at v5.15 67 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11#define pr_fmt(fmt) "LSM: " fmt 12 13#include <linux/bpf.h> 14#include <linux/capability.h> 15#include <linux/dcache.h> 16#include <linux/export.h> 17#include <linux/init.h> 18#include <linux/kernel.h> 19#include <linux/kernel_read_file.h> 20#include <linux/lsm_hooks.h> 21#include <linux/integrity.h> 22#include <linux/ima.h> 23#include <linux/evm.h> 24#include <linux/fsnotify.h> 25#include <linux/mman.h> 26#include <linux/mount.h> 27#include <linux/personality.h> 28#include <linux/backing-dev.h> 29#include <linux/string.h> 30#include <linux/msg.h> 31#include <net/flow.h> 32 33#define MAX_LSM_EVM_XATTR 2 34 35/* How many LSMs were built into the kernel? */ 36#define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38/* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 63 [LOCKDOWN_KCORE] = "/proc/kcore access", 64 [LOCKDOWN_KPROBES] = "use of kprobes", 65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 66 [LOCKDOWN_PERF] = "unsafe use of perf", 67 [LOCKDOWN_TRACEFS] = "use of tracefs", 68 [LOCKDOWN_XMON_RW] = "xmon read and write access", 69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 71}; 72 73struct security_hook_heads security_hook_heads __lsm_ro_after_init; 74static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 75 76static struct kmem_cache *lsm_file_cache; 77static struct kmem_cache *lsm_inode_cache; 78 79char *lsm_names; 80static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 81 82/* Boot-time LSM user choice */ 83static __initdata const char *chosen_lsm_order; 84static __initdata const char *chosen_major_lsm; 85 86static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 87 88/* Ordered list of LSMs to initialize. */ 89static __initdata struct lsm_info **ordered_lsms; 90static __initdata struct lsm_info *exclusive; 91 92static __initdata bool debug; 93#define init_debug(...) \ 94 do { \ 95 if (debug) \ 96 pr_info(__VA_ARGS__); \ 97 } while (0) 98 99static bool __init is_enabled(struct lsm_info *lsm) 100{ 101 if (!lsm->enabled) 102 return false; 103 104 return *lsm->enabled; 105} 106 107/* Mark an LSM's enabled flag. */ 108static int lsm_enabled_true __initdata = 1; 109static int lsm_enabled_false __initdata = 0; 110static void __init set_enabled(struct lsm_info *lsm, bool enabled) 111{ 112 /* 113 * When an LSM hasn't configured an enable variable, we can use 114 * a hard-coded location for storing the default enabled state. 115 */ 116 if (!lsm->enabled) { 117 if (enabled) 118 lsm->enabled = &lsm_enabled_true; 119 else 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_true) { 122 if (!enabled) 123 lsm->enabled = &lsm_enabled_false; 124 } else if (lsm->enabled == &lsm_enabled_false) { 125 if (enabled) 126 lsm->enabled = &lsm_enabled_true; 127 } else { 128 *lsm->enabled = enabled; 129 } 130} 131 132/* Is an LSM already listed in the ordered LSMs list? */ 133static bool __init exists_ordered_lsm(struct lsm_info *lsm) 134{ 135 struct lsm_info **check; 136 137 for (check = ordered_lsms; *check; check++) 138 if (*check == lsm) 139 return true; 140 141 return false; 142} 143 144/* Append an LSM to the list of ordered LSMs to initialize. */ 145static int last_lsm __initdata; 146static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 147{ 148 /* Ignore duplicate selections. */ 149 if (exists_ordered_lsm(lsm)) 150 return; 151 152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 153 return; 154 155 /* Enable this LSM, if it is not already set. */ 156 if (!lsm->enabled) 157 lsm->enabled = &lsm_enabled_true; 158 ordered_lsms[last_lsm++] = lsm; 159 160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 161 is_enabled(lsm) ? "en" : "dis"); 162} 163 164/* Is an LSM allowed to be initialized? */ 165static bool __init lsm_allowed(struct lsm_info *lsm) 166{ 167 /* Skip if the LSM is disabled. */ 168 if (!is_enabled(lsm)) 169 return false; 170 171 /* Not allowed if another exclusive LSM already initialized. */ 172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 173 init_debug("exclusive disabled: %s\n", lsm->name); 174 return false; 175 } 176 177 return true; 178} 179 180static void __init lsm_set_blob_size(int *need, int *lbs) 181{ 182 int offset; 183 184 if (*need > 0) { 185 offset = *lbs; 186 *lbs += *need; 187 *need = offset; 188 } 189} 190 191static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 192{ 193 if (!needed) 194 return; 195 196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 198 /* 199 * The inode blob gets an rcu_head in addition to 200 * what the modules might need. 201 */ 202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 203 blob_sizes.lbs_inode = sizeof(struct rcu_head); 204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 209} 210 211/* Prepare LSM for initialization. */ 212static void __init prepare_lsm(struct lsm_info *lsm) 213{ 214 int enabled = lsm_allowed(lsm); 215 216 /* Record enablement (to handle any following exclusive LSMs). */ 217 set_enabled(lsm, enabled); 218 219 /* If enabled, do pre-initialization work. */ 220 if (enabled) { 221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 222 exclusive = lsm; 223 init_debug("exclusive chosen: %s\n", lsm->name); 224 } 225 226 lsm_set_blob_sizes(lsm->blobs); 227 } 228} 229 230/* Initialize a given LSM, if it is enabled. */ 231static void __init initialize_lsm(struct lsm_info *lsm) 232{ 233 if (is_enabled(lsm)) { 234 int ret; 235 236 init_debug("initializing %s\n", lsm->name); 237 ret = lsm->init(); 238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 239 } 240} 241 242/* Populate ordered LSMs list from comma-separated LSM name list. */ 243static void __init ordered_lsm_parse(const char *order, const char *origin) 244{ 245 struct lsm_info *lsm; 246 char *sep, *name, *next; 247 248 /* LSM_ORDER_FIRST is always first. */ 249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 250 if (lsm->order == LSM_ORDER_FIRST) 251 append_ordered_lsm(lsm, "first"); 252 } 253 254 /* Process "security=", if given. */ 255 if (chosen_major_lsm) { 256 struct lsm_info *major; 257 258 /* 259 * To match the original "security=" behavior, this 260 * explicitly does NOT fallback to another Legacy Major 261 * if the selected one was separately disabled: disable 262 * all non-matching Legacy Major LSMs. 263 */ 264 for (major = __start_lsm_info; major < __end_lsm_info; 265 major++) { 266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 267 strcmp(major->name, chosen_major_lsm) != 0) { 268 set_enabled(major, false); 269 init_debug("security=%s disabled: %s\n", 270 chosen_major_lsm, major->name); 271 } 272 } 273 } 274 275 sep = kstrdup(order, GFP_KERNEL); 276 next = sep; 277 /* Walk the list, looking for matching LSMs. */ 278 while ((name = strsep(&next, ",")) != NULL) { 279 bool found = false; 280 281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 282 if (lsm->order == LSM_ORDER_MUTABLE && 283 strcmp(lsm->name, name) == 0) { 284 append_ordered_lsm(lsm, origin); 285 found = true; 286 } 287 } 288 289 if (!found) 290 init_debug("%s ignored: %s\n", origin, name); 291 } 292 293 /* Process "security=", if given. */ 294 if (chosen_major_lsm) { 295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 296 if (exists_ordered_lsm(lsm)) 297 continue; 298 if (strcmp(lsm->name, chosen_major_lsm) == 0) 299 append_ordered_lsm(lsm, "security="); 300 } 301 } 302 303 /* Disable all LSMs not in the ordered list. */ 304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 305 if (exists_ordered_lsm(lsm)) 306 continue; 307 set_enabled(lsm, false); 308 init_debug("%s disabled: %s\n", origin, lsm->name); 309 } 310 311 kfree(sep); 312} 313 314static void __init lsm_early_cred(struct cred *cred); 315static void __init lsm_early_task(struct task_struct *task); 316 317static int lsm_append(const char *new, char **result); 318 319static void __init ordered_lsm_init(void) 320{ 321 struct lsm_info **lsm; 322 323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 324 GFP_KERNEL); 325 326 if (chosen_lsm_order) { 327 if (chosen_major_lsm) { 328 pr_info("security= is ignored because it is superseded by lsm=\n"); 329 chosen_major_lsm = NULL; 330 } 331 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 332 } else 333 ordered_lsm_parse(builtin_lsm_order, "builtin"); 334 335 for (lsm = ordered_lsms; *lsm; lsm++) 336 prepare_lsm(*lsm); 337 338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 339 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 344 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 345 346 /* 347 * Create any kmem_caches needed for blobs 348 */ 349 if (blob_sizes.lbs_file) 350 lsm_file_cache = kmem_cache_create("lsm_file_cache", 351 blob_sizes.lbs_file, 0, 352 SLAB_PANIC, NULL); 353 if (blob_sizes.lbs_inode) 354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 355 blob_sizes.lbs_inode, 0, 356 SLAB_PANIC, NULL); 357 358 lsm_early_cred((struct cred *) current->cred); 359 lsm_early_task(current); 360 for (lsm = ordered_lsms; *lsm; lsm++) 361 initialize_lsm(*lsm); 362 363 kfree(ordered_lsms); 364} 365 366int __init early_security_init(void) 367{ 368 int i; 369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 370 struct lsm_info *lsm; 371 372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 373 i++) 374 INIT_HLIST_HEAD(&list[i]); 375 376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 377 if (!lsm->enabled) 378 lsm->enabled = &lsm_enabled_true; 379 prepare_lsm(lsm); 380 initialize_lsm(lsm); 381 } 382 383 return 0; 384} 385 386/** 387 * security_init - initializes the security framework 388 * 389 * This should be called early in the kernel initialization sequence. 