special purpose version of netif_receive_skb
5469 * @skb: buffer to process
5470 *
5471 * More direct receive version of netif_receive_skb(). It should
5472 * only be used by callers that have a need to skip RPS and Generic XDP.
5473 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5474 *
5475 * This function may only be called from softirq context and interrupts
5476 * should be enabled.
5477 *
5478 * Return values (usually ignored):
5479 * NET_RX_SUCCESS: no congestion
5480 * NET_RX_DROP: packet was dropped
5481 */
5482int netif_receive_skb_core(struct sk_buff *skb)
5483{
5484 int ret;
5485
5486 rcu_read_lock();
5487 ret = __netif_receive_skb_one_core(skb, false);
5488 rcu_read_unlock();
5489
5490 return ret;
5491}
5492EXPORT_SYMBOL(netif_receive_skb_core);
5493
5494static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5495 struct packet_type *pt_prev,
5496 struct net_device *orig_dev)
5497{
5498 struct sk_buff *skb, *next;
5499
5500 if (!pt_prev)
5501 return;
5502 if (list_empty(head))
5503 return;
5504 if (pt_prev->list_func != NULL)
5505 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5506 ip_list_rcv, head, pt_prev, orig_dev);
5507 else
5508 list_for_each_entry_safe(skb, next, head, list) {
5509 skb_list_del_init(skb);
5510 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5511 }
5512}
5513
5514static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5515{
5516 /* Fast-path assumptions:
5517 * - There is no RX handler.
5518 * - Only one packet_type matches.
5519 * If either of these fails, we will end up doing some per-packet
5520 * processing in-line, then handling the 'last ptype' for the whole
5521 * sublist. This can't cause out-of-order delivery to any single ptype,
5522 * because the 'last ptype' must be constant across the sublist, and all
5523 * other ptypes are handled per-packet.
5524 */
5525 /* Current (common) ptype of sublist */
5526 struct packet_type *pt_curr = NULL;
5527 /* Current (common) orig_dev of sublist */
5528 struct net_device *od_curr = NULL;
5529 struct list_head sublist;
5530 struct sk_buff *skb, *next;
5531
5532 INIT_LIST_HEAD(&sublist);
5533 list_for_each_entry_safe(skb, next, head, list) {
5534 struct net_device *orig_dev = skb->dev;
5535 struct packet_type *pt_prev = NULL;
5536
5537 skb_list_del_init(skb);
5538 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5539 if (!pt_prev)
5540 continue;
5541 if (pt_curr != pt_prev || od_curr != orig_dev) {
5542 /* dispatch old sublist */
5543 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5544 /* start new sublist */
5545 INIT_LIST_HEAD(&sublist);
5546 pt_curr = pt_prev;
5547 od_curr = orig_dev;
5548 }
5549 list_add_tail(&skb->list, &sublist);
5550 }
5551
5552 /* dispatch final sublist */
5553 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5554}
5555
5556static int __netif_receive_skb(struct sk_buff *skb)
5557{
5558 int ret;
5559
5560 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5561 unsigned int noreclaim_flag;
5562
5563 /*
5564 * PFMEMALLOC skbs are special, they should
5565 * - be delivered to SOCK_MEMALLOC sockets only
5566 * - stay away from userspace
5567 * - have bounded memory usage
5568 *
5569 * Use PF_MEMALLOC as this saves us from propagating the allocation
5570 * context down to all allocation sites.
5571 */
5572 noreclaim_flag = memalloc_noreclaim_save();
5573 ret = __netif_receive_skb_one_core(skb, true);
5574 memalloc_noreclaim_restore(noreclaim_flag);
5575 } else
5576 ret = __netif_receive_skb_one_core(skb, false);
5577
5578 return ret;
5579}
5580
5581static void __netif_receive_skb_list(struct list_head *head)
5582{
5583 unsigned long noreclaim_flag = 0;
5584 struct sk_buff *skb, *next;
5585 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5586
5587 list_for_each_entry_safe(skb, next, head, list) {
5588 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5589 struct list_head sublist;
5590
5591 /* Handle the previous sublist */
5592 list_cut_before(&sublist, head, &skb->list);
5593 if (!list_empty(&sublist))
5594 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5595 pfmemalloc = !pfmemalloc;
5596 /* See comments in __netif_receive_skb */
5597 if (pfmemalloc)
5598 noreclaim_flag = memalloc_noreclaim_save();
5599 else
5600 memalloc_noreclaim_restore(noreclaim_flag);
5601 }
5602 }
5603 /* Handle the remaining sublist */
5604 if (!list_empty(head))
5605 __netif_receive_skb_list_core(head, pfmemalloc);
5606 /* Restore pflags */
5607 if (pfmemalloc)
5608 memalloc_noreclaim_restore(noreclaim_flag);
5609}
5610
5611static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5612{
5613 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5614 struct bpf_prog *new = xdp->prog;
5615 int ret = 0;
5616
5617 switch (xdp->command) {
5618 case XDP_SETUP_PROG:
5619 rcu_assign_pointer(dev->xdp_prog, new);
5620 if (old)
5621 bpf_prog_put(old);
5622
5623 if (old && !new) {
5624 static_branch_dec(&generic_xdp_needed_key);
5625 } else if (new && !old) {
5626 static_branch_inc(&generic_xdp_needed_key);
5627 dev_disable_lro(dev);
5628 dev_disable_gro_hw(dev);
5629 }
5630 break;
5631
5632 default:
5633 ret = -EINVAL;
5634 break;
5635 }
5636
5637 return ret;
5638}
5639
5640static int netif_receive_skb_internal(struct sk_buff *skb)
5641{
5642 int ret;
5643
5644 net_timestamp_check(netdev_tstamp_prequeue, skb);
5645
5646 if (skb_defer_rx_timestamp(skb))
5647 return NET_RX_SUCCESS;
5648
5649 rcu_read_lock();
5650#ifdef CONFIG_RPS
5651 if (static_branch_unlikely(&rps_needed)) {
5652 struct rps_dev_flow voidflow, *rflow = &voidflow;
5653 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5654
5655 if (cpu >= 0) {
5656 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5657 rcu_read_unlock();
5658 return ret;
5659 }
5660 }
5661#endif
5662 ret = __netif_receive_skb(skb);
5663 rcu_read_unlock();
5664 return ret;
5665}
5666
5667static void netif_receive_skb_list_internal(struct list_head *head)
5668{
5669 struct sk_buff *skb, *next;
5670 struct list_head sublist;
5671
5672 INIT_LIST_HEAD(&sublist);
5673 list_for_each_entry_safe(skb, next, head, list) {
5674 net_timestamp_check(netdev_tstamp_prequeue, skb);
5675 skb_list_del_init(skb);
5676 if (!skb_defer_rx_timestamp(skb))
5677 list_add_tail(&skb->list, &sublist);
5678 }
5679 list_splice_init(&sublist, head);
5680
5681 rcu_read_lock();
5682#ifdef CONFIG_RPS
5683 if (static_branch_unlikely(&rps_needed)) {
5684 list_for_each_entry_safe(skb, next, head, list) {
5685 struct rps_dev_flow voidflow, *rflow = &voidflow;
5686 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5687
5688 if (cpu >= 0) {
5689 /* Will be handled, remove from list */
5690 skb_list_del_init(skb);
5691 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5692 }
5693 }
5694 }
5695#endif
5696 __netif_receive_skb_list(head);
5697 rcu_read_unlock();
5698}
5699
5700/**
5701 * netif_receive_skb - process receive buffer from network
5702 * @skb: buffer to process
5703 *
5704 * netif_receive_skb() is the main receive data processing function.
5705 * It always succeeds. The buffer may be dropped during processing
5706 * for congestion control or by the protocol layers.
5707 *
5708 * This function may only be called from softirq context and interrupts
5709 * should be enabled.
5710 *
5711 * Return values (usually ignored):
5712 * NET_RX_SUCCESS: no congestion
5713 * NET_RX_DROP: packet was dropped
5714 */
5715int netif_receive_skb(struct sk_buff *skb)
5716{
5717 int ret;
5718
5719 trace_netif_receive_skb_entry(skb);
5720
5721 ret = netif_receive_skb_internal(skb);
5722 trace_netif_receive_skb_exit(ret);
5723
5724 return ret;
5725}
5726EXPORT_SYMBOL(netif_receive_skb);
5727
5728/**
5729 * netif_receive_skb_list - process many receive buffers from network
5730 * @head: list of skbs to process.
5731 *
5732 * Since return value of netif_receive_skb() is normally ignored, and
5733 * wouldn't be meaningful for a list, this function returns void.
5734 *
5735 * This function may only be called from softirq context and interrupts
5736 * should be enabled.
5737 */
5738void netif_receive_skb_list(struct list_head *head)
5739{
5740 struct sk_buff *skb;
5741
5742 if (list_empty(head))
5743 return;
5744 if (trace_netif_receive_skb_list_entry_enabled()) {
5745 list_for_each_entry(skb, head, list)
5746 trace_netif_receive_skb_list_entry(skb);
5747 }
5748 netif_receive_skb_list_internal(head);
5749 trace_netif_receive_skb_list_exit(0);
5750}
5751EXPORT_SYMBOL(netif_receive_skb_list);
5752
5753static DEFINE_PER_CPU(struct work_struct, flush_works);
5754
5755/* Network device is going away, flush any packets still pending */
5756static void flush_backlog(struct work_struct *work)
5757{
5758 struct sk_buff *skb, *tmp;
5759 struct softnet_data *sd;
5760
5761 local_bh_disable();
5762 sd = this_cpu_ptr(&softnet_data);
5763
5764 local_irq_disable();
5765 rps_lock(sd);
5766 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5767 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5768 __skb_unlink(skb, &sd->input_pkt_queue);
5769 dev_kfree_skb_irq(skb);
5770 input_queue_head_incr(sd);
5771 }
5772 }
5773 rps_unlock(sd);
5774 local_irq_enable();
5775
5776 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5777 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5778 __skb_unlink(skb, &sd->process_queue);
5779 kfree_skb(skb);
5780 input_queue_head_incr(sd);
5781 }
5782 }
5783 local_bh_enable();
5784}
5785
5786static bool flush_required(int cpu)
5787{
5788#if IS_ENABLED(CONFIG_RPS)
5789 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5790 bool do_flush;
5791
5792 local_irq_disable();
5793 rps_lock(sd);
5794
5795 /* as insertion into process_queue happens with the rps lock held,
5796 * process_queue access may race only with dequeue
5797 */
5798 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5799 !skb_queue_empty_lockless(&sd->process_queue);
5800 rps_unlock(sd);
5801 local_irq_enable();
5802
5803 return do_flush;
5804#endif
5805 /* without RPS we can't safely check input_pkt_queue: during a
5806 * concurrent remote skb_queue_splice() we can detect as empty both
5807 * input_pkt_queue and process_queue even if the latter could end-up
5808 * containing a lot of packets.
5809 */
5810 return true;
5811}
5812
5813static void flush_all_backlogs(void)
5814{
5815 static cpumask_t flush_cpus;
5816 unsigned int cpu;
5817
5818 /* since we are under rtnl lock protection we can use static data
5819 * for the cpumask and avoid allocating on stack the possibly
5820 * large mask
5821 */
5822 ASSERT_RTNL();
5823
5824 cpus_read_lock();
5825
5826 cpumask_clear(&flush_cpus);
5827 for_each_online_cpu(cpu) {
5828 if (flush_required(cpu)) {
5829 queue_work_on(cpu, system_highpri_wq,
5830 per_cpu_ptr(&flush_works, cpu));
5831 cpumask_set_cpu(cpu, &flush_cpus);
5832 }
5833 }
5834
5835 /* we can have in flight packet[s] on the cpus we are not flushing,
5836 * synchronize_net() in unregister_netdevice_many() will take care of
5837 * them
5838 */
5839 for_each_cpu(cpu, &flush_cpus)
5840 flush_work(per_cpu_ptr(&flush_works, cpu));
5841
5842 cpus_read_unlock();
5843}
5844
5845/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5846static void gro_normal_list(struct napi_struct *napi)
5847{
5848 if (!napi->rx_count)
5849 return;
5850 netif_receive_skb_list_internal(&napi->rx_list);
5851 INIT_LIST_HEAD(&napi->rx_list);
5852 napi->rx_count = 0;
5853}
5854
5855/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5856 * pass the whole batch up to the stack.
5857 */
5858static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5859{
5860 list_add_tail(&skb->list, &napi->rx_list);
5861 napi->rx_count += segs;
5862 if (napi->rx_count >= gro_normal_batch)
5863 gro_normal_list(napi);
5864}
5865
5866static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5867{
5868 struct packet_offload *ptype;
5869 __be16 type = skb->protocol;
5870 struct list_head *head = &offload_base;
5871 int err = -ENOENT;
5872
5873 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5874
5875 if (NAPI_GRO_CB(skb)->count == 1) {
5876 skb_shinfo(skb)->gso_size = 0;
5877 goto out;
5878 }
5879
5880 rcu_read_lock();
5881 list_for_each_entry_rcu(ptype, head, list) {
5882 if (ptype->type != type || !ptype->callbacks.gro_complete)
5883 continue;
5884
5885 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5886 ipv6_gro_complete, inet_gro_complete,
5887 skb, 0);
5888 break;
5889 }
5890 rcu_read_unlock();
5891
5892 if (err) {
5893 WARN_ON(&ptype->list == head);
5894 kfree_skb(skb);
5895 return;
5896 }
5897
5898out:
5899 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5900}
5901
5902static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5903 bool flush_old)
5904{
5905 struct list_head *head = &napi->gro_hash[index].list;
5906 struct sk_buff *skb, *p;
5907
5908 list_for_each_entry_safe_reverse(skb, p, head, list) {
5909 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5910 return;
5911 skb_list_del_init(skb);
5912 napi_gro_complete(napi, skb);
5913 napi->gro_hash[index].count--;
5914 }
5915
5916 if (!napi->gro_hash[index].count)
5917 __clear_bit(index, &napi->gro_bitmask);
5918}
5919
5920/* napi->gro_hash[].list contains packets ordered by age.
5921 * youngest packets at the head of it.
5922 * Complete skbs in reverse order to reduce latencies.
5923 */
5924void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5925{
5926 unsigned long bitmask = napi->gro_bitmask;
5927 unsigned int i, base = ~0U;
5928
5929 while ((i = ffs(bitmask)) != 0) {
5930 bitmask >>= i;
5931 base += i;
5932 __napi_gro_flush_chain(napi, base, flush_old);
5933 }
5934}
5935EXPORT_SYMBOL(napi_gro_flush);
5936
5937static void gro_list_prepare(const struct list_head *head,
5938 const struct sk_buff *skb)
5939{
5940 unsigned int maclen = skb->dev->hard_header_len;
5941 u32 hash = skb_get_hash_raw(skb);
5942 struct sk_buff *p;
5943
5944 list_for_each_entry(p, head, list) {
5945 unsigned long diffs;
5946
5947 NAPI_GRO_CB(p)->flush = 0;
5948
5949 if (hash != skb_get_hash_raw(p)) {
5950 NAPI_GRO_CB(p)->same_flow = 0;
5951 continue;
5952 }
5953
5954 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5955 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5956 if (skb_vlan_tag_present(p))
5957 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5958 diffs |= skb_metadata_differs(p, skb);
5959 if (maclen == ETH_HLEN)
5960 diffs |= compare_ether_header(skb_mac_header(p),
5961 skb_mac_header(skb));
5962 else if (!diffs)
5963 diffs = memcmp(skb_mac_header(p),
5964 skb_mac_header(skb),
5965 maclen);
5966
5967 /* in most common scenarions 'slow_gro' is 0
5968 * otherwise we are already on some slower paths
5969 * either skip all the infrequent tests altogether or
5970 * avoid trying too hard to skip each of them individually
5971 */
5972 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5973#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5974 struct tc_skb_ext *skb_ext;
5975 struct tc_skb_ext *p_ext;
5976#endif
5977
5978 diffs |= p->sk != skb->sk;
5979 diffs |= skb_metadata_dst_cmp(p, skb);
5980 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5981
5982#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5983 skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5984 p_ext = skb_ext_find(p, TC_SKB_EXT);
5985
5986 diffs |= (!!p_ext) ^ (!!skb_ext);
5987 if (!diffs && unlikely(skb_ext))
5988 diffs |= p_ext->chain ^ skb_ext->chain;
5989#endif
5990 }
5991
5992 NAPI_GRO_CB(p)->same_flow = !diffs;
5993 }
5994}
5995
5996static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5997{
5998 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5999 const skb_frag_t *frag0 = &pinfo->frags[0];
6000
6001 NAPI_GRO_CB(skb)->data_offset = 0;
6002 NAPI_GRO_CB(skb)->frag0 = NULL;
6003 NAPI_GRO_CB(skb)->frag0_len = 0;
6004
6005 if (!skb_headlen(skb) && pinfo->nr_frags &&
6006 !PageHighMem(skb_frag_page(frag0)) &&
6007 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6008 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6009 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6010 skb_frag_size(frag0),
6011 skb->end - skb->tail);
6012 }
6013}
6014
6015static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6016{
6017 struct skb_shared_info *pinfo = skb_shinfo(skb);
6018
6019 BUG_ON(skb->end - skb->tail < grow);
6020
6021 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6022
6023 skb->data_len -= grow;
6024 skb->tail += grow;
6025
6026 skb_frag_off_add(&pinfo->frags[0], grow);
6027 skb_frag_size_sub(&pinfo->frags[0], grow);
6028
6029 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6030 skb_frag_unref(skb, 0);
6031 memmove(pinfo->frags, pinfo->frags + 1,
6032 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6033 }
6034}
6035
6036static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6037{
6038 struct sk_buff *oldest;
6039
6040 oldest = list_last_entry(head, struct sk_buff, list);
6041
6042 /* We are called with head length >= MAX_GRO_SKBS, so this is
6043 * impossible.
6044 */
6045 if (WARN_ON_ONCE(!oldest))
6046 return;
6047
6048 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6049 * SKB to the chain.
6050 */
6051 skb_list_del_init(oldest);
6052 napi_gro_complete(napi, oldest);
6053}
6054
6055static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6056{
6057 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6058 struct gro_list *gro_list = &napi->gro_hash[bucket];
6059 struct list_head *head = &offload_base;
6060 struct packet_offload *ptype;
6061 __be16 type = skb->protocol;
6062 struct sk_buff *pp = NULL;
6063 enum gro_result ret;
6064 int same_flow;
6065 int grow;
6066
6067 if (netif_elide_gro(skb->dev))
6068 goto normal;
6069
6070 gro_list_prepare(&gro_list->list, skb);
6071
6072 rcu_read_lock();
6073 list_for_each_entry_rcu(ptype, head, list) {
6074 if (ptype->type != type || !ptype->callbacks.gro_receive)
6075 continue;
6076
6077 skb_set_network_header(skb, skb_gro_offset(skb));
6078 skb_reset_mac_len(skb);
6079 NAPI_GRO_CB(skb)->same_flow = 0;
6080 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6081 NAPI_GRO_CB(skb)->free = 0;
6082 NAPI_GRO_CB(skb)->encap_mark = 0;
6083 NAPI_GRO_CB(skb)->recursion_counter = 0;
6084 NAPI_GRO_CB(skb)->is_fou = 0;
6085 NAPI_GRO_CB(skb)->is_atomic = 1;
6086 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6087
6088 /* Setup for GRO checksum validation */
6089 switch (skb->ip_summed) {
6090 case CHECKSUM_COMPLETE:
6091 NAPI_GRO_CB(skb)->csum = skb->csum;
6092 NAPI_GRO_CB(skb)->csum_valid = 1;
6093 NAPI_GRO_CB(skb)->csum_cnt = 0;
6094 break;
6095 case CHECKSUM_UNNECESSARY:
6096 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6097 NAPI_GRO_CB(skb)->csum_valid = 0;
6098 break;
6099 default:
6100 NAPI_GRO_CB(skb)->csum_cnt = 0;
6101 NAPI_GRO_CB(skb)->csum_valid = 0;
6102 }
6103
6104 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6105 ipv6_gro_receive, inet_gro_receive,
6106 &gro_list->list, skb);
6107 break;
6108 }
6109 rcu_read_unlock();
6110
6111 if (&ptype->list == head)
6112 goto normal;
6113
6114 if (PTR_ERR(pp) == -EINPROGRESS) {
6115 ret = GRO_CONSUMED;
6116 goto ok;
6117 }
6118
6119 same_flow = NAPI_GRO_CB(skb)->same_flow;
6120 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6121
6122 if (pp) {
6123 skb_list_del_init(pp);
6124 napi_gro_complete(napi, pp);
6125 gro_list->count--;
6126 }
6127
6128 if (same_flow)
6129 goto ok;
6130
6131 if (NAPI_GRO_CB(skb)->flush)
6132 goto normal;
6133
6134 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6135 gro_flush_oldest(napi, &gro_list->list);
6136 else
6137 gro_list->count++;
6138
6139 NAPI_GRO_CB(skb)->count = 1;
6140 NAPI_GRO_CB(skb)->age = jiffies;
6141 NAPI_GRO_CB(skb)->last = skb;
6142 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6143 list_add(&skb->list, &gro_list->list);
6144 ret = GRO_HELD;
6145
6146pull:
6147 grow = skb_gro_offset(skb) - skb_headlen(skb);
6148 if (grow > 0)
6149 gro_pull_from_frag0(skb, grow);
6150ok:
6151 if (gro_list->count) {
6152 if (!test_bit(bucket, &napi->gro_bitmask))
6153 __set_bit(bucket, &napi->gro_bitmask);
6154 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6155 __clear_bit(bucket, &napi->gro_bitmask);
6156 }
6157
6158 return ret;
6159
6160normal:
6161 ret = GRO_NORMAL;
6162 goto pull;
6163}
6164
6165struct packet_offload *gro_find_receive_by_type(__be16 type)
6166{
6167 struct list_head *offload_head = &offload_base;
6168 struct packet_offload *ptype;
6169
6170 list_for_each_entry_rcu(ptype, offload_head, list) {
6171 if (ptype->type != type || !ptype->callbacks.gro_receive)
6172 continue;
6173 return ptype;
6174 }
6175 return NULL;
6176}
6177EXPORT_SYMBOL(gro_find_receive_by_type);
6178
6179struct packet_offload *gro_find_complete_by_type(__be16 type)
6180{
6181 struct list_head *offload_head = &offload_base;
6182 struct packet_offload *ptype;
6183
6184 list_for_each_entry_rcu(ptype, offload_head, list) {
6185 if (ptype->type != type || !ptype->callbacks.gro_complete)
6186 continue;
6187 return ptype;
6188 }
6189 return NULL;
6190}
6191EXPORT_SYMBOL(gro_find_complete_by_type);
6192
6193static gro_result_t napi_skb_finish(struct napi_struct *napi,
6194 struct sk_buff *skb,
6195 gro_result_t ret)
6196{
6197 switch (ret) {
6198 case GRO_NORMAL:
6199 gro_normal_one(napi, skb, 1);
6200 break;
6201
6202 case GRO_MERGED_FREE:
6203 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6204 napi_skb_free_stolen_head(skb);
6205 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6206 __kfree_skb(skb);
6207 else
6208 __kfree_skb_defer(skb);
6209 break;
6210
6211 case GRO_HELD:
6212 case GRO_MERGED:
6213 case GRO_CONSUMED:
6214 break;
6215 }
6216
6217 return ret;
6218}
6219
6220gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6221{
6222 gro_result_t ret;
6223
6224 skb_mark_napi_id(skb, napi);
6225 trace_napi_gro_receive_entry(skb);
6226
6227 skb_gro_reset_offset(skb, 0);
6228
6229 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6230 trace_napi_gro_receive_exit(ret);
6231
6232 return ret;
6233}
6234EXPORT_SYMBOL(napi_gro_receive);
6235
6236static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6237{
6238 if (unlikely(skb->pfmemalloc)) {
6239 consume_skb(skb);
6240 return;
6241 }
6242 __skb_pull(skb, skb_headlen(skb));
6243 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6244 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6245 __vlan_hwaccel_clear_tag(skb);
6246 skb->dev = napi->dev;
6247 skb->skb_iif = 0;
6248
6249 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6250 skb->pkt_type = PACKET_HOST;
6251
6252 skb->encapsulation = 0;
6253 skb_shinfo(skb)->gso_type = 0;
6254 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6255 if (unlikely(skb->slow_gro)) {
6256 skb_orphan(skb);
6257 skb_ext_reset(skb);
6258 nf_reset_ct(skb);
6259 skb->slow_gro = 0;
6260 }
6261
6262 napi->skb = skb;
6263}
6264
6265struct sk_buff *napi_get_frags(struct napi_struct *napi)
6266{
6267 struct sk_buff *skb = napi->skb;
6268
6269 if (!skb) {
6270 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6271 if (skb) {
6272 napi->skb = skb;
6273 skb_mark_napi_id(skb, napi);
6274 }
6275 }
6276 return skb;
6277}
6278EXPORT_SYMBOL(napi_get_frags);
6279
6280static gro_result_t napi_frags_finish(struct napi_struct *napi,
6281 struct sk_buff *skb,
6282 gro_result_t ret)
6283{
6284 switch (ret) {
6285 case GRO_NORMAL:
6286 case GRO_HELD:
6287 __skb_push(skb, ETH_HLEN);
6288 skb->protocol = eth_type_trans(skb, skb->dev);
6289 if (ret == GRO_NORMAL)
6290 gro_normal_one(napi, skb, 1);
6291 break;
6292
6293 case GRO_MERGED_FREE:
6294 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6295 napi_skb_free_stolen_head(skb);
6296 else
6297 napi_reuse_skb(napi, skb);
6298 break;
6299
6300 case GRO_MERGED:
6301 case GRO_CONSUMED:
6302 break;
6303 }
6304
6305 return ret;
6306}
6307
6308/* Upper GRO stack assumes network header starts at gro_offset=0
6309 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6310 * We copy ethernet header into skb->data to have a common layout.
