Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2#ifndef _BTRFS_CTREE_H_
3#define _BTRFS_CTREE_H_
4
5#include <linux/btrfs.h>
6#include <linux/types.h>
7#ifdef __KERNEL__
8#include <linux/stddef.h>
9#else
10#include <stddef.h>
11#endif
12
13/*
14 * This header contains the structure definitions and constants used
15 * by file system objects that can be retrieved using
16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
17 * is needed to describe a leaf node's key or item contents.
18 */
19
20/* holds pointers to all of the tree roots */
21#define BTRFS_ROOT_TREE_OBJECTID 1ULL
22
23/* stores information about which extents are in use, and reference counts */
24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25
26/*
27 * chunk tree stores translations from logical -> physical block numbering
28 * the super block points to the chunk tree
29 */
30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31
32/*
33 * stores information about which areas of a given device are in use.
34 * one per device. The tree of tree roots points to the device tree
35 */
36#define BTRFS_DEV_TREE_OBJECTID 4ULL
37
38/* one per subvolume, storing files and directories */
39#define BTRFS_FS_TREE_OBJECTID 5ULL
40
41/* directory objectid inside the root tree */
42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43
44/* holds checksums of all the data extents */
45#define BTRFS_CSUM_TREE_OBJECTID 7ULL
46
47/* holds quota configuration and tracking */
48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49
50/* for storing items that use the BTRFS_UUID_KEY* types */
51#define BTRFS_UUID_TREE_OBJECTID 9ULL
52
53/* tracks free space in block groups. */
54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55
56/* device stats in the device tree */
57#define BTRFS_DEV_STATS_OBJECTID 0ULL
58
59/* for storing balance parameters in the root tree */
60#define BTRFS_BALANCE_OBJECTID -4ULL
61
62/* orphan objectid for tracking unlinked/truncated files */
63#define BTRFS_ORPHAN_OBJECTID -5ULL
64
65/* does write ahead logging to speed up fsyncs */
66#define BTRFS_TREE_LOG_OBJECTID -6ULL
67#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
68
69/* for space balancing */
70#define BTRFS_TREE_RELOC_OBJECTID -8ULL
71#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
72
73/*
74 * extent checksums all have this objectid
75 * this allows them to share the logging tree
76 * for fsyncs
77 */
78#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
79
80/* For storing free space cache */
81#define BTRFS_FREE_SPACE_OBJECTID -11ULL
82
83/*
84 * The inode number assigned to the special inode for storing
85 * free ino cache
86 */
87#define BTRFS_FREE_INO_OBJECTID -12ULL
88
89/* dummy objectid represents multiple objectids */
90#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
91
92/*
93 * All files have objectids in this range.
94 */
95#define BTRFS_FIRST_FREE_OBJECTID 256ULL
96#define BTRFS_LAST_FREE_OBJECTID -256ULL
97#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
98
99
100/*
101 * the device items go into the chunk tree. The key is in the form
102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
103 */
104#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
105
106#define BTRFS_BTREE_INODE_OBJECTID 1
107
108#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
109
110#define BTRFS_DEV_REPLACE_DEVID 0ULL
111
112/*
113 * inode items have the data typically returned from stat and store other
114 * info about object characteristics. There is one for every file and dir in
115 * the FS
116 */
117#define BTRFS_INODE_ITEM_KEY 1
118#define BTRFS_INODE_REF_KEY 12
119#define BTRFS_INODE_EXTREF_KEY 13
120#define BTRFS_XATTR_ITEM_KEY 24
121
122/*
123 * fs verity items are stored under two different key types on disk.
124 * The descriptor items:
125 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
126 *
127 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
128 * of the descriptor item and some extra data for encryption.
129 * Starting at offset 1, these hold the generic fs verity descriptor. The
130 * latter are opaque to btrfs, we just read and write them as a blob for the
131 * higher level verity code. The most common descriptor size is 256 bytes.
132 *
133 * The merkle tree items:
134 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
135 *
136 * These also start at offset 0, and correspond to the merkle tree bytes. When
137 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
138 * offset 0 for this key type. These are also opaque to btrfs, we're blindly
139 * storing whatever fsverity sends down.