390 */ 391int __init security_init(void) 392{ 393 struct lsm_info *lsm; 394 395 pr_info("Security Framework initializing\n"); 396 397 /* 398 * Append the names of the early LSM modules now that kmalloc() is 399 * available 400 */ 401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 402 if (lsm->enabled) 403 lsm_append(lsm->name, &lsm_names); 404 } 405 406 /* Load LSMs in specified order. */ 407 ordered_lsm_init(); 408 409 return 0; 410} 411 412/* Save user chosen LSM */ 413static int __init choose_major_lsm(char *str) 414{ 415 chosen_major_lsm = str; 416 return 1; 417} 418__setup("security=", choose_major_lsm); 419 420/* Explicitly choose LSM initialization order. */ 421static int __init choose_lsm_order(char *str) 422{ 423 chosen_lsm_order = str; 424 return 1; 425} 426__setup("lsm=", choose_lsm_order); 427 428/* Enable LSM order debugging. */ 429static int __init enable_debug(char *str) 430{ 431 debug = true; 432 return 1; 433} 434__setup("lsm.debug", enable_debug); 435 436static bool match_last_lsm(const char *list, const char *lsm) 437{ 438 const char *last; 439 440 if (WARN_ON(!list || !lsm)) 441 return false; 442 last = strrchr(list, ','); 443 if (last) 444 /* Pass the comma, strcmp() will check for '\0' */ 445 last++; 446 else 447 last = list; 448 return !strcmp(last, lsm); 449} 450 451static int lsm_append(const char *new, char **result) 452{ 453 char *cp; 454 455 if (*result == NULL) { 456 *result = kstrdup(new, GFP_KERNEL); 457 if (*result == NULL) 458 return -ENOMEM; 459 } else { 460 /* Check if it is the last registered name */ 461 if (match_last_lsm(*result, new)) 462 return 0; 463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 464 if (cp == NULL) 465 return -ENOMEM; 466 kfree(*result); 467 *result = cp; 468 } 469 return 0; 470} 471 472/** 473 * security_add_hooks - Add a modules hooks to the hook lists. 474 * @hooks: the hooks to add 475 * @count: the number of hooks to add 476 * @lsm: the name of the security module 477 * 478 * Each LSM has to register its hooks with the infrastructure. 479 */ 480void __init security_add_hooks(struct security_hook_list *hooks, int count, 481 char *lsm) 482{ 483 int i; 484 485 for (i = 0; i < count; i++) { 486 hooks[i].lsm = lsm; 487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 488 } 489 490 /* 491 * Don't try to append during early_security_init(), we'll come back 492 * and fix this up afterwards. 493 */ 494 if (slab_is_available()) { 495 if (lsm_append(lsm, &lsm_names) < 0) 496 panic("%s - Cannot get early memory.\n", __func__); 497 } 498} 499 500int call_blocking_lsm_notifier(enum lsm_event event, void *data) 501{ 502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 503 event, data); 504} 505EXPORT_SYMBOL(call_blocking_lsm_notifier); 506 507int register_blocking_lsm_notifier(struct notifier_block *nb) 508{ 509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 510 nb); 511} 512EXPORT_SYMBOL(register_blocking_lsm_notifier); 513 514int unregister_blocking_lsm_notifier(struct notifier_block *nb) 515{ 516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 517 nb); 518} 519EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 520 521/** 522 * lsm_cred_alloc - allocate a composite cred blob 523 * @cred: the cred that needs a blob 524 * @gfp: allocation type 525 * 526 * Allocate the cred blob for all the modules 527 * 528 * Returns 0, or -ENOMEM if memory can't be allocated. 529 */ 530static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 531{ 532 if (blob_sizes.lbs_cred == 0) { 533 cred->security = NULL; 534 return 0; 535 } 536 537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 538 if (cred->security == NULL) 539 return -ENOMEM; 540 return 0; 541} 542 543/** 544 * lsm_early_cred - during initialization allocate a composite cred blob 545 * @cred: the cred that needs a blob 546 * 547 * Allocate the cred blob for all the modules 548 */ 549static void __init lsm_early_cred(struct cred *cred) 550{ 551 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 552 553 if (rc) 554 panic("%s: Early cred alloc failed.\n", __func__); 555} 556 557/** 558 * lsm_file_alloc - allocate a composite file blob 559 * @file: the file that needs a blob 560 * 561 * Allocate the file blob for all the modules 562 * 563 * Returns 0, or -ENOMEM if memory can't be allocated. 564 */ 565static int lsm_file_alloc(struct file *file) 566{ 567 if (!lsm_file_cache) { 568 file->f_security = NULL; 569 return 0; 570 } 571 572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 573 if (file->f_security == NULL) 574 return -ENOMEM; 575 return 0; 576} 577 578/** 579 * lsm_inode_alloc - allocate a composite inode blob 580 * @inode: the inode that needs a blob 581 * 582 * Allocate the inode blob for all the modules 583 * 584 * Returns 0, or -ENOMEM if memory can't be allocated. 585 */ 586int lsm_inode_alloc(struct inode *inode) 587{ 588 if (!lsm_inode_cache) { 589 inode->i_security = NULL; 590 return 0; 591 } 592 593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 594 if (inode->i_security == NULL) 595 return -ENOMEM; 596 return 0; 597} 598 599/** 600 * lsm_task_alloc - allocate a composite task blob 601 * @task: the task that needs a blob 602 * 603 * Allocate the task blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607static int lsm_task_alloc(struct task_struct *task) 608{ 609 if (blob_sizes.lbs_task == 0) { 610 task->security = NULL; 611 return 0; 612 } 613 614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 615 if (task->security == NULL) 616 return -ENOMEM; 617 return 0; 618} 619 620/** 621 * lsm_ipc_alloc - allocate a composite ipc blob 622 * @kip: the ipc that needs a blob 623 * 624 * Allocate the ipc blob for all the modules 625 * 626 * Returns 0, or -ENOMEM if memory can't be allocated. 627 */ 628static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 629{ 630 if (blob_sizes.lbs_ipc == 0) { 631 kip->security = NULL; 632 return 0; 633 } 634 635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 636 if (kip->security == NULL) 637 return -ENOMEM; 638 return 0; 639} 640 641/** 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 643 * @mp: the msg_msg that needs a blob 644 * 645 * Allocate the ipc blob for all the modules 646 * 647 * Returns 0, or -ENOMEM if memory can't be allocated. 648 */ 649static int lsm_msg_msg_alloc(struct msg_msg *mp) 650{ 651 if (blob_sizes.lbs_msg_msg == 0) { 652 mp->security = NULL; 653 return 0; 654 } 655 656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 657 if (mp->security == NULL) 658 return -ENOMEM; 659 return 0; 660} 661 662/** 663 * lsm_early_task - during initialization allocate a composite task blob 664 * @task: the task that needs a blob 665 * 666 * Allocate the task blob for all the modules 667 */ 668static void __init lsm_early_task(struct task_struct *task) 669{ 670 int rc = lsm_task_alloc(task); 671 672 if (rc) 673 panic("%s: Early task alloc failed.\n", __func__); 674} 675 676/** 677 * lsm_superblock_alloc - allocate a composite superblock blob 678 * @sb: the superblock that needs a blob 679 * 680 * Allocate the superblock blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684static int lsm_superblock_alloc(struct super_block *sb) 685{ 686 if (blob_sizes.lbs_superblock == 0) { 687 sb->s_security = NULL; 688 return 0; 689 } 690 691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 692 if (sb->s_security == NULL) 693 return -ENOMEM; 694 return 0; 695} 696 697/* 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 699 * can be accessed with: 700 * 701 * LSM_RET_DEFAULT(<hook_name>) 702 * 703 * The macros below define static constants for the default value of each 704 * LSM hook. 705 */ 706#define LSM_RET_DEFAULT(NAME) (NAME##_default) 707#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 708#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 709 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); 710#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 712 713#include <linux/lsm_hook_defs.h> 714#undef LSM_HOOK 715 716/* 717 * Hook list operation macros. 