6311 */
6312static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6313{
6314 struct sk_buff *skb = napi->skb;
6315 const struct ethhdr *eth;
6316 unsigned int hlen = sizeof(*eth);
6317
6318 napi->skb = NULL;
6319
6320 skb_reset_mac_header(skb);
6321 skb_gro_reset_offset(skb, hlen);
6322
6323 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6324 eth = skb_gro_header_slow(skb, hlen, 0);
6325 if (unlikely(!eth)) {
6326 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6327 __func__, napi->dev->name);
6328 napi_reuse_skb(napi, skb);
6329 return NULL;
6330 }
6331 } else {
6332 eth = (const struct ethhdr *)skb->data;
6333 gro_pull_from_frag0(skb, hlen);
6334 NAPI_GRO_CB(skb)->frag0 += hlen;
6335 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6336 }
6337 __skb_pull(skb, hlen);
6338
6339 /*
6340 * This works because the only protocols we care about don't require
6341 * special handling.
6342 * We'll fix it up properly in napi_frags_finish()
6343 */
6344 skb->protocol = eth->h_proto;
6345
6346 return skb;
6347}
6348
6349gro_result_t napi_gro_frags(struct napi_struct *napi)
6350{
6351 gro_result_t ret;
6352 struct sk_buff *skb = napi_frags_skb(napi);
6353
6354 trace_napi_gro_frags_entry(skb);
6355
6356 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6357 trace_napi_gro_frags_exit(ret);
6358
6359 return ret;
6360}
6361EXPORT_SYMBOL(napi_gro_frags);
6362
6363/* Compute the checksum from gro_offset and return the folded value
6364 * after adding in any pseudo checksum.
6365 */
6366__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6367{
6368 __wsum wsum;
6369 __sum16 sum;
6370
6371 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6372
6373 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6374 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6375 /* See comments in __skb_checksum_complete(). */
6376 if (likely(!sum)) {
6377 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6378 !skb->csum_complete_sw)
6379 netdev_rx_csum_fault(skb->dev, skb);
6380 }
6381
6382 NAPI_GRO_CB(skb)->csum = wsum;
6383 NAPI_GRO_CB(skb)->csum_valid = 1;
6384
6385 return sum;
6386}
6387EXPORT_SYMBOL(__skb_gro_checksum_complete);
6388
6389static void net_rps_send_ipi(struct softnet_data *remsd)
6390{
6391#ifdef CONFIG_RPS
6392 while (remsd) {
6393 struct softnet_data *next = remsd->rps_ipi_next;
6394
6395 if (cpu_online(remsd->cpu))
6396 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6397 remsd = next;
6398 }
6399#endif
6400}
6401
6402/*
6403 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6404 * Note: called with local irq disabled, but exits with local irq enabled.
6405 */
6406static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6407{
6408#ifdef CONFIG_RPS
6409 struct softnet_data *remsd = sd->rps_ipi_list;
6410
6411 if (remsd) {
6412 sd->rps_ipi_list = NULL;
6413
6414 local_irq_enable();
6415
6416 /* Send pending IPI's to kick RPS processing on remote cpus. */
6417 net_rps_send_ipi(remsd);
6418 } else
6419#endif
6420 local_irq_enable();
6421}
6422
6423static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6424{
6425#ifdef CONFIG_RPS
6426 return sd->rps_ipi_list != NULL;
6427#else
6428 return false;
6429#endif
6430}
6431
6432static int process_backlog(struct napi_struct *napi, int quota)
6433{
6434 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6435 bool again = true;
6436 int work = 0;
6437
6438 /* Check if we have pending ipi, its better to send them now,
6439 * not waiting net_rx_action() end.
6440 */
6441 if (sd_has_rps_ipi_waiting(sd)) {
6442 local_irq_disable();
6443 net_rps_action_and_irq_enable(sd);
6444 }
6445
6446 napi->weight = dev_rx_weight;
6447 while (again) {
6448 struct sk_buff *skb;
6449
6450 while ((skb = __skb_dequeue(&sd->process_queue))) {
6451 rcu_read_lock();
6452 __netif_receive_skb(skb);
6453 rcu_read_unlock();
6454 input_queue_head_incr(sd);
6455 if (++work >= quota)
6456 return work;
6457
6458 }
6459
6460 local_irq_disable();
6461 rps_lock(sd);
6462 if (skb_queue_empty(&sd->input_pkt_queue)) {
6463 /*
6464 * Inline a custom version of __napi_complete().
6465 * only current cpu owns and manipulates this napi,
6466 * and NAPI_STATE_SCHED is the only possible flag set
6467 * on backlog.
6468 * We can use a plain write instead of clear_bit(),
6469 * and we dont need an smp_mb() memory barrier.
6470 */
6471 napi->state = 0;
6472 again = false;
6473 } else {
6474 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6475 &sd->process_queue);
6476 }
6477 rps_unlock(sd);
6478 local_irq_enable();
6479 }
6480
6481 return work;
6482}
6483
6484/**
6485 * __napi_schedule - schedule for receive
6486 * @n: entry to schedule
6487 *
6488 * The entry's receive function will be scheduled to run.
6489 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6490 */
6491void __napi_schedule(struct napi_struct *n)
6492{
6493 unsigned long flags;
6494
6495 local_irq_save(flags);
6496 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6497 local_irq_restore(flags);
6498}
6499EXPORT_SYMBOL(__napi_schedule);
6500
6501/**
6502 * napi_schedule_prep - check if napi can be scheduled
6503 * @n: napi context
6504 *
6505 * Test if NAPI routine is already running, and if not mark
6506 * it as running. This is used as a condition variable to
6507 * insure only one NAPI poll instance runs. We also make
6508 * sure there is no pending NAPI disable.
6509 */
6510bool napi_schedule_prep(struct napi_struct *n)
6511{
6512 unsigned long val, new;
6513
6514 do {
6515 val = READ_ONCE(n->state);
6516 if (unlikely(val & NAPIF_STATE_DISABLE))
6517 return false;
6518 new = val | NAPIF_STATE_SCHED;
6519
6520 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6521 * This was suggested by Alexander Duyck, as compiler
6522 * emits better code than :
6523 * if (val & NAPIF_STATE_SCHED)
6524 * new |= NAPIF_STATE_MISSED;
6525 */
6526 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6527 NAPIF_STATE_MISSED;
6528 } while (cmpxchg(&n->state, val, new) != val);
6529
6530 return !(val & NAPIF_STATE_SCHED);
6531}
6532EXPORT_SYMBOL(napi_schedule_prep);
6533
6534/**
6535 * __napi_schedule_irqoff - schedule for receive
6536 * @n: entry to schedule
6537 *
6538 * Variant of __napi_schedule() assuming hard irqs are masked.
6539 *
6540 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6541 * because the interrupt disabled assumption might not be true
6542 * due to force-threaded interrupts and spinlock substitution.
6543 */
6544void __napi_schedule_irqoff(struct napi_struct *n)
6545{
6546 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6547 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6548 else
6549 __napi_schedule(n);
6550}
6551EXPORT_SYMBOL(__napi_schedule_irqoff);
6552
6553bool napi_complete_done(struct napi_struct *n, int work_done)
6554{
6555 unsigned long flags, val, new, timeout = 0;
6556 bool ret = true;
6557
6558 /*
6559 * 1) Don't let napi dequeue from the cpu poll list
6560 * just in case its running on a different cpu.
6561 * 2) If we are busy polling, do nothing here, we have
6562 * the guarantee we will be called later.
6563 */
6564 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6565 NAPIF_STATE_IN_BUSY_POLL)))
6566 return false;
6567
6568 if (work_done) {
6569 if (n->gro_bitmask)
6570 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6571 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6572 }
6573 if (n->defer_hard_irqs_count > 0) {
6574 n->defer_hard_irqs_count--;
6575 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6576 if (timeout)
6577 ret = false;
6578 }
6579 if (n->gro_bitmask) {
6580 /* When the NAPI instance uses a timeout and keeps postponing
6581 * it, we need to bound somehow the time packets are kept in
6582 * the GRO layer
6583 */
6584 napi_gro_flush(n, !!timeout);
6585 }
6586
6587 gro_normal_list(n);
6588
6589 if (unlikely(!list_empty(&n->poll_list))) {
6590 /* If n->poll_list is not empty, we need to mask irqs */
6591 local_irq_save(flags);
6592 list_del_init(&n->poll_list);
6593 local_irq_restore(flags);
6594 }
6595
6596 do {
6597 val = READ_ONCE(n->state);
6598
6599 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6600
6601 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6602 NAPIF_STATE_SCHED_THREADED |
6603 NAPIF_STATE_PREFER_BUSY_POLL);
6604
6605 /* If STATE_MISSED was set, leave STATE_SCHED set,
6606 * because we will call napi->poll() one more time.
6607 * This C code was suggested by Alexander Duyck to help gcc.
6608 */
6609 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6610 NAPIF_STATE_SCHED;
6611 } while (cmpxchg(&n->state, val, new) != val);
6612
6613 if (unlikely(val & NAPIF_STATE_MISSED)) {
6614 __napi_schedule(n);
6615 return false;
6616 }
6617
6618 if (timeout)
6619 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6620 HRTIMER_MODE_REL_PINNED);
6621 return ret;
6622}
6623EXPORT_SYMBOL(napi_complete_done);
6624
6625/* must be called under rcu_read_lock(), as we dont take a reference */
6626static struct napi_struct *napi_by_id(unsigned int napi_id)
6627{
6628 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6629 struct napi_struct *napi;
6630
6631 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6632 if (napi->napi_id == napi_id)
6633 return napi;
6634
6635 return NULL;
6636}
6637
6638#if defined(CONFIG_NET_RX_BUSY_POLL)
6639
6640static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6641{
6642 if (!skip_schedule) {
6643 gro_normal_list(napi);
6644 __napi_schedule(napi);
6645 return;
6646 }
6647
6648 if (napi->gro_bitmask) {
6649 /* flush too old packets
6650 * If HZ < 1000, flush all packets.
6651 */
6652 napi_gro_flush(napi, HZ >= 1000);
6653 }
6654
6655 gro_normal_list(napi);
6656 clear_bit(NAPI_STATE_SCHED, &napi->state);
6657}
6658
6659static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6660 u16 budget)
6661{
6662 bool skip_schedule = false;
6663 unsigned long timeout;
6664 int rc;
6665
6666 /* Busy polling means there is a high chance device driver hard irq
6667 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6668 * set in napi_schedule_prep().
6669 * Since we are about to call napi->poll() once more, we can safely
6670 * clear NAPI_STATE_MISSED.
6671 *
6672 * Note: x86 could use a single "lock and ..." instruction
6673 * to perform these two clear_bit()
6674 */
6675 clear_bit(NAPI_STATE_MISSED, &napi->state);
6676 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6677
6678 local_bh_disable();
6679
6680 if (prefer_busy_poll) {
6681 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6682 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6683 if (napi->defer_hard_irqs_count && timeout) {
6684 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6685 skip_schedule = true;
6686 }
6687 }
6688
6689 /* All we really want here is to re-enable device interrupts.
6690 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6691 */
6692 rc = napi->poll(napi, budget);
6693 /* We can't gro_normal_list() here, because napi->poll() might have
6694 * rearmed the napi (napi_complete_done()) in which case it could
6695 * already be running on another CPU.
6696 */
6697 trace_napi_poll(napi, rc, budget);
6698 netpoll_poll_unlock(have_poll_lock);
6699 if (rc == budget)
6700 __busy_poll_stop(napi, skip_schedule);
6701 local_bh_enable();
6702}
6703
6704void napi_busy_loop(unsigned int napi_id,
6705 bool (*loop_end)(void *, unsigned long),
6706 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6707{
6708 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6709 int (*napi_poll)(struct napi_struct *napi, int budget);
6710 void *have_poll_lock = NULL;
6711 struct napi_struct *napi;
6712
6713restart:
6714 napi_poll = NULL;
6715
6716 rcu_read_lock();
6717
6718 napi = napi_by_id(napi_id);
6719 if (!napi)
6720 goto out;
6721
6722 preempt_disable();
6723 for (;;) {
6724 int work = 0;
6725
6726 local_bh_disable();
6727 if (!napi_poll) {
6728 unsigned long val = READ_ONCE(napi->state);
6729
6730 /* If multiple threads are competing for this napi,
6731 * we avoid dirtying napi->state as much as we can.
6732 */
6733 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6734 NAPIF_STATE_IN_BUSY_POLL)) {
6735 if (prefer_busy_poll)
6736 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6737 goto count;
6738 }
6739 if (cmpxchg(&napi->state, val,
6740 val | NAPIF_STATE_IN_BUSY_POLL |
6741 NAPIF_STATE_SCHED) != val) {
6742 if (prefer_busy_poll)
6743 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6744 goto count;
6745 }
6746 have_poll_lock = netpoll_poll_lock(napi);
6747 napi_poll = napi->poll;
6748 }
6749 work = napi_poll(napi, budget);
6750 trace_napi_poll(napi, work, budget);
6751 gro_normal_list(napi);
6752count:
6753 if (work > 0)
6754 __NET_ADD_STATS(dev_net(napi->dev),
6755 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6756 local_bh_enable();
6757
6758 if (!loop_end || loop_end(loop_end_arg, start_time))
6759 break;
6760
6761 if (unlikely(need_resched())) {
6762 if (napi_poll)
6763 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6764 preempt_enable();
6765 rcu_read_unlock();
6766 cond_resched();
6767 if (loop_end(loop_end_arg, start_time))
6768 return;
6769 goto restart;
6770 }
6771 cpu_relax();
6772 }
6773 if (napi_poll)
6774 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6775 preempt_enable();
6776out:
6777 rcu_read_unlock();
6778}
6779EXPORT_SYMBOL(napi_busy_loop);
6780
6781#endif /* CONFIG_NET_RX_BUSY_POLL */
6782
6783static void napi_hash_add(struct napi_struct *napi)
6784{
6785 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6786 return;
6787
6788 spin_lock(&napi_hash_lock);
6789
6790 /* 0..NR_CPUS range is reserved for sender_cpu use */
6791 do {
6792 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6793 napi_gen_id = MIN_NAPI_ID;
6794 } while (napi_by_id(napi_gen_id));
6795 napi->napi_id = napi_gen_id;
6796
6797 hlist_add_head_rcu(&napi->napi_hash_node,
6798 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6799
6800 spin_unlock(&napi_hash_lock);
6801}
6802
6803/* Warning : caller is responsible to make sure rcu grace period
6804 * is respected before freeing memory containing @napi
6805 */
6806static void napi_hash_del(struct napi_struct *napi)
6807{
6808 spin_lock(&napi_hash_lock);
6809
6810 hlist_del_init_rcu(&napi->napi_hash_node);
6811
6812 spin_unlock(&napi_hash_lock);
6813}
6814
6815static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6816{
6817 struct napi_struct *napi;
6818
6819 napi = container_of(timer, struct napi_struct, timer);
6820
6821 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6822 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6823 */
6824 if (!napi_disable_pending(napi) &&
6825 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6826 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6827 __napi_schedule_irqoff(napi);
6828 }
6829
6830 return HRTIMER_NORESTART;
6831}
6832
6833static void init_gro_hash(struct napi_struct *napi)
6834{
6835 int i;
6836
6837 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6838 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6839 napi->gro_hash[i].count = 0;
6840 }
6841 napi->gro_bitmask = 0;
6842}
6843
6844int dev_set_threaded(struct net_device *dev, bool threaded)
6845{
6846 struct napi_struct *napi;
6847 int err = 0;
6848
6849 if (dev->threaded == threaded)
6850 return 0;
6851
6852 if (threaded) {
6853 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6854 if (!napi->thread) {
6855 err = napi_kthread_create(napi);
6856 if (err) {
6857 threaded = false;
6858 break;
6859 }
6860 }
6861 }
6862 }
6863
6864 dev->threaded = threaded;
6865
6866 /* Make sure kthread is created before THREADED bit
6867 * is set.
6868 */
6869 smp_mb__before_atomic();
6870
6871 /* Setting/unsetting threaded mode on a napi might not immediately
6872 * take effect, if the current napi instance is actively being
6873 * polled. In this case, the switch between threaded mode and
6874 * softirq mode will happen in the next round of napi_schedule().
6875 * This should not cause hiccups/stalls to the live traffic.
6876 */
6877 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6878 if (threaded)
6879 set_bit(NAPI_STATE_THREADED, &napi->state);
6880 else
6881 clear_bit(NAPI_STATE_THREADED, &napi->state);
6882 }
6883
6884 return err;
6885}
6886EXPORT_SYMBOL(dev_set_threaded);
6887
6888void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6889 int (*poll)(struct napi_struct *, int), int weight)
6890{
6891 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6892 return;
6893
6894 INIT_LIST_HEAD(&napi->poll_list);
6895 INIT_HLIST_NODE(&napi->napi_hash_node);
6896 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6897 napi->timer.function = napi_watchdog;
6898 init_gro_hash(napi);
6899 napi->skb = NULL;
6900 INIT_LIST_HEAD(&napi->rx_list);
6901 napi->rx_count = 0;
6902 napi->poll = poll;
6903 if (weight > NAPI_POLL_WEIGHT)
6904 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6905 weight);
6906 napi->weight = weight;
6907 napi->dev = dev;
6908#ifdef CONFIG_NETPOLL
6909 napi->poll_owner = -1;
6910#endif
6911 set_bit(NAPI_STATE_SCHED, &napi->state);
6912 set_bit(NAPI_STATE_NPSVC, &napi->state);
6913 list_add_rcu(&napi->dev_list, &dev->napi_list);
6914 napi_hash_add(napi);
6915 /* Create kthread for this napi if dev->threaded is set.
6916 * Clear dev->threaded if kthread creation failed so that
6917 * threaded mode will not be enabled in napi_enable().
6918 */
6919 if (dev->threaded && napi_kthread_create(napi))
6920 dev->threaded = 0;
6921}
6922EXPORT_SYMBOL(netif_napi_add);
6923
6924void napi_disable(struct napi_struct *n)
6925{
6926 unsigned long val, new;
6927
6928 might_sleep();
6929 set_bit(NAPI_STATE_DISABLE, &n->state);
6930
6931 for ( ; ; ) {
6932 val = READ_ONCE(n->state);
6933 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6934 usleep_range(20, 200);
6935 continue;
6936 }
6937
6938 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6939 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6940
6941 if (cmpxchg(&n->state, val, new) == val)
6942 break;
6943 }
6944
6945 hrtimer_cancel(&n->timer);
6946
6947 clear_bit(NAPI_STATE_DISABLE, &n->state);
6948}
6949EXPORT_SYMBOL(napi_disable);
6950
6951/**
6952 * napi_enable - enable NAPI scheduling
6953 * @n: NAPI context
6954 *
6955 * Resume NAPI from being scheduled on this context.
6956 * Must be paired with napi_disable.