140 */
141#define BTRFS_VERITY_DESC_ITEM_KEY 36
142#define BTRFS_VERITY_MERKLE_ITEM_KEY 37
143
144#define BTRFS_ORPHAN_ITEM_KEY 48
145/* reserve 2-15 close to the inode for later flexibility */
146
147/*
148 * dir items are the name -> inode pointers in a directory. There is one
149 * for every name in a directory.
150 */
151#define BTRFS_DIR_LOG_ITEM_KEY 60
152#define BTRFS_DIR_LOG_INDEX_KEY 72
153#define BTRFS_DIR_ITEM_KEY 84
154#define BTRFS_DIR_INDEX_KEY 96
155/*
156 * extent data is for file data
157 */
158#define BTRFS_EXTENT_DATA_KEY 108
159
160/*
161 * extent csums are stored in a separate tree and hold csums for
162 * an entire extent on disk.
163 */
164#define BTRFS_EXTENT_CSUM_KEY 128
165
166/*
167 * root items point to tree roots. They are typically in the root
168 * tree used by the super block to find all the other trees
169 */
170#define BTRFS_ROOT_ITEM_KEY 132
171
172/*
173 * root backrefs tie subvols and snapshots to the directory entries that
174 * reference them
175 */
176#define BTRFS_ROOT_BACKREF_KEY 144
177
178/*
179 * root refs make a fast index for listing all of the snapshots and
180 * subvolumes referenced by a given root. They point directly to the
181 * directory item in the root that references the subvol
182 */
183#define BTRFS_ROOT_REF_KEY 156
184
185/*
186 * extent items are in the extent map tree. These record which blocks
187 * are used, and how many references there are to each block
188 */
189#define BTRFS_EXTENT_ITEM_KEY 168
190
191/*
192 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
193 * the length, so we save the level in key->offset instead of the length.
194 */
195#define BTRFS_METADATA_ITEM_KEY 169
196
197#define BTRFS_TREE_BLOCK_REF_KEY 176
198
199#define BTRFS_EXTENT_DATA_REF_KEY 178
200
201#define BTRFS_EXTENT_REF_V0_KEY 180
202
203#define BTRFS_SHARED_BLOCK_REF_KEY 182
204
205#define BTRFS_SHARED_DATA_REF_KEY 184
206
207/*
208 * block groups give us hints into the extent allocation trees. Which
209 * blocks are free etc etc
210 */
211#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
212
213/*
214 * Every block group is represented in the free space tree by a free space info
215 * item, which stores some accounting information. It is keyed on
216 * (block_group_start, FREE_SPACE_INFO, block_group_length).
217 */
218#define BTRFS_FREE_SPACE_INFO_KEY 198
219
220/*
221 * A free space extent tracks an extent of space that is free in a block group.
222 * It is keyed on (start, FREE_SPACE_EXTENT, length).
223 */
224#define BTRFS_FREE_SPACE_EXTENT_KEY 199
225
226/*
227 * When a block group becomes very fragmented, we convert it to use bitmaps
228 * instead of extents. A free space bitmap is keyed on
229 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
230 * (length / sectorsize) bits.
231 */
232#define BTRFS_FREE_SPACE_BITMAP_KEY 200
233
234#define BTRFS_DEV_EXTENT_KEY 204
235#define BTRFS_DEV_ITEM_KEY 216
236#define BTRFS_CHUNK_ITEM_KEY 228
237
238/*
239 * Records the overall state of the qgroups.
240 * There's only one instance of this key present,
241 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
242 */
243#define BTRFS_QGROUP_STATUS_KEY 240
244/*
245 * Records the currently used space of the qgroup.
246 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
247 */
248#define BTRFS_QGROUP_INFO_KEY 242
249/*
250 * Contains the user configured limits for the qgroup.
251 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
252 */
253#define BTRFS_QGROUP_LIMIT_KEY 244
254/*
255 * Records the child-parent relationship of qgroups. For
256 * each relation, 2 keys are present:
257 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
258 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
259 */
260#define BTRFS_QGROUP_RELATION_KEY 246
261
262/*
263 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
264 */
265#define BTRFS_BALANCE_ITEM_KEY 248
266
267/*
268 * The key type for tree items that are stored persistently, but do not need to
269 * exist for extended period of time. The items can exist in any tree.