718 * 719 * call_void_hook: 720 * This is a hook that does not return a value. 721 * 722 * call_int_hook: 723 * This is a hook that returns a value. 724 */ 725 726#define call_void_hook(FUNC, ...) \ 727 do { \ 728 struct security_hook_list *P; \ 729 \ 730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 731 P->hook.FUNC(__VA_ARGS__); \ 732 } while (0) 733 734#define call_int_hook(FUNC, IRC, ...) ({ \ 735 int RC = IRC; \ 736 do { \ 737 struct security_hook_list *P; \ 738 \ 739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 740 RC = P->hook.FUNC(__VA_ARGS__); \ 741 if (RC != 0) \ 742 break; \ 743 } \ 744 } while (0); \ 745 RC; \ 746}) 747 748/* Security operations */ 749 750int security_binder_set_context_mgr(struct task_struct *mgr) 751{ 752 return call_int_hook(binder_set_context_mgr, 0, mgr); 753} 754 755int security_binder_transaction(struct task_struct *from, 756 struct task_struct *to) 757{ 758 return call_int_hook(binder_transaction, 0, from, to); 759} 760 761int security_binder_transfer_binder(struct task_struct *from, 762 struct task_struct *to) 763{ 764 return call_int_hook(binder_transfer_binder, 0, from, to); 765} 766 767int security_binder_transfer_file(struct task_struct *from, 768 struct task_struct *to, struct file *file) 769{ 770 return call_int_hook(binder_transfer_file, 0, from, to, file); 771} 772 773int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 774{ 775 return call_int_hook(ptrace_access_check, 0, child, mode); 776} 777 778int security_ptrace_traceme(struct task_struct *parent) 779{ 780 return call_int_hook(ptrace_traceme, 0, parent); 781} 782 783int security_capget(struct task_struct *target, 784 kernel_cap_t *effective, 785 kernel_cap_t *inheritable, 786 kernel_cap_t *permitted) 787{ 788 return call_int_hook(capget, 0, target, 789 effective, inheritable, permitted); 790} 791 792int security_capset(struct cred *new, const struct cred *old, 793 const kernel_cap_t *effective, 794 const kernel_cap_t *inheritable, 795 const kernel_cap_t *permitted) 796{ 797 return call_int_hook(capset, 0, new, old, 798 effective, inheritable, permitted); 799} 800 801int security_capable(const struct cred *cred, 802 struct user_namespace *ns, 803 int cap, 804 unsigned int opts) 805{ 806 return call_int_hook(capable, 0, cred, ns, cap, opts); 807} 808 809int security_quotactl(int cmds, int type, int id, struct super_block *sb) 810{ 811 return call_int_hook(quotactl, 0, cmds, type, id, sb); 812} 813 814int security_quota_on(struct dentry *dentry) 815{ 816 return call_int_hook(quota_on, 0, dentry); 817} 818 819int security_syslog(int type) 820{ 821 return call_int_hook(syslog, 0, type); 822} 823 824int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 825{ 826 return call_int_hook(settime, 0, ts, tz); 827} 828 829int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 830{ 831 struct security_hook_list *hp; 832 int cap_sys_admin = 1; 833 int rc; 834 835 /* 836 * The module will respond with a positive value if 837 * it thinks the __vm_enough_memory() call should be 838 * made with the cap_sys_admin set. If all of the modules 839 * agree that it should be set it will. If any module 840 * thinks it should not be set it won't. 841 */ 842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 843 rc = hp->hook.vm_enough_memory(mm, pages); 844 if (rc <= 0) { 845 cap_sys_admin = 0; 846 break; 847 } 848 } 849 return __vm_enough_memory(mm, pages, cap_sys_admin); 850} 851 852int security_bprm_creds_for_exec(struct linux_binprm *bprm) 853{ 854 return call_int_hook(bprm_creds_for_exec, 0, bprm); 855} 856 857int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 858{ 859 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 860} 861 862int security_bprm_check(struct linux_binprm *bprm) 863{ 864 int ret; 865 866 ret = call_int_hook(bprm_check_security, 0, bprm); 867 if (ret) 868 return ret; 869 return ima_bprm_check(bprm); 870} 871 872void security_bprm_committing_creds(struct linux_binprm *bprm) 873{ 874 call_void_hook(bprm_committing_creds, bprm); 875} 876 877void security_bprm_committed_creds(struct linux_binprm *bprm) 878{ 879 call_void_hook(bprm_committed_creds, bprm); 880} 881 882int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 883{ 884 return call_int_hook(fs_context_dup, 0, fc, src_fc); 885} 886 887int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 888{ 889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 890} 891 892int security_sb_alloc(struct super_block *sb) 893{ 894 int rc = lsm_superblock_alloc(sb); 895 896 if (unlikely(rc)) 897 return rc; 898 rc = call_int_hook(sb_alloc_security, 0, sb); 899 if (unlikely(rc)) 900 security_sb_free(sb); 901 return rc; 902} 903 904void security_sb_delete(struct super_block *sb) 905{ 906 call_void_hook(sb_delete, sb); 907} 908 909void security_sb_free(struct super_block *sb) 910{ 911 call_void_hook(sb_free_security, sb); 912 kfree(sb->s_security); 913 sb->s_security = NULL; 914} 915 916void security_free_mnt_opts(void **mnt_opts) 917{ 918 if (!*mnt_opts) 919 return; 920 call_void_hook(sb_free_mnt_opts, *mnt_opts); 921 *mnt_opts = NULL; 922} 923EXPORT_SYMBOL(security_free_mnt_opts); 924 925int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 926{ 927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 928} 929EXPORT_SYMBOL(security_sb_eat_lsm_opts); 930 931int security_sb_mnt_opts_compat(struct super_block *sb, 932 void *mnt_opts) 933{ 934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 935} 936EXPORT_SYMBOL(security_sb_mnt_opts_compat); 937 938int security_sb_remount(struct super_block *sb, 939 void *mnt_opts) 940{ 941 return call_int_hook(sb_remount, 0, sb, mnt_opts); 942} 943EXPORT_SYMBOL(security_sb_remount); 944 945int security_sb_kern_mount(struct super_block *sb) 946{ 947 return call_int_hook(sb_kern_mount, 0, sb); 948} 949 950int security_sb_show_options(struct seq_file *m, struct super_block *sb) 951{ 952 return call_int_hook(sb_show_options, 0, m, sb); 953} 954 955int security_sb_statfs(struct dentry *dentry) 956{ 957 return call_int_hook(sb_statfs, 0, dentry); 958} 959 960int security_sb_mount(const char *dev_name, const struct path *path, 961 const char *type, unsigned long flags, void *data) 962{ 963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 964} 965 966int security_sb_umount(struct vfsmount *mnt, int flags) 967{ 968 return call_int_hook(sb_umount, 0, mnt, flags); 969} 970 971int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 972{ 973 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 974} 975 976int security_sb_set_mnt_opts(struct super_block *sb, 977 void *mnt_opts, 978 unsigned long kern_flags, 979 unsigned long *set_kern_flags) 980{ 981 return call_int_hook(sb_set_mnt_opts, 982 mnt_opts ? -EOPNOTSUPP : 0, sb, 983 mnt_opts, kern_flags, set_kern_flags); 984} 985EXPORT_SYMBOL(security_sb_set_mnt_opts); 986 987int security_sb_clone_mnt_opts(const struct super_block *oldsb, 988 struct super_block *newsb, 989 unsigned long kern_flags, 990 unsigned long *set_kern_flags) 991{ 992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 993 kern_flags, set_kern_flags); 994} 995EXPORT_SYMBOL(security_sb_clone_mnt_opts); 996 997int security_add_mnt_opt(const char *option, const char *val, int len, 998 void **mnt_opts) 999{ 1000 return call_int_hook(sb_add_mnt_opt, -EINVAL, 1001 option, val, len, mnt_opts); 1002} 1003EXPORT_SYMBOL(security_add_mnt_opt); 1004 1005int security_move_mount(const struct path *from_path, const struct path *to_path) 1006{ 1007 return call_int_hook(move_mount, 0, from_path, to_path); 1008} 1009 1010int security_path_notify(const struct path *path, u64 mask, 1011 unsigned int obj_type) 1012{ 1013 return call_int_hook(path_notify, 0, path, mask, obj_type); 1014} 1015 1016int security_inode_alloc(struct inode *inode) 1017{ 1018 int rc = lsm_inode_alloc(inode); 1019 1020 if (unlikely(rc)) 1021 return rc; 1022 rc = call_int_hook(inode_alloc_security, 0, inode); 1023 if (unlikely(rc)) 1024 security_inode_free(inode); 1025 return rc; 1026} 1027 1028static void inode_free_by_rcu(struct rcu_head *head) 1029{ 1030 /* 1031 * The rcu head is at the start of the inode blob 1032 */ 1033 kmem_cache_free(lsm_inode_cache, head); 1034} 1035 1036void security_inode_free(struct inode *inode) 1037{ 1038 integrity_inode_free(inode); 1039 call_void_hook(inode_free_security, inode); 1040 /* 1041 * The inode may still be referenced in a path walk and 1042 * a call to security_inode_permission() can be made 1043 * after inode_free_security() is called. Ideally, the VFS 1044 * wouldn't do this, but fixing that is a much harder 1045 * job. For now, simply free the i_security via RCU, and 1046 * leave the current inode->i_security pointer intact. 