6957 */
6958void napi_enable(struct napi_struct *n)
6959{
6960 unsigned long val, new;
6961
6962 do {
6963 val = READ_ONCE(n->state);
6964 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6965
6966 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6967 if (n->dev->threaded && n->thread)
6968 new |= NAPIF_STATE_THREADED;
6969 } while (cmpxchg(&n->state, val, new) != val);
6970}
6971EXPORT_SYMBOL(napi_enable);
6972
6973static void flush_gro_hash(struct napi_struct *napi)
6974{
6975 int i;
6976
6977 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6978 struct sk_buff *skb, *n;
6979
6980 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6981 kfree_skb(skb);
6982 napi->gro_hash[i].count = 0;
6983 }
6984}
6985
6986/* Must be called in process context */
6987void __netif_napi_del(struct napi_struct *napi)
6988{
6989 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6990 return;
6991
6992 napi_hash_del(napi);
6993 list_del_rcu(&napi->dev_list);
6994 napi_free_frags(napi);
6995
6996 flush_gro_hash(napi);
6997 napi->gro_bitmask = 0;
6998
6999 if (napi->thread) {
7000 kthread_stop(napi->thread);
7001 napi->thread = NULL;
7002 }
7003}
7004EXPORT_SYMBOL(__netif_napi_del);
7005
7006static int __napi_poll(struct napi_struct *n, bool *repoll)
7007{
7008 int work, weight;
7009
7010 weight = n->weight;
7011
7012 /* This NAPI_STATE_SCHED test is for avoiding a race
7013 * with netpoll's poll_napi(). Only the entity which
7014 * obtains the lock and sees NAPI_STATE_SCHED set will
7015 * actually make the ->poll() call. Therefore we avoid
7016 * accidentally calling ->poll() when NAPI is not scheduled.
7017 */
7018 work = 0;
7019 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7020 work = n->poll(n, weight);
7021 trace_napi_poll(n, work, weight);
7022 }
7023
7024 if (unlikely(work > weight))
7025 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7026 n->poll, work, weight);
7027
7028 if (likely(work < weight))
7029 return work;
7030
7031 /* Drivers must not modify the NAPI state if they
7032 * consume the entire weight. In such cases this code
7033 * still "owns" the NAPI instance and therefore can
7034 * move the instance around on the list at-will.
7035 */
7036 if (unlikely(napi_disable_pending(n))) {
7037 napi_complete(n);
7038 return work;
7039 }
7040
7041 /* The NAPI context has more processing work, but busy-polling
7042 * is preferred. Exit early.
7043 */
7044 if (napi_prefer_busy_poll(n)) {
7045 if (napi_complete_done(n, work)) {
7046 /* If timeout is not set, we need to make sure
7047 * that the NAPI is re-scheduled.
7048 */
7049 napi_schedule(n);
7050 }
7051 return work;
7052 }
7053
7054 if (n->gro_bitmask) {
7055 /* flush too old packets
7056 * If HZ < 1000, flush all packets.
7057 */
7058 napi_gro_flush(n, HZ >= 1000);
7059 }
7060
7061 gro_normal_list(n);
7062
7063 /* Some drivers may have called napi_schedule
7064 * prior to exhausting their budget.
7065 */
7066 if (unlikely(!list_empty(&n->poll_list))) {
7067 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7068 n->dev ? n->dev->name : "backlog");
7069 return work;
7070 }
7071
7072 *repoll = true;
7073
7074 return work;
7075}
7076
7077static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7078{
7079 bool do_repoll = false;
7080 void *have;
7081 int work;
7082
7083 list_del_init(&n->poll_list);
7084
7085 have = netpoll_poll_lock(n);
7086
7087 work = __napi_poll(n, &do_repoll);
7088
7089 if (do_repoll)
7090 list_add_tail(&n->poll_list, repoll);
7091
7092 netpoll_poll_unlock(have);
7093
7094 return work;
7095}
7096
7097static int napi_thread_wait(struct napi_struct *napi)
7098{
7099 bool woken = false;
7100
7101 set_current_state(TASK_INTERRUPTIBLE);
7102
7103 while (!kthread_should_stop()) {
7104 /* Testing SCHED_THREADED bit here to make sure the current
7105 * kthread owns this napi and could poll on this napi.
7106 * Testing SCHED bit is not enough because SCHED bit might be
7107 * set by some other busy poll thread or by napi_disable().
7108 */
7109 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7110 WARN_ON(!list_empty(&napi->poll_list));
7111 __set_current_state(TASK_RUNNING);
7112 return 0;
7113 }
7114
7115 schedule();
7116 /* woken being true indicates this thread owns this napi. */
7117 woken = true;
7118 set_current_state(TASK_INTERRUPTIBLE);
7119 }
7120 __set_current_state(TASK_RUNNING);
7121
7122 return -1;
7123}
7124
7125static int napi_threaded_poll(void *data)
7126{
7127 struct napi_struct *napi = data;
7128 void *have;
7129
7130 while (!napi_thread_wait(napi)) {
7131 for (;;) {
7132 bool repoll = false;
7133
7134 local_bh_disable();
7135
7136 have = netpoll_poll_lock(napi);
7137 __napi_poll(napi, &repoll);
7138 netpoll_poll_unlock(have);
7139
7140 local_bh_enable();
7141
7142 if (!repoll)
7143 break;
7144
7145 cond_resched();
7146 }
7147 }
7148 return 0;
7149}
7150
7151static __latent_entropy void net_rx_action(struct softirq_action *h)
7152{
7153 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7154 unsigned long time_limit = jiffies +
7155 usecs_to_jiffies(netdev_budget_usecs);
7156 int budget = netdev_budget;
7157 LIST_HEAD(list);
7158 LIST_HEAD(repoll);
7159
7160 local_irq_disable();
7161 list_splice_init(&sd->poll_list, &list);
7162 local_irq_enable();
7163
7164 for (;;) {
7165 struct napi_struct *n;
7166
7167 if (list_empty(&list)) {
7168 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7169 return;
7170 break;
7171 }
7172
7173 n = list_first_entry(&list, struct napi_struct, poll_list);
7174 budget -= napi_poll(n, &repoll);
7175
7176 /* If softirq window is exhausted then punt.
7177 * Allow this to run for 2 jiffies since which will allow
7178 * an average latency of 1.5/HZ.
7179 */
7180 if (unlikely(budget <= 0 ||
7181 time_after_eq(jiffies, time_limit))) {
7182 sd->time_squeeze++;
7183 break;
7184 }
7185 }
7186
7187 local_irq_disable();
7188
7189 list_splice_tail_init(&sd->poll_list, &list);
7190 list_splice_tail(&repoll, &list);
7191 list_splice(&list, &sd->poll_list);
7192 if (!list_empty(&sd->poll_list))
7193 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7194
7195 net_rps_action_and_irq_enable(sd);
7196}
7197
7198struct netdev_adjacent {
7199 struct net_device *dev;
7200
7201 /* upper master flag, there can only be one master device per list */
7202 bool master;
7203
7204 /* lookup ignore flag */
7205 bool ignore;
7206
7207 /* counter for the number of times this device was added to us */
7208 u16 ref_nr;
7209
7210 /* private field for the users */
7211 void *private;
7212
7213 struct list_head list;
7214 struct rcu_head rcu;
7215};
7216
7217static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7218 struct list_head *adj_list)
7219{
7220 struct netdev_adjacent *adj;
7221
7222 list_for_each_entry(adj, adj_list, list) {
7223 if (adj->dev == adj_dev)
7224 return adj;
7225 }
7226 return NULL;
7227}
7228
7229static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7230 struct netdev_nested_priv *priv)
7231{
7232 struct net_device *dev = (struct net_device *)priv->data;
7233
7234 return upper_dev == dev;
7235}
7236
7237/**
7238 * netdev_has_upper_dev - Check if device is linked to an upper device
7239 * @dev: device
7240 * @upper_dev: upper device to check
7241 *
7242 * Find out if a device is linked to specified upper device and return true
7243 * in case it is. Note that this checks only immediate upper device,
7244 * not through a complete stack of devices. The caller must hold the RTNL lock.
7245 */
7246bool netdev_has_upper_dev(struct net_device *dev,
7247 struct net_device *upper_dev)
7248{
7249 struct netdev_nested_priv priv = {
7250 .data = (void *)upper_dev,
7251 };
7252
7253 ASSERT_RTNL();
7254
7255 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7256 &priv);
7257}
7258EXPORT_SYMBOL(netdev_has_upper_dev);
7259
7260/**
7261 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7262 * @dev: device
7263 * @upper_dev: upper device to check
7264 *
7265 * Find out if a device is linked to specified upper device and return true
7266 * in case it is. Note that this checks the entire upper device chain.
7267 * The caller must hold rcu lock.
7268 */
7269
7270bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7271 struct net_device *upper_dev)
7272{
7273 struct netdev_nested_priv priv = {
7274 .data = (void *)upper_dev,
7275 };
7276
7277 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7278 &priv);
7279}
7280EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7281
7282/**
7283 * netdev_has_any_upper_dev - Check if device is linked to some device
7284 * @dev: device
7285 *
7286 * Find out if a device is linked to an upper device and return true in case
7287 * it is. The caller must hold the RTNL lock.
7288 */
7289bool netdev_has_any_upper_dev(struct net_device *dev)
7290{
7291 ASSERT_RTNL();
7292
7293 return !list_empty(&dev->adj_list.upper);
7294}
7295EXPORT_SYMBOL(netdev_has_any_upper_dev);
7296
7297/**
7298 * netdev_master_upper_dev_get - Get master upper device
7299 * @dev: device
7300 *
7301 * Find a master upper device and return pointer to it or NULL in case
7302 * it's not there. The caller must hold the RTNL lock.
7303 */
7304struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7305{
7306 struct netdev_adjacent *upper;
7307
7308 ASSERT_RTNL();
7309
7310 if (list_empty(&dev->adj_list.upper))
7311 return NULL;
7312
7313 upper = list_first_entry(&dev->adj_list.upper,
7314 struct netdev_adjacent, list);
7315 if (likely(upper->master))
7316 return upper->dev;
7317 return NULL;
7318}
7319EXPORT_SYMBOL(netdev_master_upper_dev_get);
7320
7321static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7322{
7323 struct netdev_adjacent *upper;
7324
7325 ASSERT_RTNL();
7326
7327 if (list_empty(&dev->adj_list.upper))
7328 return NULL;
7329
7330 upper = list_first_entry(&dev->adj_list.upper,
7331 struct netdev_adjacent, list);
7332 if (likely(upper->master) && !upper->ignore)
7333 return upper->dev;
7334 return NULL;
7335}
7336
7337/**
7338 * netdev_has_any_lower_dev - Check if device is linked to some device
7339 * @dev: device
7340 *
7341 * Find out if a device is linked to a lower device and return true in case
7342 * it is. The caller must hold the RTNL lock.
7343 */
7344static bool netdev_has_any_lower_dev(struct net_device *dev)
7345{
7346 ASSERT_RTNL();
7347
7348 return !list_empty(&dev->adj_list.lower);
7349}
7350
7351void *netdev_adjacent_get_private(struct list_head *adj_list)
7352{
7353 struct netdev_adjacent *adj;
7354
7355 adj = list_entry(adj_list, struct netdev_adjacent, list);
7356
7357 return adj->private;
7358}
7359EXPORT_SYMBOL(netdev_adjacent_get_private);
7360
7361/**
7362 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7363 * @dev: device
7364 * @iter: list_head ** of the current position
7365 *
7366 * Gets the next device from the dev's upper list, starting from iter
7367 * position. The caller must hold RCU read lock.
7368 */
7369struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7370 struct list_head **iter)
7371{
7372 struct netdev_adjacent *upper;
7373
7374 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7375
7376 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377
7378 if (&upper->list == &dev->adj_list.upper)
7379 return NULL;
7380
7381 *iter = &upper->list;
7382
7383 return upper->dev;
7384}
7385EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7386
7387static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7388 struct list_head **iter,
7389 bool *ignore)
7390{
7391 struct netdev_adjacent *upper;
7392
7393 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7394
7395 if (&upper->list == &dev->adj_list.upper)
7396 return NULL;
7397
7398 *iter = &upper->list;
7399 *ignore = upper->ignore;
7400
7401 return upper->dev;
7402}
7403
7404static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7405 struct list_head **iter)
7406{
7407 struct netdev_adjacent *upper;
7408
7409 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7410
7411 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7412
7413 if (&upper->list == &dev->adj_list.upper)
7414 return NULL;
7415
7416 *iter = &upper->list;
7417
7418 return upper->dev;
7419}
7420
7421static int __netdev_walk_all_upper_dev(struct net_device *dev,
7422 int (*fn)(struct net_device *dev,
7423 struct netdev_nested_priv *priv),
7424 struct netdev_nested_priv *priv)
7425{
7426 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7427 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7428 int ret, cur = 0;
7429 bool ignore;
7430
7431 now = dev;
7432 iter = &dev->adj_list.upper;
7433
7434 while (1) {
7435 if (now != dev) {
7436 ret = fn(now, priv);
7437 if (ret)
7438 return ret;
7439 }
7440
7441 next = NULL;
7442 while (1) {
7443 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7444 if (!udev)
7445 break;
7446 if (ignore)
7447 continue;
7448
7449 next = udev;
7450 niter = &udev->adj_list.upper;
7451 dev_stack[cur] = now;
7452 iter_stack[cur++] = iter;
7453 break;
7454 }
7455
7456 if (!next) {
7457 if (!cur)
7458 return 0;
7459 next = dev_stack[--cur];
7460 niter = iter_stack[cur];
7461 }
7462
7463 now = next;
7464 iter = niter;
7465 }
7466
7467 return 0;
7468}
7469
7470int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7471 int (*fn)(struct net_device *dev,
7472 struct netdev_nested_priv *priv),
7473 struct netdev_nested_priv *priv)
7474{
7475 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7476 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7477 int ret, cur = 0;
7478
7479 now = dev;
7480 iter = &dev->adj_list.upper;
7481
7482 while (1) {
7483 if (now != dev) {
7484 ret = fn(now, priv);
7485 if (ret)
7486 return ret;
7487 }
7488
7489 next = NULL;
7490 while (1) {
7491 udev = netdev_next_upper_dev_rcu(now, &iter);
7492 if (!udev)
7493 break;
7494
7495 next = udev;
7496 niter = &udev->adj_list.upper;
7497 dev_stack[cur] = now;
7498 iter_stack[cur++] = iter;
7499 break;
7500 }
7501
7502 if (!next) {
7503 if (!cur)
7504 return 0;
7505 next = dev_stack[--cur];
7506 niter = iter_stack[cur];
7507 }
7508
7509 now = next;
7510 iter = niter;
7511 }
7512
7513 return 0;
7514}
7515EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7516
7517static bool __netdev_has_upper_dev(struct net_device *dev,
7518 struct net_device *upper_dev)
7519{
7520 struct netdev_nested_priv priv = {
7521 .flags = 0,
7522 .data = (void *)upper_dev,
7523 };
7524
7525 ASSERT_RTNL();
7526
7527 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7528 &priv);
7529}
7530
7531/**
7532 * netdev_lower_get_next_private - Get the next ->private from the
7533 * lower neighbour list
7534 * @dev: device
7535 * @iter: list_head ** of the current position
7536 *
7537 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7538 * list, starting from iter position. The caller must hold either hold the
7539 * RTNL lock or its own locking that guarantees that the neighbour lower
7540 * list will remain unchanged.
7541 */
7542void *netdev_lower_get_next_private(struct net_device *dev,
7543 struct list_head **iter)
7544{
7545 struct netdev_adjacent *lower;
7546
7547 lower = list_entry(*iter, struct netdev_adjacent, list);
7548
7549 if (&lower->list == &dev->adj_list.lower)
7550 return NULL;
7551
7552 *iter = lower->list.next;
7553
7554 return lower->private;
7555}
7556EXPORT_SYMBOL(netdev_lower_get_next_private);
7557
7558/**
7559 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7560 * lower neighbour list, RCU
7561 * variant
7562 * @dev: device
7563 * @iter: list_head ** of the current position
7564 *
7565 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7566 * list, starting from iter position. The caller must hold RCU read lock.
7567 */
7568void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7569 struct list_head **iter)
7570{
7571 struct netdev_adjacent *lower;
7572
7573 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7574
7575 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7576
7577 if (&lower->list == &dev->adj_list.lower)
7578 return NULL;
7579
7580 *iter = &lower->list;
7581
7582 return lower->private;
7583}
7584EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7585
7586/**
7587 * netdev_lower_get_next - Get the next device from the lower neighbour
7588 * list
7589 * @dev: device
7590 * @iter: list_head ** of the current position
7591 *
7592 * Gets the next netdev_adjacent from the dev's lower neighbour
7593 * list, starting from iter position. The caller must hold RTNL lock or
7594 * its own locking that guarantees that the neighbour lower
7595 * list will remain unchanged.
7596 */
7597void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7598{
7599 struct netdev_adjacent *lower;
7600
7601 lower = list_entry(*iter, struct netdev_adjacent, list);
7602
7603 if (&lower->list == &dev->adj_list.lower)
7604 return NULL;
7605
7606 *iter = lower->list.next;
7607
7608 return lower->dev;
7609}
7610EXPORT_SYMBOL(netdev_lower_get_next);
7611
7612static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7613 struct list_head **iter)
7614{
7615 struct netdev_adjacent *lower;
7616
7617 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7618
7619 if (&lower->list == &dev->adj_list.lower)
7620 return NULL;
7621
7622 *iter = &lower->list;
7623
7624 return lower->dev;
7625}
7626
7627static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7628 struct list_head **iter,
7629 bool *ignore)
7630{
7631 struct netdev_adjacent *lower;
7632
7633 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7634
7635 if (&lower->list == &dev->adj_list.lower)
7636 return NULL;
7637
7638 *iter = &lower->list;
7639 *ignore = lower->ignore;
7640
7641 return lower->dev;
7642}
7643
7644int netdev_walk_all_lower_dev(struct net_device *dev,
7645 int (*fn)(struct net_device *dev,
7646 struct netdev_nested_priv *priv),
7647 struct netdev_nested_priv *priv)
7648{
7649 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7650 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7651 int ret, cur = 0;
7652
7653 now = dev;
7654 iter = &dev->adj_list.lower;
7655
7656 while (1) {
7657 if (now != dev) {
7658 ret = fn(now, priv);
7659 if (ret)
7660 return ret;
7661 }
7662
7663 next = NULL;
7664 while (1) {
7665 ldev = netdev_next_lower_dev(now, &iter);
7666 if (!ldev)
7667 break;
7668
7669 next = ldev;
7670 niter = &ldev->adj_list.lower;
7671 dev_stack[cur] = now;
7672 iter_stack[cur++] = iter;
7673 break;
7674 }
7675
7676 if (!next) {
7677 if (!cur)
7678 return 0;
7679 next = dev_stack[--cur];
7680 niter = iter_stack[cur];
7681 }
7682
7683 now = next;
7684 iter = niter;
7685 }
7686
7687 return 0;
7688}
7689EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7690
7691static int __netdev_walk_all_lower_dev(struct net_device *dev,
7692 int (*fn)(struct net_device *dev,
7693 struct netdev_nested_priv *priv),
7694 struct netdev_nested_priv *priv)
7695{
7696 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7697 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7698 int ret, cur = 0;
7699 bool ignore;
7700
7701 now = dev;
7702 iter = &dev->adj_list.lower;
7703
7704 while (1) {
7705 if (now != dev) {
7706 ret = fn(now, priv);
7707 if (ret)
7708 return ret;
7709 }
7710
7711 next = NULL;
7712 while (1) {
7713 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7714 if (!ldev)
7715 break;
7716 if (ignore)
7717 continue;
7718
7719 next = ldev;
7720 niter = &ldev->adj_list.lower;
7721 dev_stack[cur] = now;
7722 iter_stack[cur++] = iter;
7723 break;
7724 }
7725
7726 if (!next) {
7727 if (!cur)
7728 return 0;
7729 next = dev_stack[--cur];
7730 niter = iter_stack[cur];
7731 }
7732
7733 now = next;
7734 iter = niter;
7735 }
7736
7737 return 0;
7738}
7739
7740struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7741 struct list_head **iter)
7742{
7743 struct netdev_adjacent *lower;
7744
7745 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7746 if (&lower->list == &dev->adj_list.lower)
7747 return NULL;
7748
7749 *iter = &lower->list;
7750
7751 return lower->dev;
7752}
7753EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7754
7755static u8 __netdev_upper_depth(struct net_device *dev)
7756{
7757 struct net_device *udev;
7758 struct list_head *iter;
7759 u8 max_depth = 0;
7760 bool ignore;
7761
7762 for (iter = &dev->adj_list.upper,
7763 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7764 udev;
7765 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7766 if (ignore)
7767 continue;
7768 if (max_depth < udev->upper_level)
7769 max_depth = udev->upper_level;
7770 }
7771
7772 return max_depth;
7773}
7774
7775static u8 __netdev_lower_depth(struct net_device *dev)
7776{
7777 struct net_device *ldev;
7778 struct list_head *iter;
7779 u8 max_depth = 0;
7780 bool ignore;
7781
7782 for (iter = &dev->adj_list.lower,
7783 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7784 ldev;
7785 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7786 if (ignore)
7787 continue;
7788 if (max_depth < ldev->lower_level)
7789 max_depth = ldev->lower_level;
7790 }
7791
7792 return max_depth;
7793}
7794
7795static int __netdev_update_upper_level(struct net_device *dev,
7796 struct netdev_nested_priv *__unused)
7797{
7798 dev->upper_level = __netdev_upper_depth(dev) + 1;
7799 return 0;
7800}
7801
7802static int __netdev_update_lower_level(struct net_device *dev,
7803 struct netdev_nested_priv *priv)
7804{
7805 dev->lower_level = __netdev_lower_depth(dev) + 1;
7806
7807#ifdef CONFIG_LOCKDEP
7808 if (!priv)
7809 return 0;
7810
7811 if (priv->flags & NESTED_SYNC_IMM)
7812 dev->nested_level = dev->lower_level - 1;
7813 if (priv->flags & NESTED_SYNC_TODO)
7814 net_unlink_todo(dev);
7815#endif
7816 return 0;
7817}
7818
7819int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7820 int (*fn)(struct net_device *dev,
7821 struct netdev_nested_priv *priv),
7822 struct netdev_nested_priv *priv)
7823{
7824 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7825 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7826 int ret, cur = 0;
7827
7828 now = dev;
7829 iter = &dev->adj_list.lower;
7830
7831 while (1) {
7832 if (now != dev) {
7833 ret = fn(now, priv);
7834 if (ret)
7835 return ret;
7836 }
7837
7838 next = NULL;
7839 while (1) {
7840 ldev = netdev_next_lower_dev_rcu(now, &iter);
7841 if (!ldev)
7842 break;
7843
7844 next = ldev;
7845 niter = &ldev->adj_list.lower;
7846 dev_stack[cur] = now;
7847 iter_stack[cur++] = iter;
7848 break;
7849 }
7850
7851 if (!next) {
7852 if (!cur)
7853 return 0;
7854 next = dev_stack[--cur];
7855 niter = iter_stack[cur];
7856 }
7857
7858 now = next;
7859 iter = niter;
7860 }
7861
7862 return 0;
7863}
7864EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7865
7866/**
7867 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7868 * lower neighbour list, RCU
7869 * variant
7870 * @dev: device
7871 *
7872 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7873 * list. The caller must hold RCU read lock.