270 *
271 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
272 *
273 * Existing items:
274 *
275 * - balance status item
276 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
277 */
278#define BTRFS_TEMPORARY_ITEM_KEY 248
279
280/*
281 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
282 */
283#define BTRFS_DEV_STATS_KEY 249
284
285/*
286 * The key type for tree items that are stored persistently and usually exist
287 * for a long period, eg. filesystem lifetime. The item kinds can be status
288 * information, stats or preference values. The item can exist in any tree.
289 *
290 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
291 *
292 * Existing items:
293 *
294 * - device statistics, store IO stats in the device tree, one key for all
295 * stats
296 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
297 */
298#define BTRFS_PERSISTENT_ITEM_KEY 249
299
300/*
301 * Persistently stores the device replace state in the device tree.
302 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
303 */
304#define BTRFS_DEV_REPLACE_KEY 250
305
306/*
307 * Stores items that allow to quickly map UUIDs to something else.
308 * These items are part of the filesystem UUID tree.
309 * The key is built like this:
310 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
311 */
312#if BTRFS_UUID_SIZE != 16
313#error "UUID items require BTRFS_UUID_SIZE == 16!"
314#endif
315#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
316#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
317 * received subvols */
318
319/*
320 * string items are for debugging. They just store a short string of
321 * data in the FS
322 */
323#define BTRFS_STRING_ITEM_KEY 253
324
325/* Maximum metadata block size (nodesize) */
326#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
327
328/* 32 bytes in various csum fields */
329#define BTRFS_CSUM_SIZE 32
330
331/* csum types */
332enum btrfs_csum_type {
333 BTRFS_CSUM_TYPE_CRC32 = 0,
334 BTRFS_CSUM_TYPE_XXHASH = 1,
335 BTRFS_CSUM_TYPE_SHA256 = 2,
336 BTRFS_CSUM_TYPE_BLAKE2 = 3,
337};
338
339/*
340 * flags definitions for directory entry item type
341 *
342 * Used by:
343 * struct btrfs_dir_item.type
344 *
345 * Values 0..7 must match common file type values in fs_types.h.
346 */
347#define BTRFS_FT_UNKNOWN 0
348#define BTRFS_FT_REG_FILE 1
349#define BTRFS_FT_DIR 2
350#define BTRFS_FT_CHRDEV 3
351#define BTRFS_FT_BLKDEV 4
352#define BTRFS_FT_FIFO 5
353#define BTRFS_FT_SOCK 6
354#define BTRFS_FT_SYMLINK 7
355#define BTRFS_FT_XATTR 8
356#define BTRFS_FT_MAX 9
357
358/*
359 * The key defines the order in the tree, and so it also defines (optimal)
360 * block layout.
361 *
362 * objectid corresponds to the inode number.
363 *
364 * type tells us things about the object, and is a kind of stream selector.
365 * so for a given inode, keys with type of 1 might refer to the inode data,
366 * type of 2 may point to file data in the btree and type == 3 may point to
367 * extents.
368 *
369 * offset is the starting byte offset for this key in the stream.
370 *
371 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
372 * in cpu native order. Otherwise they are identical and their sizes
373 * should be the same (ie both packed)
374 */
375struct btrfs_disk_key {
376 __le64 objectid;
377 __u8 type;
378 __le64 offset;
379} __attribute__ ((__packed__));
380
381struct btrfs_key {
382 __u64 objectid;
383 __u8 type;
384 __u64 offset;
385} __attribute__ ((__packed__));
386
387struct btrfs_dev_item {
388 /* the internal btrfs device id */
389 __le64 devid;
390
391 /* size of the device */
392 __le64 total_bytes;
393
394 /* bytes used */
395 __le64 bytes_used;
396
397 /* optimal io alignment for this device */
398 __le32 io_align;
399
400 /* optimal io width for this device */
401 __le32 io_width;
402
403 /* minimal io size for this device */