1047 * The inode will be freed after the RCU grace period too. 1048 */ 1049 if (inode->i_security) 1050 call_rcu((struct rcu_head *)inode->i_security, 1051 inode_free_by_rcu); 1052} 1053 1054int security_dentry_init_security(struct dentry *dentry, int mode, 1055 const struct qstr *name, void **ctx, 1056 u32 *ctxlen) 1057{ 1058 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1059 name, ctx, ctxlen); 1060} 1061EXPORT_SYMBOL(security_dentry_init_security); 1062 1063int security_dentry_create_files_as(struct dentry *dentry, int mode, 1064 struct qstr *name, 1065 const struct cred *old, struct cred *new) 1066{ 1067 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1068 name, old, new); 1069} 1070EXPORT_SYMBOL(security_dentry_create_files_as); 1071 1072int security_inode_init_security(struct inode *inode, struct inode *dir, 1073 const struct qstr *qstr, 1074 const initxattrs initxattrs, void *fs_data) 1075{ 1076 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1077 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1078 int ret; 1079 1080 if (unlikely(IS_PRIVATE(inode))) 1081 return 0; 1082 1083 if (!initxattrs) 1084 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1085 dir, qstr, NULL, NULL, NULL); 1086 memset(new_xattrs, 0, sizeof(new_xattrs)); 1087 lsm_xattr = new_xattrs; 1088 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1089 &lsm_xattr->name, 1090 &lsm_xattr->value, 1091 &lsm_xattr->value_len); 1092 if (ret) 1093 goto out; 1094 1095 evm_xattr = lsm_xattr + 1; 1096 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1097 if (ret) 1098 goto out; 1099 ret = initxattrs(inode, new_xattrs, fs_data); 1100out: 1101 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1102 kfree(xattr->value); 1103 return (ret == -EOPNOTSUPP) ? 0 : ret; 1104} 1105EXPORT_SYMBOL(security_inode_init_security); 1106 1107int security_inode_init_security_anon(struct inode *inode, 1108 const struct qstr *name, 1109 const struct inode *context_inode) 1110{ 1111 return call_int_hook(inode_init_security_anon, 0, inode, name, 1112 context_inode); 1113} 1114 1115int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1116 const struct qstr *qstr, const char **name, 1117 void **value, size_t *len) 1118{ 1119 if (unlikely(IS_PRIVATE(inode))) 1120 return -EOPNOTSUPP; 1121 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1122 qstr, name, value, len); 1123} 1124EXPORT_SYMBOL(security_old_inode_init_security); 1125 1126#ifdef CONFIG_SECURITY_PATH 1127int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1128 unsigned int dev) 1129{ 1130 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1131 return 0; 1132 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1133} 1134EXPORT_SYMBOL(security_path_mknod); 1135 1136int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1137{ 1138 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1139 return 0; 1140 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1141} 1142EXPORT_SYMBOL(security_path_mkdir); 1143 1144int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1145{ 1146 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1147 return 0; 1148 return call_int_hook(path_rmdir, 0, dir, dentry); 1149} 1150 1151int security_path_unlink(const struct path *dir, struct dentry *dentry) 1152{ 1153 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1154 return 0; 1155 return call_int_hook(path_unlink, 0, dir, dentry); 1156} 1157EXPORT_SYMBOL(security_path_unlink); 1158 1159int security_path_symlink(const struct path *dir, struct dentry *dentry, 1160 const char *old_name) 1161{ 1162 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1163 return 0; 1164 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1165} 1166 1167int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1168 struct dentry *new_dentry) 1169{ 1170 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1171 return 0; 1172 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1173} 1174 1175int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1176 const struct path *new_dir, struct dentry *new_dentry, 1177 unsigned int flags) 1178{ 1179 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1180 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1181 return 0; 1182 1183 if (flags & RENAME_EXCHANGE) { 1184 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1185 old_dir, old_dentry); 1186 if (err) 1187 return err; 1188 } 1189 1190 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1191 new_dentry); 1192} 1193EXPORT_SYMBOL(security_path_rename); 1194 1195int security_path_truncate(const struct path *path) 1196{ 1197 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1198 return 0; 1199 return call_int_hook(path_truncate, 0, path); 1200} 1201 1202int security_path_chmod(const struct path *path, umode_t mode) 1203{ 1204 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1205 return 0; 1206 return call_int_hook(path_chmod, 0, path, mode); 1207} 1208 1209int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1210{ 1211 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1212 return 0; 1213 return call_int_hook(path_chown, 0, path, uid, gid); 1214} 1215 1216int security_path_chroot(const struct path *path) 1217{ 1218 return call_int_hook(path_chroot, 0, path); 1219} 1220#endif 1221 1222int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1223{ 1224 if (unlikely(IS_PRIVATE(dir))) 1225 return 0; 1226 return call_int_hook(inode_create, 0, dir, dentry, mode); 1227} 1228EXPORT_SYMBOL_GPL(security_inode_create); 1229 1230int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1231 struct dentry *new_dentry) 1232{ 1233 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1234 return 0; 1235 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1236} 1237 1238int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1239{ 1240 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1241 return 0; 1242 return call_int_hook(inode_unlink, 0, dir, dentry); 1243} 1244 1245int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1246 const char *old_name) 1247{ 1248 if (unlikely(IS_PRIVATE(dir))) 1249 return 0; 1250 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1251} 1252 1253int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1254{ 1255 if (unlikely(IS_PRIVATE(dir))) 1256 return 0; 1257 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1258} 1259EXPORT_SYMBOL_GPL(security_inode_mkdir); 1260 1261int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1262{ 1263 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1264 return 0; 1265 return call_int_hook(inode_rmdir, 0, dir, dentry); 1266} 1267 1268int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1269{ 1270 if (unlikely(IS_PRIVATE(dir))) 1271 return 0; 1272 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1273} 1274 1275int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1276 struct inode *new_dir, struct dentry *new_dentry, 1277 unsigned int flags) 1278{ 1279 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1280 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1281 return 0; 1282 1283 if (flags & RENAME_EXCHANGE) { 1284 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1285 old_dir, old_dentry); 1286 if (err) 1287 return err; 1288 } 1289 1290 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1291 new_dir, new_dentry); 1292} 1293 1294int security_inode_readlink(struct dentry *dentry) 1295{ 1296 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1297 return 0; 1298 return call_int_hook(inode_readlink, 0, dentry); 1299} 1300 1301int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1302 bool rcu) 1303{ 1304 if (unlikely(IS_PRIVATE(inode))) 1305 return 0; 1306 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1307} 1308 1309int security_inode_permission(struct inode *inode, int mask) 1310{ 1311 if (unlikely(IS_PRIVATE(inode))) 1312 return 0; 1313 return call_int_hook(inode_permission, 0, inode, mask); 1314} 1315 1316int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1317{ 1318 int ret; 1319 1320 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1321 return 0; 1322 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1323 if (ret) 1324 return ret; 1325 return evm_inode_setattr(dentry, attr); 1326} 1327EXPORT_SYMBOL_GPL(security_inode_setattr); 1328 1329int security_inode_getattr(const struct path *path) 1330{ 1331 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1332 return 0; 1333 return call_int_hook(inode_getattr, 0, path); 1334} 1335 1336int security_inode_setxattr(struct user_namespace *mnt_userns, 1337 struct dentry *dentry, const char *name, 1338 const void *value, size_t size, int flags) 1339{ 1340 int ret; 1341 1342 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1343 