7874 */
7875void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7876{
7877 struct netdev_adjacent *lower;
7878
7879 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7880 struct netdev_adjacent, list);
7881 if (lower)
7882 return lower->private;
7883 return NULL;
7884}
7885EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7886
7887/**
7888 * netdev_master_upper_dev_get_rcu - Get master upper device
7889 * @dev: device
7890 *
7891 * Find a master upper device and return pointer to it or NULL in case
7892 * it's not there. The caller must hold the RCU read lock.
7893 */
7894struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7895{
7896 struct netdev_adjacent *upper;
7897
7898 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7899 struct netdev_adjacent, list);
7900 if (upper && likely(upper->master))
7901 return upper->dev;
7902 return NULL;
7903}
7904EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7905
7906static int netdev_adjacent_sysfs_add(struct net_device *dev,
7907 struct net_device *adj_dev,
7908 struct list_head *dev_list)
7909{
7910 char linkname[IFNAMSIZ+7];
7911
7912 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7913 "upper_%s" : "lower_%s", adj_dev->name);
7914 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7915 linkname);
7916}
7917static void netdev_adjacent_sysfs_del(struct net_device *dev,
7918 char *name,
7919 struct list_head *dev_list)
7920{
7921 char linkname[IFNAMSIZ+7];
7922
7923 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7924 "upper_%s" : "lower_%s", name);
7925 sysfs_remove_link(&(dev->dev.kobj), linkname);
7926}
7927
7928static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7929 struct net_device *adj_dev,
7930 struct list_head *dev_list)
7931{
7932 return (dev_list == &dev->adj_list.upper ||
7933 dev_list == &dev->adj_list.lower) &&
7934 net_eq(dev_net(dev), dev_net(adj_dev));
7935}
7936
7937static int __netdev_adjacent_dev_insert(struct net_device *dev,
7938 struct net_device *adj_dev,
7939 struct list_head *dev_list,
7940 void *private, bool master)
7941{
7942 struct netdev_adjacent *adj;
7943 int ret;
7944
7945 adj = __netdev_find_adj(adj_dev, dev_list);
7946
7947 if (adj) {
7948 adj->ref_nr += 1;
7949 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7950 dev->name, adj_dev->name, adj->ref_nr);
7951
7952 return 0;
7953 }
7954
7955 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7956 if (!adj)
7957 return -ENOMEM;
7958
7959 adj->dev = adj_dev;
7960 adj->master = master;
7961 adj->ref_nr = 1;
7962 adj->private = private;
7963 adj->ignore = false;
7964 dev_hold(adj_dev);
7965
7966 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7967 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7968
7969 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7970 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7971 if (ret)
7972 goto free_adj;
7973 }
7974
7975 /* Ensure that master link is always the first item in list. */
7976 if (master) {
7977 ret = sysfs_create_link(&(dev->dev.kobj),
7978 &(adj_dev->dev.kobj), "master");
7979 if (ret)
7980 goto remove_symlinks;
7981
7982 list_add_rcu(&adj->list, dev_list);
7983 } else {
7984 list_add_tail_rcu(&adj->list, dev_list);
7985 }
7986
7987 return 0;
7988
7989remove_symlinks:
7990 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7991 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7992free_adj:
7993 kfree(adj);
7994 dev_put(adj_dev);
7995
7996 return ret;
7997}
7998
7999static void __netdev_adjacent_dev_remove(struct net_device *dev,
8000 struct net_device *adj_dev,
8001 u16 ref_nr,
8002 struct list_head *dev_list)
8003{
8004 struct netdev_adjacent *adj;
8005
8006 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8007 dev->name, adj_dev->name, ref_nr);
8008
8009 adj = __netdev_find_adj(adj_dev, dev_list);
8010
8011 if (!adj) {
8012 pr_err("Adjacency does not exist for device %s from %s\n",
8013 dev->name, adj_dev->name);
8014 WARN_ON(1);
8015 return;
8016 }
8017
8018 if (adj->ref_nr > ref_nr) {
8019 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8020 dev->name, adj_dev->name, ref_nr,
8021 adj->ref_nr - ref_nr);
8022 adj->ref_nr -= ref_nr;
8023 return;
8024 }
8025
8026 if (adj->master)
8027 sysfs_remove_link(&(dev->dev.kobj), "master");
8028
8029 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8030 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8031
8032 list_del_rcu(&adj->list);
8033 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8034 adj_dev->name, dev->name, adj_dev->name);
8035 dev_put(adj_dev);
8036 kfree_rcu(adj, rcu);
8037}
8038
8039static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8040 struct net_device *upper_dev,
8041 struct list_head *up_list,
8042 struct list_head *down_list,
8043 void *private, bool master)
8044{
8045 int ret;
8046
8047 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8048 private, master);
8049 if (ret)
8050 return ret;
8051
8052 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8053 private, false);
8054 if (ret) {
8055 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8056 return ret;
8057 }
8058
8059 return 0;
8060}
8061
8062static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8063 struct net_device *upper_dev,
8064 u16 ref_nr,
8065 struct list_head *up_list,
8066 struct list_head *down_list)
8067{
8068 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8069 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8070}
8071
8072static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8073 struct net_device *upper_dev,
8074 void *private, bool master)
8075{
8076 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8077 &dev->adj_list.upper,
8078 &upper_dev->adj_list.lower,
8079 private, master);
8080}
8081
8082static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8083 struct net_device *upper_dev)
8084{
8085 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8086 &dev->adj_list.upper,
8087 &upper_dev->adj_list.lower);
8088}
8089
8090static int __netdev_upper_dev_link(struct net_device *dev,
8091 struct net_device *upper_dev, bool master,
8092 void *upper_priv, void *upper_info,
8093 struct netdev_nested_priv *priv,
8094 struct netlink_ext_ack *extack)
8095{
8096 struct netdev_notifier_changeupper_info changeupper_info = {
8097 .info = {
8098 .dev = dev,
8099 .extack = extack,
8100 },
8101 .upper_dev = upper_dev,
8102 .master = master,
8103 .linking = true,
8104 .upper_info = upper_info,
8105 };
8106 struct net_device *master_dev;
8107 int ret = 0;
8108
8109 ASSERT_RTNL();
8110
8111 if (dev == upper_dev)
8112 return -EBUSY;
8113
8114 /* To prevent loops, check if dev is not upper device to upper_dev. */
8115 if (__netdev_has_upper_dev(upper_dev, dev))
8116 return -EBUSY;
8117
8118 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8119 return -EMLINK;
8120
8121 if (!master) {
8122 if (__netdev_has_upper_dev(dev, upper_dev))
8123 return -EEXIST;
8124 } else {
8125 master_dev = __netdev_master_upper_dev_get(dev);
8126 if (master_dev)
8127 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8128 }
8129
8130 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8131 &changeupper_info.info);
8132 ret = notifier_to_errno(ret);
8133 if (ret)
8134 return ret;
8135
8136 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8137 master);
8138 if (ret)
8139 return ret;
8140
8141 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8142 &changeupper_info.info);
8143 ret = notifier_to_errno(ret);
8144 if (ret)
8145 goto rollback;
8146
8147 __netdev_update_upper_level(dev, NULL);
8148 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8149
8150 __netdev_update_lower_level(upper_dev, priv);
8151 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8152 priv);
8153
8154 return 0;
8155
8156rollback:
8157 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8158
8159 return ret;
8160}
8161
8162/**
8163 * netdev_upper_dev_link - Add a link to the upper device
8164 * @dev: device
8165 * @upper_dev: new upper device
8166 * @extack: netlink extended ack
8167 *
8168 * Adds a link to device which is upper to this one. The caller must hold
8169 * the RTNL lock. On a failure a negative errno code is returned.
8170 * On success the reference counts are adjusted and the function
8171 * returns zero.
8172 */
8173int netdev_upper_dev_link(struct net_device *dev,
8174 struct net_device *upper_dev,
8175 struct netlink_ext_ack *extack)
8176{
8177 struct netdev_nested_priv priv = {
8178 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8179 .data = NULL,
8180 };
8181
8182 return __netdev_upper_dev_link(dev, upper_dev, false,
8183 NULL, NULL, &priv, extack);
8184}
8185EXPORT_SYMBOL(netdev_upper_dev_link);
8186
8187/**
8188 * netdev_master_upper_dev_link - Add a master link to the upper device
8189 * @dev: device
8190 * @upper_dev: new upper device
8191 * @upper_priv: upper device private
8192 * @upper_info: upper info to be passed down via notifier
8193 * @extack: netlink extended ack
8194 *
8195 * Adds a link to device which is upper to this one. In this case, only
8196 * one master upper device can be linked, although other non-master devices
8197 * might be linked as well. The caller must hold the RTNL lock.
8198 * On a failure a negative errno code is returned. On success the reference
8199 * counts are adjusted and the function returns zero.
8200 */
8201int netdev_master_upper_dev_link(struct net_device *dev,
8202 struct net_device *upper_dev,
8203 void *upper_priv, void *upper_info,
8204 struct netlink_ext_ack *extack)
8205{
8206 struct netdev_nested_priv priv = {
8207 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8208 .data = NULL,
8209 };
8210
8211 return __netdev_upper_dev_link(dev, upper_dev, true,
8212 upper_priv, upper_info, &priv, extack);
8213}
8214EXPORT_SYMBOL(netdev_master_upper_dev_link);
8215
8216static void __netdev_upper_dev_unlink(struct net_device *dev,
8217 struct net_device *upper_dev,
8218 struct netdev_nested_priv *priv)
8219{
8220 struct netdev_notifier_changeupper_info changeupper_info = {
8221 .info = {
8222 .dev = dev,
8223 },
8224 .upper_dev = upper_dev,
8225 .linking = false,
8226 };
8227
8228 ASSERT_RTNL();
8229
8230 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8231
8232 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8233 &changeupper_info.info);
8234
8235 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8236
8237 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8238 &changeupper_info.info);
8239
8240 __netdev_update_upper_level(dev, NULL);
8241 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8242
8243 __netdev_update_lower_level(upper_dev, priv);
8244 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8245 priv);
8246}
8247
8248/**
8249 * netdev_upper_dev_unlink - Removes a link to upper device
8250 * @dev: device
8251 * @upper_dev: new upper device
8252 *
8253 * Removes a link to device which is upper to this one. The caller must hold
8254 * the RTNL lock.
8255 */
8256void netdev_upper_dev_unlink(struct net_device *dev,
8257 struct net_device *upper_dev)
8258{
8259 struct netdev_nested_priv priv = {
8260 .flags = NESTED_SYNC_TODO,
8261 .data = NULL,
8262 };
8263
8264 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8265}
8266EXPORT_SYMBOL(netdev_upper_dev_unlink);
8267
8268static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8269 struct net_device *lower_dev,
8270 bool val)
8271{
8272 struct netdev_adjacent *adj;
8273
8274 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8275 if (adj)
8276 adj->ignore = val;
8277
8278 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8279 if (adj)
8280 adj->ignore = val;
8281}
8282
8283static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8284 struct net_device *lower_dev)
8285{
8286 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8287}
8288
8289static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8290 struct net_device *lower_dev)
8291{
8292 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8293}
8294
8295int netdev_adjacent_change_prepare(struct net_device *old_dev,
8296 struct net_device *new_dev,
8297 struct net_device *dev,
8298 struct netlink_ext_ack *extack)
8299{
8300 struct netdev_nested_priv priv = {
8301 .flags = 0,
8302 .data = NULL,
8303 };
8304 int err;
8305
8306 if (!new_dev)
8307 return 0;
8308
8309 if (old_dev && new_dev != old_dev)
8310 netdev_adjacent_dev_disable(dev, old_dev);
8311 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8312 extack);
8313 if (err) {
8314 if (old_dev && new_dev != old_dev)
8315 netdev_adjacent_dev_enable(dev, old_dev);
8316 return err;
8317 }
8318
8319 return 0;
8320}
8321EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8322
8323void netdev_adjacent_change_commit(struct net_device *old_dev,
8324 struct net_device *new_dev,
8325 struct net_device *dev)
8326{
8327 struct netdev_nested_priv priv = {
8328 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8329 .data = NULL,
8330 };
8331
8332 if (!new_dev || !old_dev)
8333 return;
8334
8335 if (new_dev == old_dev)
8336 return;
8337
8338 netdev_adjacent_dev_enable(dev, old_dev);
8339 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8340}
8341EXPORT_SYMBOL(netdev_adjacent_change_commit);
8342
8343void netdev_adjacent_change_abort(struct net_device *old_dev,
8344 struct net_device *new_dev,
8345 struct net_device *dev)
8346{
8347 struct netdev_nested_priv priv = {
8348 .flags = 0,
8349 .data = NULL,
8350 };
8351
8352 if (!new_dev)
8353 return;
8354
8355 if (old_dev && new_dev != old_dev)
8356 netdev_adjacent_dev_enable(dev, old_dev);
8357
8358 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8359}
8360EXPORT_SYMBOL(netdev_adjacent_change_abort);
8361
8362/**
8363 * netdev_bonding_info_change - Dispatch event about slave change
8364 * @dev: device
8365 * @bonding_info: info to dispatch
8366 *
8367 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8368 * The caller must hold the RTNL lock.
8369 */
8370void netdev_bonding_info_change(struct net_device *dev,
8371 struct netdev_bonding_info *bonding_info)
8372{
8373 struct netdev_notifier_bonding_info info = {
8374 .info.dev = dev,
8375 };
8376
8377 memcpy(&info.bonding_info, bonding_info,
8378 sizeof(struct netdev_bonding_info));
8379 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8380 &info.info);
8381}
8382EXPORT_SYMBOL(netdev_bonding_info_change);
8383
8384/**
8385 * netdev_get_xmit_slave - Get the xmit slave of master device
8386 * @dev: device
8387 * @skb: The packet
8388 * @all_slaves: assume all the slaves are active
8389 *
8390 * The reference counters are not incremented so the caller must be
8391 * careful with locks. The caller must hold RCU lock.
8392 * %NULL is returned if no slave is found.
8393 */
8394
8395struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8396 struct sk_buff *skb,
8397 bool all_slaves)
8398{
8399 const struct net_device_ops *ops = dev->netdev_ops;
8400
8401 if (!ops->ndo_get_xmit_slave)
8402 return NULL;
8403 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8404}
8405EXPORT_SYMBOL(netdev_get_xmit_slave);
8406
8407static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8408 struct sock *sk)
8409{
8410 const struct net_device_ops *ops = dev->netdev_ops;
8411
8412 if (!ops->ndo_sk_get_lower_dev)
8413 return NULL;
8414 return ops->ndo_sk_get_lower_dev(dev, sk);
8415}
8416
8417/**
8418 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8419 * @dev: device
8420 * @sk: the socket
8421 *
8422 * %NULL is returned if no lower device is found.
8423 */
8424
8425struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8426 struct sock *sk)
8427{
8428 struct net_device *lower;
8429
8430 lower = netdev_sk_get_lower_dev(dev, sk);
8431 while (lower) {
8432 dev = lower;
8433 lower = netdev_sk_get_lower_dev(dev, sk);
8434 }
8435
8436 return dev;
8437}
8438EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8439
8440static void netdev_adjacent_add_links(struct net_device *dev)
8441{
8442 struct netdev_adjacent *iter;
8443
8444 struct net *net = dev_net(dev);
8445
8446 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8447 if (!net_eq(net, dev_net(iter->dev)))
8448 continue;
8449 netdev_adjacent_sysfs_add(iter->dev, dev,
8450 &iter->dev->adj_list.lower);
8451 netdev_adjacent_sysfs_add(dev, iter->dev,
8452 &dev->adj_list.upper);
8453 }
8454
8455 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8456 if (!net_eq(net, dev_net(iter->dev)))
8457 continue;
8458 netdev_adjacent_sysfs_add(iter->dev, dev,
8459 &iter->dev->adj_list.upper);
8460 netdev_adjacent_sysfs_add(dev, iter->dev,
8461 &dev->adj_list.lower);
8462 }
8463}
8464
8465static void netdev_adjacent_del_links(struct net_device *dev)
8466{
8467 struct netdev_adjacent *iter;
8468
8469 struct net *net = dev_net(dev);
8470
8471 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8472 if (!net_eq(net, dev_net(iter->dev)))
8473 continue;
8474 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8475 &iter->dev->adj_list.lower);
8476 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8477 &dev->adj_list.upper);
8478 }
8479
8480 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8481 if (!net_eq(net, dev_net(iter->dev)))
8482 continue;
8483 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8484 &iter->dev->adj_list.upper);
8485 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8486 &dev->adj_list.lower);
8487 }
8488}
8489
8490void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8491{
8492 struct netdev_adjacent *iter;
8493
8494 struct net *net = dev_net(dev);
8495
8496 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8497 if (!net_eq(net, dev_net(iter->dev)))
8498 continue;
8499 netdev_adjacent_sysfs_del(iter->dev, oldname,
8500 &iter->dev->adj_list.lower);
8501 netdev_adjacent_sysfs_add(iter->dev, dev,
8502 &iter->dev->adj_list.lower);
8503 }
8504
8505 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8506 if (!net_eq(net, dev_net(iter->dev)))
8507 continue;
8508 netdev_adjacent_sysfs_del(iter->dev, oldname,
8509 &iter->dev->adj_list.upper);
8510 netdev_adjacent_sysfs_add(iter->dev, dev,
8511 &iter->dev->adj_list.upper);
8512 }
8513}
8514
8515void *netdev_lower_dev_get_private(struct net_device *dev,
8516 struct net_device *lower_dev)
8517{
8518 struct netdev_adjacent *lower;
8519
8520 if (!lower_dev)
8521 return NULL;
8522 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8523 if (!lower)
8524 return NULL;
8525
8526 return lower->private;
8527}
8528EXPORT_SYMBOL(netdev_lower_dev_get_private);
8529
8530
8531/**
8532 * netdev_lower_state_changed - Dispatch event about lower device state change
8533 * @lower_dev: device
8534 * @lower_state_info: state to dispatch
8535 *
8536 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8537 * The caller must hold the RTNL lock.
8538 */
8539void netdev_lower_state_changed(struct net_device *lower_dev,
8540 void *lower_state_info)
8541{
8542 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8543 .info.dev = lower_dev,
8544 };
8545
8546 ASSERT_RTNL();
8547 changelowerstate_info.lower_state_info = lower_state_info;
8548 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8549 &changelowerstate_info.info);
8550}
8551EXPORT_SYMBOL(netdev_lower_state_changed);
8552
8553static void dev_change_rx_flags(struct net_device *dev, int flags)
8554{
8555 const struct net_device_ops *ops = dev->netdev_ops;
8556
8557 if (ops->ndo_change_rx_flags)
8558 ops->ndo_change_rx_flags(dev, flags);
8559}
8560
8561static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8562{
8563 unsigned int old_flags = dev->flags;
8564 kuid_t uid;
8565 kgid_t gid;
8566
8567 ASSERT_RTNL();
8568
8569 dev->flags |= IFF_PROMISC;
8570 dev->promiscuity += inc;
8571 if (dev->promiscuity == 0) {
8572 /*
8573 * Avoid overflow.
8574 * If inc causes overflow, untouch promisc and return error.
8575 */
8576 if (inc < 0)
8577 dev->flags &= ~IFF_PROMISC;
8578 else {
8579 dev->promiscuity -= inc;
8580 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8581 return -EOVERFLOW;
8582 }
8583 }
8584 if (dev->flags != old_flags) {
8585 pr_info("device %s %s promiscuous mode\n",
8586 dev->name,
8587 dev->flags & IFF_PROMISC ? "entered" : "left");
8588 if (audit_enabled) {
8589 current_uid_gid(&uid, &gid);
8590 audit_log(audit_context(), GFP_ATOMIC,
8591 AUDIT_ANOM_PROMISCUOUS,
8592 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8593 dev->name, (dev->flags & IFF_PROMISC),
8594 (old_flags & IFF_PROMISC),
8595 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8596 from_kuid(&init_user_ns, uid),
8597 from_kgid(&init_user_ns, gid),
8598 audit_get_sessionid(current));
8599 }
8600
8601 dev_change_rx_flags(dev, IFF_PROMISC);
8602 }
8603 if (notify)
8604 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8605 return 0;
8606}
8607
8608/**
8609 * dev_set_promiscuity - update promiscuity count on a device
8610 * @dev: device
8611 * @inc: modifier
8612 *
8613 * Add or remove promiscuity from a device. While the count in the device
8614 * remains above zero the interface remains promiscuous. Once it hits zero
8615 * the device reverts back to normal filtering operation. A negative inc
8616 * value is used to drop promiscuity on the device.
8617 * Return 0 if successful or a negative errno code on error.
8618 */
8619int dev_set_promiscuity(struct net_device *dev, int inc)
8620{
8621 unsigned int old_flags = dev->flags;
8622 int err;
8623
8624 err = __dev_set_promiscuity(dev, inc, true);
8625 if (err < 0)
8626 return err;
8627 if (dev->flags != old_flags)
8628 dev_set_rx_mode(dev);
8629 return err;
8630}
8631EXPORT_SYMBOL(dev_set_promiscuity);
8632
8633static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8634{
8635 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8636
8637 ASSERT_RTNL();
8638
8639 dev->flags |= IFF_ALLMULTI;
8640 dev->allmulti += inc;
8641 if (dev->allmulti == 0) {
8642 /*
8643 * Avoid overflow.
8644 * If inc causes overflow, untouch allmulti and return error.