404 __le32 sector_size;
405
406 /* type and info about this device */
407 __le64 type;
408
409 /* expected generation for this device */
410 __le64 generation;
411
412 /*
413 * starting byte of this partition on the device,
414 * to allow for stripe alignment in the future
415 */
416 __le64 start_offset;
417
418 /* grouping information for allocation decisions */
419 __le32 dev_group;
420
421 /* seek speed 0-100 where 100 is fastest */
422 __u8 seek_speed;
423
424 /* bandwidth 0-100 where 100 is fastest */
425 __u8 bandwidth;
426
427 /* btrfs generated uuid for this device */
428 __u8 uuid[BTRFS_UUID_SIZE];
429
430 /* uuid of FS who owns this device */
431 __u8 fsid[BTRFS_UUID_SIZE];
432} __attribute__ ((__packed__));
433
434struct btrfs_stripe {
435 __le64 devid;
436 __le64 offset;
437 __u8 dev_uuid[BTRFS_UUID_SIZE];
438} __attribute__ ((__packed__));
439
440struct btrfs_chunk {
441 /* size of this chunk in bytes */
442 __le64 length;
443
444 /* objectid of the root referencing this chunk */
445 __le64 owner;
446
447 __le64 stripe_len;
448 __le64 type;
449
450 /* optimal io alignment for this chunk */
451 __le32 io_align;
452
453 /* optimal io width for this chunk */
454 __le32 io_width;
455
456 /* minimal io size for this chunk */
457 __le32 sector_size;
458
459 /* 2^16 stripes is quite a lot, a second limit is the size of a single
460 * item in the btree
461 */
462 __le16 num_stripes;
463
464 /* sub stripes only matter for raid10 */
465 __le16 sub_stripes;
466 struct btrfs_stripe stripe;
467 /* additional stripes go here */
468} __attribute__ ((__packed__));
469
470#define BTRFS_FREE_SPACE_EXTENT 1
471#define BTRFS_FREE_SPACE_BITMAP 2
472
473struct btrfs_free_space_entry {
474 __le64 offset;
475 __le64 bytes;
476 __u8 type;
477} __attribute__ ((__packed__));
478
479struct btrfs_free_space_header {
480 struct btrfs_disk_key location;
481 __le64 generation;
482 __le64 num_entries;
483 __le64 num_bitmaps;
484} __attribute__ ((__packed__));
485
486#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
487#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
488
489/* Super block flags */
490/* Errors detected */
491#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
492
493#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
494#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
495#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
496#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
497#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
498
499
500/*
501 * items in the extent btree are used to record the objectid of the
502 * owner of the block and the number of references
503 */
504
505struct btrfs_extent_item {
506 __le64 refs;
507 __le64 generation;
508 __le64 flags;
509} __attribute__ ((__packed__));
510
511struct btrfs_extent_item_v0 {
512 __le32 refs;
513} __attribute__ ((__packed__));
514
515
516#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
517#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
518
519/* following flags only apply to tree blocks */
520
521/* use full backrefs for extent pointers in the block */
522#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
523
524/*
525 * this flag is only used internally by scrub and may be changed at any time
526 * it is only declared here to avoid collisions
527 */
528#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
529
530struct btrfs_tree_block_info {
531 struct btrfs_disk_key key;
532 __u8 level;
533} __attribute__ ((__packed__));
534
535struct btrfs_extent_data_ref {
536 __le64 root;
537 __le64 objectid;
538 __le64 offset;
539 __le32 count;
540} __attribute__ ((__packed__));
541
542struct btrfs_shared_data_ref {
543 __le32 count;
544} __attribute__ ((__packed__));
545
546struct btrfs_extent_inline_ref {
547 __u8 type;
548 __le64 offset;
549} __attribute__ ((__packed__));