return 0; 1344 /* 1345 * SELinux and Smack integrate the cap call, 1346 * so assume that all LSMs supplying this call do so. 1347 */ 1348 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1349 size, flags); 1350 1351 if (ret == 1) 1352 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1353 if (ret) 1354 return ret; 1355 ret = ima_inode_setxattr(dentry, name, value, size); 1356 if (ret) 1357 return ret; 1358 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1359} 1360 1361void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1362 const void *value, size_t size, int flags) 1363{ 1364 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1365 return; 1366 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1367 evm_inode_post_setxattr(dentry, name, value, size); 1368} 1369 1370int security_inode_getxattr(struct dentry *dentry, const char *name) 1371{ 1372 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1373 return 0; 1374 return call_int_hook(inode_getxattr, 0, dentry, name); 1375} 1376 1377int security_inode_listxattr(struct dentry *dentry) 1378{ 1379 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1380 return 0; 1381 return call_int_hook(inode_listxattr, 0, dentry); 1382} 1383 1384int security_inode_removexattr(struct user_namespace *mnt_userns, 1385 struct dentry *dentry, const char *name) 1386{ 1387 int ret; 1388 1389 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1390 return 0; 1391 /* 1392 * SELinux and Smack integrate the cap call, 1393 * so assume that all LSMs supplying this call do so. 1394 */ 1395 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1396 if (ret == 1) 1397 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1398 if (ret) 1399 return ret; 1400 ret = ima_inode_removexattr(dentry, name); 1401 if (ret) 1402 return ret; 1403 return evm_inode_removexattr(mnt_userns, dentry, name); 1404} 1405 1406int security_inode_need_killpriv(struct dentry *dentry) 1407{ 1408 return call_int_hook(inode_need_killpriv, 0, dentry); 1409} 1410 1411int security_inode_killpriv(struct user_namespace *mnt_userns, 1412 struct dentry *dentry) 1413{ 1414 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1415} 1416 1417int security_inode_getsecurity(struct user_namespace *mnt_userns, 1418 struct inode *inode, const char *name, 1419 void **buffer, bool alloc) 1420{ 1421 struct security_hook_list *hp; 1422 int rc; 1423 1424 if (unlikely(IS_PRIVATE(inode))) 1425 return LSM_RET_DEFAULT(inode_getsecurity); 1426 /* 1427 * Only one module will provide an attribute with a given name. 1428 */ 1429 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1430 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1431 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1432 return rc; 1433 } 1434 return LSM_RET_DEFAULT(inode_getsecurity); 1435} 1436 1437int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1438{ 1439 struct security_hook_list *hp; 1440 int rc; 1441 1442 if (unlikely(IS_PRIVATE(inode))) 1443 return LSM_RET_DEFAULT(inode_setsecurity); 1444 /* 1445 * Only one module will provide an attribute with a given name. 1446 */ 1447 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1448 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1449 flags); 1450 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1451 return rc; 1452 } 1453 return LSM_RET_DEFAULT(inode_setsecurity); 1454} 1455 1456int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1457{ 1458 if (unlikely(IS_PRIVATE(inode))) 1459 return 0; 1460 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1461} 1462EXPORT_SYMBOL(security_inode_listsecurity); 1463 1464void security_inode_getsecid(struct inode *inode, u32 *secid) 1465{ 1466 call_void_hook(inode_getsecid, inode, secid); 1467} 1468 1469int security_inode_copy_up(struct dentry *src, struct cred **new) 1470{ 1471 return call_int_hook(inode_copy_up, 0, src, new); 1472} 1473EXPORT_SYMBOL(security_inode_copy_up); 1474 1475int security_inode_copy_up_xattr(const char *name) 1476{ 1477 struct security_hook_list *hp; 1478 int rc; 1479 1480 /* 1481 * The implementation can return 0 (accept the xattr), 1 (discard the 1482 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1483 * any other error code incase of an error. 1484 */ 1485 hlist_for_each_entry(hp, 1486 &security_hook_heads.inode_copy_up_xattr, list) { 1487 rc = hp->hook.inode_copy_up_xattr(name); 1488 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1489 return rc; 1490 } 1491 1492 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1493} 1494EXPORT_SYMBOL(security_inode_copy_up_xattr); 1495 1496int security_kernfs_init_security(struct kernfs_node *kn_dir, 1497 struct kernfs_node *kn) 1498{ 1499 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1500} 1501 1502int security_file_permission(struct file *file, int mask) 1503{ 1504 int ret; 1505 1506 ret = call_int_hook(file_permission, 0, file, mask); 1507 if (ret) 1508 return ret; 1509 1510 return fsnotify_perm(file, mask); 1511} 1512 1513int security_file_alloc(struct file *file) 1514{ 1515 int rc = lsm_file_alloc(file); 1516 1517 if (rc) 1518 return rc; 1519 rc = call_int_hook(file_alloc_security, 0, file); 1520 if (unlikely(rc)) 1521 security_file_free(file); 1522 return rc; 1523} 1524 1525void security_file_free(struct file *file) 1526{ 1527 void *blob; 1528 1529 call_void_hook(file_free_security, file); 1530 1531 blob = file->f_security; 1532 if (blob) { 1533 file->f_security = NULL; 1534 kmem_cache_free(lsm_file_cache, blob); 1535 } 1536} 1537 1538int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1539{ 1540 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1541} 1542EXPORT_SYMBOL_GPL(security_file_ioctl); 1543 1544static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1545{ 1546 /* 1547 * Does we have PROT_READ and does the application expect 1548 * it to imply PROT_EXEC? If not, nothing to talk about... 1549 */ 1550 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1551 return prot; 1552 if (!(current->personality & READ_IMPLIES_EXEC)) 1553 return prot; 1554 /* 1555 * if that's an anonymous mapping, let it. 1556 */ 1557 if (!file) 1558 return prot | PROT_EXEC; 1559 /* 1560 * ditto if it's not on noexec mount, except that on !MMU we need 1561 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1562 */ 1563 if (!path_noexec(&file->f_path)) { 1564#ifndef CONFIG_MMU 1565 if (file->f_op->mmap_capabilities) { 1566 unsigned caps = file->f_op->mmap_capabilities(file); 1567 if (!(caps & NOMMU_MAP_EXEC)) 1568 return prot; 1569 } 1570#endif 1571 return prot | PROT_EXEC; 1572 } 1573 /* anything on noexec mount won't get PROT_EXEC */ 1574 return prot; 1575} 1576 1577int security_mmap_file(struct file *file, unsigned long prot, 1578 unsigned long flags) 1579{ 1580 int ret; 1581 ret = call_int_hook(mmap_file, 0, file, prot, 1582 mmap_prot(file, prot), flags); 1583 if (ret) 1584 return ret; 1585 return ima_file_mmap(file, prot); 1586} 1587 1588int security_mmap_addr(unsigned long addr) 1589{ 1590 return call_int_hook(mmap_addr, 0, addr); 1591} 1592 1593int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1594 unsigned long prot) 1595{ 1596 int ret; 1597 1598 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1599 if (ret) 1600 return ret; 1601 return ima_file_mprotect(vma, prot); 1602} 1603 1604int security_file_lock(struct file *file, unsigned int cmd) 1605{ 1606 return call_int_hook(file_lock, 0, file, cmd); 1607} 1608 1609int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1610{ 1611 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1612} 1613 1614void security_file_set_fowner(struct file *file) 1615{ 1616 call_void_hook(file_set_fowner, file); 1617} 1618 1619int security_file_send_sigiotask(struct task_struct *tsk, 1620 struct fown_struct *fown, int sig) 1621{ 1622 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1623} 1624 1625int security_file_receive(struct file *file) 1626{ 1627 return call_int_hook(file_receive, 0, file); 1628} 1629 1630int security_file_open(struct file *file) 1631{ 1632 int ret; 1633 1634 ret = call_int_hook(file_open, 0, file); 1635 if (ret) 1636 return ret; 1637 1638 return fsnotify_perm(file, MAY_OPEN); 1639} 1640 1641int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1642{ 1643 int rc = lsm_task_alloc(task); 1644 1645 if (rc) 1646 return rc; 1647 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1648 if (unlikely(rc)) 1649 security_task_free(task); 1650 return rc; 1651} 1652 1653void security_task_free(struct task_struct *task) 1654{ 1655 call_void_hook(task_free, task); 1656 1657 kfree(task->security); 1658 task->security = NULL; 1659} 1660 1661int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1662{ 1663 int rc = lsm_cred_alloc(cred, gfp); 1664 1665 if (rc) 1666 return