8645 */
8646 if (inc < 0)
8647 dev->flags &= ~IFF_ALLMULTI;
8648 else {
8649 dev->allmulti -= inc;
8650 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8651 return -EOVERFLOW;
8652 }
8653 }
8654 if (dev->flags ^ old_flags) {
8655 dev_change_rx_flags(dev, IFF_ALLMULTI);
8656 dev_set_rx_mode(dev);
8657 if (notify)
8658 __dev_notify_flags(dev, old_flags,
8659 dev->gflags ^ old_gflags);
8660 }
8661 return 0;
8662}
8663
8664/**
8665 * dev_set_allmulti - update allmulti count on a device
8666 * @dev: device
8667 * @inc: modifier
8668 *
8669 * Add or remove reception of all multicast frames to a device. While the
8670 * count in the device remains above zero the interface remains listening
8671 * to all interfaces. Once it hits zero the device reverts back to normal
8672 * filtering operation. A negative @inc value is used to drop the counter
8673 * when releasing a resource needing all multicasts.
8674 * Return 0 if successful or a negative errno code on error.
8675 */
8676
8677int dev_set_allmulti(struct net_device *dev, int inc)
8678{
8679 return __dev_set_allmulti(dev, inc, true);
8680}
8681EXPORT_SYMBOL(dev_set_allmulti);
8682
8683/*
8684 * Upload unicast and multicast address lists to device and
8685 * configure RX filtering. When the device doesn't support unicast
8686 * filtering it is put in promiscuous mode while unicast addresses
8687 * are present.
8688 */
8689void __dev_set_rx_mode(struct net_device *dev)
8690{
8691 const struct net_device_ops *ops = dev->netdev_ops;
8692
8693 /* dev_open will call this function so the list will stay sane. */
8694 if (!(dev->flags&IFF_UP))
8695 return;
8696
8697 if (!netif_device_present(dev))
8698 return;
8699
8700 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8701 /* Unicast addresses changes may only happen under the rtnl,
8702 * therefore calling __dev_set_promiscuity here is safe.
8703 */
8704 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8705 __dev_set_promiscuity(dev, 1, false);
8706 dev->uc_promisc = true;
8707 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8708 __dev_set_promiscuity(dev, -1, false);
8709 dev->uc_promisc = false;
8710 }
8711 }
8712
8713 if (ops->ndo_set_rx_mode)
8714 ops->ndo_set_rx_mode(dev);
8715}
8716
8717void dev_set_rx_mode(struct net_device *dev)
8718{
8719 netif_addr_lock_bh(dev);
8720 __dev_set_rx_mode(dev);
8721 netif_addr_unlock_bh(dev);
8722}
8723
8724/**
8725 * dev_get_flags - get flags reported to userspace
8726 * @dev: device
8727 *
8728 * Get the combination of flag bits exported through APIs to userspace.
8729 */
8730unsigned int dev_get_flags(const struct net_device *dev)
8731{
8732 unsigned int flags;
8733
8734 flags = (dev->flags & ~(IFF_PROMISC |
8735 IFF_ALLMULTI |
8736 IFF_RUNNING |
8737 IFF_LOWER_UP |
8738 IFF_DORMANT)) |
8739 (dev->gflags & (IFF_PROMISC |
8740 IFF_ALLMULTI));
8741
8742 if (netif_running(dev)) {
8743 if (netif_oper_up(dev))
8744 flags |= IFF_RUNNING;
8745 if (netif_carrier_ok(dev))
8746 flags |= IFF_LOWER_UP;
8747 if (netif_dormant(dev))
8748 flags |= IFF_DORMANT;
8749 }
8750
8751 return flags;
8752}
8753EXPORT_SYMBOL(dev_get_flags);
8754
8755int __dev_change_flags(struct net_device *dev, unsigned int flags,
8756 struct netlink_ext_ack *extack)
8757{
8758 unsigned int old_flags = dev->flags;
8759 int ret;
8760
8761 ASSERT_RTNL();
8762
8763 /*
8764 * Set the flags on our device.
8765 */
8766
8767 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8768 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8769 IFF_AUTOMEDIA)) |
8770 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8771 IFF_ALLMULTI));
8772
8773 /*
8774 * Load in the correct multicast list now the flags have changed.
8775 */
8776
8777 if ((old_flags ^ flags) & IFF_MULTICAST)
8778 dev_change_rx_flags(dev, IFF_MULTICAST);
8779
8780 dev_set_rx_mode(dev);
8781
8782 /*
8783 * Have we downed the interface. We handle IFF_UP ourselves
8784 * according to user attempts to set it, rather than blindly
8785 * setting it.
8786 */
8787
8788 ret = 0;
8789 if ((old_flags ^ flags) & IFF_UP) {
8790 if (old_flags & IFF_UP)
8791 __dev_close(dev);
8792 else
8793 ret = __dev_open(dev, extack);
8794 }
8795
8796 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8797 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8798 unsigned int old_flags = dev->flags;
8799
8800 dev->gflags ^= IFF_PROMISC;
8801
8802 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8803 if (dev->flags != old_flags)
8804 dev_set_rx_mode(dev);
8805 }
8806
8807 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8808 * is important. Some (broken) drivers set IFF_PROMISC, when
8809 * IFF_ALLMULTI is requested not asking us and not reporting.
8810 */
8811 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8812 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8813
8814 dev->gflags ^= IFF_ALLMULTI;
8815 __dev_set_allmulti(dev, inc, false);
8816 }
8817
8818 return ret;
8819}
8820
8821void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8822 unsigned int gchanges)
8823{
8824 unsigned int changes = dev->flags ^ old_flags;
8825
8826 if (gchanges)
8827 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8828
8829 if (changes & IFF_UP) {
8830 if (dev->flags & IFF_UP)
8831 call_netdevice_notifiers(NETDEV_UP, dev);
8832 else
8833 call_netdevice_notifiers(NETDEV_DOWN, dev);
8834 }
8835
8836 if (dev->flags & IFF_UP &&
8837 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8838 struct netdev_notifier_change_info change_info = {
8839 .info = {
8840 .dev = dev,
8841 },
8842 .flags_changed = changes,
8843 };
8844
8845 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8846 }
8847}
8848
8849/**
8850 * dev_change_flags - change device settings
8851 * @dev: device
8852 * @flags: device state flags
8853 * @extack: netlink extended ack
8854 *
8855 * Change settings on device based state flags. The flags are
8856 * in the userspace exported format.
8857 */
8858int dev_change_flags(struct net_device *dev, unsigned int flags,
8859 struct netlink_ext_ack *extack)
8860{
8861 int ret;
8862 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8863
8864 ret = __dev_change_flags(dev, flags, extack);
8865 if (ret < 0)
8866 return ret;
8867
8868 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8869 __dev_notify_flags(dev, old_flags, changes);
8870 return ret;
8871}
8872EXPORT_SYMBOL(dev_change_flags);
8873
8874int __dev_set_mtu(struct net_device *dev, int new_mtu)
8875{
8876 const struct net_device_ops *ops = dev->netdev_ops;
8877
8878 if (ops->ndo_change_mtu)
8879 return ops->ndo_change_mtu(dev, new_mtu);
8880
8881 /* Pairs with all the lockless reads of dev->mtu in the stack */
8882 WRITE_ONCE(dev->mtu, new_mtu);
8883 return 0;
8884}
8885EXPORT_SYMBOL(__dev_set_mtu);
8886
8887int dev_validate_mtu(struct net_device *dev, int new_mtu,
8888 struct netlink_ext_ack *extack)
8889{
8890 /* MTU must be positive, and in range */
8891 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8892 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8893 return -EINVAL;
8894 }
8895
8896 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8897 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8898 return -EINVAL;
8899 }
8900 return 0;
8901}
8902
8903/**
8904 * dev_set_mtu_ext - Change maximum transfer unit
8905 * @dev: device
8906 * @new_mtu: new transfer unit
8907 * @extack: netlink extended ack
8908 *
8909 * Change the maximum transfer size of the network device.
8910 */
8911int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8912 struct netlink_ext_ack *extack)
8913{
8914 int err, orig_mtu;
8915
8916 if (new_mtu == dev->mtu)
8917 return 0;
8918
8919 err = dev_validate_mtu(dev, new_mtu, extack);
8920 if (err)
8921 return err;
8922
8923 if (!netif_device_present(dev))
8924 return -ENODEV;
8925
8926 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8927 err = notifier_to_errno(err);
8928 if (err)
8929 return err;
8930
8931 orig_mtu = dev->mtu;
8932 err = __dev_set_mtu(dev, new_mtu);
8933
8934 if (!err) {
8935 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8936 orig_mtu);
8937 err = notifier_to_errno(err);
8938 if (err) {
8939 /* setting mtu back and notifying everyone again,
8940 * so that they have a chance to revert changes.
8941 */
8942 __dev_set_mtu(dev, orig_mtu);
8943 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8944 new_mtu);
8945 }
8946 }
8947 return err;
8948}
8949
8950int dev_set_mtu(struct net_device *dev, int new_mtu)
8951{
8952 struct netlink_ext_ack extack;
8953 int err;
8954
8955 memset(&extack, 0, sizeof(extack));
8956 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8957 if (err && extack._msg)
8958 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8959 return err;
8960}
8961EXPORT_SYMBOL(dev_set_mtu);
8962
8963/**
8964 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8965 * @dev: device
8966 * @new_len: new tx queue length
8967 */
8968int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8969{
8970 unsigned int orig_len = dev->tx_queue_len;
8971 int res;
8972
8973 if (new_len != (unsigned int)new_len)
8974 return -ERANGE;
8975
8976 if (new_len != orig_len) {
8977 dev->tx_queue_len = new_len;
8978 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8979 res = notifier_to_errno(res);
8980 if (res)
8981 goto err_rollback;
8982 res = dev_qdisc_change_tx_queue_len(dev);
8983 if (res)
8984 goto err_rollback;
8985 }
8986
8987 return 0;
8988
8989err_rollback:
8990 netdev_err(dev, "refused to change device tx_queue_len\n");
8991 dev->tx_queue_len = orig_len;
8992 return res;
8993}
8994
8995/**
8996 * dev_set_group - Change group this device belongs to
8997 * @dev: device
8998 * @new_group: group this device should belong to
8999 */
9000void dev_set_group(struct net_device *dev, int new_group)
9001{
9002 dev->group = new_group;
9003}
9004EXPORT_SYMBOL(dev_set_group);
9005
9006/**
9007 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9008 * @dev: device
9009 * @addr: new address
9010 * @extack: netlink extended ack
9011 */
9012int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9013 struct netlink_ext_ack *extack)
9014{
9015 struct netdev_notifier_pre_changeaddr_info info = {
9016 .info.dev = dev,
9017 .info.extack = extack,
9018 .dev_addr = addr,
9019 };
9020 int rc;
9021
9022 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9023 return notifier_to_errno(rc);
9024}
9025EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9026
9027/**
9028 * dev_set_mac_address - Change Media Access Control Address
9029 * @dev: device
9030 * @sa: new address
9031 * @extack: netlink extended ack
9032 *
9033 * Change the hardware (MAC) address of the device
9034 */
9035int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9036 struct netlink_ext_ack *extack)
9037{
9038 const struct net_device_ops *ops = dev->netdev_ops;
9039 int err;
9040
9041 if (!ops->ndo_set_mac_address)
9042 return -EOPNOTSUPP;
9043 if (sa->sa_family != dev->type)
9044 return -EINVAL;
9045 if (!netif_device_present(dev))
9046 return -ENODEV;
9047 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9048 if (err)
9049 return err;
9050 err = ops->ndo_set_mac_address(dev, sa);
9051 if (err)
9052 return err;
9053 dev->addr_assign_type = NET_ADDR_SET;
9054 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9055 add_device_randomness(dev->dev_addr, dev->addr_len);
9056 return 0;
9057}
9058EXPORT_SYMBOL(dev_set_mac_address);
9059
9060static DECLARE_RWSEM(dev_addr_sem);
9061
9062int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9063 struct netlink_ext_ack *extack)
9064{
9065 int ret;
9066
9067 down_write(&dev_addr_sem);
9068 ret = dev_set_mac_address(dev, sa, extack);
9069 up_write(&dev_addr_sem);
9070 return ret;
9071}
9072EXPORT_SYMBOL(dev_set_mac_address_user);
9073
9074int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9075{
9076 size_t size = sizeof(sa->sa_data);
9077 struct net_device *dev;
9078 int ret = 0;
9079
9080 down_read(&dev_addr_sem);
9081 rcu_read_lock();
9082
9083 dev = dev_get_by_name_rcu(net, dev_name);
9084 if (!dev) {
9085 ret = -ENODEV;
9086 goto unlock;
9087 }
9088 if (!dev->addr_len)
9089 memset(sa->sa_data, 0, size);
9090 else
9091 memcpy(sa->sa_data, dev->dev_addr,
9092 min_t(size_t, size, dev->addr_len));
9093 sa->sa_family = dev->type;
9094
9095unlock:
9096 rcu_read_unlock();
9097 up_read(&dev_addr_sem);
9098 return ret;
9099}
9100EXPORT_SYMBOL(dev_get_mac_address);
9101
9102/**
9103 * dev_change_carrier - Change device carrier
9104 * @dev: device
9105 * @new_carrier: new value
9106 *
9107 * Change device carrier
9108 */
9109int dev_change_carrier(struct net_device *dev, bool new_carrier)
9110{
9111 const struct net_device_ops *ops = dev->netdev_ops;
9112
9113 if (!ops->ndo_change_carrier)
9114 return -EOPNOTSUPP;
9115 if (!netif_device_present(dev))
9116 return -ENODEV;
9117 return ops->ndo_change_carrier(dev, new_carrier);
9118}
9119EXPORT_SYMBOL(dev_change_carrier);
9120
9121/**
9122 * dev_get_phys_port_id - Get device physical port ID
9123 * @dev: device
9124 * @ppid: port ID
9125 *
9126 * Get device physical port ID
9127 */
9128int dev_get_phys_port_id(struct net_device *dev,
9129 struct netdev_phys_item_id *ppid)
9130{
9131 const struct net_device_ops *ops = dev->netdev_ops;
9132
9133 if (!ops->ndo_get_phys_port_id)
9134 return -EOPNOTSUPP;
9135 return ops->ndo_get_phys_port_id(dev, ppid);
9136}
9137EXPORT_SYMBOL(dev_get_phys_port_id);
9138
9139/**
9140 * dev_get_phys_port_name - Get device physical port name
9141 * @dev: device
9142 * @name: port name
9143 * @len: limit of bytes to copy to name
9144 *
9145 * Get device physical port name
9146 */
9147int dev_get_phys_port_name(struct net_device *dev,
9148 char *name, size_t len)
9149{
9150 const struct net_device_ops *ops = dev->netdev_ops;
9151 int err;
9152
9153 if (ops->ndo_get_phys_port_name) {
9154 err = ops->ndo_get_phys_port_name(dev, name, len);
9155 if (err != -EOPNOTSUPP)
9156 return err;
9157 }
9158 return devlink_compat_phys_port_name_get(dev, name, len);
9159}
9160EXPORT_SYMBOL(dev_get_phys_port_name);
9161
9162/**
9163 * dev_get_port_parent_id - Get the device's port parent identifier
9164 * @dev: network device
9165 * @ppid: pointer to a storage for the port's parent identifier
9166 * @recurse: allow/disallow recursion to lower devices
9167 *
9168 * Get the devices's port parent identifier
9169 */
9170int dev_get_port_parent_id(struct net_device *dev,
9171 struct netdev_phys_item_id *ppid,
9172 bool recurse)
9173{
9174 const struct net_device_ops *ops = dev->netdev_ops;
9175 struct netdev_phys_item_id first = { };
9176 struct net_device *lower_dev;
9177 struct list_head *iter;
9178 int err;
9179
9180 if (ops->ndo_get_port_parent_id) {
9181 err = ops->ndo_get_port_parent_id(dev, ppid);
9182 if (err != -EOPNOTSUPP)
9183 return err;
9184 }
9185
9186 err = devlink_compat_switch_id_get(dev, ppid);
9187 if (!recurse || err != -EOPNOTSUPP)
9188 return err;
9189
9190 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9191 err = dev_get_port_parent_id(lower_dev, ppid, true);
9192 if (err)
9193 break;
9194 if (!first.id_len)
9195 first = *ppid;
9196 else if (memcmp(&first, ppid, sizeof(*ppid)))
9197 return -EOPNOTSUPP;
9198 }
9199
9200 return err;
9201}
9202EXPORT_SYMBOL(dev_get_port_parent_id);
9203
9204/**
9205 * netdev_port_same_parent_id - Indicate if two network devices have
9206 * the same port parent identifier
9207 * @a: first network device
9208 * @b: second network device
9209 */
9210bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9211{
9212 struct netdev_phys_item_id a_id = { };
9213 struct netdev_phys_item_id b_id = { };
9214
9215 if (dev_get_port_parent_id(a, &a_id, true) ||
9216 dev_get_port_parent_id(b, &b_id, true))
9217 return false;
9218
9219 return netdev_phys_item_id_same(&a_id, &b_id);
9220}
9221EXPORT_SYMBOL(netdev_port_same_parent_id);
9222
9223/**
9224 * dev_change_proto_down - update protocol port state information
9225 * @dev: device
9226 * @proto_down: new value
9227 *
9228 * This info can be used by switch drivers to set the phys state of the
9229 * port.
9230 */
9231int dev_change_proto_down(struct net_device *dev, bool proto_down)
9232{
9233 const struct net_device_ops *ops = dev->netdev_ops;
9234
9235 if (!ops->ndo_change_proto_down)
9236 return -EOPNOTSUPP;
9237 if (!netif_device_present(dev))
9238 return -ENODEV;
9239 return ops->ndo_change_proto_down(dev, proto_down);
9240}
9241EXPORT_SYMBOL(dev_change_proto_down);
9242
9243/**
9244 * dev_change_proto_down_generic - generic implementation for
9245 * ndo_change_proto_down that sets carrier according to
9246 * proto_down.
9247 *
9248 * @dev: device
9249 * @proto_down: new value
9250 */
9251int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9252{
9253 if (proto_down)
9254 netif_carrier_off(dev);
9255 else
9256 netif_carrier_on(dev);
9257 dev->proto_down = proto_down;
9258 return 0;
9259}
9260EXPORT_SYMBOL(dev_change_proto_down_generic);
9261
9262/**
9263 * dev_change_proto_down_reason - proto down reason
9264 *
9265 * @dev: device
9266 * @mask: proto down mask
9267 * @value: proto down value
9268 */
9269void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9270 u32 value)
9271{
9272 int b;
9273
9274 if (!mask) {
9275 dev->proto_down_reason = value;
9276 } else {
9277 for_each_set_bit(b, &mask, 32) {
9278 if (value & (1 << b))
9279 dev->proto_down_reason |= BIT(b);
9280 else
9281 dev->proto_down_reason &= ~BIT(b);
9282 }
9283 }
9284}
9285EXPORT_SYMBOL(dev_change_proto_down_reason);
9286
9287struct bpf_xdp_link {
9288 struct bpf_link link;
9289 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9290 int flags;
9291};
9292
9293static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9294{
9295 if (flags & XDP_FLAGS_HW_MODE)
9296 return XDP_MODE_HW;
9297 if (flags & XDP_FLAGS_DRV_MODE)
9298 return XDP_MODE_DRV;
9299 if (flags & XDP_FLAGS_SKB_MODE)
9300 return XDP_MODE_SKB;
9301 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9302}
9303
9304static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9305{
9306 switch (mode) {
9307 case XDP_MODE_SKB:
9308 return generic_xdp_install;
9309 case XDP_MODE_DRV:
9310 case XDP_MODE_HW:
9311 return dev->netdev_ops->ndo_bpf;
9312 default:
9313 return NULL;
9314 }
9315}
9316
9317static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9318 enum bpf_xdp_mode mode)
9319{
9320 return dev->xdp_state[mode].link;
9321}
9322
9323static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9324 enum bpf_xdp_mode mode)
9325{
9326 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9327
9328 if (link)
9329 return link->link.prog;
9330 return dev->xdp_state[mode].prog;
9331}
9332
9333u8 dev_xdp_prog_count(struct net_device *dev)
9334{
9335 u8 count = 0;
9336 int i;
9337
9338 for (i = 0; i < __MAX_XDP_MODE; i++)
9339 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9340 count++;
9341 return count;
9342}
9343EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9344
9345u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9346{
9347 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9348
9349 return prog ? prog->aux->id : 0;
9350}
9351
9352static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9353 struct bpf_xdp_link *link)
9354{
9355 dev->xdp_state[mode].link = link;
9356 dev->xdp_state[mode].prog = NULL;
9357}
9358
9359static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9360 struct bpf_prog *prog)
9361{
9362 dev->xdp_state[mode].link = NULL;
9363 dev->xdp_state[mode].prog = prog;
9364}
9365
9366static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9367 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9368 u32 flags, struct bpf_prog *prog)
9369{
9370 struct netdev_bpf xdp;
9371 int err;
9372
9373 memset(&xdp, 0, sizeof(xdp));
9374 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9375 xdp.extack = extack;
9376 xdp.flags = flags;
9377 xdp.prog = prog;
9378
9379 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9380 * "moved" into driver), so they don't increment it on their own, but
9381 * they do decrement refcnt when program is detached or replaced.
9382 * Given net_device also owns link/prog, we need to bump refcnt here
9383 * to prevent drivers from underflowing it.