550
551/* dev extents record free space on individual devices. The owner
552 * field points back to the chunk allocation mapping tree that allocated
553 * the extent. The chunk tree uuid field is a way to double check the owner
554 */
555struct btrfs_dev_extent {
556 __le64 chunk_tree;
557 __le64 chunk_objectid;
558 __le64 chunk_offset;
559 __le64 length;
560 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
561} __attribute__ ((__packed__));
562
563struct btrfs_inode_ref {
564 __le64 index;
565 __le16 name_len;
566 /* name goes here */
567} __attribute__ ((__packed__));
568
569struct btrfs_inode_extref {
570 __le64 parent_objectid;
571 __le64 index;
572 __le16 name_len;
573 __u8 name[0];
574 /* name goes here */
575} __attribute__ ((__packed__));
576
577struct btrfs_timespec {
578 __le64 sec;
579 __le32 nsec;
580} __attribute__ ((__packed__));
581
582struct btrfs_inode_item {
583 /* nfs style generation number */
584 __le64 generation;
585 /* transid that last touched this inode */
586 __le64 transid;
587 __le64 size;
588 __le64 nbytes;
589 __le64 block_group;
590 __le32 nlink;
591 __le32 uid;
592 __le32 gid;
593 __le32 mode;
594 __le64 rdev;
595 __le64 flags;
596
597 /* modification sequence number for NFS */
598 __le64 sequence;
599
600 /*
601 * a little future expansion, for more than this we can
602 * just grow the inode item and version it
603 */
604 __le64 reserved[4];
605 struct btrfs_timespec atime;
606 struct btrfs_timespec ctime;
607 struct btrfs_timespec mtime;
608 struct btrfs_timespec otime;
609} __attribute__ ((__packed__));
610
611struct btrfs_dir_log_item {
612 __le64 end;
613} __attribute__ ((__packed__));
614
615struct btrfs_dir_item {
616 struct btrfs_disk_key location;
617 __le64 transid;
618 __le16 data_len;
619 __le16 name_len;
620 __u8 type;
621} __attribute__ ((__packed__));
622
623#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
624
625/*
626 * Internal in-memory flag that a subvolume has been marked for deletion but
627 * still visible as a directory
628 */
629#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
630
631struct btrfs_root_item {
632 struct btrfs_inode_item inode;
633 __le64 generation;
634 __le64 root_dirid;
635 __le64 bytenr;
636 __le64 byte_limit;
637 __le64 bytes_used;
638 __le64 last_snapshot;
639 __le64 flags;
640 __le32 refs;
641 struct btrfs_disk_key drop_progress;
642 __u8 drop_level;
643 __u8 level;
644
645 /*
646 * The following fields appear after subvol_uuids+subvol_times
647 * were introduced.
648 */
649
650 /*
651 * This generation number is used to test if the new fields are valid
652 * and up to date while reading the root item. Every time the root item
653 * is written out, the "generation" field is copied into this field. If
654 * anyone ever mounted the fs with an older kernel, we will have
655 * mismatching generation values here and thus must invalidate the
656 * new fields. See btrfs_update_root and btrfs_find_last_root for
657 * details.
658 * the offset of generation_v2 is also used as the start for the memset
659 * when invalidating the fields.
660 */
661 __le64 generation_v2;
662 __u8 uuid[BTRFS_UUID_SIZE];
663 __u8 parent_uuid[BTRFS_UUID_SIZE];
664 __u8 received_uuid[BTRFS_UUID_SIZE];
665 __le64 ctransid; /* updated when an inode changes */
666 __le64 otransid; /* trans when created */
667 __le64 stransid; /* trans when sent. non-zero for received subvol */
668 __le64 rtransid; /* trans when received. non-zero for received subvol */
669 struct btrfs_timespec ctime;
670 struct btrfs_timespec otime;
671 struct btrfs_timespec stime;
672 struct btrfs_timespec rtime;
673 __le64 reserved[8]; /* for future */
674} __attribute__ ((__packed__));
675
676/*
677 * Btrfs root item used to be smaller than current size. The old format ends
678 * at where member generation_v2 is.