rc; 1667 1668 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1669 if (unlikely(rc)) 1670 security_cred_free(cred); 1671 return rc; 1672} 1673 1674void security_cred_free(struct cred *cred) 1675{ 1676 /* 1677 * There is a failure case in prepare_creds() that 1678 * may result in a call here with ->security being NULL. 1679 */ 1680 if (unlikely(cred->security == NULL)) 1681 return; 1682 1683 call_void_hook(cred_free, cred); 1684 1685 kfree(cred->security); 1686 cred->security = NULL; 1687} 1688 1689int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1690{ 1691 int rc = lsm_cred_alloc(new, gfp); 1692 1693 if (rc) 1694 return rc; 1695 1696 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1697 if (unlikely(rc)) 1698 security_cred_free(new); 1699 return rc; 1700} 1701 1702void security_transfer_creds(struct cred *new, const struct cred *old) 1703{ 1704 call_void_hook(cred_transfer, new, old); 1705} 1706 1707void security_cred_getsecid(const struct cred *c, u32 *secid) 1708{ 1709 *secid = 0; 1710 call_void_hook(cred_getsecid, c, secid); 1711} 1712EXPORT_SYMBOL(security_cred_getsecid); 1713 1714int security_kernel_act_as(struct cred *new, u32 secid) 1715{ 1716 return call_int_hook(kernel_act_as, 0, new, secid); 1717} 1718 1719int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1720{ 1721 return call_int_hook(kernel_create_files_as, 0, new, inode); 1722} 1723 1724int security_kernel_module_request(char *kmod_name) 1725{ 1726 int ret; 1727 1728 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1729 if (ret) 1730 return ret; 1731 return integrity_kernel_module_request(kmod_name); 1732} 1733 1734int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1735 bool contents) 1736{ 1737 int ret; 1738 1739 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1740 if (ret) 1741 return ret; 1742 return ima_read_file(file, id, contents); 1743} 1744EXPORT_SYMBOL_GPL(security_kernel_read_file); 1745 1746int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1747 enum kernel_read_file_id id) 1748{ 1749 int ret; 1750 1751 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1752 if (ret) 1753 return ret; 1754 return ima_post_read_file(file, buf, size, id); 1755} 1756EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1757 1758int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1759{ 1760 int ret; 1761 1762 ret = call_int_hook(kernel_load_data, 0, id, contents); 1763 if (ret) 1764 return ret; 1765 return ima_load_data(id, contents); 1766} 1767EXPORT_SYMBOL_GPL(security_kernel_load_data); 1768 1769int security_kernel_post_load_data(char *buf, loff_t size, 1770 enum kernel_load_data_id id, 1771 char *description) 1772{ 1773 int ret; 1774 1775 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1776 description); 1777 if (ret) 1778 return ret; 1779 return ima_post_load_data(buf, size, id, description); 1780} 1781EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1782 1783int security_task_fix_setuid(struct cred *new, const struct cred *old, 1784 int flags) 1785{ 1786 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1787} 1788 1789int security_task_fix_setgid(struct cred *new, const struct cred *old, 1790 int flags) 1791{ 1792 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1793} 1794 1795int security_task_setpgid(struct task_struct *p, pid_t pgid) 1796{ 1797 return call_int_hook(task_setpgid, 0, p, pgid); 1798} 1799 1800int security_task_getpgid(struct task_struct *p) 1801{ 1802 return call_int_hook(task_getpgid, 0, p); 1803} 1804 1805int security_task_getsid(struct task_struct *p) 1806{ 1807 return call_int_hook(task_getsid, 0, p); 1808} 1809 1810void security_task_getsecid_subj(struct task_struct *p, u32 *secid) 1811{ 1812 *secid = 0; 1813 call_void_hook(task_getsecid_subj, p, secid); 1814} 1815EXPORT_SYMBOL(security_task_getsecid_subj); 1816 1817void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1818{ 1819 *secid = 0; 1820 call_void_hook(task_getsecid_obj, p, secid); 1821} 1822EXPORT_SYMBOL(security_task_getsecid_obj); 1823 1824int security_task_setnice(struct task_struct *p, int nice) 1825{ 1826 return call_int_hook(task_setnice, 0, p, nice); 1827} 1828 1829int security_task_setioprio(struct task_struct *p, int ioprio) 1830{ 1831 return call_int_hook(task_setioprio, 0, p, ioprio); 1832} 1833 1834int security_task_getioprio(struct task_struct *p) 1835{ 1836 return call_int_hook(task_getioprio, 0, p); 1837} 1838 1839int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1840 unsigned int flags) 1841{ 1842 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1843} 1844 1845int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1846 struct rlimit *new_rlim) 1847{ 1848 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1849} 1850 1851int security_task_setscheduler(struct task_struct *p) 1852{ 1853 return call_int_hook(task_setscheduler, 0, p); 1854} 1855 1856int security_task_getscheduler(struct task_struct *p) 1857{ 1858 return call_int_hook(task_getscheduler, 0, p); 1859} 1860 1861int security_task_movememory(struct task_struct *p) 1862{ 1863 return call_int_hook(task_movememory, 0, p); 1864} 1865 1866int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1867 int sig, const struct cred *cred) 1868{ 1869 return call_int_hook(task_kill, 0, p, info, sig, cred); 1870} 1871 1872int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1873 unsigned long arg4, unsigned long arg5) 1874{ 1875 int thisrc; 1876 int rc = LSM_RET_DEFAULT(task_prctl); 1877 struct security_hook_list *hp; 1878 1879 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1880 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1881 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1882 rc = thisrc; 1883 if (thisrc != 0) 1884 break; 1885 } 1886 } 1887 return rc; 1888} 1889 1890void security_task_to_inode(struct task_struct *p, struct inode *inode) 1891{ 1892 call_void_hook(task_to_inode, p, inode); 1893} 1894 1895int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1896{ 1897 return call_int_hook(ipc_permission, 0, ipcp, flag); 1898} 1899 1900void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1901{ 1902 *secid = 0; 1903 call_void_hook(ipc_getsecid, ipcp, secid); 1904} 1905 1906int security_msg_msg_alloc(struct msg_msg *msg) 1907{ 1908 int rc = lsm_msg_msg_alloc(msg); 1909 1910 if (unlikely(rc)) 1911 return rc; 1912 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1913 if (unlikely(rc)) 1914 security_msg_msg_free(msg); 1915 return rc; 1916} 1917 1918void security_msg_msg_free(struct msg_msg *msg) 1919{ 1920 call_void_hook(msg_msg_free_security, msg); 1921 kfree(msg->security); 1922 msg->security = NULL; 1923} 1924 1925int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1926{ 1927 int rc = lsm_ipc_alloc(msq); 1928 1929 if (unlikely(rc)) 1930 return rc; 1931 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1932 if (unlikely(rc)) 1933 security_msg_queue_free(msq); 1934 return rc; 1935} 1936 1937void security_msg_queue_free(struct kern_ipc_perm *msq) 1938{ 1939 call_void_hook(msg_queue_free_security, msq); 1940 kfree(msq->security); 1941 msq->security = NULL; 1942} 1943 1944int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1945{ 1946 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1947} 1948 1949int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1950{ 1951 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1952} 1953 1954int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1955 struct msg_msg *msg, int msqflg) 1956{ 1957 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1958} 1959 1960int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1961 struct task_struct *target, long type, int mode) 1962{ 1963 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1964} 1965 1966int security_shm_alloc(struct kern_ipc_perm *shp) 1967{ 1968 int rc = lsm_ipc_alloc(shp); 1969 1970 if (unlikely(rc)) 1971 return rc; 1972 rc = call_int_hook(shm_alloc_security, 0, shp); 1973 if (unlikely(rc)) 1974 security_shm_free(shp); 1975 return rc; 1976} 1977 1978void security_shm_free(struct kern_ipc_perm *shp) 1979{ 1980 call_void_hook(shm_free_security, shp); 1981 kfree(shp->security); 1982 shp->security = NULL; 1983} 1984 1985int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1986{ 1987 return call_int_hook(shm_associate, 0, shp, shmflg); 1988} 1989 1990int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1991{ 1992 return call_int_hook(shm_shmctl, 0, shp, cmd); 1993} 1994 1995int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1996{ 1997 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1998} 1999 2000int security_sem_alloc(struct kern_ipc_perm *sma) 2001{ 2002 int rc = lsm_ipc_alloc(sma); 2003 2004 if (unlikely(rc)) 2005 return rc; 2006 rc = call_int_hook(sem_alloc_security, 0, sma); 2007 