9384 */
9385 if (prog)
9386 bpf_prog_inc(prog);
9387 err = bpf_op(dev, &xdp);
9388 if (err) {
9389 if (prog)
9390 bpf_prog_put(prog);
9391 return err;
9392 }
9393
9394 if (mode != XDP_MODE_HW)
9395 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9396
9397 return 0;
9398}
9399
9400static void dev_xdp_uninstall(struct net_device *dev)
9401{
9402 struct bpf_xdp_link *link;
9403 struct bpf_prog *prog;
9404 enum bpf_xdp_mode mode;
9405 bpf_op_t bpf_op;
9406
9407 ASSERT_RTNL();
9408
9409 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9410 prog = dev_xdp_prog(dev, mode);
9411 if (!prog)
9412 continue;
9413
9414 bpf_op = dev_xdp_bpf_op(dev, mode);
9415 if (!bpf_op)
9416 continue;
9417
9418 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9419
9420 /* auto-detach link from net device */
9421 link = dev_xdp_link(dev, mode);
9422 if (link)
9423 link->dev = NULL;
9424 else
9425 bpf_prog_put(prog);
9426
9427 dev_xdp_set_link(dev, mode, NULL);
9428 }
9429}
9430
9431static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9432 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9433 struct bpf_prog *old_prog, u32 flags)
9434{
9435 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9436 struct bpf_prog *cur_prog;
9437 struct net_device *upper;
9438 struct list_head *iter;
9439 enum bpf_xdp_mode mode;
9440 bpf_op_t bpf_op;
9441 int err;
9442
9443 ASSERT_RTNL();
9444
9445 /* either link or prog attachment, never both */
9446 if (link && (new_prog || old_prog))
9447 return -EINVAL;
9448 /* link supports only XDP mode flags */
9449 if (link && (flags & ~XDP_FLAGS_MODES)) {
9450 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9451 return -EINVAL;
9452 }
9453 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9454 if (num_modes > 1) {
9455 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9456 return -EINVAL;
9457 }
9458 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9459 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9460 NL_SET_ERR_MSG(extack,
9461 "More than one program loaded, unset mode is ambiguous");
9462 return -EINVAL;
9463 }
9464 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9465 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9466 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9467 return -EINVAL;
9468 }
9469
9470 mode = dev_xdp_mode(dev, flags);
9471 /* can't replace attached link */
9472 if (dev_xdp_link(dev, mode)) {
9473 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9474 return -EBUSY;
9475 }
9476
9477 /* don't allow if an upper device already has a program */
9478 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9479 if (dev_xdp_prog_count(upper) > 0) {
9480 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9481 return -EEXIST;
9482 }
9483 }
9484
9485 cur_prog = dev_xdp_prog(dev, mode);
9486 /* can't replace attached prog with link */
9487 if (link && cur_prog) {
9488 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9489 return -EBUSY;
9490 }
9491 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9492 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9493 return -EEXIST;
9494 }
9495
9496 /* put effective new program into new_prog */
9497 if (link)
9498 new_prog = link->link.prog;
9499
9500 if (new_prog) {
9501 bool offload = mode == XDP_MODE_HW;
9502 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9503 ? XDP_MODE_DRV : XDP_MODE_SKB;
9504
9505 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9506 NL_SET_ERR_MSG(extack, "XDP program already attached");
9507 return -EBUSY;
9508 }
9509 if (!offload && dev_xdp_prog(dev, other_mode)) {
9510 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9511 return -EEXIST;
9512 }
9513 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9514 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9515 return -EINVAL;
9516 }
9517 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9518 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9519 return -EINVAL;
9520 }
9521 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9522 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9523 return -EINVAL;
9524 }
9525 }
9526
9527 /* don't call drivers if the effective program didn't change */
9528 if (new_prog != cur_prog) {
9529 bpf_op = dev_xdp_bpf_op(dev, mode);
9530 if (!bpf_op) {
9531 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9532 return -EOPNOTSUPP;
9533 }
9534
9535 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9536 if (err)
9537 return err;
9538 }
9539
9540 if (link)
9541 dev_xdp_set_link(dev, mode, link);
9542 else
9543 dev_xdp_set_prog(dev, mode, new_prog);
9544 if (cur_prog)
9545 bpf_prog_put(cur_prog);
9546
9547 return 0;
9548}
9549
9550static int dev_xdp_attach_link(struct net_device *dev,
9551 struct netlink_ext_ack *extack,
9552 struct bpf_xdp_link *link)
9553{
9554 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9555}
9556
9557static int dev_xdp_detach_link(struct net_device *dev,
9558 struct netlink_ext_ack *extack,
9559 struct bpf_xdp_link *link)
9560{
9561 enum bpf_xdp_mode mode;
9562 bpf_op_t bpf_op;
9563
9564 ASSERT_RTNL();
9565
9566 mode = dev_xdp_mode(dev, link->flags);
9567 if (dev_xdp_link(dev, mode) != link)
9568 return -EINVAL;
9569
9570 bpf_op = dev_xdp_bpf_op(dev, mode);
9571 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9572 dev_xdp_set_link(dev, mode, NULL);
9573 return 0;
9574}
9575
9576static void bpf_xdp_link_release(struct bpf_link *link)
9577{
9578 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9579
9580 rtnl_lock();
9581
9582 /* if racing with net_device's tear down, xdp_link->dev might be
9583 * already NULL, in which case link was already auto-detached
9584 */
9585 if (xdp_link->dev) {
9586 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9587 xdp_link->dev = NULL;
9588 }
9589
9590 rtnl_unlock();
9591}
9592
9593static int bpf_xdp_link_detach(struct bpf_link *link)
9594{
9595 bpf_xdp_link_release(link);
9596 return 0;
9597}
9598
9599static void bpf_xdp_link_dealloc(struct bpf_link *link)
9600{
9601 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9602
9603 kfree(xdp_link);
9604}
9605
9606static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9607 struct seq_file *seq)
9608{
9609 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9610 u32 ifindex = 0;
9611
9612 rtnl_lock();
9613 if (xdp_link->dev)
9614 ifindex = xdp_link->dev->ifindex;
9615 rtnl_unlock();
9616
9617 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9618}
9619
9620static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9621 struct bpf_link_info *info)
9622{
9623 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9624 u32 ifindex = 0;
9625
9626 rtnl_lock();
9627 if (xdp_link->dev)
9628 ifindex = xdp_link->dev->ifindex;
9629 rtnl_unlock();
9630
9631 info->xdp.ifindex = ifindex;
9632 return 0;
9633}
9634
9635static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9636 struct bpf_prog *old_prog)
9637{
9638 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9639 enum bpf_xdp_mode mode;
9640 bpf_op_t bpf_op;
9641 int err = 0;
9642
9643 rtnl_lock();
9644
9645 /* link might have been auto-released already, so fail */
9646 if (!xdp_link->dev) {
9647 err = -ENOLINK;
9648 goto out_unlock;
9649 }
9650
9651 if (old_prog && link->prog != old_prog) {
9652 err = -EPERM;
9653 goto out_unlock;
9654 }
9655 old_prog = link->prog;
9656 if (old_prog == new_prog) {
9657 /* no-op, don't disturb drivers */
9658 bpf_prog_put(new_prog);
9659 goto out_unlock;
9660 }
9661
9662 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9663 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9664 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9665 xdp_link->flags, new_prog);
9666 if (err)
9667 goto out_unlock;
9668
9669 old_prog = xchg(&link->prog, new_prog);
9670 bpf_prog_put(old_prog);
9671
9672out_unlock:
9673 rtnl_unlock();
9674 return err;
9675}
9676
9677static const struct bpf_link_ops bpf_xdp_link_lops = {
9678 .release = bpf_xdp_link_release,
9679 .dealloc = bpf_xdp_link_dealloc,
9680 .detach = bpf_xdp_link_detach,
9681 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9682 .fill_link_info = bpf_xdp_link_fill_link_info,
9683 .update_prog = bpf_xdp_link_update,
9684};
9685
9686int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9687{
9688 struct net *net = current->nsproxy->net_ns;
9689 struct bpf_link_primer link_primer;
9690 struct bpf_xdp_link *link;
9691 struct net_device *dev;
9692 int err, fd;
9693
9694 rtnl_lock();
9695 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9696 if (!dev) {
9697 rtnl_unlock();
9698 return -EINVAL;
9699 }
9700
9701 link = kzalloc(sizeof(*link), GFP_USER);
9702 if (!link) {
9703 err = -ENOMEM;
9704 goto unlock;
9705 }
9706
9707 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9708 link->dev = dev;
9709 link->flags = attr->link_create.flags;
9710
9711 err = bpf_link_prime(&link->link, &link_primer);
9712 if (err) {
9713 kfree(link);
9714 goto unlock;
9715 }
9716
9717 err = dev_xdp_attach_link(dev, NULL, link);
9718 rtnl_unlock();
9719
9720 if (err) {
9721 link->dev = NULL;
9722 bpf_link_cleanup(&link_primer);
9723 goto out_put_dev;
9724 }
9725
9726 fd = bpf_link_settle(&link_primer);
9727 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9728 dev_put(dev);
9729 return fd;
9730
9731unlock:
9732 rtnl_unlock();
9733
9734out_put_dev:
9735 dev_put(dev);
9736 return err;
9737}
9738
9739/**
9740 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9741 * @dev: device
9742 * @extack: netlink extended ack
9743 * @fd: new program fd or negative value to clear
9744 * @expected_fd: old program fd that userspace expects to replace or clear
9745 * @flags: xdp-related flags
9746 *
9747 * Set or clear a bpf program for a device
9748 */
9749int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9750 int fd, int expected_fd, u32 flags)
9751{
9752 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9753 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9754 int err;
9755
9756 ASSERT_RTNL();
9757
9758 if (fd >= 0) {
9759 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9760 mode != XDP_MODE_SKB);
9761 if (IS_ERR(new_prog))
9762 return PTR_ERR(new_prog);
9763 }
9764
9765 if (expected_fd >= 0) {
9766 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9767 mode != XDP_MODE_SKB);
9768 if (IS_ERR(old_prog)) {
9769 err = PTR_ERR(old_prog);
9770 old_prog = NULL;
9771 goto err_out;
9772 }
9773 }
9774
9775 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9776
9777err_out:
9778 if (err && new_prog)
9779 bpf_prog_put(new_prog);
9780 if (old_prog)
9781 bpf_prog_put(old_prog);
9782 return err;
9783}
9784
9785/**
9786 * dev_new_index - allocate an ifindex
9787 * @net: the applicable net namespace
9788 *
9789 * Returns a suitable unique value for a new device interface
9790 * number. The caller must hold the rtnl semaphore or the
9791 * dev_base_lock to be sure it remains unique.
9792 */
9793static int dev_new_index(struct net *net)
9794{
9795 int ifindex = net->ifindex;
9796
9797 for (;;) {
9798 if (++ifindex <= 0)
9799 ifindex = 1;
9800 if (!__dev_get_by_index(net, ifindex))
9801 return net->ifindex = ifindex;
9802 }
9803}
9804
9805/* Delayed registration/unregisteration */
9806static LIST_HEAD(net_todo_list);
9807DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9808
9809static void net_set_todo(struct net_device *dev)
9810{
9811 list_add_tail(&dev->todo_list, &net_todo_list);
9812 dev_net(dev)->dev_unreg_count++;
9813}
9814
9815static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9816 struct net_device *upper, netdev_features_t features)
9817{
9818 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9819 netdev_features_t feature;
9820 int feature_bit;
9821
9822 for_each_netdev_feature(upper_disables, feature_bit) {
9823 feature = __NETIF_F_BIT(feature_bit);
9824 if (!(upper->wanted_features & feature)
9825 && (features & feature)) {
9826 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9827 &feature, upper->name);
9828 features &= ~feature;
9829 }
9830 }
9831
9832 return features;
9833}
9834
9835static void netdev_sync_lower_features(struct net_device *upper,
9836 struct net_device *lower, netdev_features_t features)
9837{
9838 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9839 netdev_features_t feature;
9840 int feature_bit;
9841
9842 for_each_netdev_feature(upper_disables, feature_bit) {
9843 feature = __NETIF_F_BIT(feature_bit);
9844 if (!(features & feature) && (lower->features & feature)) {
9845 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9846 &feature, lower->name);
9847 lower->wanted_features &= ~feature;
9848 __netdev_update_features(lower);
9849
9850 if (unlikely(lower->features & feature))
9851 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9852 &feature, lower->name);
9853 else
9854 netdev_features_change(lower);
9855 }
9856 }
9857}
9858
9859static netdev_features_t netdev_fix_features(struct net_device *dev,
9860 netdev_features_t features)
9861{
9862 /* Fix illegal checksum combinations */
9863 if ((features & NETIF_F_HW_CSUM) &&
9864 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9865 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9866 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9867 }
9868
9869 /* TSO requires that SG is present as well. */
9870 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9871 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9872 features &= ~NETIF_F_ALL_TSO;
9873 }
9874
9875 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9876 !(features & NETIF_F_IP_CSUM)) {
9877 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9878 features &= ~NETIF_F_TSO;
9879 features &= ~NETIF_F_TSO_ECN;
9880 }
9881
9882 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9883 !(features & NETIF_F_IPV6_CSUM)) {
9884 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9885 features &= ~NETIF_F_TSO6;
9886 }
9887
9888 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9889 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9890 features &= ~NETIF_F_TSO_MANGLEID;
9891
9892 /* TSO ECN requires that TSO is present as well. */
9893 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9894 features &= ~NETIF_F_TSO_ECN;
9895
9896 /* Software GSO depends on SG. */
9897 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9898 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9899 features &= ~NETIF_F_GSO;
9900 }
9901
9902 /* GSO partial features require GSO partial be set */
9903 if ((features & dev->gso_partial_features) &&
9904 !(features & NETIF_F_GSO_PARTIAL)) {
9905 netdev_dbg(dev,
9906 "Dropping partially supported GSO features since no GSO partial.\n");
9907 features &= ~dev->gso_partial_features;
9908 }
9909
9910 if (!(features & NETIF_F_RXCSUM)) {
9911 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9912 * successfully merged by hardware must also have the
9913 * checksum verified by hardware. If the user does not
9914 * want to enable RXCSUM, logically, we should disable GRO_HW.
9915 */
9916 if (features & NETIF_F_GRO_HW) {
9917 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9918 features &= ~NETIF_F_GRO_HW;
9919 }
9920 }
9921
9922 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9923 if (features & NETIF_F_RXFCS) {
9924 if (features & NETIF_F_LRO) {
9925 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9926 features &= ~NETIF_F_LRO;
9927 }
9928
9929 if (features & NETIF_F_GRO_HW) {
9930 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9931 features &= ~NETIF_F_GRO_HW;
9932 }
9933 }
9934
9935 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9936 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9937 features &= ~NETIF_F_LRO;
9938 }
9939
9940 if (features & NETIF_F_HW_TLS_TX) {
9941 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9942 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9943 bool hw_csum = features & NETIF_F_HW_CSUM;
9944
9945 if (!ip_csum && !hw_csum) {
9946 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9947 features &= ~NETIF_F_HW_TLS_TX;
9948 }
9949 }
9950
9951 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9952 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9953 features &= ~NETIF_F_HW_TLS_RX;
9954 }
9955
9956 return features;
9957}
9958
9959int __netdev_update_features(struct net_device *dev)
9960{
9961 struct net_device *upper, *lower;
9962 netdev_features_t features;
9963 struct list_head *iter;
9964 int err = -1;
9965
9966 ASSERT_RTNL();
9967
9968 features = netdev_get_wanted_features(dev);
9969
9970 if (dev->netdev_ops->ndo_fix_features)
9971 features = dev->netdev_ops->ndo_fix_features(dev, features);
9972
9973 /* driver might be less strict about feature dependencies */
9974 features = netdev_fix_features(dev, features);
9975
9976 /* some features can't be enabled if they're off on an upper device */
9977 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9978 features = netdev_sync_upper_features(dev, upper, features);
9979
9980 if (dev->features == features)
9981 goto sync_lower;
9982
9983 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9984 &dev->features, &features);
9985
9986 if (dev->netdev_ops->ndo_set_features)
9987 err = dev->netdev_ops->ndo_set_features(dev, features);
9988 else
9989 err = 0;
9990
9991 if (unlikely(err < 0)) {
9992 netdev_err(dev,
9993 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9994 err, &features, &dev->features);
9995 /* return non-0 since some features might have changed and
9996 * it's better to fire a spurious notification than miss it
9997 */
9998 return -1;
9999 }
10000
10001sync_lower:
10002 /* some features must be disabled on lower devices when disabled
10003 * on an upper device (think: bonding master or bridge)
10004 */
10005 netdev_for_each_lower_dev(dev, lower, iter)
10006 netdev_sync_lower_features(dev, lower, features);
10007
10008 if (!err) {
10009 netdev_features_t diff = features ^ dev->features;
10010
10011 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10012 /* udp_tunnel_{get,drop}_rx_info both need
10013 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10014 * device, or they won't do anything.
10015 * Thus we need to update dev->features
10016 * *before* calling udp_tunnel_get_rx_info,
10017 * but *after* calling udp_tunnel_drop_rx_info.
10018 */
10019 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10020 dev->features = features;
10021 udp_tunnel_get_rx_info(dev);
10022 } else {
10023 udp_tunnel_drop_rx_info(dev);
10024 }
10025 }
10026
10027 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10028 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10029 dev->features = features;
10030 err |= vlan_get_rx_ctag_filter_info(dev);
10031 } else {
10032 vlan_drop_rx_ctag_filter_info(dev);
10033 }
10034 }
10035
10036 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10037 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10038 dev->features = features;
10039 err |= vlan_get_rx_stag_filter_info(dev);
10040 } else {
10041 vlan_drop_rx_stag_filter_info(dev);
10042 }
10043 }
10044
10045 dev->features = features;
10046 }
10047
10048 return err < 0 ? 0 : 1;
10049}
10050
10051/**
10052 * netdev_update_features - recalculate device features
10053 * @dev: the device to check
10054 *
10055 * Recalculate dev->features set and send notifications if it
10056 * has changed. Should be called after driver or hardware dependent
10057 * conditions might have changed that influence the features.
10058 */
10059void netdev_update_features(struct net_device *dev)
10060{
10061 if (__netdev_update_features(dev))
10062 netdev_features_change(dev);
10063}
10064EXPORT_SYMBOL(netdev_update_features);
10065
10066/**
10067 * netdev_change_features - recalculate device features
10068 * @dev: the device to check
10069 *
10070 * Recalculate dev->features set and send notifications even
10071 * if they have not changed. Should be called instead of
10072 * netdev_update_features() if also dev->vlan_features might
10073 * have changed to allow the changes to be propagated to stacked
10074 * VLAN devices.
10075 */
10076void netdev_change_features(struct net_device *dev)
10077{
10078 __netdev_update_features(dev);
10079 netdev_features_change(dev);
10080}
10081EXPORT_SYMBOL(netdev_change_features);
10082
10083/**
10084 * netif_stacked_transfer_operstate - transfer operstate
10085 * @rootdev: the root or lower level device to transfer state from
10086 * @dev: the device to transfer operstate to
10087 *
10088 * Transfer operational state from root to device. This is normally
10089 * called when a stacking relationship exists between the root
10090 * device and the device(a leaf device).
10091 */
10092void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10093 struct net_device *dev)
10094{
10095 if (rootdev->operstate == IF_OPER_DORMANT)
10096 netif_dormant_on(dev);
10097 else
10098 netif_dormant_off(dev);
10099
10100 if (rootdev->operstate == IF_OPER_TESTING)
10101 netif_testing_on(dev);
10102 else
10103 netif_testing_off(dev);
10104
10105 if (netif_carrier_ok(rootdev))
10106 netif_carrier_on(dev);
10107 else
10108 netif_carrier_off(dev);
10109}
10110EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10111
10112static int netif_alloc_rx_queues(struct net_device *dev)
10113{
10114 unsigned int i, count = dev->num_rx_queues;
10115 struct netdev_rx_queue *rx;
10116 size_t sz = count * sizeof(*rx);
10117 int err = 0;
10118
10119 BUG_ON(count < 1);
10120
10121 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10122 if (!rx)
10123 return -ENOMEM;
10124
10125 dev->_rx = rx;
10126
10127 for (i = 0; i < count; i++) {
10128 rx[i].dev = dev;
10129
10130 /* XDP RX-queue setup */
10131 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10132 if (err < 0)
10133 goto err_rxq_info;
10134 }
10135 return 0;
10136
10137err_rxq_info:
10138 /* Rollback successful reg's and free other resources */
10139 while (i--)
10140 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10141 kvfree(dev->_rx);
10142 dev->_rx = NULL;
10143 return err;
10144}
10145
10146static void netif_free_rx_queues(struct net_device *dev)
10147{
10148 unsigned int i, count = dev->num_rx_queues;
10149
10150 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10151 if (!dev->_rx)
10152 return;
10153
10154 for (i = 0; i < count; i++)
10155 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10156
10157 kvfree(dev->_rx);
10158}
10159
10160static void netdev_init_one_queue(struct net_device *dev,
10161 struct netdev_queue *queue, void *_unused)
10162{
10163 /* Initialize queue lock */
10164 spin_lock_init(&queue->_xmit_lock);
10165 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10166 queue->xmit_lock_owner = -1;
10167 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10168 queue->dev = dev;
10169#ifdef CONFIG_BQL
10170 dql_init(&queue->dql, HZ);
10171#endif
10172}
10173
10174static void netif_free_tx_queues(struct net_device *dev)
10175{
10176 kvfree(dev->_tx);
10177}
10178
10179static int netif_alloc_netdev_queues(struct net_device *dev)
10180{
10181 unsigned int count = dev->num_tx_queues;
10182 struct netdev_queue *tx;
10183 size_t sz = count * sizeof(*tx);
10184
10185 if (count < 1 || count > 0xffff)
10186 return -EINVAL;
10187
10188 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10189 if (!tx)
10190 return -ENOMEM;
10191
10192 dev->_tx = tx;
10193
10194 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10195 spin_lock_init(&dev->tx_global_lock);
10196
10197 return 0;
10198}
10199
10200void netif_tx_stop_all_queues(struct net_device *dev)
10201{
10202 unsigned int i;
10203
10204 for (i = 0; i < dev->num_tx_queues; i++) {
10205 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10206
10207 netif_tx_stop_queue(txq);
10208 }
10209}
10210EXPORT_SYMBOL(netif_tx_stop_all_queues);
10211
10212/**
10213 * register_netdevice - register a network device
10214 * @dev: device to register
10215 *
10216 * Take a completed network device structure and add it to the kernel
10217 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10218 * chain. 0 is returned on success. A negative errno code is returned
10219 * on a failure to set up the device, or if the name is a duplicate.
10220 *
10221 * Callers must hold the rtnl semaphore. You may want
10222 * register_netdev() instead of this.
10223 *
10224 * BUGS:
10225 * The locking appears insufficient to guarantee two parallel registers
10226 * will not get the same name.