679 */
680static inline __u32 btrfs_legacy_root_item_size(void)
681{
682 return offsetof(struct btrfs_root_item, generation_v2);
683}
684
685/*
686 * this is used for both forward and backward root refs
687 */
688struct btrfs_root_ref {
689 __le64 dirid;
690 __le64 sequence;
691 __le16 name_len;
692} __attribute__ ((__packed__));
693
694struct btrfs_disk_balance_args {
695 /*
696 * profiles to operate on, single is denoted by
697 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
698 */
699 __le64 profiles;
700
701 /*
702 * usage filter
703 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
704 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
705 */
706 union {
707 __le64 usage;
708 struct {
709 __le32 usage_min;
710 __le32 usage_max;
711 };
712 };
713
714 /* devid filter */
715 __le64 devid;
716
717 /* devid subset filter [pstart..pend) */
718 __le64 pstart;
719 __le64 pend;
720
721 /* btrfs virtual address space subset filter [vstart..vend) */
722 __le64 vstart;
723 __le64 vend;
724
725 /*
726 * profile to convert to, single is denoted by
727 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
728 */
729 __le64 target;
730
731 /* BTRFS_BALANCE_ARGS_* */
732 __le64 flags;
733
734 /*
735 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
736 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
737 * and maximum
738 */
739 union {
740 __le64 limit;
741 struct {
742 __le32 limit_min;
743 __le32 limit_max;
744 };
745 };
746
747 /*
748 * Process chunks that cross stripes_min..stripes_max devices,
749 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
750 */
751 __le32 stripes_min;
752 __le32 stripes_max;
753
754 __le64 unused[6];
755} __attribute__ ((__packed__));
756
757/*
758 * store balance parameters to disk so that balance can be properly
759 * resumed after crash or unmount
760 */
761struct btrfs_balance_item {
762 /* BTRFS_BALANCE_* */
763 __le64 flags;
764
765 struct btrfs_disk_balance_args data;
766 struct btrfs_disk_balance_args meta;
767 struct btrfs_disk_balance_args sys;
768
769 __le64 unused[4];
770} __attribute__ ((__packed__));
771
772enum {
773 BTRFS_FILE_EXTENT_INLINE = 0,
774 BTRFS_FILE_EXTENT_REG = 1,
775 BTRFS_FILE_EXTENT_PREALLOC = 2,
776 BTRFS_NR_FILE_EXTENT_TYPES = 3,
777};
778
779struct btrfs_file_extent_item {
780 /*
781 * transaction id that created this extent
782 */
783 __le64 generation;
784 /*
785 * max number of bytes to hold this extent in ram
786 * when we split a compressed extent we can't know how big
787 * each of the resulting pieces will be. So, this is
788 * an upper limit on the size of the extent in ram instead of
789 * an exact limit.
790 */
791 __le64 ram_bytes;
792
793 /*
794 * 32 bits for the various ways we might encode the data,
795 * including compression and encryption. If any of these
796 * are set to something a given disk format doesn't understand
797 * it is treated like an incompat flag for reading and writing,
798 * but not for stat.
799 */
800 __u8 compression;
801 __u8 encryption;
802 __le16 other_encoding; /* spare for later use */
803
804 /* are we inline data or a real extent? */
805 __u8 type;
806
807 /*
808 * disk space consumed by the extent, checksum blocks are included
809 * in these numbers
810 *
811 * At this offset in the structure, the inline extent data start.
812 */
813 __le64 disk_bytenr;
814 __le64 disk_num_bytes;
815 /*
816 * the logical offset in file blocks (no csums)
817 * this extent record is for. This allows a file extent to point
818 * into the middle of an existing extent on disk, sharing it
819 * between two snapshots (useful if some bytes in the middle of the
820 * extent have changed
821 */
822 __le64 offset;
823 /*
824 * the logical number of file blocks (no csums included). This
825 * always reflects the size uncompressed and without encoding.
826 */
827 __le64 num_bytes;
828
829} __attribute__ ((__packed__));
830
831struct btrfs_csum_item {
832 __u8 csum;
833} __attribute__ ((__packed__));
834
835struct btrfs_dev_stats_item {
836 /*
837 * grow this item struct at the end for future enhancements and keep
838 * the existing values unchanged
839 */
840 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
841} __attribute__ ((__packed__));
842
843#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
844#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
845
846struct btrfs_dev_replace_item {
847 /*
848 * grow this item struct at the end for future enhancements and keep
849 * the existing values unchanged
850 */
851 __le64 src_devid;
852 __le64 cursor_left;
853 __le64 cursor_right;
854 __le64 cont_reading_from_srcdev_mode;
855
856 __le64 replace_state;
857 __le64 time_started;
858 __le64 time_stopped;
859 __le64 num_write_errors;
860 __le64 num_uncorrectable_read_errors;
861} __attribute__ ((__packed__));
862
863/* different types of block groups (and chunks) */
864#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
865#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
866#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
867#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
868#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
869#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
870#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
871#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
872#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
873#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
874#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
875#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
876 BTRFS_SPACE_INFO_GLOBAL_RSV)
877
878enum btrfs_raid_types {
879 BTRFS_RAID_RAID10,
880 BTRFS_RAID_RAID1,
881 BTRFS_RAID_DUP,
882 BTRFS_RAID_RAID0,
883 BTRFS_RAID_SINGLE,
884 BTRFS_RAID_RAID5,
885 BTRFS_RAID_RAID6,
886 BTRFS_RAID_RAID1C3,
887 BTRFS_RAID_RAID1C4,
888 BTRFS_NR_RAID_TYPES
889};
890
891#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
892 BTRFS_BLOCK_GROUP_SYSTEM | \
893 BTRFS_BLOCK_GROUP_METADATA)
894
895#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
896 BTRFS_BLOCK_GROUP_RAID1 | \
897 BTRFS_BLOCK_GROUP_RAID1C3 | \
898 BTRFS_BLOCK_GROUP_RAID1C4 | \
899 BTRFS_BLOCK_GROUP_RAID5 | \
900 BTRFS_BLOCK_GROUP_RAID6 | \
901 BTRFS_BLOCK_GROUP_DUP | \
902 BTRFS_BLOCK_GROUP_RAID10)
903#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
904 BTRFS_BLOCK_GROUP_RAID6)
905
906#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
907 BTRFS_BLOCK_GROUP_RAID1C3 | \
908 BTRFS_BLOCK_GROUP_RAID1C4)
909
910/*
911 * We need a bit for restriper to be able to tell when chunks of type
912 * SINGLE are available. This "extended" profile format is used in
913 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
914 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
915 * to avoid remappings between two formats in future.