if (unlikely(rc)) 2008 security_sem_free(sma); 2009 return rc; 2010} 2011 2012void security_sem_free(struct kern_ipc_perm *sma) 2013{ 2014 call_void_hook(sem_free_security, sma); 2015 kfree(sma->security); 2016 sma->security = NULL; 2017} 2018 2019int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2020{ 2021 return call_int_hook(sem_associate, 0, sma, semflg); 2022} 2023 2024int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2025{ 2026 return call_int_hook(sem_semctl, 0, sma, cmd); 2027} 2028 2029int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2030 unsigned nsops, int alter) 2031{ 2032 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2033} 2034 2035void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2036{ 2037 if (unlikely(inode && IS_PRIVATE(inode))) 2038 return; 2039 call_void_hook(d_instantiate, dentry, inode); 2040} 2041EXPORT_SYMBOL(security_d_instantiate); 2042 2043int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2044 char **value) 2045{ 2046 struct security_hook_list *hp; 2047 2048 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2049 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2050 continue; 2051 return hp->hook.getprocattr(p, name, value); 2052 } 2053 return LSM_RET_DEFAULT(getprocattr); 2054} 2055 2056int security_setprocattr(const char *lsm, const char *name, void *value, 2057 size_t size) 2058{ 2059 struct security_hook_list *hp; 2060 2061 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2062 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2063 continue; 2064 return hp->hook.setprocattr(name, value, size); 2065 } 2066 return LSM_RET_DEFAULT(setprocattr); 2067} 2068 2069int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2070{ 2071 return call_int_hook(netlink_send, 0, sk, skb); 2072} 2073 2074int security_ismaclabel(const char *name) 2075{ 2076 return call_int_hook(ismaclabel, 0, name); 2077} 2078EXPORT_SYMBOL(security_ismaclabel); 2079 2080int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2081{ 2082 struct security_hook_list *hp; 2083 int rc; 2084 2085 /* 2086 * Currently, only one LSM can implement secid_to_secctx (i.e this 2087 * LSM hook is not "stackable"). 2088 */ 2089 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2090 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2091 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2092 return rc; 2093 } 2094 2095 return LSM_RET_DEFAULT(secid_to_secctx); 2096} 2097EXPORT_SYMBOL(security_secid_to_secctx); 2098 2099int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2100{ 2101 *secid = 0; 2102 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2103} 2104EXPORT_SYMBOL(security_secctx_to_secid); 2105 2106void security_release_secctx(char *secdata, u32 seclen) 2107{ 2108 call_void_hook(release_secctx, secdata, seclen); 2109} 2110EXPORT_SYMBOL(security_release_secctx); 2111 2112void security_inode_invalidate_secctx(struct inode *inode) 2113{ 2114 call_void_hook(inode_invalidate_secctx, inode); 2115} 2116EXPORT_SYMBOL(security_inode_invalidate_secctx); 2117 2118int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2119{ 2120 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2121} 2122EXPORT_SYMBOL(security_inode_notifysecctx); 2123 2124int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2125{ 2126 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2127} 2128EXPORT_SYMBOL(security_inode_setsecctx); 2129 2130int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2131{ 2132 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2133} 2134EXPORT_SYMBOL(security_inode_getsecctx); 2135 2136#ifdef CONFIG_WATCH_QUEUE 2137int security_post_notification(const struct cred *w_cred, 2138 const struct cred *cred, 2139 struct watch_notification *n) 2140{ 2141 return call_int_hook(post_notification, 0, w_cred, cred, n); 2142} 2143#endif /* CONFIG_WATCH_QUEUE */ 2144 2145#ifdef CONFIG_KEY_NOTIFICATIONS 2146int security_watch_key(struct key *key) 2147{ 2148 return call_int_hook(watch_key, 0, key); 2149} 2150#endif 2151 2152#ifdef CONFIG_SECURITY_NETWORK 2153 2154int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2155{ 2156 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2157} 2158EXPORT_SYMBOL(security_unix_stream_connect); 2159 2160int security_unix_may_send(struct socket *sock, struct socket *other) 2161{ 2162 return call_int_hook(unix_may_send, 0, sock, other); 2163} 2164EXPORT_SYMBOL(security_unix_may_send); 2165 2166int security_socket_create(int family, int type, int protocol, int kern) 2167{ 2168 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2169} 2170 2171int security_socket_post_create(struct socket *sock, int family, 2172 int type, int protocol, int kern) 2173{ 2174 return call_int_hook(socket_post_create, 0, sock, family, type, 2175 protocol, kern); 2176} 2177 2178int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2179{ 2180 return call_int_hook(socket_socketpair, 0, socka, sockb); 2181} 2182EXPORT_SYMBOL(security_socket_socketpair); 2183 2184int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2185{ 2186 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2187} 2188 2189int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2190{ 2191 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2192} 2193 2194int security_socket_listen(struct socket *sock, int backlog) 2195{ 2196 return call_int_hook(socket_listen, 0, sock, backlog); 2197} 2198 2199int security_socket_accept(struct socket *sock, struct socket *newsock) 2200{ 2201 return call_int_hook(socket_accept, 0, sock, newsock); 2202} 2203 2204int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2205{ 2206 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2207} 2208 2209int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2210 int size, int flags) 2211{ 2212 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2213} 2214 2215int security_socket_getsockname(struct socket *sock) 2216{ 2217 return call_int_hook(socket_getsockname, 0, sock); 2218} 2219 2220int security_socket_getpeername(struct socket *sock) 2221{ 2222 return call_int_hook(socket_getpeername, 0, sock); 2223} 2224 2225int security_socket_getsockopt(struct socket *sock, int level, int optname) 2226{ 2227 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2228} 2229 2230int security_socket_setsockopt(struct socket *sock, int level, int optname) 2231{ 2232 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2233} 2234 2235int security_socket_shutdown(struct socket *sock, int how) 2236{ 2237 return call_int_hook(socket_shutdown, 0, sock, how); 2238} 2239 2240int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2241{ 2242 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2243} 2244EXPORT_SYMBOL(security_sock_rcv_skb); 2245 2246int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2247 int __user *optlen, unsigned len) 2248{ 2249 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2250 optval, optlen, len); 2251} 2252 2253int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2254{ 2255 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2256 skb, secid); 2257} 2258EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2259 2260int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2261{ 2262 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2263} 2264 2265void security_sk_free(struct sock *sk) 2266{ 2267 call_void_hook(sk_free_security, sk); 2268} 2269 2270void security_sk_clone(const struct sock *sk, struct sock *newsk) 2271{ 2272 call_void_hook(sk_clone_security, sk, newsk); 2273} 2274EXPORT_SYMBOL(security_sk_clone); 2275 2276void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2277{ 2278 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2279} 2280EXPORT_SYMBOL(security_sk_classify_flow); 2281 2282void security_req_classify_flow(const struct request_sock *req, 2283 struct flowi_common *flic) 2284{ 2285 call_void_hook(req_classify_flow, req, flic); 2286} 2287EXPORT_SYMBOL(security_req_classify_flow); 2288 2289void security_sock_graft(struct sock *sk, struct socket *parent) 2290{ 2291 call_void_hook(sock_graft, sk, parent); 2292} 2293EXPORT_SYMBOL(security_sock_graft); 2294 2295int security_inet_conn_request(const struct sock *sk, 2296 struct sk_buff *skb, struct request_sock *req) 2297{ 2298 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2299} 2300EXPORT_SYMBOL(security_inet_conn_request); 2301 2302void security_inet_csk_clone(struct sock *newsk, 2303 const struct request_sock *req) 2304{ 2305 call_void_hook(inet_csk_clone, newsk, req); 2306} 2307 2308void security_inet_conn_established(struct sock *sk, 2309 struct sk_buff *skb) 2310{ 2311 call_void_hook(inet_conn_established, sk, skb); 2312} 2313EXPORT_SYMBOL(security_inet_conn_established); 2314 2315int security_secmark_relabel_packet(u32 secid) 