10227 */
10228
10229int register_netdevice(struct net_device *dev)
10230{
10231 int ret;
10232 struct net *net = dev_net(dev);
10233
10234 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10235 NETDEV_FEATURE_COUNT);
10236 BUG_ON(dev_boot_phase);
10237 ASSERT_RTNL();
10238
10239 might_sleep();
10240
10241 /* When net_device's are persistent, this will be fatal. */
10242 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10243 BUG_ON(!net);
10244
10245 ret = ethtool_check_ops(dev->ethtool_ops);
10246 if (ret)
10247 return ret;
10248
10249 spin_lock_init(&dev->addr_list_lock);
10250 netdev_set_addr_lockdep_class(dev);
10251
10252 ret = dev_get_valid_name(net, dev, dev->name);
10253 if (ret < 0)
10254 goto out;
10255
10256 ret = -ENOMEM;
10257 dev->name_node = netdev_name_node_head_alloc(dev);
10258 if (!dev->name_node)
10259 goto out;
10260
10261 /* Init, if this function is available */
10262 if (dev->netdev_ops->ndo_init) {
10263 ret = dev->netdev_ops->ndo_init(dev);
10264 if (ret) {
10265 if (ret > 0)
10266 ret = -EIO;
10267 goto err_free_name;
10268 }
10269 }
10270
10271 if (((dev->hw_features | dev->features) &
10272 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10273 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10274 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10275 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10276 ret = -EINVAL;
10277 goto err_uninit;
10278 }
10279
10280 ret = -EBUSY;
10281 if (!dev->ifindex)
10282 dev->ifindex = dev_new_index(net);
10283 else if (__dev_get_by_index(net, dev->ifindex))
10284 goto err_uninit;
10285
10286 /* Transfer changeable features to wanted_features and enable
10287 * software offloads (GSO and GRO).
10288 */
10289 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10290 dev->features |= NETIF_F_SOFT_FEATURES;
10291
10292 if (dev->udp_tunnel_nic_info) {
10293 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10294 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10295 }
10296
10297 dev->wanted_features = dev->features & dev->hw_features;
10298
10299 if (!(dev->flags & IFF_LOOPBACK))
10300 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10301
10302 /* If IPv4 TCP segmentation offload is supported we should also
10303 * allow the device to enable segmenting the frame with the option
10304 * of ignoring a static IP ID value. This doesn't enable the
10305 * feature itself but allows the user to enable it later.
10306 */
10307 if (dev->hw_features & NETIF_F_TSO)
10308 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10309 if (dev->vlan_features & NETIF_F_TSO)
10310 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10311 if (dev->mpls_features & NETIF_F_TSO)
10312 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10313 if (dev->hw_enc_features & NETIF_F_TSO)
10314 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10315
10316 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10317 */
10318 dev->vlan_features |= NETIF_F_HIGHDMA;
10319
10320 /* Make NETIF_F_SG inheritable to tunnel devices.
10321 */
10322 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10323
10324 /* Make NETIF_F_SG inheritable to MPLS.
10325 */
10326 dev->mpls_features |= NETIF_F_SG;
10327
10328 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10329 ret = notifier_to_errno(ret);
10330 if (ret)
10331 goto err_uninit;
10332
10333 ret = netdev_register_kobject(dev);
10334 if (ret) {
10335 dev->reg_state = NETREG_UNREGISTERED;
10336 goto err_uninit;
10337 }
10338 dev->reg_state = NETREG_REGISTERED;
10339
10340 __netdev_update_features(dev);
10341
10342 /*
10343 * Default initial state at registry is that the
10344 * device is present.
10345 */
10346
10347 set_bit(__LINK_STATE_PRESENT, &dev->state);
10348
10349 linkwatch_init_dev(dev);
10350
10351 dev_init_scheduler(dev);
10352 dev_hold(dev);
10353 list_netdevice(dev);
10354 add_device_randomness(dev->dev_addr, dev->addr_len);
10355
10356 /* If the device has permanent device address, driver should
10357 * set dev_addr and also addr_assign_type should be set to
10358 * NET_ADDR_PERM (default value).
10359 */
10360 if (dev->addr_assign_type == NET_ADDR_PERM)
10361 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10362
10363 /* Notify protocols, that a new device appeared. */
10364 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10365 ret = notifier_to_errno(ret);
10366 if (ret) {
10367 /* Expect explicit free_netdev() on failure */
10368 dev->needs_free_netdev = false;
10369 unregister_netdevice_queue(dev, NULL);
10370 goto out;
10371 }
10372 /*
10373 * Prevent userspace races by waiting until the network
10374 * device is fully setup before sending notifications.
10375 */
10376 if (!dev->rtnl_link_ops ||
10377 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10378 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10379
10380out:
10381 return ret;
10382
10383err_uninit:
10384 if (dev->netdev_ops->ndo_uninit)
10385 dev->netdev_ops->ndo_uninit(dev);
10386 if (dev->priv_destructor)
10387 dev->priv_destructor(dev);
10388err_free_name:
10389 netdev_name_node_free(dev->name_node);
10390 goto out;
10391}
10392EXPORT_SYMBOL(register_netdevice);
10393
10394/**
10395 * init_dummy_netdev - init a dummy network device for NAPI
10396 * @dev: device to init
10397 *
10398 * This takes a network device structure and initialize the minimum
10399 * amount of fields so it can be used to schedule NAPI polls without
10400 * registering a full blown interface. This is to be used by drivers
10401 * that need to tie several hardware interfaces to a single NAPI
10402 * poll scheduler due to HW limitations.
10403 */
10404int init_dummy_netdev(struct net_device *dev)
10405{
10406 /* Clear everything. Note we don't initialize spinlocks
10407 * are they aren't supposed to be taken by any of the
10408 * NAPI code and this dummy netdev is supposed to be
10409 * only ever used for NAPI polls
10410 */
10411 memset(dev, 0, sizeof(struct net_device));
10412
10413 /* make sure we BUG if trying to hit standard
10414 * register/unregister code path
10415 */
10416 dev->reg_state = NETREG_DUMMY;
10417
10418 /* NAPI wants this */
10419 INIT_LIST_HEAD(&dev->napi_list);
10420
10421 /* a dummy interface is started by default */
10422 set_bit(__LINK_STATE_PRESENT, &dev->state);
10423 set_bit(__LINK_STATE_START, &dev->state);
10424
10425 /* napi_busy_loop stats accounting wants this */
10426 dev_net_set(dev, &init_net);
10427
10428 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10429 * because users of this 'device' dont need to change
10430 * its refcount.
10431 */
10432
10433 return 0;
10434}
10435EXPORT_SYMBOL_GPL(init_dummy_netdev);
10436
10437
10438/**
10439 * register_netdev - register a network device
10440 * @dev: device to register
10441 *
10442 * Take a completed network device structure and add it to the kernel
10443 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10444 * chain. 0 is returned on success. A negative errno code is returned
10445 * on a failure to set up the device, or if the name is a duplicate.
10446 *
10447 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10448 * and expands the device name if you passed a format string to
10449 * alloc_netdev.
10450 */
10451int register_netdev(struct net_device *dev)
10452{
10453 int err;
10454
10455 if (rtnl_lock_killable())
10456 return -EINTR;
10457 err = register_netdevice(dev);
10458 rtnl_unlock();
10459 return err;
10460}
10461EXPORT_SYMBOL(register_netdev);
10462
10463int netdev_refcnt_read(const struct net_device *dev)
10464{
10465#ifdef CONFIG_PCPU_DEV_REFCNT
10466 int i, refcnt = 0;
10467
10468 for_each_possible_cpu(i)
10469 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10470 return refcnt;
10471#else
10472 return refcount_read(&dev->dev_refcnt);
10473#endif
10474}
10475EXPORT_SYMBOL(netdev_refcnt_read);
10476
10477int netdev_unregister_timeout_secs __read_mostly = 10;
10478
10479#define WAIT_REFS_MIN_MSECS 1
10480#define WAIT_REFS_MAX_MSECS 250
10481/**
10482 * netdev_wait_allrefs - wait until all references are gone.
10483 * @dev: target net_device
10484 *
10485 * This is called when unregistering network devices.
10486 *
10487 * Any protocol or device that holds a reference should register
10488 * for netdevice notification, and cleanup and put back the
10489 * reference if they receive an UNREGISTER event.
10490 * We can get stuck here if buggy protocols don't correctly
10491 * call dev_put.
10492 */
10493static void netdev_wait_allrefs(struct net_device *dev)
10494{
10495 unsigned long rebroadcast_time, warning_time;
10496 int wait = 0, refcnt;
10497
10498 linkwatch_forget_dev(dev);
10499
10500 rebroadcast_time = warning_time = jiffies;
10501 refcnt = netdev_refcnt_read(dev);
10502
10503 while (refcnt != 1) {
10504 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10505 rtnl_lock();
10506
10507 /* Rebroadcast unregister notification */
10508 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10509
10510 __rtnl_unlock();
10511 rcu_barrier();
10512 rtnl_lock();
10513
10514 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10515 &dev->state)) {
10516 /* We must not have linkwatch events
10517 * pending on unregister. If this
10518 * happens, we simply run the queue
10519 * unscheduled, resulting in a noop
10520 * for this device.
10521 */
10522 linkwatch_run_queue();
10523 }
10524
10525 __rtnl_unlock();
10526
10527 rebroadcast_time = jiffies;
10528 }
10529
10530 if (!wait) {
10531 rcu_barrier();
10532 wait = WAIT_REFS_MIN_MSECS;
10533 } else {
10534 msleep(wait);
10535 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10536 }
10537
10538 refcnt = netdev_refcnt_read(dev);
10539
10540 if (refcnt != 1 &&
10541 time_after(jiffies, warning_time +
10542 netdev_unregister_timeout_secs * HZ)) {
10543 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10544 dev->name, refcnt);
10545 warning_time = jiffies;
10546 }
10547 }
10548}
10549
10550/* The sequence is:
10551 *
10552 * rtnl_lock();
10553 * ...
10554 * register_netdevice(x1);
10555 * register_netdevice(x2);
10556 * ...
10557 * unregister_netdevice(y1);
10558 * unregister_netdevice(y2);
10559 * ...
10560 * rtnl_unlock();
10561 * free_netdev(y1);
10562 * free_netdev(y2);
10563 *
10564 * We are invoked by rtnl_unlock().
10565 * This allows us to deal with problems:
10566 * 1) We can delete sysfs objects which invoke hotplug
10567 * without deadlocking with linkwatch via keventd.
10568 * 2) Since we run with the RTNL semaphore not held, we can sleep
10569 * safely in order to wait for the netdev refcnt to drop to zero.
10570 *
10571 * We must not return until all unregister events added during
10572 * the interval the lock was held have been completed.
10573 */
10574void netdev_run_todo(void)
10575{
10576 struct list_head list;
10577#ifdef CONFIG_LOCKDEP
10578 struct list_head unlink_list;
10579
10580 list_replace_init(&net_unlink_list, &unlink_list);
10581
10582 while (!list_empty(&unlink_list)) {
10583 struct net_device *dev = list_first_entry(&unlink_list,
10584 struct net_device,
10585 unlink_list);
10586 list_del_init(&dev->unlink_list);
10587 dev->nested_level = dev->lower_level - 1;
10588 }
10589#endif
10590
10591 /* Snapshot list, allow later requests */
10592 list_replace_init(&net_todo_list, &list);
10593
10594 __rtnl_unlock();
10595
10596
10597 /* Wait for rcu callbacks to finish before next phase */
10598 if (!list_empty(&list))
10599 rcu_barrier();
10600
10601 while (!list_empty(&list)) {
10602 struct net_device *dev
10603 = list_first_entry(&list, struct net_device, todo_list);
10604 list_del(&dev->todo_list);
10605
10606 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10607 pr_err("network todo '%s' but state %d\n",
10608 dev->name, dev->reg_state);
10609 dump_stack();
10610 continue;
10611 }
10612
10613 dev->reg_state = NETREG_UNREGISTERED;
10614
10615 netdev_wait_allrefs(dev);
10616
10617 /* paranoia */
10618 BUG_ON(netdev_refcnt_read(dev) != 1);
10619 BUG_ON(!list_empty(&dev->ptype_all));
10620 BUG_ON(!list_empty(&dev->ptype_specific));
10621 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10622 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10623#if IS_ENABLED(CONFIG_DECNET)
10624 WARN_ON(dev->dn_ptr);
10625#endif
10626 if (dev->priv_destructor)
10627 dev->priv_destructor(dev);
10628 if (dev->needs_free_netdev)
10629 free_netdev(dev);
10630
10631 /* Report a network device has been unregistered */
10632 rtnl_lock();
10633 dev_net(dev)->dev_unreg_count--;
10634 __rtnl_unlock();
10635 wake_up(&netdev_unregistering_wq);
10636
10637 /* Free network device */
10638 kobject_put(&dev->dev.kobj);
10639 }
10640}
10641
10642/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10643 * all the same fields in the same order as net_device_stats, with only
10644 * the type differing, but rtnl_link_stats64 may have additional fields
10645 * at the end for newer counters.
10646 */
10647void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10648 const struct net_device_stats *netdev_stats)
10649{
10650#if BITS_PER_LONG == 64
10651 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10652 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10653 /* zero out counters that only exist in rtnl_link_stats64 */
10654 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10655 sizeof(*stats64) - sizeof(*netdev_stats));
10656#else
10657 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10658 const unsigned long *src = (const unsigned long *)netdev_stats;
10659 u64 *dst = (u64 *)stats64;
10660
10661 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10662 for (i = 0; i < n; i++)
10663 dst[i] = src[i];
10664 /* zero out counters that only exist in rtnl_link_stats64 */
10665 memset((char *)stats64 + n * sizeof(u64), 0,
10666 sizeof(*stats64) - n * sizeof(u64));
10667#endif
10668}
10669EXPORT_SYMBOL(netdev_stats_to_stats64);
10670
10671/**
10672 * dev_get_stats - get network device statistics
10673 * @dev: device to get statistics from
10674 * @storage: place to store stats
10675 *
10676 * Get network statistics from device. Return @storage.
10677 * The device driver may provide its own method by setting
10678 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10679 * otherwise the internal statistics structure is used.
10680 */
10681struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10682 struct rtnl_link_stats64 *storage)
10683{
10684 const struct net_device_ops *ops = dev->netdev_ops;
10685
10686 if (ops->ndo_get_stats64) {
10687 memset(storage, 0, sizeof(*storage));
10688 ops->ndo_get_stats64(dev, storage);
10689 } else if (ops->ndo_get_stats) {
10690 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10691 } else {
10692 netdev_stats_to_stats64(storage, &dev->stats);
10693 }
10694 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10695 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10696 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10697 return storage;
10698}
10699EXPORT_SYMBOL(dev_get_stats);
10700
10701/**
10702 * dev_fetch_sw_netstats - get per-cpu network device statistics
10703 * @s: place to store stats
10704 * @netstats: per-cpu network stats to read from
10705 *
10706 * Read per-cpu network statistics and populate the related fields in @s.
10707 */
10708void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10709 const struct pcpu_sw_netstats __percpu *netstats)
10710{
10711 int cpu;
10712
10713 for_each_possible_cpu(cpu) {
10714 const struct pcpu_sw_netstats *stats;
10715 struct pcpu_sw_netstats tmp;
10716 unsigned int start;
10717
10718 stats = per_cpu_ptr(netstats, cpu);
10719 do {
10720 start = u64_stats_fetch_begin_irq(&stats->syncp);
10721 tmp.rx_packets = stats->rx_packets;
10722 tmp.rx_bytes = stats->rx_bytes;
10723 tmp.tx_packets = stats->tx_packets;
10724 tmp.tx_bytes = stats->tx_bytes;
10725 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10726
10727 s->rx_packets += tmp.rx_packets;
10728 s->rx_bytes += tmp.rx_bytes;
10729 s->tx_packets += tmp.tx_packets;
10730 s->tx_bytes += tmp.tx_bytes;
10731 }
10732}
10733EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10734
10735/**
10736 * dev_get_tstats64 - ndo_get_stats64 implementation
10737 * @dev: device to get statistics from
10738 * @s: place to store stats
10739 *
10740 * Populate @s from dev->stats and dev->tstats. Can be used as
10741 * ndo_get_stats64() callback.
10742 */
10743void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10744{
10745 netdev_stats_to_stats64(s, &dev->stats);
10746 dev_fetch_sw_netstats(s, dev->tstats);
10747}
10748EXPORT_SYMBOL_GPL(dev_get_tstats64);
10749
10750struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10751{
10752 struct netdev_queue *queue = dev_ingress_queue(dev);
10753
10754#ifdef CONFIG_NET_CLS_ACT
10755 if (queue)
10756 return queue;
10757 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10758 if (!queue)
10759 return NULL;
10760 netdev_init_one_queue(dev, queue, NULL);
10761 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10762 queue->qdisc_sleeping = &noop_qdisc;
10763 rcu_assign_pointer(dev->ingress_queue, queue);
10764#endif
10765 return queue;
10766}
10767
10768static const struct ethtool_ops default_ethtool_ops;
10769
10770void netdev_set_default_ethtool_ops(struct net_device *dev,
10771 const struct ethtool_ops *ops)
10772{
10773 if (dev->ethtool_ops == &default_ethtool_ops)
10774 dev->ethtool_ops = ops;
10775}
10776EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10777
10778void netdev_freemem(struct net_device *dev)
10779{
10780 char *addr = (char *)dev - dev->padded;
10781
10782 kvfree(addr);
10783}
10784
10785/**
10786 * alloc_netdev_mqs - allocate network device
10787 * @sizeof_priv: size of private data to allocate space for
10788 * @name: device name format string
10789 * @name_assign_type: origin of device name
10790 * @setup: callback to initialize device
10791 * @txqs: the number of TX subqueues to allocate
10792 * @rxqs: the number of RX subqueues to allocate
10793 *
10794 * Allocates a struct net_device with private data area for driver use
10795 * and performs basic initialization. Also allocates subqueue structs
10796 * for each queue on the device.
10797 */
10798struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10799 unsigned char name_assign_type,
10800 void (*setup)(struct net_device *),
10801 unsigned int txqs, unsigned int rxqs)
10802{
10803 struct net_device *dev;
10804 unsigned int alloc_size;
10805 struct net_device *p;
10806
10807 BUG_ON(strlen(name) >= sizeof(dev->name));
10808
10809 if (txqs < 1) {
10810 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10811 return NULL;
10812 }
10813
10814 if (rxqs < 1) {
10815 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10816 return NULL;
10817 }
10818
10819 alloc_size = sizeof(struct net_device);
10820 if (sizeof_priv) {
10821 /* ensure 32-byte alignment of private area */
10822 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10823 alloc_size += sizeof_priv;
10824 }
10825 /* ensure 32-byte alignment of whole construct */
10826 alloc_size += NETDEV_ALIGN - 1;
10827
10828 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10829 if (!p)
10830 return NULL;
10831
10832 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10833 dev->padded = (char *)dev - (char *)p;
10834
10835#ifdef CONFIG_PCPU_DEV_REFCNT
10836 dev->pcpu_refcnt = alloc_percpu(int);
10837 if (!dev->pcpu_refcnt)
10838 goto free_dev;
10839 dev_hold(dev);
10840#else
10841 refcount_set(&dev->dev_refcnt, 1);
10842#endif
10843
10844 if (dev_addr_init(dev))
10845 goto free_pcpu;
10846
10847 dev_mc_init(dev);
10848 dev_uc_init(dev);
10849
10850 dev_net_set(dev, &init_net);
10851
10852 dev->gso_max_size = GSO_MAX_SIZE;
10853 dev->gso_max_segs = GSO_MAX_SEGS;
10854 dev->upper_level = 1;
10855 dev->lower_level = 1;
10856#ifdef CONFIG_LOCKDEP
10857 dev->nested_level = 0;
10858 INIT_LIST_HEAD(&dev->unlink_list);
10859#endif
10860
10861 INIT_LIST_HEAD(&dev->napi_list);
10862 INIT_LIST_HEAD(&dev->unreg_list);
10863 INIT_LIST_HEAD(&dev->close_list);
10864 INIT_LIST_HEAD(&dev->link_watch_list);
10865 INIT_LIST_HEAD(&dev->adj_list.upper);
10866 INIT_LIST_HEAD(&dev->adj_list.lower);
10867 INIT_LIST_HEAD(&dev->ptype_all);
10868 INIT_LIST_HEAD(&dev->ptype_specific);
10869 INIT_LIST_HEAD(&dev->net_notifier_list);
10870#ifdef CONFIG_NET_SCHED
10871 hash_init(dev->qdisc_hash);
10872#endif
10873 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10874 setup(dev);
10875
10876 if (!dev->tx_queue_len) {
10877 dev->priv_flags |= IFF_NO_QUEUE;
10878 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10879 }
10880
10881 dev->num_tx_queues = txqs;
10882 dev->real_num_tx_queues = txqs;
10883 if (netif_alloc_netdev_queues(dev))
10884 goto free_all;
10885
10886 dev->num_rx_queues = rxqs;
10887 dev->real_num_rx_queues = rxqs;
10888 if (netif_alloc_rx_queues(dev))
10889 goto free_all;
10890
10891 strcpy(dev->name, name);
10892 dev->name_assign_type = name_assign_type;
10893 dev->group = INIT_NETDEV_GROUP;
10894 if (!dev->ethtool_ops)
10895 dev->ethtool_ops = &default_ethtool_ops;
10896
10897 nf_hook_netdev_init(dev);
10898
10899 return dev;
10900
10901free_all:
10902 free_netdev(dev);
10903 return NULL;
10904
10905free_pcpu:
10906#ifdef CONFIG_PCPU_DEV_REFCNT
10907 free_percpu(dev->pcpu_refcnt);
10908free_dev:
10909#endif
10910 netdev_freemem(dev);
10911 return NULL;
10912}
10913EXPORT_SYMBOL(alloc_netdev_mqs);
10914
10915/**
10916 * free_netdev - free network device
10917 * @dev: device
10918 *
10919 * This function does the last stage of destroying an allocated device
10920 * interface. The reference to the device object is released. If this
10921 * is the last reference then it will be freed.Must be called in process
10922 * context.
10923 */
10924void free_netdev(struct net_device *dev)
10925{
10926 struct napi_struct *p, *n;
10927
10928 might_sleep();
10929
10930 /* When called immediately after register_netdevice() failed the unwind
10931 * handling may still be dismantling the device. Handle that case by
10932 * deferring the free.
10933 */
10934 if (dev->reg_state == NETREG_UNREGISTERING) {
10935 ASSERT_RTNL();
10936 dev->needs_free_netdev = true;
10937 return;
10938 }
10939
10940 netif_free_tx_queues(dev);
10941 netif_free_rx_queues(dev);
10942
10943 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10944
10945 /* Flush device addresses */
10946 dev_addr_flush(dev);
10947
10948 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10949 netif_napi_del(p);
10950
10951#ifdef CONFIG_PCPU_DEV_REFCNT
10952 free_percpu(dev->pcpu_refcnt);
10953 dev->pcpu_refcnt = NULL;
10954#endif
10955 free_percpu(dev->xdp_bulkq);
10956 dev->xdp_bulkq = NULL;
10957
10958 /* Compatibility with error handling in drivers */
10959 if (dev->reg_state == NETREG_UNINITIALIZED) {
10960 netdev_freemem(dev);
10961 return;
10962 }
10963
10964 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10965 dev->reg_state = NETREG_RELEASED;
10966
10967 /* will free via device release */
10968 put_device(&dev->dev);
10969}
10970EXPORT_SYMBOL(free_netdev);
10971
10972/**
10973 * synchronize_net - Synchronize with packet receive processing
10974 *
10975 * Wait for packets currently being received to be done.