916 */
917#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
918
919/*
920 * A fake block group type that is used to communicate global block reserve
921 * size to userspace via the SPACE_INFO ioctl.
922 */
923#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
924
925#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
926 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
927
928static inline __u64 chunk_to_extended(__u64 flags)
929{
930 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
931 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
932
933 return flags;
934}
935static inline __u64 extended_to_chunk(__u64 flags)
936{
937 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
938}
939
940struct btrfs_block_group_item {
941 __le64 used;
942 __le64 chunk_objectid;
943 __le64 flags;
944} __attribute__ ((__packed__));
945
946struct btrfs_free_space_info {
947 __le32 extent_count;
948 __le32 flags;
949} __attribute__ ((__packed__));
950
951#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
952
953#define BTRFS_QGROUP_LEVEL_SHIFT 48
954static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
955{
956 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
957}
958
959/*
960 * is subvolume quota turned on?
961 */
962#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
963/*
964 * RESCAN is set during the initialization phase
965 */
966#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
967/*
968 * Some qgroup entries are known to be out of date,
969 * either because the configuration has changed in a way that
970 * makes a rescan necessary, or because the fs has been mounted
971 * with a non-qgroup-aware version.
972 * Turning qouta off and on again makes it inconsistent, too.
973 */
974#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
975
976#define BTRFS_QGROUP_STATUS_VERSION 1
977
978struct btrfs_qgroup_status_item {
979 __le64 version;
980 /*
981 * the generation is updated during every commit. As older
982 * versions of btrfs are not aware of qgroups, it will be
983 * possible to detect inconsistencies by checking the
984 * generation on mount time
985 */
986 __le64 generation;
987
988 /* flag definitions see above */
989 __le64 flags;
990
991 /*
992 * only used during scanning to record the progress
993 * of the scan. It contains a logical address
994 */
995 __le64 rescan;
996} __attribute__ ((__packed__));
997
998struct btrfs_qgroup_info_item {
999 __le64 generation;
1000 __le64 rfer;
1001 __le64 rfer_cmpr;
1002 __le64 excl;
1003 __le64 excl_cmpr;
1004} __attribute__ ((__packed__));
1005
1006struct btrfs_qgroup_limit_item {
1007 /*
1008 * only updated when any of the other values change
1009 */
1010 __le64 flags;
1011 __le64 max_rfer;
1012 __le64 max_excl;
1013 __le64 rsv_rfer;
1014 __le64 rsv_excl;
1015} __attribute__ ((__packed__));
1016
1017struct btrfs_verity_descriptor_item {
1018 /* Size of the verity descriptor in bytes */
1019 __le64 size;
1020 /*
1021 * When we implement support for fscrypt, we will need to encrypt the
1022 * Merkle tree for encrypted verity files. These 128 bits are for the
1023 * eventual storage of an fscrypt initialization vector.
1024 */
1025 __le64 reserved[2];
1026 __u8 encryption;
1027} __attribute__ ((__packed__));
1028
1029#endif /* _BTRFS_CTREE_H_ */