2316{ 2317 return call_int_hook(secmark_relabel_packet, 0, secid); 2318} 2319EXPORT_SYMBOL(security_secmark_relabel_packet); 2320 2321void security_secmark_refcount_inc(void) 2322{ 2323 call_void_hook(secmark_refcount_inc); 2324} 2325EXPORT_SYMBOL(security_secmark_refcount_inc); 2326 2327void security_secmark_refcount_dec(void) 2328{ 2329 call_void_hook(secmark_refcount_dec); 2330} 2331EXPORT_SYMBOL(security_secmark_refcount_dec); 2332 2333int security_tun_dev_alloc_security(void **security) 2334{ 2335 return call_int_hook(tun_dev_alloc_security, 0, security); 2336} 2337EXPORT_SYMBOL(security_tun_dev_alloc_security); 2338 2339void security_tun_dev_free_security(void *security) 2340{ 2341 call_void_hook(tun_dev_free_security, security); 2342} 2343EXPORT_SYMBOL(security_tun_dev_free_security); 2344 2345int security_tun_dev_create(void) 2346{ 2347 return call_int_hook(tun_dev_create, 0); 2348} 2349EXPORT_SYMBOL(security_tun_dev_create); 2350 2351int security_tun_dev_attach_queue(void *security) 2352{ 2353 return call_int_hook(tun_dev_attach_queue, 0, security); 2354} 2355EXPORT_SYMBOL(security_tun_dev_attach_queue); 2356 2357int security_tun_dev_attach(struct sock *sk, void *security) 2358{ 2359 return call_int_hook(tun_dev_attach, 0, sk, security); 2360} 2361EXPORT_SYMBOL(security_tun_dev_attach); 2362 2363int security_tun_dev_open(void *security) 2364{ 2365 return call_int_hook(tun_dev_open, 0, security); 2366} 2367EXPORT_SYMBOL(security_tun_dev_open); 2368 2369int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2370{ 2371 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2372} 2373EXPORT_SYMBOL(security_sctp_assoc_request); 2374 2375int security_sctp_bind_connect(struct sock *sk, int optname, 2376 struct sockaddr *address, int addrlen) 2377{ 2378 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2379 address, addrlen); 2380} 2381EXPORT_SYMBOL(security_sctp_bind_connect); 2382 2383void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2384 struct sock *newsk) 2385{ 2386 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2387} 2388EXPORT_SYMBOL(security_sctp_sk_clone); 2389 2390#endif /* CONFIG_SECURITY_NETWORK */ 2391 2392#ifdef CONFIG_SECURITY_INFINIBAND 2393 2394int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2395{ 2396 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2397} 2398EXPORT_SYMBOL(security_ib_pkey_access); 2399 2400int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2401{ 2402 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2403} 2404EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2405 2406int security_ib_alloc_security(void **sec) 2407{ 2408 return call_int_hook(ib_alloc_security, 0, sec); 2409} 2410EXPORT_SYMBOL(security_ib_alloc_security); 2411 2412void security_ib_free_security(void *sec) 2413{ 2414 call_void_hook(ib_free_security, sec); 2415} 2416EXPORT_SYMBOL(security_ib_free_security); 2417#endif /* CONFIG_SECURITY_INFINIBAND */ 2418 2419#ifdef CONFIG_SECURITY_NETWORK_XFRM 2420 2421int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2422 struct xfrm_user_sec_ctx *sec_ctx, 2423 gfp_t gfp) 2424{ 2425 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2426} 2427EXPORT_SYMBOL(security_xfrm_policy_alloc); 2428 2429int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2430 struct xfrm_sec_ctx **new_ctxp) 2431{ 2432 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2433} 2434 2435void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2436{ 2437 call_void_hook(xfrm_policy_free_security, ctx); 2438} 2439EXPORT_SYMBOL(security_xfrm_policy_free); 2440 2441int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2442{ 2443 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2444} 2445 2446int security_xfrm_state_alloc(struct xfrm_state *x, 2447 struct xfrm_user_sec_ctx *sec_ctx) 2448{ 2449 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2450} 2451EXPORT_SYMBOL(security_xfrm_state_alloc); 2452 2453int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2454 struct xfrm_sec_ctx *polsec, u32 secid) 2455{ 2456 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2457} 2458 2459int security_xfrm_state_delete(struct xfrm_state *x) 2460{ 2461 return call_int_hook(xfrm_state_delete_security, 0, x); 2462} 2463EXPORT_SYMBOL(security_xfrm_state_delete); 2464 2465void security_xfrm_state_free(struct xfrm_state *x) 2466{ 2467 call_void_hook(xfrm_state_free_security, x); 2468} 2469 2470int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2471{ 2472 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2473} 2474 2475int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2476 struct xfrm_policy *xp, 2477 const struct flowi_common *flic) 2478{ 2479 struct security_hook_list *hp; 2480 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2481 2482 /* 2483 * Since this function is expected to return 0 or 1, the judgment 2484 * becomes difficult if multiple LSMs supply this call. Fortunately, 2485 * we can use the first LSM's judgment because currently only SELinux 2486 * supplies this call. 2487 * 2488 * For speed optimization, we explicitly break the loop rather than 2489 * using the macro 2490 */ 2491 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2492 list) { 2493 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2494 break; 2495 } 2496 return rc; 2497} 2498 2499int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2500{ 2501 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2502} 2503 2504void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2505{ 2506 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2507 0); 2508 2509 BUG_ON(rc); 2510} 2511EXPORT_SYMBOL(security_skb_classify_flow); 2512 2513#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2514 2515#ifdef CONFIG_KEYS 2516 2517int security_key_alloc(struct key *key, const struct cred *cred, 2518 unsigned long flags) 2519{ 2520 return call_int_hook(key_alloc, 0, key, cred, flags); 2521} 2522 2523void security_key_free(struct key *key) 2524{ 2525 call_void_hook(key_free, key); 2526} 2527 2528int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2529 enum key_need_perm need_perm) 2530{ 2531 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2532} 2533 2534int security_key_getsecurity(struct key *key, char **_buffer) 2535{ 2536 *_buffer = NULL; 2537 return call_int_hook(key_getsecurity, 0, key, _buffer); 2538} 2539 2540#endif /* CONFIG_KEYS */ 2541 2542#ifdef CONFIG_AUDIT 2543 2544int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2545{ 2546 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2547} 2548 2549int security_audit_rule_known(struct audit_krule *krule) 2550{ 2551 return call_int_hook(audit_rule_known, 0, krule); 2552} 2553 2554void security_audit_rule_free(void *lsmrule) 2555{ 2556 call_void_hook(audit_rule_free, lsmrule); 2557} 2558 2559int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2560{ 2561 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2562} 2563#endif /* CONFIG_AUDIT */ 2564 2565#ifdef CONFIG_BPF_SYSCALL 2566int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2567{ 2568 return call_int_hook(bpf, 0, cmd, attr, size); 2569} 2570int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2571{ 2572 return call_int_hook(bpf_map, 0, map, fmode); 2573} 2574int security_bpf_prog(struct bpf_prog *prog) 2575{ 2576 return call_int_hook(bpf_prog, 0, prog); 2577} 2578int security_bpf_map_alloc(struct bpf_map *map) 2579{ 2580 return call_int_hook(bpf_map_alloc_security, 0, map); 2581} 2582int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2583{ 2584 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2585} 2586void security_bpf_map_free(struct bpf_map *map) 2587{ 2588 call_void_hook(bpf_map_free_security, map); 2589} 2590void security_bpf_prog_free(struct bpf_prog_aux *aux) 2591{ 2592 call_void_hook(bpf_prog_free_security, aux); 2593} 2594#endif /* CONFIG_BPF_SYSCALL */ 2595 2596int security_locked_down(enum lockdown_reason what) 2597{ 2598 return call_int_hook(locked_down, 0, what); 2599} 2600EXPORT_SYMBOL(security_locked_down); 2601 2602#ifdef CONFIG_PERF_EVENTS 2603int security_perf_event_open(struct perf_event_attr *attr, int type) 2604{ 2605 return call_int_hook(perf_event_open, 0, attr, type); 2606} 2607 2608int security_perf_event_alloc(struct perf_event *event) 2609{ 2610 return call_int_hook(perf_event_alloc, 0, event); 2611} 2612 2613void security_perf_event_free(struct perf_event *event) 2614{ 2615 call_void_hook(perf_event_free, event); 2616} 2617 2618int security_perf_event_read(struct perf_event *event) 2619{ 2620 return call_int_hook(perf_event_read, 0, event); 2621} 2622 2623int security_perf_event_write(struct perf_event *event) 2624{ 2625 return call_int_hook(perf_event_write, 0, event); 2626} 2627#endif /* CONFIG_PERF_EVENTS */