10976 * Does not block later packets from starting.
10977 */
10978void synchronize_net(void)
10979{
10980 might_sleep();
10981 if (rtnl_is_locked())
10982 synchronize_rcu_expedited();
10983 else
10984 synchronize_rcu();
10985}
10986EXPORT_SYMBOL(synchronize_net);
10987
10988/**
10989 * unregister_netdevice_queue - remove device from the kernel
10990 * @dev: device
10991 * @head: list
10992 *
10993 * This function shuts down a device interface and removes it
10994 * from the kernel tables.
10995 * If head not NULL, device is queued to be unregistered later.
10996 *
10997 * Callers must hold the rtnl semaphore. You may want
10998 * unregister_netdev() instead of this.
10999 */
11000
11001void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11002{
11003 ASSERT_RTNL();
11004
11005 if (head) {
11006 list_move_tail(&dev->unreg_list, head);
11007 } else {
11008 LIST_HEAD(single);
11009
11010 list_add(&dev->unreg_list, &single);
11011 unregister_netdevice_many(&single);
11012 }
11013}
11014EXPORT_SYMBOL(unregister_netdevice_queue);
11015
11016/**
11017 * unregister_netdevice_many - unregister many devices
11018 * @head: list of devices
11019 *
11020 * Note: As most callers use a stack allocated list_head,
11021 * we force a list_del() to make sure stack wont be corrupted later.
11022 */
11023void unregister_netdevice_many(struct list_head *head)
11024{
11025 struct net_device *dev, *tmp;
11026 LIST_HEAD(close_head);
11027
11028 BUG_ON(dev_boot_phase);
11029 ASSERT_RTNL();
11030
11031 if (list_empty(head))
11032 return;
11033
11034 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11035 /* Some devices call without registering
11036 * for initialization unwind. Remove those
11037 * devices and proceed with the remaining.
11038 */
11039 if (dev->reg_state == NETREG_UNINITIALIZED) {
11040 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11041 dev->name, dev);
11042
11043 WARN_ON(1);
11044 list_del(&dev->unreg_list);
11045 continue;
11046 }
11047 dev->dismantle = true;
11048 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11049 }
11050
11051 /* If device is running, close it first. */
11052 list_for_each_entry(dev, head, unreg_list)
11053 list_add_tail(&dev->close_list, &close_head);
11054 dev_close_many(&close_head, true);
11055
11056 list_for_each_entry(dev, head, unreg_list) {
11057 /* And unlink it from device chain. */
11058 unlist_netdevice(dev);
11059
11060 dev->reg_state = NETREG_UNREGISTERING;
11061 }
11062 flush_all_backlogs();
11063
11064 synchronize_net();
11065
11066 list_for_each_entry(dev, head, unreg_list) {
11067 struct sk_buff *skb = NULL;
11068
11069 /* Shutdown queueing discipline. */
11070 dev_shutdown(dev);
11071
11072 dev_xdp_uninstall(dev);
11073
11074 /* Notify protocols, that we are about to destroy
11075 * this device. They should clean all the things.
11076 */
11077 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11078
11079 if (!dev->rtnl_link_ops ||
11080 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11081 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11082 GFP_KERNEL, NULL, 0);
11083
11084 /*
11085 * Flush the unicast and multicast chains
11086 */
11087 dev_uc_flush(dev);
11088 dev_mc_flush(dev);
11089
11090 netdev_name_node_alt_flush(dev);
11091 netdev_name_node_free(dev->name_node);
11092
11093 if (dev->netdev_ops->ndo_uninit)
11094 dev->netdev_ops->ndo_uninit(dev);
11095
11096 if (skb)
11097 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11098
11099 /* Notifier chain MUST detach us all upper devices. */
11100 WARN_ON(netdev_has_any_upper_dev(dev));
11101 WARN_ON(netdev_has_any_lower_dev(dev));
11102
11103 /* Remove entries from kobject tree */
11104 netdev_unregister_kobject(dev);
11105#ifdef CONFIG_XPS
11106 /* Remove XPS queueing entries */
11107 netif_reset_xps_queues_gt(dev, 0);
11108#endif
11109 }
11110
11111 synchronize_net();
11112
11113 list_for_each_entry(dev, head, unreg_list) {
11114 dev_put(dev);
11115 net_set_todo(dev);
11116 }
11117
11118 list_del(head);
11119}
11120EXPORT_SYMBOL(unregister_netdevice_many);
11121
11122/**
11123 * unregister_netdev - remove device from the kernel
11124 * @dev: device
11125 *
11126 * This function shuts down a device interface and removes it
11127 * from the kernel tables.
11128 *
11129 * This is just a wrapper for unregister_netdevice that takes
11130 * the rtnl semaphore. In general you want to use this and not
11131 * unregister_netdevice.
11132 */
11133void unregister_netdev(struct net_device *dev)
11134{
11135 rtnl_lock();
11136 unregister_netdevice(dev);
11137 rtnl_unlock();
11138}
11139EXPORT_SYMBOL(unregister_netdev);
11140
11141/**
11142 * __dev_change_net_namespace - move device to different nethost namespace
11143 * @dev: device
11144 * @net: network namespace
11145 * @pat: If not NULL name pattern to try if the current device name
11146 * is already taken in the destination network namespace.
11147 * @new_ifindex: If not zero, specifies device index in the target
11148 * namespace.
11149 *
11150 * This function shuts down a device interface and moves it
11151 * to a new network namespace. On success 0 is returned, on
11152 * a failure a netagive errno code is returned.
11153 *
11154 * Callers must hold the rtnl semaphore.
11155 */
11156
11157int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11158 const char *pat, int new_ifindex)
11159{
11160 struct net *net_old = dev_net(dev);
11161 int err, new_nsid;
11162
11163 ASSERT_RTNL();
11164
11165 /* Don't allow namespace local devices to be moved. */
11166 err = -EINVAL;
11167 if (dev->features & NETIF_F_NETNS_LOCAL)
11168 goto out;
11169
11170 /* Ensure the device has been registrered */
11171 if (dev->reg_state != NETREG_REGISTERED)
11172 goto out;
11173
11174 /* Get out if there is nothing todo */
11175 err = 0;
11176 if (net_eq(net_old, net))
11177 goto out;
11178
11179 /* Pick the destination device name, and ensure
11180 * we can use it in the destination network namespace.
11181 */
11182 err = -EEXIST;
11183 if (netdev_name_in_use(net, dev->name)) {
11184 /* We get here if we can't use the current device name */
11185 if (!pat)
11186 goto out;
11187 err = dev_get_valid_name(net, dev, pat);
11188 if (err < 0)
11189 goto out;
11190 }
11191
11192 /* Check that new_ifindex isn't used yet. */
11193 err = -EBUSY;
11194 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11195 goto out;
11196
11197 /*
11198 * And now a mini version of register_netdevice unregister_netdevice.
11199 */
11200
11201 /* If device is running close it first. */
11202 dev_close(dev);
11203
11204 /* And unlink it from device chain */
11205 unlist_netdevice(dev);
11206
11207 synchronize_net();
11208
11209 /* Shutdown queueing discipline. */
11210 dev_shutdown(dev);
11211
11212 /* Notify protocols, that we are about to destroy
11213 * this device. They should clean all the things.
11214 *
11215 * Note that dev->reg_state stays at NETREG_REGISTERED.
11216 * This is wanted because this way 8021q and macvlan know
11217 * the device is just moving and can keep their slaves up.
11218 */
11219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11220 rcu_barrier();
11221
11222 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11223 /* If there is an ifindex conflict assign a new one */
11224 if (!new_ifindex) {
11225 if (__dev_get_by_index(net, dev->ifindex))
11226 new_ifindex = dev_new_index(net);
11227 else
11228 new_ifindex = dev->ifindex;
11229 }
11230
11231 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11232 new_ifindex);
11233
11234 /*
11235 * Flush the unicast and multicast chains
11236 */
11237 dev_uc_flush(dev);
11238 dev_mc_flush(dev);
11239
11240 /* Send a netdev-removed uevent to the old namespace */
11241 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11242 netdev_adjacent_del_links(dev);
11243
11244 /* Move per-net netdevice notifiers that are following the netdevice */
11245 move_netdevice_notifiers_dev_net(dev, net);
11246
11247 /* Actually switch the network namespace */
11248 dev_net_set(dev, net);
11249 dev->ifindex = new_ifindex;
11250
11251 /* Send a netdev-add uevent to the new namespace */
11252 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11253 netdev_adjacent_add_links(dev);
11254
11255 /* Fixup kobjects */
11256 err = device_rename(&dev->dev, dev->name);
11257 WARN_ON(err);
11258
11259 /* Adapt owner in case owning user namespace of target network
11260 * namespace is different from the original one.
11261 */
11262 err = netdev_change_owner(dev, net_old, net);
11263 WARN_ON(err);
11264
11265 /* Add the device back in the hashes */
11266 list_netdevice(dev);
11267
11268 /* Notify protocols, that a new device appeared. */
11269 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11270
11271 /*
11272 * Prevent userspace races by waiting until the network
11273 * device is fully setup before sending notifications.
11274 */
11275 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11276
11277 synchronize_net();
11278 err = 0;
11279out:
11280 return err;
11281}
11282EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11283
11284static int dev_cpu_dead(unsigned int oldcpu)
11285{
11286 struct sk_buff **list_skb;
11287 struct sk_buff *skb;
11288 unsigned int cpu;
11289 struct softnet_data *sd, *oldsd, *remsd = NULL;
11290
11291 local_irq_disable();
11292 cpu = smp_processor_id();
11293 sd = &per_cpu(softnet_data, cpu);
11294 oldsd = &per_cpu(softnet_data, oldcpu);
11295
11296 /* Find end of our completion_queue. */
11297 list_skb = &sd->completion_queue;
11298 while (*list_skb)
11299 list_skb = &(*list_skb)->next;
11300 /* Append completion queue from offline CPU. */
11301 *list_skb = oldsd->completion_queue;
11302 oldsd->completion_queue = NULL;
11303
11304 /* Append output queue from offline CPU. */
11305 if (oldsd->output_queue) {
11306 *sd->output_queue_tailp = oldsd->output_queue;
11307 sd->output_queue_tailp = oldsd->output_queue_tailp;
11308 oldsd->output_queue = NULL;
11309 oldsd->output_queue_tailp = &oldsd->output_queue;
11310 }
11311 /* Append NAPI poll list from offline CPU, with one exception :
11312 * process_backlog() must be called by cpu owning percpu backlog.
11313 * We properly handle process_queue & input_pkt_queue later.
11314 */
11315 while (!list_empty(&oldsd->poll_list)) {
11316 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11317 struct napi_struct,
11318 poll_list);
11319
11320 list_del_init(&napi->poll_list);
11321 if (napi->poll == process_backlog)
11322 napi->state = 0;
11323 else
11324 ____napi_schedule(sd, napi);
11325 }
11326
11327 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11328 local_irq_enable();
11329
11330#ifdef CONFIG_RPS
11331 remsd = oldsd->rps_ipi_list;
11332 oldsd->rps_ipi_list = NULL;
11333#endif
11334 /* send out pending IPI's on offline CPU */
11335 net_rps_send_ipi(remsd);
11336
11337 /* Process offline CPU's input_pkt_queue */
11338 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11339 netif_rx_ni(skb);
11340 input_queue_head_incr(oldsd);
11341 }
11342 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11343 netif_rx_ni(skb);
11344 input_queue_head_incr(oldsd);
11345 }
11346
11347 return 0;
11348}
11349
11350/**
11351 * netdev_increment_features - increment feature set by one
11352 * @all: current feature set
11353 * @one: new feature set
11354 * @mask: mask feature set
11355 *
11356 * Computes a new feature set after adding a device with feature set
11357 * @one to the master device with current feature set @all. Will not
11358 * enable anything that is off in @mask. Returns the new feature set.
11359 */
11360netdev_features_t netdev_increment_features(netdev_features_t all,
11361 netdev_features_t one, netdev_features_t mask)
11362{
11363 if (mask & NETIF_F_HW_CSUM)
11364 mask |= NETIF_F_CSUM_MASK;
11365 mask |= NETIF_F_VLAN_CHALLENGED;
11366
11367 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11368 all &= one | ~NETIF_F_ALL_FOR_ALL;
11369
11370 /* If one device supports hw checksumming, set for all. */
11371 if (all & NETIF_F_HW_CSUM)
11372 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11373
11374 return all;
11375}
11376EXPORT_SYMBOL(netdev_increment_features);
11377
11378static struct hlist_head * __net_init netdev_create_hash(void)
11379{
11380 int i;
11381 struct hlist_head *hash;
11382
11383 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11384 if (hash != NULL)
11385 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11386 INIT_HLIST_HEAD(&hash[i]);
11387
11388 return hash;
11389}
11390
11391/* Initialize per network namespace state */
11392static int __net_init netdev_init(struct net *net)
11393{
11394 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11395 8 * sizeof_field(struct napi_struct, gro_bitmask));
11396
11397 if (net != &init_net)
11398 INIT_LIST_HEAD(&net->dev_base_head);
11399
11400 net->dev_name_head = netdev_create_hash();
11401 if (net->dev_name_head == NULL)
11402 goto err_name;
11403
11404 net->dev_index_head = netdev_create_hash();
11405 if (net->dev_index_head == NULL)
11406 goto err_idx;
11407
11408 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11409
11410 return 0;
11411
11412err_idx:
11413 kfree(net->dev_name_head);
11414err_name:
11415 return -ENOMEM;
11416}
11417
11418/**
11419 * netdev_drivername - network driver for the device
11420 * @dev: network device
11421 *
11422 * Determine network driver for device.
11423 */
11424const char *netdev_drivername(const struct net_device *dev)
11425{
11426 const struct device_driver *driver;
11427 const struct device *parent;
11428 const char *empty = "";
11429
11430 parent = dev->dev.parent;
11431 if (!parent)
11432 return empty;
11433
11434 driver = parent->driver;
11435 if (driver && driver->name)
11436 return driver->name;
11437 return empty;
11438}
11439
11440static void __netdev_printk(const char *level, const struct net_device *dev,
11441 struct va_format *vaf)
11442{
11443 if (dev && dev->dev.parent) {
11444 dev_printk_emit(level[1] - '0',
11445 dev->dev.parent,
11446 "%s %s %s%s: %pV",
11447 dev_driver_string(dev->dev.parent),
11448 dev_name(dev->dev.parent),
11449 netdev_name(dev), netdev_reg_state(dev),
11450 vaf);
11451 } else if (dev) {
11452 printk("%s%s%s: %pV",
11453 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11454 } else {
11455 printk("%s(NULL net_device): %pV", level, vaf);
11456 }
11457}
11458
11459void netdev_printk(const char *level, const struct net_device *dev,
11460 const char *format, ...)
11461{
11462 struct va_format vaf;
11463 va_list args;
11464
11465 va_start(args, format);
11466
11467 vaf.fmt = format;
11468 vaf.va = &args;
11469
11470 __netdev_printk(level, dev, &vaf);
11471
11472 va_end(args);
11473}
11474EXPORT_SYMBOL(netdev_printk);
11475
11476#define define_netdev_printk_level(func, level) \
11477void func(const struct net_device *dev, const char *fmt, ...) \
11478{ \
11479 struct va_format vaf; \
11480 va_list args; \
11481 \
11482 va_start(args, fmt); \
11483 \
11484 vaf.fmt = fmt; \
11485 vaf.va = &args; \
11486 \
11487 __netdev_printk(level, dev, &vaf); \
11488 \
11489 va_end(args); \
11490} \
11491EXPORT_SYMBOL(func);
11492
11493define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11494define_netdev_printk_level(netdev_alert, KERN_ALERT);
11495define_netdev_printk_level(netdev_crit, KERN_CRIT);
11496define_netdev_printk_level(netdev_err, KERN_ERR);
11497define_netdev_printk_level(netdev_warn, KERN_WARNING);
11498define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11499define_netdev_printk_level(netdev_info, KERN_INFO);
11500
11501static void __net_exit netdev_exit(struct net *net)
11502{
11503 kfree(net->dev_name_head);
11504 kfree(net->dev_index_head);
11505 if (net != &init_net)
11506 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11507}
11508
11509static struct pernet_operations __net_initdata netdev_net_ops = {
11510 .init = netdev_init,
11511 .exit = netdev_exit,
11512};
11513
11514static void __net_exit default_device_exit(struct net *net)
11515{
11516 struct net_device *dev, *aux;
11517 /*
11518 * Push all migratable network devices back to the
11519 * initial network namespace
11520 */
11521 rtnl_lock();
11522 for_each_netdev_safe(net, dev, aux) {
11523 int err;
11524 char fb_name[IFNAMSIZ];
11525
11526 /* Ignore unmoveable devices (i.e. loopback) */
11527 if (dev->features & NETIF_F_NETNS_LOCAL)
11528 continue;
11529
11530 /* Leave virtual devices for the generic cleanup */
11531 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11532 continue;
11533
11534 /* Push remaining network devices to init_net */
11535 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11536 if (netdev_name_in_use(&init_net, fb_name))
11537 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11538 err = dev_change_net_namespace(dev, &init_net, fb_name);
11539 if (err) {
11540 pr_emerg("%s: failed to move %s to init_net: %d\n",
11541 __func__, dev->name, err);
11542 BUG();
11543 }
11544 }
11545 rtnl_unlock();
11546}
11547
11548static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11549{
11550 /* Return with the rtnl_lock held when there are no network
11551 * devices unregistering in any network namespace in net_list.
11552 */
11553 struct net *net;
11554 bool unregistering;
11555 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11556
11557 add_wait_queue(&netdev_unregistering_wq, &wait);
11558 for (;;) {
11559 unregistering = false;
11560 rtnl_lock();
11561 list_for_each_entry(net, net_list, exit_list) {
11562 if (net->dev_unreg_count > 0) {
11563 unregistering = true;
11564 break;
11565 }
11566 }
11567 if (!unregistering)
11568 break;
11569 __rtnl_unlock();
11570
11571 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11572 }
11573 remove_wait_queue(&netdev_unregistering_wq, &wait);
11574}
11575
11576static void __net_exit default_device_exit_batch(struct list_head *net_list)
11577{
11578 /* At exit all network devices most be removed from a network
11579 * namespace. Do this in the reverse order of registration.
11580 * Do this across as many network namespaces as possible to
11581 * improve batching efficiency.
11582 */
11583 struct net_device *dev;
11584 struct net *net;
11585 LIST_HEAD(dev_kill_list);
11586
11587 /* To prevent network device cleanup code from dereferencing
11588 * loopback devices or network devices that have been freed
11589 * wait here for all pending unregistrations to complete,
11590 * before unregistring the loopback device and allowing the
11591 * network namespace be freed.
11592 *
11593 * The netdev todo list containing all network devices
11594 * unregistrations that happen in default_device_exit_batch
11595 * will run in the rtnl_unlock() at the end of
11596 * default_device_exit_batch.
11597 */
11598 rtnl_lock_unregistering(net_list);
11599 list_for_each_entry(net, net_list, exit_list) {
11600 for_each_netdev_reverse(net, dev) {
11601 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11602 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11603 else
11604 unregister_netdevice_queue(dev, &dev_kill_list);
11605 }
11606 }
11607 unregister_netdevice_many(&dev_kill_list);
11608 rtnl_unlock();
11609}
11610
11611static struct pernet_operations __net_initdata default_device_ops = {
11612 .exit = default_device_exit,
11613 .exit_batch = default_device_exit_batch,
11614};
11615
11616/*
11617 * Initialize the DEV module. At boot time this walks the device list and
11618 * unhooks any devices that fail to initialise (normally hardware not
11619 * present) and leaves us with a valid list of present and active devices.
11620 *
11621 */
11622
11623/*
11624 * This is called single threaded during boot, so no need
11625 * to take the rtnl semaphore.
11626 */
11627static int __init net_dev_init(void)
11628{
11629 int i, rc = -ENOMEM;
11630
11631 BUG_ON(!dev_boot_phase);
11632
11633 if (dev_proc_init())
11634 goto out;
11635
11636 if (netdev_kobject_init())
11637 goto out;
11638
11639 INIT_LIST_HEAD(&ptype_all);
11640 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11641 INIT_LIST_HEAD(&ptype_base[i]);
11642
11643 INIT_LIST_HEAD(&offload_base);
11644
11645 if (register_pernet_subsys(&netdev_net_ops))
11646 goto out;
11647
11648 /*
11649 * Initialise the packet receive queues.
11650 */
11651
11652 for_each_possible_cpu(i) {
11653 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11654 struct softnet_data *sd = &per_cpu(softnet_data, i);
11655
11656 INIT_WORK(flush, flush_backlog);
11657
11658 skb_queue_head_init(&sd->input_pkt_queue);
11659 skb_queue_head_init(&sd->process_queue);
11660#ifdef CONFIG_XFRM_OFFLOAD
11661 skb_queue_head_init(&sd->xfrm_backlog);
11662#endif
11663 INIT_LIST_HEAD(&sd->poll_list);
11664 sd->output_queue_tailp = &sd->output_queue;
11665#ifdef CONFIG_RPS
11666 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11667 sd->cpu = i;
11668#endif
11669
11670 init_gro_hash(&sd->backlog);
11671 sd->backlog.poll = process_backlog;
11672 sd->backlog.weight = weight_p;
11673 }
11674
11675 dev_boot_phase = 0;
11676
11677 /* The loopback device is special if any other network devices
11678 * is present in a network namespace the loopback device must
11679 * be present. Since we now dynamically allocate and free the
11680 * loopback device ensure this invariant is maintained by
11681 * keeping the loopback device as the first device on the
11682 * list of network devices. Ensuring the loopback devices
11683 * is the first device that appears and the last network device
11684 * that disappears.
11685 */
11686 if (register_pernet_device(&loopback_net_ops))
11687 goto out;
11688
11689 if (register_pernet_device(&default_device_ops))
11690 goto out;
11691
11692 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11693 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11694
11695 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11696 NULL, dev_cpu_dead);
11697 WARN_ON(rc < 0);
11698 rc = 0;
11699out:
11700 return rc;
11701}
11702
11703subsys_initcall(net_dev_init);